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Abstract 
This thesis analyses the development of a high-speed peripheral interface between an 

IPAQ pocket PC and a Super H 4 processor to be used in the vision system of a 

humanoid. Previously this type of communication has been performed with typically low 

bandwidth communication techniques such as an RS232 serial link. This communication 

system utilises a standard PCMCIA interface to transport video, processed and calibration 

data simultaneously. This thesis will analyse the protocol used the design of the hardware 

and the software developed for this peripheral interfaces.  

 
This design uses the IPAQ as the master and SH4 as a slave. The hardware design is 

implemented by using both a PCB and FPGA combination. Software drivers were also 

written to control the IPAQ and SH4.  This thesis covers the design of this the hardware 

and software in great detail.  

 
Several major achievements were made in the development of this communication 

system including the successful development of a driver for the SH4 and development of 

working hardware. Results obtained have been included. 

 
Possible future work can be done on the development of a successful IPAQ driver. This 

thesis makes several suggestions on how this system could be fully implemented given 

more time. 
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1.0 Introduction 
  This thesis analyses the design and development of a high-speed peripheral 

interface designed to act as the optical nerve in the vision system of a humanoid.  It will 

examine in detail how a 32-bit data bus using the PCMCIA protocol will be used to 

connect the main processor of the humanoid to the vision processor. It will then show 

how a DMA transfer will be used to transmit the data between the vision processor and 

the main processor. This thesis will analyse the development of the hardware, software 

drivers and protocol used to implement this communication system.   

 

1.1 RoboCup 
RoboCup is an international competition setup to encourage the development of 

robots in a competitive atmosphere.  This year will see the start of a new experimental 

competition the humanoid league.  This draft regulation for league offers various 

competitions to test the various challenges in the development of the humanoid. These 

challenges include balancing on one leg, a penalty shootout and an N on N robot soccer 

contest.  The humanoid league moves the competition closer to its overall goal of 

developing a robotic soccer player capable of competing with even defeating a human 

soccer player by the year 2050. 
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1.1 GUROO  
 

          

       
The GURoo (Grossly Under funded Roo) as it has become known, is the 

humanoid being developed to represent the University of Queensland in the humanoid 

league at RoboCup 2002. 

This project combines the talent of twelve undergraduate students in areas such as 

mechanical design, vision system, control and power and is under the leadership of Dr 

Gordon Wyeth. The ultimate goal of this project is to design a humanoid that has the 

ability to find a ball on a given field, walk towards the ball and then kick it. A basic block 

diagram showing how the different parts of this project relate to each other is shown in 

figure 1.1. The vision system is an important part of the total system as it allows the 

humanoid to respond to visible stimulus.  

Figure 1.1 
The GuROO 
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Figure1.2 

Project break up of GuROO Project  
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1.2 The Problem 
 

 
       

 

The main goal of this thesis is to develop a high-speed communication with low 

overhead. This communication system is to be used as the optical nerve in the vision 

system of a humanoid. This communication system is highlighted in red in the block 

diagram of the humanoid.  

  The operation of a Humanoid can put a large amount of strain on the main 

processor without adding the large amount of processing required to operate a high-speed 

bus.  Therefore a communication system with a large bandwidth, low latency but with 

minimal overhead is needed, as is demonstrated in the block diagram of the system in 

figure 1.3  

 The communication channel in this particular humanoid needs to be able to 

communicate in either direction, with the primary concern being placed on the vision 

information traveling from the vision processor to the main processor.  This information 

consists of real time video and processed information. The transfer rate in this direction 

needs to be as fast as possible. Alternatively the data to be transferred from main 

Figure 1.3 
The Vision System 
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processor to the vision processor is part of the vision processor calibration process. This 

type of transfer will occur at the start of each operating session. It is much less frequent 

and the information can therefore be passed at a relatively slower rate if necessary.  

 The processing unit selected, as the main processor is an IPAQ pocket PC. The vision 

processor selected is a SH4.  The two processors are to be connected through a Xilinx 

Spartan II field programmable gate array to add extra flexibility to the system. 

 

1.3 Justification of Research 
This project has been undertaken for two major reasons.  

The primary reason is the decision to separate the image processing from the main 

processor.  This system is effective as the workload is spread, but it is important not to set 

up a bottleneck in the information passing between them. Therefore it is desirable to 

develop a fast form of communication with a large bandwidth and low over-head to 

combine their processing power as effectively as possible.  

 Another reason for completing this research is the fact that the IPAQ is a 

relatively new device. This means that little work has been done on developing useful 

expansion packs particularly using the extended 32-bit PCMCIA interface. 

 

1.4 The Achievements 
 

This project has achieved several key results. 

 

• The Hardware has been developed to interface the IPAQ to the 

SH4. This hardware implements a I/O specific PCMCIA socket 

      

• The FPGA code has been written to interface the PCB to the SH4.  

 

• A software driver for the IPAQ has been developed and is nearly 

operational. 
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• A driver for the SH4 has also been written but the operation has not 

been fully verified. 

1.5 Layout 
 

Chapter 2 will examine the current ideas and standards used for high speed 

peripherals. It will also cover the relevant theory.  In particular it will examine the 

PCMCIA protocol in depth, as it is most relevant to this thesis.  The features of the main 

processor and vision processor will also be discussed.  

 

Chapter 3 will explore the specifications of this communication system in greater depth. 

It will then illustrate the specifications required by the software and hardware in detail.  

 

Chapter 4 will examine the hardware design implemented in this peripheral interface. In 

particular it will examine the development of the printed circuit board and FPGA and will 

illustrate the functionality of this circuit.  

  

Chapter 5 will examine the design of the software drivers used to operate the hardware 

developed. It will break the software in two sections the IPAQ driver and the SH4 driver. 

It will then analyse the functions implemented by these drivers in great detail. 

 

Chapter 6 will reveal the overall performance of this system. It examines the results that 

were achieved in each section and provide reasoning for each result.  

 

Chapter 7 will conclude the findings of this design and will suggest any improvements or 

work to be done in the future. 
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2.0 Review of Literature 

 

To understand the ideas developed within this design it is important to have some 

background knowledge in three key areas.  Firstly it is necessary to assess previous ideas 

in the field of data transfer within robotics.  Secondarily it is important to have an 

understanding of the processors and interfaces used within this transfer. Finally it is 

necessary to understand the operating systems that will control the processors. 

 

2.1 Previous Ideas 
 

Based upon the research done, the task of transferring large amounts of data 

within the field of robots can be divided into typically two groups based upon the speed 

of data transfer necessary this varies in relationship to the robots application.  

Typically when a robot needs to have a compact design and minimal hardware 

data communication is carried out by typically low bandwidth, high latency solutions. 

  Keane(1999)[12] presents a communication system to communicate between a 

PC and six mobile robots playing robot soccer. Due to the small size of the robots a 

compact design is important. In this method a Rs232 serial transmission is also used but 

data is transferred using a RF transmitter and receiver. This system takes advantage of the 

greater processing power of the PC computer but maintains the mobility of the robots. 

  Sung-Hyan (1999) [1] performed a study on Real-Time implementation of a 

visual feedback for control of a Robotic Manipulator. This system uses a binocular 

stereovision system to control a four axis Scara Robot (SM5 model). To transport the 

vision information used to control the main processor a low bandwidth Rs232 connection 

is used. The final results show that the system was successful but the speed of the transfer 

had a large effect on the performance of the control system.  

Vision systems that require close to real time speed and have to transmit large 

amounts of data tend to use systems that have higher overhead and more hardware but 

provide greater transfer speed and bandwidth.  
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Scassellati(1999)[13] analyses a high speed communication system used to 

implement a Binocular Activision vision system in the development of the robot COG. 

This system is required to have high-speed recognition of gestures. The communication 

system uses a high-speed bi-directional hardware link called comports to communicate 

between a network of DSP processors. This system transports information at 

approximately 40Mbits/second. This system then interfaces to a PC through an ISA bus. 

[11] illustrates the development of a high performance camera platform for real 

time active vision. This system transfers video data from a Panasonic GP-KS1000 camera 

at a frame rate of 30 Hz.  To implement this system a high speed Max bus has been used 

to transfer information from the camera to the main processor. 

Our system requires a high bandwidth system as demonstrated in [13] and [11], our 

system will have to conform to the constraints placed upon it by the chosen processors. 

Understanding the design principles behind these vision systems can offer insight in to 

the necessary feature of an embedded transfer system.  

2.2 Peripheral Interfaces 
 

There have been many forces involved in shaping the growth of peripheral 

interfaces.  The main source of this growth is the rapid development of mobile computers 

and their peripherals. This has fueled the development of high-speed peripheral 

interfaces.  Although their uses vary with every specific design, Schmidt (1998) [4] 

points out that the abstract model of an interface can be made up of four layers.  The 

lowest of the layers is the actual physical interface.  This includes the type of material 

used for construction, the voltages and currents required and the timing of signals.  The 

layer above this is known as the protocol layer.  This layer defines the format of bytes 

and includes error checking if necessary.  The next layer describes the behavior of the 

peripheral device and states how the interface should be operated to account for this 

behavior.  Finally the final layer states any commands that are necessary to control the 

interface. A good example of this layer is the standardized commands used by printers. 

