Vision Software for a Humanoid Soccer Robot

David Prasser

19th October 2001

43 Aberfoyle St,
Kenmore,
Brisbane QLD 4069

19th October, 2001.

Professor Simon Kaplan,

Head of School,

School of Information Technology
and Electrical Engineering,
University of Queensland,

St Lucia QLD 4072.

Dear Professor Kaplan,

In accordance with the requirements of the degree of Bachelor of Engineering (Honours)
in the division of Electrical Engineering, | present the following thesis entitled “Vision
Software for a Humanoid Soccer Robot”. This thesis project was conducted under the
supervision of Dr Gordon Wyeth.

I declare that the work submitted in this thesis is my own, except as acknowledged in the
text, and has not been previously submitted for a degree at the University of Queensland
or any other institution.

Yours sincerely,

David Prasser.

Acknowledgements

Gordon Wyeth for starting the whole GuRoo project.
Mark Chang for his endless advice and of course the SH4 board.

The other vision people: Andrew Blower, Shane Hosking, and Adrian Ratnapala for their
ideas and advice.

Mark Venz and Damien Kee for providing the RoboLab Public Library.
Damien Kee, Ilan Lacish and Mark Venz again for their help with LY X and LATEX.

The rest of the GuRoo team: Andrew Smith, Emanuel Zelniker, Andrew Blower, Damien
Kee, Mark Wagstaff, Anthony Hunter, Shane Hosking, Nathaniel Brewer, Timothy Cartwright,
Jarad Stirzaker, and Bartek Babel.

And everyone else in the robotics lab for making it such a relaxed and friendly lab.

Abstract

This thesis describes the initial work in developing a software system to provide visual
information for a humanoid soccer playing robot. The robot is intended to operate in
a colour coded environment. The system is to report the location of significant objects
for playing soccer - the ball, goals, edgelines and opponents. In addition to this it is
important for the robot to determine its own location and orientation. The software runs
on a Hitachi SH4 processor board and is intended to use an OV7620 CMOS camera to
provide YUV or YCgCRg images.

Several approaches were investigated before the final system was designed. The system
has a colour detection first stage that uses a UV lookup table. This is followed by a run
length based grouping algorithm that constructs objects from the colour detected image.
Finally simple heuristics are used to reject poorly defined objects.

The code was trialled on an SH4 processor with a resolution of 240 by 180 pixels and
operates at frame rate of 10 frames per second performing colour segmentation and object
classification. The image size is limited by the amount of memory on the processor board.
Further increases in speed would be possible by transferring parts of the code from the
SH4 processor to a field programmable gate array that is also on the board.

The use of colour lookup tables combined with a row based object growing gives a fast
method for robotic vision that will be suitable for humanoid robot soccer.

Contents

1

Introduction 1
1.1 RoboticVision 1
1.2 RoboCup 1
1.3 GuRoo, the University of Queensland Humanoid Project 2
1.4 RobocupVision 3
15 Outlineof Thesis 4
Literature Review 5
2.1 RoboticVision 5
2.1.1 Greyscale Thresholding 5

2.1.2 Colour Thresholding or Colour Detection 6

2.2 Morphology Theory 6
2.2.1 EdgeDetection 8

2.2.2 HoughorRadon Transform 8

2.3 RoboticVisioninRobocupo o 9
231 YUV ColourSpace i 10

2.3.2 HSIorHSV ColourSpace 10

2.3.3 AfterThresholding 11
2.3.3.1 Localisationof Objects 11

2.3.3.2 Localisationofthe Robots 11

24 CMVISION e e 11
25 VIperRooS e 12

CONTENTS

3 Problem Definition

3.1 Object Recognition and Self Localisation
3.2 Frame Rateand Resolution
3.3 Hardware

331 Camera

3.3.2 ProcessorBoard

Initial Approaches

4.1 ColourDetection
411 LookupTables

4.2 Orientation
421 EdgeDetection
422 EdgeFollowing.

43 Optical Flow

Final SH4 Software
51 ColourDetection
5.1.1 Basic Colour Detection
5.1.2 Fast Colour Detection
513 32BitOperation
5.2 Morphological Techniques Used intheCode
53 Grouping e
53.1 RunlLengthEncoding
532 Blobs
533 Grouping
54 Analysis
5.5 Localisation and Line Detection
56 Training

57 Memory Organisation e

14
14
15
15
16
16

CONTENTS

6 Testing and Results

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9

TestingMethods
Trainingand Lookup Table
Colour Detection
6.3.1 Reliability and Robustness of Colour Detection
6.3.2 Speed of Colour Detection
Morphological Operations
RunLengthEncoding
Grouping e
Blob Analysis and Object Detection
Line Detection

Total Processing Time i

7 Future Work

7.1

7.2

Optimisations
7.1.1 Use of the Field Programmable Gate Array
7.1.2 Detectionof Green
7.1.3 Faster Morphology
7.1.4 NoiseRejection
Additions
7.2.1 Coordinate Transforms and iPag Software

7.2.2 Adapting to the output of the OV7620 Camera

8 Conclusion

A Colour Images

46

49

CONTENTS v

B Code 57
B.1 Imdemo.c 57
B.2 Segmenth 57

B.3 Segment.c 59

List of Figures

11

2.1
2.2
2.3

3.1

4.1

5.1
5.2
5.3
5.4

6.1

7.1

Al
A2
A3
A4
AS

TheGUIrO0 2
Morphological operations. 7
Sobel Edge Detectors 8
Radon Transform 9
Hardware Block Diagram of the Humanoid. 16
Chain Code Line Description 21
Subsampling 24
32BitDataStorage 25
Run length encoded elements. 30
Memory Usageinthe SH4. 34
Examples of the Line DetectionProcess 40
Logic Circuit Implementation of Colour Detection. 42
YUV Image Representation 50
Trainer Lookup Table 51
An example colour lookup table. 52
Colour Detected Image 53
ErodedImages 54

LIST OF FIGURES Vi

A.6 An Example of Poor Colour Detection 55
A.7 Detected Objects. 56

List of Tables

3.1 Colour Coded Environment 15
4.1 Eight neighbour directioncodes. 20
5.1 ColourCodes 23
5.2 DilationPriority 33
6.1 Subsamplingspeedanderror 37
6.2 Breakdown of Processor Time 39

Vii

List of Algorithms

o o1 AW N

Basic Colour Detection Algorithm 23
Fast Colour Detection Algorithm 25
Simplelx3erosion. 26
Fast1 X 3erosion. v v i i e 26
Grouping e e e 28
Matching 29

viii

Chapter 1

Introduction

1.1 RoboticVision

One of the significant problems in robotics is extracting information from the environ-
ment. All but the most primitive industrial robots have some form of external sensing,
such as sonar, infrared, or contact switches. The most versatile method is through com-
puter vision, an algorithmic analysis of the digital output of a camera.

The problem then becomes one of constructing a model of the real world within the com-
puter from the digital image received from the camera. A large amount of work has been
done in this field of image processing. Approaches and algorithms for image process-
ing can be roughly divided into two sections: real time and off-line image processing.
Typically real time image analysis is done more crudely than offline analysis because of
constraints on the amount of computational time that can be allocated for each image.
Most robotics applications require real time processing, although applications that are
not time critical may have a low frame rate.

1.2 RoboCup

The Robot World Cup or RoboCup is an international competition in which various types
of robots compete against each other in games of soccer. The goal of RoboCup is to
promote research in robotics while at the same time providing a series of complex prob-
lems for robotics and artificial intelligence development. The new focus of RoboCup is

CHAPTER 1. INTRODUCTION 2

humanoid robots with several humanoids being demonstrated at the 2000 RoboCup in
Melbourne and competitions with humanoids planned for 2002[20]. The University of
Queensland is building a robot, the GuRoo, to compete in future humanoid competitions
[21]. Among the many systems that need developing for the GuRoo is a vision system to
allow the robot to locate the ball, opponents, and other important data. The GuRoo robot
will provide a platform for testing embedded vision systems.

1.3 GuRoo, theUniversity of Queensand Humanoid Project

To represent the University of Queensland in the humanoid league at future RoboCups
a robot, the GuRoo?, is being designed. The GuRoo is intended to be approximately
1.2m high and be capable of autonomous movement, with on-board power and computer
systems. Additionally the Guroo will have a fully functional upper body, including arms
and a head that can tilt and pan (Fig 1.1).

Figure 1.1: The Guroo
The GuRoo is the a humanoid robot currently under development at the University of
Queensland. [21].

The GuRoo’s central computer will be a Compaq iPaq handheld computer connected to
the drive control processors via a Controller Area Network (CAN) [12]. The iPaq will
be responsible for the generation of walking patterns and gameplay intelligence. Also on

1GuRoo, the Grossly Underfunded Roo. The suffix Roo is traditionally used for the University of
Queensland’s robot soccer teams.

CHAPTER 1. INTRODUCTION 3

board the GuRoo will be a Hitachi SH4 processor that analyses and interprets the output
of a CMOS camera mounted in the robots head[5]. The vision processor passes on its
output into the expansion slot of the iPaq. This SH4 processor will be used for testing the
vision software developed in this thesis.

1.4 Robocup Vision

The RoboCup scenario will be used to provide some examples of the tasks an embedded
vision system would need to be able to complete. The vision system is responsible for
determining the location of the robot on the playing field as well as locating the ball, the
goals and any opponents. It must be able to do this fast enough and accurately enough to
give the robots the ability to determine the velocity and to intercept the ball. Latency is
also an issue as the longer it takes to process a frame the less valid it becomes.

To ensure that the real time vision is possible the RoboCup competition enforces certain
requirements that make colour segmentation possible. For example the edge lines of
the field are white and the ball is orange. This makes colour detection a useful way of
segmenting the objects of interest in the field.

There are two approaches to the way vision is used robotic soccer at the moment: global
vision and local vision. Global vision uses a camera external to the robots which contains
the entire playing field within its field of view, this technique is used only be the small
size league robots. The alternative is a local vision system where the camera is mounted
on the robot. This technique immediately leads to several complications:

e The camera is not in a fixed position or orientation, this means that the robot must
be able to perform transformations to convert from image coordinates to world
coordinates.

e The camera will not have a complete view of the area the robot is operating in.
Typically RoboCup robots that use local vision have an inter-robot communication
strategy to compensate for this problem.

e The shapes of objects change as they rotate making feature based object recognition
more difficult. The ball being rotationally invariant is immune from this problem.

e The size of objects change which also makes object recognition more difficult.

CHAPTER 1. INTRODUCTION 4

The robots requirements for a high frame rate can also lead to significant trade offs in
terms of both reliability and accuracy with local vision. In the context of humanoid robot
soccer local vision is required.

1.5 Outlineof Thesis

Introduction: An introduction to the robotic vision and its application to RoboCup. This
chapter also discusses the the GuRoo and its planned vision system.

Literature Review: A review of current practice in image processing and robotic vision
techniques, with emphasis on RoboCup robot.

Problem Specification: This chapter gives a detailed description of the requirements
and goals of the GuRo0’s vision system. This section will also describe the avail-
able resources for the software such as camera and processor types.

Initial Approaches: A number of early solutions to the problems outlined in chapter
four are described, with particular emphasis on why they were never developed
further.

Final SH4 Software: This chapter describes the process used to transform the camera
output into a coded representation of each colour. The methods used to extract the
location and type of objects from the thresholded image will be described.

Results: In this chapter the success of the software will be evaluated in terms of frame
rate, accuracy, and robustness.

Conclusion: Final results of the project are summarised and future improvements are
described.

Chapter 2

Literature Review

2.1 RoboticVision

The initial step in most robotic vision applications is segmentation, in which the original
image is segmented into different regions containing objects of interest[11]. After seg-
mentation more complex algorithms can be used to determine the relevance and type of
each object as well as its centroid and any other parameters of interest.

The very first stage of segmentation is usually to simplify the image by a process known
as thresholding. Thresholding reduces the amount of information in an image by con-
verting each pixel into some sort of symbolic code representing what type of pixel it
is[11, 14, 10]. For example in text analysis a greyscale image could be converted into a
binary image which is true for pixels that are part of the text and false for pixels that are
part of the background.

