Undergraduate Thesis
School of Information Technology and Electrical Engineering

The University of Queensland

Active Balance Control for a

Humanoid Robot

[an Joseph Marshall

Bachelor of Engineering

Electrical (Honours)

October 16, 2002

13 Judith St
Dorrington, QLD 4060

16™ October 2002

Head of School
School of Information Technology and Electrical Engineering
University of Queensland

St Lucia, QLD 4072

Dear Professor Kaplan,

In accordance with the requirements of the degree of Bachelor of Engineering
(Honours) in the division of Electrical Engineering, I present the following thesis
entitled “Active Balance Control for a Humanoid Robot”. The project was

completed under the supervision of Dr Gordon Wyeth.

I declare that the work submitted in this thesis has not previously been submitted for
a degree at the University of Queensland or any other institution. To the best of my
knowledge, all material in this document written or published by any other person

has been appropriately referenced.

Yours sincerely,

lan Marshall
33582399

Abstract

The purpose of the GuRoo Humanoid Project is to build an anthropomorphic robot
that will be competitive in the humanoid league division of the annual RoboCup
Competition. The scope of this thesis is to design and implement an Active Balance
Control System that will enable the robot to remain upright despite adverse
disturbances such as external forces and uneven terrain.

The course of the project saw the development of the robot from a simulated on-
paper design to a functional hardware prototype capable of performing simple
movements. Constraints due to a limited amount of feedback information
significantly influenced the complexity of the Balance Control System.

The proposed structure of the balance system is broken into three modules:
e Supporting base Model
e Centre of Mass (C.0.M.) Model
e Attitude Control System

Actual position data is passed to the central controller via a serial link from the
distributed controller boards and CAN network. The attitude control module uses
the state information developed from the centre of mass model to define new
desired joint angles for maintaining robot stability. All calculations are executed
with respect to the centre of the support polygon, which is determined purely
through geometrical analysis.

The robot is modelled as a 3D Linear Inverted Pendulum (3D-LIPM) which consists
of a point mass (C.0.M.) and a massless telescopic leg extending from the centre of
the supporting base to the centre of mass of the robot. Zero Moment Point criteria
is considered whereby new desired joint positions for the ankles are defined by
considering the effects of inertial, gravitational and reaction forces on the inverted
pendulum.

The design was successfully developed, simulated, and evaluated with the robot
capable of remaining stable for a series of simple movements. Due to errors in the
serial feedback of actual joint position data, the design could not be implemented
and tested on real hardware.

The proposed design forms a solid platform that will form the basis of further
testing, development and implementation.

il

Acknowledgements

I would like to thank the following people for their contribution towards the

completion of this thesis:

My supervisor, Dr Gordon Wyeth, for his guidance and patience throughout

the course of the project.

Damien Kee for his inspiration and assistance.

The other GuRoo team members, Adam Drury and Andrew Hood for their

help, friendship and dedication to the project.

The other late-night lab-inhabitants, Chris and Rob, for providing plenty of

laughter at the strangest of times.

My Family, Beck, and friends for their valuable support throughout the year.

il

Table of Contents

CHAPTER 1 — INTRODUCTIONoumimiiirriirinnissnssrse s

1.1 Humanoid RoODOTS...ee..cereeeeeeeeenereereneeceeeeneesesseseessssssesssssssesssesses

1.2 RoboCup Competition

1.3 Walking Algorithms and the Difficulty of Dynamic Balance Control

14 MOtIVALION coueeeirneineeieensenssnensnnnsssesssnssssesssnsssseessesssssessessssssssasanns
1.5 Project Outcomes and Achievementscccceecvunerccscnnrecsscnnnes
1.6 Chapter outline.........ccovveiciverinssenisssnncsssenessnresssncssssnessssscsssscses
CHAPTER 2 - LITERATURE REVIEWciiiiiiiiiiieereneeee
2.1 Previous Work (GURO00)ciccinneiicsssnniccsssnnsecsssnssesssssssesssssanns
2.2 Other Humanoids in General...........coeeeineeenseecnseeecsnecssnnnenns

2.3 Description of Existing Humanoid Balance Systems

2.3.1 Defining Key Concepts.......ccoovveeerieeeiieeeiieeeiieeeiee e
232 Defining Stability Conditionsc.cceeeveereeiienieneniennns
2.3.3 Review of Methods of Balance Control.......cccccoeeeeeveeeenenn...
234 Inverted Pendulum MOAEScoeen.
CHAPTER 3 — SPECIFICATIONS ... ieiiiieirecrereeeeeennsmeenens

3.1 Introduction

3.2 Preparation for RoboCup

33 Development of an Active Balance Control System................
3.3.1 Research of Balance Control Methodology
332 Supporting Base Model............coooveviiiniiiiiiiniiiiieieieeee
3.33 Centre of Mass Model..........coooueiiiiiiiiiiiiiiiieieeceeeen
334 Attitude Controlocceeeiiieriiiiiiiieceee e

CHAPTER 4 — ANALYSING THE HARDWAREccccceeinnnnee

4.1 Mechanical Design

4.2 Distributed Control NetWorKcccccceeeeeeeeecereeeecereeeeeccreeeeecseeses

CHAPTER 5 — MATHEMATICAL MODELScccccnrinmreririnnne

v

5.1 Linear Inverted PeNdUIUIcuveeeeeeeeeceeeeereeeeeneesereeseeeeessssssssssssssssssssssssoone 29
5.2 7.0 MOIMENT POINT ouueuereeeeeiereeneeereeeeceereeneeserseseesessssesscsssssssosssssssossssessosseses 31
CHAPTER 6 - SOFTWARE DESIGN AND IMPLEMENTATION 36
6.1 Introduction 36
6.2 Initialisation and MatriXx TransSformationsS........ccccceeeeeeneeeeceeeeeeeeeeseseesscces 37
6.3 Determining the Supporting Base.........cccvvvericcicsnricssssnniccsssnnnscssssansecssnnns 38
6.4 CENLEE OF IVIASS cuuuuerreereeeeeereeeecsecseeeessssssssssossssassssssssssssssssnsssssssssssssssnsssssssssoss 40

6.4.1 Robot Centre of Mass MOAELoovunmneeeee et 40

6.4.2 Simulator Centre 0f Mass MOAELeeeeeeeeeeeeeeees 43
6.5 N 100 (o LRG0 110 1) Y 43
CHAPTER 7 - SYSTEM EVALUATION. ... eeee e e e e e s em e 46
7.1 Determining the SUppoOrting Base........ccovvericciirnnricsssnnncssssnnnicsssssnnecsssnnnns 46
7.2 Centre of Mass CalCULAtiONS ..cceveeeeeeeeecieeeeeeeeeeneeessseceeeeersssssssssssssssssssssssssses 48
7.3 N 100 (o L0 110 1) U 53
CHAPTER 8 - CONCLUSIONS AND FUTURE DEVELOPMENTS........... 58
8.1 L O01) 1 16 111 1) 1 N 58
8.2 Future Developments 59
APPENDIX A : CENTRE OF MASS LOCATIONS......cooiiiieirereeeneeenaes 63
APPENDIX B : C/CH+ CODKE ... oo eecer s se e s ssnsmsmsm e smnenns 64
33 I 3 £:1 1 1 T <N TS 64
B.2 = BALANCE.C c.uuceererrennnneecreeenereereesessseccsssessnsssssssssssss 65
B.3 — Central.C (EXtraCt)..cccciccccssscssssensssicssssssssssnssssecsssssssssssssssssssssssssssssssesssssssssansns 87
APPENDIX C : SIMULATOR CENTRE OF MASS CODEcccceueeveneee. 88
APPENDIX D - CD.eiciiiiiiieiiiriiriiecesmsmssassssassassassasassassassassnsassassnssnsnnsnssnnsns 89
D.1 - MATLAB Code 89

List of Figures

FIGURE 1: GUROO SIMULATOR.......ccooiiiiiiiiiiieniceeeeeeeeee et 8
FIGURE 2: GUROO HARDWAREc.ccoiiiiiiiiiiiiciiceciesietceeeieeees 8
FIGURE 3: SONY'S ASIMO & HONDA’S SDR-4Xcoooiiiiiiiiiiieniieneeeeeieene 9
FIGURE 4: SUPPORT POLYGON FOR DOUBLE SUPPORT PHASE 11
FIGURE 5: INTERACTION OF THE SUPPORTING BASE WITH THE
GROUND SURFACE.......ccccooiiiiiiiiiiiieiieeteeeet et 13
FIGURE 6: STABILITY MARGINc.oooiiiiiiiieeeceee e 14
FIGURE 7: INVERTED PENDULUM OF A LEGGED SYSTEM [7]...ccccccecveueee. 15
FIGURE 8: GRAVITY COMPENSATION INVERTED PENDULUM [14]......... 16
FIGURE 9: ONE INVERTED PENDULUM AND TWO QUASI-STATIC
COUPLED PENDULUMS ..ottt 16
FIGURE 10: GUROO DEGREES OF FREEDOM AND JOINT COORDINATE
AXES e e e 24
FIGURE 11: MODEL OF A TYPICAL LINK.....ccccooiiiiiiiieceeeeeeeeeens 25
FIGURE 12: POSITION OF REFERENCE COORDINATE FRAME 26
FIGURE 13: GUROO CONTROL ARCHITECTURE.........cccoooiiiiiiiiiieeeens 27
FIGURE 14: 3D LINEAR INVERTED PENDULUM MODELccccccovienrnnne. 29
FIGURE 15: FREE BODY DIAGRAM OF AN ARBITRARY LINK 32
FIGURE 16: SOFTWARE SEGREGATION.......ccccociiiiiiiiiiiiiiiiiciiciccee 36
FIGURE 17: BALANCE SYSTEM BLOCK DIAGRAM........c.coccviniiiiiiiiieeee 37
FIGURE 18: METHOD FOR DETERMINING THE SUPPORTING BASE......... 39
FIGURE 19: SIMPLIFIED MODEL FOR CALCULATING C.O.M...........cc..c...... 41
FIGURE 20: CALC_COM() BLOCK DIAGRAMcccociviiiiiiiiiiiiiciiciceece 42
FIGURE 21: SIMULATOR C.O.M MODEL BLOCK DIAGRAM..........c..cceeneeee. 43
FIGURE 22: SIGN-BASED CONTROL LAW FOR BALANCE ATTITUDE......45
FIGURE 23: SEQUENCES OF IDEAL AND PREDICTED SUPPORT PHASES
FOR THE DYNAMIC WALKING GAITcccccoiiiiiiiiiiiiiiiiiiiicicciee 47
FIGURE 24: 3D C.O.M. PLOT IN MATLABcccciiiiiiieeeeeeeceeee e 49
FIGURE 25: EVALUATION OF C.O.M. MODEL.........cccceeviiiiiiiniiniiiiniine, 50
FIGURE 26: C.O.M. LOCATIONS FOR WALKING GAITcccccovviniiiiiinen. 52
FIGURE 27: LOCATION OF THE ZMP FOR THE DYNAMIC WALKING GAIT
... 54
FIGURE 28: DESIRED JOINT VELOCITIES SPECIFIED BY THE ATTITUDE
CONTROL SYSTEM ..ottt 55
FIGURE 29: STABLE POSITION OF THE GUROO........cccccccocviviiiiiniiiiiienn. 56

Vi

List of Tables

TABLE 1: BALANCE CONTROL CRITERIA........cccoeiiiiiieeeeeeeeeee 11
TABLE 2: MDH PARAMETERSccoiiiiiiiiiiiceecee e 26
TABLE 3: BALANCE SYSTEM SOFTWARE FUNCTIONScccoooiiiiiiinen. 37
TABLE 4: STANDARD DEVIATION OF C.O.M. COMPARISONcccccc...... 51

vii

Chapter 1

Introduction

The purpose of this chapter is to give a brief introduction to the concept of
Humanoid Robots and Active Balance Control. Motivation for the use of such
robots is discussed and the concept of the RoboCup competition is introduced.

Finally, descriptions of the outcomes and achievements for this thesis are given.

1.1 Humanoid Robots

Potential for the use of humanoid robots stems from the belief that machines of
human-like dimensions are capable of easily adapting to human living
environments. With the publishing of Rodney Brooks’ behavioural-based approach
to robot intelligence in 1985, the realisation of such useful mobile robots has

significantly increased.

Bipedal walkers have significant advantages over conventional wheel-based robots
because their mechanical design allows for better mobility. Dynamic control, and
the ability to lift a support point off the ground gives a robot the ability to move
over rough terrain and negotiate obstacles more easily than traditional statically
stable walking machines. However, with the advantage of increased mobility
comes the significant problem of stability problems - an issue that needs addressing

through high levels of analysis and computation.

Currently, 49 major humanoid projects exist around the world [1], and many

different approaches have been adopted in regards to robot design. The approaches

vary from predominantly behavioural and interactive designs, to sophisticated
platforms used for the development of joint control, trajectory analysis, vision

systems and dynamic balance control.

The purpose of the University of Queensland “GuRoo Humanoid Project” is to
build an anthropomorphic robot that will be competitive in the humanoid league

division of the annual RoboCup Competition.

1.2 RoboCup Competition

The concept of an annual RoboCup Competition originated from an idea proposed
in Japan at the “Workshop on Grand Challenges in Artificial Intelligence” in 1992.
The first official RoboCup games and conference was held in 1997, and is now

recognised as the world’s largest mobile robot event [2].

The competition, based around the sport of soccer, aims to “promote robotics and
Al research” by offering a “publicly appealing, but formidable challenge.” The

vision proposed by the competition organisers is:

“By the year 2050, develop a team of fully autonomous humanoid robots that can

win against the human world soccer champions.” [2]

To realise this vision, a humanoid must first be developed to demonstrate reliable
speed, strength, intelligence and balance control. The aim of the University of
Queensland’s GuRoo team is to develop a robot capable of competing in the solo

division of RoboCup’s humanoid competition.

In 2002, the competition involves three challenges:
1. Standing on One Leg
2. Humanoid Walk
3. Penalty Shot

1.3 Walking Algorithms and the Difficulty of
Dynamic Balance Control

Biped walking algorithms can be distinguished as being either static or dynamic.
The distinction is made depending on the location of the centre of mass during
motion. For static walking, the centre of mass is always located above a polygon
created by the external boundaries of the leg base (see section 2.3.1). The biped

will remain statically stable if it is paused at any time during its motion.

Dynamic walking is generally much faster than static walking. In dynamic walking,
inertial effects are considered, and it is possible for the centre of gravity to be
outside the supporting base area. Human walking patterns are considered to be
dynamic and exist as a series of “calculated falls” from one supporting foot to the

next.

Traditionally, robots have maintained stability throughout their motion by
maintaining at least three points of contact with the ground at all times. Since
bipedal machines have only up to two points of contact with the ground, they must

maintain stability through alternative means.

To gain insight into the methods of approaching balance control for a humanoid, the
balance behaviour of human beings can be investigated. While walking or at
standstill, humans attempt to remain stable by initially adjusting the distribution of
pressure exerted by their feet. If the pressure application is not adequate for
maintaining stability, the centre of gravity can be altered by performing a structural

movement or by talking a step.

The balance behaviour of human beings is recognised as being the complex result of
powerful and adaptive processes made in the brain (central processor), incorporating
feedback from an extensive nervous system. The nervous system continually
provides the brain with information from numerous sources through nerve impulses
(messages). The information considered is provided from the eyes, inner ear, and

the muscles of all body parts including the soles of the feet.

The design of a reliable and effective balance control system for a dynamically
stable robot is an extremely difficult process. Designing a suitable model of the
human balance system involves high levels of computation and control. Only few
of the existing worldwide humanoid projects are able to adapt to adverse
disturbances. Those that can, extensively rely on feedback systems from gyroscopic

motion sensors and force-sensitive touch sensors.

1.4 Motivation

Motivation for the production of humanoid robots is a result of the recognised
potential for their use in society. A robot of human-like dimensions would be
capable of both interacting with human beings and also moving within human-based

living environments.

Traditional robots exhibiting statically stable behaviours, such as wheel-based and
frame-based machines, often have trouble traversing uneven terrain. Dynamically
stable machines such as bipeds and humanoids, are much more versatile,
demonstrating the ability to traverse uneven terrain through adaptive behavioural

approaches.

The underlying goal in humanoid research is to develop a robot that is able to
coexist with humans, while at the same time offering the ability to complete tasks
that are classified as being either impossible or undesirable for humans to perform.
Ideally, a humanoid robot offering the most additional value to society would offer
a wide range of benefits, and not just specialised operations such as the vacuum

cleaning robots that currently exist.

An obvious benefit for the development of humanoid robots is their usefulness in
“search and rescue” and “decontamination” situations. Search and rescue robots
have already been used in various major world events such as the World Trade

Centre, Chernobyl, and the Three Mile Isle clean up. Further developments of such

robots will inevitably reduce the requirements for fire-fighters, policemen and other

emergency workers to risk their lives.

1.5 Project Outcomes and Achievements

The main goal associated with this thesis was the design and implementation of an
active balance control system that would enable the GuRoo to remain upright
despite adverse disturbances. Such disturbances included external forces and

uneven terrain.

The scope of the thesis involved the initial design of software and inertial systems,
comprehensive testing through simulation, design implementation and results from
real hardware. With limited resources and time available, it became evident that the

scope was largely overestimated.

A successful design was developed, simulated and evaluated. The proposed design
forms a solid platform that will form the basis of further testing, development and

implementation on real hardware.

1.6 Chapter outline

The remainder of this document is divided into 7 chapters. A description of the

contents of each chapter is as follows:

Chapter 2 - Introduces relevant information within the field of study. The GuRoo
is introduced, as are other humanoid projects around the world. Key concepts

regarding Balance Control are defined and stability criteria specified.

Chapter 3 - Describes the specifications involved with the thesis project. It
illustrates how the project design was broken into stages, and describes the way in

which specifications were derived.

Chapter 4 - Gives a description of the mechanical design of the GuRoo. The
assumptions proposed for modelling the system are described, and the feedback

from the control architecture is illustrated.

Chapter 5 - Discusses the mathematical models and concepts used in the design of

the active balance system.

Chapter 6 - Describes how the proposed balance control system is implemented in

software.

Chapter 7 - Illustrate the success of the project with respect to the criteria outlined
in Chapter 3. The criteria used for the evaluation of each model are specified and

the results discussed accordingly.

Chapter 8 - Reflects on the goals of this thesis and the extent to which they were
achieved. Suggestions for future developments of the balance control system are

also described.

Chapter 2

Literature Review

This purpose of this chapter is to introduce relevant information within the field of
study. It introduces the University of Queensland’s GuRoo project, and then briefly
describes other humanoid projects around the world. Key concepts regarding

Balance Control are defined and stability criteria specified.

2.1 Previous Work (GuRo0)

The University of Queensland’s GuRoo humanoid project is currently in its second
year of development. In 2001, a mechanical design based on human-like
proportions was developed. The individual design and implementation of power,
vision and joint controller systems was also initiated. The DynaMechs Simulator,
developed by McMillan [3] was adapted and successfully used to simulate the
distributed control structure of the GuRoo. Smith [4] successfully demonstrated

various structural movements such a 0.03ms™ static walking gait (Figure 1).

In 2002, work began with all robot hardware being constructed and debugged.
Development and implementation of high- and low-level software has been

demonstrated through successful control of the real robot (Figure 2).

