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Abstract

This thesis describes the initial work in developing a software system to provide visual

information for a humanoid soccer playing robot. The robot is intended to operate in

a colour coded environment. The system is to report the location of significant objects

for playing soccer - the ball, goals, edgelines and opponents. In addition to this it is

important for the robot to determine its own location and orientation. The software runs

on a Hitachi SH4 processor board and is intended to use an OV7620 CMOS camera to

provide YUV or YCBCR images.

Several approaches were investigated before the final system was designed. The system

has a colour detection first stage that uses a UV lookup table. This is followed by a run

length based grouping algorithm that constructs objects from the colour detected image.

Finally simple heuristics are used to reject poorly defined objects.

The code was trialled on an SH4 processor with a resolution of 240 by 180 pixels and

operates at frame rate of 10 frames per second performing colour segmentation and object

classification. The image size is limited by the amount of memory on the processor board.

Further increases in speed would be possible by transferring parts of the code from the

SH4 processor to a field programmable gate array that is also on the board.

The use of colour lookup tables combined with a row based object growing gives a fast

method for robotic vision that will be suitable for humanoid robot soccer.
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Chapter 1

Introduction

1.1 Robotic Vision

One of the significant problems in robotics is extracting information from the environ-

ment. All but the most primitive industrial robots have some form of external sensing,

such as sonar, infrared, or contact switches. The most versatile method is through com-

puter vision, an algorithmic analysis of the digital output of a camera.

The problem then becomes one of constructing a model of the real world within the com-

puter from the digital image received from the camera. A large amount of work has been

done in this field of image processing. Approaches and algorithms for image process-

ing can be roughly divided into two sections: real time and off-line image processing.

Typically real time image analysis is done more crudely than offline analysis because of

constraints on the amount of computational time that can be allocated for each image.

Most robotics applications require real time processing, although applications that are

not time critical may have a low frame rate.

1.2 RoboCup

The Robot World Cup or RoboCup is an international competition in which various types

of robots compete against each other in games of soccer. The goal of RoboCup is to

promote research in robotics while at the same time providing a series of complex prob-

lems for robotics and artificial intelligence development. The new focus of RoboCup is

1
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humanoid robots with several humanoids being demonstrated at the 2000 RoboCup in

Melbourne and competitions with humanoids planned for 2002[20]. The University of

Queensland is building a robot, the GuRoo, to compete in future humanoid competitions

[21]. Among the many systems that need developing for the GuRoo is a vision system to

allow the robot to locate the ball, opponents, and other important data. The GuRoo robot

will provide a platform for testing embedded vision systems.

1.3 GuRoo, the University of Queensland Humanoid Project

To represent the University of Queensland in the humanoid league at future RoboCups

a robot, the GuRoo1, is being designed. The GuRoo is intended to be approximately

1.2m high and be capable of autonomous movement, with on-board power and computer

systems. Additionally the Guroo will have a fully functional upper body, including arms

and a head that can tilt and pan (Fig 1.1).

Figure 1.1: The Guroo
The GuRoo is the a humanoid robot currently under development at the University of
Queensland. [21].

The GuRoo’s central computer will be a Compaq iPaq handheld computer connected to

the drive control processors via a Controller Area Network (CAN) [12]. The iPaq will

be responsible for the generation of walking patterns and gameplay intelligence. Also on
1GuRoo, the Grossly Underfunded Roo. The suffix Roo is traditionally used for the University of

Queensland’s robot soccer teams.
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board the GuRoo will be a Hitachi SH4 processor that analyses and interprets the output

of a CMOS camera mounted in the robots head[5]. The vision processor passes on its

output into the expansion slot of the iPaq. This SH4 processor will be used for testing the

vision software developed in this thesis.

1.4 Robocup Vision

The RoboCup scenario will be used to provide some examples of the tasks an embedded

vision system would need to be able to complete. The vision system is responsible for

determining the location of the robot on the playing field as well as locating the ball, the

goals and any opponents. It must be able to do this fast enough and accurately enough to

give the robots the ability to determine the velocity and to intercept the ball. Latency is

also an issue as the longer it takes to process a frame the less valid it becomes.

To ensure that the real time vision is possible the RoboCup competition enforces certain

requirements that make colour segmentation possible. For example the edge lines of

the field are white and the ball is orange. This makes colour detection a useful way of

segmenting the objects of interest in the field.

There are two approaches to the way vision is used robotic soccer at the moment: global

vision and local vision. Global vision uses a camera external to the robots which contains

the entire playing field within its field of view, this technique is used only be the small

size league robots. The alternative is a local vision system where the camera is mounted

on the robot. This technique immediately leads to several complications:

� The camera is not in a fixed position or orientation, this means that the robot must

be able to perform transformations to convert from image coordinates to world

coordinates.

� The camera will not have a complete view of the area the robot is operating in.

Typically RoboCup robots that use local vision have an inter-robot communication

strategy to compensate for this problem.

� The shapes of objects change as they rotate making feature based object recognition

more difficult. The ball being rotationally invariant is immune from this problem.

� The size of objects change which also makes object recognition more difficult.
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The robots requirements for a high frame rate can also lead to significant trade offs in

terms of both reliability and accuracy with local vision. In the context of humanoid robot

soccer local vision is required.

1.5 Outline of Thesis

Introduction: An introduction to the robotic vision and its application to RoboCup. This

chapter also discusses the the GuRoo and its planned vision system.

Literature Review: A review of current practice in image processing and robotic vision

techniques, with emphasis on RoboCup robot.

Problem Specification: This chapter gives a detailed description of the requirements

and goals of the GuRoo’s vision system. This section will also describe the avail-

able resources for the software such as camera and processor types.

Initial Approaches: A number of early solutions to the problems outlined in chapter

four are described, with particular emphasis on why they were never developed

further.

Final SH4 Software: This chapter describes the process used to transform the camera

output into a coded representation of each colour. The methods used to extract the

location and type of objects from the thresholded image will be described.

Results: In this chapter the success of the software will be evaluated in terms of frame

rate, accuracy, and robustness.

Conclusion: Final results of the project are summarised and future improvements are

described.



Chapter 2

Literature Review

2.1 Robotic Vision

The initial step in most robotic vision applications is segmentation, in which the original

image is segmented into different regions containing objects of interest[11]. After seg-

mentation more complex algorithms can be used to determine the relevance and type of

each object as well as its centroid and any other parameters of interest.

The very first stage of segmentation is usually to simplify the image by a process known

as thresholding. Thresholding reduces the amount of information in an image by con-

verting each pixel into some sort of symbolic code representing what type of pixel it

is[11, 14, 10]. For example in text analysis a greyscale image could be converted into a

binary image which is true for pixels that are part of the text and false for pixels that are

part of the background.

2.1.1 Greyscale Thresholding

Thresholding is a simple technique for segmenting images. The most primitive exam-

ple of thresholding is converting a grey scale image into a binary image composed of

background and foreground objects. For instance all pixels above a particular level of

brightness are foreground while those below are background. The difficulty lies in find-

ing the threshold value to ensure that there are no errors [11]. One technique for selecting

the correct thresholds is to use a histogram of the greyscale values [11, 14]. This system

5
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can be expanded to segment the image into more than just background and foreground

by using ranges instead of a single value.

2.1.2 Colour Thresholding or Colour Detection

Another method of segmenting an image is through the colour information received from

a colour camera [2, 3, 14]. In effect this is like thresholding but with three values, for

instance red, green, and blue. Histograms can again be used to determine the ranges for

thresholding [6]. However the computational complexity has now been increased by a

factor of three.

2.2 Morphology Theory

Mathematical morphological is a useful tool for preprocessing images [10]. The mor-

phological operators treat binary images as sets which are members of a two dimensional

coordinate space.

The simplest two operations are erosion ( � ) and dilation( � ). These operations have two

operands, an input (A � and a structuring element (B). Erosion results in groups of pixels

becoming smaller while dilation causes groups of pixels to become larger[10].

Erosion is defined mathematically as equation 2.1, where � B � x is the element B translated

by x. Effectively an erosion results in a set of points for which B fits entirely inside A.

An example of bitmap undergoing erosion is shown in figure 2.1. Erosion can be used to

remove small groups of noise pixels from a colour detected image[10].

A � B ��� x 	
� B � x � A � (2.1)

Dilation causes a cluster of pixels to grow in size according to the structuring element

B2.1. The set theory definition is shown in equation 2.2 where 
B is the reflection of B

around its origin. The result of a dilation is the set of points that B would occupy as

it is moved around the image but still overlaps by at least one pixel with A. Dilations

can be used to link together elements that have been incorrectly separated by the colour

detection or thresholding processes[10].

A � B ��� x 	���
B �
x � A �� φ � (2.2)



CHAPTER 2. LITERATURE REVIEW 7

The final two common morphological operations are opening and closing. An opening ( � )
is simply an erosion followed by a dilation with the same structuring element (equation

2.3). The erosion removes noise pixels and the dilation restores the the thinning caused

by the erosion. A closing ( � ) is effectively the opposite of an opening being a dilation

followed by an erosion (equation 2.4). The effect of a closing is to link together pixels

that are separated by a small distance by dilation. The erosion then restores the objects

to their original size, keeping the new linked regions intact[10].

A � B � � A � B ��� B (2.3)

A � B � � A � B ��� B (2.4)

(a) Dilation

(b) Erosion

Figure 2.1: Morphological operations.
The input is on the left and the output is on the right. The structuring element is in the
middle.



CHAPTER 2. LITERATURE REVIEW 8

2.2.1 Edge Detection

One technique commonly used for determining the shape of objects is edge detection. A

sudden change in the image gradient, ie when one pixel is significantly darker than some

of its neighbours, corresponds to the edge between two objects or one object and the

background [19]. Typically an approximation to the gradient operator such as Sobel edge

detectors are used[11, 19]. The Sobel operators shown in figure 2.2 provide an indication

of edge strength when convolved with a greyscale image[10, 14]. Finally the gradient is

thresholded to eliminate small variations that are caused by noise[19]. The result is a bit

plane containing ones that correspond to sharp changes in brightness in an image.

−1

1

2

1

−2

−1

0

0

0

(a) x gradient

−1−2−1

1 2 1

0 00

(b) y gradient

Figure 2.2: Sobel Edge Detectors
The Sobel edge detectors calculate the change in brightness when they are convolved
with a greyscale image. The X gradient operator (Gx) calculates the change in brightness
in the X axis and Y gradient operator (GY ) calculates the change in the Y direction.The
sum of the two operators will provide the edge strength at the point the operators are
applied [10, 14].

2.2.2 Hough or Radon Transform

The Hough or Radon transform is a powerful method for converting an image of edge

pixels into a set of lines. A line can be represented by the equation ρ � xcosθ � ysinθ
[14]. A two dimensional array of accumulator cells is created with one dimension being

the line parameter ρ and the other θ. For each pixel in the edge map a set of parameters

can be developed that represent all possible lines passing through that pixel. The corre-

sponding accumulator cells for these parameters are increased by one. After each pixel

has been processed in this way the cells with large values correspond to dominant lines

in the edge map image[14].
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An alternative approach with exactly the same result is the Radon Transform. The radon

transform uses a rotating vector in the centre of the image (figure 2.3). At each angle

of rotation the edge detected pixels are projected onto the vector. If the intensity of the

projection is plotted against the distance along the vector and the rotation of the vector

then the same output as the Hough transform is obtained.

θ x

y

a

b

c

d

Figure 2.3: Radon Transform
As the vector rotates around the origin the summated projections of each edge pixel onto
the vector are recorded. When the vector is perpendicular to the direction of a group of
edge lines the output is a maximum for that group of edges. For example the group of
pixels labelled b in the above diagram would be giving its maximal progression at this
rotation. The maximum would be at distance d along the vector.

2.3 Robotic Vision in Robocup

Real time image processing for robotics is a particularly difficult area of work. The vision

problems expected in Humanoid local vision are very similar to the problems encountered
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in the local vision version of the small and medium size leagues. The fundamental system

used for segmentation in these leagues is colour[2, 3, 4].

Typically in RoboCup competitions the colours of all significant objects in the competi-

tion are standardised and known before hand, for example the ball is orange and the goals

are blue and yellow. In global vision systems the robots usually make use of coloured

markings to distinguish between robots. In localised vision however the robots are re-

stricted to being black in colour[16, 17]. The Medium Size league uses colour tags on

the robots to provide a mechanism for robots to distinguish between each other[16].

2.3.1 YUV Colour Space

Many systems use the YUV colour space to perform colour segmentation[2]. The YUV

is a different interpretation of colour to the more familiar RGB colour space, where a

pixel is composed of varying strengths of red, green and blue light. In the YUV system

Y represents the intensity of the light, while U and V are the blue and red chrominance

respectively [14] A representation of YUV data is shown in figure A.1. The conversion

from RGB to YUV is ideally performed in the camera.

The advantage of the YUV colour space is that changes in brightness theoretically only

affect the Y value. This means that colour detection can be performed using only the U

and V values. The U and V coordinates are almost independent of lighting changes.