2.1.1 Greyscale Thresholding

Thresholding is a simple technique for segmenting images. The most primitive exam-
ple of thresholding is converting a grey scale image into a binary image composed of
background and foreground objects. For instance all pixels above a particular level of
brightness are foreground while those below are background. The difficulty lies in find-
ing the threshold value to ensure that there are no errors [11]. One technique for selecting
the correct thresholds is to use a histogram of the greyscale values [11, 14]. This system

CHAPTER 2. LITERATURE REVIEW 6

can be expanded to segment the image into more than just background and foreground
by using ranges instead of a single value.

2.1.2 Colour Thresholding or Colour Detection

Another method of segmenting an image is through the colour information received from
a colour camera [2, 3, 14]. In effect this is like thresholding but with three values, for
instance red, green, and blue. Histograms can again be used to determine the ranges for
thresholding [6]. However the computational complexity has now been increased by a
factor of three.

2.2 Morphology Theory

Mathematical morphological is a useful tool for preprocessing images [10]. The mor-
phological operators treat binary images as sets which are members of a two dimensional
coordinate space.

The simplest two operations are erosion (&) and dilation(&). These operations have two
operands, an input (A) and a structuring element (B). Erosion results in groups of pixels
becoming smaller while dilation causes groups of pixels to become larger[10].

Erosion is defined mathematically as equation 2.1, where (B)y is the element B translated
by x. Effectively an erosion results in a set of points for which B fits entirely inside A.
An example of bitmap undergoing erosion is shown in figure 2.1. Erosion can be used to
remove small groups of noise pixels from a colour detected image[10].

AGB= {x] (B),C A} (2.1)

Dilation causes a cluster of pixels to grow in size according to the structuring element
B2.1. The set theory definition is shown in equation 2.2 where B is the reflection of B
around its origin. The result of a dilation is the set of points that B would occupy as
it is moved around the image but still overlaps by at least one pixel with A. Dilations
can be used to link together elements that have been incorrectly separated by the colour
detection or thresholding processes[10].

AEBB:{X| (§>XHA7£¢} (2.2)

CHAPTER 2. LITERATURE REVIEW 7

The final two common morphological operations are opening and closing. An opening (o)
is simply an erosion followed by a dilation with the same structuring element (equation
2.3). The erosion removes noise pixels and the dilation restores the the thinning caused
by the erosion. A closing (e) is effectively the opposite of an opening being a dilation
followed by an erosion (equation 2.4). The effect of a closing is to link together pixels
that are separated by a small distance by dilation. The erosion then restores the objects
to their original size, keeping the new linked regions intact[10].

AoB = (AOB)@B (2.3)
AeB = (A®B)oB (2.4)

(a) Dilation

(b) Erosion

Figure 2.1: Morphological operations.
The input is on the left and the output is on the right. The structuring element is in the
middle.

CHAPTER 2. LITERATURE REVIEW 8

2.2.1 Edge Detection

One technique commonly used for determining the shape of objects is edge detection. A
sudden change in the image gradient, ie when one pixel is significantly darker than some
of its neighbours, corresponds to the edge between two objects or one object and the
background [19]. Typically an approximation to the gradient operator such as Sobel edge
detectors are used[11, 19]. The Sobel operators shown in figure 2.2 provide an indication
of edge strength when convolved with a greyscale image[10, 14]. Finally the gradient is
thresholded to eliminate small variations that are caused by noise[19]. The result is a bit
plane containing ones that correspond to sharp changes in brightness in an image.

(@) x gradient (b) y gradient

Figure 2.2: Sobel Edge Detectors
The Sobel edge detectors calculate the change in brightness when they are convolved
with a greyscale image. The X gradient operator (Gy) calculates the change in brightness
in the X axis and Y gradient operator (Gy) calculates the change in the Y direction.The
sum of the two operators will provide the edge strength at the point the operators are
applied [10, 14].

2.2.2 Hough or Radon Transform

The Hough or Radon transform is a powerful method for converting an image of edge
pixels into a set of lines. A line can be represented by the equation p = xcos0+ysin©
[14]. A two dimensional array of accumulator cells is created with one dimension being
the line parameter p and the other 6. For each pixel in the edge map a set of parameters
can be developed that represent all possible lines passing through that pixel. The corre-
sponding accumulator cells for these parameters are increased by one. After each pixel
has been processed in this way the cells with large values correspond to dominant lines
in the edge map image[14].

CHAPTER 2. LITERATURE REVIEW 9

An alternative approach with exactly the same result is the Radon Transform. The radon
transform uses a rotating vector in the centre of the image (figure 2.3). At each angle
of rotation the edge detected pixels are projected onto the vector. If the intensity of the
projection is plotted against the distance along the vector and the rotation of the vector
then the same output as the Hough transform is obtained.

N

Figure 2.3: Radon Transform
As the vector rotates around the origin the summated projections of each edge pixel onto
the vector are recorded. When the vector is perpendicular to the direction of a group of
edge lines the output is a maximum for that group of edges. For example the group of
pixels labelled b in the above diagram would be giving its maximal progression at this
rotation. The maximum would be at distance d along the vector.

2.3 Robotic Vision in Robocup

Real time image processing for robotics is a particularly difficult area of work. The vision
problems expected in Humanoid local vision are very similar to the problems encountered

CHAPTER 2. LITERATURE REVIEW 10

in the local vision version of the small and medium size leagues. The fundamental system
used for segmentation in these leagues is colour[2, 3, 4].

Typically in RoboCup competitions the colours of all significant objects in the competi-
tion are standardised and known before hand, for example the ball is orange and the goals
are blue and yellow. In global vision systems the robots usually make use of coloured
markings to distinguish between robots. In localised vision however the robots are re-
stricted to being black in colour[16, 17]. The Medium Size league uses colour tags on
the robots to provide a mechanism for robots to distinguish between each other[16].

2.3.1 YUV Colour Space

Many systems use the YUV colour space to perform colour segmentation[2]. The YUV
is a different interpretation of colour to the more familiar RGB colour space, where a
pixel is composed of varying strengths of red, green and blue light. In the YUV system
Y represents the intensity of the light, while U and V are the blue and red chrominance
respectively [14] A representation of YUV data is shown in figure A.1. The conversion
from RGB to YUV is ideally performed in the camera.

The advantage of the YUV colour space is that changes in brightness theoretically only
affect the Y value. This means that colour detection can be performed using only the U
and V values. The U and V coordinates are almost independent of lighting changes.

2.3.2 HSl or HSV Colour Space

Some robots use a different colour space known as HSV or HSI (hue, saturation, bright-
ness). This colour space offers better separation between different colours but at the
cost of slower processing as the camera output must be transformed into the HSV colour
space[3, 4]. In HSV colour format the hue parameter describes the colour of the pixel
while the saturation value represents how white this hue is. Clearly the brightness de-
scribes how bright the pixel is. The advantage of HSI is that is fairly close model of a
humans perception of light[14, 10]. A simple way to speed up the transformation is to
only calculate the pixel’s hue. The hue will describe the colour of the object and may be
enough to distinguish between all colours except black and white (which can be easily
done in RGB or YUV space) [4].

CHAPTER 2. LITERATURE REVIEW 11

2.3.3 After Thresholding

After thresholding the locations and type of all significant objects must be extracted from
the picture. These objects include the ball, opponents, walls, goals and in some cases
special markers for localisation (used in the Sony Legged league). Approaches to this are
varied but are usually simple and optimised for speed.

2.3.3.1 Localisation of Objects

A simplification that can be made to the process of transforming two dimensional data to
three dimensional world coordinates is to realise that in robot soccer the ball and other
objects can be almost guaranteed to be on the ground. This makes the transform solvable
with monocular vision without having to use information relating to the size of the object
[2]. The AgiloRoboCuppers team use this to help discard redundant information, by
calculating the size of each object and comparing it to the expected size based on its
distance calculated by trigonometry if there are significant discrepancies then the object
is ignored[2]. The trigonometry is encoded as a lookup table to reduce the processor load.

2.3.3.2 Localisation of the Robots

In the Sony Legged league there are colour marker posts that allow the robots to deter-
mine their position by triangulation [20]. In the other leagues however there are no such
conveniences, and odometry information is not sufficient to retain a correct idea of the
robots place in the world. The usual approach is to use the edge lines of the field to
update the robots estimate of its location. The edge lines can be acquired by looking at
transitions from white to green codes in the colour detected image[2] or by using a linear
edge operator[3]. Linear regression or a Hough transform can then be used to find the
lines inclination, from this the robots position can be determined[4, 2, 3].

2.4 CM Vision

A good example of a fast colour based system for image analysis is the CM Vision soft-
ware library developed at Carnegie Mellon University[8, 7]. It internally uses either a
YUV or HSI colour space and transforms RGB inputs to YUV. Colour thresholding is

CHAPTER 2. LITERATURE REVIEW 12

performed using a colour cube in YUV space. A colour cube is box-like region in the
three dimensional colour space. Pixels within this region can be tagged as being one type
of coloured object while pixels outside this region are not.

Rather than use a series of comparison operations to determine whether or not a pixel is
within the colour cube CM Vision uses a lookup table. Instead of a three dimensional
256 x 256 x 256 table CM Vision uses three vectors one for each axis. Each colour
coordinate is looked up in its respective vector and the result is ANDed together. This
technique reduces a 16 MB lookup table to a 768 byte set of three tables. The cost of
this system though is that it requires three memory lookups instead of one and can only
represent rectangular regions in the colour space[8, 7].

After colour detection the system converts the data to a run length encoded data set. In
run length encoding horizontal runs of pixels of the same colour are recorded simply
as the number and colour of the pixels. From this the software performs four connected
region growing. Four connected or four neighbour refers to the four pixels directly above,
below and to the sides of the pixel in question. Initially each run length element is tagged
as a the start of a blob and the software runs through each row comparing it with adjacent
rows. Any run that is adjacent under four connectivity to the current one has its pointer
updated. Two runs through the image are required to group all the runs into distinct
regions. The final stage involves grouping similar regions based on colour, proximity and
density, that links any regions that have been accidently separated[8, 7].

2.5 ViperRoos

The University of Queenslands local vision team, The Viperroos faces similar problems
to the GuRo00’s vision system. The system used last year was based on YUV transformed
data from an RGB camera[9].

The Viperroos use a two dimensional lookup table in UV space to distinguish between
all the colours with the exception of black and white. The Y value is thresholded into
three sections: black, colour, and white. Pixels that fall into the colour region are then
thresholded via UV lookup.

The Viperroos’ software then forms regions from the colour detected image and calcu-
lates the regions’ centres. To avoid the multiplications and divisions involved in calculat-
ing a mathematical centroid the Viperroos define the centre to be the geometric centre of
the blob.

CHAPTER 2. LITERATURE REVIEW 13

The Viperroos currently use an SH3 processor running at 104 MIPS which produces
around 12 frames per second. This year the camera will be upgraded to one with YUV
output and the processor will be replaced by an SH4 with 360 MIPS. These changes
should move the Viperroos into the 25-35 frame rate range[9].

This information is of particular interest as the GuRoo will be using the Viperroos new
processor board and cameras.

Chapter 3
Problem Definition

The vision software should be useful to both the ViperRoos and the GuRoo as both face
similar problems at the early stages of the software, ie fast colour segmentation. Ad-
ditionally they will be using the same hardware which makes using the same software
much more attractive.

The GuRoo’s only external sensor is the camera mounted in its head. From this sensor
all of the information needed must be derived. At present requirements for accuracy are
unknown as the robot has not been constructed or the environment in which it it is to
operate specified. The medium and small size leagues are used as starting points for
developing specifications for the vision system.

3.1 Object Recognition and Self L ocalisation

The location of the ball, obstacles, edge lines and goals needs to be determined relative to
the robot. From this information the robot can work out its own location in the environ-
ment as well. No specifications for accuracy exist because the nature of the environment
in which the robot operates is undefined.

Using the rules for other local vision leagues for RoboCup leads to the conclusion that the
environment will be extensively colour tagged with significant objects having distinct and
defined colours (Table 3.1)[17, 16]. Obviously the software must be capable of colour
recognition to meet these requirements.