: - Pcreanit el ST
3B Gt e Joesd Bt Bl Took Wiode Hep |2 x|

I e Pk G e —

[0

=]

B canc
1N) el =
1) el runkc la - (3. SFT-L30})
) ioctinarc igLel
ngle + (3. SeFLAL80) 030

Lo T4 Col

Figure 2: GuRoo Hardware

2.2 Other Humanoids in General

Humanoid development is a relatively new field in robotics research and few results
are publicly recognised. The most publicised humanoid robots are Honda’s
“ASIMO” and Sony’s “SDR-4X”. These robots illustrate the forefront in humanoid

technology, particularly in the areas of active balance control.

Honda’s ASIMO robot (Figure 3a) [5] is 120cm in height and was originally
conceived to function in an actual human living environment. It has the ability to
walk continuously and smoothly while changing direction, and can travel at up to
0.44m/s. By predicting it’s next movement in real time, ASIMO shifts its centre of
gravity in anticipation of its path. For balance control, ASIMO uses gyroscopic and

accelerative sensors in the torso, as well as 6-axis foot area sensors.

Sony’s “SDR-4X” (Figure 3b) [6] is a small biped robot measuring 50cm in height.
It is able to walk at 0.33m/s as well as demonstrate basic movements such as
walking and changing direction, standing up, balancing on one leg, kicking a ball
and dancing. Its movement allows it to walk on irregular surfaces and in the

presence of external forces. For feedback regarding posture and position control it

uses acceleration sensors in the torso, and four power sensors on each foot.

Figure 3: a) Sony's ASIMO (left)
b) Honda's SDR- 4X (right)

2.3 Description of Existing Humanoid Balance
Systems

Humanoid robot design and bipedal locomotive control are currently two of the
most challenging fields in robotic research. While some of the currently existing
humanoid projects exhibit very reliable dynamic biped walking (such as Honda’s
ASIMO and Sony’s SDR-4X), none are capable of exhibiting adequate responses to
sudden interactions with unknown disturbances, or to unexpected decisions such as

emergency “stop” or “avoid” [7].

Previous works in motion generation of humanoids can be classified into two

categories [7]:

Trajectory replaying — A joint-motion trajectory is prepared in advance, and applied
to the real robot with little on-line modification. The problem is divided into

two sub-problems: planning and control.

Real-time Generation — Joint-motions are generated in real-time. The present state
of the system is fed back to the controller and considered with the pre-
provided goal of the motion. Planning and control and executed in a unified

manner.

In pursuing the development of a highly-mobile robot, the technique of real-time
motion generation offers the greatest amount of potential. However, due to the
large amounts of computation required, adequate responses to sudden disturbances

such as those mentioned are not yet realizable.

2.3.1 Defining Key Concepts

In considering stability conditions and the control of balance in biped locomotion,
several dynamic-based criteria have been defined. The criteria most commonly

used are the Centre of Pressure (C.0.P.), Zero Moment Point (Z.M.P.), Foot

10

Rotation Indicator (F.R.I.), and the Ground Projection of the Centre of Mass
(G.C.0.M.). These terms are defined in Table 1.

Term Definition

The point on the foot / ground contact surface where the net
Centre of Pressure (C.o0.P.))
ground reaction force actually acts.

] The point on the foot / ground surface where the total forces and
Zero Moment Point (Z.M.P.))
moments acting on the robot are zero.

)) The point on the foot / ground contact surface, within or outside
Foot Rotation Indicator

(FRL) the support polygon, where the net ground reaction force would

have to act to keep the supporting base of the robot stationary [8]

o The point on the foot / ground contact surface directly below (in
Ground Projection of the

the direction of gravitational acceleration) the location of the
Centre of Mass (G.C.0.M.)

centre of mass of the robot.

Table 1: Balance Control Criteria

If ideal conditions are considered whereby neither the foot nor ground can deform

under load, the C.o0.P. and Z.M.P. locations will always coincide.

The support polygon of the robot is defined as the area of physical interaction
between the robot and the ground surface. During single-support phases, it is the
area of the supporting foot, and during double-support phases it is defined as the
polygon created by the boundary of the two feet. The case of a double-support
phase is shown in Figure 4.

Support Polygon

created by the feet of
the robot

Figure 4: Support Polygon for Double Support Phase

11

2.3.2 Defining Stability Conditions

The concepts defined in section 2.3.1, are used to develop a general set of

conditions, which can be used to describe the stability of an arbitrary biped robot.

When a robot is in a statically stable state, there are no inertial forces present.
During such phases, the CoP, ZMP, FRI and GCoM points are all located within the

support polygon and have coincident locations.

If the state of the robot is considered static, but is in an unstable state, the FRI and
GCoM points are coincident and located outside the supporting polygon of the
robot. During these states, the CoP is located at the boundary of the supporting
base. By definition (Table 1), the physical constraints associated with the

supporting base prevent the CoP from leaving the boundary at any time.

In dynamic situations where the motion of the robot needs to be considered, the
GCoM is non-coincident with the FRI or ZMP. This is a direct result of the inertial
forces associated with the link masses. If the FRI point is situated within the
support polygon, it is coincident with the CoP and ZMP, and the robot exhibits
postural balance. If at any time during motion, the FRI and ZMP are located
outside the boundary of the support polygon, the robot will be dynamically unstable.
The reason for this principle is derived from Figure 5, which shows a 2-dimentional

view of the foot in the x-z plane.

The moment experienced by all points on the ground surface is linearly proportional
to the distance of the point from the ZMP (or FRI). The arrow lengths in Figure 5
indicate the magnitudes of the moments. By considering moments taken about
point b, a point on the boundary of the supporting base, the stability of the robot can

be visualised.

12

F,
il
lzm 1 1 1 JL
a b =
L)
Fr
(a)
i
i
™y

Figure 5: Interaction of the Supporting Base with the Ground Surface

In Figure 5a, the reaction force (F,), counteracts the resultant moment due to the

rotation of the robot, and the robot is dynamically stable. If the robot rotates about a
point outside the support polygon (as in Figure 5b), the reaction force cannot
compensate for the resultant moment about the ZMP and the supporting base will be

either pushed into the ground or lifted from it. The result is an unstable pose.

The Stability Margin is a measure of the quality of stability, and is defined as the
minimum distance between the location of the ZMP (or FRI) and the boundary of
the support polygon [9]. If the stability margin is Aigh, the robot is dubbed to have
high stability. The concept of stability margin is shown in Figure 6.

13

ZMP ar

FI?I. //’

Stakility Margin
2 b ¥

Support Polygon

Figure 6: Stability Margin

2.3.3 Review of Methods of Balance Control

Many researchers have worked on various methods for generating motion
trajectories and stabilizing systems for biped walking robots. Most of the existing
systems aim to maintain stability by considering the relative position of the ZMP
with the support polygon, and by defining compensating motions for the robot

upper body.

Park et al. [10] presented a ZMP trajectory control scheme which was determined
using fuzzy logic on the leg trajectories. The trunk and swing leg motions were

compensated to stabilize the locomotion.

Fukuda et al. [11] used touch sensors on the feet of the robot to obtain the actual
ZMP trajectory. The joint motion was then determined using recurrent neural

networks with the constraint that the ZMP could move out of the support polygon.

A common model used in existing balance control systems is that involved with

manipulating the motion of an inverted pendulum.

2.3.4 Inverted Pendulum Modes

Kajita et al. [12] introduced the Three-Dimensional Linear Inverted Pendulum
Mode (3D-LIPM) which is a simplified model for a biped robot. The model was
derived from a general three-dimensional inverted pendulum whose motion was

constrained to move along an arbitrarily defined plane [12]. The model allows for

14

the separate controller design of sagittal (x-z) and lateral (y-z) motion, significantly
simplifying the analysis of dynamic motion. The inverted pendulum model consists
of a point mass and a massless telescopic leg extending from the centre of the

supporting base to the location of the centre of mass of the robot (Figure 7).

X

inverted pendulum biped legged system

Figure 7: Inverted Pendulum of a Legged System [7]

For a humanoid robot, Li et al. [13] considered the model to be composed of two
separate moving masses — one representing the torso and the other representing the
legs. Motion generation specific to the surface structure of the ground was pre-
determined, while the motion of the torso was adapted in real-time to ensure
postural stability. For traditional biped robots, the absence of a torso allows the
mass distribution to be modelled as a single point mass. Stability is then maintained
by relying on the overall motion of both the supporting leg and the swinging leg.
The inverted pendulum model proposed by Kajita et al. [12], consisted only of a

concentrated mass at the torso and neglects the inertial effects of the legs.

An extension to the basic 3D-LIPM was developed by Jong H. Park et al. [14], who
developed a model called the “Gravity Compensated Inverted Pendulum Mode
(GCIPM)”. The model included the predetermined effects of the dynamics of the
free (swing) leg on the ZMP by modelling the robot as two separate inverted
pendulums. The concept is shown in Figure 8 [14]. The model assumes that the

swing leg consists of mass concentrated at the location of the foot, and that its

15

dynamics are dominated by gravitational acceleration. In this sense, only the static

effect of the swinging leg is considered.

Z

~

X

Figure 8: Gravity Compensation Inverted Pendulum [14]

Caballero et al. [15] developed a further extension that was applicable to humanoid
robots. The model represents the robot as one inverted pendulum and two quasi-
static coupled pendulums. Using ZMP stability theory, this model was successfully
used to generate stable geometric gaits. The sagittal plane model of the pendulums

is shown in Figure 9 [15].

FH 8 sl T Ll

Figure 9: One Inverted Pendulum and Two Quasi-Static Coupled Pendulums

16

A. Albert and W. Gerth [16], then proposed two models which considered the

dynamic effects of the swinging leg. The models are as follows:

Two Masses Inverted Pendulum Mode (TMIPM) — Robot consists of two masses —
one mass representing the torso, and one mass representing the swinging leg.
The complete dynamic effect of the swinging leg is considered for the

generation of the torso motion.

Multiple Masses Inverted Pendulum Mode (MMIPM) — Robot consists of many
masses - one mass representing the torso, and an arbitrary number of masses
modelling the swinging leg. The foot motion of the swinging leg is pre-

defined, and all other trajectories are calculated iteratively.

17

Chapter 3

Specifications

This chapter describes the specifications involved with the thesis project. It
illustrates how the project design was broken into stages, and describes the way in

which specifications were derived.

3.1 Introduction

The project objectives can be divided into two stages:
1. Preparation of the GuRoo for the Solo Competition in the Humanoid
Division of RoboCup 2002

2. Further development of an Active Balance Control System

Only the development of the Balance Control System is documented in the

remaining chapters of this thesis.

3.2 Preparation for RoboCup

The first primary objective for the entire GuRoo team was to adequately develop the

robot for competition in RoboCup 2002.
The Solo Competition of the Humanoid Division involved three challenges [2]:

1. Standing on One Leg - Robot shall remain stationary and stable for 1 minute

while standing with one leg raised.

18

2. Humanoid Walk — Robot is to walk 6m in a straight line, around a red
marker, and then back to the starting line.
3. Penalty Shot — Robot is to walk 1.8m and then kick a ball 3.6m into a 2.4m

wide goal

The ability to successfully accomplish all of these challenges relied on the adequate
completion of all humanoid subsystems including the development of a walking
gait, balance control, vision system, joint control, and hardware design and

implementation.

The preliminary work required in forming a basic platform for the development of
higher order systems involved:

e Modifications of the Simulator to reflect new hardware proposals

e Restructuring of the Simulator

e Assembly and Debugging of Hardware

e Debugging of Software

e Generating various Motion Trajectories for the GuRoo

The success of the work completed in this stage can be evaluated by assessing the
performance of the GuRoo in the RoboCup Competition. All work required

completion by the date of departure on 14™ June 2002.

3.3 Development of an Active Balance Control
System

With the tasks of section 3.1 completed, a basic platform suitable for the

development of higher order systems such as Active Balance Control was created.

The development of the Balance System was broken into the following stages:
e Research Current Balance Control Methodology
e Develop and Test a method for determining the Supporting Base of the
Robot

e Develop and Test a Centre of Mass Model

19

e Develop and Test an Attitude Control Algorithm

The testing phases involved two stages:
1. Simulator implementation and testing

2. Real Hardware implementation and testing

3.3.1 Research of Balance Control Methodology

Outcomes
e Complete Understanding of GuRoo Software

e Familiarity with current humanoid balance control technology

3.3.2 Supporting Base Model

Outcomes

e Determine the points of contact of the robot with the ground at all times

Depends on
e Feedback of Joint Positions

e Foot Pressure (force-sensitive) Sensors

Evaluated by

e (Comparison of model output with ideal results predicted from trajectory

analysis

Desired Results

e Model accurately reflects the interaction of the robot with the walking

surface for unspecified movements
e Since this system is crucial to the overall success of the balance system,

correct results regarding the support state are desired for ~100% of the time

20

3.3.3 Centre of Mass Model

Outcomes

e Determine the coordinates of the location for the centre of mass of the robot

Depends on
e Supporting Base Model
e Accuracy of Hardware Model

e Feedback of Joint Positions

Evaluated by
e Comparison of model with approximated results obtained statically from
solid edge

e Comparison of model with results obtained directly from simulator

Desired Results
e Model accurately determines the location for the centre of mass of the robot.

e The required accuracy of this model is 90%

3.3.4 Attitude Control

Outcomes

e Method for defining structural movements that maintain stability

Depends on
e Supporting Base Model
e Centre of Mass Model
e Gyroscopes / Accelerometers
e Foot Pressure (force-sensitive) sensors
e Joint Control
e Vision System

e Processing Speed of central controller

21

Evaluated by
e The extent to which the robot can resists adverse disturbances
e The smoothness of joint motion

e Minimum load torques at each of the joints

Desired Results
e Robot can perform simple movements, resist external forces and compensate
for inaccuracies such as backlash in the gearboxes

e Robot can demonstrate smoothness and stability while walking

The measure of success for the Attitude Control system is not quantifiable.

The feasibility of having an active balance control system implemented in hardware
relies on the accuracy of the developed models and is also dependent on work of
other team members. The adequacy of other humanoid subsystems such as joint

control will be essential.

22

Chapter 4
Analysing the Hardware

The purpose of this chapter is to give a description of the mechanical design of the
GuRoo. The assumptions proposed for modelling the system are described, and the

feedback from the control architecture is illustrated.

4.1 Mechanical Design

The mechanical design of the GuRoo consists of 24 rigid body links and 23 actuated
revolute joints. The frame of the robot is made from machined aluminium and
weighs 38kg in total. It consists of a centre body (torso), connecting a head and
neck to four separate limbs - two legs and two arms. The distribution of the degrees
of freedom (DOF) throughout the robot is given in Figure 10. A detailed

description of all link parameters is given in Appendix A.

23

Y
7
g . 85
249—'[
Y
y X
X
1 -

Global
Coordinate
Frame

Y

X

Figure 10: GuRoo Degrees of Freedom and Joint Coordinate Axes

24

In analysing the mechanical structure of the robot, each rigid body link needs to be
considered separately. By doing this, all inertial forces can be considered and their

dynamic effects on the motion of the robot adequately modelled.

A typical link is shown in Figure 11. In the analysis that follows, the distribution of
mass of the link is considered to be solely concentrated at the location of the centre
of mass. With this approximation, a link is defined as a rigid connection between
coordinate frames and a point mass located somewhere between these frames. The

reference frame for each link is located at the centre of the proximal joint.

Figure 11: Model of a Typical Link

The base referential coordinate frame of the robot is located at the centre of the
robots supporting base, and changes as the state of the robot changes. For single
foot support phases, the reference frame is located at the centre of the base of the
grounded foot. For double foot support phases, the reference frame is located at the
centre of the polygon formed by the boundaries of the feet. The position and

location of the reference coordinate frame is shown in Figure 12.

25

Figure 12: Position of Reference Coordinate Frame

Maxon RE32 series dc motors with 156:1 planetary gear heads are used for
actuation of the lower limb and torso joints. The upper limb, neck and head joints

are actuated using Hi-Tech HS705-MG RC servo motors.

Each link, defined as a transformation between coordinate frames, is described
using either a combination of rotational and translational transformations, or by the
Modified Denavit-Hartenberg (mdh) parameters. The mdh-parameters are defined
in Table 2 [17]:

Description = mdh Parameter Definition

The offset distance between the z, | and z; axes along the
Link Length a,)
X, axis
. . The angle from the Zz, , axis to the z. axis about the Xx.
Link Twist a,; . & -1 8% P ax Y i
axis
The distance from the origin of frame i —1 to the X, axis
Link Offset d, .
along the z, | axis
Joint Angle 91' The angle between the X, , and X, axis about the z, | axis

Table 2: mdh Parameters

26

The mdh-transformation matrix is then given by:

cosf, —sinf cosa, sind sina, a,cosd,

i sind. cosf. cosa; —cosd sina, a,sinb,
1o sinq; cosa, d,
0 0 0 1

4.2 Distributed Control Network

The control architecture of the GuRoo is shown in Figure 13. It consists of six
distributed joint controller boards and either an iPAQ or Laptop. The central
controller on the iPAQ generates desired joint velocities for each of the actuators in
real time, and sends these via a 50Hz serial link to servo controller board. The
servo board then distributes the messages among the five DC motor boards via a

Controller Area Network (CAN) bus.

Vision
Processor
F Y
Peripheral
Port
Y
Central IPAQ/ Serial
Control Laptop [+
CAN Bus
Y Y Y Y Y Y L
Controller Controller Controller Controller Controller]
Board 1 Board 2 Board 3 Board 4 Board 5 Board 6
Right Ankle Left Ankle Right Hip Left Hip Torso Head,
and Knee and Knee Neck and
Torso

Figure 13: GuRoo Control Architecture

The only information available regarding the current state of the robot is the actual

position of each actuated joint. On each board, this is achieved using two external

27

quadrature decoders and an internal quadrature decoder on the TMS320F243 Digital
Signal Processor (DSP) to read the 500 count per revolution optical encoders
coupled to each motor. The actual position data is then fed back to the central
controller via the serial link. The data is in the units of encoder counts per control
loop, and needs to be converted to radians by first integrating the velocity and then

applying the ENC2RAD() function [18].

28

Chapter 5
Mathematical Models

This chapter discusses the mathematical models and concepts used in the design of
the active balance system. Specifically, the concepts derived are:
e The Linear Inverted Pendulum Model

e Zero Moment Point

5.1 Linear Inverted Pendulum

The 3D Linear Inverted Pendulum model is shown in Figure 14.

Figure 14: 3D Linear Inverted Pendulum Model

29

The following discussion is based on the research performed by Kajita et al. [12].
The position of the point mass, M, is specified by a set of state variables,

(9 0 r) related to the Cartesian coordinates by:

roll > ™ pitch >

x=rsiné,.,

y=-rsinf

roll

z=r \/ 1= (Sin 0,1)2 - (Sin 0 ich)2

If %ou, Thieen and fare the actuator torque and force associated with these state

variables, then the equation of motion is given by:

Tmll O
m y = (JT)_l T pitch + 0
Z f —mg

In the above equation, the Jacobian J is given by:

0 rcosd,.., sin @,
p

J =
oq

—rcosé., 0 —sind

roll
—rcosd,, sing,, /D —1 080, S0, /D D

pitc,

The following equations can then be derived for the dynamics of the pendulum:

L D
m(_Zy‘f‘yZ):me” —mgy

roll

D

cos Hpm,h

m(zjc' — xé) = T e +MEGX

If the motion of the pendulum is limited to motion in the horizontal plane, the

following equations for the motion can be derived,

30

5.2 Zero Moment Point

The concept of the Zero Moment Point (ZMP) was introduced in section 2.3.1. For

convenience, its definition is repeated here:

“The Zero Moment Point (ZMP) is the point on the ground surface about which the

sum of all the moments of active forces is equal to zero.” [9]

Mathematically, it can be defined as:

ZiMi [19]
>

ZMP =

where,

ZiM ; represents the resultant moment about the ZMP

Z,Fi represents the resultant force exerted at the foot from the ground

Given a state vector defining a set of joint angles for the GuRoo, the location of the
ZMP can be computed using inverse dynamics. Link transformation matrices can
be used to determine the position and orientation of each link with respect to the

global coordinate frame.