The interface presented in this thesis can be broken into all of these layers. 
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2.3 IPAQ 
 

The IPAQ H3630 pocket PC is a 

handheld computer developed by 

Compaq Presario. It features a thirty-

two-bit STRONG-ARM SA1110 RISC 

processor. The STRONG-ARM SA1110 

is a powerful processor designed 

specifically for low power situations.  It 

is based upon the SA-1 core and features 

large on-chip caches. There are two 

major interfaces that support a 32-bit 

transfer; the SRAM like variable I/O 

interface and the PCMCIA interface. DMA transfer is only supported by the variable I/O 

interface, the PCMCIA interface does not support DMA transfer.  

The IPAQ has two major ports for expansion, a USB port and a 100-pin 

connector. These allow the additions of an expansion pack and allow access to the 

different modules of the chip. The dimensions of the recommended expansion pack are 

given in [###]. Windows CE, which is produced by Microsoft, was the chosen operating 

system. This choice of operating system will influence the way that the hardware can be 

controlled through software. 

 

2.4 PCMCIA   
 

The PCMCIA interface was selected for the IPAQ�s interface for reasons that will 

be made clear in the design chapter. Some background knowledge of PCMCIA is 

necessary to understand this design.  

 
Figure 2.1 

The IPAQ H3630 [20] 
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The development of the mobile computer industry has fueled the need for smaller, 

more efficient and most importantly portable peripheral devices. This has led to the need 

to develop standardised peripheral interfaces to cater for the mobile community. As 

stated in Anderson (2000) [5] the Personal Computer Memory Card International 

Association was formed in 1989, it�s goal was to promote the standardisation and 

interchangeability of PC Cards. In 1991 the first PCMCIA standard (version 1.0) was 

released. This first release was designed specifically as an interface for memory cards for 

portable computers. The main advantage of the PCMCIA interface is the fact that it is a 

standardized interface. This means that it is highly portable between devices and that a 

large amount of information on design is available. 

The latest version of PCMCIA has expanded the standard to incorporate I/O transfers. 

The standard defines four major characteristics 

 

• Physical design of PC Card 

• Physical design of connector 

• Electrical design of connector 

• Electrical interface 

• Software Architecture 

• This chapter will focus in particular on the PCMCIA electrical interface for more 

information on the full PCMCIA interface consult [5]. 

 

2.41 The Electrical Interface 
 

The Regular PCMCIA interface defines a 16-bit data-path with a 26- bit address 

bus. This interface actually includes three different types of interface; a Common 

memory interface, an Attribute memory interface and a data I/O interface. These three 

interfaces are designed for three different types of data transfers. The Common memory 

interface is used for accesses to external storage memory. The Attributes memory 

interface is used to access configuration information about the card and also 

configuration registers. This type of access is designed to determine and control the 
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properties of the PCMCIA card. Finally the I/O interface is used to transfer standard I/O 

data from peripherals.  Each of these interfaces has 64 Mbytes of address space dedicated 

to it.  

The Electrical signals defined by the PCMCIA can also be broken down into three 

different areas; the General signals, the Memory signal and the I/O signals. The general 

control signals defined by the PCMCIA standard are used for initialisation of the 

PCMCIA card and handshaking during the transfer. The memory interface signals are 

used for transfers to and from memory. In particular the /PREG signal is used to 

differentiate between the two memory interfaces. When /PREG is asserted the transfer 

will access the Attributes memory, while common memory is accessed when /PREG is 

not asserted. Finally the I/O signals are designed specifically for I/O transfers. A more 

detailed description of each signal is included in table [2.1]. 

 

General PCMCIA Signals 

Signal Description 

/CD1, /CD2 Card Detect. These signals are asserted when the PC Card 

has been installed. They are used to notify the system the 

PC Card has been installed. 

/CE1 When /CE1 is active low it specifies that the data will be 

transferred using (D7:D0). 

/CE2 When /CE2 is active low it specifies that the data will be 

transferred using (D8:D16). 

/WAIT This signal is asserted to insert wait states into the transfer. 

 

Memory Signals 
/OE Output Enable. This signal is asserted during a read from 

memory. 

/WE Write Enable. This signal is asserted during a write from 

memory. 

/PREG This signal is asserted to indicate an access to attribute 
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memory. 

 

I/O Signals 
/IORD I/O Read. This signal is asserted during I/O read transfers 

from PCMCIA. 
/IOWR I/O Write. This signal is asserted during I/O write transfer to 

the expansion pack. 

IOIS16 IO is 16-bits. This signal is asserted during I/O read 

transfers from PC Cards, if device size is 16 bits. 

/IRQ Interrupt Request. This signal is asserted to indicate the 

expansion pack has an interrupt request 

 

 

 

 

A PCMCIA transfer is a synchronous transfer, the timing of each si2.1nal relative 

to the clock is shown in figure 2.1 obtained from the SA1110 data sheet [4]. To perform 

correct operation these signals and the data signals need to be correctly buffered. Some 

glue logic is required to correctly operate the buffers and save power.  

Table 2.1 
PCMCIA Control Signals 

And explanations. 
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2.42 PCMCIA - IPAQ 
  The IPAQ provides support for two PCMCIA sockets. It does not however 

support the PCMCIA DMA transfer. The PCMCIA interface can be divided up into eight 

partitions based upon the three different types of interface; each of these interfaces is 64 

MB in size. A diagrammatic representation of the PCMCIA interface is shown in figure 

[2.2] from the SA1110 data sheet. 

 

Figure 2.2 
PCMCIA Timing diagram  [4]  
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Reading or writing data to this memory space can initiate a PCMCIA transfer. 

Using the PCMCIA timing register (MECR) can then control the timing of the transfer. A 

detailed description of this register is contained in figure [2.3], which was also obtained 

from the SA1110 data sheet [4]. 

Figure 2.3 
PCMCIA Address space [4] 
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Storing a value in this register will control the value of the delay BS_xx in figure[2.1]. 

The glue logic necessary, to implement a PCMCIA socket on the IPAQ is shown in 

figure [2.4]. This circuit buffers the signals to remove the effect of stray capacitances and 

improve the efficiency of the design.  

 

 
 

 

 
 

 

 

 

 
 

 
Figure 2.5 

PCMCIA socket [4] 

Figure 2.4 
PCMCIA Timing register 

[4]
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The IPAQ allows the extension of the standard 16-bit PCMCIA interface to a 32-

bit interface; use of this type of interface will require the development of a driver to 

control this interface. It must also be noted that using a 32-bit transfer will mean that 

A0:1 of the address bus must be zero.  

2.5 Windows CE  
 
 As with most operating systems the hardware in a system using Windows CE is 

accessed using device drivers. The device drivers in windows CE are implemented by 

using dynamic link libraries instead of the WDM files used by Windows NT. 

When developing a software driver for a windows CE application there are several 

options available. As is shown in Microsoft�s [16] driver development kit there are two 

basic driver models which are accepted in windows CE 3.0; stream drivers and native 

drivers. Stream drivers expose a standard interface, this means that the driver must 

contain a set of standard functions with set input and return parameters. For more 

information on the stream driver interface consult Platform builders help [10]. 

Alternatively native device expose a custom made interface to the API level. These 

Device drivers can be implemented in a single monolithic driver that will communicate 

directly from the device to the API level or in several layers of device drivers.  

Layered Native drivers generally use two layers; a platform dependent layer and a model 

dependent layer. The platform dependent layer is responsible for managing the hardware 

while the model dependent layer is responsible for controlling the behavior of the device. 

A monolithic device uses one driver to control both of these layers. The layered model 

offers the benefits of being highly modular and therefore easily ported between devices. 

The monolithic driver offers the advantage of speed, it is also the easiest to implement in 

a one off situation. 

 To install a driver into a Windows CE system the compiled DLL file must first be 

stored in the /Windows directory of the device in question. The device may then be 

accessed in several ways. If the driver only needs to be accessed by one API the driver 

can be loaded using the LoadDriver function as detailed in Platform Builder. This 
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function will load the driver into a memory location and return a handle to the driver 

instance. The interface of the driver can then be accessed by the API.  No other API may 

access a driver initialized in this way. Alternatively the Register device function or 

Activate device function can be used to access the driver. These functions will register 

the driver in the registry, the device may then be accessed by multiple APIs. This type of 

accessed may not always be possible and securities need to be put in place to ensure that 

no conflicts occur.  

 All the information contained in this chapter was attained from Microsoft�s 

Platform Builder [10]. If any further work is to be done on the development of an IPAQ 

driver using Windows CE it is highly recommended that the Platform builder technical 

documents be consulted. 

2.5 Super H 
 

 
 

 
Figure 2.6 

Bus Timing Diagram [] 
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The SH7750, which is the chosen vision processor, is a 32-bit RISC super scalar 

processor developed by Hitachi Ltd. Based upon the Super H hardware manual [7] it 

contains twenty-six bit address bus and a possible sixty-four bit data bus. It also supports 

two major I/O interfaces PCMCIA and SRAM like I/O. The PCMCIA interface is a 

standard PCMCIA interface and cannot be extended to 32-bits. The SRAM interface is 

capable of transmission using bus sizes up to 64-bits. The control signals for the SRAM 

interface and there functions are shown in table [2.2]. Both of these interfaces support 

direct memory access transfer. The timing of these signals is shown in figure [2.5] 

Mark Chang a postgraduate at the University of Queensland has developed the SH4 

board.  It has been developed as the main processor controlling a group of mobile Robots 

known as the ViperRoos. He has adapted his design act as the vision processor for the 

humanoid project. David Prasser an undergraduate student at the University of 

Queensland has developed the vision software. 