A capability original suggested for the humanoid vision system was to be able to provide
information suitable for the control systems of the robot to use as part of the stability

14

CHAPTER 3. PROBLEM DEFINITION 15

system. This would require calculating velocities and positions of the head with respect
to the environment.

| Object | Colour |
Field/Operating Surface Green
Ball Red
Edge of Field Lines White
Opponents Black
Goals Blue or Yellow

Table 3.1: Colour Coded Environment
In the colour coded environment the robot operates in each object of interest has an
assigned colour.

3.2 FrameRate and Resolution

The University of Queensland’s other local vision robots, the ViperRoos face similar
problems and uses the same hardware as the GuRoo. The ViperRoos’ code is currently
running on an SH3 processor with a RGB camera and has a frame rate of about 16 frames
per second (fps) or 62.5 ms with a resolution of 32 by 128 pixels[9]. About 20 ms of
time per frame is used to perform a costly RGB to YUV colour space transform. In
terms of pixels per second the SH3 operates at around 64 kilopixels per second. The
costly YUV conversion can be eliminated by using a a YUV output camera reducing the
processing time for a frame by 20ms. This would increase the number of pixels analysed
by the system to 96.4 kilopixels per second. The ViperRoos’ new SH4 processor will
run at about three times as fast as the old processor giving a speed of approximately 300
kilopixels per second.

Any software system should at least run through the pixels at the same rate as the old
ViperRoos software if not faster. For general three dimensional vision instead of using
the ViperRoos letter box type image (32 x128) an image with the usual 1% : 1 aspect
ratio of a computer screen should be used instead (640 x 480).

3.3 Hardware

The hardware consists of three physically separate elements the camera board, processor
board and the iPaq (Fig 3.1). Communication between the boards is run through a field

CHAPTER 3. PROBLEM DEFINITION 16

programmable gate array (FPGA). Data flow is one way although there is the possibility
of using the iPaq to alter the program settings on the SH4[12].

—> Neck,

Y N . ArmS,
Camera =Y FPGA —) SH4 [—) FPGA —} iPaq [—)

Legs,
:> Waist.

Figure 3.1: Hardware Block Diagram of the Humanoid.
This block diagram shows the flow of information through the humanoid’s computer
system. Data flow to and from the SH4 is through the FPGA allowing reconfigurable
connections between input/output pins [5, 12].

3.3.1 Camera

The camera that will be providing images for processing is an Omnivision OV7620
CMOS camera[5]. There are several reasons for using this particular camera. Firstly
it isa CMOS camera which means that it has a digital output and low current consump-
tion both of which are necessary for mobile robots. Secondly the OV7620 has on board
subsampling. The previous ViperRoos system performed subsampling inside the SH3
processor, in other words a full resolution picture is transmitted to the processor which
discards the majority of the data. Subsampling by the camera reduces the amount of
unnecessary data flowing across the bus to the processor. Finally and most importantly
it can produce a YUV output[13, 5]. This removes the costly RGB to YUV conversion
stage from the software.

3.3.2 Processor Board

The processor board is an based around a Hitachi SH4 microprocessor. The SH4 is
capable of running at up to 360 million instructions per second (MIPS) as opposed to the
SH3 board it replaces which ran at 104 MIPS[9]. Aside from this approximately threefold
increase in speed the SH4 processor board also has 512 KB of static ram (SRAM) as
well as static-dynamic RAM (SDRAM). Also this board is equipped with a Spartan field
programmable gate array (FPGA) which sits between the SH4 and the camera. The FPGA
gives the option of carrying out some processing on the data before it reaches the SH4. It

CHAPTER 3. PROBLEM DEFINITION 17

is also planned to use the FPGA to buffer data from the camera as it comes into the SH4

[5].

Chapter 4
Initial Approaches

There were several abortive attempts at solving the problems outlined in chapter 3 before
the techniques finally used were developed. All of these techniques where based on YUV
images which where trialled in MATLAB.

4.1 Colour Detection

The original segmentation system used separate histograms of the red and blue chromi-
nance. From these histograms the upper x% of the red chrominance and the lowest x% of
the blue chrominance were used as the thresholds for the red ball. The parameter x must
be adjusted to produce reasonable results. The difficulty with this technique is that the
image must be histogrammed and the thresholds recalculated for each image. Secondly
while this technique is good at finding red it is not so effective at locating pixels belong-
ing to the ball as it does not combine information from the U and V coordinates. A faster
solution is to use lookup tables.

4.1.1 Lookup Tables

A system similar to the CM Vision lookup table was trialled. The CM Vision system
uses three vectors to describe rectangular three dimensional regions in YUV space. The
problem with this technique is that adding adaptive Y thresholds is difficult and that the
rectangular regions in UV space appeared to be less useful than arbitrary regions.

18

CHAPTER 4. INITIAL APPROACHES 19

4.2 Orientation

To locate the robot in the in space it was originally planned to make detailed use of the
edge lines of the field. By using edge detection techniques an image showing the edge
lines can be produced. From this several methods could be used to calculate the line
descriptors of the edges. One approach would be to use the Radon or Hough transform
(2.2.2), but it was feared this may be too computationally expensive. So a different
approach using edge following was trialled.

4.2.1 EdgeDetection

The use of traditional edge detection operators such as Sobel or even Canny[14] detectors
was avoided for several reasons. Firstly the the operators would require a large number
of calculations to performed per pixel (at least four for a 2 x 2 operator). Secondly the
results of these edge detections would be a set of edges for all significant changes in
brightness while only the edges of the field lines need to be segmented. Instead of using
a mathematical edge operator some other techniques were tried:

e Eroding the segmented white objects in the image and then XORing this with the
original segmentation. This produces the set of pixels that are the boundary of
all white objects. The problem with implementing this approach is that the entire
boundary of the white objects are detected, while only the lower part is needed.

o Creating an edge map of all the white colour coded pixels that are directly above
a green coded pixel. This works quite well and would be the best method for
determining the edge lines if the field is segmented. In the final approach though
the green area of the image is not segmented (Chapter 6).

4.2.2 EdgeFollowing

The edge following system starts from a random point around on the edge map and and
begins tracing the edge. As the algorithm moves from pixel to pixel the direction is
encoded and stored in a null terminated list (a chain code). As the algorithm moves
between pixels in an eight neighbour manner there are eight possible directions to be
encoded 4.1. After traversing a set of edge pixels in a straight line the start and end
coordinates of the line will have been found.

CHAPTER 4. INITIAL APPROACHES 20

| Direction | Code |

— 1
e 2
T 3
N 4
— 5
v 6
4 7
N 8

Table 4.1: Eight neighbour direction codes.
The edge following system represents the direction from pixel to pixel using these nu-
merical codes.

As the algorithm moves along the system it uses simple heuristics to determine whether
or not the line it is following is a straight line. While tracing a line the algorithm permits
only two adjacent directions to be followed. This detects if the line doubles back or
significantly changes direction but does not detect a line that only changes direction by
45°0r less (figure 4.1). A solution to this problem is to develop an approximation to
the gradient and use probability techniques to detect gradient changes[15]. This area
of research was abandoned when it was found that the colour detection was not able to
provide a straight edge line for a pixel by pixel approach like this.

4.3 Optical Flow

Optical flow is a technique for measuring the movement of pixels from one frame to the
next[11]. Optical flow could provide some indication as to the velocity and stability of the
head. However it is computationally expensive and was dropped at an early stage when
gyroscopes were announced for internal sensors of the GuRoo. Because of the planned
internal sensors and concerns with speed and latency within the vision system the use of
optical information to assist with the control or balance of the GuRoo was abandoned.

CHAPTER 4. INITIAL APPROACHES 21

Figure 4.1: Chain Code Line Description
The line following correctly detects the the straight line segment of the upper group of
pixels but does not detect to the change in gradient of the lower line. The start and end

points of the groups represented by the arrows show what the computer believes is a
completely straight line.

Chapter 5

Final SH4 Software

In this chapter the final software running on the SH4 processor is described. It consists of
several stages that execute one after another: colour detection; morphological operations;
run length encoding; grouping; and object analysis. The software was prototyped in
MATLAB and then recoded in C for a PC platform. Once the code was debugged and
optimised it was ported to the SH4 using the GNU C compiler for the SH series[1].

5.1 Colour Detection

In the initial colour detection stage the YUV colour image is converted into a new image
that contains eight bit codes representing what type of colour class each pixel belongs to.
The colour codes used for humanoid vision are listed in table 5.1. The colour codes are
set as powers of two so that each class of objects has its own bit plane. In other words
the output of the colour detection can be thought of as eight single bit planes with the
same width and height as the original image. As a result the system is able to detect eight
different colours.

5.1.1 Basic Colour Detection

The final technique is based on a two stage system that first uses the pixel brightness
to classify the pixel into one of three classes: black; white; or other. This is done with
two simple thresholds, pixels below one threshold are black while pixels above the other
threshold are white. The other pixels between the two thresholds are candidates to be

22

CHAPTER 5. FINAL SH4 SOFTWARE 23

some other colour (yellow, green, blue) and require another level of attention to determine
which. Colours apart from black and white are determined by a lookup table with U and
V coordinates.

The Y thresholds are recalculated for each frame as offsets from the sample mean of the
image. The lookup table values are constructed from a trainer program (section 5.6). The
result of this process is that each YUV pixel is mapped to a single value describing the
colour class of the pixel. The simplified implementation of this algorithm is shown as
algorithm 1.

Algorithm 1 Basic Colour Detection Algorithm
mean < mean of y values in inmage
| ow threshold <« mean - |ow of f set
hi gh threshold < nean + high of fset
for each pixel
read Y
if Y<Ilowthreshold then
out put < BLACK
el se
if Y > high threshold then
out put < WH TE
el se
read U
read V
output < | ookup table[U[V]

| Object | Colour | Code |
? Anyother | 0
Field Green 1
Wall/Edgeline White 2
Ball Red 4
Opponent/Obstacle Black 8
Blue Goal Blue 16
Yellow Goal Yellow 32

Table 5.1: Colour Codes
After colour thresholding the output image contains these coded values describing each
pixels colour. There are two remaining colour codes (64 and 128) that could be used to
represent more colours.

CHAPTER 5. FINAL SH4 SOFTWARE 24

5.1.2 Fast Colour Detection

The colour detection process can be accelerated by reducing the number of pixels that
the operation is performed on. Instead of processing every pixel only every fourth pixel
is used. If there is a change in output between last two pixels tested then the algorithm
backtracks and processes the pixels in between. Otherwise it is assumed that these are
all of the same value (algorithm 2). This increases the speed of the algorithm but also
increases the number of pixels that are misclassified (Table 6.1).

The misclassification is caused by the fact that this algorithm can skip over small groups
of pixels or small gaps between pixels (figure 5.1). In fact the algorithm cannot guarantee
the segmentation of any object smaller than the subsampling size (4 pixels). However
because of the backtracking the actual location and general shape of a segmented object
is not damaged.

0123456 7 8 |ndex
|0/ 0] 1] 1] 1] 0] 0] 1] 1| Expected Output

-
s 7

lo/o|1]1]1]1]1]1]1]4x Subsampled

Figure 5.1: Subsampling
The first line shows the output of pixel by pixel colour detection. The second line shows
the effect of 4x subsampling with backtracking. The Oth and fourth pixels are examined
first. The output is different so the 1st, 2nd and 3rd pixels are also tested. The final
(8th) pixel is read, because it is the same as the previous subsampled pixel (4th) so the
intervening pixels are kept as 1 without ever being thresholded.

5.1.3 32Bit Operation

As the SH4 is a 32 bit processor reading 24 bit YUV colour information is not particularly
efficient because of problems with word alignment and the fact that multiple reads are
required. As can be seen in algorithm 1 either one or three memory reads are made per
pixel. A much more efficient implementation can be made by reading the pixel as 32
bit value (figure 5.2). Each pixel then needs only one memory read. Furthermore the Y
value thresholds can just be scaled and compared to the whole 32 bit pixel as the Y value
is in the most significant byte (ignoring the unused byte). Also instead of using U and
V as array indices (table[U][V]) which leads to the computer calculating the address as

CHAPTER 5. FINAL SH4 SOFTWARE 25

Algorithm 2 Fast Colour Detection Algorithm
end_address <« inmage_size - CD SUBSAMPLE
index =0
whil e index < end_addr
next index < index + CD_SUBSAVPLE
out put <« col our _det ect (next _i ndex)
I f output = last_output
each out put between index and next index <- output
i ndex < next_pixe
el se
col our _detect each pixel between index and next i ndex
i ndex < next _index

table +U x 256 4+ V the low 16 bits of the pixel data can be used as a one dimensional
index. This is the only stage where the 32 bit architecture required change from the
original code.