2.3.2 HSI or HSV Colour Space

Some robots use a different colour space known as HSV or HSI (hue, saturation, bright-

ness). This colour space offers better separation between different colours but at the

cost of slower processing as the camera output must be transformed into the HSV colour

space[3, 4]. In HSV colour format the hue parameter describes the colour of the pixel

while the saturation value represents how white this hue is. Clearly the brightness de-

scribes how bright the pixel is. The advantage of HSI is that is fairly close model of a

humans perception of light[14, 10]. A simple way to speed up the transformation is to

only calculate the pixel’s hue. The hue will describe the colour of the object and may be

enough to distinguish between all colours except black and white (which can be easily

done in RGB or YUV space) [4].
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2.3.3 After Thresholding

After thresholding the locations and type of all significant objects must be extracted from

the picture. These objects include the ball, opponents, walls, goals and in some cases

special markers for localisation (used in the Sony Legged league). Approaches to this are

varied but are usually simple and optimised for speed.

2.3.3.1 Localisation of Objects

A simplification that can be made to the process of transforming two dimensional data to

three dimensional world coordinates is to realise that in robot soccer the ball and other

objects can be almost guaranteed to be on the ground. This makes the transform solvable

with monocular vision without having to use information relating to the size of the object

[2]. The AgiloRoboCuppers team use this to help discard redundant information, by

calculating the size of each object and comparing it to the expected size based on its

distance calculated by trigonometry if there are significant discrepancies then the object

is ignored[2]. The trigonometry is encoded as a lookup table to reduce the processor load.

2.3.3.2 Localisation of the Robots

In the Sony Legged league there are colour marker posts that allow the robots to deter-

mine their position by triangulation [20]. In the other leagues however there are no such

conveniences, and odometry information is not sufficient to retain a correct idea of the

robots place in the world. The usual approach is to use the edge lines of the field to

update the robots estimate of its location. The edge lines can be acquired by looking at

transitions from white to green codes in the colour detected image[2] or by using a linear

edge operator[3]. Linear regression or a Hough transform can then be used to find the

lines inclination, from this the robots position can be determined[4, 2, 3].

2.4 CM Vision

A good example of a fast colour based system for image analysis is the CM Vision soft-

ware library developed at Carnegie Mellon University[8, 7]. It internally uses either a

YUV or HSI colour space and transforms RGB inputs to YUV. Colour thresholding is
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performed using a colour cube in YUV space. A colour cube is box-like region in the

three dimensional colour space. Pixels within this region can be tagged as being one type

of coloured object while pixels outside this region are not.

Rather than use a series of comparison operations to determine whether or not a pixel is

within the colour cube CM Vision uses a lookup table. Instead of a three dimensional

256 � 256 � 256 table CM Vision uses three vectors one for each axis. Each colour

coordinate is looked up in its respective vector and the result is ANDed together. This

technique reduces a 16 MB lookup table to a 768 byte set of three tables. The cost of

this system though is that it requires three memory lookups instead of one and can only

represent rectangular regions in the colour space[8, 7].

After colour detection the system converts the data to a run length encoded data set. In

run length encoding horizontal runs of pixels of the same colour are recorded simply

as the number and colour of the pixels. From this the software performs four connected

region growing. Four connected or four neighbour refers to the four pixels directly above,

below and to the sides of the pixel in question. Initially each run length element is tagged

as a the start of a blob and the software runs through each row comparing it with adjacent

rows. Any run that is adjacent under four connectivity to the current one has its pointer

updated. Two runs through the image are required to group all the runs into distinct

regions. The final stage involves grouping similar regions based on colour, proximity and

density, that links any regions that have been accidently separated[8, 7].

2.5 ViperRoos

The University of Queenslands local vision team, The Viperroos faces similar problems

to the GuRoo’s vision system. The system used last year was based on YUV transformed

data from an RGB camera[9].

The Viperroos use a two dimensional lookup table in UV space to distinguish between

all the colours with the exception of black and white. The Y value is thresholded into

three sections: black, colour, and white. Pixels that fall into the colour region are then

thresholded via UV lookup.

The Viperroos’ software then forms regions from the colour detected image and calcu-

lates the regions’ centres. To avoid the multiplications and divisions involved in calculat-

ing a mathematical centroid the Viperroos define the centre to be the geometric centre of

the blob.
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The Viperroos currently use an SH3 processor running at 104 MIPS which produces

around 12 frames per second. This year the camera will be upgraded to one with YUV

output and the processor will be replaced by an SH4 with 360 MIPS. These changes

should move the Viperroos into the 25-35 frame rate range[9].

This information is of particular interest as the GuRoo will be using the Viperroos new

processor board and cameras.



Chapter 3

Problem Definition

The vision software should be useful to both the ViperRoos and the GuRoo as both face

similar problems at the early stages of the software, ie fast colour segmentation. Ad-

ditionally they will be using the same hardware which makes using the same software

much more attractive.

The GuRoo’s only external sensor is the camera mounted in its head. From this sensor

all of the information needed must be derived. At present requirements for accuracy are

unknown as the robot has not been constructed or the environment in which it it is to

operate specified. The medium and small size leagues are used as starting points for

developing specifications for the vision system.

3.1 Object Recognition and Self Localisation

The location of the ball, obstacles, edge lines and goals needs to be determined relative to

the robot. From this information the robot can work out its own location in the environ-

ment as well. No specifications for accuracy exist because the nature of the environment

in which the robot operates is undefined.

Using the rules for other local vision leagues for RoboCup leads to the conclusion that the

environment will be extensively colour tagged with significant objects having distinct and

defined colours (Table 3.1)[17, 16]. Obviously the software must be capable of colour

recognition to meet these requirements.

A capability original suggested for the humanoid vision system was to be able to provide

information suitable for the control systems of the robot to use as part of the stability

14
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system. This would require calculating velocities and positions of the head with respect

to the environment.

Object Colour

Field/Operating Surface Green
Ball Red

Edge of Field Lines White
Opponents Black

Goals Blue or Yellow

Table 3.1: Colour Coded Environment
In the colour coded environment the robot operates in each object of interest has an
assigned colour.

3.2 Frame Rate and Resolution

The University of Queensland’s other local vision robots, the ViperRoos face similar

problems and uses the same hardware as the GuRoo. The ViperRoos’ code is currently

running on an SH3 processor with a RGB camera and has a frame rate of about 16 frames

per second (fps) or 62.5 ms with a resolution of 32 by 128 pixels[9]. About 20 ms of

time per frame is used to perform a costly RGB to YUV colour space transform. In

terms of pixels per second the SH3 operates at around 64 kilopixels per second. The

costly YUV conversion can be eliminated by using a a YUV output camera reducing the

processing time for a frame by 20ms. This would increase the number of pixels analysed

by the system to 96.4 kilopixels per second. The ViperRoos’ new SH4 processor will

run at about three times as fast as the old processor giving a speed of approximately 300

kilopixels per second.

Any software system should at least run through the pixels at the same rate as the old

ViperRoos software if not faster. For general three dimensional vision instead of using

the ViperRoos letter box type image (32 � 128) an image with the usual 1 1
3 : 1 aspect

ratio of a computer screen should be used instead (640 � 480).

3.3 Hardware

The hardware consists of three physically separate elements the camera board, processor

board and the iPaq (Fig 3.1). Communication between the boards is run through a field
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programmable gate array (FPGA). Data flow is one way although there is the possibility

of using the iPaq to alter the program settings on the SH4[12].

Figure 3.1: Hardware Block Diagram of the Humanoid.
This block diagram shows the flow of information through the humanoid’s computer
system. Data flow to and from the SH4 is through the FPGA allowing reconfigurable
connections between input/output pins [5, 12].

3.3.1 Camera

The camera that will be providing images for processing is an Omnivision OV7620

CMOS camera[5]. There are several reasons for using this particular camera. Firstly

it is a CMOS camera which means that it has a digital output and low current consump-

tion both of which are necessary for mobile robots. Secondly the OV7620 has on board

subsampling. The previous ViperRoos system performed subsampling inside the SH3

processor, in other words a full resolution picture is transmitted to the processor which

discards the majority of the data. Subsampling by the camera reduces the amount of

unnecessary data flowing across the bus to the processor. Finally and most importantly

it can produce a YUV output[13, 5]. This removes the costly RGB to YUV conversion

stage from the software.

3.3.2 Processor Board

The processor board is an based around a Hitachi SH4 microprocessor. The SH4 is

capable of running at up to 360 million instructions per second (MIPS) as opposed to the

SH3 board it replaces which ran at 104 MIPS[9]. Aside from this approximately threefold

increase in speed the SH4 processor board also has 512 KB of static ram (SRAM) as

well as static-dynamic RAM (SDRAM). Also this board is equipped with a Spartan field

programmable gate array (FPGA) which sits between the SH4 and the camera. The FPGA

gives the option of carrying out some processing on the data before it reaches the SH4. It
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is also planned to use the FPGA to buffer data from the camera as it comes into the SH4

[5].



Chapter 4

Initial Approaches

There were several abortive attempts at solving the problems outlined in chapter 3 before

the techniques finally used were developed. All of these techniques where based on YUV

images which where trialled in MATLAB.

4.1 Colour Detection

The original segmentation system used separate histograms of the red and blue chromi-

nance. From these histograms the upper x% of the red chrominance and the lowest x% of

the blue chrominance were used as the thresholds for the red ball. The parameter x must

be adjusted to produce reasonable results. The difficulty with this technique is that the

image must be histogrammed and the thresholds recalculated for each image. Secondly

while this technique is good at finding red it is not so effective at locating pixels belong-

ing to the ball as it does not combine information from the U and V coordinates. A faster

solution is to use lookup tables.

4.1.1 Lookup Tables

A system similar to the CM Vision lookup table was trialled. The CM Vision system

uses three vectors to describe rectangular three dimensional regions in YUV space. The

problem with this technique is that adding adaptive Y thresholds is difficult and that the

rectangular regions in UV space appeared to be less useful than arbitrary regions.

18
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4.2 Orientation

To locate the robot in the in space it was originally planned to make detailed use of the

edge lines of the field. By using edge detection techniques an image showing the edge

lines can be produced. From this several methods could be used to calculate the line

descriptors of the edges. One approach would be to use the Radon or Hough transform

(2.2.2), but it was feared this may be too computationally expensive. So a different

approach using edge following was trialled.

4.2.1 Edge Detection

The use of traditional edge detection operators such as Sobel or even Canny[14] detectors

was avoided for several reasons. Firstly the the operators would require a large number

of calculations to performed per pixel (at least four for a 2 � 2 operator). Secondly the

results of these edge detections would be a set of edges for all significant changes in

brightness while only the edges of the field lines need to be segmented. Instead of using

a mathematical edge operator some other techniques were tried:

� Eroding the segmented white objects in the image and then XORing this with the

original segmentation. This produces the set of pixels that are the boundary of

all white objects. The problem with implementing this approach is that the entire

boundary of the white objects are detected, while only the lower part is needed.

� Creating an edge map of all the white colour coded pixels that are directly above

a green coded pixel. This works quite well and would be the best method for

determining the edge lines if the field is segmented. In the final approach though

the green area of the image is not segmented (Chapter 6).

4.2.2 Edge Following

The edge following system starts from a random point around on the edge map and and

begins tracing the edge. As the algorithm moves from pixel to pixel the direction is

encoded and stored in a null terminated list (a chain code). As the algorithm moves

between pixels in an eight neighbour manner there are eight possible directions to be

encoded 4.1. After traversing a set of edge pixels in a straight line the start and end

coordinates of the line will have been found.
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Direction Code� 1�
2�
3�
4� 5�
6 
7!
8

Table 4.1: Eight neighbour direction codes.
The edge following system represents the direction from pixel to pixel using these nu-
merical codes.

As the algorithm moves along the system it uses simple heuristics to determine whether

or not the line it is following is a straight line. While tracing a line the algorithm permits

only two adjacent directions to be followed. This detects if the line doubles back or

significantly changes direction but does not detect a line that only changes direction by

45 " or less (figure 4.1). A solution to this problem is to develop an approximation to

the gradient and use probability techniques to detect gradient changes[15]. This area

of research was abandoned when it was found that the colour detection was not able to

provide a straight edge line for a pixel by pixel approach like this.

4.3 Optical Flow

Optical flow is a technique for measuring the movement of pixels from one frame to the

next[11]. Optical flow could provide some indication as to the velocity and stability of the

head. However it is computationally expensive and was dropped at an early stage when

gyroscopes were announced for internal sensors of the GuRoo. Because of the planned

internal sensors and concerns with speed and latency within the vision system the use of

optical information to assist with the control or balance of the GuRoo was abandoned.
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Figure 4.1: Chain Code Line Description
The line following correctly detects the the straight line segment of the upper group of
pixels but does not detect to the change in gradient of the lower line. The start and end
points of the groups represented by the arrows show what the computer believes is a
completely straight line.



Chapter 5

Final SH4 Software

In this chapter the final software running on the SH4 processor is described. It consists of

several stages that execute one after another: colour detection; morphological operations;

run length encoding; grouping; and object analysis. The software was prototyped in

MATLAB and then recoded in C for a PC platform. Once the code was debugged and

optimised it was ported to the SH4 using the GNU C compiler for the SH series[1].

5.1 Colour Detection

In the initial colour detection stage the YUV colour image is converted into a new image

that contains eight bit codes representing what type of colour class each pixel belongs to.