The robot is treated as a general i-segment extended rigid-body kinematic chain.
For dynamic situations, the external forces acting on each link of the robot are the
gravitational, inertial and reaction forces. A free body diagram illustrating the
forces and moments acting on an arbitrary link is shown in Figure 15. Point P is an

arbitrary point on the ground surface.

31

Pitch

P |
Figure 15: Free Body Diagram of an Arbitrary Link

According to D’ Alembert’s principle the total of all forces and moments acting on
the robot is zero. Using this principle, and recognising that each body segment
contributes to the net moment at the foot, all possible moment contributions about

point P are considered.

The moment contribution (M) due to the acceleration of P in the reference

coordinate frame is given by:

n n

(b =, pemi,)

(il =, i,)=

1
M =—
m - i=1

c

From the application of simple dynamics and vector addition, the total ground

reaction force (F.) is given by the combination of inertial and gravitational effects:

n

F = (E +mi(g—fp))=zn:mi('r¥ +g‘fp)

i=1 i=1

32

The action of this force causes a ground reaction moment (M,) about point P given

by:
M = (]/'l'_rp)Xmi(i/:i+g_i;p)

The total inertial moment (M,) of the link masses due to rotational motion is:

n n

M ZZ(Mi): [Ii.a.)i—'_a)ixli'a)i]

The moment contribution (A,) due to the action of external forces (f,) is given

ext

by:

M,, :_ZMj _;(”k _rp)xfk

The total moment (M ,) about point P, given by the sum of these moment

contributions, is then:
M,=M_+M +M,+M,,

An assumption is made that the coefficient of static friction between the foot and the
ground surface is sufficiently large so that the foot of the robot does not slide. The

acceleration vector r, will then be zero, and since no additional external forces are

present, the resultant moments M,, and M, will be zero.

The total moment about point P then becomes:

M,=M +M, =Zn:(ri —rp)xmi(fi +g)+ n [I,. 0, +; %1, -a)l.]

i=l i=1

33

At the location of the zero moment point, the resultant moment, M ,, ., will be:

0
MZMP =1 0

Since the ZMP is restricted to be on the walking surface (ground plane), the z

component will be zero and it’s location is given by:

X zup X zup
Foup = Vaup | = Vzup
Z 7mp 0

The above equation for moments about P can then be solved to give the location of

the zero moment point with respect to the reference coordinate frame O:

zmi(.z.i +g)xi _zmijéizi _Z(My),-
_ =l i=1 i=1
Zmi(éi +g)
i=1

xZMP -

n

zmi(.z.i +g)yi _Zmij}i i _Z(Mx)i
i=1 i=1 -1
zmi(éi +g)
i=1

Youp =

By rearranging these equations, the vertical ground reaction force F_ can be

isolated:

34

Zn:ml_(iiJrg)xi Zn:ml‘jéizi Z(My)i
i=1 =1

F F F

rz rz rz

Xzmp =

Zmi(éi-i_g)yi zmij}izi Z(Mx)i
i=1 _ =1 _ i=1
F F F

rz rz rz

Youp =

Shih et al. [20] showed through the analysis of various biped motions that both

M and M are of much less magnitude that the vertical ground reaction force, F).

For this reason, the final terms in the above equations can be neglected.

The ZMP locations are then given by:

n n
zmi (Zi + g)xi - Zmixizi
i=1 i=1

Xomup = "
zmi(éi +g)
i=1
Zmi(éi +g)yi _Zmij}izi
Yap = = =

Zmi(éi +g)
i=1

35

Chapter 6
Software Design and

Implementation

The purpose of this chapter is to describe how the balance control system is
implemented in software. Where applicable, flow-charts and block diagrams are

used. Entire code listings are included in the Appendices.

6.1 Introduction

The segregation of software at the simplest level is depicted in Figure 16. The high
level code responsible for gait generation, balance control algorithms and data

logging is implemented on the system’s central processor.

Robot / Simulator iPAQ / Laptop
Low Level code for High Level code for
CAN communication « » Gait Generation and

and Joint Control Balance Control

Figure 16: Software Segregation

The basic structure of the balance control system is shown in Figure 17. It consists
of three main modules interacting with the low-level joint controllers via a 50Hz

serial link. The primary functions involved with each of the modules are described

36

in Table 3. Detailed descriptions regarding the software implementations are given

in the proceeding sections.

Yy

Determine the

Balance System

Supporting
Base

Calculate

"|Centre of Mass

C.o.M.
Location

Attitude
Control

Actual Joint
Positions

50Hz Serial Feedback

Figure 17: Balance System Block Diagram

Position
Controllers

Desired Joint
Positions

get _support (void)

Determines the supporting base of the robot

cal c_com (bal _state)

Calculates the centre of mass of the robot with respect

to the centre of the supporting base

bal ance_attitude (bal state)

Specifies the desired joint velocities required for

dynamic stability. Uses ZMP criteria.

Table 3: Balance System Software Functions

6.2 Initialisation and Matrix Transformations

The balance control code is primarily located in the file bal ance. ¢ within the

GuRoo humanoid dual workspace. Since the balance code involves a high level of

mathematical computation, efficiency was a large factor influencing the structure of

the code.

37

Aninit_bal ance() function is called during initialisation of the GuRoo from
the mai n() function of humanoi d. cpp. The purpose of the function is to
permanently allocate memory blocks to the storage of 4x4-transformation matrices
of type double. This is accomplished using the mal | oc library function. The
memory locations are constantly accessed throughout the balance code and used for
the mapping of points between link coordinate frames. @ Commonly used
transformation matrices such as rotation by 90°, 180° and 270° about the x, y, and z-

axes are also calculated and permanently stored in memory.

At the completion of execution of the robot, the end_bal ance() function is run

to free the allocated memory blocks.

A series of mat _rmul t () functions used for the multiplication of matrices have
also been developed. The arguments passed to the functions are pointers to desired
output memory locations, as well as pointers to the location of the input matrices.

The functions are capable of efficiently multiplying up to four 4x4 matrices.

A full code listing of the functions is shown in Appendix B.

6.3 Determining the Supporting Base

In determining the supporting base of the robot, it is assumed that at all times, the

robot is orientated in a stable position with at least one foot flat on the ground.

At any time, the supporting base is defined as one of the following three states:
e Right foot on the ground
e Both feet on the ground

e Left foot on the ground
With the absence of foot pressure sensors and global feedback on the GuRoo there

is no way of determining the exact orientation of the robot during motion. The

current state of the robot with respect to its interaction with the ground can only be

38

estimated through analyse of the joint positions. For this reason, it is only possible

to develop a rather crude model.

The proposed method for determining the supporting base of the robot relies solely
on analysing joint angles to determine the displacement of each foot with respect to

a point at the hips of the robot. The principle is illustrated in Figure 18.

if (length_R_leg > Balance State =
(length_L_leg + THRESH)) Yes RIGHT_SUPPORT
No
Y
if (length_L_leg > Yes Balance State =

(length_R_leg + THRESH)) > LEFT_SUPPORT

No

Balance State =
BOTH_SUPPORT

Figure 18: Method for Determining the Supporting Base

An assumption was made that at any given time, the supporting leg is defined as the
one with the largest magnitude for the foot displacement vector. A threshold was
defined for the minimum allowable difference in distances for single-support phase.

Through experimentation, the threshold was selected to be 0.035. If the difference

39

between the leg lengths is less than the threshold, the robot is defined as being in the
double-support phase.

A flowchart describing the method is illustrated in Figure 18. A full code listing of
the get _support () function is given in Appendix B.

6.4 Centre of Mass

The function of this module is to determine the location of the centre of mass
(C.0.M.) of the robot with respect to the reference coordinate frame, which is
located at the centre of the supporting base. When determining the location of the
centre of mass, the actual position of all 23 actuated joints needs to be considered.
The calculations involved require tremendous amounts of computation, as
transformation matrices accurately modelling all link and joint parameters need to

be considered.

Two centre of mass models have been developed for the GuRoo:
1. Robot C.0.M. Model
2. Simulator C.0.M. Model

6.4.1 Robot Centre of Mass Model

The cal c_con() function calculates the location of the centre of mass of the
robot with respect to the reference coordinate frame. The function accepts one
argument defining the supporting base of the robot. The argument passed is the
result determined by the get support() function, and can be either
BOTH_SUPPORT, Rl GHT_SUPPCRT or LEFT_SUPPORT.

The calculation of the centre of mass with respect to a fixed coordinate frame for a
traditional chain-like structured robot is essentially a straightforward process. The
location of the centre of mass of each link can be determined by simple geometry.
Using the simplified model of Figure 19 in the x-z plane and then in the y-z plane,

trigonometric relationships are used to derive the following equations:

40

1 n n
Peoms =— | m;b,+ D _m,a, |cos6,

my i J=i+l

1 < .
Deom.y =—Z m.b. + Zm_/ai sind,

mp o J=itl

1 & n .
pcom,z :m_z m,'b,- + ijai Sln@i

T i=1 J=i+l

Figure 19: Simplified Model for calculating C.0.M.

Since the GuRoo’s mechanical structure is arranged in a star-like configuration, the
above equations cannot be directly applied in a single step. The presence of the yaw
joints in the legs and torso also add to the difficulty of the analysis since the motion
can no longer be easily mapped to planes. For these reasons, it is essential to use a

full analysis of rotational and translational transformation matrices as opposed to

41

simple trigonometric relationships to calculate the weighted mass contributions of

links.

To reduce the complexity of the system, the C.0.M. is calculated in two stages:
1. Determine the C.0.M. for the legs and waist

2. Determine the C.0.M. for the torso, head and arms.
These masses are then weighted and combined to give the overall C.0.M. for the

entire robot. The basic operation of the cal ¢_con{) function is shown in Figure

20. A full code listing is given in Appendix B.

calc_com()

4

Calculate CoM
mass locations for
each link wrt right

foot

A A

Determine CoM for
torso, arms and
head wrt right foot

Determine CoM for
legs wrt right foot

'

Determine CoM for
entire robot wrt
right foot

Translate CoM
No .| location according
to relative
positions of feet

Is balance_state
RIGHT_SUPPORT?

return CoM
location

Figure 20: Calc_Com() Block Diagram

42

6.4.2 Simulator Centre of Mass Model

The simulator model, developed with the assistance of C.S.H. from the University
of New South Wales, uses the dnRi gi dBody class of the DynaMechs Simulation
Library to extract the location of the centre of mass for each link from the simulator.
By summing the weighted contributions of the masses of each link, the location of
the C.o.M. is computed each time the UpdateSim() function of

humanoi d. cpp is run.

A flow-chart illustrating the basic operation of the get CentreO Gravity()

function is shown in Figure 21. A full code listing of the function is given in

Appendix C.
Calculate Centre of Mass
mi (xmm i + COmX)
comX = ————————=+comX
N getLink from getlnertiaParameters m;
dmArticulation 7 of link 7 k=0
m\y. . +comY
comY = M +comY
Z my
k=0
m\z . +comZ
comZ = M +comZ
Z my
k=0
while < num_links,
Get next Link ‘

Figure 21: Simulator C.0.M model Block Diagram

6.5 Attitude Control

The bal ance_attitude() function is responsible for defining the structural
movements required for maintaining stability. It does this by specifying desired

values for the velocity control of the relevant joints.

The location of the zero moment point is used to specify stability criteria. The

location of the ZMP was derived in section 5.2. For the GuRoo, it is given by:

43

23 23
Zmi (Zi + g)xi - Zmixizi
i=1 i=1

Xzmp = B
Zmi(éi +g)
i=1
23 23
Zmi(zi + g)yi - Zmij}izi
Yaup = = " =
Zmi(zi +g)
=1
Zyp =0

where,

m, is the mass of link i
(x, y,z) is the position of link i wrt the base reference coordinate frame
(%, 7, %) is the acceleration of link wrt the base reference coordinate frame

g is the acceleration due to gravity (9.81ms™)

Since the only information available regarding the state of the robot is the joint
angle position data, the acceleration of link masses needs to be estimated. By
updating the position data at each iteration of the 50Hz control loop, the

acceleration of link i can be determined by first determining its velocity as follows:

vel _com _x[i]= (pos _com _x[i]-old _ pos _comli])
CENTRAL _ SPEED

] _ (vel _com _ x[i] —old vel _ com[i])

acc _com x[i
B B CENTRAL _SPEED

where
CENTRAL_SPEED=1/50Hz=0.02s,

the time period for the control loop.

A simple balance scheme was developed to control the desired velocities sent to the

ankle joints. The velocities are defined depending on the position of the zero

44

moment point with respect to the centre of the supporting base. The design is based

around a simple sign-based control law, which is illustrated in Figure 22.

ankle_vel = 50

ankle_vel = -50

ankle_vel =0

Figure 22: Sign-based Control Law for Balance Attitude

This control algorithm is implemented in the sagittal (pitch) plane where the
ANKLE_FWD joints are controlled, and in the coronal (roll) plane where the
ANKLE_SI DE joints are controlled.

A full code listing of the bal ance_at ti tude() function is given in Appendix
B.

45

Chapter 7

System Evaluation

The purpose of this chapter is to illustrate the success of the project with respect to
the criteria outlined in Chapter 3. The criteria used for the evaluation of each model

are specified and the results discussed accordingly.

7.1 Determining the Supporting Base

As indicated in section 6.3, the accuracy of the model determining the supporting
base of the robot was greatly constrained by the limited amount of available state
information. Without the presence of foot pressure sensors and joint torque
feedback no definite conclusions could be made regarding the actual interaction of

the robot with the ground surface.

The suitability of the model can be investigated by comparing its results to that of
an ideal model. Figure 23 illustrates the ideal sequence of support phases for the
walking gait developed by Drury [18] and the sequence of support phases derived
from the proposed model of section 6.3 in the simulator. The ideal waveform was

determined from trajectory analysis.

46

Support Polygon for Dynamic Walking Gait —— Predicted from Model
— ldeal

T T T T
RIGHT SUPPORT - T —_— — |

BOTH SUPPORT — -

Support Phase

LEFT SUPPORT |- (A Ll (. L1 |

| | | | |
o 2 4 B g 10 12

Time <g>

Figure 23: Sequences of Ideal and Predicted Support Phases for the Dynamic Walking Gait

In Figure 23, the robot begins its steady walking cycle at approximately 4.5s. The
model correctly predicts the sequence of support phases, but doesn’t accurately
predict the timing of the phases. Accurate prediction of the support phases is
crucial when implementing a balance system, since incorrect assumptions regarding
the interaction with the ground will quickly lead to undesired attitude behaviours
and severe instability problems. Ideally, it would be desirable for the model to pre-
determine future robot positions so the motion could be altered in anticipation of the

movements to come.

The purely geometrical approach employed in the model restricts the suitability of
its application. The problem is caused by the existence of the time-delay between
the moment the robot enters a support-phase and the moment it realises it is actually
in that phase. For the walking motions in Figure 23, the maximum value for this

time delay is 290ms.

For the purpose of quantifying the accuracy of the model, it can be derived from

Figure 23, that the model predicts the correct state of the system for 87% of the

47

time. In Section 3.3.2, it was stated that the desired result for the system was to
predict the results obtained from an ideal trajectory analysis for close to 100% of the

time.

The model doesn’t quite meet the desired specifications, but is the best result that
can be achieved with the current hardware configuration. The incorporation and use
of force-sensitive pressure sensors in the feet would significantly increase the

accuracy of the model.

7.2 Centre of Mass Calculations

The Centre of Mass (C.0.M.) model developed in section 6.4 gives the location of
the C.0.M. for the robot with respect to the centre of its current support polygon. In
order to visualise the results, a MATLAB function was developed. The MATLAB
function accepts a single vector argument listing all joint angles for the robot, and
determines the location of the C.o.M. for each link. The results are plotted
graphically using the MATLAB pl ot 3 function. A sample plot is shown in Figure
24,

The correctness of the centre of mass model can be evaluated by comparing its
results with the CAD representation of the GuRoo in Solid Edge. Figure 25
compares the location of the C.0.M. for various structural positions. In the figure,

all distances are relative to the centre point of the right foot base.

Figure 25a illustrates the GuRoo in a standing position. As seen, the results from
the centre of mass model closely match those obtained from the CAD model. The
largest discrepancy is the z-component, which indicates an absolute error of

32.2mm. The y-component exhibited an absolute error of only 0.2mm.

In Figure 25b, the LEFT_HI P_SI DE joint has been rotated by -60° and the
LEFT_KNEE joint has been rotated by 90°. Again, the largest absolute error was in

the z-direction, and was 42.6mm. The best result was in the x-direction with an

absolute error of 0.9mm.

48

The discrepancies in the results can be attributed to the simplifications made when
defining the dm-parameters. The absence of some parts from the model such as the
iPAQ, circuit boards, servo-motors and batteries directly correlate to the slight

variation that was observed in the results.

GuRoo Centre of Mass

Tl---
08-]----7"
§ 0BT
o
=
W
r4
0.4~ .-
02-l----7
0-1-
0.2
-01 0 04 ¥ <metrass
W Emetress 0:1
+ Cobld far torso
* CoM for legs
Cobd for entire robot
LEFT ANKLE SIDE 0 RIGHT ANKLE SIDE -10
LEFT _ANKLE FWD 0 RIGHT_ANKLE_FWD -15
LEFT KNEE 30 RIGHT KNEE -25
LEFT LEG TWIST 0 RIGHT_LEG_TWIST 0
LEFT HIP_FWD 0 RIGHT HIP_FWD -10
LEFT_HIP_SIDE 0 RIGHT_HIP_SIDE 0
LEFT SHOULDER -10 RIGHT _SHOULDER 0
LEFT UPPER _ARM 30 RIGHT UPPER_ARM 50
LEFT LOWER_ARM 30 RIGHT_LOWER_ARM -30
TORSO _FWD -10 NECK 0
TORSO_SIDE 0 HEAD 0
TORSO_TWIST 0

Figure 24: 3D C.o.M. Plot in MATLAB

49

Centre of Mass Location

Solid Edge Model

Z <metres>

CoM for tarso
4 CoM for legs
% Cohd for entire robot

0s

0.6

0.4

0z

0.1
y <metres>

nz

03 g

T

0.1 x <metres>

C.o.M. Model

X -0.0414 -0.0362
y 0.1497 0.1495
z 0.6057 0.5735

R g

0.4

0647

7 <metres»

04—

nz

4 CoM for torso
4 CoM for legs
* Col for entire robot

0.3
y <metres>

0.4

05

08 o

07z 01

03
0.2
01
% <metrags>

Centre of Mass Location Solid Edge Model C.o.M. Model
X -0.0588 -0.0579
y 0.1981 0.2008
p/ 0.6736 0.6310

Figure 25: Evaluation of C.0.M. Model

50

For the walking gait proposed by Drury [18], the location of the centre of mass can
be traced and plotted as shown in Figure 26. The figure compares the C.o.M.
trajectories determined from desired and actual joint angles to the results determined
directly from the simulator using the method described in section 6.4.2. The
differences between the trajectories of the desired joint angles and the actual joint
angles can be attributed to the static errors in the C.o.M. model as previously
discussed, as well as the non-ideal behaviour of the joint control system of the
robot. The problems in the joint control system include the method by which data is

logged.