2.6 Direct Memory Access 
 

Direct memory access is a function provided by computer bus architectures to 

allow data to be sent from a peripheral device to memory without involving the main 

processor. This will remove the latency of a large data transfer from the main processor 

and will speed up the whole process. The DMA controller controls the operations of the 

DMA transfers. It will periodically seize the bus from the main processor and transfer a 

block of data. 

Signals Description 
/RD Read. This signal is asserted when a read operation is 

initiated. 

/WE Write Enable. This signal is asserted when a write operation 

is initiated 

Table 2.2 
Bus Signals and their 

definitions 
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The SH4 features four DMA channels available for DMA transfers; only two of 

these channels can be accessed externally through the DREQ pin. The DMA controller is 

capable of transfers of 16-bit, 32-bit, 64-bit and 32 bytes.  

Two modes of operation are available; single address mode and dual address mode. 

Single address mode is used when both transfers source and destination are external 

locations. Dual address mode is used when both source and destination are accessed 

using an address. This source and destination are then controlled using the DMA source 

register and DMA destination register. 

Two bus modes are also available Cycle steal and Burst mode. The cycle steal mode 

releases the bus to the main processor at the end of each transfer. The Burst mode will 

release the bus as soon as the DREQ signal is pulled high regardless of whether the 

transfer is complete. 

 

3.0 Specifications  
 

This Chapter will outline the specifications of this project in greater detail. It will 

first give the general specifications for the project it will then analyse the specifications 

for the hardware and software in more detail. 

 

3.1 General Specifications 
 

As was briefly covered in the first chapter the ultimate goal of this design is the 

development of a communication system capable of transmitting and receiving large 

amounts of data between an IPAQ pocket PC and Super H 4 Processor. This system is to 

be implemented as part of the vision system of a humanoid. Video information will be 

collected from a OV7620 CMOS Omnivision camera developed by Andrew Blower [15]. 

This video information will then be passed from the camera to the SH4 vision processing 

board. Image processing software developed by David Prasser [14] will then segment this 

image data and gather information on the surrounding environment. The video data and 

processed data will then be passed to the main processor through the high-speed 

peripheral interface developed in this thesis.  
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The data to be transported by this system can then be broken down into three 

forms; video data, processed data and calibration data. The video data is simply RGB 

data from the camera. The processed data is data containing vision information obtained 

from the image processing software. Finally the calibration data is data used to adjust the 

image processing software to new environments 

This communication channel must be able to transfer large amounts of video data 

as well as a smaller amount of processed information from the SH4 to the IPAQ on a 

regular basis. It must also be able to transfer a smaller amount of calibration data from 

the IPAQ to the SH4 on a less frequent basis. This information is to be used in a real time 

video and control system for the humanoid, it is therefore important that the transfer be as 

fast and as reliable as possible. 

There are three major characteristics that are required from this communications 

system speed, accuracy, and compatibility. From a design point of view the most 

important of these characteristics is compatibility. The chosen method of data 

transmission must be compatible with both the chosen interface for the main processor 

and the interface selected for the vision processor. The next major criterion, which is as 

important as the first, is accuracy, this is particularly significant when passing control 

information. To ensure accuracy an effective form of control should be used to enable 

handshaking to take place between the two processors.   

The transfer system must also be able to differentiate between each form of data.  

The final characteristic required in this communication system is the speed of the 

transfer. The maximum size of each image to be transferred is 172.8 kilobytes and the 

processor can process about thirty frames per second. Therefore the minimum 

transmission rate for the video data that must be met should be approximately 5.2 

Mbytes/second. At the same time it is estimated that about one kilobyte of processed data 

will have to be transmitted per frame, this will increase the frame rate to approximately 

5.3 megabytes/second. Finally approximately 64 Kbytes of data must be transferred for 

each calibration transfer. It is preferential to get the system much faster then the 

maximum data transfer rate.  
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3.2 Hardware Specifications 
 

 The hardware design must perform two major roles in the development of a data 

transfer system. Firstly it must ensure that all data is transferred accurately and 

efficiently. Secondly it needs to manipulate control signals and merge the interfaces 

selected for each processor together.  

The hardware in this design can be implemented either externally on a PCB or 

implemented in VHDL on a Xilinx Spartan II FPGA that, is placed on the SH4 vision 

board.  Power for the components on the PCB is available from both the SH4 and IPAQ. 

Two voltage ranges are available, both the SH4 and IPAQ can supply a 0-3.3V range the 

SH4 can also supply an additional 0-5V range. 

The adopted hardware will also have to conform to the physical dimensions of 

each interface. In the case of the IPAQ the physical interface is a specific 100-pin 

connector manufactured by Foxconn  Pty Ltd, the dimensions of this connector are 

included in appendix G. The Sh4�s interface on the other hand was a much more standard 

100-pin connector that can be purchased from any components store. The hardware 

implemented including the SH4 will be mounted on the back of the IPAQ as an 

expansion pack. 

 

3.3 Software Specifications 
  

The Software in this system will be broken down in two sections; the main 

processor and the slave processor. It will be the job of the main processor to initiate all 

communication between the two processors while the slave will need to be able to 

respond correctly to the main processor�s commands. In each case some form of 

handshaking will need to be handled by software. The other major issue with software is 

the operating systems used by each processor. In the case of the SH4 this does not present 

a problem as no operating system is used. The IPAQ on the other hand as was previously 

stated is running Microsoft�s Windows CE; this will mean that direct access to hardware 
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will probably not be possible as there are restrictions on direct access to hardware. It will 

be necessary to write a driver that can be controlled by the kernel of the operating system.   

 
 
 
 
 
 
4.0 Hardware 
 

IPAQ PCB FPGA SH4

 
 

 

 

 

This chapter will analyse the design process that was used in the development of 

the physical layer of this communication system. There are two principal areas of 

hardware design the external PCB and FPGA. The actual layout of the design is shown in 

figure (4.1). 

4.1 PCB Design   
 

The first thing to note about the PCB design was that a 0-3.3V voltage range was 

selected, this meant that the PCB was powered from both the SH4 and the IPAQ. The 

actual design of the PCB was based upon the selected interface for the IPAQ.  The IPAQ 

has two interfaces that are available for standard 32-bit I/O, SRAM like Variable Latency 

I/O and PCMCIA. The variable latency SRAM like I/O interface has the advantage of 

being able to use the DMA features of the SA1110. On the other hand the PCMCIA 

interface is the standard form of interface used to connect peripheral devices in portable 

computers. The PCMCIA interface also allows the design to incorporate the hot insertion 

Figure 4.1 
Hardware Layout of peripheral Interface 
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and removal features of the IPAQ, unfortunately in this case it does not support direct 

memory access transfer. Both interfaces were viable alternatives the PCMCIA interface 

was eventually chosen as it was felt that it had the greatest flexibility, which was 

important in the earlier stages of design. It also had the benefit of supporting hot insertion 

and removal, which would be a nice feature if time allowed it to be implemented. This 

decision was possibly wrong in hindsight as using the DMA capabilities of the SRAM 

interface would have reduced the strain on the main processor. 

The PCB design implemented was a slightly modified version of the standard 

PCMCIA interface as shown in figure (2.4) obtained from the SA1110 datasheet [4]. The 

circuit was modified slightly as the standard PCMCIA interface is designed to handle 

both a memory interface and a standard I/O interface. This design has simply removed 

the redundant memory logic in favour of a more specific I/O interface. To do this the 

control signals dedicated to memory access were omitted. Only the /IORD, /IOWR, 

/IOIS16, /WAIT, Reset and /CD control signals have been included in this design. The 

PREG signal has also been included but is essentially useless as it is a memory specific 

signal. 

  Pull up resistors have been used for all control signals except /IORD and /IOWR. 

This design was based upon the generic PCMCIA socket shown in figure [2.4]. A pull up 

resistor is not needed for the IOIS16 signal as this signal is permanently tied low a pull 

up resistor will simply result in a continuous power consumption and reduce the overall 

efficiency of the circuit. The pull up resistors used are compliant with the PC Card 

Standard Volume 2 Electrical Specification as shown in [5].  

The standard PCMCIA design has been further modified by extending the data 

bus from sixteen bits to thirty-two bits, this is beyond the specs of the PCMCIA standard 

but the Strong Arm processor allows for this extension as is shown in [4]. Restricting the 

bus to thirty-two bits has altered the way the logic was implemented. Using the thirty-two 

bit format means that the /IOIS16 signal must always be asserted and A0 and A1 are 

always equal to zero. The two /CE signals must also be or�ed together to form one chip 

enable signal. This was done as the chip enable signal is only required to low when both 

/CE1 and /CE2 go low. 
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This design only implements an eight-bit address bus. Only eight address bits 

were needed in this transfer because this form of communication really only uses two 

different addresses; one address for character interrupt and one address for a DMA 

request. It must be noted that two of the address lines that I have included are A0 and A1 

these lines were essentially useless as they are always zero for a thirty-two bit transfer. 