The colour codes used for humanoid vision are listed in table 5.1. The colour codes are

set as powers of two so that each class of objects has its own bit plane. In other words

the output of the colour detection can be thought of as eight single bit planes with the

same width and height as the original image. As a result the system is able to detect eight

different colours.

5.1.1 Basic Colour Detection

The final technique is based on a two stage system that first uses the pixel brightness

to classify the pixel into one of three classes: black; white; or other. This is done with

two simple thresholds, pixels below one threshold are black while pixels above the other

threshold are white. The other pixels between the two thresholds are candidates to be

22
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some other colour (yellow, green, blue) and require another level of attention to determine

which. Colours apart from black and white are determined by a lookup table with U and

V coordinates.

The Y thresholds are recalculated for each frame as offsets from the sample mean of the

image. The lookup table values are constructed from a trainer program (section 5.6). The

result of this process is that each YUV pixel is mapped to a single value describing the

colour class of the pixel. The simplified implementation of this algorithm is shown as

algorithm 1.

Algorithm 1 Basic Colour Detection Algorithm
mean � mean of y values in image
low threshold � mean - low offset
high threshold � mean + high offset
for each pixel

read Y
if Y < low threshold then

output � BLACK
else

if Y > high threshold then
output � WHITE

else
read U
read V
output � lookup table[U][V]

Object Colour Code

? Any other 0
Field Green 1

Wall/Edgeline White 2
Ball Red 4

Opponent/Obstacle Black 8
Blue Goal Blue 16

Yellow Goal Yellow 32

Table 5.1: Colour Codes
After colour thresholding the output image contains these coded values describing each
pixels colour. There are two remaining colour codes (64 and 128) that could be used to
represent more colours.
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5.1.2 Fast Colour Detection

The colour detection process can be accelerated by reducing the number of pixels that

the operation is performed on. Instead of processing every pixel only every fourth pixel

is used. If there is a change in output between last two pixels tested then the algorithm

backtracks and processes the pixels in between. Otherwise it is assumed that these are

all of the same value (algorithm 2). This increases the speed of the algorithm but also

increases the number of pixels that are misclassified (Table 6.1).

The misclassification is caused by the fact that this algorithm can skip over small groups

of pixels or small gaps between pixels (figure 5.1). In fact the algorithm cannot guarantee

the segmentation of any object smaller than the subsampling size (4 pixels). However

because of the backtracking the actual location and general shape of a segmented object

is not damaged.

0 1 72 3 4 5 6

0 0 1 1 1 0 0 1
Index

1

8

0 0 1 1 1 1 1 1 1 4x Subsampled

Expected Output

Figure 5.1: Subsampling
The first line shows the output of pixel by pixel colour detection. The second line shows
the effect of 4 � subsampling with backtracking. The 0th and fourth pixels are examined
first. The output is different so the 1st, 2nd and 3rd pixels are also tested. The final
(8th) pixel is read, because it is the same as the previous subsampled pixel (4th) so the
intervening pixels are kept as 1 without ever being thresholded.

5.1.3 32 Bit Operation

As the SH4 is a 32 bit processor reading 24 bit YUV colour information is not particularly

efficient because of problems with word alignment and the fact that multiple reads are

required. As can be seen in algorithm 1 either one or three memory reads are made per

pixel. A much more efficient implementation can be made by reading the pixel as 32

bit value (figure 5.2). Each pixel then needs only one memory read. Furthermore the Y

value thresholds can just be scaled and compared to the whole 32 bit pixel as the Y value

is in the most significant byte (ignoring the unused byte). Also instead of using U and

V as array indices (table[U][V]) which leads to the computer calculating the address as
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Algorithm 2 Fast Colour Detection Algorithm
end_address � image_size - CD_SUBSAMPLE
index = 0
while index < end_addr

next_index � index + CD_SUBSAMPLE
output � colour_detect(next_index)
if output = last_output
each output between index and next_index <- output
index � next_pixel

else
colour_detect each pixel between index and next_index
index � next_index

table � U � 256 � V the low 16 bits of the pixel data can be used as a one dimensional

index. This is the only stage where the 32 bit architecture required change from the

original code.

02431

0 Y U V

716 15 823

Figure 5.2: 32 Bit Data Storage
The YUV colour information is padded to 32 bits from 24. The magnitude of the 32 bit
value approximately 216 times the Y value of pixel. The lower 16 bits are used as the
index into the lookup table.

5.2 Morphological Techniques Used in the Code

Morphological operations can be used to decrease the amount of noise in the image after

the colour detection phase. To remove the noise quickly only an erosion is used as op-

posed to an opening. A 1 � 3 structuring element is used to clean up the colour detected

data. The 1 � 3 element was chosen because it was the minimum size necessary to give

good noise rejection.

A simple implementation of 1 � 3 erosion is shown in algorithm 3. This algorithm makes

use of the fact that each colour code is in a separate bit position so an erosion can be
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thought of as happening on eight bitmaps in parallel. This implies the AND in algorithm

3 is a bitwise AND instead of a logical AND.

Algorithm 3 Simple 1 � 3 erosion.
for i = 1 to size of image -1

output[i] = input[i-1] AND input[i] AND input[i+1]

The morphological system can be sped up by reducing the number of memory accesses.

It is clear from algorithm 3 that each memory location is accessed three times, so by

keeping previously read data it is possible to reduce the memory reads by three. The C

code for this erosion is shown as algorithm 4.

Algorithm 4 Fast 1 � 3 erosion.
i � 0
for y � 0 to height

out[i] � 0
i++
a � input[i-1]
b � input[i]
c � input[i+1]
for x � 1 to width - 4 step x+=3
out[i] � a AND b AND c
i++
a � input[i+1]
out[i] � b AND c AND a
i++
b = input[i+1]
output � c AND a AND b
i++
c � input[i+1]
next x

input[i] � 0
i++
input[i] � 0
i++

next y
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5.3 Grouping

The grouping algorithm converts the colour detected pixels into a list of structures de-

scribing each four connected group of pixels. There are two passes in this algorithm, the

first pass turns the colour detected image into a list of run length encoded (RLE) ele-

ments. These elements are then used to construct a set of blob objects that describe large

blobs found in the image. The advantage of using RLE is that the grouping algorithm will

be simpler if it operates on blocks of pixels instead of individual pixels. The other advan-

tage is that the RLE compressed data will be convenient for transmitting to the iPaq, so a

colour detected image can be displayed on the iPaq’s screen[12].

5.3.1 Run Length Encoding

The first stage of the grouping algorithm is to convert from an array of pixels to a null

terminated list of run length encoded elements. The run length encoding elements contain

the following data members:

begin: The x coordinate corresponding to the beginning of a run.

end: The x coordinate of the end of the run.

y: The y coordinate of the run.

colour: The colour of the pixels in the run.

tag: The number of the run counting from the top left corner.

blobpointer: A pointer to a blob structure (section 5.3.2).

The run length encoding process creates a list of runs in memory that encapsulates each

horizontal block of pixels. Unlike normal run length encoding this systems constrains the

runs to appear on one line. The tag number is set to be the number of the run counting

from the top left hand corner of the image. The tag value zero is reserved for terminating

the list of runs. The blobpointer member is set to null when a run is created.
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5.3.2 Blobs

A blob is an four connected region of pixels of the same colour. At present a blob contains

the following data members:

area: The number of pixels in the blob.

colour: The colour code of the pixels in the blob.

xmax, xmin, ymax, ymin: The bounding dimensions of the blob.

Blobs are the output of the grouping process and the input to the final analysis stage of the

vision process. Originally the sum of the moments of each pixel in the blob was stored

within the blob structure so that the exact centroid of the blob could be recovered. To

reduce the computational load this feature was dropped.

5.3.3 Grouping

After run length encoding blobs in the image are formed through a grouping process.

Each run is examined one at time and compared to the runs on the following row (al-

gorithm 5). Rows that are four connected to the current row and the same colour are

part of the same blob object. The basic approach to constructing these blobs is shown in

algorithm 6. If both run elements have their blob pointers at null then a new blob object

is manufactured for them and their pointers set to it. If only one of the two run elements

has a non-null blob pointer than the empty pointer is set to point to the valid blob and the

blob parameters are updated. The final case when both of the run elements have set blob

pointers then the newest blob is deleted and both of them are set to the older blob.

Algorithm 5 Grouping
r � start of RLE list
while r.tag �� 0

n � next RLE element for which n.y �� r.y
if n.y = r.y
for r � each RLE element from r to n

match(r against the RLE elements starting from n)
r � r+1
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Algorithm 6 Matching
r is the element being compared to the next row of elements
n is the first element of the next row such that n.y = r.y + 1
rowbelow � n
while rowbelow.y = r.y + 1 {

if r and rowbelow overlap in four connected space
if rowbelow.tag > r.tag {

if r.blobpointer = NULL
create a new blob and attach it to r

merge rowbelow.blobpointer with r.blobpointer
rowbelow.blobpointer � r.blobpointer
rlowbelow.tag � r.tag

} else {
if rowbelow.blobpointer = NULL

create a new blob and attach it to rowbelow
merge rowbelow.blobpointer with r.blobpointer
rowbelow.blobpointer � r.blobpointer
rlowbelow.tag � r.tag

}
rowbelow � rowbelow + 1

}



CHAPTER 5. FINAL SH4 SOFTWARE 30

1

2 3

4 5

6 7 8

9 10

11

12 13

14

(a) Run length encoded data before grouping.
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(b) Propogation of tag numbers through run elements.

Figure 5.3: Run length encoded elements.
Each run element has a tag number which is originally set to the index of the run (a).
Figure (b) shows the RLE elements after the grouping algorithm has passed through.
Each element is matched against the elements in the row directly beneath it. When the
elements are four connected the tag number is used to determine which element inherits
from the other, the arrow indicating the direction of inheritance. Every RLE element
connected by an arrow therefore contributes to the area and bounding rectangle of the
blob.
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The tag member of the run structure is used to determine which blob is deleted when

regions are merged. Smaller tag numbers indicate that the blob associated with it is older.

The merging process is simply a matter of increasing the bounding rectangle and area to

accommodate the information from the new run or blob.

The grouping algorithm does not produce information showing which runs are members

of each blob. The only information that is produced is the bounding rectangle and the

number of pixels in the blob. While further passes of the grouping system would eventu-

ally be able to provide the exact shape of the blob there does not appear to be any need

for this information.

5.4 Analysis

The final stage of feature extraction is the rejection of incorrect matches caused by errors

in the first colour segmentation stage. The analysis stage examines the list of blobs and

produces a set of objects that the software considers to be the best candidates for each

type of object.

The first stage is to determine the approximate height of the wall. The area above the wall

can then be ignored. This will remove the possibility of false matches in the area above

the wall.

The wall object is the largest white blob in the image. Any object higher than a fixed

offset above the wall object is ignored. The blue and yellow goals are likewise defined as

the largest blue or white objects except that the must be in the valid region described by

the wall. All of these objects must also be over a minimum size or they are not detected

at all. This prevents a few noise pixels from being detected as an object.

Obstacles are defined as all black objects in the valid area of the screen that are above a

minimum size and a list of obstacles is constructed containing all of these objects.

The ball is a special case in that it is rotationally invariant so it should maintain a fixed

unity aspect ratio from any view point. Therefore the difference between the width and

the height can be used as a simple test for the ball. This rejects red objects that do not

have the correct dimensions for the ball.
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5.5 Localisation and Line Detection

The two most powerful cues for localisation are the blue and yellow goals. From the angle

of the goal and knowledge of the approximate height of the robot an idea of the robot’s

position on the field can be calculated. Another source of information for localisation

are the edge lines. A fast way of obtaining orientation from the edge lines is to look for

horizontal lines. An efficient method to do this is to use a Radon transform that only

looks for lines that are horizontal.

Resuming the discussion in 2.2.2 it is clear that to only look for horizontal lines the

projections need only be calculated when the vector is vertical. This is equivalent to

simply summing the number of edge pixels in each horizontal row. The summation of

edge pixels can be stored in a one dimensional array giving a profile of edge strength

related to y coordinate. A significant horizontal line in the image will then translate into

a large spike in the profile. A maximum detection system can then be used to find this

point.

The maximum detection system is quite simple. The maximum point of the profile is

first found. If this maximum is greater than a minimum threshold value and also greater

by a minimum value than the second largest value in the profile than it is considered to

correspond to a horizontal line. Aside from the detection of these cues for orientation no

further work has been done in the field of localisation.

5.6 Training

The trainer lets the user provide representative samples of each colour class and construct

a UV lookup table from these samples. The user can select a rectangular region of the

image and specify it as being of a certain colour.

The selected region is passed to a two dimensional histogramming algorithm that counts

the occurrence of each combination of U and V coordinates. This histogram is conse-

quently of size 256 � 256. This histogrammed data is then thresholded and assigned

a code value by the user to produce a lookup table for one colour class. The user can

interactively make further histograms of other colour classes and superimpose them onto

the lookup table. This results in table like figure A.2(a).

Finally to link up the regions in the table and account for any sort of colour shift the

whole lookup table is dilated with 3 � 3 a cross shaped mask (figure A.2(b)). As each
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bitplane is dilated separately it is possible for the lookup table to contain two colour codes

for the same U and V coordinate. As this would result in a pixel being detected as two

colours the dilation is post processed to select only one colour code for each cell. Firstly

if the cell in the table already contains a colour value then that cell is not permitted to be

changed by the dilation. This prevents one colour from overwriting another colour during

the dilation. Remaining overlaps are arbitrated by order of priority (table 5.2).