The deviation of the C.0.M. trajectory determined directly from the simulator is a
direct result of the simulated robot environment. The main reason is due to the

interactions between links not being correctly damped.

In section 3.3.3, it was stated that the success of the model could be evaluated by
considering the accuracy of the results when compared to the ideal results obtained
from the simulator. From the data of Figure 26, the standard deviation of the results
is given in Table 4. The average of the values is 0.4114 and is clearly within the
desired specifications. The model gives a valid approximation for the location of

the centre of mass for the robot.

X 0.3407
y 0.7578
z 0.1357

Table 4: Standard Deviation of C.o0.M. Comparison

51

x<mz

y <

z <m>

oo

Centre of Mass Location: x-component

001 —

002 —

003 —

005 — —
008 — —
007 — —
008 | | | | | |
1) 2 3 4 5 B 7 8
Tirme <>

Centre of Mass Location: y-component

0.08

4 5 [7 8

Time <s>

Centre of Mass Location: z-component

0585 —

0.575

0a7

0.565

4 5 [7 g
Time <s>

Figure 26: C.0.M. Locations for Walking Gait

52

7.3 Attitude Control

It is difficult to evaluate the success of the attitude control model, since its operation
greatly depends on the performance of other systems of the GuRoo. These systems
include the other balance modules discussed in the preceding sections of this

chapter, and the joint control system developed by Drury [18].

As indicated in section 3.3.4, the balance control system can be evaluated by
considering the extent to which the robot can resist adverse disturbances, the
smoothness of the joint motion and by minimising the load torques on each of the
joints. Since only a simple model was designed with the intention of investigating
the success of the other balance modules, the following procedure was used:

1. Shift the weight of the robot over the right foot by defining desired
velocities for the ankles and hips
Raise the left leg using the procedure proposed by Dury [18]
Raise the left leg a further 30° by moving the LEFT HIP _FWD joint
Move the left leg to the side by 40° using the LEFT HIP_SIDE joint
Bend the right knee by 15°
Tilt to torso by moving the TORSO_SI DE joint -20°
Twist the torso by moving the TORSO_TW ST joint -20°

S A o

Hold the final position

The control code specifying these movements is given in Appendix B.3.

During stage 1, velocities are pre-specified for the ankle joints. This is because the
“supporting base model” is unable to accurately identify the supporting base of the
robot. The reason for this is the error caused by the time delay described in section
7.1. During the remaining stages of the test, the model is correctly able to identify
the supporting base of the robot, and the attitude control module specifies relevant

joint velocities for the ankles depending on the location of the zero moment point.

The location of the zero moment point throughout the sequence of movements is

shown in Figure 27. The oscillations that are visible in the waveforms are due to a

53

combination of the lack of damping in the simulator environment and the way in

which the desired velocities are defined.

Figure 28 shows the desired ankle joint velocities that are specified by the attitude
control module. The final position of the robot at the end of the series of

movements is shown in Figure 29.

Zero Woment Point Trajectory
T T T

K <metres=

Hie | \ | | |
1) 2 10 15 20 25

Time <5

Zero Moment Point Trajectory

03 T

02

01

¥ <Mmetres=

a1

02

03

) \ ! ! | |
o it 10 15 20 25

Time <g>

Figure 27: Location of the ZMP for the Dynamic Walking Gait

54

Welocity <encoder counts / control loop=

Yelocity <encoder counts / control loop=

Desired Joint Velocity. Right Ankle Pitch

8 10 12 14 16 18 20 22 24 26
Time =s5>

Desired Joint Velocity: Right Anlde Roll

28

8 10 12 14 16 18 i 2 24 2%
Time <5=>

Figure 28: Desired Joint Velocities specified by the Attitude Control System

55

Figure 29: Stable Position of the GuRoo

a) Side View, b) Front View, c¢) Isometric View

56

The extent to which the attitude control module could be successful was
significantly limited by the lack of feedback information. Testing was unable to be
performed on the real robot because the serial feedback of all joint angles was not
achieved. The reason for this was attributed to memory and timing problems - the
speed of the connection was too slow and the allocation of memory was inadequate.
The absence of additional sensors such as gyroscopes, accelerometers and force-

sensitive sensors also limited the scope of the design.

The design that was developed, although not meeting all of the original
specifications, can be considered successful, since control of the ankle joints did
allow the robot to balance in the simulator. Compensation for a wide range of

motions was successfully demonstrated.

57

Chapter 8
Conclusions and Future

Developments

This chapter reflects on the goals of this thesis and the extent to which they were
achieved. Suggestions for future developments of the balance control system are

also described.

8.1 Conclusions

The aim of this thesis was to develop an active balance control system for a
humanoid robot and implement it in hardware as part of the University of
Queensland’s GuRoo project. Ideally, the balance system would allow the robot to
remain upright despite adverse disturbances such as those due external forces and

uneven terrain.

The balance control system is a high-level behavioural controller for the robot and
is greatly dependent on lower-level systems such as the joint controllers and
feedback networks. The course of the project saw the development of the robot
from a simulated on-paper design to a functional hardware prototype capable of
performing simple movements such as crouching, standing on one leg and open-
loop walking. Despite making impressive progress throughout the year, the robot

was not developed to a stage where an active balance control system could

58

effectively be implemented in real hardware. The reason for this is attributed to the

fact that no global feedback was achieved.

With the resources and time available, the initial goal of developing and
demonstrating a fully functional balance system on the GuRoo was an unreasonable
task. However, the project can be considered a success since specifications were
achieved through simulation. Additionally, a platform has been formed in a
continuable way to allow further testing, development and implementation of the

balance system on real hardware.

8.2 Future Developments

The future developments associated with implementing a robust and reliable

balance control system for the GuRoo are quite clear.

Initially, a system providing correct feedback of the actual joint positions from the
optical encoders needs to be implemented. It is evident that the existing serial
communications link between the central controller and the distributed control
network on the CAN bus is inadequate for the transmission of large amounts of
data. The proposed high-speed USB-to-CAN interface would allow for more

accurate and efficient data transmission.

In order for the attitude controller to correctly respond to the current state of the
robot, the inadequacies of the “Supporting Base Model” need to be resolved. This
cannot be achieved until force-sensitive touch sensors are incorporated into the feet
of the robot. Feedback from these sensors would allow for the exact interaction
between the robot and the walking surface to be recognised. The information would
also allow for the precise computation of the actual zero moment point and provide

additional knowledge for the specification of attitude behaviours.
The largest scope for development of the existing model lies in the “Attitude

Control System” — one of the most exciting areas in modern robotics research.

Once the abovementioned restrictions are overcome, the extent to which the attitude

59

controller can be developed is limitless. An initial development would be in the
modelling of a double-inverted-pendulum, whereby one pendulum represents the
legs of the robot, and a second models the torso. The current “Centre of Mass
Model” developed for the GuRoo is already structured for this development.
Implementation of the double-inverted pendulum would allow for posture control of
the robot. If the data-logging problems are corrected, it is hoped that the double-
inverted-pendulum model will be implemented on the real robot by demo-day on

the 29™ October, 2002.

An improved method of deriving the desired joint movements needed to maintain
stability can be developed. With the development of a torque-joint control (stiffness
control) system, desired velocities for each joint would not need to be defined. A
simple search algorithm investigating the current applied torques and all possible
combinations of predicted future torques for each of the joints could be used. By
minimising the applied torques, new attitudes can be specified. The software that
has been written for the transformation mathematics has been structured with this

development in mind.

A further development would be the incorporation of multiple accelerometers or a
gyroscope package into the robot hardware design. These can be used to measure
the direction and magnitude of the acceleration of the centre of mass of the robot.
Combined with use of force-sensitive touch sensors and torque control, advanced

techniques for impact absorption and trajectory planning can be developed.

60

References

[1]
2]
[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Willis, "Android World - Anthropomorphic Robots & Animatronics,"
vol. 2002: http://www.androidworld.com/, 2002.

Robocup, "RoboCup 2002 - General Information,"
http://www.robocup2002.org/info/index.html, 2002.

S. McMillan, "Computational Dynamics for Robotic Systems on Land and
Under Water," in Department of Electrical Engineering. Ohio: The Ohio
State University, 1995.

A. W. Smith, "Simulator Adaption and Gait Pattern Creation for a
Humanoid Robot," in School of Information Technology and Electrical
Engineering: University of Queensland, 2001.

Honda Motor Co Ltd, "The Honda Humanoid Robot ASIMO," vol. 2002:
http://world.honda.com/ASIMO, 2002.

Sony Corporation, "SDR-4X Press Release," vol. 2002:
http://www.sony.co.jp/en/SonyInfoNews/Press/200203/02-0319E/, 2002.
Y. N. Tomomichi Sugihara, Hirochika Inoue, "Realtime Humanoid Motion
Generation through ZMP Manipulation based on Inverted Pendulum
Control," presented at International Conference on Robotics & Automation,
Washington DC, 2002.

A. Goswami, "Foot rotation indicator (FRI) point: A new gait planning tool
to evaluate postural stability of biped robots."

S. K. Qiang Huang, Noriho Koyachi, Kenji Kaneko, Kazuhito Yokoi,
Hirohiko Arai, Kiyoshi Komoriya, Kazuo Tanie, "A High Stability, Smooth
Walking Pattern for a Biped Robot," presented at International Conference
on Robotics & Automation, 1999.

Y. K. R. Jong H. Park, "ZMP Trajectory Generation for Reduced Trunk
Motions of Biped Robots," presented at IEEE International Conference on
Intelligent Robots and Systems, 1998.

Y. K. T. Fukuda, T. Arakawa, "Stabilization control of biped locomotion
robot based learning with gas having self-adaptive mutation and recurrent
neural networks," presented at Robotics and Automation, 1997.

F. K. Shuuji Kajita, Kenji Kaneko, Kazuhito Yokoi, Hirohisa Hirukawa,
"The 3D Linear Inverted Pendulum Mode: A simple modeling for a biped
walking pattern generation," presented at International Conference on
Intelligent Robots and Systems, Maui, Hawaii, USA, 2001.

A. T. Q. Li, . Kato, "Learning of walking stabilization for a biped robot
with a trunk," presented at 2nd Asian Conference on Robotics and Its
Applications, Beijing, 1994.

K. D. K. Jong H. Park, "Biped Robot Walking Using Gravity-Compensated
Inverted Pendulum Mode and Computed Torque Control," presented at
International Conference on Robotics & Automation, Leuven, Belgium,
1998.

M. A. R. Caballero, V. Sanchez, "Extending Zero Moment Point to a
Segment Using Reduced Order Biped Model."

W. G. A. Albert, "New path planning algorithms for higher gait stability of a
bipedal robot," presented at 4th International Conference on Climbing and
Walking Robots, Germany, 2001.

P. I. Corke, Robotics Toolbox. Preston: CSIRO, 1996.

61

[18]

[19]

[20]

A. Drury, "Gait Generation and Control Algorithms for a Humanoid Robot,"
University of Queensland, 2002.

H. C. C. Jong H. Park, "An On-Line Trajectory Modifier for the Base Link
of Biped Robots To Enhance Locomotion Stability," presented at Internation
Conference on Robotics & Automation, San Fransisco, CA, 2000.
Y.Z.L.C. L. Shih, S. Churng, T. T. Lee, W. A. Gruver, "Trajectory
Synthesis and Physical Admissibility for a Biped Robot During the Single-
Support Phase," presented at IEEE International Conference on Robotics &
Automation, Cincinnati, Ohio, 1990.

62

Appendix A: Centre of Mass Locations

This table describes the physical parameters for each link of the GuRoo. The mass
and centre of mass locations were extracted from the human rev6 1.dm file of the

simulator. The data was originally sourced from the solid edge workspace.

R Right Foot 0.826 (0.03, 0.02, -0.02)
4 Right Ankle 1.42 (0.04, 0.02, 0.02)

3 Right Lower Leg 1.791 (0.12,-0.01, -0.05)
5 Right Upper Leg 2.856 (0.01, 0.03, 0.13)
11 Right Lower Hip 0.583 (0.04, 0.00, 0.05)

9 Right Hipper Hip 1.617 (0.06, -0.04, -0.01)
10 Waste 4.77 (-0.01, 0.125, -0.02)
7 Left Upper Hip 1.616 (-0.015, -0.01, -0.03)
6 Left Lower Hip 0.581 (0.00, -0.05, -0.015)
8 Left Upper Leg 2.849 (-0.08, -0.01, 0.03)
2 Left Lower Leg 1.789 (-0.052, 0.01, -0.05)
0 Left Ankle 1.443 (-0.011, -0.02, -0.02)
L Left Foot 0.826 (-0.025, 0.005, 0.025)
13 Lower Torso 1.47 (0.00, -0.02, -0.01)
14 Upper Torso 1.579 (0.00, -0.01, 0.10)
T Outer Torso 8.39 (0.06, 0.00, -0.01)
21 Neck 0.215 (-0.01, 0.01, -0.02)
22 Head 0.421 (-0.08, 0.01, 0.00)
15 Left Shoulder 0.225 (0.02,-0.01, 0.02)
16 Left Upper Arm 0.361 (0.15, 0.00, 0.00)
17 Left Lower Arm 0.208 (0.10, 0.00, 0.00)
18 Right Shoulder 0.224 (0.02,-0.01, -0.02)
19 Right Upper Arm 0.361 (0.15, 0.00, 0.00)
20 Right Lower Arm 0.208 (0.10, 0.00, 0.00)

63

Appendix B: C/C++ CODE
B.1 - Balance.h

/1 constant definitions
#define g 9.81
#define LEFT_SUPPORT -
#defi ne BOTH SUPPORT 0
#define Rl GHT_SUPPORT 1
#defi ne CENTRAL_SPEED 0. 02
#defi ne BAL_THRESH 0. 0035
#defi ne ZMP_THRESH 0. 001

/'l specify function prototypes
voi d bal ance_control (void);

int get_support (void);
doubl e *cal c_com (int bal ance_state);
voi d bal ance_attitude (int balance_state);

voi d init_bal ance(void);

doubl e **create_matri x(void);

voi d unpack_j oi nt _angl es (char* incoming);
voi d end_bal ance(voi d);

void rel ease_natrix(double **matrix);

void mdh (double **ptr_out, double a, double al pha, double d, double theta);

void trans (double **ptr_out, double x, double vy,
voi d Rx (double **ptr_out, double theta);
void Ry (double **ptr_out, double theta);
void Rz (double **ptr_out, double theta);

void mat _mult2 (double **ptr_out, double **ptr_a,
void mat _mult3 (double **ptr_out, double **ptr_a,
void mat _nult4 (double **ptr_out, double **ptr_a,
doubl e **ptr_d);

doubl e z);

doubl e **ptr_b);
doubl e **ptr_b, double **ptr_c);
doubl e **ptr_b, double **ptr_c,

void vec_mul t (aouble *ptr_out, double **matrix, double *ptr_vector);

64

B.2 - Balance.c

/*

* Aut hor: lan Marshal

*

* Code for Bal ance System
*

*/

#i ncl ude <stdio. h>

#i ncl ude <mat h. h>

#i ncl ude <mal |l oc. h>
#i ncl ude <dnLi nk. hpp>

#i ncl ude "bal ance. h"
#i ncl ude "../ Conmon/ hunmanoi d. h"
#i ncl ude "j oi nt num h'

/1 location of centre of mass of each link with respect to robot coordinate frane
doubl e conR[4
doubl e comi[4
doubl e conB[4
doubl e conb[4
doubl e conmll]
doubl e conB[4
doubl e contlOf
doubl e conv[4
doubl e conB| 4
doubl e conB[4
doubl e cong[4
doubl e conD[4
doubl e conli[4
doubl e conml3]
doubl e conl4]
doubl e conT[4
doubl e conR1]
doubl e conR2]
doubl e cont5]
doubl e conl6]
doubl e conml7]
doubl e contl8]
doubl e coml9[
doubl e conmR0][

/lint tnp_bal _state
doubl e tnp_znmp_x, tnp_znp_y, tnp_znp_z;

/1 Masses of each |ink

doubl e MR = 0. 826
double mt = 1.42
double nB = 1.791
doubl e nb = 2. 856
doubl e mL1 = 0.583
double nD = 1.617
double MmO = 4.77
double nv = 1.616
double nb = 0.581
double mB = 2.849
double m2 = 1.789
double nD = 1.443
doubl e mL = 0. 826
double ml3 = 1.47
doubl e nl4 = 1.579
double ml' = 8.39
doubl e m21 = 0.215
doubl e nR2 = 0.421
doubl e ml5 = 0.225
doubl e ml6 = 0.361
doubl e nl7 = 0. 208
doubl e m8 = 0.224;
doubl e m9 = 0.361
doubl e n20 = 0. 208

/1 initialise arrays for storing calcul ated centre of mass
doubl e LwtR[4];
doubl e com | egs[3]

doubl e conLtorso[Sj
doubl e comtotal[3]; /1 centre of mass for the entire robot
doubl e state_conf 3]; /'l centre of mass in 3D polar coordinates

/1 [theta_roll, theta_pitch, r]

65

[/ initialise link transformation nmatrices
double **T_Rwt O gn;
double **T_4wtR;
doubl e **T_3wt4;
doubl e **T_5wt3;
double **T_11wt5;
double **T_9wrt 11;
double **T_10wt9;
doubl e **T_7wrt 10;
double **T_6wt7;
double **T_8wt6;
double **T_2wt8;
double **T_Owrt2;
double **T_LwtO;

double **T_13wt Orgn;
double **T_14wt 13;
doubl e **T_Twt 14;
double **T_21wt T,
doubl e **T_22wt 21;

double **T_15wt T,
doubl e **T_16wt 15;
double **T_17wt 16;

double **T_18wtT;
double **T_19wt 18;
doubl e **T_20wt 19;

double **T_Rorigin
doubl e **T_4origin
doubl e **T_3origin
doubl e **T_5o0rigin
doubl e **T_11origin;
doubl e **T_9ori gin;
doubl e **T_10o0ri gi n;
double **T_7origin
n
n
n
n
n

doubl e **T_6ori gi
doubl e **T_8origin;
doubl e **T_2ori gi

i

i

double **T_Qorig
double **T_Lorig

doubl e **T_13ori gi n;
doubl e **T_14origin;
doubl e **T_Tori gi n;

doubl e **T_21ori gi
doubl e **T_22origi
doubl e **T_15o0ri gi
doubl e **T_160ri gi
double **T_17ori gi
doubl e **T_18ori gi
doubl e **T_19ori gi
doubl e **T_20ori gi

533333333

/1 initialise arrays to store comonly used transformati on matrices
doubl e **RxnegPI di v2;

doubl e **RxPI di v2;

doubl e **RxPI ;

doubl e **RynegPI di v2;
doubl e **RyPI di v2;
doubl e **RyPI ;

doubl e **RznegPI di v2;
doubl e **RzPI di v2;
doubl e **RzPI ;

/1 initialise matrix arrays to store tenporary cal cul ations
doubl e **t npl;
doubl e **t np2;
doubl e **t np3;
doubl e **t np4;
doubl e **t np5;
doubl e **t np6;

/1 define error vector
double error_ptr[] ={-1, -1, -1, -1};