31 24 23 16 15 8 7 0

0 Y U \Y,

Figure 5.2: 32 Bit Data Storage
The YUV colour information is padded to 32 bits from 24. The magnitude of the 32 bit
value approximately 216 times the Y value of pixel. The lower 16 bits are used as the
index into the lookup table.

5.2 Morphological TechniquesUsed in the Code

Morphological operations can be used to decrease the amount of noise in the image after
the colour detection phase. To remove the noise quickly only an erosion is used as op-
posed to an opening. A 1 x 3 structuring element is used to clean up the colour detected
data. The 1 x 3 element was chosen because it was the minimum size necessary to give
good noise rejection.

A simple implementation of 1 x 3 erosion is shown in algorithm 3. This algorithm makes
use of the fact that each colour code is in a separate bit position so an erosion can be

CHAPTER 5. FINAL SH4 SOFTWARE 26

thought of as happening on eight bitmaps in parallel. This implies the AND in algorithm
3 is a bitwise AND instead of a logical AND.

Algorithm 3 Simple 1 x 3 erosion.
for i =1 to size of image -1
output[i] = input[i-1] AND input[i] AND input[i+1]

The morphological system can be sped up by reducing the number of memory accesses.
It is clear from algorithm 3 that each memory location is accessed three times, so by
keeping previously read data it is possible to reduce the memory reads by three. The C
code for this erosion is shown as algorithm 4.

Algorithm 4 Fast 1 x 3 erosion.
I < 0
for y < 0 to height
out[i] «< O
i ++
a < inputf[i-1]
b « input[i]
C < input[i+1]
for x < 1 towdth - 4 step x+=3
out[i] « a ANDb AND ¢
| ++
a <« input[i+1]
out[i] < b AND ¢ AND a
i ++
b = input[i+1]
output « ¢ AND a AND b
| ++
C < input[i+1]
next X
input[i] < O
| ++
input[i] < O
i ++
next vy

CHAPTER 5. FINAL SH4 SOFTWARE 27
5.3 Grouping

The grouping algorithm converts the colour detected pixels into a list of structures de-
scribing each four connected group of pixels. There are two passes in this algorithm, the
first pass turns the colour detected image into a list of run length encoded (RLE) ele-
ments. These elements are then used to construct a set of blob objects that describe large
blobs found in the image. The advantage of using RLE is that the grouping algorithm will
be simpler if it operates on blocks of pixels instead of individual pixels. The other advan-
tage is that the RLE compressed data will be convenient for transmitting to the iPag, so a
colour detected image can be displayed on the iPaq’s screen[12].

53.1 Run Length Encoding

The first stage of the grouping algorithm is to convert from an array of pixels to a null
terminated list of run length encoded elements. The run length encoding elements contain
the following data members:

begin: The x coordinate corresponding to the beginning of a run.

end: The x coordinate of the end of the run.

y: They coordinate of the run.

colour: The colour of the pixels in the run.

tag: The number of the run counting from the top left corner.

blobpointer: A pointer to a blob structure (section 5.3.2).

The run length encoding process creates a list of runs in memory that encapsulates each
horizontal block of pixels. Unlike normal run length encoding this systems constrains the
runs to appear on one line. The tag number is set to be the number of the run counting

from the top left hand corner of the image. The tag value zero is reserved for terminating
the list of runs. The blobpointer member is set to null when a run is created.

CHAPTER 5. FINAL SH4 SOFTWARE 28

5.3.2 Blobs

A blob is an four connected region of pixels of the same colour. At present a blob contains
the following data members:

area: The number of pixels in the blob.
colour: The colour code of the pixels in the blob.

Xmax, Xxmin, ymax, ymin: The bounding dimensions of the blob.

Blobs are the output of the grouping process and the input to the final analysis stage of the
vision process. Originally the sum of the moments of each pixel in the blob was stored
within the blob structure so that the exact centroid of the blob could be recovered. To
reduce the computational load this feature was dropped.

5.3.3 Grouping

After run length encoding blobs in the image are formed through a grouping process.
Each run is examined one at time and compared to the runs on the following row (al-
gorithm 5). Rows that are four connected to the current row and the same colour are
part of the same blob object. The basic approach to constructing these blobs is shown in
algorithm 6. If both run elements have their blob pointers at null then a new blob object
is manufactured for them and their pointers set to it. If only one of the two run elements
has a non-null blob pointer than the empty pointer is set to point to the valid blob and the
blob parameters are updated. The final case when both of the run elements have set blob
pointers then the newest blob is deleted and both of them are set to the older blob.

Algorithm 5 Grouping
r < start of RLE |ist
while r.tag # 0
n < next RLE element for which n.y £ r.y
if ny =r.y
for r « each RLE element fromr to n
mat ch(r against the RLE el ements starting fromn)
r< r+l

CHAPTER 5. FINAL SH4 SOFTWARE

29

Algorithm 6 Matching

r is the elenent being conpared to the next row of elenents
nis the first element of the next row such that ny =r.y + 1
rowbel ow < n
while rowbelowy =r.y + 1 {
if r and rowbel ow overlap in four connected space
if rowbelowtag > r.tag {
i f r.blobpointer = NULL
create a new blob and attach it tor
mer ge rowbel ow. bl obpoi nter with r. bl obpointer
r owbel ow. bl obpoi nter <« r. bl obpoi nter
rlowbel ow.tag < r.tag
} else {
i f rowbel ow. bl obpoi nter = NULL
create a new blob and attach it to rowbel ow
mer ge rowbel ow. bl obpoi nter with r. bl obpointer
r owbel ow. bl obpoi nter <« r. bl obpoi nter
rlowbel ow.tag < r.tag

}

rowbel ow « rowbel ow + 1

CHAPTER 5. FINAL SH4 SOFTWARE

10

11

12

13

14

(a) Run length encoded data before grouping.

%2

/4

\sm\

821

/

a2 \

M1

M1

12

1 12 \

(b) Propogation of tag numbers through run elements.

Figure 5.3: Run length encoded elements.

30

Each run element has a tag number which is originally set to the index of the run (a).
Figure (b) shows the RLE elements after the grouping algorithm has passed through.
Each element is matched against the elements in the row directly beneath it. When the
elements are four connected the tag number is used to determine which element inherits
from the other, the arrow indicating the direction of inheritance. Every RLE element
connected by an arrow therefore contributes to the area and bounding rectangle of the

blob.

CHAPTER 5. FINAL SH4 SOFTWARE 31

The tag member of the run structure is used to determine which blob is deleted when
regions are merged. Smaller tag numbers indicate that the blob associated with it is older.
The merging process is simply a matter of increasing the bounding rectangle and area to
accommodate the information from the new run or blob.

The grouping algorithm does not produce information showing which runs are members
of each blob. The only information that is produced is the bounding rectangle and the
number of pixels in the blob. While further passes of the grouping system would eventu-
ally be able to provide the exact shape of the blob there does not appear to be any need
for this information.

54 Analysis

The final stage of feature extraction is the rejection of incorrect matches caused by errors
in the first colour segmentation stage. The analysis stage examines the list of blobs and
produces a set of objects that the software considers to be the best candidates for each
type of object.

The first stage is to determine the approximate height of the wall. The area above the wall
can then be ignored. This will remove the possibility of false matches in the area above
the wall.

The wall object is the largest white blob in the image. Any object higher than a fixed
offset above the wall object is ignored. The blue and yellow goals are likewise defined as
the largest blue or white objects except that the must be in the valid region described by
the wall. All of these objects must also be over a minimum size or they are not detected
at all. This prevents a few noise pixels from being detected as an object.

Obstacles are defined as all black objects in the valid area of the screen that are above a
minimum size and a list of obstacles is constructed containing all of these objects.

The ball is a special case in that it is rotationally invariant so it should maintain a fixed
unity aspect ratio from any view point. Therefore the difference between the width and
the height can be used as a simple test for the ball. This rejects red objects that do not
have the correct dimensions for the ball.

CHAPTER 5. FINAL SH4 SOFTWARE 32

5,5 Localisation and Line Detection

The two most powerful cues for localisation are the blue and yellow goals. From the angle
of the goal and knowledge of the approximate height of the robot an idea of the robot’s
position on the field can be calculated. Another source of information for localisation
are the edge lines. A fast way of obtaining orientation from the edge lines is to look for
horizontal lines. An efficient method to do this is to use a Radon transform that only
looks for lines that are horizontal.

Resuming the discussion in 2.2.2 it is clear that to only look for horizontal lines the
projections need only be calculated when the vector is vertical. This is equivalent to
simply summing the number of edge pixels in each horizontal row. The summation of
edge pixels can be stored in a one dimensional array giving a profile of edge strength
related to y coordinate. A significant horizontal line in the image will then translate into
a large spike in the profile. A maximum detection system can then be used to find this
point.

The maximum detection system is quite simple. The maximum point of the profile is
first found. If this maximum is greater than a minimum threshold value and also greater
by a minimum value than the second largest value in the profile than it is considered to
correspond to a horizontal line. Aside from the detection of these cues for orientation no
further work has been done in the field of localisation.

5.6 Training

The trainer lets the user provide representative samples of each colour class and construct
a UV lookup table from these samples. The user can select a rectangular region of the
image and specify it as being of a certain colour.

The selected region is passed to a two dimensional histogramming algorithm that counts
the occurrence of each combination of U and V coordinates. This histogram is conse-
quently of size 256 x 256. This histogrammed data is then thresholded and assigned
a code value by the user to produce a lookup table for one colour class. The user can
interactively make further histograms of other colour classes and superimpose them onto
the lookup table. This results in table like figure A.2(a).

Finally to link up the regions in the table and account for any sort of colour shift the
whole lookup table is dilated with 3 x 3 a cross shaped mask (figure A.2(b)). As each

CHAPTER 5. FINAL SH4 SOFTWARE 33

bitplane is dilated separately it is possible for the lookup table to contain two colour codes
for the same U and V coordinate. As this would result in a pixel being detected as two
colours the dilation is post processed to select only one colour code for each cell. Firstly
if the cell in the table already contains a colour value then that cell is not permitted to be
changed by the dilation. This prevents one colour from overwriting another colour during
the dilation. Remaining overlaps are arbitrated by order of priority (table 5.2).

The finished lookup table can be trialled on a test image which duplicates the SH4 vision
code to the point where it can show the location of segmented objects.

| Priority Number | Colour Code |
Red
Black
Blue
Yellow
White
Green

OO B W N

Table 5.2: Dilation Priority
The lookup table dilation uses this priority list to ensure that each position in the lookup
table corresponds to only one colour code.

5.7 Memory Organisation

The image processing software requires a large amount of data to be stored within the
512 KB of on board memory. The YUV image; colour detected image; and the eroded
image will use a large part of the memory. In addition to this there is also a large amount
of symbolic information to be stored such as the run length encoded elements and the
blob structures. Memory is allocated to all of these elements using fixed size buffers.
Buffers are used instead of of dynamically allocated data structures such as linked lists
for several reasons, the chief being that a buffer is simpler to move through. These buffers
use up about 400 KB of memory leaving the remaining memory for the program space,
local variables and the stack.

CHAPTER 5. FINAL SH4 SOFTWARE

and the stack.

Buffer | Size | Memory |
YUV Image 240 x 180 | 168.75 KB
Lookup Table 256 x 256 64 KB
Colour Detected Image | 240 x 180 | 42.2 KB
Eroded Image 240 x 180 | 42.2KB
RLE Elements 3072 72 kB
Blobs 512 12 KB
Objects 64 768 Bytes
Edge Profile 180 720 Bytes
Total \ \ 401.8 KB \

Figure 5.4: Memory Usage in the SH4.
The remaining 110 KB of the 512 KB of memory is used for the program, local variables

34

Chapter 6

Testing and Results

6.1 Testing Methods

As there was no digital camera input for testing the code with the SH4 pictures were
taken with a commercial handheld Casio camera. These 640 x 480 RGB colour images
were converted to YUV format and subsampled to 240 x 180 using MATLAB and saved
as raw binary files suitable for download to the SH4 board.