The finished lookup table can be trialled on a test image which duplicates the SH4 vision

code to the point where it can show the location of segmented objects.

Priority Number Colour Code

1 Red
2 Black
3 Blue
4 Yellow
5 White
6 Green

Table 5.2: Dilation Priority
The lookup table dilation uses this priority list to ensure that each position in the lookup
table corresponds to only one colour code.

5.7 Memory Organisation

The image processing software requires a large amount of data to be stored within the

512 KB of on board memory. The YUV image; colour detected image; and the eroded

image will use a large part of the memory. In addition to this there is also a large amount

of symbolic information to be stored such as the run length encoded elements and the

blob structures. Memory is allocated to all of these elements using fixed size buffers.

Buffers are used instead of of dynamically allocated data structures such as linked lists

for several reasons, the chief being that a buffer is simpler to move through. These buffers

use up about 400 KB of memory leaving the remaining memory for the program space,

local variables and the stack.
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Buffer Size Memory

YUV Image 240 � 180 168.75 KB
Lookup Table 256 � 256 64 KB

Colour Detected Image 240 � 180 42.2 KB
Eroded Image 240 � 180 42.2 KB
RLE Elements 3072 72 kB

Blobs 512 12 KB
Objects 64 768 Bytes

Edge Profile 180 720 Bytes

Total 401.8 KB

Figure 5.4: Memory Usage in the SH4.
The remaining 110 KB of the 512 KB of memory is used for the program, local variables
and the stack.
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Testing and Results

6.1 Testing Methods

As there was no digital camera input for testing the code with the SH4 pictures were

taken with a commercial handheld Casio camera. These 640 � 480 RGB colour images

were converted to YUV format and subsampled to 240 � 180 using MATLAB and saved

as raw binary files suitable for download to the SH4 board.

The SH4 code’s performance was tested by using a serial port program to download and

upload data from buffers on the SH4. The frame rate can be measured by toggling a LED

on the SH4 board every time a frame is processed. The frequency of the LED, which is

twice the frame rate, can be measured with an oscilloscope.

6.2 Training and Lookup Table

The training software was used (section 5.6) to construct a lookup table for detecting red,

blue and yellow. The white and black regions of the image are detected by thresholding

the Y coordinate. These thresholds are set at # 50 above and below the brightness mean

which is recalculated for each new frame of data.

The final lookup table shows the location in UV space of each of the three colours of

interest (See figure A.3). The horizontal axis corresponds to increasing red chrominance

from left to the right and the blue chrominance increases down the vertical axis. As

expected then the region that detects blue is located at the bottom of the image and the
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red region is located on the top right of the image. It is interesting to note that there is a

relationship between the red and blue chrominance of the ball. Roughly speaking as the

red chrominance of the ball increases the blue chrominance decreases. This relationship

is preserved because the lookup table uses arbitrary shapes as opposed to rectangular

regions.

6.3 Colour Detection

6.3.1 Reliability and Robustness of Colour Detection

Two examples of the colour detection system in action can be seen in figure A.4. It is clear

that in general the performance of the colour detection stage is fairly good however, there

is a problem detecting yellow in the image (figure A.4 (b)). This is caused by problems

with the brightness thresholding of the image. Basically the Y values of yellow approach

those of white leading to confusion as to the difference between white and yellow. Other

less bright colours such as red, blue or green are generally detected well.

Aside from misinterpreting yellow as white, the detection of black and white is very

successful. This indicates that readjusting the Y thresholds for each frame is an intelligent

strategy, especially as the lighting level within the environment can change dramatically.

Another problem encountered during colour detection is that particularly dark shades of

green can be detected as red (figure A.6). This leads to extra red in the colour detected

image that causes problems later in the image processing system. It appears these prob-

lems are caused by a poorly constructed red region in the colour lookup table. Redefining

the colour table to be more conservative in red, ie making the red region smaller in the

table, may solve this problem.

6.3.2 Speed of Colour Detection

The software was tested on the SH4 processor board and the frame rate recorded for a

few test images. The performance of the fast colour detection system at various rates

of pixel skipping is given in table 6.1. The fast colour detection by pixel skipping gives

reasonable accuracy with a general speed saving of about 12 ms when thresholding every

fourth pixel. This is a acceptable error for reducing the speed by approximately 25%.
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The speedup is not as large as expected, probably because the branching interferes with

the pipeline of the SH4. A subsampling rate of about 20 gives the fastest speed and

increasing the subsampling rate beyond 20 does not reduce the processing time. The

limiting factor on the subsampling though is that the system is not guaranteed to detect

any object narrower than the sampling interval.

Subsamping Time (ms) Pixels in Error

none 40 0
6 23.2 331
5 25.2 251
4 28 240
3 32.8 230
2 35.6 117

Table 6.1: Subsampling speed and error
This is the time taken to perform colour detection on a particular 240 � 180 pixel image.
The figure pixels in error is the number of pixels that are different to the colour detected
image created with no subsampling. In general terms the error is particularly small (331
errors is 0.8% error for a 240 � 180 image).

6.4 Morphological Operations

The removal of noise by morphological operations using a 1 � 3 erosion was generally

successful particularly in removing small amounts of red noise. The benefits of the noise

reduction can be seen in figure A.5.

The slow erosion process listed in algorithm 3 takes approximately 25 ms to complete.

The erosion faster algorithm (4) only reduces the execution time by three milliseconds.

A better method for implementing an erosion is outlined in section 7.1.3.

6.5 Run Length Encoding

Run length encoding is another costly operation taking 49 ms to encode the test image

into about 180 run length elements. Clearly further operations that use the RLE data will

operate quickly as the amount of data to process has been dramatically reduced. Also it

is apparent that the buffer allocated for the RLE data is much larger than it needs to be,
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as space has been allocated for 3072 elements. The reason for this is that if the colour

detection fails badly or is miscalibrated the number of RLE elements can become very

large and potentially overwrite other sections of the program.

6.6 Grouping

The grouping stage which converts the RLE elements into blobs executes quickly and

efficiently as it uses symbolic data as its input rather than an image array. Under the

current grouping system an isolated RLE element will not become a blob because the

system only creates a blob when it combines two or more RLE elements. This effectively

means that there is no need for a morphological erosion in the vertical direction.

One minor bug detected in the code was when a blob was merged with itself the blob was

deleted, this was corrected by preventing the blobs from being merged with themselves.

6.7 Blob Analysis and Object Detection

Blob analysis is the most difficult and error prone section of the system. The system can

easily make errors, usually these are failures result in no object being detected rather than

an imaginary object being found. Two successful examples of the output are shown in

figure A.7. The shadow under the ball is detected as an obstacle.

The detection of the goals is particularly successful although that is not a great accom-

plishment as there should only be one goal in any image and they are large objects. Even

though yellow is not particularly well segmented, the large size of the object is sufficient

to allow simple detection of the yellow goal. Obstacles are also easily segmented for the

same reasons. Although an occasional lighting problem causes a few parts of the field to

be detected as black causing imaginary black objects to appear.

The difficulty in the image segmentation process is the red ball. Usually the source of

error is poor detection of red, for example figure A.6. The rejection of red noise is

not particularly successful at the present stage causing the blob analysis stage to fail to

correctly locate the ball. Another source of error is that sometimes the software decides

that lines on the field such as the centre line are in fact the edge line. This incorrect

decision causes the algorithm to ignore the majority of the image.
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6.8 Line Detection

The process for detecting horizontal lines is quite successful at rejecting inappropriate

lines (figure 6.1). As the system will not report a line unless the maximum of the edge

profile is significantly greater than the second largest value most errors are avoided. For

these trials the minimum acceptable peak on the edge profile is 35 and the minimum

difference between the maximum and the second largest peak is 17. The software is

however unable to differentiate between the lines in the middle of the field and the edge

lines of the field. The process of developing the edge profile is slow taking 24 ms to

complete, but the peak detection stage was practically instantaneous.

The problem with the line finding at the present stage is that it does not use employ any

information from other stages of the process. In particular during the blob analysis stage

the bounding rectangle of the edge line is found. If the search was limited to finding

horizontal lines in this region the line finding would be faster and less likely to make

mistakes.

6.9 Total Processing Time

In total the system operates at 10 fps without the edge detection code in place or at 8 fps

with the edge detection code. The breakdown of time spent in the various stages of the

image processing system is shown in table 6.2. It is clear that the parts of the system that

operate on symbolic data execute much faster than those parts which use image buffers.

The code then operates at 348 kilopixels per second which is more than expected (section

3.2).

Task Time (ms)

Colour Detection 28
Erosion 22

RLE 49
Grouping Negligible
Analysis Negligible

Edge Detection and Summation 25
Edge Analysis Negligible

Total Time 124 ms

Table 6.2: Breakdown of Processor Time
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(a) Example Image (b) Horizontal Edge Strength

(c) Example Image (d) Horizontal Edge Strength

Figure 6.1: Examples of the Line Detection Process
In the first image (a) there is no dominant peak in the edge strength profile (b). The
second image (c) does have a definite peak in the edge profile (d). The edge detection
software recognises this as a horizontal line in the original image.
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Future Work

The vision system presented here would need many changes to be developed into a system

that would be usable in a RoboCup scenario. Additionally there are many changes that

could be made to provide incremental improvements to the process either increasing the

frame rate or reducing the error.

7.1 Optimisations

Several optimisations can be made to the code that would reduce the time taken to process

a frame or the amount of error in the output of the system.

7.1.1 Use of the Field Programmable Gate Array

The most significant change to the system would be moving the colour lookup stage

from the SH4 to the board’s field programmable gate array (FPGA). Currently the colour

lookup process takes about 30 ms to complete (table 6.1). This comprises taking a sample

mean of the frame’s brightness and performing colour detection on each pixel. The colour

detection could be implemented in a ROM as shown in figure 7.1. The brightness (Y)

data could be used in the FPGA as well to move the colour detection stage to the FPGA.

Colour detection on the FPGA could operate at the same rate that YUV data passes into

the FPGA, so each pixel would be analysed and the result sent to the SH4. Not only

would this technique reduce the processing by 30ms for a 240 � 180 image but it would

also reduce bus traffic and the amount of memory needed to store the image in the SH4.
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Figure 7.1: Logic Circuit Implementation of Colour Detection.
The U and V values are used as an address into a ROM that contains the values of the
lookup table. The thresholded Y value is used to control a multiplexer (MUX) that selects
between the lookup table’s output and the constant values BLACK and WHITE. The final
input to the multiplexer is reserved as ERROR because it should be impossible to have
both Y < Low Threshold and Y > High Threshold.
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7.1.2 Detection of Green

The reason that green is not detected by the system when working on robot soccer is that

it was thought that the large amount of green in each frame would lead to a significantly

larger number of run length encoding elements to process in the grouping stage and would

lead to no further useful information. However tests show that the effect of adding green

detection to the whole colour and blob growing system only increased the frame time

by a few milliseconds. The advantage of detecting green is that white pixels with green

pixels directly underneath would be good candidates for being part of the edge line.

7.1.3 Faster Morphology

The current morphological system is based on a logical 1 � 3 erosion of the colour de-

tected image. This erosion uses logical operators but a different solution could be de-

veloped. A 1 � 3 erosion is equivalent to shortening each run length element by one at

both ends. This leads to the idea of implementing a complete set of 1 � n morphological

operations on the run length encoded data instead of the colour detected image.

Rather than use addition and subtraction to perform these operations it would better to

apply them as the run length elements are constructed. For example if an RLE element

is only of length one then removing it from the list would be equivalent to an opening of

the image with a 1 � 3 structuring element. A closing could then performed by running

the through the list of RLE elements and joining ones that are almost adjacent. This has

the potential to reduce the processing time by up to 22 ms.

7.1.4 Noise Rejection

Further work can definitely be done rejecting incorrect matches for red. Some other

techniques were considered to remove but never implemented either for reasons of time

or apparent complexity.

� With a definite measure of distance from the robot to the ball the approximate size

of the ball can be calculated. The difference between the actual and expected sizes

gives another measure of error[2]. This technique was not implemented because

none of the physical constants such as the height of the robot were available.
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� Relating the area of the ball to the bounding rectangle. The trainer program cur-

rently displays red blobs with a bounding rectangle and circle with a radius based

on the blob area. This gives an indication of the relationship between bounding

box and area. Tests show that the relationship is fairly solid and will be suitable for

rejecting noise as the relationship noticeably breaks when applied to noisy pixels.

� The final technique considered was to measure the edge length of the blobs and

relate this to the area of the pixel. This would require measuring the edge though

which makes it less attractive than the previous technique.

7.2 Additions

7.2.1 Coordinate Transforms and iPaq Software

To be useful for robotic motion planning the image coordinates of each object must be

transformed into three dimensional coordinates relative to some fixed location. To do this

the position and orientation of the camera relative to the robot must be known. For some

robots like the ViperRoos this is a fixed position but for more complex robots such as the

GuRoo the camera is capable of independent motion. Consequently the vision software

must have access to the output of the internal sensors of the robot that report the angles

of the limbs and head.