 

 
 

 

 

To reduce the degrading effects of excessive capacitance on the switching speeds 

of the signals the circuit uses 74LCX245 bi-directional buffers. The pin out for this data 

buffer is shown in figure 8. The 74LCX245 buffer was chosen for its small propagation 

delay of 7ns and the low power consumption. The data sheet for 74LCX245 is given in 

[17].  

The output and direction of the 74LCX245 can be controlled by using the /OE pin 

and T/R pin of the buffer. When the /OE pin is pulled low the buffer will begin to 

operate, the direction of the buffer is then controlled by the T/R pin. When this pin is 

pulled low the signals will travel from B to A as shown in figure (4.2). The signals will 

propagate in the opposite direction when the pin is held high.  

Control logic is used to control the output and direction of the buffer this 

increases the overall efficiency. There are three types of buffers used by this circuit; 

Address buffers, control signal buffers and data buffers all are controlled by different 

logic.  

Figure 4.2 
74LCX245 Buffer [17] 
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The Address buffer as is shown in figure [4.3] is enabled when the OPT_ON signal is 

pulled high. When the /CD signal is then pulled low the signal will propagate from the 

IPAQ to SH4.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 

Control Buffer 

Figure 4.3 
Address Buffer 
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Similarly the control signal buffer shown in Figure[4.4] is also enabled when the 

OPT_ON signal is asserted. The direction pin is permanently tied low; the control signals 

will always therefore propagate from B to A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally the Address buffer shown in figure [4.5] is enabled when /CE1 and /CE2 pins are 

pulled low, the direction of the buffer will then be controlled by the /IORD signal. When 

IORD is low the data signals will propagate from the SH4 to the IPAQ. Alternatively 

when /IORD is high during a write operation the signals will propagate from the IPAQ to 

the SH4. 

All control logic used in this circuit is based the based around the 3.3 V Low 

Voltage HCMOS series. This type of logic was selected for its low voltage rating of and 

low propagation delay of 2.5 nanoseconds. 

 

 
Figure 4.5 

Data Buffer 
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As part of the initialisation process a 25LC080 serial EEPROM has been included 

on the PCB. This serial EEPROM contains the initialisation information required to start 

the driver and initialize the hardware in software. A detailed description of the data 

contained within the serial EEPROM is displayed in [18]. The hardware design of the 

serial EEPROM was based upon the data contained in the 25LC080 and the schematics 

contained in the IPAQ developer�s kit [21]. The full circuit for the PCB is displayed in 

Appendix A. 

 
Figure 4.6 

Serial EEPROM 
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4.3 FPGA Design 
 

 
      
 

 

 

This design uses a Xilinx Spartan FPGA situated on the SH4 board to interface 

the PCB to the SH4 processor. FPGA provides three major functions; firstly it initialises 

the PCB hardware, it then connects the major signals to the SH4 and finally it provides 

the logic to translate the signals from the PCB into appropriate signals for the interface 

chosen for the SH4.  

The design of the FPGA was based on the chosen interface. A SRAM like 

interface was chosen for its simplicity and ease of use. This interface provided control 

signals as listed in table (2.2) these control signals are synchronous, the timing diagram is 

presented in figure (2.5).  

The first function of the FPGA hardware is to initialise the PCB hardware. To do 

this the FPGA when first connected, will pull the CD signal low, this will intialise the 

Address bus and the IOIS16 and WAIT control signals. The FPGA will then pull the 

IOIS16 signal low; this will set the IPAQ data bus to 32-bits. This circuit then connects 

Figure 4.7 
FPGA Logic 
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the data bus from the PCB to data bus on the SH4 and connects RESET signal to general 

purpose I/O pin two.   

The logic implemented by the FPGA is used to adapt the signals from the IPAQ 

to the signals used by the SRAM interface. The functionality of the FPGA logic will be 

examined in the functionality section of this chapter. 

This logic was implemented in VHDL code this code is shown in Appendix B.  The logic 

was then compiled and simulated using the Xilinx foundation software.   

 

4.4 Functionality 
The functionality of this circuit can be analysed by examining the circuits in 

figure (4.6) and appendix A. It can be seen that when the expansion pack is initially 

connected to the IPAQ the pins /ODE1 and /ODE2 are pulled to ground, this will cause 

an interrupt to occur. Software will then initialize the expansion pack and the OPT_ON 

signal will then be set high, this causes output enable pin on address buffers and control 

signal buffers to be pulled low and switches on the buffers, it will also switch on the 

startup led.  

When the SH4 is then connected to the PCB the /CD signal is pulled low, this will 

remove   the buffer from all the control signals going to FPGA. The IOIS16 signal is also 

tied low when the SH4 is attached to the expansion pack. This was done to set the data 

bus size to 32-bits permanently. The data bus is then connected to the data bus on the 

SH4 and reset signal is connected to a general-purpose I/O pin.  

After the circuit has been fully initialised the functionality can be fully analysed 

by examining the timing diagram displayed in figure (2.1).  When a read or write occurs 

the chip enable signal pulls the output enable pin on the data bus buffers low, this triggers 

these buffers to start operating, the address of the read or write is also placed on the 

address bus.  The IOIS16 signal has been pulled low therefore the PCMCIA transfer is 

setup for a 32-bit transfer. 3*(BS_xx+1) clock cycles later, the /IORD or /IOWR signal 

goes low depending on whether the IPAQ is performing a read or write operation. If the 

IPAQ is performing a write operation to the address 0x2000 0010 in PCMCIA I/O space 

the IOWR signal will cause a general purpose I/O interrupt. Alternatively a write or read 
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from the I/O address 0x2000 0008 in PCMCIA I/O space will cause /IORD or /IOWR to 

cause a DMA request to occur.  

To examine the SH4�s response it is necessary to refer the timing diagram displayed 

in figure (2.5). When responding with a read or write operation the /RD or /WR signals 

will be pulled low, this will assert the wait on the PCB and will cause the IPAQ to hold 

the data bus until the read or write operation is finished. It must be noted that this is 

optional as if the timing of each processor is set up properly this will be unnecessary.   

 

5.0 Software Design 
 

To control this hardware with the SH4 and IPAQ required the development of driver 

software. The driver software design of this embedded system was divided into two 

sections the IPAQ software and the SH4 software.  

 

5.1 Protocol 
 

Before commencing the development of the software it was important to establish 

the protocol layer that this software will be based upon. The protocol of this system has 

several functions that it must perform. Firstly it must decide the responsibilities of each 

processor. Secondly it provides control for the data transfer and ensures accuracy. Finally 

it must be able to distinguish between the three types of data transfer. 

To develop an effective form of communication it was first necessary to delegate the 

duties of each processor. It was decided to use the IPAQ as the master and the SH4 as the 

slave. This method was chosen because in this system the IPAQ is the main processor 

and therefore controls when information is needed.  

As illustrated in the previous chapter there are three forms of data that need to be 

transferred; video data, processed data and calibration data. To distinguish between each 

type of data the IPAQ will initially send a character to the SH4 at the start of every new 

buffer transfer this operation was based on the suggestion of Mark Chang. Based upon 

this character the SH4 will initialise either a video transfer, processed data transfer or 
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calibration data transfer. Each transfer will then transmit the entire buffer of data before 

commencing a new transfer. 

  During each transfer the receiving processor will need to know the size of the 

block of data to be transferred.  This is not an issue in the transmission of calibration data 

or video data to the SH4 as these buffers are always the same size. The processed buffer 

however makes use of run time length encoding therefore the size of data to be 

transferred is constantly changing. The first read of every transfer from the IPAQ will 

return an unsigned integer from the SH4 this will be the size of the data buffer to be 

transferred. The IPAQ will then continue to perform read operations until the entire 

buffer is transferred. The system will then be reset ready for the next transfer.   

 

5.2 IPAQ Software 
The basic function of the IPAQ software driver is relatively simple the task of 

designing the driver becomes more complex when designing the driver to operate under 

windows CE. At the present time the design of the IPAQ software is relatively 

incomplete, this thesis will analyse the present solution.    

A monolithic native driver was chosen to implement this design as this allowed 

the interface of the driver to be custom designed to suit the device, this driver model is 

also the fastest model available.  At the present time the Driver has four major functions 

that interface to the user level software DLL_main, PCM_Read, PCM_Write and 

PCM_DeInit. This chapter will discuss how these functions are implemented it will also 

discuss how the driver is installed and accessed. The actual code is displayed in appendix 

D. 

 

5.21 DLL_main 
 

The DLL_main function is used to initialise the physical hardware used in this 

communication process. This function will be automatically called every time the driver 

is installed into a API.  



 32

To initialise the physical hardware it initialises access to the registers, the data bus, the 

PCB hardware and initialises the timing of the PCMCIA transfer.  