The SHA4 code’s performance was tested by using a serial port program to download and
upload data from buffers on the SH4. The frame rate can be measured by togglinga LED
on the SH4 board every time a frame is processed. The frequency of the LED, which is
twice the frame rate, can be measured with an oscilloscope.

6.2 Trainingand Lookup Table

The training software was used (section 5.6) to construct a lookup table for detecting red,
blue and yellow. The white and black regions of the image are detected by thresholding
the Y coordinate. These thresholds are set at 50 above and below the brightness mean
which is recalculated for each new frame of data.

The final lookup table shows the location in UV space of each of the three colours of
interest (See figure A.3). The horizontal axis corresponds to increasing red chrominance
from left to the right and the blue chrominance increases down the vertical axis. As
expected then the region that detects blue is located at the bottom of the image and the

35

CHAPTER 6. TESTING AND RESULTS 36

red region is located on the top right of the image. It is interesting to note that there is a
relationship between the red and blue chrominance of the ball. Roughly speaking as the
red chrominance of the ball increases the blue chrominance decreases. This relationship
is preserved because the lookup table uses arbitrary shapes as opposed to rectangular
regions.

6.3 Colour Detection

6.3.1 Reliability and Robustness of Colour Detection

Two examples of the colour detection system in action can be seen in figure A.4. Itis clear
that in general the performance of the colour detection stage is fairly good however, there
is a problem detecting yellow in the image (figure A.4 (b)). This is caused by problems
with the brightness thresholding of the image. Basically the Y values of yellow approach
those of white leading to confusion as to the difference between white and yellow. Other
less bright colours such as red, blue or green are generally detected well.

Aside from misinterpreting yellow as white, the detection of black and white is very
successful. This indicates that readjusting the Y thresholds for each frame is an intelligent
strategy, especially as the lighting level within the environment can change dramatically.

Another problem encountered during colour detection is that particularly dark shades of
green can be detected as red (figure A.6). This leads to extra red in the colour detected
image that causes problems later in the image processing system. It appears these prob-
lems are caused by a poorly constructed red region in the colour lookup table. Redefining
the colour table to be more conservative in red, ie making the red region smaller in the
table, may solve this problem.

6.3.2 Speed of Colour Detection

The software was tested on the SH4 processor board and the frame rate recorded for a
few test images. The performance of the fast colour detection system at various rates
of pixel skipping is given in table 6.1. The fast colour detection by pixel skipping gives
reasonable accuracy with a general speed saving of about 12 ms when thresholding every
fourth pixel. This is a acceptable error for reducing the speed by approximately 25%.

CHAPTER 6. TESTING AND RESULTS 37

The speedup is not as large as expected, probably because the branching interferes with
the pipeline of the SH4. A subsampling rate of about 20 gives the fastest speed and
increasing the subsampling rate beyond 20 does not reduce the processing time. The
limiting factor on the subsampling though is that the system is not guaranteed to detect
any object narrower than the sampling interval.

| Subsamping | Time (ms) | Pixels in Error |

none 40 0
6 23.2 331
5 25.2 251
4 28 240
3 32.8 230
2 35.6 117

Table 6.1: Subsampling speed and error
This is the time taken to perform colour detection on a particular 240x 180 pixel image.
The figure pixels in error is the number of pixels that are different to the colour detected
image created with no subsampling. In general terms the error is particularly small (331
errors is 0.8% error for a 240x 180 image).

6.4 Morphological Operations

The removal of noise by morphological operations using a 1 x 3 erosion was generally
successful particularly in removing small amounts of red noise. The benefits of the noise
reduction can be seen in figure A.5.

The slow erosion process listed in algorithm 3 takes approximately 25 ms to complete.
The erosion faster algorithm (4) only reduces the execution time by three milliseconds.
A better method for implementing an erosion is outlined in section 7.1.3.

6.5 Run Length Encoding

Run length encoding is another costly operation taking 49 ms to encode the test image
into about 180 run length elements. Clearly further operations that use the RLE data will
operate quickly as the amount of data to process has been dramatically reduced. Also it
is apparent that the buffer allocated for the RLE data is much larger than it needs to be,

CHAPTER 6. TESTING AND RESULTS 38

as space has been allocated for 3072 elements. The reason for this is that if the colour
detection fails badly or is miscalibrated the number of RLE elements can become very
large and potentially overwrite other sections of the program.

6.6 Grouping

The grouping stage which converts the RLE elements into blobs executes quickly and
efficiently as it uses symbolic data as its input rather than an image array. Under the
current grouping system an isolated RLE element will not become a blob because the
system only creates a blob when it combines two or more RLE elements. This effectively
means that there is no need for a morphological erosion in the vertical direction.

One minor bug detected in the code was when a blob was merged with itself the blob was
deleted, this was corrected by preventing the blobs from being merged with themselves.

6.7 Blob Analysisand Object Detection

Blob analysis is the most difficult and error prone section of the system. The system can
easily make errors, usually these are failures result in no object being detected rather than
an imaginary object being found. Two successful examples of the output are shown in
figure A.7. The shadow under the ball is detected as an obstacle.

The detection of the goals is particularly successful although that is not a great accom-
plishment as there should only be one goal in any image and they are large objects. Even
though yellow is not particularly well segmented, the large size of the object is sufficient
to allow simple detection of the yellow goal. Obstacles are also easily segmented for the
same reasons. Although an occasional lighting problem causes a few parts of the field to
be detected as black causing imaginary black objects to appear.

The difficulty in the image segmentation process is the red ball. Usually the source of
error is poor detection of red, for example figure A.6. The rejection of red noise is
not particularly successful at the present stage causing the blob analysis stage to fail to
correctly locate the ball. Another source of error is that sometimes the software decides
that lines on the field such as the centre line are in fact the edge line. This incorrect
decision causes the algorithm to ignore the majority of the image.

CHAPTER 6. TESTING AND RESULTS 39
6.8 LineDetection

The process for detecting horizontal lines is quite successful at rejecting inappropriate
lines (figure 6.1). As the system will not report a line unless the maximum of the edge
profile is significantly greater than the second largest value most errors are avoided. For
these trials the minimum acceptable peak on the edge profile is 35 and the minimum
difference between the maximum and the second largest peak is 17. The software is
however unable to differentiate between the lines in the middle of the field and the edge
lines of the field. The process of developing the edge profile is slow taking 24 ms to
complete, but the peak detection stage was practically instantaneous.

The problem with the line finding at the present stage is that it does not use employ any
information from other stages of the process. In particular during the blob analysis stage
the bounding rectangle of the edge line is found. If the search was limited to finding
horizontal lines in this region the line finding would be faster and less likely to make
mistakes.

6.9 Total Processing Time

In total the system operates at 10 fps without the edge detection code in place or at 8 fps
with the edge detection code. The breakdown of time spent in the various stages of the
image processing system is shown in table 6.2. It is clear that the parts of the system that
operate on symbolic data execute much faster than those parts which use image buffers.
The code then operates at 348 kilopixels per second which is more than expected (section
3.2).

| Task | Time (ms) |
Colour Detection 28
Erosion 22
RLE 49
Grouping Negligible
Analysis Negligible
Edge Detection and Summation 25
Edge Analysis Negligible
| Total Time | 124ms |

Table 6.2: Breakdown of Processor Time

CHAPTER 6. TESTING AND RESULTS 40

(a) Example Image (b) Horizontal Edge Strength

(c) Example Image (d) Horizontal Edge Strength

Figure 6.1: Examples of the Line Detection Process
In the first image (a) there is no dominant peak in the edge strength profile (b). The
second image (c) does have a definite peak in the edge profile (d). The edge detection
software recognises this as a horizontal line in the original image.

Chapter 7

Future Work

The vision system presented here would need many changes to be developed into a system
that would be usable in a RoboCup scenario. Additionally there are many changes that
could be made to provide incremental improvements to the process either increasing the
frame rate or reducing the error.

7.1 Optimisations

Several optimisations can be made to the code that would reduce the time taken to process
a frame or the amount of error in the output of the system.

7.1.1 Useof the Field Programmable Gate Array

The most significant change to the system would be moving the colour lookup stage
from the SH4 to the board’s field programmable gate array (FPGA). Currently the colour
lookup process takes about 30 ms to complete (table 6.1). This comprises taking a sample
mean of the frame’s brightness and performing colour detection on each pixel. The colour
detection could be implemented in a ROM as shown in figure 7.1. The brightness (YY)
data could be used in the FPGA as well to move the colour detection stage to the FPGA.
Colour detection on the FPGA could operate at the same rate that YUV data passes into
the FPGA, so each pixel would be analysed and the result sent to the SH4. Not only
would this technique reduce the processing by 30ms for a 240 x 180 image but it would
also reduce bus traffic and the amount of memory needed to store the image in the SHA4.

41

CHAPTER 7. FUTURE WORK 42

5
Y < Low Threshold
Threshold
Y
Y > High Threshold
0
7 15
U
ROM
0 LOOKUP | 5 out Al A0
TABLE 0
7 8
BLACK —/ {1 8
8 | MuUX —— Output
V WHITE — /{2
8
ERROR — /13
0 0

Figure 7.1: Logic Circuit Implementation of Colour Detection.
The U and V values are used as an address into a ROM that contains the values of the
lookup table. The thresholded Y value is used to control a multiplexer (MUX) that selects
between the lookup table’s output and the constant values BLACK and WHITE. The final
input to the multiplexer is reserved as ERROR because it should be impossible to have
both Y < Low Threshold and Y > High Threshold.

CHAPTER 7. FUTURE WORK 43

7.1.2 Detection of Green

The reason that green is not detected by the system when working on robot soccer is that
it was thought that the large amount of green in each frame would lead to a significantly
larger number of run length encoding elements to process in the grouping stage and would
lead to no further useful information. However tests show that the effect of adding green
detection to the whole colour and blob growing system only increased the frame time
by a few milliseconds. The advantage of detecting green is that white pixels with green
pixels directly underneath would be good candidates for being part of the edge line.

7.1.3 Faster Morphology

The current morphological system is based on a logical 1 x 3 erosion of the colour de-
tected image. This erosion uses logical operators but a different solution could be de-
veloped. A 1 x 3 erosion is equivalent to shortening each run length element by one at
both ends. This leads to the idea of implementing a complete set of 1 x n morphological
operations on the run length encoded data instead of the colour detected image.

Rather than use addition and subtraction to perform these operations it would better to
apply them as the run length elements are constructed. For example if an RLE element
is only of length one then removing it from the list would be equivalent to an opening of
the image with a 1 x 3 structuring element. A closing could then performed by running
the through the list of RLE elements and joining ones that are almost adjacent. This has
the potential to reduce the processing time by up to 22 ms.

7.1.4 Noise Rgection

Further work can definitely be done rejecting incorrect matches for red. Some other
techniques were considered to remove but never implemented either for reasons of time
or apparent complexity.

o With a definite measure of distance from the robot to the ball the approximate size
of the ball can be calculated. The difference between the actual and expected sizes
gives another measure of error[2]. This technique was not implemented because
none of the physical constants such as the height of the robot were available.

CHAPTER 7. FUTURE WORK 44

e Relating the area of the ball to the bounding rectangle. The trainer program cur-
rently displays red blobs with a bounding rectangle and circle with a radius based
on the blob area. This gives an indication of the relationship between bounding
box and area. Tests show that the relationship is fairly solid and will be suitable for
rejecting noise as the relationship noticeably breaks when applied to noisy pixels.

e The final technique considered was to measure the edge length of the blobs and
relate this to the area of the pixel. This would require measuring the edge though
which makes it less attractive than the previous technique.

7.2 Additions

7.2.1 Coordinate Transformsand iPaq Software

To be useful for robotic motion planning the image coordinates of each object must be
transformed into three dimensional coordinates relative to some fixed location. To do this
the position and orientation of the camera relative to the robot must be known. For some
robots like the ViperRoos this is a fixed position but for more complex robots such as the
GuRoo the camera is capable of independent motion. Consequently the vision software
must have access to the output of the internal sensors of the robot that report the angles
of the limbs and head.

On the GuRoo this information will be passed to the iPaq so it would make sense for the
coordinate transform stage of the vision system to be performed here. The two dimen-
sional image coordinates of objects would be transmitted to the iPaq which would then
build a transform matrix from the internal sensors information. The matrix would be used
to calculate the three dimensional positions of all of the objects.