On the GuRoo this information will be passed to the iPaq so it would make sense for the

coordinate transform stage of the vision system to be performed here. The two dimen-

sional image coordinates of objects would be transmitted to the iPaq which would then

build a transform matrix from the internal sensors information. The matrix would be used

to calculate the three dimensional positions of all of the objects.

The PC based trainer is planned to be ported to the iPaq. The trainer would be able

to receive the YUV images from the SH4 and use these as test images for training. In

addition to this the run length encoded data from the SH4 could be transmitted quickly

to the iPaq which could then decode this data and display it on the screen for debugging

purposes.
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7.2.2 Adapting to the output of the OV7620 Camera

At this point in time the OV7620 camera is not interfaced with the SH4 processor board

and the system uses test images taken from a hand held digital camera. These images

are converted from RGB to YUV and subsampled using MATLAB. The OV7620 is ex-

pected to have at least slightly different characteristics to the trial images. The lookup

table would have to be recalibrated and the offsets used for calculating the brightness

thresholds would have to be changed.

The use of a real camera would introduce problems of distortion and focusing to the

system. Also the availability of a real time data feed would make errors in the system

much more apparent than they currently are.
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Conclusion

A basic architecture for colour segmentation has been developed. The system is able to

perform fast colour detection using a combination of lookup tables and brightness thresh-

olds, that has been trialled on an embedded processor. The colour detected image has

been successfully converted into blobs using a two stage process of run length encoding

and grouping.

The YUV colour space is extremely useful for reducing the effect of brightness changes

in the image. The other advantage is that YUV allows the use of unchanging lookup

tables in U and V which provide an extremely fast way of performing colour detection.

The speed of execution is slightly better than expected (section 3.2). The majority of time

is spent performing colour detection, morphological operations and run length encoding.

There are many opportunities to increase the speed of the system, including using a field

programmable gate array to perform colour detection (section 7.1.1).

The system is capable of detecting most objects although more work does need to be done

preventing incorrect matches. Some techniques to correct these problems are outlined in

section 7.1.4.

A GUI system has been developed that allows the user to construct a colour lookup table

using test images. The performance of the colour detection and later stages of the soft-

ware can be examined within the GUI environment. This software has also proved useful

during the development and debugging of the vision software.

The software is at the stage were it could provide useful information to robot navigating

a colour coded environment. However the system needs to be made much more robust

before it can operate reliably.
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Colour Images
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(a) RGB Image (b) Y Comonent

(c) U and V Components (d) Colour as a function of U and V

Figure A.1: YUV Image Representation
The YUV representation of the image (a) can be easily described in two components. The
Y component is simply the brightness of each pixel (b). The UV components describe
the colour of the pixel (c). The variation of colour with U and V is shown in figure (d).
V is the horizontal axis and U is the vertical axis with 0,0 being the top left corner.
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(a) Lookup Table Before Dilation

(b) Lookup Table After Dilation

Figure A.2: Trainer Lookup Table
The trainer program uses samples of colours provided by the user to construct the initial
lookup table (a). The table is then dilated to fill up the gaps in the image (b).
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Figure A.3: An example colour lookup table.
The lookup table used for testing, it is configured to detect red, blue and yellow. The
horizontal access is V and the vertical access is U with a scale 0 to 255 on both axes.
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(a) View of Blue Goal

(b) View of Yellow Goal

Figure A.4: Colour Detected Image
The blue, white and black areas are successfully detected. The bright yellow is often
interpreted as white.
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(a) View of Blue Goal

(b) View of Yellow Goal

Figure A.5: Eroded Images
The erosion by a 1 � 3 mask removes any pixel groups whose dimensions are smaller
than 1 � 3.
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(a) Colour Detected (b) YUV image and Object Locations

Figure A.6: An Example of Poor Colour Detection
The colour detection fails here because the area of the field on the right of the image is
being segmented as red. The brightness normalised version of this image shows that the
UV data in this region is borderline between red and green. A better defined lookup table
may correct this problem.
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(a) View of Blue Goal

Figure A.7: Detected Objects.
The objects in the image detected by the vision software. The B represents the ball, O
represents obstacles(black objects), and the YG and BG represent the yellow and blue
goals. The shadow of the ball is interpreted as an obstacle.
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Code

The image processing support functions are contained in segment.c and segment.h. The

main frame processing function from imtest.c shows the order in which the functions are

called.

B.1 Imdemo.c

Program B.1: imtest.c
1 vo id imdemo ( ) {
2 q u i c k _ l o o k u p (SRAMDATA. yuv_image , SRAMDATA. t a b l e , SRAMDATA. c o l o r _ d e t e c t e d ) ;
3 / / l o o k u p _ b y t a b l e (SRAMDATA. yuv_image , SRAMDATA. t a b l e , SRAMDATA. c o l o r _ d e t e c t e d ) ;
4 e rode13 (SRAMDATA. c o l o r _ d e t e c t e d , SRAMDATA. e roded , 2 4 0 , 1 8 0 ) ;
5 r l e c o d e (SRAMDATA. e roded , SRAMDATA. r l e _ e n c o d e d ) ;
6 end_b lobs = group (SRAMDATA. r l e _ e n c o d e d , SRAMDATA. b l o b s ) ;
7 e n d _ o b s t a c l e s = a n a l y s e (SRAMDATA. b l o b s , end_b lobs ,SRAMDATA. o b s t a c l e s , & b a l l ,& b l u e g o a l , & y e l l o w g o a l ) ;
8 e d g e p r o f i l e (SRAMDATA. e roded , SRAMDATA. p r o f i l e ) ;
9 f i n d e d g e l i n e (SRAMDATA. p r o f i l e ) ;

10 }

B.2 Segment.h

Program B.2: segment.h
1 # i f n d e f SEGMENT_H
2 # d e f i n e SEGMENT_H
3
4 # i n c l u d e " image . h "
5 / / # i n c l u d e < s t d i o . h>
6 / / # i n c l u d e < s t d l i b . h>
7
8 # i f d e f WIN32
9 # i n c l u d e < s t d i o . h>

10 # e l s e
11 # i n c l u d e < sh / g i o . h>
12 # e n d i f
13
14 / / Memory A l l o c a t i o n
15 # d e f i n e ENCODEDSPACE 4096
16 # d e f i n e NUMBERBLOBS 512
17 # d e f i n e NUMBEROBSTACLES 6 4
18
19 / / Image s i z e

57
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20 # d e f i n e TABLEWIDTH 256
21 # d e f i n e TABLESIZE ( TABLEWIDTH $ TABLEWIDTH )
22
23 # d e f i n e IMWIDTH 240
24 # d e f i n e IMHEIGHT 180
25 # d e f i n e IMSIZE ( IMWIDTH $ IMHEIGHT )
26 # d e f i n e IMBYTESIZE ( IMSIZE $ 3)
27
28
29 / / Co lo r Codes
30 # d e f i n e FIELDCODE 1
31 # d e f i n e WALLCODE 2
32 # d e f i n e BALLCODE 4
33 # d e f i n e BLACKCODE 8
34 # d e f i n e BLUECODE 1 6
35 # d e f i n e YELLOWCODE 3 2
36
37 / / Minimum S i z e s
38 # d e f i n e MINSIZE 6
39
40 # d e f i n e MINWALLSIZE 140
41 # d e f i n e MINOBSTACLESIZE 6
42 # d e f i n e OBJECTLISTSIZE 1 0
43 # d e f i n e TOPWALLOFFSET 0
44 # d e f i n e MINGOALSIZE 1 0
45 # d e f i n e MINEDGELINE 3 5
46 # d e f i n e MINEDGEDIFF ( MINEDGELINE / 2 )
47
48 / $ Aspec t r a t i o o f a s q u a r e f o r t h e chosen
49 image d i m e n s i o n s
50 (IMWIDTH/ 6 4 0 ) / ( IMHEIGHT / 4 8 0 ) $ /
51 # d e f i n e SQUARERATIO 1
52
53 # d e f i n e MIN( x , y ) ( ( ( x ) < ( y ) ) ? ( x ) : ( y ) )
54 # d e f i n e MAX( x , y ) ( ( ( x ) > ( y ) ) ? ( x ) : ( y ) )
55
56 / / # d e f i n e USEPRINTF
57
58 vo id f i n d _ c e n t r o i d ( image $ segmen ted_ image ) ;
59
60 s t r u c t b l o b t a g {
61 / / s t r u c t b l o b t a g $ n e x t ;
62 / / s t r u c t b l o b t a g $ prev ;
63 i n t a r e a ;
64 i n t c o l o r ;
65 i n t xmax , xmin , ymax , ymin ;
66 } ;
67
68 typedef s t r u c t b l o b t a g b lob ;
69
70 s t r u c t r l e t a g {
71 i n t beg in ;
72 i n t end ;
73 i n t c o l o r ;
74 i n t t a g ;
75 i n t y ;
76 b lob $ b l o b p o i n t e r ;
77 } ;
78 typedef s t r u c t r l e t a g r l e ;
79 s t r u c t o b j e c t t a g {
80 i n t d i s t a n c e , b e a r i n g , c o l o r ;
81 } ;
82
83 typedef s t r u c t o b j e c t t a g o b j e c t ;
84
85 vo id l o o k u p _ b y t a b l e ( unsigned i n t $ t he_ image , UCHAR $ t a b l e ,
86 UCHAR $ ou t_ image ) ; / / , i n t $ p r o f i l e ) ;
87 b lob $ group ( r l e $ i n p u t , b lob $ b l o b s ) ;
88 vo id r l e c o d e (UCHAR $ segmen ted_ image , r l e $ o u t p u t ) ;
89 vo id r e c o n s t r u c t ( r l e $ i n p u t , image $ o u t p u t ) ;
90 vo id c o l o r _ r e c o n s t r u c t ( r l e $ i n p u t , UCHAR $ o u t p u t ) ;
91
92 / / vo id d i l a t e 2 2 (UCHAR $ t he_ image , UCHAR $ ou t_ image ) ;
93 vo id code2rgb (UCHAR $ i n p u t , UCHAR $ o u t p u t , i n t s i z e ) ;
94 / / o b j e c t $ a n a l y s e ( b lob $ b l o b d a t a , b lob $ endb lob , o b j e c t $ r e s u l t s , o b j e c t $ p b a l l ) ;
95 o b j e c t $ a n a l y s e ( b lob $ b l o b d a t a , b lob $ endb lob , o b j e c t $ r e s u l t s ,
96 o b j e c t $ p b a l l , o b j e c t $ pygoa l , o b j e c t $ pbgoa l ) ;
97
98 i n t f i n d e d g e l i n e ( i n t $ p r o f i l e ) ;
99 vo id e rode33 (UCHAR $ i n p u t , UCHAR $ o u t p u t , i n t wid th , i n t h e i g h t ) ;

100 vo id e rode13 (UCHAR $ i n p u t , UCHAR $ o u t p u t , i n t wid th , i n t h e i g h t ) ;
101
102 vo id h i s t o g r a m _ r e g i o n (UCHAR $ t he_ image , i n t sx , i n t sy , i n t ex , i n t ey , i n t $ h i s t ) ;
103 vo id t h r e s h ( i n t $ h i s t , i n t code , i n t l e v e l , UCHAR $ t a b l e ) ;
104
105 vo id e d g e p r o f i l e (UCHAR $ t a r g e t , i n t $ p r o f i l e ) ;
106
107 # i f d e f WIN32
108 vo id q u i c k _ l o o k u p (UCHAR $ t he_ image , UCHAR $ t a b l e , UCHAR $ ou t_ image ) ;
109 vo id l o o k u p _ b y t a b l e (UCHAR $ t he_ image , UCHAR $ t a b l e ,
110 UCHAR $ ou t_ image ) ;
111 # e l s e
112 vo id q u i c k _ l o o k u p ( unsigned i n t $ t he_ image , UCHAR $ t a b l e , UCHAR $ ou t_ image ) ;
113 vo id l o o k u p _ b y t a b l e ( unsigned i n t $ t he_ image , UCHAR $ t a b l e ,
114 UCHAR $ ou t_ image ) ;
115 # e n d i f
116
117 # e n d i f
118 / $ SEGMENT_H $ /
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B.3 Segment.c

Program B.3: segment.c
1 # i n c l u d e " segment . h "
2 # d e f i n e WORD l ong i n t
3 # i n c l u d e " a n g l e t a b l e . h "
4 / / # i n c l u d e " image io . h "
5
6 # i f n d e f WIN32
7 # i n c l u d e < . . / vbsh4 / t e s t . h>
8 # i n c l u d e < sh / s c i . h>
9 # e n d i f