Il location of centre of mass of each link with respect to it's own coordinate axes
/1 develop: get directly fromdmfile
doubl e |l ocal _conR[] = {0.03, 0.02, -0.02, 1};

66

doubl e | ocal _com4[] = {0.04, 0.02, 0.02, 1};
doubl e | ocal _conB8[] = {0.12, -0.01, -0.05, 1};
doubl e | ocal _conb[] = {0.01, 0.03, 0.13, 1};
doubl e | ocal _comll]] = {0.04, 0, 0.05, 1};
doubl e | ocal _comd] {0 06, -0.04, -0.01, 1};
doubl e | ocal _comlO[] {-0. 01 0. 125 - 0. 02 1};
doubl e | ocal _con¥[] = {-O 015, -0.01, -0.03, 1};
doubl e | ocal _conmg[] = {0.00, -0.05, -0.015, 1};
doubl e | ocal _conB[] = {-0.08, -0.01, 0.03, 1};
doubl e | ocal _con?[] = {-0.052, 0.01, -0.05, 1};
doubl e | ocal _conD[] = {-0.011, -0.02, -0.02, 1};
doubl e | ocal _conL[] = {-0.025, 0.005, 0.025, 1};
doubl e | ocal _coml3[] = {0.00, -0.02, -0.01, 1};
doubl e | ocal _contl4[] = {0.00, -0.01, 0.10, 1};
doubl e | ocal _conT[] = {0.06, O0.00, -0.01, 1};
doubl e | ocal _con®l[] = -0.01, 0.01, -0.02, 1};
doubl e | ocal _con2[] = {-0.08, 0.01, 0.00, 1};
doubl e | ocal _contll5[] = {0.02, -0.01, 0.02, 1};
doubl e | ocal _coml6[] = {0.15, 0.00, 0.00, 1};
doubl e | ocal _conl?7[] = {0.10, 0.00, 0.00, 1};
doubl e | ocal _conl8[] = {0.02, -0.01, -0.02, 1};
doubl e | ocal _coml9[] = {0.15, 0.00, 0.00, 1};
doubl e | ocal _con0[] = {0.10, 0.00, 0.00, 1};

doubl e ol d_pos_com x[2
doubl e ol d_pos_com y[2
doubl e ol d_pos_com z[2

2

doubl e ol d_vel _com x|
doubl e ol d_vel _comy[2

4
4
4];
4
4];
doubl e ol d_vel _com z[24];

extern int* desired_joint_vel [TOTAL_MOTORS] ;

typedef struct
doubl e thet a0;
doubl e thetal
doubl e theta2
doubl e theta3;
doubl e thet a4;
doubl e thetab
doubl e t het a6;
doubl e theta7
doubl e theta8
doubl e theta9;
doubl e thetal0
doubl e thetall
doubl e thetal2;
doubl e thetal3
doubl e thetald,;
doubl e thetals;
doubl e thetal6
doubl e thetal?7
doubl e thetals;
doubl e thetal9
doubl e theta20
doubl e theta2il;
doubl e theta22
doubl e theta23

} joint_angles_t;

joint_angles_t angles;

voi d bal ance_control (void) {
int k, j;
int bal_state;
float joint pos[l]
float joint_vel[1
extern dnLi nk **robot _link;
float joint_angl es[23];

#i fndef TX

for (k = 0; k < 23; k++) {
j = i nt _Conversion(k);
ro b _link[j]- >getState(10|nt _pos, joint_vel);
if (j == SIMRIGHT_KNEE || j == SI M LEFT_KNEE)

joint_pos[0] -= PI/2

joint_angles[k] = joint_pos[O0];

}

angl es. t het a0
angl es. thetal
angl es. t het a2

joint_angles[0];
joint_angles[1];
Joi nt _angl es[2] ;

67

/*

*/

#endi f

/1

angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.

t het a3
t het a4
t het ab
t het a6
t het a7
t het a8
t het a9
t het al0
thetall
thetal2
t hetal3
t hetal4d
t hetals
t het al6
t hetal7
t het al8
t het al9
t het a20
t het a2l
t het a22

oi nt _angl es]
oi nt _angl es|
oi nt _angl es]
i nt _angl es[6
int_angl es[7];
|nt_ang|es[8];

j oi nt _angl es[9] ;
-j oint angles[lO]
-joint_angles[11];
-joint angles[12]
oi nt _angles[1
oi nt _angl es 14
oi nt _angl es[15
oi nt _angl es[16
oi nt _angl es[17
oi nt _angl es[18
oi nt _angl es[19
oi nt _angl es[20
oi nt _angl es[21
oi nt _angl es[22

3];
41
5]
]

-]
]
-]
o
j O
j o

/1 uncomment and use these angles for testing

angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.

t het a0
thetal
t het a2
t het a3
t het a4
t het ab
t het a6
t het a7
t het a8
t het a9
t het al0
thetall
t hetal2
t hetal3
thetal4d
t hetals
t het al6
t hetal7
t het al8
t het al9
t het a20
t het a2l
t het a22

o

LRLRRRRLRReRee

30 * PI/180;
2&9 47 * PI/180;
F)30 * Pl /180;
19 47 * PI/180;

03

bal _state = get_support();

cal c_com(bal _state);

bal ance_attitude(ba

_state);

printf("COM %\t%\t%\n", comtotal [0],

68

comtotal [1],

pur poses

comtotal [2])

get _support

This function determ nes the supporting base of the robot.
The base is either: LEFT_SUPPORT, BOTH_SUPPORT, or RI GHT_SUPPORT

ECE I I

*/
int get_support (void) {

/1 variables for the length of the |egs
doubl e R I eg[4];

doubl e L_Il eg[4];

doubl e Il ength_R | eg;

doubl e length_L_I eg;

int bal ance_state;

/1 initialise other variables
doubl e zero_vector[] = {0, 0, 0, 1};

/1 determine length of right |eg
vec_mult(R leg, T 9origin, zero_vector);
length_R leg = sqrt(pow(R I eg[0], 2) + pow(R leg[1], 2) + pow(R leg[2], 2));

/] determine length of left leg
/* vec_mul t(tnp_vec, T_Lorigin, zero_vector);
for (i=0; i<3; i++) {
L_leg[i] = Rleg[i] - tnp_vec[i];

*/

/1 Make negative (due to errors in simulator): (0, 1, 2, 3, 4, 5, 6, 7)

/1 Link L: Left Foot

trans(tnpl, -0.045, -0.025, 0.055);
Rz(tmp2, Pl);

Ry(tnp3, PI/2);

mat _nmul t 3(tnp4, tnpl, tnmp2, tnmp3);

// Link 1: Left Ankle - Joint 1
mdh(tnpl, -0.051, -PI/2, 0, -angles.thetal);
mat _nmul t2(tnp2, tnp4, tnpl);

/1 Link O0: Left Lower Leg (Shin) - Joint O
ndh(tnpl, -0.172, PI, 0, -angles.theta0);
mat _nmul t 2(t np3, tnp2, tnpl);

/1 Link 2: Left Upper Leg (Thigh) - Joint 2
Rz(tnpl, -angles.theta2);

trans(tnp2, -0.21, 0, 0);

Ry(tmp4, PI/2);

Rz(tnp5, -PI/2);

mat _nul t4(tnp6, tnpl, tnp2, tnmp4, tnp5);

mat _nmul t2(t npl, tnp3, tnpé6);

/1 Link 8 Left Lower Hip (Pitch) - Joint 8
Rz(tnp5, -angles.theta8);

trans(tnp2, 0, 0, -0.055);

Rz(tnp3, -PI/2);

Ry(tmp4, -PlI/2);

mat _nul t4(tnp6, tnp5, tnp2, tmp3, tnp4);

mat _nul t 2(tnp2, tnpl, tnp6);

/1 Link 6: Left Upper Hp (Roll) - Joint 6
mdh(tnp3, -0.075, PI/2, 0, -angles.thetab);
mat _mul t2(tnpl, tnp2, tnp3);

/1 Link 7: Hp - Joint 7
/* Rz(tnp2, -angles.theta?);
trans(tnp3, -0.06, 0.125, 0);
mat _nul t4(tnp5, tnp2, tnmp3, RyPl, RxnegPldiv2);
mat _mul t2(tnp2, tnpl, tnp5);
*/

vec_mult(L_leg, tnpl, zero_vector);
length_L_leg = sqrt(pow(L_|leg[O0], 2) + powm(L_leg[1], 2) + powm(L_leg[2], 2));
if (length_R leg > (length_L_leg + BAL_THRESH)) {

/1 robot on right foot

bal ance_state = Rl GHT_SUPPORT;

printf("\nRi ght support.\n");

} elseif (length_L_leg > (length_R leg + BAL_THRESH)) {
/1 robot on left foot

69

bal ance_state = LEFT_SUPPORT;
printf("\nLeft support.\n");

} else {
/1 robot on both feet
bal ance_state = BOTH_SUPPORT;
printf("\nBoth support.\n");

}

printf("\nLeft leg: %", length_L
f(" n

_L_leg
print Right leg: %\n\n", length

)
R leg);

return bal ance_state;

70

cal c_com
This function calculates the centre of mass of the robot.

I't uses one argunent which specifies what the supporting base is.
Can be either RI GHT_SUPPORT, LEFT_SUPPORT, BOTH _SUPPORT.

The function returns a pointer to an array containing the
| ocation of the centre of mass of the robot in 3D poloar coordinates.

EE I I I I

*/
doubl e *cal c_com (int balance_state) {

/1 total nass
double nmMf_legs = MR+ M + M8 + nb+ nll + n® + MO + n¥ + 6 + NnB + n2 + D +

double ml_torso = m3 + ml4 + nlT + nR21 + nR2 + nml5 + mMl6 + ml7 + ml8 + ml9 +

/1 initialise other variables
doubl e zero_vector[] = {0, 0, 0, 1};

/1 evaluate the commonly used transformation matrices (need to only do this
once should use #ifdef's etc)

Rx(RxnegPl di v2, -PI/2);

Rx(RxPl di v2, PI/2);

Rx(RxPI, Pl);

Ry(RynegPl div2, -PI/2);
PIdiv2, PI/2);
P, PI)

negPl div2, -PI/2);
Pldiv2, Pl/2);
P

(Ry
(Ry
(Rz
(Re
(Rz Pl);

IR 22

/1 evaluate transfornmation matrices for each rigid body Iink

/*
* comfor legs wt right foot
*/

/1 Link R R ght Foot

trans(tnpl, -0.045, 0.025, 0.055);
mat_nmult3(T_Rorigin, tnpl, RzPl, RyPldiv2);
vec_mul t(conR, T_Rorigin, |ocal_conR);

/1 Link 4: Right Ankle - Joint 4
mdh(T_4wtR, -0.051, -PI/2, 0, angles.thetad);
mat_nmult2(T_4origin, T _Rorigin, T 4wtR);
vec_nul t (comd, T_4or| gin, local _comd);

/1 Link 3: Right Lower Leg (Shin) - Joint 3
mdh(T_3wt4, -0.172, PlI, 0, angles.theta3);
mat _nul t2(T_3origin, T_4origin, T 3wt4);
vec_mul t (conB, T _3origin, |ocal_conB);

/1 Link 5: R ght Upper Leg (Thigh) - Joint 5
trans(tnpl, -0.21, O, ;

Rz(tnp4, angl es.thetab);

mat_nul t4(T_5wt3, tnmp4, tmpl, RyPldiv2, RznegPldiv2);
mat_mult2(T_5origin, T 3origin, T 5wmt3);

vec_mul t (conb, T_5origin, |ocal_conb);

/1 Link 11: Right Lower Hip (Pitch) - Joint 11
trans(tnpl, 0, 0, -0.055);

Rz(tnp4, angles.thetall);

mat_mul t4(T_11lwt5, tnp4, tnpl, RznegPldiv2, RynegPldiv2);
mat _nmul t2(T_1lorigin, T_5origin, T_11wt5);

vec_mul t (comll, T_1lorigin, local _comll);

/1 Link 9: Right Upper Hp (Roll) - Joint 9
mdh(T_9wt11, -0.075, -PI/2, 0, angles.theta9);
mat _mul t2(T_Y9origin, T 1llorigin, T 9wt1l);
vec_mul t (com®, T _9origin, |ocal_cond);

// Link 10: Hp

Rz(tnpl, angles.thetall);

trans(tnp2, 0, 0.25, 0);
mat_mult3(T_10wt9, tnpl, tnmp2, RxPl);

mat _nul t2(T_10origin, T_9origin, T_10wt9);
vec_mul t (comlO, T_10origin, local _coml0);

71

/1 Link 7: Left Upper Hp (Roll)

nmdh(T_7wt 10, 0.075, -PI/2, 0, angles.theta?);
mat _mul t2(T_7origin, T_10origin, T_7wt10);
vec_mul t (conv, T_7origin, |ocal_conv);

[/l Link 6: Left Lower Hi p (Pitch)

Rz(tnpl, angles.thetab);

trans(tnp2, 0. 055, 0, 0);

mat _mul t4(T_6wt7, tnpl, tnp2, RzPIdiv2, RxPldiv2);
mat _nult2(T_6origin, T 7origin, T _6wt7);

vec_mul t (conB, T_6origin, |ocal_conb);

/1 Link 8: Left Upper Leg (Yaw)

Rz(tnpl, angles.theta8);

trans(tnp2, 0, 0, 0.21);

mat_nul t4(T_8wt6, tnmpl, tnmp2, RynegPldiv2, RxPldiv2);
mat _nult2(T_8origin, T _6origin, T _8wt6);

vec_nul t (conB, T_8origin, |ocal_conB);

/1 Link 2: Left Lower Leg

ndh(T_2wt8, 0.172, PI, 0, angles.theta2);
mat _nult2(T_2origin, T 8origin, T 2wt8);
vec_mul t (con?, T_2origin, |ocal_conR);

/1 Link O: Left Ankle

mdh(T_Owt2, 0.051, PI/2, 0, angles.thetal);
mat _mul t2(T_Oorigin, T 2origin, T _O0Owt?2);
vec_mul t (conD, T_Oorigin, |ocal_conD);

/1l Link L: Left Foot

Rz(tnpl, angles.thetal);

trans(tnp2, 0.055, -0.025, -0.045);

mat _mul t4(T_LwtO, tnpl, tnp2, RynegPldiv2, RzPl);
mat _nmul t2(T_Lorigin, T Oorigin, T _LwtO);

vec_mul t (conL, T_Lorigin, |ocal_conl);

/*
* comfor Torso wt right foot
*/

/1 Link 10: Hp (mass is considered in leg calcs). Required here for
position and orientation of torso.

Rz(tnpl, angles.thetall);

trans(tnp2, -0.06, 0.125, 0);

mat _nmul t4(tnp5, tnpl, tnmp2, RzPl, RxnegPldiv2);

mat _nmul t2(T_13wrtOrgn, T_Yorigin, tnmp5);

/1 Link 13: Upper H p

Rz(tnpl, angles.thetal2);

trans(tnp2, 0.07, 0, 0);

mat _nul t4(tnp5, tnpl, tnp2, RxPIdiv2, RznegPldiv2);
mat _nul t2(T_13origin, T_13wrtOrgn, tnp5);

vec_mul t (coml3, T_13origin, local _coml3);

/] Link 14: Torso Twi st (yaw)

Rz(tnpl, angles.thetall);

trans(tnp2, 0, 0.229, 0);

mat _nmul t4(T_14wt 13, tnpl, tnp2, RyPldiv2, RxPIdiv2);
mat_nmul t2(T_14origin, T_13origin, T 14wt13);

vec_mul t (coml4, T_14origin, |ocal_coml4);

/1l Link T: Torso

Rz(tnpl, angles.thetald);

trans(tnp2, 0, 0, -0.067);

mat_mul t4(T_Twtl4, tnpl, tnp2, RynegPldiv2, RxPl);
mat_nmul t2(T_Torigin, T 14origin, T_Twt14);

vec_mul t (coml, T_Torigin, |ocal_conT);

/1 Link 21: Neck

Rx(tnpl, angles.theta2l);

trans(tnp4, -0.00, 0.00, 0.00);

mat _nmul t4(T_21wtT, tnpl, RzPlIdiv2, RxPldiv2, tnp4);
mat _nmul t2(T_2lorigin, T_Torigin, T 21wtT);

vec_nul t (conRl, T_2lorigin, |ocal_conRl);

/1 Link 22: Head

trans(tnpl, 0, 0, -0.021);

Rx(tnp2, angl es.theta22);

mat _nul t4(T_22wt 21, tnpl, tnmp2, RynegPldiv2, RxPl);
mat _mul t2(T_22origin, T_2lorigin, T_22wt21);
vec_mul t (conR2, T_22origin, |ocal_conm2);

/1 Link 15: Left Shoul der

trans(tnpl, 0.03, -0.21, 0);
Rz(tnp3, angl es.thetalb);

72

mat _mul t3(T_15wt T, tnpl, RxPldiv2, tnp3);
mat _nmul t2(T_15o0rigin, T_Torigin, T_15wtT);
vec_mul t (coml5, T_15o0rigin, local _coml5);

/1 Link 16: Left Upper Arm

trans(tnpl, 0.00, 0.00, 0.024);

Rz(tnp3, angl es.thetal6);

mat _nmul t3(T_16wt15, tnpl, RxPldiv2, tnp3);
mat _mul t2(T_16origin, T_15origin, T 16wrt15)
vec_mul t (coml6, T_ 160r i gin, I ocal _coml6);

/1 Link 17: Left Lower Arm

trans(tnpl, 0.209, 0.00, 0.00);

Rz(tnp3, angles.thetal?);

mat_nmul t3(T_17wt 16, tnpl, RxnegPldiv2, tnmp3);
mat _rmul t2(T_17origin, T_16origin, T 17wt 16);
vec_nul t (coml?, T_17ori gin, local _com7);

/1 Link 18: Ri ght Shoul der

trans(tnpl, 0.03, 0.21, 0);

Rz(tnp3, angl es.thetal8);

mat _mul t3(T_18wrt T, tnpl, RxPldiv2, tnp3);
mat _nmul t2(T_18origin, T _Torigin, T_18wtT);
vec_mul t (coml8, T_18origin, local _coml8);

/1 Link 19: R ght Upper Arm

trans(tnpl, 0.00, 0.00, -0.024);

Rz(tnp3, angl es.thetal9);

mat _nmul t3(T_19wt 18, tnpl, RxnegPldiv2, tnmp3);
mat _nmul t2(T_19origin, T_18origin, T _19wt18);
vec_nul t (coml9, T_19origin, |ocal_conl9);

/1 Link 20: R ght Lower Arm

trans(tnmpl, 0.209, 0.00, 0.00);

Rz(tnp3, angl es.theta20);

mat _nmul t3(T_20wt 19, tnpl, RxPldiv2, tnp3);
mat _mul t2(T_20origin, T_19origin, T_20wt19);
vec_nul t (conR0, T_200ri gin, local _conR0);

/] Calculate comfor the legs wt right foot

comlegs[0] = (nR*conR[0] + md*comd[0] + nB*conB[0] + nb*conb[0] +
nmll*conl1l[0] + nB*con®[0] + nlO0*conlO[O0] + n¥*con¥V[0] + nmb*conB[0] + nB*conB[O0] +
m2*conR[0] + mD*conD[O] + mL*conl[O0]) / nil_| egs;

comlegs[1] = (nRfconR[1] + mi*comd[1] + nB*conB[1] + nB*conb[1] +
mii*comll[i] + nm®*com®[1] + mlO*comlO[1] + n¥*con¥[1] + n6*conB[1] + nB*conB[1] +
m2*conR[1] + mD*conD[1] + mi*conli[1]) / nil_| egs;

comlegs[2] = (nRfconR[2] + mi*comd[2] + nB*conB[2] + nB*conb[2] +
nmll*conl1l[2] + nB*con®B[2] + nlO*conlO[2] + ni*conV[2] + nb*conbB[2] + nB*conB[2] +
m2*conR[2] + mD*conD[2] + mi*conli[2]) / nil_| egs;

