
 

   

 
 

 

Vision Software 

for Humanoid Robot Soccer 
 

By 
 

Anthony Peters 
 

 

 

The School of Information Technology and 

Electrical Engineering 

The University of Queensland 

 

 

Submitted for the degree of Bachelor of Engineering (Honours) 

in the division of Software Engineering 

29 October 2003 
 



 

 

26 October, 2001 

 

 

 

Professor Simon Kaplan, 

Head of School, 

School of Information Technology and Electrical Engineering, 

University of Queensland, 

St Lucia QLD 4072. 

 

 

Dear Professor Kaplan, 

 

In accordance with the requirements of the degree of Bachelor of Engineering in the division 

of Software Engineering, I present the following thesis entitled “Vision Software for 

Humanoid Robot Soccer”. This thesis project was conducted under the supervision of Dr 

Gordon Wyeth. 

 

I declare that the work submitted in this thesis is my own, except as acknowledged in the text, 

and has not been previously submitted for a degree at the University of Queensland or any 

other institution. 

 

 

Yours sincerely, 

 

Anthony Peters 



 

   

Acknowledgements 
 

God, for helping me get to a stage in my life that I can complete a thesis. 

 

 

Gordon Wyeth for his supervision and unfaltering vision and direction. 

 

Damien Kee for always having the right advice at the right time. 

 

Mark Chang for his endless and timely advice on the vision hardware. 

 

David Prasser for his assistance with the software for image processing. 

 

John Nguyen and Ravi Nath for constantly keeping things in perspective by reminding me 

how much further behind they were with their theses. 

 

Lisa Bright, for being my motivation and inspiration, and providing the guiding light I needed 

when things were looking their bleakest. 

 

My family, whom I have no doubt are tired of hearing about this thesis. 

 



 

 

Abstract 
 

This thesis describes the continuation of work on the vision system for The University of 

Queensland’s Humanoid Robotics Project, GuRoo.  

 

The work in this project saw the correction and adjustment of several issues which had not 

been considered in the test environment. These problems had the potential to disrupt the speed 

and reliability of the system when used in the target environment. The project also 

incorporated the cross-development of the software applications which accompany the vision 

system for Microsoft Windows. The project concluded with the integration of the vision 

system with GuRoo. 

 

The improvements made to the system allow the streaming of higher resolution images with 

better colour definition and focus. The focus of the images is corrected through an adjustment 

of the spacing between the lens and imaging device. The saturating effects of ambient light on 

the acquired images is eliminated through the prevention of light penetrating the camera 

housing. This is achieved through the redesign of the camera housing.  

 

The integration of the vision system with GuRoo is achieved, while the project still awaits the 

arrival of the new head. The attachment of the system is demonstrated through the use of the 

temporary head, which incorporates the eIMU. 

 

The combination of the software cross-development for Microsoft Windows, combined with 

the correction of the focal and colour definition issues, will allow more rapid developments to 

be made to GuRoo’s vision system. 

 



 

 i 

 

Contents 
 
 

1 Introduction 1 
 1.1 GuRoo and the RoboCup Tournament…………………………………………... 1 

 1.2 Vision Requirements for RoboCup...……………………………………………. 2 

 1.3 Thesis Outline…..………………………………………………………………... 4 

 

2 Literature Review 5 
 2.1 GuRoo Vision Hardware……………………...………………………………….. 5 

  2.1.1 Camera Board………….…………………………………………………. 6 

  2.1.2 SH4 Vision Board…….………………………………………………….. 6 

 2.2 GuRoo Vision Software……………………...………………………………….. 8 

  2.2.1 YUV Colour Space……………………………………………………….. 8 

  2.2.2 Lookup Tables…..……………………………………………………….. 10 

  2.2.3 Morphological Erosion….……………………………………………….. 12 

  2.2.4 Blob Detection…..……………………………………………………….. 13 

 2.3 Image Analysis and Object Detection……………………………………………. 14 

 2.4 Hardware Programming Applications……………………………………………. 16 

 2.5 Vision Debug Applications………………………………………………………. 16 

 

3 Problem Specification 17 
 3.1 Software Redevelopment for Win32……………………………………………... 18 

 3.2 Hardware and Software Integration……..……………………………………….. 18 

 3.3 Vision System Integration with GuRoo...………………………………………... 19 



CONTENTS  ii 

 