10
11 / / # i n c l u d e < a s s e r t . h>
12
13 / / y t h r e s h o l d s
14 unsigned i n t y t low , y t h i g h ;
15
16
17 / / Sample Mean C o n s t a n t s
18 # d e f i n e YMEAN_SAMPLEPOWER 1 0
19 # d e f i n e YMEAN_NUMSAMPLE 1024
20 # d e f i n e YMEAN_INCREMENT ( IMSIZE /YMEAN_NUMSAMPLE)
21
22 # d e f i n e CD_SUBSAMPLE 4
23
24 # i f d e f WIN32
25
26 i n t ymean (UCHAR $ t he_ image ) {
27 UCHAR $ i m p o i n t e r = the_ image ;
28 i n t y t o t a l =0 ;
29 i n t i , y ;
30 f o r ( i = 0 ; i < YMEAN_NUMSAMPLE; i + + ) {
31 y = $ i m p o i n t e r ;
32 y t o t a l +=y ;
33 i m p o i n t e r + = YMEAN_INCREMENT $ 3 ;
34 }
35 re turn ( y t o t a l > > YMEAN_SAMPLEPOWER ) ;
36 } ;
37
38 # d e f i n e Y_POSOFFSET ( 5 0 )
39 # d e f i n e Y_NEGOFFSET ( 5 0 )
40
41 i n l i n e i n t l o o k u p _ p i x e l (UCHAR $ i m p o i n t e r , cons t UCHAR $ t a b l e ) {
42 UCHAR y = $ i m p o i n t e r ;
43 UCHAR u = $ ( i m p o i n t e r + 1 ) ;
44 UCHAR v = $ ( i m p o i n t e r + 2 ) ;
45 / / unsigned i n t o u t ;
46 i f ( y > y t h i g h ) re turn WALLCODE;
47 i f ( y < y t low ) re turn BLACKCODE ;
48 re turn t a b l e [ u $ 256+v ] ;
49 }
50
51 vo id q u i c k _ l o o k u p (UCHAR $ t he_ image , UCHAR $ t a b l e ,
52 UCHAR $ ou t_ image ) {
53 unsigned i n t o u t p u t ;
54 unsigned i n t l a s t _ o u t p u t = 0 ;
55 cons t UCHAR $ end_addr = the_ image + ( IMBYTESIZE ) ; / / u sed t o be % subsample
56 UCHAR $ o u t p o i n t e r = ou t_ image ;
57 UCHAR $ i m p o i n t e r = the_ image ;
58 UCHAR $ n e x t _ p i x e l ;
59 / / UCHAR $ end_ou t = ou t_ image + IMSIZE ;
60 / / i n t y , u , v ;
61 i n t mean = ( ymean ( the_ image ) ) ;
62 i n t i ;
63 y t h i g h = ( mean ) + Y_POSOFFSET;
64 y t low = ( mean ) % Y_NEGOFFSET;
65 $ o u t p o i n t e r = l o o k u p _ p i x e l ( i m p o i n t e r , t a b l e ) ;
66 whi le ( i m p o i n t e r < end_addr ) {
67 n e x t _ p i x e l = i m p o i n t e r+CD_SUBSAMPLE $ 3 ;
68 o u t p u t = l o o k u p _ p i x e l ( n e x t _ p i x e l , t a b l e ) ;
69 i f ( o u t p u t = = l a s t _ o u t p u t ) {
70 f o r ( i = 0 ; i < CD_SUBSAMPLE ; i + + ) {
71 $ (++ o u t p o i n t e r ) = o u t p u t ;
72 }
73 / / p r i n t f ( " s " ) ;
74 i m p o i n t e r = n e x t _ p i x e l ;
75 } e l s e {
76 f o r ( i = 0 ; i < CD_SUBSAMPLE % 1 ; i + + ) {
77 i m p o i n t e r +=3;
78 o u t p o i n t e r ++;
79 $ o u t p o i n t e r = l o o k u p _ p i x e l ( i m p o i n t e r , t a b l e ) ;
80 } ;
81 / / t h e n do t h e l a s t one which has a l r e a d y been looked up
82 o u t p o i n t e r ++;
83 i m p o i n t e r = n e x t _ p i x e l ;
84 $ ( o u t p o i n t e r ) = o u t p u t ;
85 l a s t _ o u t p u t = o u t p u t ;
86 }
87 / / a s s e r t ( o u t p o i n t e r < end_ou t ) ;
88 } ;
89 } ;
90
91
92 # e l s e
93 # d e f i n e Y_POSOFFSET ( 5 0 < < 1 6 )
94 # d e f i n e Y_NEGOFFSET ( 5 0 < < 1 6 )
95
96 i n t ymean ( unsigned i n t $ t he_ image ) {
97 unsigned i n t $ i m p o i n t e r = the_ image ; i n t y t o t a l =0 ;
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98 i n t i , y ;
99 f o r ( i = 0 ; i < YMEAN_NUMSAMPLE; i + + ) {

100 y = ( ( $ i m p o i n t e r )>>16)&0xFF ;
101 y t o t a l +=y ;
102 i m p o i n t e r + = YMEAN_INCREMENT;
103 }
104 re turn ( y t o t a l > > YMEAN_SAMPLEPOWER ) ;
105 } ;
106
107 i n l i n e i n t l o o k u p _ p i x e l ( unsigned i n t $ i m p o i n t e r , cons t UCHAR $ t a b l e ) {
108 unsigned i n t d a t a = $ i m p o i n t e r ;
109 unsigned i n t y = ( d a t a ) ;
110 / / unsigned i n t o u t ;
111 i f ( y > y t h i g h ) re turn WALLCODE;
112 i f ( y < y t low ) re turn BLACKCODE ;
113 re turn t a b l e [ d a t a & 0 x0000FFFF ] ;
114 }
115
116
117
118 vo id q u i c k _ l o o k u p ( unsigned i n t $ t he_ image , UCHAR $ t a b l e ,
119 UCHAR $ ou t_ image ) {
120 unsigned i n t o u t p u t ;
121 unsigned i n t l a s t _ o u t p u t = 0 ;
122 cons t unsigned i n t $ end_addr = the_ image + ( IMSIZE ) ; / / u sed t o be % subsample
123 UCHAR $ o u t p o i n t e r = ou t_ image ;
124 unsigned i n t $ i m p o i n t e r = the_ image ;
125 i n t $ n e x t _ p i x e l ;
126 / / UCHAR $ end_ou t = ou t_ image + IMSIZE ;
127 / / i n t y , u , v ;
128 i n t mean = ( ymean ( the_ image ) ) < < 1 6 ;
129 i n t i ;
130 y t h i g h = ( mean ) + Y_POSOFFSET;
131 y t low = ( mean ) % Y_NEGOFFSET;
132 $ o u t p o i n t e r = l o o k u p _ p i x e l ( i m p o i n t e r , t a b l e ) ;
133 whi le ( i m p o i n t e r < end_addr ) {
134 n e x t _ p i x e l = i m p o i n t e r+CD_SUBSAMPLE;
135 o u t p u t = l o o k u p _ p i x e l ( n e x t _ p i x e l , t a b l e ) ;
136 i f ( o u t p u t = = l a s t _ o u t p u t ) {
137 f o r ( i = 0 ; i < CD_SUBSAMPLE ; i + + ) {
138 $ (++ o u t p o i n t e r ) = o u t p u t ;
139 }
140 / / p r i n t f ( " s " ) ;
141 i m p o i n t e r = n e x t _ p i x e l ;
142 } e l s e {
143 f o r ( i = 0 ; i < CD_SUBSAMPLE % 1 ; i + + ) {
144 i m p o i n t e r ++;
145 o u t p o i n t e r ++;
146 $ o u t p o i n t e r = l o o k u p _ p i x e l ( i m p o i n t e r , t a b l e ) ;
147 } ;
148 / / t h e n do t h e l a s t one which has a l r e a d y been looked up
149 o u t p o i n t e r ++;
150 i m p o i n t e r = n e x t _ p i x e l ;
151 $ ( o u t p o i n t e r ) = o u t p u t ;
152 l a s t _ o u t p u t = o u t p u t ;
153 }
154 / / a s s e r t ( o u t p o i n t e r < end_ou t ) ;
155 } ;
156 } ;
157
158
159 / / Th i s code i s s l o w e r t h a n t h e qu ick lookup v e r s i o n by abou t 4 f p s a t 240 $ 180
160 vo id l o o k u p _ b y t a b l e ( unsigned i n t $ t he_ image , UCHAR $ t a b l e ,
161 UCHAR $ ou t_ image ) { / / , i n t $ p r o f i l e ) {
162 cons t unsigned i n t $ end_addr = the_ image + IMWIDTH $ IMHEIGHT ;
163 UCHAR $ o u t p o i n t e r = ou t_ image ;
164 unsigned i n t $ i m p o i n t e r = the_ image ;
165 unsigned i n t mean = ymean ( the_ image )<<16 ;
166 y t h i g h = mean + Y_POSOFFSET;
167 y t low = mean % Y_NEGOFFSET;
168 / / i n t i ;
169 whi le ( i m p o i n t e r < end_addr ) {
170 $ o u t p o i n t e r = l o o k u p _ p i x e l ( i m p o i n t e r + + , t a b l e ) ;
171 o u t p o i n t e r ++;
172 } ;
173 } ;
174
175
176 # e n d i f
177
178 / / Slow E r o s i o n
179 / $ vo id e rode13 (UCHAR $ i n p u t , UCHAR $ o u t p u t , i n t wid th , i n t h e i g h t ) {
180 r e g i s t e r i n t x , y ;
181 r e g i s t e r UCHAR $ i n p o i n t e r = i n p u t + 1 ;
182 r e g i s t e r UCHAR $ o u t p o i n t e r = o u t p u t + 1 ;
183 UCHAR $ end_addr = i n p u t +IMSIZE % 1 ;
184 whi l e ( i n p o i n t e r < end_addr ) {
185 $ o u t p o i n t e r = $ ( i n p o i n t e r % 1) & $ ( i n p o i n t e r ) & $ ( i n p o i n t e r + 1 ) ;
186 o u t p o i n t e r ++;
187 i n p o i n t e r ++;
188 }
189 } $ /
190
191
192 / / e rode13 on ly works f o r a s p e c i f i c image wid th
193 # i f IMWIDTH ! = 2 4 0
194 # e r r o r " I n c o r r e c t wid th "
195 # e n d i f
196
197
198 vo id e rode13 (UCHAR $ i n p u t , UCHAR $ o u t p u t , i n t wid th , i n t h e i g h t ) {
199 i n t x , y ;
200 UCHAR $ i n p o i n t e r = i n p u t ;
201 UCHAR $ o u t p o i n t e r = o u t p u t ;
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202 unsigned i n t a , b , c ;
203
204 f o r ( y = 0 ; y < h e i g h t ; y + + ) {
205 $ o u t p o i n t e r + + = 0 ;
206 i n p o i n t e r ++;
207 a = $ ( i n p o i n t e r % 1 ) ;
208 b = $ ( i n p o i n t e r ) ;
209 c = $ ( i n p o i n t e r + 1 ) ;
210
211 f o r ( x = 1 ; x < wid th % 4 ; x +=3) {
212 $ o u t p o i n t e r + + = a & b & c ;
213 i n p o i n t e r ++;
214
215 a = $ ( i n p o i n t e r + 1 ) ;
216 $ o u t p o i n t e r + + = b & c & a ;
217 i n p o i n t e r ++;
218
219 b = $ ( i n p o i n t e r + 1 ) ;
220 $ o u t p o i n t e r + + = c & a & b ;
221 i n p o i n t e r ++;
222
223 c = $ ( i n p o i n t e r + 1 ) ;
224
225 }
226 / / i n p o i n t e r and o u t p o i n t e r now have f i n i s h e d column 178
227 / / and s t i l l p o i n t t o i t .
228 $ o u t p o i n t e r + + = 0 ;
229 $ o u t p o i n t e r + + = 0 ;
230 i n p o i n t e r +=2;
231
232 }
233 }
234
235 vo id r l e c o d e (UCHAR $ segmen ted_ image , r l e $ o u t p u t ) {
236 / / watch f o r r u n s t h a t end a t t h e r i g h t m o s t column
237 r e g i s t e r UCHAR $ i m p o i n t e r = segmen ted_ image ;
238 r l e $ r l e p o i n t e r = o u t p u t ;
239 # i f n d e f NDEBUG
240 r l e $ s p a c e c h e c k = o u t p u t + ENCODEDSPACE ;
241 # e n d i f
242 i n t t a g c o u n t e r = 1 ;
243 r e g i s t e r i n t x , y ;
244 r e g i s t e r i n t d a t a ;
245 i n t rowcoun t ;
246 i n t c o l o r , o ldend ;
247 / / i n t h e i g h t = segmen ted_ image % >h e i g h t ;
248 / / i n t wid th = segmen ted_ image % >wid th ;
249 i n t i n r u n = 0 ;
250 f o r ( y = 0 ; y < IMHEIGHT ; y + + ) {
251 i n r u n = 0 ;
252 rowcoun t = 0 ;
253 o ldend = 0 ;
254 f o r ( x = 0 ; x < IMWIDTH ; x + + ) {
255 d a t a = $ i m p o i n t e r ;
256 i f ( i n r u n && ( d a t a ! = c o l o r ) ) {
257 r l e p o i n t e r % >end = x % 1;
258 o ldend = r l e p o i n t e r % >c o l o r ;
259 # i f d e f USEPRINTF
260 p r i n t f ( " [ t a g : % d b : % d " , r l e p o i n t e r % >t a g , r l e p o i n t e r % >beg in ) ;
261 p r i n t f ( " e : % d c : % d ] \ n " , r l e p o i n t e r % >end , r l e p o i n t e r % >c o l o r ) ;
262 # e n d i f
263 r l e p o i n t e r ++;
264 i n r u n = 0 ;
265
266 # i f d e f USEPRINTF
267 rowcoun t ++;
268 p r i n t f ( " rowcoun t %d \ n " , rowcoun t ) ;
269 # e n d i f
270 }
271
272 / / l o g i c t h i s l i n e
273 i f ( ! ! d a t a && ! i n r u n ) {
274 r l e p o i n t e r % >beg in = x ;
275 c o l o r = d a t a ;
276 r l e p o i n t e r % >c o l o r = c o l o r ;
277 r l e p o i n t e r % >t a g = t a g c o u n t e r ++;
278 r l e p o i n t e r % >b l o b p o i n t e r = 0 ;
279 r l e p o i n t e r % >y = y ;
280 i n r u n = 1 ;
281 # i f d e f USEPRINTF
282 p r i n t f ( "{ S t a r t Run x:%d y:%d }" , x , y ) ;
283 # e n d i f
284 } ;
285
286 i m p o i n t e r ++;
287
288 / / a s s e r t ( r l e p o i n t e r < s p a c e c h e c k ) ;
289 / / a s s e r t ( r l e p o i n t e r > = o u t p u t ) ;
290 } ;
291 i f ( i n r u n ) {
292 r l e p o i n t e r % >end = IMWIDTH % 1 ;
293 # i f d e f USEPRINTF
294 p r i n t f ( " [ t a g : % d b : % d " , r l e p o i n t e r % >t a g , r l e p o i n t e r % >beg in ) ;
295 p r i n t f ( " e : % d c : % d ] \ n " , r l e p o i n t e r % >end , r l e p o i n t e r % >c o l o r ) ;
296 # e n d i f
297 r l e p o i n t e r ++;
298 / / S e t t h e n e x t one t o z e r o
299 i n r u n = 0 ;
300 }
301 } ;
302 r l e p o i n t e r % >t a g = 0 ; / / n u l l t e r m i n a t e t h e run a r r a y
303 }
304
305 / / C o n v e r t s t h e r l e o b j e c t s back t o c o l o u r codes