 Direct access to the physical registers using the physical address of the register in 

user mode is not possible. This function must first allocate a position in virtual memory 

and then virtually copy the entire physical address to this virtual memory position. The 

DLL_main function allocates a position in virtual memory by using the VirtualAlloc 

function.  This function reserves a block of virtual memory of the size of a system page 

all accesses to this memory are then disabled. The VirtualCopy function then binds the 

physical memory address of the register to the virtual memory allocated. This block in 

virtual memory is then enabled for read and write access and the caching to this area is 

disabled so that the value is written straight to the memory address. A pointer to this 

memory position is then returned, and this is used to access the physical register or 

memory position. This was then done for both the PCMCIA registers and data bus. An 

example of this code is shown in figure (5.1). For more information on these functions 

refer to Microsoft�s platform builder general help [16]. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#define PHYSADDR  ((PVOID)0x10000000) 

#define SIZE  (Size) 

LPVOID lpv; 

BOOL bRet; 

// pointer to virtual address 

lpv = VirtualAlloc(0, SIZE, MEM_RESERVE, PAGE_NOACCESS); 

bRet = VirtualCopy(lpv, PHYSADDR, SIZE, PAGE_READWRITE | 

PAGE_NOCACHE); 

 

Figure 5.1 

Code for accessing physical Addresses in Windows CE  
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The expansion pack is initialised using the libraries contained in the IPAQ 

software development kit [22]. These libraries can be attached to this code by linking the 

libraries using the compiler linking options. The functions can then be accessed like an 

ordinary function. At this point in time only the PPC_SET_POWER function is used. 

This function sets the OPT_ON signal and initialises the buffers on the IPAQ. Future 

editions of the code could implement this on the expansion pack interrupt and include the 

other functions such as reading data from the serial EEPROM. This code has yet to be 

implemented. 

 Finally the DLL_main function initializes the timing of the PCMCIA transfer. 

Storing a value in the BSIO 0 0:4 bits in the Expansion Memory Configuration register 

(MECR) will control the timing of the PCMCIA I/O slot. This value will set the BS_xx 

parameter in the timing diagram in figure (2.1). The timing is then set to fast mode by 

setting the Fast0 bit in the MECR this reduces the setup time of the control signals from 

3*(BS_xx+1) to 1*(BS_xx+1). The actual values for the timing in the control signals has 

not yet been determined and will probably have to be determined experimentally using a 

oscilloscope.  

 

5.22 PCM_Read 
 

At this point in time there is only one read function in this code. There will 

eventually be two read functions one for the processed data and another for the video 

data; these two functions will be modeled from the PCM_Read function.  

 The PCM_Read function has two major tasks; firstly it will initialise the type of 

transfer that will take place, secondly it will then read in the data and store it in a data 

buffer. A pointer to the data buffer and the size of the stored data will then be returned. 

  To initialise a read operation the PCM_Read function first writes a character to 

the PCMCIA character address this will then cause the SH4 to initialise the transfer. The 

function will then read in an unsigned integer and store it as the variable buffer_size this 

is the size of the data buffer on the SH4 to be transferred.  

  To read in the data the PCM_Read file first performs a read from the Data bus this will 

return an unsigned long value from the SH4. This value is then stored in the data buffer 
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and the pointer to the data bus is then incremented to the next position. This process will 

then continue until the entire data bus is transferred.  

 

5.23 PCM_Write 
   

The PCM_Write Function is used to write the information stored in the calibration 

buffer to the SH4. It takes a pointer to the Calibration buffer as a parameter and returns 

void. Like the PCM_Read function it has two major functions, firstly it initialises a 

calibration transfer and secondly it transfers the Calibration buffer to the SH4.  

 PCM_Write initialises the transfer in much the same way as the PCM_Read 

function. The function first writes the character �c� to the PCMCIA character address, this 

initialises the SH4 to get ready to accept a calibration buffer transfer. The major 

difference with this transfer is that size of the calibration buffer is known and therefore 

does not need to be transferred.  

 To transfer the data to the SH4 the PCM_Write function reads an unsigned long 

from the Calibration buffer and then writes it to the to the data bus. This is repeated until 

the entire buffer is transferred. 

 

5.24 PCM_Close 
  

The PCM_Close function is used to unassign the resources used by this driver. It 

releases the driver�s hold on the virtual memory allocated for the registers and data bus 

and frees the memory used for the read buffers. The function takes no parameters and 

returns a Boolean value.  

The function first uses the VirtualFree function to free the virtual memory 

assigned to the registers and data bus. The FREE function is then used to free the 

memory allocated to the data buffers. The function then returns �True� if the operation 

was successful. The memory buffers have not yet been implemented in this code. 

 



 35

 

 

5.25 Installing Driver 
 

To be effective the driver must be correctly installed into the system, this section 

will analyse the way this driver is installed on to the IPAQ and accessed by the user level. 

This information is obtained from [10] 

To install the driver on to the IPAQ the compiled DLL file was transferred into 

the /Windows directory. No registry key was created for this driver as it is only accessed 

by one application at a time. 

When the hardware needs to be accessed by API on the user level the API uses 

the LoadDriver function. This function maps the code into the address space of the API 

calling this code. The function takes a pointer to the string �/Windows/Sh4Drv.DLL� 

which is the driver file that we have implemented and returns a handle to the instances.  

The API can then access the hardware through the interface that has been detailed in this 

chapter. 

 

5.3 SH4 Software 
 
 

The SH4 has been designated the slave in this communication system, for this 

reason the main function of the SH4�s driver is to respond to the commands issued from 

the IPAQ. Based upon the given specifications the driver was initially divided into three 

major routines the read video data, read processed data and write calibration data 

routines. The initial design of the software driver used a separate interrupt to trigger each 

32-bit word transferred. This initial design proved to be unacceptably taxing on the 

processor as to transfer just one frame required 44550 interrupts, well beyond the 

processors capabilities. It was decided that driver for the SH4 should make use of direct 



 36

memory access capabilities to increase the speed of the transfer and remove the latency 

from the main processor.  

The SH4 driver included five major functions Initialise_IPAQ, IPAQ_Read, 

Calibration, Video_data and Process_data. This paragraph will analyse the initialisation 

process, the IPAQ_READ function, a Write operation, a Read operation and finally the 

Interrupt handling process. This code uses lower level code written by Mark Chang to 

access the hardware. 

 

5.31 Initialisation 
 

This process will initialise the various components of the data transfer including 

the data buffers, the DMA transfer, the data bus and interrupts. The function that 

performs the initialization in this code is called Initialise_IPAQ. This function is called 

from the file �main.c�. 

 To initialise the data buffers the code must enable access to the memory where the 

buffers are stored. To access the data stored within a data buffer this global pointers of 

type unsigned long are used. This was done so that all functions within the code could 

have access to the data buffers without having to receive the pointer as a parameter. The 

actual buffers are initialized by the vision code. The initialisation function of this code 

sets the pointer for each buffer to point to the address of the first word of data in the 

buffer.   

 The next step in the initialisation process is to setup the direct memory access 

controller. This code was based upon the information contained in the SH4 data sheet [2]. 

The DMA channel selected for this transfer was channel 0 this was chosen as the channel 

1 is being used to transfer video data from the camera. These two channels are the only 

channels that can be accessed externally by pulsing the DREQ pin.  

The DMA transfer needs to be able to control both the source and destination and 

must be triggered externally. For these reasons dual address externally accessed mode 

was selected by clearing the RS0:RS3 bits in the DMA operations register (DMAOR). 

This mode means that both the transfer source and transfer destination are accessed 
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through the addresses stored in the source address register and destination address 

register and the transfer is triggered externally by the DREQ pin.   

A single transfer will occur when the DMA request coming from the IPAQ goes 

low, the DREQ pin therefore needs to be set to trigger on a falling edge of the input 

signal rather then when the signal is low. This is necessary so that only one read or write 

operation will occur per DMA request. This mode was set by setting the DREQ select 

(DS) bit in the channel control register to high.  

The size of the transfer must then be set. This communication system transfers 32-

bits per transfer therefore the transfer size was set to 32-bits. Setting the TS2:TS0 bits in 

the channel control register to 001 did this. 

There are two bus modes available to a DMA transfer; cycle steal mode and burst 

mode. In cycle steal mode the DMA controller will hold the bus until the DMA transfer 

has been completed. In burst mode the DMA controller will relinquish control of the bus 

to the CPU as soon as the DREQ signal goes high. The cycle steal mode was chosen as 

each transfer, needs to transfer the full 32-bits regardless of whether the DREQ pin goes 

high. Clearing the Transmit Mode (TM) bit of the channel control register set this mode 

of operation. Finally channel 0 was made the highest priority DMA channel by clearing 

the PR1:0 bits in the DMA operations registers. This was done for testing purposes only 

as in reality the camera would have a higher priority. 

Finally the initilisation function is required to setup the general-purpose interrupt 

used to initialise the type of data transfer to take place. The first general purpose I/O pin 

was chosen for this interrupt simply because it was first. The initialisation function must 

initialise this pin to an input and then enable the interrupt. To set the direction of this pin 

the PB0IO bit within the port control register must be cleared. Clearing the PB0IO pin in 

the port control register initialised the direction of the pin. Setting the port interrupt 

enable (PTIREN0) bit in the GPIO interrupt control register to high will then enabled the 

GPIO interrupt.    
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5.32 IPAQ_READ function 
  

As previously mentioned this communication system has three different types of 

data transfer, this function is responsible for determining the type of transfer to initiate. 