/1 Calculate comfor the torso wt right foot

comtorso[0] = (nl3*conl3[0] + mld4*conl4[0] + ml*coml[0] + nRl*conRl[0]
n22*conR2[0] + nml5*coml5[0] + ml6*coml6[0] + ml7*coml7[0] + nl8*conil8[0] +
nl9*conl9[0] + nR0*conR0[0]) / nT_torso;

comtorso[1] = (nl3*conl3[1] + mld4*conl4[1l] + ml*coml[1l] + nRl*conRl[1]
n22*conR2[1] + nl5*coml5[1] + ml6*coml6[1] + ml7*coml7[1] + nml8*conl8[1] +
ml9*conl9[1] + nR0*conR0[1]) / nT_torso;

comtorso[2] = (nl3*conl3[2] + mld4*conl4[2] + ml*coml[2] + nRl*conRl[2]
n22*conR2[2] + nml5*coml5[2] + ml6*coml6[2] + ml7*coml7[2] + nml8*conl8[2] +
ml9*conl9[2] + nR0*conR0[2]) / nT_torso;

+

+

+

comtotal [0] = (nT_l egs*com|egs[0] + nl_torso*comtorso[0]) / (mrl_legs +
ml_torso);

comtotal [1] = (nT_l egs*com|egs[1l] + nl_torso*comtorso[1l]) / (ml_legs +
ml_t orso);

comtotal[2] = (nT_l egs*coml|egs[2] + nl_torso*comtorso[2]) / (ml_legs +
ml_torso);

/1 Calculate centre of mass for robot!
if (bal ance_state == LEFT_SUPPORT) {

vec_ nult(LwtR T Lorigin, zero_vector);
comtotal [0] = comtotal[0] - LwtRO];
comtotal [1] = comtotal[1] - LwtR1];
comtotal[2] = comtotal[2] - LwtR 2];

} else if (bal ance_state == BOTH_SUPPORT) {
vec_mult(LwtR, T_Lorigin, zero_vector
comtotal[0] comtotal [0] - (LwrtR[O
comtotal [1] comtotal [1] - (LwtR 1
comtotal[2] comtotal[2] - (LwtR 2

} else if (balance_state == Rl GHT_SUPPORT) {
/1 return the value cal cul ated above

} else {

73

/1 error condition
return error_ptr;

/1 Convert comlocation to 3D polar coordinates (angles.theta_roll,
angl es.theta_pitch, r);

state_coni 0]

state_conf 1]

state_coni 2]
pow comtotal[2],2));

atan(comtotal [1] / comtotaI[Z])
atan(comtotal [2] / comtotal
sqrt (pow(comtotal [0],2) + pow(comtotal[l] 2) +

/1 for printing result of matrix

/* for (i =0; i < 16; i++) {
prlntf("%\t", *(T_Rorigin +i));
it (i==3) {

printf("\'n");
} elseif (i==7) {
printf(" \n)
} else if (i==11) {
printf("\n");
}
o
printf("\n\n");

*/

/1 print result of vector

/* printf("Centre for the entire robot:\n");

for (int i =0; i <3; i++) {
printf("%\n", comtotal[i]);
}
printf("\n\n");
*/
return state_com
}

voi d bal ance_attitude (int balance_state) {

double n{24] = {nmR, m4, nB, nb, mll, nd®, ml0O, n¥, n6, nB, n2, nD, nL, ml3,
nl4, nT, nRl, nR2, nl5, nl6, nl7, nl8, nl9, nR0};

/1 initialise variables

doubl e pos_com x[] = {conR[0], com4[0], conB[O], conb[0], conll[O0], conB[O],
coml0[0], con¥[O0], conB[0], conB[0O], conR[0], conD[O], conmi[O], coml3[O0], coml4[O0],
con|[E)]],}conﬁl[0], conk2[0], conl5[0], coml6[O0], conml?7[0], coml8[0], coml9[O0],
conk0[0] };

doubl e pos_comy[] = {conR 1], com4[1], conB[1], conb[1], comll[1], conB[1],
conlO[1], con¥[1], conb[1l], conB[1], con?[1], conD[1], com[1], coml3[1], coml4[1],
con|[[1]],}cole[1], conmR2[1], coml5[1], coml6[1], conl7[1], coml8[1], conil9[1],
conk0[1] };

doubl e pos_comz[] = {conR 2], comi[2], conB[2], conb[2], conll[2], conB[2],
conlO[2], con¥[2], conB[2], conB[2], con’[2], conD[2], com[2], coml3[2], coml4[2],
comT[2], conRl[2], conR2[2], coml5[2], conl6[2], coml7[2], conl8[2], coml9[2],
conR0[2] };

doubl e vel _com x[24];
doubl e vel _com y[24];
doubl e vel _com z[24];

doubl e acc_com x[24] ;
doubl e acc_com y[24];
doubl e acc_com z[24] ;

doubl e tnp_varl
doubl e tnp_var2
doubl e tnp_var3
doubl e tnp_var4
doubl e tnp_var5

TR
Coooo
QLeLeee

doubl e zero_vector[] = {0, 0, 0, 1};
doubl e ZMPx, ZMPy, ZMPz;
int i;

if (balance_state == LEFT_SUPPORT) {
vec r'rult(LwrtR T_Lorigin, zero_vector);
for (i =1; i<24; i++) {
pos_com x[|] = pos_comx[i] - LwtRO];
pos_comyli] pos_comy[i] - LwtR1];
pos_com z[i] pos_comz[i] - LwtR 2];

74

~—
~—

—~——
—~——

} else if (bal ance_state == BOTH_SUPPORT) {
vec_mult(LwtR T_Lorigin, zero_vector);
for (i =1; i<24; i++) {

pos_com x[|] = pos_comx[i] - (LwtRO] / 2.0);
pos_comy[i] = pos_comy[i] - (LwtR 1] / 2.0);
pos_comz[i] = pos_comz[i] - (LwtR2] / 2.0);

}
} else if (balance_state == Rl GHT_SUPPORT) {
/1 return the val ue cal cul at ed above

} else {
/1 error condition
}

/] calculate the velocity and acceleration of the comfor each link
for (i = 0; i<24; i++) {

/1 x direction
vel _comx|[i]
acc_comx[i]

CENTRAL_ SPEED;
CENTRAL_ SPEED;

——

(pos_comx[i] - old_pos_comx[i])
(vel _comx[i] - old_vel _comx[i])

/1 y directio
vel _comyl[i]
acc_comyl[i]

In1ns

(pos_comy[i] - old_pos_comyJ[i
(vel _comy[i] - old_vel _comyJi

CENTRAL_ SPEED;
CENTRAL_SPEED;

—_—
~——
~—

/1 z direction

vel _comz[i] = (p os _comz[i] - old_pos_comz[i]) / CENTRAL_SPEED,
acc_comz[i] = (vel _comz[i] - old_vel _comz[i]) / CENTRAL_SPEED;
/] variables to be used in the cal culation of the znmp

tnp_varl = tnmp_varl + nfi] pos_comx[i] * (acc_comz[i] + g);
tnp_var2 = tnp_var2 + nfi] * acc_comx[i] * pos_comz[i];
tnp_var3 = tnp_var3 + nfi] * (acc_comz[i] + Qg);

tnp_var4 = tnp_var4 + n{i] * pos_comy[i] * (acc_comz[i] + g);
tnp_var5 = tnp_var5 + nfi] * acc_comy[i] * pos_comz[i];

/1 calculate the location of the zero nmonent point (znp)

ZMPx = (tnp_varl - tnp_var2) / tnp_var3;
ZWPy = (tnp_var4 - tnmp_var5) / tnp_var3;
ZMPz = O;

printf("zMP: %\t%\t%\n", ZMPx, ZMPy, ZMPZ);
printf("CoM 9%\t%\t%\n", comtotal [0], comtotal[l] comtotal[2]);

/1 define nmovenent for stability (specify an angle and a max accel erati on?)

/1 temporary variable used for data_l oggi ng
tnp_znp_x = ZNPX;
tnp_znp_y = ZMPy;
tnmp_znp_z Z\VPz;

if (bal ance_state == LEFT_SUPPORT) {
/1 pitch (x direction)
if (zZwWPx > ZMP_THRESH) {
*desi red_J oi nt _vel [LEFT_ANKLE_F\WD]
printf("pos\t\t");

-10;

} else if (ZMPx < -ZMP_THRESH) {
*desired_j oi nt _vel [LEFT_ANKLE_FWD)
printf("neg\t\t");

10;

} else {
*desired_j oi nt _vel [LEFT_ANKLE_FWD)
printf("zero\t\t");

1l
e

roll (y direction)

(zZMPy > ZMP_THRESH) {
*desired_j oi nt _vel [LEFT_ANKLE_SI DE]
printf("pos\n");

10;

} elseif (ZWPy < -ZMP_THRESH) {
*desired_j oi nt _vel [LEFT_ANKLE_SI DE]

printf("neg\n");

-10;

} else {
*desired_j oi nt _vel [LEFT_ANKLE_SI DE]
printf("zero\n");

1l
e

75

} else if (balance_state == Rl GHT_SUPPORT) {

/] pitch (x direction)

if (zZMPx > ZMP_THRESH) {
*desired_j oi nt _vel [RIGHT_ANKLE_FWD] = -10;
printf("pos\t\t");

} else if (ZMPx < -ZMP_THRESH) {
*desired_j oi nt _vel [REGHT_ANKLE_F\WD]
printf("neg\t\t");

10;

} else {
*desired_j oi nt _vel [RIGHT_ANKLE_F\WD]
printf("zero\t\t");

1l
e

}

/1 roll (y rection)

if (z > ZMP_THRESH) {
*d ed_j oi nt_vel [RI GHT_ANKLE_SI DE] = 10;
printf("pos\n");

} else if (ZWPy < -ZMP_THRESH) {
*desi e _joint_vel [RIGHT_ANKLE SIDE] = -10;
printf("neg\n");

} else {
*desired_joint _vel [RIGHT_ANKLE_SI DE] = 0;
printf("zero\n");

}

} else if (balance_state == BOTH_SUPPORT) {

/1 pitch (x direction)

if (ZWPx > ZMP_THRESH) {
*desired_joint_vel [RIGHT_ANKLE FW] = -10;
*desired_j oi nt _vel [LEFT_ANKLE FWD] = - 10;
printf("pos\t\t");

} else if (ZMPx < -ZMP_THRESH) {
*desired_j oi nt _vel [RIGHT_ANKLE_FWD] = 10;
*desi red_J oi nt _vel [LEFT_ANKLE_FWD] = 10;
printf("neg\t\t");

} else {
*desired_joi nt _vel [RIGHT_ANKLE _FWD] = O;
*desired_joint_vel [LEFT_ANKLE . FW) = 0;
printf("zero\t\t");

/1 roll (y direction)

if (zwWy > ZMP_THRESH) {
*desired_joint_vel [RIGHT_ANKLE SI DE] = -10;
*desired_j oi nt _vel [LEFT_ANKLE_SIDE] = -10;
printf("pos\n");

} else if (ZMPy < -ZMP_THRESH) {
*desired_joint_vel [RIGHT_ANKLE SIDE] = 10;
*desired_j oi nt_vel [LEFT_ANKLE_SIDE] = 10;
printf("neg\n");

} else {
*desired_joint _vel [RIGHT_ANKLE_SI DE] = 0;
*desi redJ oi nt _vel [LEFT_ANKLE SIDE] = 0;
printf("zero\n");

/] update variabl es

for (i=0; i<24; i++) {
ol d_pos_com x[i]
ol d_pos_comy[i]

pos_comx[i];
pos_comyl[i];

ol d_vel _comx[i]
ol d_vel _comyl[i]

vel _comx[i];
vel _comy[i];

76

i nit_bal ance -

This function initialises the balance systemby allocating nenory
for each matrix that is required. It also does prelininary
calculations to determ ne the supporting base of the robot.

EE I I I

*

/

voi d init_bal ance(void) {
int i;
/]l initialise link transformation matrices
T RmtOrgn = create_matrix();
T AwmtR = create_matrix();
T 3wt4 = create matrlx(),
T 5wt3 = create_matrix();
T 11lwmt5 = create_matrix();
T 9wtll = create_natrix();
T _10wmt9 = create_matrix();
T 7wt10 = create_matrix();
T 6wt7 = create_nmatrix();
T 8wmt6 = create_matrix();
T 2wt8 = create_matrix();
T Owt2 = create_natrix();
T LwtO = create_matrix();
T 13wrtOrgn = create_matrix();
T 14wt 13 = create_matrix();
T Twtl4 create_matrix();

T 21wtT = create_matrix();
T 22wt21 = create_matrix();

)

(
T_15wtT = create_natrix();
T 16wmt15 = create_matrix();
T 17wt 16 = create_matrix();
T 18wmtT = create_matrix();
T 19wt 18 = create_matrix();
T 20wt19 = create_natrix();
T _Rorigin = create_matrix();
T_4origin = create_natrix();
T 3origin = create_matrix();
T _5origin = create_matrix();
T_1lorigin = create_natrix();
T Qorigin = create_matrix();
T_10origin = create_matrix();
T_7origin = create_natrix();
T _6origin = create_matrix();
T_8origin = create_matrix();
T 2o0rigin = create_matrix();
T OQorigin = create_matrix();
T_Lorigin = create_matrix();
T_13origin = create_matrix();
T_1l4o0rigin = create_matrix();
T Torigin = create_matrix();
T _2lorigin = create_matrix();
T_22o0rigin = create_matrix();
T _150rigin = create_matrix();
T_16o0rigin = create_matrix();
T_170rigin = create_matrix();
T _18origin = create_matrix();
T_19origin = create_matrix();
T_20origin = create_matrix();

// initialise arrays to store commonly used transfornmation matrices
RxnegPl div2 = create_matrix();

RxPldiv2 = create_matrix();

RxPlI = create_matrix();

RynegPl div2 = create_matrix();
RyPldiv2 = create_matrix();
RyPlI = create_matrix();

RznegPl div2 = create_matrix();
RzPIdiv2 = create_matrix();

RzPl = create_matrix();
tnpl = create_matrix();
tnp2 = create_natrix();
tnp3 = create_matrix();
tnp4 = create_matrix();
tnp5 = create_natrix();
tnp6 = create_matrix();

77

for (i = 0; i<24; i++) {
ol d_pos_com x[i
ol d_pos_comyJi
ol d_pos_com z[i

ol d_vel _comx[i
ol d_vel _comyJi
ol d_vel _com z[i

]
]
]
]
]
]

Lee el

}
[/ prelimnary cal culations required for get_support

// Link R R ght Foot

trans(tnpl, -0.045, 0.025, 0.055);
mat_mult3(T_Rorigin, tnpl, RzPl, RyPldiv2);
vec_mul t(conR, T_Rorigin, local_conR);

/1 Link 4: Right Ankle - Joint 4
ndh(T_4wtR -0.051, -PI/2, 0, angles.thetad);
mat _nult2(T_4origin, T _Rorigin, T 4wtR);
vec_mul t (comd, T _4origin, |ocal_cond);

/1 Link 3: Right Lower Leg (Shin) - Joint 3
mdh(T_3wt4, -0.172, PlI, 0, angles.theta3);
mat _mul t2(T_3origin, T 4dorigin, T 3wt4);
vec_mul t (conB, T_3origin, |ocal_conB);

/1 Link 5: Right Upper Leg (Thigh) - Joint 5
trans(tnpl, -0.21, 0, 0);

Rz(tnp4, angl es.theta5b);

mat _mul t4(T_5wt3, tnp4, tnpl, RyPldiv2, RznegPldiv2);
mat _nmul t2(T_5origin, T 3origin, T 5wt3);

vec_mul t (conb, T_5origin, |ocal_conb);

/1 Link 11: Right Lower Hip (Pitch) - Joint 11
trans(tnpl, 0, 0, -0.055);

Rz(tnp4, angles.thetall);

mat_nmul t4(T_11lwt5, tnp4, tnmpl, RznegPldiv2, RynegPldiv2);
mat _mul t2(T_1lorigin, T_5origin, T_11wt5);

vec_nul t (comll, T_1lorigin, |ocal_conll);

/1 Link 9: Right Upper Hp (Roll) - Joint 9
ndh(T_9wt 11, -0.075, -PI/2, 0, angles.theta9);
mat _nmult2(T_Yorigin, T 1lorigin, T 9wt1l);
vec_mul t (com®, T_9origin, |ocal_cond);

/1 Link 10: Hip

Rz(tnpl, angles.thetall);

trans(tnp2, -0.06, 0.125, 0);

mat _nmul t4(tnp5, tnpl, tnmp2, RzPl, RxnegPldiv2);
mat _nmul t2(T_13wrtOrgn, T_Yorigin, tnmp5);

78

/*

* create_matrix -
*

* This function allocates nenory for the storage of a matrix
*

*/

doubl e **create_matri x(void)

double **matri x;
doubl e *col um;

int m
matri x

for (m

}

return

EE I I

*/

0; m< 4; mt+)

(double **) mal |l oc(sizeof (double *) * 4);

colum = (double *) malloc(sizeof (double) * 4);
mat ri x[n

matrix;

unpack_j oi nt _angl es -

col um;

This function retrieves data for
i ncoming bit-stream

act ual

posi tions

voi d unpack_j oi nt _angl es (char* incom ng) {

angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.
angl es.

t het a0
thetal
t het a2
t het a3
t het a4
t het ab
t het a6
t het a7
t het a8
t het a9
t het al0
thetall
thetal2
thetal3
thetal4d
t het al5
thet al6
thetal7
t het al8
t hetal9
t het a20
t het a2l
t het a22

ENC2RAD((i ncomi ng[0] << 8) +
ENC2RAD((i ncom ng[2] << 8) +
ENC2RAD((i ncomi ng[4] << 8) +
ENC2RAD((i ncom ng[6] << 8) +
ENC2RAD((i ncom ng[8] << 8) +
ENC2RAD((i ncomi ng[10] << 8)
ENC2RAD((i ncomi ng[12] << 8)
ENC2RAD((i ncomi ng[14] << 8)
ENC2RAD((i ncomi ng[16] << 8)
ENC2RAD((i ncomi ng[18] << 8)
ENC2RAD((i ncomi ng[20] << 8)
ENC2RAD((i ncomi ng[22] << 8)
ENC2RAD((i ncomi ng[24] << 8)
ENC2RAD((i ncomi ng[26] << 8)
ENC2RAD((i ncomi ng[28] << 8)
ENC2RAD((i ncomi ng[30] << 8)
ENC2RAD((i ncomi ng[32] << 8)
ENC2RAD((i ncomi ng[34] << 8)
ENC2RAD((i ncomi ng[36] << 8)
ENC2RAD((i ncomi ng[38] << 8)
ENC2RAD((i ncomi ng[40] << 8)
ENC2RAD((i ncomi ng[42] << 8)
ENC2RAD((i ncomi ng[44] << 8)

79

+ 4+ o+ + o+

fromthe

ncom ng[1
i ncom
ncomi
ncomi
ncomi
ncomi
ncomi
ncom
ncomi
ncomi
ncomi
ncomi
ncomi
ncomi

R I A e et

/*
* end_bal ance -
*

* This function releases the nenory allocated to each of the natrices
*

*/

voi d end_bal ance (void) {

/] initialise link transformation matrices

rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri

rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri

rel ease_matri
rel ease_matri
rel ease_matri

rel ease_matri
rel ease_matri
rel ease_matri

rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri

rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri

/1 initialise arrays to
X(RxnegPl di v2);

rel ease_matri
rel ease_matri
rel ease_matri

rel ease_matri
rel ease_matri
rel ease_matri

rel ease_matri

rel ease_matri
rel ease_matri

rel ease_matri

rel ease_matri x

rel ease_matri
rel ease_matri
rel ease_matri
rel ease_matri

X(T_RwrtOrgn);
X(T_4wtR);
X(T_3wt4);
x(T_5wt3);
x(T_ 11wrt5)
X(T_9wrt11);
x(T_10wt9);
X(T_7wt 10);
X(T_6wt7);
x(T_8wt6);
X(T_2wt8);
x(T_Owrt2);
x(T_LwtO);

X(T_13wtOrgn);
x(T_14wt 13);
X(T_Twt14);
X(T_21wtT);
x(T_ 22wrt21)

X(T_15wtT);
x(T_16wrt 15);
X(T_17wt 16);

X(T_18wtT);
x(T_ 19wrt18)
X(T_20wt19);

X(T_Rorigin);
X(T_4origin);
x(T_3origin);
x(T_5origin);
x(T_11origin);
x(T_Qorigin);
X(T_10ori gi n)
X(T_7origin
x(T_6origi n)
X(T_8origin);
x(T_2origin);
x(T_Oorigi n);
x(T_Lorigin);

x(T_13origin);
X(T_14origin);
X(T_Torigin);

x(T_2lorigin);
X(T_22o0rigin);
x(T_150rigin);
x(T_160rigin);
X(T_17origin);
x(T_18origin);
x(T_19origin);
X(T_20origin);

x(RxPI di v2);
X(RxPl);

x(RynegPI di v2);

X(RyPI div2);
X(RyPI);

X(RznegPl di v2);

X(RzPI di v2);
x(RzPl);

X(tnpl);
tnp2);
x(tnp3);
x(tnp4);
x(tnp5);
x(tnp6);

store comonly used transfornation nmatrices

80

/*
* release_matrix -
*

* This function frees the nenory a natrix
*

*/
void rel ease_natrix(double **matri x)
int n;
for (n =0; n < 4; nt+t) {
free(matrix[n])

%ree(natrix);

}

/*

* mdh -

*

* This function evaluates the general nodified Denavit-Hartenberg

* transformation natrix.