APPENDIX B. CODE 62

306 vo id r e c o n s t r u c t ( r l e $ i n p u t , image $ o u t p u t )
307 {
308 i n t x , y ;
309 UCHAR $ d a t a = o u t p u t % >d a t a ;
310 r l e $ r l e p o i n t e r = i n p u t ;
311
312 / / f o r each row of t h e image
313 y = 0 ;
314 / / f o r a l l t h e r l e r u n s on t h i s row
315 whi le ( r l e p o i n t e r % >t a g ) {
316 f o r ( x = r l e p o i n t e r % >beg in ; x < r l e p o i n t e r % >end + 1 ; x + + ) {
317 $ ( d a t a + x + o u t p u t % >wid th $ r l e p o i n t e r % >y ) = r l e p o i n t e r % >t a g ;
318 }
319 r l e p o i n t e r ++;
320 } ;
321
322 } ;
323
324 / / Co lour codes t o RGB
325 vo id code2rgb (UCHAR $ i n p u t , UCHAR $ o u t p u t , i n t s i z e )
326 {
327 UCHAR $ i m p o i n t e r = i n p u t ;
328 UCHAR $ o u t _ p o i n t e r = o u t p u t ;
329 cons t UCHAR $ end_addr = i n p u t + s i z e ;
330 UCHAR r , g , b ;
331 whi le ( i m p o i n t e r < end_addr ) {
332 swi tch ( $ ( i m p o i n t e r + + ) ) {
333 case FIELDCODE :
334 r = 0 ; g = 2 5 5 ; b = 0 ;
335 break ;
336 case WALLCODE:
337 r = 2 5 5 ; g = 2 5 5 ; b = 2 5 5 ;
338 break ;
339 case BALLCODE :
340 r = 2 5 5 ; g = 0 ; b = 0 ;
341 break ;
342 case BLACKCODE :
343 r = 0 ; g = 0 ; b = 0 ;
344 break ;
345 case BLUECODE :
346 r = 0 ; g = 0 ; b = 2 5 5 ;
347 break ;
348 case YELLOWCODE:
349 r = 2 5 5 ; g = 2 5 5 ; b = 0 ;
350 break ;
351 d e f a u l t :
352 r = 6 4 ; g = 6 4 ; b = 6 4 ;
353 break ;
354 }
355 # i f d e f WIN32
356 $ ( o u t _ p o i n t e r + + ) = b ;
357 $ ( o u t _ p o i n t e r + + ) = g ;
358 $ ( o u t _ p o i n t e r + + ) = r ;
359 # e l s e
360 / / a s s e r t ( 0 ) ;
361 $ ( o u t _ p o i n t e r + + ) = r ;
362 $ ( o u t _ p o i n t e r + + ) = g ;
363 $ ( o u t _ p o i n t e r + + ) = b ;
364 # e n d i f
365
366
367
368 } ;
369 } ;
370
371 # i f d e f WIN32
372 / / FIX o p t i m i z e
373 vo id c o l o r _ r e c o n s t r u c t ( r l e $ i n p u t , UCHAR $ o u t p u t )
374 {
375 i n t x , y ;
376 UCHAR r , g , b ;
377 UCHAR $ d a t a = o u t p u t ;
378 UCHAR $ i m p o i n t e r ;
379 r l e $ r l e p o i n t e r = i n p u t ;
380
381
382
383 f o r ( i m p o i n t e r= d a t a ; i m p o i n t e r< d a t a +IMSIZE ; i m p o i n t e r + + ) $ i m p o i n t e r = 9 6 ;
384 / / f o r a l l t h e r l e r u n s on t h i s row
385 whi le ( r l e p o i n t e r % >t a g ) {
386 y = r l e p o i n t e r % >y ;
387 swi tch ( r l e p o i n t e r % >c o l o r ) {
388 case FIELDCODE :
389 r = 0 ; g = 2 5 5 ; b = 0 ;
390 break ;
391 case WALLCODE:
392 r = 2 5 5 ; g = 2 5 5 ; b = 2 5 5 ;
393 break ;
394 case BALLCODE :
395 r = 2 5 5 ; g = 0 ; b = 0 ;
396 break ;
397 case BLACKCODE :
398 r = 0 ; g = 0 ; b = 0 ;
399 break ;
400 case BLUECODE :
401 r = 0 ; g = 0 ; b = 2 5 5 ;
402 break ;
403 case YELLOWCODE:
404 r = 2 5 5 ; g = 2 5 5 ; b = 0 ;
405 break ;
406 }
407 f o r ( x = r l e p o i n t e r % >beg in ; x < r l e p o i n t e r % >end + 1 ; x + + ) {
408 # i f d e f WIN32
409 $ ( d a t a + 3 $ x + 3 $ IMWIDTH $ y ) = b ;
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410 $ ( d a t a + 3 $ x + 3 $ IMWIDTH $ y + 1 ) = g ;
411 $ ( d a t a + 3 $ x + 3 $ IMWIDTH $ y + 2 ) = r ;
412 # e l s e
413 $ ( d a t a + 3 $ x + 3 $ IMWIDTH $ y ) = r ;
414 $ ( d a t a + 3 $ x + 3 $ IMWIDTH $ y + 1 ) = g ;
415 $ ( d a t a + 3 $ x + 3 $ IMWIDTH $ y + 2 ) = b ;
416 # e n d i f
417
418 }
419 r l e p o i n t e r ++;
420 } ;
421 } ;
422 # e n d i f
423
424 / / Sub p a r t o f g roup
425 i n l i n e r l e $ matchrows ( r l e $ r l e p o i n t e r , r l e $ nex t row , b lob $&$ n e x t b l o b , i n t y ) {
426 r l e $ rowbelow = nex t row ;
427 i n t beg in = r l e p o i n t e r % >beg in ; / / o p t i m i z e
428 i n t end = r l e p o i n t e r % >end ; / / o p t i m i z e
429 i n t c o l o r = r l e p o i n t e r % >c o l o r ;
430 b lob $ be lowblob ;
431 i n t a b o v e a r e a ;
432 b lob $ aboveb lob = r l e p o i n t e r % >b l o b p o i n t e r ;
433 i n t be lowarea ;
434
435 whi le ( rowbelow % >y==y + 1 ) {
436 / / Now check t h e f o r c o n n e c t i v i t y .
437 # i f d e f USEPRINTF
438 p r i n t f ( " $%X{%d,%d " , rowbelow % >t a g , rowbelow % >y , rowbelow % >beg in ) ;
439 p r i n t f (" % %d } " , rowbelow % >end ) ;
440 # e n d i f
441 i f ( ( ( ( rowbelow % >beg in > = beg in )&&(rowbelow % >beg in < = end ) ) | |
442 ( ( rowbelow % >end > = beg in ) && ( rowbelow % >end < = end ) ) | |
443 ( ( rowbelow % >beg in < = beg in ) && ( rowbelow % >end > = end ) ) ) &&
444 ( rowbelow % >c o l o r = = c o l o r ) ) {
445 i f ( rowbelow % >t a g > r l e p o i n t e r % >t a g ) {
446 / / Subsume below i n t o above
447 / / C r e a t e a b lob f o r t h e above
448 i f ( ! aboveb lob ) {
449 r l e p o i n t e r % >b l o b p o i n t e r = ( $ n e x t b l o b ) + + ;
450 aboveb lob = r l e p o i n t e r % >b l o b p o i n t e r ;
451 aboveb lob % >c o l o r = r l e p o i n t e r % >c o l o r ;
452 a b o v e a r e a = end % beg in + 1 ;
453 aboveb lob % >a r e a = a b o v e a r e a ;
454 aboveb lob % >ymax = y ;
455 aboveb lob % >ymin = y ;
456 aboveb lob % >xmax = end ;
457 aboveb lob % >xmin = beg in ;
458 }
459
460 i f ( rowbelow % >b l o b p o i n t e r ) {
461 / / a s s e r t ( aboveb lob ) ;
462 / / row below i s a b lob g e t i n f o
463 be lowblob = rowbelow % >b l o b p o i n t e r ;
464 / / t h i s t e s t cou ld be b e t t e r done wi th t a g numbers
465 i f ( aboveb lob ! = be lowblob ) {
466 aboveb lob % >a r e a + = be lowblob % >a r e a ;
467 be lowblob % >a r e a = 0 ;
468 } ;
469 aboveb lob % >ymax = MAX( aboveb lob % >ymax , be lowblob % >ymax ) ;
470 aboveb lob % >ymin = MIN( aboveb lob % >ymin , be lowblob % >ymin ) ;
471 aboveb lob % >xmax = MAX( aboveb lob % >xmax , be lowblob % >xmax ) ;
472 aboveb lob % >xmin = MIN( aboveb lob % >xmin , be lowblob % >xmin ) ;
473 / / a s s e r t ( be lowblob ) ;
474 rowbelow % >b l o b p o i n t e r = r l e p o i n t e r % >b l o b p o i n t e r ;
475 rowbelow % >t a g = r l e p o i n t e r % >t a g ;
476 } e l s e {
477 / / a s s e r t ( aboveb lob ) ;
478 / / j u s t a row so c a l c s t a t s
479 be lowarea = rowbelow % >end % rowbelow % >beg in + 1 ;
480 aboveb lob % >a r e a + = be lowarea ;
481 / / aboveb lob % >ymin n o t need u p d a t i n g ?
482 / / a s s e r t ( aboveb lob % >ymin<y + 1 ) ;
483 aboveb lob % >ymax = MAX( aboveb lob % >ymax , y + 1 ) ; / / u n l i k e l y
484 aboveb lob % >xmin = MIN( aboveb lob % >xmin , rowbelow % >beg in ) ;
485 aboveb lob % >xmax = MAX( aboveb lob % >xmax , rowbelow % >end ) ;
486 rowbelow % >b l o b p o i n t e r = aboveb lob ;
487 rowbelow % >t a g = r l e p o i n t e r % >t a g ;
488 } ;
489 } e l s e {
490 / / subsume above b lob i n t o below blob .
491 be lowblob = rowbelow % >b l o b p o i n t e r ;
492 i f ( aboveb lob ) {
493 / / r l e p o i n t e r has a b lob
494 i f ( aboveb lob ! = be lowblob ) {
495 be lowblob % >a r e a + = aboveb lob % >a r e a ;
496 aboveb lob % >a r e a = 0 ;
497 }
498
499 be lowblob % >ymin=MIN( be lowblob % >ymin , aboveb lob % >ymin ) ;
500 be lowblob % >ymax=MAX( be lowblob % >ymax , aboveb lob % >ymax ) ;
501 be lowblob % >xmin=MIN( be lowblob % >xmin , aboveb lob % >xmin ) ;
502 be lowblob % >xmax=MAX( be lowblob % >xmax , aboveb lob % >xmax ) ;
503
504 / / a s s e r t ( aboveb lob ) ;
505 r l e p o i n t e r % >b l o b p o i n t e r = rowbelow % >b l o b p o i n t e r ;
506 } e l s e {
507 / / r l e p o i n t e r j u s t a s i n g l e row
508 / / a s s e r t ( be lowblob ) ;
509 a b o v e a r e a = end % beg in + 1 ;
510 be lowblob % >a r e a += a b o v e a r e a ;
511 be lowblob % >ymin=MIN( be lowblob % >ymin , y ) ;
512 be lowblob % >ymax=MAX( be lowblob % >ymax , y ) ;
513 be lowblob % >xmin=MIN( be lowblob % >xmin , beg in ) ;
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514 be lowblob % >xmax=MAX( be lowblob % >xmax , end ) ;
515 r l e p o i n t e r % >b l o b p o i n t e r = rowbelow % >b l o b p o i n t e r ;
516 } ;
517 r l e p o i n t e r % >t a g = rowbelow % >t a g ;
518 }
519 # i f d e f USEPRINTF
520 p r i n t f ( "m$%X " , rowbelow % >t a g ) ;
521 # e n d i f
522 }
523 rowbelow + + ; / / and now i s h e r e
524 }
525 re turn rowbelow + 1 ; / / Should be p o i n t i n g t o t h e s t a r t o f t h e n e x t row ;
526 }
527
528
529
530 b lob $ group ( r l e $ i n p u t , b lob $ b l o b s )
531 {
532 i n t y = i n p u t % >y ;
533 r l e $ r l e p o i n t e r = i n p u t ;