At the beginning of each data transfer the IPAQ will send a character across to indicate 

the type of transfer that needs to be initialized, this will cause an interrupt on the general-

purpose port one. The Interrupt handling routine IPAQ_READ will read in the character 

from the data-bus and store it as temporary variable �mode�. A case statement is then 

performed on the character. If the character sent is a �c� the routine will jump to the 

calibration routine, alternatively if a �p� is sent the processed information routine will be 

called and finally if a �v� is sent the video data routine will be called. The general purpose 

interrupt will then be cleared and the function will return a Boolean value of true if the 

routine successfully calls one of the three functions. If a character other then the ones 

previously mentioned are sent the function will return false. 

 

5.33 Write Operation 
 

When a processed data or video data transfer operation is initiated from the 

IPAQ_READ function the SH4 will initiate a DMA write operation. This operation will 

setup the DMA controller to transmit from the given data buffer to the data bus.  

To perform the correct transfer it is necessary to know the size of the data stored 

in the buffer. To find the size the function reads in the unsigned integer stored at the first 

address in the buffer it then stores this in a temporary size variable.  

To initiate the source address of the transfer the address of the corresponding data 

buffer is stored in the DMA source address register. When a DMA transfer is triggered 

the DMA controller will then read the data stored at this address. The function then sets 

the source address to increment after every data transfer by setting the SM0 and SM1 bits 

in the channel control register to 10. After each transfer the DMA controller will point to 

the next data address in the data buffer ready for the next transfer.  

The destination address register is then set to the first address of area five of the 

bus state. This area is setup as a SRAM interface. When the DREQ pin triggers a DMA 
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transfer the DMA controller will read from the Memory buffer and then transmit it to the 

Data bus, this data will then be sent to the IPAQ. The destination address mode was then 

set to stationary mode by clearing the DM0 and DM1 bits in the channel control register 

0. This was done so that the DMA destination address always points to the data bus 

address.   

The size of the data transfer can be set by storing the size of the data buffer in 

transfer count register (DMATCR0). The size of this transfer was set to the value stored 

in the temporary size variable incremented by one to account for the initial unsigned 

integer. This value will then be decremented after each transfer until the data bus is 

completely transferred.  

After the source and destination addresses have been initialised the IE bit in the 

Channel control register is set, this enables the DMA transfer interrupt, which will signal 

the end of the DMA transfer. Finally the DMA transfer is enabled by setting the DE bit in 

the channel control register to enable the DMA channel and then setting DMA master 

enable (DME) bit in the DMA operations register enabled the DMA transfer.   

Each transfer may then be triggered through pulsing the DREQ pin. Once the 

entire buffer has been transferred the TE bit will be set to indicate the transfer has ended. 

This will cause the DMA transfer interrupt to occur and the interrupt routine 

dmac_handler within the file main.c to be called. This file will disable the DMA transfer 

and re-enable the GPIO interrupt. This is done to prevent any illegal DMA transfers and 

to initialise the GPIO interrupt.    

There are two separate functions that handle this for video data and processed data these 

functions are called Video_Data and Processed_Data.  

 

5.34 Read operation 
  

When the calibration mode is selected the SH4 is required to read in data when 

the DREQ pin goes low and store it in the calibration buffer. The read operation is similar 

to the write operation but varies in a few key areas. Firstly the source address is now set 

to the data bus and the source mode is set to stationary. Secondly the destination address 

is now set to the calibration buffer and is set to increment mode. Configuring the DMA 



 40

transfer like this will mean that when the DREQ pin is pulled low the DMA controller 

will read from the data bus and store the result into the calibration buffer. The destination 

will then be incremented to the next position in the calibration buffer ready for the next 

transfer. The size of the transfer will always be constant therefore the size of the transfer 

can simply be set as in the read operation. Finally the DMA interrupt will be setup the 

same as the read operation and will jump to the same interrupt routine.  

 

5.35 Interrupt handling 
  

At the point of writing the interrupt handling routine was based on a look up table 

system. The interrupt routine is in the assembly file �entry.s� and has been written by 

Mark Chang.  

 When an interrupt occurs the interrupt controller first selects the highest priority 

interrupt. The interrupt source code is then stored in the interrupt event register 

(INTEVT), the status registers are then saved and the CPU jumps to the start of the 

interrupt handler code. This interrupt handler code within �entry.s.� then saves all the 

registers on the stack, it then looks up the interrupt handler vector in a look up table and 

then jumps to the interrupt routine. 

This code uses two major interrupts the general purpose IO interrupt and the 

direct memory access interrupt. To initialise the interrupts it was necessary to first set the 

priorities of these interrupts and then write the interrupt handler.  

The priority of an interrupt can range from the highest priority of 16, which will 

always occur to the lowest priority of 0, which will never occur. The priority of the DMA 

interrupt is set using bits 11-8 in interrupt priority register C while the priority of the 

GPIO interrupt can be set by using bits 15-12. This was set in �main.c� while the interrupt 

handling routine was in both �main.c� and �entry.s�. The priority in both cases was set to a 

6. When the interrupt occurs the program will jump to the interrupt routine in the entry.s 

this will then call the individual service routines. 

The way that the software initialises an interrupt may change as Mark Chang has 

now restructured the interrupt handling code so that interrupts can now be dynamically 

allocated. Work is in progress to adapt the code for this communication system to suit 
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this new system of allocating interrupts. 

 

6.0 Results 
  
The results of a project often indicate how successful the design is unfortunately due 

to the natural dependency of each section of this project getting results without all parts 

working was difficult. This Chapter will outline the results that were achieved in the 

development of the PCB the FPGA programming, the SH4 Driver and finally the IPAQ 

Driver. 

 

6.1 PCB 
The PCB design as mentioned in chapter three was fully implemented and 

constructed. To verify the operation of the PCB the power, the control signals and finally 

the buffering logic was tested. 

 The first thing that was tested on the PCB was the power and ground planes.  The 

IPAQ was first connected to the PCB so that power was applied to the circuit. Using a 

multi-meter it was verified that there were no short circuits and power was delivered to 

each component. The initial states of the control signals were then verified. Some 

abnormalities were found in the initial states of the control signals. The /IORD and 

/IOWR signals were grounded when it was expected that they would in fact be at 3.3 

volts. The circuit was checked and it was determined that they were not tied to ground. 

Based upon the IPAQ data sheet no pullup resistor is necessary for these two signals. The 

actual pins on the IPAQ were then tested and it was found that they were also grounded. 

These signals are active low and therefore may need to be pulled up to VCC. The 

remainder of the control signals performed as expected.  

 The operation of each buffer and the buffer logic was then tested to see that the 

operation of each buffer was correct. Firstly the OPTON and CD signals were tied low to 

simulate the initilisation of the PCB. A signal was then applied to the address buffer and 

control signals as expected the alternate pin followed the source pin. The signals /CE1 

and /CE2 were then pulled low and IORD signal was used to control the direction of the 

data buffers. Once again the buffering and buffering logic performed as expected.  
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 All of the logic met the specified performance but in the interest of speeding up 

the development most of this logic although operating correctly was circumvented. This 

reduced the efficiency of the circuit but made the testing of other areas more efficient.    

6.2 FPGA 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the time of writing the VHDL code has been written and has been simulated. 

FPGA has been written and is in the process of being simulated. The timing logic for the 

logic is shown in figure (6.1). 

From this simulation diagram it can be seen that all of the logic is functioning 

properly but problems are being experienced with the I/O bus, for some reason the output 

will not follow the input when a I/O bus is used. As yet the cause of this problem is yet to 

be determined.  

 

Figure 6.1 
FPGA Logic Simulation 
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6.3 SH4 Driver 
  

The SH4 driver operation was very hard to verify. As was previously stated the 

SH4 driver�s main task is to respond to the IPAQ�s signals. Therefore without a working 

IPAQ driver and with the FPGA code as yet not loaded onto the FPGA the full operation 

of the SH4 driver could not be tested. The DMA operation was however verified to some 

extent by setting the DMA transfer size to one, the end of transfer interrupt was then set 

to trigger the on board led three. This operation was successful therefore some form of 

transfer was taking place. This experiment was then repeated with the GPIO1 interrupt 

and once again the operation was verified. As to whether the DMA transfer was taking 

place this could probably have been tested by using an external trigger but performing an 

internal transfer and then verifying the operation had taken place. This could be tested 

through the use of the debugger program.     

 

6.4 IPAQ Driver 
  

Most of the time spent on this project was spent on developing a working IPAQ 

driver. It was initially thought that the easiest way to implement the driver was to 

implement it within the API itself rather then letting the kernel operate the driver. 

Although it has previously been stated in the theory that this is not the best way to access 

the hardware it was thought to be possible based upon the information obtained from 

[19]. A program was designed to read the information stored in read only memory of the 

IPAQ to test this tested theory. This was done by copying the physical addresses to a 

virtual address and then reading the information from the virtual address. This program 

was successful and so this system was adapted into the IPAQ driver code. When tested 

this code resulted in read access violation errors. From the results gathered it was 

concluded that is possible to read or write to a storage memory but not to a registers or 

I/O ports. 
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 It was then decided to adapt the existing code to the native driver approach as 

described in chapter three. The driver could then be accessed with the LoadDriver 

function. This code produced much better results as no read or write accesses violations 

were experienced. The IORD and IOWR signals were then tested for proof that the 

system was indeed operating unfortunately this is when it was discovered that there was a 

slight problem with these two signals and no further tests have been performed.  

 Although at the point of writing the IPAQ driver is still not operational it was felt 

that with knowledge obtained through testing an operational IPAQ driver before the 

demonstration day was not unrealistic.   