*

* Inputs are the ndh paranmeters: a, alpha, d, theta

*

*/

void ndh (double **ptr_out, double a, double al pha, double d, double theta) {
ptr_out[0][0] = cos(theta); /1 mdh_datall
ptr_out[0][1] = -sin(theta)*cos(al pha); /1 nmdh_datal2
ptr_out[0][2] = sin(theta)*sin(al pha); /1 mdh_dat al3
ptr_out[0][3] = a*cos(theta); /1 mdh_dat al4
ptr_out[1][0] = sin(theta); /1 mdh_dat a21
ptr_out[1][1] = cos(theta)*cos(al pha); /1 mdh_dat a22
ptr_out[1][2] = -cos(theta)*sin(al pha); /1 ndh_dat a23
ptr_out[1][3] = a*sin(theta); /1 mdh_dat a24
ptr_out[2][0] = O; /1 mdh_dat a3l
ptr_out[2][1] = sin(alpha); /1 mdh_dat a32
ptr_out[2][2] = cos(al pha); /1 mdh_dat a33
ptr_out[2][3] = d; /1 mdh_dat a34
ptr_out[3][0] = O; /1 mdh_dat a4l
ptr_out[3][1] = 0; /1 mdh_dat a42
ptr_out[3][2] = O; /1 mdh_dat a43
ptr_out[3][3] = 1; /1 mdh_dat a44
return;

}

/*

* trans -

* This function evaluates a general translation matrix

* Input is displacenent vector (x, y, z)

*

*/

void trans (double **ptr_out, double x, double y, double z) {

ptr_out[0][0] = 1; /1 trans_datall
ptr_out[0][1] = O; /1 trans_datal2
ptr_out[0][2] = O; /1 trans_datal3
ptr_out[0][3] = x; /1 trans_datal4d
ptr_out[1][0] = O; /1 trans_data2l
ptr_out[1][1] = 1; /1 trans_data22
ptr_out[1][2] = O; /1 trans_data23
ptr_out[1][3] =y; /1 trans_data24
ptr_out[2][0] = O; /1 trans_data31
ptr_out[2][1] = O; /1 trans_data32
ptr_out[2][2] = 1; /1 trans_data33
ptr_out[2][3] = z; /1 trans_data34
ptr_out[3][0] = O; /1 trans_data4l
ptr_out[3][1] = O; /1 trans_data42
ptr_out[3][2] = O; /1 trans_data43
ptr_out[3][3] = 1; /1 trans_dat a44
return;

81

Rx -

BRI I I

*/

This function creates a rotational transformation matrix about the x-axis.

Input is an angle in radians.

void Rx (double **ptr_out, double theta) {

ptr_out
ptr_out
ptr_out
ptr_out

ptr_out
ptr_out
ptr_out
ptr_out

ptr_out
ptr_out
ptr_out
ptr_out

ptr_out
ptr_out
ptr_out
ptr_out

return;

Ry -

EE I I I

*/

WWWW NNNN PRPRRrE OO0OO0O

WNFRPO WNEFLO WNFRPO WNRFO

1; /'l Rx_datall
0; /'l Rx_datal2
0; /'l Rx_datal3
0; /'l Rx_datal4d
0; /1 Rx_dat a2l
cos(theta); /] Rx_data22
-sin(theta); // Rx_data23

0; /'l Rx_dat a24
0; /1 Rx_dat a3l
sin(theta); /'l Rx_dat a32
cos(theta); /] Rx_dat a33

0; /'l Rx_dat a34
0; /'l Rx_dat a4l
0; /'l Rx_dat a42
0; /'l Rx_dat a43
1; /'l Rx_dat a44

This function creates a rotational transfornmation natrix about the y-axis.

Input is an angle in radians.

void Ry (double **ptr_out, double theta) {

ptr_out
pt r_out
ptr_out
ptr_out

ptr_out
ptr_out
ptr_out
ptr_out

ptr_out
ptr_out
ptr_out
ptr_out

ptr_out
ptr_out
ptr_out
ptr_out

return;

W www NDNNNN RPRPRRPRER O00O0

WN = O WNFRPO WO WNEFO

eere

cos(theta);

0; /'l Ry_datal2
sin(theta); /!l Ry_datal3
0; /'l Ry_datal4d

Ry_dat a21
dat a22
dat a23
dat a24

—~—— —
—~—— —

Ry
Ry
Ry
-sin(theta); // Ry_data3l
0; /1 Ry_data32
cos(theta); /1 Ry_data33
0; I dat a34

dat a4l
dat a42
dat a43
dat a44

Ry
Ry
Ry
Ry
Ry

Rooe
—_——
I

82

Rz -

EE I

*/

void Rz (double **ptr_out,

ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_out
ptr_

ptr_out
ptr_out

return;

W www NDNNN RPRPRRR O00O0
WN = O WNRPO WNRFRO WNEFO

mat_mult2 -

EE I I

QUTPUT_MATRI X =

*

*/

void mat _nult2 (double **ptr_out,

ptr out[O] [0] =

ptr a[O][Z] ptr b[2][0]
ptr_out

ptr a[O][Z] ptr b[2][1]
ptr_out[0][2

ptr a[O][Z] ptr b[2][2]

ptr a[0][2] Ptf b[2][3]

ptr out[l][O] =
ptr a[1][2] ptr b[2][0]
ptr_out[1
ptr a[1][2] ptr b[2][1]
ptr out[l][2]
ptr a[1][2] ptr b[2][2]

ptr a[1][2] th b[2][3]

ptr out[2][0] =
ptr a[2][2] ptr b[2][0]
ptr_out[2
ptr a[2][2] ptr b[2][l]
ptr out[2][2]
ptr a[2][2] ptr b[2][2]

ptr a[2][2] th b[2][3]

ptr out[3][0] =
ptr a[3][2] ptr b[2][0]
ptr_out[3]
ptr a[3][2] ptr b[2][1]
ptr out[3][2]
ptr a[3][2] ptr b[2][2]

ptr a[3][2] th b[2][3]

return;

}

Input is an angle in radians.

doubl e theta) {

cos(theta);
-sin(theta);
0

0;

het a) ;

n(t
os(theta);

S
C
0
0
0
0;
1;
o
0
0
0
1

This function nultiplies 4 x 4 matrices.

MATRI X_A x MATRI X_B

doubl e **ptr_a,

ptr_a[0][0]* ptr _b[0O][0] +

+ ptr_a[0][3]*ptr b[3][0];

ptr_a[0][O] *ptr_b[O][1]

+ ptr_a[0] [3]*ptr b[3][1];

ptr_a[0] [0] *ptr_b[0][2]

+ ptr a[O][3]* tr b[3][2];
+ ptr_a[0][1] *ptr_b[1][3]
+ ptr a[0][3] ptr_b[3][3];

ptr_a[0][0] *ptr_b[0][3]

ptr_a[1][0]* ptr _b[0O][0] +

+ ptr_a[1][3]*ptr b[3][0];
+ ptr_a[1] [1]*ptr_b[1][1]

ptr_a[1][1]*ptr_b[1][2]

+'ptr_a[1][1]*ptr_b[1][3]
+ ptr_a[][3] *ptr_b[3][3];

ptr_a[2][0]* ptr _b[0O][0] +

+ ptr_a[2][3]*ptr b[3][0];
.ptr_a[2][1]*ptr_b[1][l]

ptr_a[2][1]*ptr_b[1][2]

+ptr_a[2][1] *ptr_b[1][3]
+ ptr_a[2][3]*ptr_b[3][3];

ptr_a[3][0]* ptr _b[0O][0] +

+ ptr_a[3][3]*ptr b[3][0];
+ ptr_a[3][1]*ptr_b[1][1]

ptr_a[3][1] *ptr_b[1][2]
+ ptr_a[3][3]*ptr_b[3][2];
+ ptr_a[3][1] *ptr_b[1][3]
+optr a[3][3] ptr_b[3][3];

ptr_a[3][0]*ptr_b[0][3]

83

This function creates a rotational transformation matrix about the z-axis.

/'l Rz_datall
/] Rz_datal2

Rz_datal3
Rz_dat al4

double **ptr_b) {

ptr_a[0] [1] *ptr_b[1][0]
+ ptr_a[0][1] *ptr_b[1][1]
+ ptr_a[0] [1]*ptr_b[1][2]

ptr_a[1][1]*ptr_b[1][0]

ptr_a[2][1]*ptr_b[1][0]

ptr_a[3][1]*ptr_b[1][0]

mat _nmul t3 -

R

This function nultiplies 4 x 4 natrices.

* QUTPUT_MATRI X = MATRI X_A x MATRI X_B x MATRI X_C

*/

void mat _mul t3 (double **ptr_out,

doubl e **ptr_a,

doubl e ptr_tmp[4][4];

/1 MATRI X_A x MATRI X_B

ptr trrp[O] 0]

ptr a[O][Z] ptr b[2][0]
ptr trrpO

ptr a[O][Z] ptr b[2][1]
ptr tnpO

ptr a[O][Z] ptr b[2][2]

ptr a[0][2] ptr b[2][3]

ptr trrp[

ptr a[1][2] ptr b[2][0]
ptr tnpl

ptr a[1][2] ptr b[2][1]
ptr tnpl

ptr a[1][2] ptr b[2][2]

ptr a[1][2] ptr b[2][3]

ptr tnp[

ptr a[2][2] ptr b[2][0]
ptr tnp2

ptr a[2][2] ptr b[2][1]
ptr tn’pz

ptr a[2][2] ptr b[2][2]

ptr a[2]p[2] *ptr b[2][3]

ptr tnp[
ptr a[3][2] ptr b[2][0]
ptr a[3][2] pr{pr b[2][1]
ptr tn'p3
ptr a[3][2] ptr b[2][2]

ptr a[3lp[2] *ptr b[2][3]

ptr_a[0][0]* ptr _b[0O][0] +

*+ ptr_a[0][3] *ptr b[3][0];
+ ptr_a[0] [1]*ptr_b[1][1]
+ ptr_a[0] [3]*ptr b[3][1]:

ptr_a[0][0] *ptr_b[O][1]
ptr_a[0] [0] *ptr_b[0] [2]

pJ;r _a[0][0]*ptr_b[0][3]

= ptr_a[1][0]* ptr _b[0O][0] +

+optr_af[1][3]*ptr b[3][0];
+ ptr_a[1] [1]*ptr_b[1][1]
+ ptr_a[1] [3]*ptr b[3][1]:

ptr_af1][0] *ptr_b[O][1]
ptr_a[1] [0] *ptr_b[0] 2]

pJEr _a[1][0]*ptr_b[0][3]

= ptr_a[2][0] * ptr _b[0O][0] +

+ ptr_a[2][3]*ptr b[3][0];
+ ptr_a[2][1]*ptr_b[1][1]
+ ptr_a[2][3]*ptr b[3][1]:

ptr_a[2][0] *ptr_b[O][1]
ptr_a[2][0] *ptr_b[0][2]

pJEr _a[2][0]*ptr_b[0][3]

= ptr_a[3][0] * ptr _b[0O][0] +

+ ptr_a[3][3]*ptr b[3][0];

ptr_a[3][0] *ptr_b[O][1]

+ ptr_a[3][3]*ptr b[3][1];

p:r _a[3][0]*ptr_b[0][2]
ptr_a[3][0]*ptr_b[0][3]

ptr a[O][3]* tr b[3][2]:
+ ptr_a[0][1]*ptr_b[1][3]
+ptr a[0][3] ptr_b[3][3];

ptr a[1][3]* tr b[3][2]:
+ ptr_a[1][1]*ptr_b[1][3]
+ptr a[1][3] ptr_b[3][3];

ptr a[2][3]* tr b[3][2]:
+ ptr_a[2][1]*ptr_b[1][3]
+ptr a[2][3] ptr_b[3][3];

ptr a[3][3]* tr b[3][2]:
+ ptr_a[3][1]*ptr_b[1][3]
+ptr a[3][3] ptr_b[3][3];

doubl e **ptr_b, double **ptr_c) {

ptr_a[0] [1]*ptr_b[1][0]

+ ptr_a[0] [1] *ptr_b[1][2]

ptr_a[1][1]*ptr_b[1][0]

+ ptr_a[1][1]*ptr_b[1][2]

ptr_a[2][1]*ptr_b[1][0]

+ ptr_a[2][1]*ptr_b[1][2]

ptr_a[3][1]*ptr_b[1][0]
+ ptr_a[3][1]*ptr_b[1][1]
+ ptr_a[3][1]*ptr_b[1][2]

ptr_tmp[0][2] *ptr_c[2] [
ptr_tmp[0] [2] *pt (211
ot _tmpl'0] (2] *pt c[2][2] + ot

ptr_tnp[O][2]*ptr_c[2][3] + ptr t

/1 MATRI X_A x WTRIX B x MATRI X _C

ptr_out[0][0] = ptr_tnp[][0] ptr_c[O0][0] + ptr_tnp[0][1]*ptr_c[1][0]

0] tp[O] [3]*ptr_c[3][0];

ptr_][0] *ptr_c[O][1] + Ptf _tnp[O] [1] *ptr_c[1][1]

| [0][3]*IDtr _c[3][1

[0][O]*ptr c[O][2] + ptr_tnp[0] [1] *ptr_c[1][2]
rT13[0][3] ptr_c[3][2];

mp[O] [O] *ptr _c[O]3] + ptr_tmp[0] [1]*ptr_c[1][3]

np[O] [3] *ptr_c[3][3];

ptr out[l][O] = ptr_tnmp[1][0] *ptr c[O][O] + ptr_tnp[1][1] *ptr_c[1][0]

+pt
ptr out[O][l]
+ptr
out[0][2] = ptr_

ptr out[O][3] = ptr_t

ptr_tnp[1][2]*ptr c[2][0] +optr tapll][3]*ptr c[3][0];

ptr trT13[1][2] ptr_c[2][1]

ptr out[1][1] = ptr_tnp[1][0] *ptr_c[O][1] + ptr _tp[][1] *ptr_c[2][1]

+ ptr tnp[1] [3] *ptr_c[3][1];

nmp
t[1][2] ptr_tnp[1][0Q] *ptr C[O][Z] + ptr_tnp[1][1]*ptr_c[1][2]

tnp
ptr tnp[l][Z] ptr C[Z][Z] + ptr tn’p[l][3] ptr_c[3][2];

ptr out[l][3] = ptr_tnp[1][0] *ptr c[O][3] + ptr _trp[1] [1] *ptr_c[1][3]

ptr_tnp[1][2]*ptr_c[2][3] + Ptf _tnp[1] [3]*ptr_c[3][3];

ptr out[2][0] = ptr_tnmp[2][0] *ptr c[O][O] + ptr_tmp[2][1] *ptr_c[1][0]

ptr_tnp[2][2]*ptr_c[2][0] + ptr tmpl 2] [3]*ptr c[3][0];

ptr trrp[2][2] ptr c[2][1]

ptr out[2][1] = ptr_tnmp[2][0] *ptr_c[O][1] + ptr _trp[2][1] *ptr_c[1][1]
+ ptr _trp[2] [3] *ptr_c[3][1];
2][0]xptr_c[0][2] + pt'r_tnp[2] [1]*ptr_c[1][2]

out[2][2] = ptr_

ptr tnp[2][2] ptr c[2][2] + th tnp[2][3] ptr_c[3][2];

ptr out[2][3] = ptr_tmp[2][0] *ptr c[O][3] + ptr _trmp[2][1] *ptr_c[1][3]

ptr_tnp[2][2]*ptr_c[2][3] + ptf _tnp[2] [3]*ptr_c[3][3];

ptr out[3][0] = ptr_tnmp[3][0] *ptr c[O][O] + ptr_tnp[3][1] *ptr_c[1][0]

ptr_tnp[3][2]*ptr c[2][0] + ptr tapl3][3]*ptr c[3][0];

ptr trrp[3][2] ptr_c[2][1]

ptr out[3][1] = ptr_tmp[3][0] *ptr_c[O][1] + ptr _tp[3][1] *ptr_c[21][1]
+ptr _tp[3][3]*ptr_c[3][1
3][0] *ptr_c[0]T2] + ptr_tnp[3][1]*ptr_c[1][2]

out[3][2] = ptr_

ptr trT13[3][2] ptr c[2][2] + th trT13[3][3] ptr_c[3][2];

ptr out[3][3] = ptr_tnmp[3][0] *ptr c[O][3] + ptr _trp[3][1] *ptr_c[1][3]

ptr_tnp[3][2]*ptr_c[2][3] + ptf _tnp[3][3]*ptr_c[3][3];

}

return;

84

mat _mult4 -

EE I I

*

*/

void mat _mult4 (double **ptr_out,

doubl e **ptr_d) {

This function nultiplies 4 x 4 natrices.

doubl e **ptr_a,

doubl e ptr_tmp[4][4];
doubl e ptr_tnpl[4][4];