534 r l e $ rowbelow ;
535 r l e $ nex t row = i n p u t ;
536 r l e $ temprow = nex t row ;
537 b lob $ n e x t b l o b = b l o b s ;
538 i n t beg in , end ;
539 b lob $ s p a c e c h e c k = b l o b s +NUMBERBLOBS ;
540 whi le ( (++ temprow) % >y==y ) { } ;
541
542 / / f o r each row of t h e image
543 whi le ( y < IMHEIGHT % 1 ) { / / HEIGHT MINUS ONE DON’T DO LAST ROW
544 r l e p o i n t e r = nex t row ;
545 y = r l e p o i n t e r % >y ;
546 / / now f i n d n e x t row a f t e r t h i s o n e i f i t i s n o t y++
547 / / t h e n s k i p t h i s row t o o
548 whi le ( (++ nex t row) % >y==y ) { } ; / / cou ld be o p t i m i z e d
549 / / nex t row = temprow ;
550 i f ( nex t row % >y = = y + 1 ) {
551 / / f o r a l l t h e r l e r u n s on t h i s row
552 whi le ( r l e p o i n t e r < nex t row ) {
553 # i f d e f USEPRINTF
554 beg in = r l e p o i n t e r % >beg in ;
555 end = r l e p o i n t e r % >end ;
556 p r i n t f ( " Tag $%X{y %d % " , r l e p o i n t e r % >t a g , r l e p o i n t e r % >y ) ;
557 p r i n t f ( "%d %d} [ " , beg in , end ) ;
558 # e n d i f
559 / / rowbelow = i n p u t + ENCODEDWIDTH $ ( y + 1 ) ;
560 rowbelow = nex t row ;
561 temprow = matchrows ( r l e p o i n t e r , nex t row , & n e x t b l o b , y ) ;
562 / / a s s e r t ( n e x t b l o b < s p a c e c h e c k ) ;
563 / / c a l l match h e r e r e t u r n s l a s t r l e on t h e row
564 / / n e x t run a long t h e c u r r e n t row
565 # i f d e f USEPRINTF
566 p r i n t f ( " ] \ n " ) ;
567 # e n d i f
568 r l e p o i n t e r ++;
569 i f ( r l e p o i n t e r % >t a g = = 0 ) re turn n e x t b l o b ;
570 }
571 } ;
572 } ;
573 # i f d e f USEPRINTF
574 p r i n t f ( "END GROUP\ n " ) ;
575 # e n d i f
576 re turn n e x t b l o b ;
577 }
578
579 i n l i n e i n t x c e n t r o i d ( b lob $ t a r g e t ) {
580 re turn ( t a r g e t % >xmin + t a r g e t % >xmax )>>1 ;
581 } ;
582
583 i n l i n e i n t y c e n t r o i d ( b lob $ t a r g e t ) {
584 re turn ( t a r g e t % >ymin + t a r g e t % >ymax )>>1 ;
585 } ;
586
587 # d e f i n e MAX_ERROR 4
588 o b j e c t $ a n a l y s e ( b lob $ b l o b d a t a , b lob $ endb lob , o b j e c t $ r e s u l t s ,
589 o b j e c t $ p b a l l , o b j e c t $ pygoa l , o b j e c t $ pbgoa l )
590 {
591 b lob $ pb lob = b l o b d a t a ;
592 b lob $ w a l l = 0 ;
593 b lob $ b a l l = 0 ;
594 b lob $ bgoa l = 0 ;
595 b lob $ ygoa l = 0 ;
596 i n t b l u e s i z e = MINGOALSIZE ;
597 i n t y e l l o w s i z e = MINGOALSIZE ;
598 o b j e c t $ n e x t r e s u l t = r e s u l t s ;
599 i n t e x p e c t e d _ h e i g h t , e r r o r ;
600
601 i n t t o p l i n e = 0 ;
602 i n t w a l l s i z e = MINWALLSIZE;
603 i n t b a l l s i z e = 0 ;
604
605 f o r ( pb lob = b l o b d a t a ; pb lob < endb lob ; pb lob + + ) {
606 swi tch ( pb lob % >c o l o r ) {
607 case WALLCODE:
608 i f ( pb lob % >a r e a > w a l l s i z e ) {
609 w a l l s i z e = pb lob % >a r e a ;
610 w a l l = pb lob ;
611 } ;
612 break ;
613 }
614 }
615
616 i f ( w a l l ) {
617 t o p l i n e = w a l l % >ymin % TOPWALLOFFSET;
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618
619 # i f d e f USEPRINTF
620 p r i n t f ( " w a l l d i m e n s i o n %d x %d y % " , w a l l % >xmin , w a l l % >ymin ) ;
621 p r i n t f ( " % d x %d y \ n " , w a l l % >xmax , w a l l % >ymax ) ;
622 p r i n t f ( " h o r i z o n l i n e %d \ n " , t o p l i n e ) ;
623 p r i n t f ( " t o p of i n t e r e s t %d \ n " , t o p l i n e ) ;
624 # e n d i f
625 } ;
626 / / t o p l i n e = 0 ;
627 f o r ( pb lob = b l o b d a t a ; pb lob < endb lob ; pb lob ++)
628 i f ( ( pb lob % >a r e a )&&(pb lob % >ymin> t o p l i n e ) ) {
629 # i f d e f USEPRINTF
630 p r i n t f ( "%d %d " , pb lob % >c o l o r , pb lob % >a r e a ) ;
631 p r i n t f ( "%d %d " , pb lob % >xmin , pb lob % >ymin ) ;
632 p r i n t f ( "%d %d \ n " , pb lob % >xmax , pb lob % >ymax ) ;
633 # e n d i f
634
635
636 swi tch ( pb lob % >c o l o r ) {
637 case BALLCODE :
638 e x p e c t e d _ h e i g h t = ( pb lob % >xmax % pb lob % >xmin +1) $ SQUARERATIO ;
639 e r r o r = e x p e c t e d _ h e i g h t % ( pb lob % >ymax % pb lob % >ymin + 1 ) ;
640 i f ( ( e r r o r < 6 ) & & ( e r r o r > % 3 ) ) {
641 i f ( pb lob % >a r e a > b a l l s i z e ) {
642 b a l l s i z e = pb lob % >a r e a ;
643 b a l l = pb lob ;
644 } ;
645 }
646 break ;
647 case BLACKCODE :
648 i f ( pb lob % >a r e a > MINOBSTACLESIZE ) {
649
650 n e x t r e s u l t % >d i s t a n c e = y c e n t r o i d ( pb lob ) ;
651 n e x t r e s u l t % >b e a r i n g = x c e n t r o i d ( pb lob ) ;
652 n e x t r e s u l t % >c o l o r = BLACKCODE ;
653 n e x t r e s u l t ++;
654 } ;
655 break ;
656 case BLUECODE :
657 i f ( pb lob % >a r e a > b l u e s i z e ) {
658 bgoa l = pb lob ;
659 b l u e s i z e = pb lob % >a r e a ;
660 } ;
661 break ;
662 case YELLOWCODE:
663 i f ( pb lob % >a r e a > y e l l o w s i z e ) {
664 ygoa l = pb lob ;
665 y e l l o w s i z e = pb lob % >a r e a ;
666 } ;
667 break ;
668 }
669 } ;
670 i f ( b a l l ) {
671 / / p b a l l % >d i s t a n c e = a n g l e t a b l e [ y c e n t r o i d ( b a l l ) ] ;
672 p b a l l % >d i s t a n c e = y c e n t r o i d ( b a l l ) ;
673 p b a l l % >b e a r i n g = x c e n t r o i d ( b a l l ) ;
674 p b a l l % >c o l o r = BALLCODE ;
675 } e l s e {
676 p b a l l % >d i s t a n c e = 0 ;
677 p b a l l % >b e a r i n g = % 4 0 ;
678 p b a l l % >c o l o r = 0 ;
679 } ;
680 i f ( bgoa l ) {
681 pbgoa l % >d i s t a n c e = y c e n t r o i d ( bgoa l ) ;
682 pbgoa l % >b e a r i n g = x c e n t r o i d ( bgoa l ) ;
683 p b a l l % >c o l o r = BLUECODE ;
684 } e l s e {
685 pbgoa l % >d i s t a n c e = 0 ;
686 pbgoa l % >b e a r i n g = % 4 0 ;
687 p b a l l % >c o l o r = 0 ;
688 }
689 i f ( ygoa l ) {
690 pygoa l % >d i s t a n c e = y c e n t r o i d ( ygoa l ) ;
691 pygoa l % >b e a r i n g = x c e n t r o i d ( ygoa l ) ;
692 pygoa l % >c o l o r = YELLOWCODE;
693 } e l s e {
694 pygoa l % >d i s t a n c e = 0 ;
695 pygoa l % >b e a r i n g = % 4 0 ;
696 pygoa l % >c o l o r = 0 ;
697 }
698
699 re turn ( n e x t r e s u l t ) ;
700 } ;
701
702
703 i n t f i n d e d g e l i n e ( i n t $ p r o f i l e ) {
704 i n t y ;
705 i n t sum ;
706 i n t max=MINEDGELINE;
707 i n t oldmax = 0 ;
708 i n t b e s t y =0 ;
709 f o r ( y =0 ; y < IMHEIGHT ; y + + ) {
710 sum = p r o f i l e [ y ] ;
711 i f ( sum > oldmax ) {
712 i f ( sum > max ) {
713 oldmax = max ;
714 max = sum ;
715 b e s t y = y ;
716 } e l s e {
717 oldmax = sum ;
718 } ;
719 }
720 } ;
721 i f ( max % oldmax > MINEDGEDIFF )
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722 re turn b e s t y ;
723 e l s e
724 re turn 0 ;
725 } ;
726
727 / $ vo id d i l a t e 2 2 (UCHAR $ t he_ image , UCHAR $ ou t_ image ) {
728 UCHAR mask ;
729 i n t x , y ;
730
731 f o r ( y = 1 ; y<IMHEIGHT % 1 ; y ++)
732 f o r ( x = 0 ; x<IMWIDTH % 1 ; x + + ) {
733 mask = $ ( the_ image +x+IMWIDTH $ y ) ;
734 i f ( mask ! = 0 ) {
735 $ ( ou t_ image +( x +1)+IMWIDTH $ y ) = mask ;
736 $ ( ou t_ image +( x +2)+IMWIDTH $ y ) = mask ;
737 $ ( ou t_ image +( x +3)+IMWIDTH $ y ) = mask ;
738 } ;
739 }
740 } $ /
741
742
743 / /
744 / / ucha r f o r h i s t o g r a m
745 vo id h i s t o g r a m _ r e g i o n (UCHAR $ t he_ image , i n t sx , i n t sy , i n t ex , i n t ey , i n t $ h i s t ) {
746 i n t x , y ;
747 UCHAR u , v ;
748 f o r ( y = sy ; y < = ey ; y ++)
749 f o r ( x = sx ; x < = ex ; x + + ) {
750 u = $ ( the_ image + 3 $ x + y $ IMWIDTH $ 3 + 1 ) ;
751 v = $ ( the_ image + 3 $ x + y $ IMWIDTH $ 3 + 2 ) ;
752 ( $ ( h i s t + v + TABLEWIDTH $ u ) ) + + ;
753 }
754 }
755
756 / / T h r e s h o l d t h e t h e h i s t o g r a m i n t o a UCHAR lookup t a b l e
757 vo id t h r e s h ( i n t $ h i s t , i n t code , i n t l e v e l , UCHAR $ t a b l e ) {
758 i n t x , y ;
759 f o r ( x = 0 ; x < TABLEWIDTH ; x ++)
760 f o r ( y = 0 ; y < TABLEWIDTH ; y++)
761 i f ( $ ( h i s t + TABLEWIDTH $ y + x ) > l e v e l )
762 $ ( t a b l e + TABLEWIDTH $ y + x ) = code ;
763 } ;
764
765
766 vo id e d g e p r o f i l e (UCHAR $ t a r g e t , i n t $ p r o f i l e ) {
767 i n t y , x ;
768 UCHAR $ i m p o i n t e r = t a r g e t ;
769 f o r ( y = 0 ; y < IMHEIGHT % 1 ; y ++)
770 f o r ( x = 0 ; x < IMWIDTH ; x + + ) {
771 p r o f i l e [ y ] + = ( $ i m p o i n t e r==WALLCODE) & & ( $ ( i m p o i n t e r+IMWIDTH ) ! = WALLCODE) ;
772 i m p o i n t e r ++;
773 }
774 }