4 Software Developments 20 
 4.1 Win32 Software… … … … … … … … … … … … … … … … … … … … … … … … … ... 21 

  4.1.1 SH4 Software… … .… … … … … … … … … … … … … … … … … … … … … .. 22 

  4.1.2 Debugging Software..… … … … … … … … … … … … … … … … … … … … .. 23 

 4.2 SH4 Improvements..… … … … … … … … … … … … … … … … … … … … … … … ... 25 

  4.2.1 Resolution Improvements..… … … … … … … … … … … … … … … … … … .. 25 

  4.2.2 Speed Improvements.… … … … … … … … … … … … … … … … … … … … .. 27 

 

5 System Integration 29 
 5.1 Focus Correction..… … … … … … … … … … … … … … … … … … … … … … … … ... 29 

 5.2 Saturation Suppression… … … … … … … … … … … … … … … … … … … … … … ... 32 

 5.3 Vision System Integration with GuRoo...… … … … … … … … … … … … … … … ... 34 

 

6 Project Evaluation and Future Work 36 
 6.1 Flash for SH4 Vision Board.… … … … … … … … … … … … … … … … … … … … ... 37 

 6.2 Detection of Additional Objects… ..… … … … … … … … … … … … … … … … … ... 37 

 6.3 Redesign of SH4 Vision Board.… … … … … … ..… … … … … … … … … … … … ... 38 

 

7 Conclusion 39 

Bibliography 40 

A Hardware User Guide 42 

B Software User Guide 64 

C Additional Code 84 

D Head Redesign 105 

E Camera Housing Redesign 106



 

 iii 

List of Figures 
Figure 1 - Current Vision Hardware ...........................................................................................5 

Figure 2 - Camera Board ............................................................................................................6 

Figure 3 - Hardware Block  Diagram .........................................................................................7 

Figure 4 - CMYK Colour Space .................................................................................................9 

Figure 5 - YUV Colour Space ....................................................................................................9 

Figure 6 - Normal 2D Lookup Table ........................................................................................10 

Figure 7 - Bruce’s Lookup Table ..............................................................................................11 

Figure 8 - The erosion  process.................................................................................................12 

Figure 9 - Run Length Encoding and Grouping .......................................................................14 

Figure 10 - Frame Status Protocol ............................................................................................24 

Figure 11 - Initial Resolution (256 x 64) vs Improved Resolution (128 x 128) .......................26 

Figure 12 – Height-to-width comparison - 1:1 vs 2:1 ..............................................................27 

Figure 13 - Focus - Old Spacers ...............................................................................................30 

Figure 14 - 1st and  2nd Principal Points..................................................................................31 

Figure 15 - Flange Distance......................................................................................................31 

Figure 16 - Saturated Image......................................................................................................32 

Figure 17 - Old Camera Housing..............................................................................................33 

Figure 18 - "Make-do" Head Solution ......................................................................................34 

Figure 19 - GuRoo's Current Head .........................................................................................105 

Figure 20 - GuRoo's Redesigned Head...................................................................................105 

Figure 21 - New Camera Housing ..........................................................................................106 

Figure 22 - Wireframe of New Camera Housing ...................................................................106 



 

 

 1 

 

 

 

Chapter 1 

Introduction 
 

 

1.1 GuRoo and the RoboCup Tournament 
 

The University of Queensland’ s humanoid project, named GuRoo, is now 3 years old. Work 

on the project has seen 24 students undertake undergraduate theses on topics such as 

distributed motion controllers, gait generation and control algorithms and vision system 

design, all targeted at a humanoid implementation. 

 

The purpose of the GuRoo Humanoid project is well defined. It has a single purpose; to 

complete in the RoboCup Robot Soccer Tournament [1]. The RoboCup Competition is an 

international tournament where teams of robotics researchers come together to showcase the 

ground-breaking achievements of their research. The competition is held annually, and 

exhibits the work of several participating universities and research organisations. 

 

The RoboCup Competition offers several classes of events for its participants to compete in. 

These events include a Dancing Competition, a Rescue Competition, and the Soccer 

Competition. There is also a Freestyle Competition, where teams can demonstrate any other 

achievements which are not applicable to the afore-mentioned categories. The competition of 

interest to the GuRoo project, and this thesis, is the Soccer Competition. 

 

The Soccer Competition at the RoboCup Tournament has a set of rules which clearly define 

the operating conditions and environment which participating robots must comply with. These 



CHAPTER 1. INTRODUCTION 2 

 

 

rules address all issues regarding competition, ranging from the structural requirements for a 

robot to compete, through to the colour of each object within the environment that participants 

need to be concerned with. 