The PC based trainer is planned to be ported to the iPaq. The trainer would be able
to receive the YUV images from the SH4 and use these as test images for training. In
addition to this the run length encoded data from the SH4 could be transmitted quickly
to the iPagq which could then decode this data and display it on the screen for debugging
purposes.

CHAPTER 7. FUTURE WORK 45

7.2.2 Adaptingto the output of the OV7620 Camera

At this point in time the OV7620 camera is not interfaced with the SH4 processor board
and the system uses test images taken from a hand held digital camera. These images
are converted from RGB to YUV and subsampled using MATLAB. The OV7620 is ex-
pected to have at least slightly different characteristics to the trial images. The lookup
table would have to be recalibrated and the offsets used for calculating the brightness
thresholds would have to be changed.

The use of a real camera would introduce problems of distortion and focusing to the
system. Also the availability of a real time data feed would make errors in the system
much more apparent than they currently are.

Chapter 8
Conclusion

A basic architecture for colour segmentation has been developed. The system is able to
perform fast colour detection using a combination of lookup tables and brightness thresh-
olds, that has been trialled on an embedded processor. The colour detected image has
been successfully converted into blobs using a two stage process of run length encoding
and grouping.

The YUV colour space is extremely useful for reducing the effect of brightness changes
in the image. The other advantage is that YUV allows the use of unchanging lookup
tables in U and V which provide an extremely fast way of performing colour detection.

The speed of execution is slightly better than expected (section 3.2). The majority of time
is spent performing colour detection, morphological operations and run length encoding.
There are many opportunities to increase the speed of the system, including using a field
programmable gate array to perform colour detection (section 7.1.1).

The system is capable of detecting most objects although more work does need to be done
preventing incorrect matches. Some techniques to correct these problems are outlined in
section 7.1.4.

A GUI system has been developed that allows the user to construct a colour lookup table
using test images. The performance of the colour detection and later stages of the soft-
ware can be examined within the GUI environment. This software has also proved useful
during the development and debugging of the vision software.

The software is at the stage were it could provide useful information to robot navigating
a colour coded environment. However the system needs to be made much more robust
before it can operate reliably.

46

Bibliography

[1] M. Abe, Building Cross Development Environment Targetting SH4 Sys-
tem, www. | i nuxsh. sour cef or ge. net/ docs/ abe/ 2001320- gcc2. 97/ READVE
E. php3,August, 2001.

[2] T. Bandlow et al, Fast Image Segmentation, Object Recognition and Localisation
in a RoboCup Scenario, Lecture Notes in Artificial Intelligence Volume 1856,
Springer, Berlin, 2000.

[3] R. Bartelds, et al, Clockwork Orange: The Dutch RoboSoccer Team, RoboCup
2001, Springer-Verlag, Berlin, 2001.

[4] A. Berry, Soccer Robots with Local Vision, Honours Dissertation, Univ. of Western
Australia, Dept. of Electrical and Electronic Engineering, 1999.

[5] Blower, A., Development of a Vision System for a Humanoid Robot, Undergraduate
Thesis, University of Queensland, 2001.

[6] Browning, B., Robust Vision For Robot Soccer, Undergraduate Thesis, University
of Queensland, 1999.

[7] Bruce, J., Realtime Machine Vision Perception and Prediction, Undergraduate The-
sis, Carnegie Mellon University, 2000.

[8] Bruce, Balch, Veloso, Fast and Inexpensive Colour Segmentation for Interactive
Robots, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2000.

[9] M. Chang, et al, ViperRoos 2000, RoboCup 2000: Robot World Cup IV Lecture
Notes in Artificial Intelligence 2019, Springer-Verlag, Berlin, 2001.

47

BIBLIOGRAPHY 48

[10] R. Gonzalez and R. Woods, Digital Image Processing, Addison-Wesley, Reading
Massachusetts, 1992.

[11] B. Horn, Robot Vision, The MIT Press, Cambridge Massachusetts, 1986.

[12] Hosking S, High Speed Peripheral Interface, Undergraduate Thesis, University of
Queensland, 2001.

[13] Omnivision, OV7620 Product Specifications - Revision 1.3, 2000.

[14] W. Pratt, Digital Image Processing, Second Edition, John Wiley & Sons, New York,
1991.

[15] D. Paulus and J. Hornegger, Applied Pattern Recognition: a Practical Introduction
to Image and Speech Processing in C++, Verlag Vieweg, Braunschweig Germany,
1998.

[16] RoboCup Medium Size League Rules, smart. . uni-ul m de/ ROBOCUP/ f 2000/
rul es01/ rul es2001. ht nl , accessed 12 August 2001.

[17] Robocup Small Size League Rules, parrotfish.coral.cs.cnu.edu/
r obocup- smal |, accessed 12 August 2001.

[18] Robocup Website, www. r obocup. or g, accessed 12 August 2001.

[19] R. Schilling, Fundamentals of Robotics, Analysis and Control, Prentice Hall, New
Jersey, 1990.

[20] P. Stone, RoboCup-2000 The Fourth Robotic Soccer World Championships, Al
Magazine, Vol 22, Number 1, Spring 2001.

[21] Wagstaff M, Mechanical Design and Internal Sensors for a Humanoid Robot, Un-
dergraduate Thesis, University of Queensland, 2001.

Appendix A

Colour Images

49

APPENDIX A. COLOUR IMAGES 50

(a) RGB Image (b) Y Comonent

(c) U and V Components (d) Colour as a function of U and V

Figure A.1: YUV Image Representation
The YUV representation of the image (a) can be easily described in two components. The
Y component is simply the brightness of each pixel (b). The UV components describe
the colour of the pixel (c). The variation of colour with U and V is shown in figure (d).
V is the horizontal axis and U is the vertical axis with 0,0 being the top left corner.

APPENDIX A. COLOUR IMAGES 51

(a) Lookup Table Before Dilation

(b) Lookup Table After Dilation

Figure A.2: Trainer Lookup Table
The trainer program uses samples of colours provided by the user to construct the initial
lookup table (a). The table is then dilated to fill up the gaps in the image (b).

APPENDIX A. COLOUR IMAGES 52

Figure A.3: An example colour lookup table.
The lookup table used for testing, it is configured to detect red, blue and yellow. The
horizontal access is V and the vertical access is U with a scale 0 to 255 on both axes.

APPENDIX A. COLOUR IMAGES 53

(a) View of Blue Goal

et

-3
.
m——— T

(b) View of Yellow Goal

Figure A.4: Colour Detected Image
The blue, white and black areas are successfully detected. The bright yellow is often
interpreted as white.

APPENDIX A. COLOUR IMAGES 54

(a) View of Blue Goal

(b) View of Yellow Goal

Figure A.5: Eroded Images
The erosion by a 1 x 3 mask removes any pixel groups whose dimensions are smaller
than 1 x 3.

APPENDIX A. COLOUR IMAGES

(a) Colour Detected (b) YUV image and Object Locations

Figure A.6: An Example of Poor Colour Detection
The colour detection fails here because the area of the field on the right of the image is
being segmented as red. The brightness normalised version of this image shows that the

UV data in this region is borderline between red and green. A better defined lookup table
may correct this problem.

55

APPENDIX A. COLOUR IMAGES 56

(a) View of Blue Goal

Figure A.7: Detected Objects.
The objects in the image detected by the vision software. The B represents the ball, O
represents obstacles(black objects), and the YG and BG represent the yellow and blue
goals. The shadow of the ball is interpreted as an obstacle.

Appendix B

Code

The image processing support functions are contained in segment.c and segment.h. The
main frame processing function from imtest.c shows the order in which the functions are
called.

B.1

| mdemo.c

Program B.1: imtest.c

QOO NOUIRWNEF

=

void imdemo () {

quick_lookup(SRAMDATA. yuv_image, SRAMDATA. table, SRAMDATA. color_detected);

I/ 1ookup_bytable (SRAMDATA. yuv_image, SRAMDATA. table, SRAMDATA. color_detected);

erodel3 (SRAMDATA. color_detected , SRAMDATA. eroded, 240, 180);

rlecode (SRAMDATA. eroded , SRAMDATA. rle_encoded);

end_blobs = group(SRAMDATA.rle_encoded , SRAMDATA. blobs);

end_obstacles = analyse (SRAMDATA. blobs, end_blobs ,SRAMDATA. obstacles, & ball ,& bluegoal, & yellowgoal);
edgeprofile (SRAMDATA. eroded , SRAMDATA. profile);

findedgeline (SRAMDATA. profile);

B.2 Segment.h

Program B.2: segment.h

CONOURWNEF

#ifndef SEGMENT H
#define SEGMENT H

#include "image.h"
/l#include <stdio.h>
/l#include <stdlib.h>

#ifdef WIN32

#include <stdio.h>
#else

#include <sh/gio.h>
#endif

/1 Memory Allocation
#define ENCODEDSPACE 4096
#define NUMBERBLOBS 512
#define NUMBEROBSTACLES 64

/l'lmage size

57

APPENDIX B. CODE

20 #define TABLEWIDTH 256
21 #define TABLESIZE (TABLEWIDTH % TABLEWIDTH)

23 #define IMWIDTH 240

24 #define IMHEIGHT 180

25 #define IMSIZE (IMWIDTH*IMHEIGHT)
26 #define IMBYTESIZE (IMSIZEx*3)

29 /1 Color Codes

30 #define FIELDCODE 1
31 #define WALLCODE 2

32 #define BALLCODE 4

33 #define BLACKCODE 8
34 #define BLUECODE 16
35 #define YE.LOWCODE 32

37 /1 Minimum Sizes
38 #define MINSIZE 6

40 #define MINWALLSIZE 140

41 #define MINOBSTACLESIZE 6

42 #define OBJECTLISTSIZE 10

43 #define TOPWALLOFFSET 0

44 #define MINGOALSIZE 10

45 #define MINEDGELINE 35

46 #define MINEDGEDIFF (MINEDGELINE/2)

47

48 /x Aspect ratio of a square for the chosen
49 image dimensions

50 (IMWIDTH/640)/(IMHEIGHT /480) /

51 #define SQUARERATIO 1

52

53 #define MIN(x, y) (((x) < (y)) 2 (x) : (y))
gg #define MAX(x, y) (((x) > (y)) ? (x) : (y))
56 /1# define USEPRINTF

57

58 void find_centroid(imagex segmented_image);

60 struct blobtag {

61 // struct blobtag * next;
62 // struct blobtag * prev;
63 int area;

64 int color;

65 int xmax,xmin,ymax,ymin;
66 };

67

68 typedef struct blobtag blob;
69

70 struct rletag {

71 int begin;

72 int end;

73 int color;

74 int tag;

75 int y;

76 blob* blobpointer;

77

I
78 typedef struct rletag rle;
79 struct objecttag {

80 int distance, bearing, color;
8L}

82

83 typedef struct objecttag object;

84

85 void lookup_bytable(unsigned int« the_image, UCHAR« table,
86 UCHAR= out_image);//, intx profile);

87 blobx group(rlex input, blobx* blobs);

88 void rlecode(UCHARx segmented_image, rle= output
89 void reconstruct(rle= input, imagex output);

90 void color_reconstruct(rlex input, UCHAR+ output

):
):

92 //void dilate22 (UCHARx the_image, UCHARx out_image);
93 void code2rgb(UCHARx input, UCHARx output, int size);

94 /1 objectx analyse (blobx blobdata, blobs* endblob,

object results, object+ pball);

95 object+ analyse(blobx blobdata, blob* endblob, objectx results,
96 object x pball, objectx pygoal, object xpbgoal);

98 int findedgeline(intx profile);

99 void erode33(UCHARx input, UCHARx output, int width, int height);
100 void erodel3(UCHAR« input, UCHARx output, int width, int height);

102 void histogram_region (UCHARx the_image, int sx,

int sy, int ex, int ey, int« hist);

103 void thresh(intx hist, int code, int level, UCHAR« table);

105 void edgeprofile (UCHARx target, intx profile);
107 #ifdef WIN32

108 void quick_lookup(UCHAR* the_image, UCHARx table, UCHAR+ out_image);