 

7.0 Conclusions 
  The goal of this thesis was to develop a high-speed data transfer system with low 

overhead and high accuracy. This thesis has developed a model for a communication 

system to connect the IPAQ to the SH4 processor. It has analysed how a specifically I/O 

PCMCIA interface can be implemented in hardware on a PCB. It has then illustrated how 

this PCMCIA socket was connected to a SRAM interface on the SH4 using a FPGA. 

Driver software to operate this hardware has also been developed for both the IPAQ and 

SH4.  

 From this work several key results have been reached. Firstly the logic in this 

design will function correctly under the stimulus described in the PCMCIA timing 

diagram figure(2.2). Although the IORD and IOWR did not perform as was specified in 

the data sheet. Secondly hardware has been developed for the FPGA but as yet has not 

been properly implemented. Thirdly a large amount of progress has been made on an 

IPAQ driver. A method for accessing hardware and loading a driver in an API has been 

detailed. Finally a driver has been developed for the SH4 using a DMA transfer. 

Continuing work needs to be done on all of these areas of design. 

 Although this project has failed to develop a working prototype it has developed 

a model on which a successful data transfer could be based.  
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7.1 Future Work 
Further work needs to be done in several different areas of this project.  

Firstly to greatly reduce the overhead of this design a DMA transfer could be 

implemented by the IPAQ driver as well as the SH4 driver. At this point in time with the 

SA1110 as the microprocessor this would mean changing the PCMCIA interface to an 

SRAM like variable I/O interface. PCMCIA was possibly not the best solution in this 

situation as its only advantage is that it has a standard interface and also standard 

software architecture that will make designs easy to port between different processors. In 

a specialized case such as this the SRAM interface may perform better.  

This design does not consider possible transfer errors, as this was not a high 

priority. To better improve this transfer a feedback system for errors needs to be 

developed to notify the other processor that an error has occurred. A feedback system 

from the IPAQ to the SH4 would be easy to implement as this could be worked into the 

character interrupt. Transferring an error from the SH4 to the IPAQ on the other hand 

could not be done with the existing system. This could be done with the unutilized IRQ0 

interrupt. Using this interrupt the SH4 could then initiate a transfer and report any errors 

to the IPAQ, which could then deal with them. 

The actual implementation of this hardware could be improved by implementing 

more of the hardware in the FPGA. From the information that has been gathered through 

out this project it was noted that FPGA could be used to implement most of the logic 

including the buffering and the buffering logic. This would make the system much more 

flexible and more cost effective as it would reduce the size of the FPGA and reduce 

necessary components. If the PCMCIA interface is used again I would suggest that a 

more generic PCMCIA interface is implemented. Designing a specifically I/O interface 

has removed some of the flexibility of the PCMCIA interface  

In regards to the IPAQ driver it was concluded that there were two possible 

directions for this part of the project to progress. The first option is to continue with the 

native driver for Windows CE. It was felt that this would give the system the best overall 

performance. 

The second option is to use the existing PCMCIA driver for windows. This driver 

has all the necessary functions plus extra functions that are probably not required. This 
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will mean that the transfer will have to be reduced to 16-bits. This is not really a problem 

as a 32-bit transfer is really overkill at this stage with the limited amount of data that 

must be passed from the vision processor.  

The third option is to move to a more designer friendly operating system such as 

Linux.  The benefit of this is that there is more information available on these drivers and 

example code. The information is also available free whereas information on Windows 

CE is expensive. Although there are other considerations before the decision to change 

the operating system is made as this will quite possibly mean that the other software to go 

on the IPAQ such as the walking software will also have to be ported.  

  

7.2 Significant Outcomes 
 

 

• Hardware has been developed to interface the IPAQ to the SH4. This 

hardware implements a I/O specific PCMCIA socket 

      

• FPGA code has been written to interface the PCB to the SH4.  

 

• A software driver for the IPAQ has been developed and is nearly 

operational. 

 

 

• A driver for the SH4 has also been written but the operation has not been 

fully verified. 
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Appendix B � VHDL Code 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity IPAQ_LOG is 
    port ( 
        DI: inout STD_LOGIC_VECTOR (31 downto 0); 
        AI: in STD_LOGIC_VECTOR (7 downto 0); 
        DS: inout STD_LOGIC_VECTOR (31 downto 0); 
        RESETI: in STD_LOGIC; 
        RESETS: out STD_LOGIC; 
        WAITI: out STD_LOGIC; 
        WR: in STD_LOGIC; 
        RD: in STD_LOGIC; 
        GPIO_INTR: out STD_LOGIC; 
        DMA_REQ: out STD_LOGIC; 
        IOIS16: out STD_LOGIC; 
        CDI: out STD_LOGIC; 
        IORD: in STD_LOGIC; 
        IOWR: in STD_LOGIC 
    ); 
end IPAQ_LOG; 
 
architecture IPAQ_LOG_arch of IPAQ_LOG is 
begin 
  -- Control Signals   
  RESETS <= RESETI; 
  WAITI <= RD and WR; 
  -- GPIO interrupt 
  GPIO_INTR <= not(AI(4) and (not IOWR)); 
  -- DMA request 
  DMA_REQ <= not ((AI(3) and (not IOWR)) or (not(IORD))); 
  IOIS16 <= '0'; 
  CDI <= '0'; 
    -- I/O Bus   
PROCESS (IORD, DS, DI, IOWR) 
  BEGIN 
       IF ((IORD = '0') and (IOWR = '1')) THEN 
     DI <= DS; 
       ELSIF ((IOWR = '0') and(IORD = '1')) THEN 
     DS <= DI; 
       END IF; 
  END PROCESS ;  
end IPAQ_LOG_arch; 
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Appendix C � SH4 Driver 
 

C.1 � Sh4Drv.h 
 
/************************************************************************************* 
      

sh4drv.h 
 
   ***********************************************************************************/ 
 
/* data bus registers*/ 
#define BCR1 0xFF800000 
#define BCR2 0xFF800004 
#define WSCR1 0xFF800008 
#define WSCR2 0xFF80000C 
#define WSCR3 0xFF800010 
#define MCR 0xFF800014 
#define PCR 0xFF800018 
#define RTCSR 0xFF80001C 
#define RTCNT 0xFF800020 
#define RTCOR 0xFF800024 
#define RFCR 0xFF800028 
 
/* data bus */ 
#define DATA_BUS 0x14000000 
 
/* data Buffers */ 
#define CAL_BUFFER 0x15000000 
#define CAL_BUFFER_SIZE 0x16000000 
#define VIDEO_BUFFER 0x17000000 
#define PROCESS_DATA 0x18000000 
 
 
/* define interupt register */ 
 
 
// Functions 
void Initialise_Ipaq (void); 
BOOL IPAQ_Read (void); 
BOOL Video_data (void); 
BOOL Process_data (void); 
BOOL Calibration (void); 
BOOL Init_Interrup t(void); 
BOOL Disable_Interrupt (void); 
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C.2 � Sh4Drv.c 
 
include <common/stdtypes.h> 
#include <sh/sh4drv.h> 
#include <sh/dmac.h> 
#include <sh/GPIO.h> 
 
 
// Global Variables 
unsigned char *PVideoBuffer; 
unsigned char *Pdata; 
unsigned char *PCalBuffer; 
unsigned char *P_Proc; 
 
 
/* This function intialises the system */ 
void Initialise_Ipaq(void){ 
 Pdata = (unsigned char*) DATA_BUS;  // set pointer to data buss 
  
 PCalBuffer = (unsigned char *) CAL_BUFFER; // set to calabration buffer 
  
 PVideoBuffer = (unsigned char *) VIDEO_BUFFER; //set to video data 
  
 P_Proc = (unsigned char *)PROCESS_DATA; //set to processed data 
  
 dmac_set_resource(DMAC_CHAN_0, 0x00);//set to dual address external 
  
 dmac_set_src_mode(DMAC_CHAN_0, DMAC_CHCR_SM0); //intiailise source mode 
  
 dmac_set_transfer_size(DMAC_CHAN_0, DMAC_SIZE_LONG);//set transfer size 
  
 dmac_txmode_cyclesteal(DMAC_CHAN_0);  // set to cycle steal mode 
  
 dmac_set_priority(DMAC_PRIORITY_0123);//set priority.  
  