 

The RoboCup Soccer Competition exposes three categories of competition for the soccer 

tournament. These are; small sized league, medium sized league, and humanoid league. Each 

variation of the competition has slightly differing rules to the others, with the main differences 

appearing in the structural requirements. [2] 

 

 

1.2 Vision Requirements for RoboCup 
 

The humanoid league of the RoboCup Soccer Competition is still very much in its infancy. As 

a consequence of this, the rules are highly inconclusive with regards to the details of the 

environment the humanoids will be operating in. This year has, however, seen the inclusion of 

such details, in draft form, in the humanoid league rules. 

 

Given the importance of these details to the design of a vision system for a participant in this 

league, certain assumptions have been made that allow the vision system to take form. These 

assumptions are primarily the set of objects the vision system must be able to detect, along 

with their designated colours. The objects, along with their stipulated colours are shown 

below. 

 

OBJECT COLOUR 

Ball Orange 

Goals 1 x Blue, 1 x Yellow 

Playing Field Green 

Field Lines White 

Obstacles Black 

Table 1 - Assumed Object Set with Colours 



CHAPTER 1. INTRODUCTION 3 

 

 

In addition to the objects the vision system must be able to detect, there are other 

environmental factors which play a role in the vision system’ s design. One of the primary 

factors is the dynamic nature of the operating conditions for the humanoid. At any given time, 

the player must be able to detect and interact with at least one opponent, the ball, and both the 

goals, and at the same time be concerned with it’ s own location within the field. Given the 

dynamic nature of this environment, the humanoid’ s vision system must maintain a frame rate 

that will allow it to deal with the rapid movement of any of the objects it will be tracking.  

 

There are two factors which impact the frame rate of a vision system. The first is the image 

acquisition time, and the second is the image processing time. The image acquisition time is 

determined by the image capture hardware. Currently, technology is available that can capture 

images at frame rates far greater than that of the human eye. This makes the frame rate of a 

vision system almost entirely dependant on the image processing hardware and algorithms. 

 

The image processing hardware and algorithms must be designed with speed and accuracy in 

mind. Speed, however, is the more important attribute. The reason for this is that if a high 

enough frame rate is maintained, errors in a single frame will be quickly compensated for by 

the arrival of the following frame. The longer a frame takes to process, the less relevant that 

frame becomes. 

 

A vision system designed for use in the RoboCup Humanoid League should be designed with 

the goal of offering real-time vision. However, due to the processing power and algorithm 

optimisation required to achieve this, such a requirement need not be met for a vision system 

to be of use to the humanoid. 

 



CHAPTER 1. INTRODUCTION 4 

 

 

1.3 Thesis Outline 
 

Introduction: A brief outline of the history and purpose of The University of Queensland’ s 

Humanoid project. It also outlines the requirements imposed on the humanoid’ s vision 

system by the RoboCup initiative. 

 

Literature Review: A look at the current state of GuRoo’ s vision system. Both hardware and 

software elements are discussed. 

 

Problem Specification: A detailed description of the requirements of GuRoo’ s vision system, 

along with what the goals of this thesis contribute towards achieving these requirements. 

 

Software Developments: A description and rationale behind the software developments 

made in this thesis, including both the re-writing of the current software for the Win32 

API, and the SH4. 

 

System Integration: An insight into the steps taken to integrate the current hardware and 

software elements of the vision system, and the vision system’ s integration with GuRoo. 

 

Future Work: Suggestions and discussion of what steps to take next to bring the vision 

system closer to achieving its purpose. 

 

Conclusion: Results and improvements of the project are summarised. 

 

 

 



 

 5 

Chapter 2 

Literature Review 
 

 

2.1 GuRoo Vision Hardware 
 

2.1.1 Current Vision Hardware 
 

Previous work on the development of a vision system for the GuRoo humanoid includes the 

selection of a camera, processor, and memory components, and the implementation of their 

respective electrical interfaces. 

 

The vision hardware for the GuRoo project consists heavily of the interaction between two 

sub-systems. These sub-systems are the image acquisition system, and the image processing 

system. These systems are implemented independently in the form of the camera board and 

the SH4 vision board. The camera board is solely responsible for powering the camera chip, 

and controlling data transfer between the camera chip and the SH4 vision board. The SH4 

vision board is a custom built board that contains various processing components required for 

the acquisition and analysis of data obtained from the camera board. 

 

 

Figure 1 - Current Vision Hardware 

 



CHAPTER 2. LITERATURE REVIEW 6 

 

 

2.1.1 Camera Board 
 

The camera chip used is an OmniVision OV7620. This camera chip was chosen based on 

several of its features which make it ideal for local vision systems. These features include a 

frame rate of up to 60 Hz, a variable bit data output, RGB and YUV image output, and on-

chip windowing. The default resolution is 640x480, with a maximum resolution of 664x492.  