109 void lookup_bytable (UCHAR* the_image, UCHARx table,

110 UCHAR=+ out_image);

111 #else

112 void quick_lookup(unsigned ints the_image, UCHAR«+ table, UCHAR+ out_image);
113 void lookup_bytable(unsigned intx the_image, UCHARx table,

114 UCHAR# out_image);

115 #endif

116

117 #endif

118 [+ SEGMENT H #/

58

APPENDIX B. CODE

B.3 Segment.c

Program B.3: segment.c

CONOURWNEF

#include

"segment . h"

#define WORD long int

#include

"angletable.h"

//#include "imageio.h"

#ifndef

#endif

WIN32

#include <../vbsh4/test.h>
.h>

#include <sh/sci

/l#include <assert.h>

/1y thr
unsigned

/1 Sample Mean Constants

esholds

int ytlow, ythigh;

#define YMEAN SAMPLEFOWER 10
#define YMEAN NUMSAMPLE 1024
#define YMEAN_INCREMENT (IMSIZE/YMEAN NUMSAMPLE)

#define

CD_SUBSAMPLE 4

#ifdef WIN32

#else

int ymean(UCHARx the_image) {
UCHAR+ impointer = the_image;
int ytotal =0;

int i,y;

for (| = 0; i < YMEAN_NUMSAMRLE; i++) {

y

= ximpointer;

ytotal +=y;
impointer += YMEAN_INCREMENT % 3;

}
return (ytotal >> YMEAN_SAMPLEFOWER);

I

#define Y_POSOFFSET (50)
#define Y_NEGOFFSET (50)

inline int lookup_pixel (UCHAR+ impointer,
UCHAR y

UCHAR u
UCHAR v

* impointer;
«(impointer+1);
«(impointer+2);

//unsigned int out;

if (y > ythigh) return WALLCODE;
if (y < ytlow) return BLACKCODE;
return table[u%256+v];

}

void quick_lookup(UCHAR* the_image, UCHARx table,
UCHAR# out |mage) {

unsigned
unsigned

const UCHAR: end_addr = the_image + (IMBYTESIZE);//used to

int output;
int last output = 0;

UCHAR+ outpointer = out_image;
UCHAR+ impointer = the_image;
UCHAR+ next_pixel;

11 UCHAR+ end_out = out_image + IMSIZE;
11 int y,u, v
int mean = (ymean(the_image));
int i;
ythigh = (mean) + Y_POSOFFSET;
ytlow = (mean) — Y_NEGOFFSET;
xoutpointer = lookup_ plxel(lmpomter table);
while (impointer < end_addr) {
next plxel = impointer+CD_SUBSAMPLEx 3;
output = Iookup pixel (next_pixel, table);
if (output == last_output) {
for (i = 0; i < CD_SUBSAMPLE; i++) {
#(++outpointer) = output;
}
[l printf ("s");
impointer= next_pixel;
} else {
(i = 0; i < CD SUBSAMPLE—1; i++) {
impointer+=3;
outpointer ++;
«outpointer = lookup_pixel (impointer, table);
I
/1 then do the last one which has already been looked
outpointer ++;
impointer= next_pixel;
«(outpointer) = output;
) last_output = output;
) /1 assert (outpointer < end_out);

I

#define Y_POSOFFSET (50<<16)
#define Y_NEGOFFSET (50<<16)

int ymean(unsigned int= the_image) {

unsigned

int+ impointer = the_image;

int ytotal

const UCHARx table) {

=0;

be —subsample

up

APPENDIX B. CODE

98 int i,y;

99 for (i = 0; i < YMEAN_NUMSAMPLE; i ++) {

100 y = ((=* |mp0|nter)>>16)&0xFF

101 ytotal +=y;

102 impointer += YMEAN_INCREMENT;

103 }

104 return (ytotal >> YMEAN_SAMPLEFOWER);

105 }s

106

107 inline int lookup_pixel (unsigned intsx impointer, const UCHARx table) {
108 unsigned int data = ximpointer;

109 unsigned int y = (data);

110 //unsigned int out;

111 if (y > ythigh) return WALLCODE

112 it (y ytlow) return BLACKCODE

113 return table[data & 0x0000FFFF];

114 }

115

116

117

118 void quick_lookup(unsigned intx the_image, UCHAR« table,
119 UCHAR# out_image) {

120 unsigned int output;

121 unsigned int last_output = 0;

122 const unsigned ints* end addr = the_image + (IMSIZE);//used to be —subsample
123 UCHAR# outpointer = outflmage

124 unsigned intx impointer = the_image;

125 intx next_pixel;

126 11 UCHAR+ end_out = out_image + IMSIZE;

127 11 int y,u, v

128 int mean = (ymean(the_image))<<16;

129 int i;

130 ythigh = (mean) + Y_POSOFFSET;

131 ytlow = (mean) — Y_NEGOFFSET;

132 «outpointer = lookup_pixel (impointer, table);

133 while (impointer < end_addr) {

134 next_pixel = impointer+CD_SUBSAMPLE;

135 output = Iookup pixel (next_pixel, table):
136 if (output == last_output) {

137 for (i = 0; i < CD_SUBSAMPLE; i++) {
138 *(++outpointer) = output;
139 }

140 Il printf ("s");

141 impointer= next_pixel;

142 } else {

143 for (i = 0; i < CD_SUBSAMPLE—1; i++) {
144 impointer++;

145 outpointer ++;

146) «outpointer = lookup_pixel (impointer, table);
147 :

148 /1 then do the last one which has already been looked up
149 outpointer ++;

150 impointer= next_pixel;

151 #«(outpointer) = output;

152 last_output = output;

153 }

154 /1 assert (outpointer < end_out);

155 };

156 }s

157

158

159 Il This code is slower than the quick lookup version by about 4 fps at 240x%180
160 void lookup_bytable(unsigned intx* the_image, UCHARx table,

161 UCHAR+ out_image) { //, intx profile) {
162 const unsigned intx end_addr = the_image + IMWIDTH * IMHEIGHT;
163 UCHAR# outpointer = out_image;

164 unsigned int = impointer = the_image;

165 unsigned int mean = ymean(the |mage)<<16

166 ythigh = mean + Y_POSOFF!

167 ytlow = mean — YiNEGOFFSET

168 Ilint i;

169 while (impointer < end_addr) {

170 «outpointer = lookup_pixel (impointer++, table);

171 outpointer ++;

172 N

173 }s

174

175

176 #endif

177

178 // Slow Erosion
179 /«void erodel3(UCHAR« input, UCHARx output, int width, int height) {
180 register int x,y;

181 register UCHARx inpointer = input + 1;
182 register UCHARx outpointer = output + 1;
183 UCHAR# end_addr = input+IMSIZE —1;

184 while (inpointer < end_addr) {

185 «outpointer = s« (inpointer—1) & x(inpointer) & =(inpointer+1);
186 outpointer ++;

187 inpointer ++;

188 }

189 }x/

190

191

192 /1 erodel3 only works for a specific image width
193 #if IMWIDTH != 240

194 #error "Incorrect width"

195 #endif

196

197

198 void erodel3(UCHAR=# input, UCHAR«+ output, int width, int height) {
199 int x,y;

200 UCHAR« inpointer = input;

201 UCHAR# outpointer = output;

60

APPENDIX B. CODE

unsigned int a,b,c;

for (y = 0; y < height; y ++) {
«outpointer ++ = 0;
inpointer++;

a = «(inpointer — 1);
b = «(inpointer);
¢ = «(inpointer + 1);

for (x = 1; x < width — 4; x+=3) {
+outpointer++ = a & b & c;
inpointer ++;

a = x(inpointer+1);
=outpointer++ =b & ¢ & a;
inpointer ++;

b = «(inpointer+1);
#outpointer++ =c & a & b;
inpointer ++;

c = x(inpointer +1);

}

//'inpointer and outpointer now have finished column 178
/land still point to it.

«outpointer++ = 0;

«outpointer ++ = 0;

inpointer +=2;

}

void rlecode(UCHARx segmented_image, rlex output) {
/1 watch for runs that end at the rightmost column
register UCHAR+ impointer = segmented_image;
rlex rlepointer = output;
#ifndef NDEBUG
rlex spacecheck = output + ENCODEDSPACE;
#endif
int tagcounter = 1;
register int x,y;
register int data;
int rowcount;
int color, oldend;
/l'int height = segmented_image->height;
/l'int width = segmented_image->width;
int inrun = 0;
for (y = 0; y < IMHEIGHT; y ++) {
inrun = 0;
rowcount = 0;
oldend = 0;
for (x = 0; x < IMWIDTH; x ++) {
data = = impointer;
if (inrun && (data != color)) {
rlepointer—>end = x—1;
oldend = rlepointer—>color;
#ifdef USEPRINTF
printf ("[tag: %d b: %d ", rlepointer—>tag, rlepointer—>begin);
printf ("e: %d c: %d]\n",rlepointer—>end, rlepointer—>color);

#endif
rlepointer ++;
inrun = 0;

#ifdef USEPRINTF
rowcount++;
printf ("rowcount %d\n", rowcount);
#endif
}

//'logic this line

if (!'!data && !inrun) {
rlepointer—>begin = x;
color = data;
rlepointer—>color=color;
rlepointer—>tag = tagcounter ++;
rlepointer—>blobpointer = 0;
rlepointer—>y = vy;
inrun = 1;
#ifdef USEPRINTF

printf ("{ Start Run x:%d y:%d}", x, y);

#endif

I

impointer++;

I/ assert(rlepointer < spacecheck);
Il assert(rlepointer >= output);

}s
if (inrun) {
rlepointer—>end = IMWIDTH — 1;
#ifdef USEPRINTF
printf ("[tag: %d b: %d ", rlepointer—>tag, rlepointer—>begin);
printf ("e: %d c: %d]\n",rlepointer—>end, rlepointer—>color);
#endif
rlepointer ++;
/1 Set the next one to zero
inrun = 0;

}

rlyepointer—>tag: 0; //null terminate the run array

}

/1 Converts the rle objects back to colour codes

61

APPENDIX B. CODE 62

void reconstruct(rles* input, image* output)

int x,y;
UCHAR«+ data = output—>data;
rlex rlepointer = input;

//for each row of the image

y = 0]
//for all the rle runs on this row
while(rlepointer—>tag) {
for(x = rlepointer—>begin; x < rlepointer—>end + 1; x++) {
#(data + x + output—>widthxrlepointer—>y) = rlepointer—>tag;

rlepointer ++;

I
N

/1 Colour codes to RGB
void code2rgb (UCHAR* input, UCHAR* output, int size)
{
UCHAR# impointer = input;
UCHAR# out_pointer = output;
const UCHARx end_addr = input + size;
UCHAR r,g,b;
while(impointer < end_addr) {
switch (s (impointer++)) {
case FIELDCODE:

break ;
case WALLGCODE:

break ;
case BALLCODE:

break ;
case BLACKCODE:

break ;
case BLUECODE:

break ;
case YELLOWGODE:

break ;
default:

break ;

}

#ifdef WIN32
+«(out_pointer ++) = b;
+#(out_pointer ++) = g;
«(out_pointer ++) = r;

#else
/1 assert (0);
*#(out_pointer ++)
*«(out_pointer ++)
+(out_pointer ++)

nimn
oQ =

#endif

I
I

#ifdef WIN32
/1 FIX optimize
void color_reconstruct(rles* input, UCHARx output)

int x,y;

UCHAR r,g,b;

UCHAR«+ data = output;
UCHAR# impointer;

rlex rlepointer = input;

for (impointer=data;impointer<data+IMSIZE; impointer++) x impointer = 96;
/1for all the rle runs on this row
while(rlepointer—>tag) {
y = rlepointer—>y;
switch (rlepointer—>color) {
case FIELDCODE:

r =0; g =255; b =0;
break ;
case WALLCODE:
r = 255;g = 255; b = 255;
break ;
case BALLCODE:
r =255;g =0 b = 0;
break ;
case BLACKCODE:
r=0;, g-=0; b =0;
break ;
case BLUECODE:
r=0; g=0; b = 255;
break ;
case YELLOWGODE:
r = 255;g = 255; b =0;

break ;

for(x = rlepointer—>begin; x < rlepointer—>end + 1; x++) {
#ifdef WIN32
«(data + 3 * X + 3 * IMWIDTH * y) = b;

APPENDIX B. CODE

#(data + 3 % x + 3

#(data + 3 % x + 3
#else

«(data + 3 % x + 3

«(data + 3 % x + 3

«(data + 3 % x + 3
#endif

rlepointer ++;

I
oo
#endif

// Sub part of group

inline rlex matchrows(rlex rlepointer,
rle+ rowbelow = nextrow;
int begin = rlepointer—>begin; // optimize
int end = rlepointer—>end; //optimize
int color = rlepointer—>color;
blob# belowblob;
int abovearea;
blob+ aboveblob = rlepointer—>blobpointer;
int belowarea;

rles nextrow

while(rowbelow—>y==y+1
/INow check the for
#ifdef USEPRINTF

connectivity .