 Init_Interrupt(); 
} 
 
BOOL IPAQ_Read (void){ 
 char mode = *Pdata; 
 BOOL result; 
 switch (mode){ 
 case 'c': 
  Calibration();   // perform calibration 
  result = TRUE; 
  break; 
 case 'v': 
  Video_data();   // perform video data 
  result = TRUE; 
  break; 
 case 'p': 
  Process_data();   // perform process data 
  result = TRUE; 
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  break; 
 default: 
  result = FALSE; 
 } 
 return result; 
} 
 
BOOL Calibration(void){ 
 dmac_set_src_mode(DMAC_CHAN_0, 0x00);// set source mode to stationary  
  
 dmac_set_dst_mode(DMAC_CHAN_0, DMAC_CHCR_DM0);// set destination mode to 
increment 
  
 dmac_set_src_address(DMAC_CHAN_0, Pdata);      // set source address to bus 
  
 dmac_set_dst_address(DMAC_CHAN_0, PCalBuffer); // set destination   
  
 dmac_set_trn_counter(DMAC_CHAN_0, CAL_BUFFER_SIZE); // set size of data transfer 
  
 dmac_interrput_enable(DMAC_CHAN_0); 
  
 dmac_enable(DMAC_CHAN_0);   // enable dma transfer 
  
 return TRUE; 
} 
 
BOOL Video_data(void){ 
 unsigned int video_size = *PVideoBuffer; 
  
 dmac_set_src_mode(DMAC_CHAN_0, DMAC_CHCR_SM0); // set source mode to increment  
  
 dmac_set_dst_mode(DMAC_CHAN_0, 0x00); // set destination mode to stationary 
  
 dmac_set_src_address(DMAC_CHAN_0, PVideoBuffer); // set source address to bus 
  
 dmac_set_dst_address(DMAC_CHAN_0, Pdata);// set destination to data buffer 
  
 dmac_set_trn_counter(DMAC_CHAN_0, video_size+1);  // set size of data transfer 
  
 dmac_interrput_enable(DMAC_CHAN_0); 
  
 dmac_enable(DMAC_CHAN_0);  // enable dma transfer 
  
 return TRUE; 
} 
 
BOOL Process_data(void){ 
 unsigned int proces_size = *P_Proc; 
  
 dmac_set_src_mode(DMAC_CHAN_0, DMAC_CHCR_SM0); // set source mode to increment  
  
 dmac_set_dst_mode(DMAC_CHAN_0, 0x00); // set destination mode to stationary 
  
 dmac_set_src_address(DMAC_CHAN_0, P_Proc);  // set source address to bus 
  
 dmac_set_dst_address(DMAC_CHAN_0, Pdata); // set destination to data buffer 
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 dmac_set_trn_counter(DMAC_CHAN_0, proces_size+1);// set size of data transfer 
  
 dmac_interrput_enable(DMAC_CHAN_0); 
  
 dmac_enable(DMAC_CHAN_0);   // enable dma transfer 
  
 return TRUE; 
} 
  
 
BOOL Init_Interrupt(void){ 
  gpio_set_portA_dir(GPIO_DIR); 
  gpio_intr_enable(GPIO_INTR); 
  
 return TRUE; 
} 
 
BOOL Disable_Interrupt(void){ 
  gpio_intr_disable(GPIO_INTR); 
  
 return TRUE; 
} 
 
 
 
 

C.3 � GPIO.h 
 
 
#define GPIO_PULUP1  0x00 
#define GPIO_DIR  0x00 
#define GPIO_INTR  0x01 
 
 
BOOL gpio_set_portA_dir(unsigned long direction); 
BOOL gpio_set_portA_pul(unsigned long pullup); 
BOOL gpio_intr_enable(unsigned short intr); 
BOOL gpio_intr_disable(unsigned short intr); 
 

C.4 � GPIO.c 
 
#include <common/stdtypes.h> 
#include <sh/GPIO.h> 
 
typedef struct 
{ 
 volatile unsigned long PCTRA; 
 volatile unsigned short PDTRA; 
 volatile unsigned long PCTRB; 
 volatile unsigned short PDTRB; 
 volatile unsigned short  GPIOIC; 
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} GPIO_REGS; 
 
#define GPIO (*(volatile GPIO_REGS *) 0x1F80002C) 
 
BOOL gpio_set_portA_dir(unsigned long direction) 
{ 
 GPIO.PCTRA |= direction;  // set direction of GPIO   
 return true; 
} 
 
BOOL gpio_set_portA_pul(unsigned long pullup) 
{ 
 GPIO.PCTRA |= pullup;   // Set pull up 
 return true; 
} 
 
BOOL gpio_intr_enable(unsigned short intr) 
{ 
 GPIO.GPIOIC |= intr;    // enable GPIO interrupt 
 return true; 
} 
 
BOOL gpio_intr_disable(unsigned short intr) 
{ 
 GPIO.GPIOIC |= intr;   // Disable Interrupt 
 return true; 
} 
 

C.5 � main.c 
 
/*** setup IPAQ ***/ 
// Set up IPAQ interface routines  
 SetIntrPriority(INTR_GPIO_GPIOI, 6); 
 SetIntrPriority(INTR_DMAC_DMTE0, 6); 
 Initialise_Ipaq();  
 
void gpio_handler(void) 
{ 
 led3_on(); 
 IPAQ_Read(); 
 gpio_intr_disable(GPIO_INTR) 
} 
 
void dmac_handler(void) 
{ 
 dmac_disable(DMAC_CHAN_0); 
 gpio_ 

led3_off(); 
 
} 
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Appendix D � Ipaq Driver 

D.1 IPAQDRV.c 
// IPAQDRV8.cpp : Defines the entry point for the DLL application. 
#include "stdafx.h" 
 
#include "IpaqDrv.h" 
#include <windows.h> 
#include <types.h> 
#include "p2.h" 
#include "pkfuncs.h" 
#include <Afx.h> 
 
void PCM_Init(int count, LPVOID Timing);   
BOOL pcm_set_count(ulong mode, LPVOID Timing); 
BOOL pcm_set_fast(LPVOID Timing); 
BOOL write_word(ulong data, LPVOID Data_bus); 
int PCM_Read(LPVOID Data_bus); 
int PCM_Write(LPVOID Data_bus); 
ulong read_word(LPVOID Data_bus); 
BOOL pcm_clear_fast(LPVOID Timing); 
 
#define MECRADDR  ((PVOID)0xA0000018) 
#define DATAADDR  ((PVOID)0x20000000) 
#define DATASIZE   4 
#define MECRSIZE   4 
#define PCM_MECR_MASK 0x1F 
#define PCM_FAST_MASK 0x80000000 
 
 
LPVOID Timing; 
LPVOID Data_bus; 
BOOL bRet; 
 
BOOL APIENTRY DLLMAIN( HANDLE hModule,  
                       DWORD  ul_reason_for_call,  
                       LPVOID lpReserved 
      ) 
{ 
     
 Timing = VirtualAlloc(0, MECRSIZE, MEM_RESERVE, PAGE_NOACCESS);  
 
 bRet = VirtualCopy(Timing, MECRADDR, MECRSIZE, PAGE_READWRITE | 
PAGE_NOCACHE); 
 
 Data_bus = VirtualAlloc(0, DATASIZE, MEM_RESERVE, PAGE_NOACCESS); 
 
 bRet = VirtualCopy(Data_bus, DATAADDR, DATASIZE, PAGE_READWRITE | 
PAGE_NOCACHE); 
 
 PCM_Init(0x0F, Timing); 
  
 return TRUE; 
} 
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void PCM_Init(int count, LPVOID Timing){ 
 pcm_set_count(count, Timing);  // Set timing PCMCIA timing Register 
 pcm_set_fast(Timing);   //set to fast transfer 
} 
 
BOOL PCM_Read(LPVOID Data_bus){ 
 uchar video = 'v';      
 int buffer_size; 
 write_word((ulong)video, Data_bus); // transmit �v� character 
 buffer_size = (int)read_word(Data_bus); // read in buffer size 
 return true; 
} 
BOOL PCM_Write(LPVOID Data_bus){ 
 uchar calibration = 'c'; 
  write_word((ulong)calibration, Data_bus); // transmit �c� 
  write_word(0xFFFF,Data_bus);  // Write test word FFFFF 
  return true; 
} 
 
BOOL PCM_Close (void){ 
 VirtualFree(Timing, MECRSIZE, MEM_RELEASE); //release timing rgister  
 VirtualFree(Data_bus, DATASIZE, MEM_RELEASE);  //release data register 
} 
 
ulong read_word(LPVOID Data_bus){ 
 ulong data = *((ulong*)Data_bus);  // read in unsigned long from data bus 
 return data; 
} 
 
BOOL write_word(ulong data, LPVOID Data_bus){ 
 *((ulong*)Data_bus) = data;  // write word to data bus 
 return true; 
} 
 
BOOL pcm_set_count(ulong mode, LPVOID Timing){ 
 if (mode <= PCM_MECR_MASK) {  
  *((ulong*)Timing) &= ~PCM_MECR_MASK; //clear timing register 
  *((ulong*)Timing) |= mode;   //set timing 
  return true; 
 } else { 
  return false; 
 } 
} 
BOOL pcm_set_fast(LPVOID Timing){ 
 *((ulong*)Timing) |= PCM_FAST_MASK;  //set fast bit 
 return true; 
} 
BOOL pcm_clear_fast(LPVOID Timing){ 
 *((ulong*)Timing) &= ~PCM_FAST_MASK; //clear fast bit 
 return true; 

} 
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Appendix E - Photographs 
 

E.1 Vision System 
 

 
 

 

 

 

Figure E1.1 
Disassembled vision 

system 

Figure E1.2 
Assembled vision 

system 
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E.2 Communication Board 
 

 
 

 
 
 
 
 

 

Figure E2.1 
PCB bottom view 

Figure E2.2 
PCB Top View 
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Appendix F -  PCB 
 

 
 
 
 
 
 
 

 
 

Figure F1.1 
Top layer of PCB 
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Figure F1.2 
Bottom Layer of PCB
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Appendix G � IPAQ 100 pin connector 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure G1.1 
IPAQ 100pin connector
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