 

The other important component of the image acquisition 

system is the lens. The lens chosen for GuRoo’ s vision 

system is an AVENIR SSV0358. This lens is a vari-focal 

lens, with a focal length of 3.5 – 8.0mm, and an aperture of 

1.4. One of the more important features of the selected lens is 

its 80 degree horizontal field of view. This allows a much 

wider area to be seen in a single image than other 1/3” image 

format lenses. 
 

Figure 2 - Camera Board 

 

2.1.2 SH4 Vision Board 
 

The SH4 vision board was designed by Mark Chang for use in The University of 

Queensland’ s ViperRoos robotic soccer team. The board has been designed for the various 

vision requirements for the ViperRoos, which are similar in almost every aspect to that of 

those required by GuRoo. The components featuring on the board include an Hitachi SH4 

microprocessor, which is used for the primary image processing functions, a Xilinx Spartan II 

FPGA for secondary processing, 512KB SRAM, and 16MB SDRAM. [4] 

 

The Hitachi SH4 is a 32-bit RISC processor belonging to the Hitachi SH7750 Series of 

microprocessors [3]. It has an operating frequency of 200MHz, with a performance rating of 

360 MIPS. The instruction set uses a fixed length instruction format for improved 

performance. The processor also offers an instruction cache and an operand cache to further 

improve the processor’ s performance. 



CHAPTER 2. LITERATURE REVIEW 7 

 

 

A 32-bit data bus is used for the transfer of image information and control signals between the 

SH4 vision board and the camera board. This is convenient due to the SH4’ s internal data bus 

also being 32-bit. 

 

The flow of information in the current GuRoo vision hardware is demonstrated in the block 

diagram shown in Figure 3. (Prasser, 2001:16) 

 

 

Figure 3 - Hardware Block  Diagram 

 

The SH4 vision board also supplies facilities for hardware and software debugging. These 

facilities take various forms, including status LEDs and serial and Universal Serial Bus (USB) 

connections to a PC. Currently, however, the electronic components required for the USB 

connection have not been added to the board, leaving the serial interface the only connection 

available. 

 

There are several status LEDs found on the SH4 board in various locations. These LEDs are 

used to show the current input voltage, and the state of each of the primary elements of the 

board, including the CPU and FPGA. The most important set of status LEDs on the vision 

board are the “boot LEDs”. The boot LEDs comprise of four LEDs, with different 

combinations showing the current state of the system. During the boot stage, the boot LEDs 

perform the function of displaying the current phase of the boot process. In the event of a 

problem during the boot sequence, these LEDs allow the identification of the problematic 

stage. 

 

The boot LEDs are also used during program execution to communicate such information as 

the current frame rate and confirmation that the program hasn’ t crashed. 



CHAPTER 2. LITERATURE REVIEW 8 

 

 

2.2 GuRoo Vision Software 
 

The software pipeline required for robotic vision is quite well established [4]. This pipeline 

commences with a segmentation process, where the acquired image is reduced into different 

regions containing the objects of interest. This resulting set of regions lends itself to a more 

complex set of functions which can then be used to reduce noise in the image, along with the 

classification of object types and the determination of the relevance of each of the objects 

found within the image. 

 

Work on the software for GuRoo’ s vision system has seen the development of algorithms for 

the segmentation, erosion and classification of objects within images which closely model 

those which will be captured using the vision system. 

 

 

2.2.1 YUV Colour Space 
 

There are various ways of representing the colours we see. These methods of representing 

colours are defined by the building blocks used to construct all other colours in the model, or 

the primary colours. 

 

The most common method is known as RGB. This model uses red, green and blue as the 

primary colours, and is the method used is such visual devices as televisions and computer 

monitors. Another popular method is titled CMYK. This method uses cyan, magenta, yellow 

and black as its primary colours. It is heavily used in printing processes, where it makes sense 

to introduce black as a primary colour. 



CHAPTER 2. LITERATURE REVIEW 9 

 

 

 

 

Figure 4 - CMYK Colour Space 

 

Figure 5 - YUV Colour Space 

 

There are other models, such as HSI (Hue, Saturation, Brightness), but the model that is of 

particular interest for vision systems is YUV. This model is the luminance-bandwidth-

chrominance model. The Y component represents the brightness of the image, while the U 

and V components represent the blue and red chrominance respectively. This method is more 

ideal for robotic vision applications due to its ability to mask the variance in colour due to 

ambient lighting conditions. A change in ambient light will, theoretically, only affect the Y 

component. All other colours are then represented as a particular mixture of red and blue [5]. 

 

One of the selection criteria for a camera to be used in GuRoo’ s vision system was the ability 

to output images in YUV format. This reduces the processing required to detect objects within 

the image. 