63

% IMWIDTH * y + 1) = g;
% IMWIDTH * y + 2) = r;
* IMWIDTH % y) = r;

+ IMWIDTH = y + 1) = g;
+ IMWIDTH = y + 2) = b;

, blobx*x nextblob,int y) {

printf (" $6X{%d,%d" , rowbelow—>tag , rowbelow—>y , rowbelow—>begin);

printf ("—%d} ", rowbelow—>end);
#endi

f
if ((((rowbelow—>begin >= begin)&&(rowbelow—>begin <= end))||
((rowbelow—>end >= begin) && (rowbelow—>end <= end)
((rowbelow—>begin <= begin) && (rowbelow—>end >= end))) &&

(rowbelow—>color == color)) {

if (rowbelow—>tag > rlepointer—>tag
/1 Subsume below into above
/1 Create a blob for the above
if (!aboveblob) {

)

rlepointer—>blobpointer = (x nextblob)++;

aboveblob = rlepointer—>blo
aboveblob—>color =

bpointer;
rlepointer—>color;

abovearea = end — begin + 1;

aboveblob—>area
aboveblob—>ymax
aboveblob—>ymin
aboveblob—>xmax
aboveblob—>xmin

}

if (rowbelow—>blobpointer) {

= abovearea;
Y.

ninn
@
S
o

/1 assert (aboveblob);

//row below is a blob get i

nfo

belowblob = rowbelow—>blobpointer;

/1t
if

aboveblob—>ymax
aboveblob—>ymin
aboveblob—>xmax
aboveblob—>xmin =
/1 assert (belowblob);

rowbelow—>blobpointer=rlepo
rowbelow—>tag = rlepointer—

} else {

his test could be better done with tag numbers
(aboveblob != belowblob) {
aboveblob—>area += belowblob—>area;
belowblob—>area = 0;

Iz
MAX(aboveblob—>ymax, belowblob—>ymax);
MIN(aboveblob—>ymin, belowblob—>ymin);
MAX(aboveblob—>xmax, belowblob—>xmax);
MIN(aboveblob—>xmin, belowblob—>xmin);

inter—>blobpointer ;
>tag ;

/1 assert (aboveblob);

/l'just a row so calc stats
belowarea =

rowbelow—>end-rowbelow—>begin + 1;

aboveblob—>area += belowarea;

/1 aboveblob—>ymin not need

updating?

I/ assert (aboveblob—>ymin<y+1);
aboveblob—>ymax = MAX(aboveblob—>ymax, y+1); //unlikely

aboveblob—>xmin =
aboveblob—>xmax =

MIN(aboveblob—>xmin, rowbelow—>begin);
MAX(aboveblob—>xmax, rowbelow—>end);

rowbelow—>blobpointer=aboveblob;

rowbelow—>tag = rlepointer—
s
} else {
/1 subsume above blob into below
belowblob = rowbelow—>blobpoint
if (aboveblob) {
11

if

}

>tag;

blob.
er;

rlepointer has a blob

(aboveblob != belowblob) {
belowblob—>area += aboveblob—>area;
aboveblob—>area = 0;

belowblob—>ymin=MIN(belowblob—>ymin, aboveblob—>ymin);
belowblob—>ymax=MAX(bel owblob—>ymax, aboveblob—>ymax);
belowblob—>xmin=MIN(belowblob—>xmin, aboveblob—>xmin);
belowbl ob—>xmax=MAX(bel owblob—>xmax, aboveblob—>xmax);

/] assert (aboveblob);

rle
} else {
Ilr

pointer—>blobpointer = rowbelow—>blobpointer;

lepointer just a single row

/] assert (belowblob);

abovearea =

end — begin + 1;

belowblob—>areat+=abovearea;
belowblob—>ymin=MIN(belowblob—>ymin,y);
belowblob—>ymax=MAX(belowblob—>ymax,y);
belowblob—>xmin=MIN(belowblob—>xmin, begin);

APPENDIX B. CODE

bel owbl ob—>xmax=MAX (bel owblob—>xmax, end)
rlepointer—>blobpointer = rowbelow—>blob

rI'epointer—>tag = rowbelow—>tag;
}
#ifdef USEPRINTF
printf ("m®X ", rowbelow—>tag);
#endif
rowbelow ++;//and now is here

}
return rowbelow +1; //Should be pointing to the start of the next row;

(blob* group(rle= input, blobx blobs)

int y = input—>y;

rlex rlepointer = input;
rles rowbelow ;
rlex nextrow = input;

rlex temprow = nextrow;

blobx nextblob = blobs;

int begin, end;

blob spacecheck = blobs+NUMBERBLOBS;
while((++temprow)—>y==y) {};

//for each row of the image
while(y < IMHEIGHT—1) { // HEIGHT MINUS ONE DON'T DO LAST ROW
rlepointer=nextrow;
y = rlepointer—>y;
/1 now find next row after this oneif it is not y++
/1 then skip this row too
while((++nextrow)—>y==y) {}; //could be optimized
// nextrow = temprow;
if (nextrow—>y == y+1) {
//for all the rle runs on this row
while(rlepointer < nextrow) {
#ifdef USEPRINTF
begin = rlepointer—>begin;
end = rlepointer—>end;
printf ("Tag $X{y %d — ", rlepointer—>tag,rlepointer—>y);
printf ("%d %d} [",begin,end);
#endif
/lrowbelow = input + ENCODEDWIDTH * (y+1);
rowbelow = nextrow;
temprow = matchrows(rlepointer, nextrow, & nextblob, y);
/1 assert (nextblob<spacecheck);
/l call match here returns last rle on the row
/I next run along the current row
#ifdef USEPRINTF
printf ("]J\n");
#endif
rlepointer ++;
) if (rlepointer—>tag == 0) return nextblob;
I

T

#ifdef USEPRINTF
printf ("END GROUP\n");

#endif

return nextblob;

}

inline int xcentroid(blobs target) {
return (target—>xmin + target—>xmax)>>1;
I

inline int ycentroid(blobx* target) {
return (target—>ymin + target—>ymax)>>1;
I

#define MAX_ERROR 4
object x analyse (blobx blobdata, blobx endblob, objectx results,
object « pball, objectx pygoal, object xpbgoal)

blobx pblob = blobdata;
blobx* wall
blobx ball
blob = bgoal 0;

blob = ygoal ;

int bluesize = MINGOALSIZE;
int yellowsize = MINGOALSIZE;
object * nextresult = results;
int expected_height,error;

=0,
= 0;

int topline =0
int wallsize
int ballsize

for (pblob = blobdata; pblob < endblob; pblob++) {
switch (pblob—>color) {
case WALLGCODE:
if (pblob—>area > wallsize) {
wallsize = pblob—>area;
wall = pblob;

MINWALLSIZE;
0;

break ;

}

if (wall) {
topline = wall—>ymin — TOPWALLOFFSET;

64

bointer;

APPENDIX B. CODE

#ifdef USEPRINTF

printf ("walldimension %d x %d y — " ,wall->xmin, wall->ymin);

printf (" %d x %d y\n", wall->xmax, wall->ymax);
printf ("horizon line %d\n",topline);
printf ("top of interest %d\n", topline);

#endif

I%
11 topline = 0;
for (pblob = blobdata; pblob < endblob; pblob++)
if ((pblob—>area)&&(pblob—>ymin>topline)) {
#ifdef USEPRINTF
printf ("%d %d ", pblob—>color, pblob—>area);
printf ("%d %d ", pblob—>xmin, pblob—>ymin);
dit printf ("%d %d \n", pblob—>xmax, pblob—>ymax);
#endi

switch (pblob—>color) {
case BALLCODE:

expected_height = (pblob—>xmax—pblob—>xmin+1)+SQUARERATIO;
error = expected_height — (pblob—>ymax — pblob—>ymin +1);

if ((error <6) && (error > —3)) {
if (pblob—>area > ballsize) {
ballsize = pblob—>area;
) ball = pblob;

break ;
case BLACKCODE:
if (pblob—>area > MINOBSTACLESIZE) {

nextresult—>distance —ycentrmd(pblob)
nextresult— >bear|ng = xcentroid(pblob);

nextresult—>color = BLACKCODE;
nextresult++;

break ;
case BLUECODE:
if (pblob—>area > bluesize) {
bgoal = pblo
bluesize = pblob >area;
It
break ;
case YH.LOWCODE:
if (pblob—>area > yellowsize) {
ygoal = pblob;
yellowsize = pblob—>area;

1
break ;

I

if (ball) {
/1 pballf>d|stance = angletable[ycentroid(ball)];
pball—>distance = ycentroid(ball);
pball—>bearing = xcentroid(ball);
pball—>color = BALLCODE;

} else {
pball—>distance = 0;
pball—>bearing = —40;
. pball—>color = 0;
if (bgoal) {

pbgoal —>distance = ycentroid(bgoal);
pbgoal — >bear|ng = xcentroid (bgoal);
pball—>color = BLUECODE;

} else {
pbgoal —>distance =0;
pbgoal —>bearing = —40;
pball—>color = 0;

}

it (ygoal) {
pygoal —>distance = ycentroid(ygoal);
pygoal — >bear|ng = xcentroid(ygoal);
pygoal —>color = YELLOWCODE;

} else {
pygoal —>distance =0;
pygoal —>bearing = —40;
pygoal —>color = 0;

}

return (nextresult);

I

int findedgeline(int* profile) {
int y;
int sum;
int max=MINEDGELINE;
int oldmax = 0;
int besty=
for (y=0; y< IMHEIGHT y++) {
sum = profil e[y]
if (sum > oldmax) {
if (sum > max) {
oldmax = max;
max = sum;
besty = vy;
} else {
) oldmax = sum;

}
%
if (max — oldmax > MINEDGEDIFF)

65

APPENDIX B. CODE

return besty;

else
return 0;
I
/+void dilate22 (UCHAR= the_image, UCHARx out_image) {
UCHAR mask ;
int x,y;
for (y = 1; y<IMHEIGHT — 1; y++)
for (x = 0; X<IMWIDTH — 1; x++) {
mask = x(the_image+x+HMWIDTHxy);
if (mask !'=0) {
*(out_image+(x+1)+IMWIDTHxy)
*(out_image+(x+2)+IMWIDTHxy)
*(out_image+(x+3)+IMWIDTHxy)
I
}
Y/

11
/1 uchar for histogram

void histogram_region (UCHAR+ the_image, int sx, int sy, int ex, int ey, intx hist) {

int x, y;
UCHAR u,v;
for (y = sy; y <= ey; y++)
for (x = sx; x <= ex; x++) {

mask ;
mask ;
mask ;

u = x(the_image + 3 = x +y = IMWIDTH % 3 +
v = x(the_image + 3 * x + y & IMWIDTH % 3 +

(+(hist + v + TABLEWIDTH * u))++;

}

/1 Threshold the the histogram into a UCHAR lookup table
void thresh(int= hist, int code, int level, UCHARx table) {
int x, vy;
for (x = 0; x < TABLEWIDTH; x++
for (y = 0; y < TABLEWIDTH ; y++)

if (+(hist + TABLEMDTH = y + x) > level)
#(table + TABLEWIDTH % y + x) = code;

I

void edgeprofile(UCHAR« target, intx profile) {
int y,x;
UCHAR«+ impointer = target;
for (y = 0; y < IMHEIGHT — 1; y++)
for (x = 0; x < IMWIDTH; x++)

profile[y]+= (ximpointer==WALLCODE) & & (x(impointer+IMWIDTH) != WALLCODE);

Impointer++;

66