/1 MATRI X_A x MATRI X_B = MATRI X_TMP

ptr_tnp[OJ[0] =
ptr a[0][2] Ptf b[2][0]

ptr a[0][2] ptr b[2][1]
tmp[O

ptr a[O][Z] ptr b[2][2]
ptr tnpO

ptr a[O][Z] ptr b[2][3]

ptr_tmp[1][0] =
ptr a[1][2] Ptf b[2][0]

ptr a[1][2] ptr b[2][1]
tmp[1

ptr a[1][2] ptr b[2][2]
ptr trrpl

ptr a[1][2] ptr b[2][3]

ptr_tnp[2][0]
ptr a[2][2] ptf b[2][0]

ptr a[2]p[2] *ptr b[2][1]
ptr a[2][2] pr{pr b[2][2]
ptr tn'p2
ptr a[2][2] ptr b[2][3]

ptr_tnp[3][0]
ptr a[3][2] Ptf b[2][0]

ptr a[3]ID[2] *ptr b[2][1]
ptr a[3][2] Pr{pf b[2][2]
_t 3

ptr_tnp
ptr_al 31121 pir_BL21 3]

ptr_a[0][0] *ptr_b[O][0] +

+ ptr a[O][S]* tr b[3][0];
+ ptr_a[0] [1] *ptr_b[1][1]
r b[3][1];
+ ptr_a[0][1] *ptr_b[1][2]
+ ptr_a[0][3]*ptr_b[3][2];

+ ptr_a[0][1] *ptr_b[1][3]
+ ptr_a[0][3] *ptr_b[3][3];

ptr_a[0][0] *p tr _b[0][1]
|0tr_a[0][0]*|Dtr b[0] [2]

ptr_a[0] [0] *ptr_b[O] [3]

ptr_a[1][0] *ptr_b[0][0] +

+ ptr a[l][3]* tr b[3][0];
+ ptr_a[1][1] *ptr_b[1][1]
r b[3][1];
+ ptr_a[1][1] *ptr_b[1][2]
+ptr_a[1][3]*ptr_b[3][2];

+ ptr_a[1][1] *ptr_b[1][3]
+ ptr_a[1][3] *ptr_b[3][3];

ptr_a[1][0] *p tr _b[0][1]
|0tr_a[1][0]*|0tr b[0] [2]

ptr_a[1][0] *ptr_b[O] [3]

= ptr_a[2][0] *ptr_b[0O][0] +

+ ptr a[2][3]* tr b[3][0];
+ ptr_a[2][1] *ptr_b[1][1]
+ ptr a[2][3]* tr b[3][1];

+ ptr_a[2][1]*ptr_b[1][2]

+ ptr_a[2][1] *ptr_b[1][3]
+ ptr_af[2][3]*ptr_b[3][3];

ptr_a[2][0] *ptr_b[0][1]

ptr_a[2][0] *ptr_b[O] [3]

= ptr_a[3][0] *ptr_b[0O][0] +

+ ptr a[3][3]* tr b[3][0];
+ ptr_a[3][1] *ptr_b[1][1]
+ ptr a[3][3]* tr b[3][1];

ptr_a[3][0] *ptr_b[0] [1]
ptr_a[3][O] *ptr_b[O][2]

+ ptr_a[3][3]*ptr b[3][2];

ptr_a[3][0] *ptr_b[0] [3]

+ ptr_a[3][3]*ptr_b[3][3];

QUTPUT_MATRI X = MATRI X_A x MATRI X_B x MATRI X_C x NMATRI X_D

doubl e **ptr_b, double **ptr_c,

ptr_a[0][1] *ptr_b[1][0]

ptr_a[1][1]*ptr_b[1][0]

ptr_a[2][1] *ptr_b[1][0]

ptr_a[3][1] *ptr_b[1][0]

+ ptr_a[3][1]*ptr_b[1][2]
+ ptr_a[3][1]*ptr_b[1][3]

/1 MATRIX_A x NMATRI X_B x MATRI X_C = MATRI X_TMP1

ptr_tnpl[0][0] = ptr_tnp[0][0]*ptr_c[O][0] + ptr_tnp[O][1]*ptr_c[1][0] +
ptr trm[0][2] ptr_c[2][0] + A _tmp[O] [3] *ptr_c[3][0];

ptr_tnpl[0 = ptr_tnp[0] [O] *ptr_c[O] [1] + ptr_tnp[0][1]*ptr_c[1][1] +
ptr trrp[O][Z] ptr c[2][1] + ptr_tnp[O][3]*ptr_c[3][1];

ptr tmpl[O][2] = ptr_tnp[O][O]*ptr c[O][2] + ptr_tnp[O][1]*ptr_c[1][2] +
ptr trrp[O][Z] ptrc(2][2] + ptr_tnp[O][3]*ptr_c[3][2];

ptr tmpl[O][3] = ptr_tnp[O][O]*ptr c[O][3] + ptr_tnp[O][1] *ptr_c[1][3] +
ptr_tnp[0] [2]*ptr_c[2][3] + ptr_tnp[0] [3]*ptr_c[3][3];

—
[y
—

ptr_tnpl[1][0] = ptr_tnp[1][0]* ptr _c[0][0] + ptr_tnmp[1][1]*ptr_c[1][0] +
ptr trm[1][2] ptr c[2][0] +ptr_t mp[1] [3] *ptr_c[3][0];
1[1][1] = ptr trTp[1][0] ptr_c[O][1] + ptr_tnp[1][1]*ptr_c[1][1] +

ptr n’p
ptr trT13[1][2] ptf c[2][1] + ptr_tmp[1][3]*ptr c[3][1];

ptr tnpl[1][2] = ptr_tnp[1][O]*ptr c[O][2] + ptr_tnp[1][1]*ptr_c[1][2] +
ptr trT13[1][2] ptrc[2][2] + ptr_tnp[1][3]*ptr c[3][2];

ptr tnpl[1][3] = ptr_tnp[1][O]*ptr c[O][3] + ptr_tmp[1][1]*ptr_c[1][3] +
ptr_tmp[1][2]*ptr_c[2][3] + ptr_tnp[i][3]*ptr_c[3][3];

ptr_tnpl[2][0] = ptr_tnmp[2][0]* ptr _c[0][0] + ptr_tmp[2][1]*ptr_c[1][0] +
ptr trm[Z][Z] ptr c[2][0] +ptr_t mp[2] [3] *ptr_c[3][0];

ptr_tnpl = ptr_t c[O][1] + ptr_tnp[2][1]*ptr_c[1][1] +
ptr trr13[2][2] ptr C[2][l] +optr_tnp[2][3]* ptr_c[3][1];

ptr tnpl[2][2] = ptr_tnp[2][0]*ptr c[O][2] + ptr_tnp[2][1]*ptr_c[1][2] +
ptr trr13[2][2] ptrc[2][2] + ptr_tnp[2][3]*ptr c[3][2];

ptr tnpl[2][3] = ptr_tnp[2][0]*ptr c[O][3] + ptr_tnp[2][1]*ptr_c[1][3] +
ptr_tnp[2][2] *ptr_c[2][3] + ptr_tnmp[2][3]*ptr_c[3][3];

ptr_tnpl[3][0] = ptr_tnp[3][0]* ptr _c[0][0] + ptr_tnmp[3][1]*ptr_c[1][0] +
ptr trm[3][2] ptr cl[2][0] + ptr tmp[3][3]ptr_c[3][0];

ptr tmpl[3][1] = ptr_ rrp[3][0] pLr C[0][l] + ptr_tnp[3][1]*ptr_c[1][1] +
ptr trrp[3][2] ptr C[2][l] +optr_tnp(3][3]*ptr_c[3][1];

ptr tnpl[3][2] = ptr_tnp[3][0]*ptr c[O][2] + ptr_tnp[3][1]*ptr_c[1][2] +
ptr_tnp[3][2]*ptr_c[2][2] + ptr_tnp[3][3]*ptr_c[3][2];

—
[y
—

85

ptr tmpl[3][3] = ptr_tnp[3][0]*ptr c[O][3] + ptr_tnp[3][1]*ptr_c[1][3] +
ptr_tnp[31[2]*ptr_c[2][3] + ptr_tnp[3][3]ptr_c[31[3];

/1 MATRI X_A x MATRI X_B x MATRI X_C x MATRI X_D = MATRI X_OUT

ptr out[0][0] = ptr_tnpl[0][0]*ptr_d[0][0] + ptr_tnpl[O][1]*ptr_d[1][O]

ptr trT101[0][2] ptr_d[2][0] + ptr_tnpl[O][3]*ptr_d[3][0];
0][1] = ptr_tnmpl[O][O] *ptr d[0][1] + ptr _tpl[O] [1] *ptr_d[1][1]

ptr trrpl[O][Z] ptr_d[2][1] + ptr trrpl[O][S]* tr_d[3][1
tr out[0][2] = ptr_tnmpl[O0][O] *ptr d[O][2] + ptr _tnpl[O0][1] *ptr_d[1][2]

ptr trrpl[O][Z] ptr d[2][2] + ptr_t 1[0][3] ptr_d[3][2];
ptr_out [0][3] = ptr_t 1[0][0] ptr d[0][3] + ptr_tnpl[O][1] *ptr_d[1][3]

ptr_tnpl[O][2]*ptr_d[2][3] + ptr_tnpi[O][3]*ptr_d[3][3];

ptr out[l][O] = ptr_tnpl[1][O] *ptr_d[O][O] + ptr _trpl[1][1] *ptr_d[1] [0]
ptr trT131[1][2] ptr _d[2][0] + ptr_tmpl[1][3]*ptr_d[3]
1] = ptr_tnpl[1][O] *ptr d[O][l] + ptr _trpl[1] [1] *ptr_d[1][1]
ptr tnpl[l][Z] ptr d[2][1] + ptr trrpl[l][S]* tr_d[3
tr out[11[2] = ptr_tnpl[1][0] *ptr d[O][Z] + ptr _tnpl[1][1] *ptr_d[1][2]
ptr tnpl[l][Z] ptr d[2][2] + ptr_t 1[1][3] ptr_d[3][2];
ptr_out [1][3] = ptr_t 1[1][0] ptr d[0][3] + ptr_tnmpl[1][1] *ptr_d[1][3]
ptr_tnpl[1][2]*ptr _d[2][3] + ptr_tnpi[1][3]*ptr_d[3][3];

ptr out[2][0] = ptr_tnmpl[2][0] *ptr_d[O][0O] + ptr _tmpl[2][1] *ptr_d[1][0]
ptr trT131[2][2] ptr _d[2][0] + ptr_tmpl[2][3]*ptr_d[3]
1] = ptr_tnpl[2][O] *ptr d[O][l] + ptr _tmpl[2][1] *ptr_d[1][1]
ptr tnp1[2][2] ptr d[2][1] + ptr trrpl[Z][3]* tr_d[3
tr out[2][2] = ptr_tmpl[2][0] *ptr d[O][2] + ptr _tnpl[2][1] *ptr_d[1][2]
ptr tnp1[2][2] ptr d[2][2] + ptr_t 1[2][3] ptr_d[3][2];
ptr_out [2][3] = ptr_t 1[2][0] ptr d[0][3] + ptr_tnmpl[2][1] *ptr_d[1][3]
ptr_tnpl[2][2]*ptr _d[2][3] + ptr_tnpi[2][3]*ptr_d[3][3];

ptr out[3][0] = ptr_tnmpl[3][0] *ptr_d[O][0] + ptr _tmpl[3][1] *ptr_d[1][0]
ptr trT131[3][2] ptr _d[2][0] + ptr_tmpl[3][3]*ptr_d[3]
1] = ptr_tnpl[3][0] *ptr d[O][l] + ptr _tmpl[3][1] *ptr_d[1][1]
ptr tnp1[3][2] ptr d[2][1] + ptr tnp1[3][3]*ptr d[3
ptr_out[3][2] = ptr_tnpl[3][0] *ptr d[0][2] + ptr _tnpl[3][1]*ptr_d[1][2]
ptr_tnpl[3][2]*ptr d[2][2] + ptr_t 1[3][3] ptr_d[3][2];
ptr_out [3][3] = ptr_t 1[3][0] ptr d[0][3] + ptr_tnmpl[3][1] *ptr_d[1][3]
ptr_tnpl[3][2]*ptr_d[2][3] + ptr_tnpi[3][3]*ptr_d[3][3];

return;

}

vec_mult -

This function eval uates the equation:

LR S T S

out put_vector = matrix x input_vector

*/
void vec_nult (double *ptr_out, double **ptr_mat, double *ptr_vec) {

ptr out[O] = ptr_mat[0][O] *ptr vec[O] + ptr_mat[0][1] *ptr_vec[1l] +
ptr_mat[0][2] *ptr vec[2] + ptr mat[O][3] ptr_vec[3];

ptr out[l] = ptr_mat[1][0] *ptr vec[O] + ptr_mat[1][1] *ptr_vec[1]
ptr_mat[1][2] *ptr vec[2] + ptr rrat[l][3] ptr_vec[3];

ptr out[2] = ptr_mat[2]T0] *ptr_vec[O] + ptr_mat[2][1]*ptr_vec[1]
ptr_mat[2][2]*ptr_vec[2] + ptr_mat[2][3]*ptr_vec[3];

ptr out[3] = ptr_mat[3]]0] *ptr vec[O] + ptr_mat[3][1] *ptr_vec[1]
ptr_mat[3][2] *ptr_vec[2] + ptr_mat[3][3]*ptr_vec[3];

+

+

+

return;

}

86

B.3 — Central.c (extract)

/*
* Aut hor: |an Marshall
*
* This code is used to denpbnstrate active bal ance control of the GuRoo
*
*/
voi d Denp_Bal ance() {
kill _func();
kill_servos();

nmove. nctrl _fn
nove. fi ni shed
nove. durati on
nmove.time = 0;

deno_bal _func;
fal se;
4.0;

}
voi d deno_bal _func()

#define s_per 4.0f
#define stand_|l ean_angle 11 * PI/180

#defi ne STAGELl 1. 0f
#defi ne STAGE2 (STAGEl + s_per)
#defi ne STAGE3 (STAGE2 + s_per)

#defi ne STAGE4 (STAGE3 + nove. duration)

#defi ne STAGES (STAGE4 + s_per)

#defi ne STAGE6 (STAGE5 + s_per)

#defi ne STAGE7 (STAGE6 + s_per)

float ANKLE_ANGLE = (float)(30.0 * PI/180);

float HI P_ANGLE = (float)(asin(0.17 * sin(lift_angle) / 0.265));
float KNEE_ANGLE = (float)(ANKLE_ANGLE + HI P_ANGLE);

float torso_correction = 10 * PI / 180 ;

float velocity;

/1 hold position
if(nove.time <= STAGE1l) {
}

/1 shift weight over right foot
if ((move.tinme > STAGEl) && (nove.tinme <= STAGE2)) {
vel ocity = Vel ocity2(s_per, STAGEl);

*desired_j oi nt _vel [R GHT_ANKLE_SI DE] = SRAD2ENC((fl oat)(velocity * stand_l ean_angle));
*desired_joint_vel [RIGHT_H P_SIDE] = SRAD2ENC((float) (velocity * (stand_l ean_angle -

(3.5*P1/180))));

*desired_j oi nt _vel [LEFT_ANKLE_SI DE] = SRAD2ENC((float)(velocity * stand_|l ean_angle));
*desired_joint _vel [LEFT_HI P_SI DE] = SRAD2ENC((float)(-velocity * (stand_|l ean_angle +

(3.5*P1/180))));

}

/1 raise left leg

if ((nove.tinme > STAGE2) && (nove.tinme <= STAGE3))

{ vel ocity = Vel ocity2(s_per, STAGE2);
*desired_joint_vel [LEFT_H P_FWD] = SRAD2ENC((fl oat
*desired_joint_vel [LEFT_KNEE] = SRAD2ENC((fl oat) (v
*desired_j oi nt _vel [LEFT_ANKLE FWD] = SRAD2ENC((fI oa
*desired_j oi nt _vel [TORSO FWD] = SRAD2ENC((fl oat) (-v

/1 raise left leg further
if ((nmove.tinme > STAGE3) && (nove.tinme <= STAGE4)) {
vel ocity = Vel ocity2(s_per, STAGE4);

*desired_joint_vel [LEFT_H P_FWD] = SRAD2ENC((fl oat) (
*desired_joint_vel [LEFT_H P_SI DE] = SRAD2ENC((fl oat)
}
/1 bend right knee
if ((move.tine > STAGE4) && (nove.tine <= STAGED))
{

vel ocity = Vel ocity2(s_per, STAGES);

)(velocity * H P_ANGLE));
elocity * KNEE_ANGLE));
t)(velocity * ANKLE_ANGLE));
elocity * 5.0 * Pl / 180));

velocity * 30 * PI/180));
(-velocity * 40 * PI/180));

*desired_j oi nt _vel [RIGHT_KNEE] = SRAD2ENC((float)(velocity * 15 * PI/180));

/1l tilt torso
if ((nove.tinme > STAGE5) && (nove.tinme <= STAGE6)) {
vel ocity = Vel ocity2(s_per, STAGE?7);

*desired_j oi nt _vel [TORSO SI DE] = SR)—\DZEI\KZ((fI oat)(velocity * -20 * PI/180));

/1l twist torso
if ((move.tinme > STAGE6) && (nove.time <= STACGE7)) {
vel ocity = Vel ocity2(s_per, STAGE7);

*desired_j oi nt _vel [TORSO TW ST] = S’RADZEI\K:((fI oat)(velocity * -20 * PI/180));

printf("final stage\n");

finish
if ((rove. STACGE?))

>
f("done novenent\n");
);

87

Appendix C: SIMULATOR CENTRE OF
MASS CODE

/*
Met hod that works out the centre of gravity of the robot
Added by CSH 5/9/02

*/

Fl oat nass;

Cartesi anTensor inertia;

Cartesi anVector cg_pos;

void getCentreOf Gravity(Cartesi anVector cog) {

Fl oat force = 0;

Fl oat cogX = 0;
Fl oat cogY = 0;
Fl oat cogZ = 0;
for (int i =0; i < numlinks; i++) {

drLi nk* |ink = guroo->getLink(i);
cerr << |ink->getNanme() << endl;
dnRi gi dBody *ri gi dBody = dynami c_cast <dnRi gi dBody*>(1i nk);

if (rigidBody != NULL) {

const dmABFor Ki nStruct* forwardKi nenatics = guroo-

>get ForKi nStruct (i);
ri gi dBody- >get | nerti aParaneters(nass, inertia, cg_pos);

Cartesi anVector |inkCOG = {
(Fl oat) f orwar dKi nemati cs->p_| CS[0],
(Fl oat) f orwar dKi nemati cs->p_I CS[1],
(Fl oat) f orwar dKi nemati cs->p_| CS[2]

h

cogX = ((mass * (1inkCOJ 0] - cogX)) / (force + nmss)) + cogX
cogY = ((mass * (1inkCOF 1] - cogY)) / (force + mass)) + cogy;
cogZ = ((mass * (1inkCOH 2] - cogz)) / (force + nmss)) + cogZ

force = force + mass;

} else {
cerr << "pointer was null" << endl;
}
}
cog[0] = cogX;
cog[1] = cogY;
cog[2] = cogz;

88

Appendix D: CD

D.1 - MATLAB Code

This CD includes all MATLAB Source Code used to generate the graphs displayed

in this thesis.

The CD also includes:
e C-Source Code for the Balance System

e PDF Copy of this report

89