 

 



CHAPTER 2. LITERATURE REVIEW 10 

 

 

2.2.2 Lookup Tables 
 

An image represented in the YUV colour space is only of practical value for the elimination 

of lighting effects. Once this image has been acquired, the remainder of the process involves 

the preparation of the image for object detection. 

 

The RoboCup Rules [2] clearly define the specifications for the environment in which GuRoo 

must operate. Fortunately, each of the relevant objects in the environment are colour coded. 

 

The next step in the image processing pipeline is the conversion of a given pixel from the 

YUV colour space to the RGB colour space to allow a direct matching of a colour in the 

image to the colour of an object. The most basic method involves a simple 2-dimensional 

lookup table which uses the U and V components to map the x and y axes. An example of this 

is shown in Wong (2002:19). 

 

 

 

Figure 6 - Normal 2D Lookup Table (Wong, 2002:19) 

 

A more complex, but more memory efficient method of colour lookup is the use of Bruce’ s 

Lookup Table [6]. This method uses a series of n-bit vectors, where n is the number of 

colours, for each U and V value. The resulting two vectors (one for U and one for V) are bit 



CHAPTER 2. LITERATURE REVIEW 11 

 

 

ANDed together. The result will be an n-bit vector, which will contain all 0’ s apart from a 

single 1. The position of this 1 dictates the colour of the pixel. 

 

 

 

Figure 7 - Bruce’s Lookup Table (Wong, 2002:20) 

 

Upon completion of the colour lookup phase, a colour coded image is left that contains areas 

of all the colours used in the colour lookup phase. The purpose of the colour coded image is 

two-fold. The first reason is to reduce the amount of information that needs to be processed. 

The second, and more important, reason is to reduce the image to the colours that concern the 

object detection algorithms. These colours are simply yellow, blue, orange, green, white and 

black. All colours in the RGB colour space of the real world are reduced to these six colours. 

This result allows the easy detection of objects within the image [5]. 

 

There is, however, one problem with a colour coded image. This is the introduction of noise. 

The accuracy of the colour lookup stage is limited by its discrete nature. The introduction of 

noise into the image could result in major anomalies in the detection of objects. For example, 

a spot on the lens may result in a section of the ball appearing black, preventing the object 

detection algorithm from detecting any round objects in the image. 

 

 



CHAPTER 2. LITERATURE REVIEW 12 

 

 

2.2.3 Morphological Erosion 
 

The solution to the noise problem previously described lies in a technique called 

morphological erosion [7]. Morphological erosion is a mathematical technique commonly 

used in the processing of images. The technique treats an image as a set of pixels which make 

up a two dimensional coordinate space. 

 

There are two basic operations used in the process. These are erosion and dilation. Erosion 

causes a group of pixels to become smaller, while dilation has the opposite effect. Both of 

these functions have two parameters, a group of pixels, and a structuring element. The 

structuring element dictates the effect the operation has on the group of pixels. 

 

Morphology theory also exposes two complex operations. These are opening and closing. An 

opening is an erosion followed by a dilation, and a closing is effectively the opposite. The 

erosion and dilation operations used in an opening or a closing use the same structuring 

element. 

 

 

 

Figure 8 - The erosion  process 

 



CHAPTER 2. LITERATURE REVIEW 13 

 

 

The process is demonstrated in Figure 8. In the figure, the area to be eroded is the leftmost 

array, with the structuring element represented in the centre array. The result of the erosion 

process is shown in the right-most array. 

 

The currently implemented morphological operation for use in GuRoo’ s vision system is an 

erosion with a 1 x 3 structuring element. This is relatively successful, particularly in removing 

small amounts of red noise [5]. 

 

 

2.2.4 Blob Detection 
 

The first step to be taken is the recognition of areas within the image that are the same colour. 

Given the constraints on the operating environment, an area of a specific colour in our image 

is certain to be a given object. 

 

The process of object detection begins with the location of “runs” of the same colour on a 

single line [5]. Each run of a specific colour is given a unique “run number” and is referred to 

as a run element. The image is analysed, starting from the top left, with the coordinates of the 

start and end of each run element stored to memory. 

 

The process of blob detection (grouping) is the final phase of the image processing pipeline 

before object detection can commence. Blob detection is the process of grouping adjacent run 

elements of the same colour. 

 

Run elements are analysed in a top-down approach, with a comparison of the overlapping run 

elements on the rows above and below the current row. If the run elements are the same 

colour, they are added to a blob. A blob is a group of run elements four-connected which are 

of the same colour [5]. 



CHAPTER 2. LITERATURE REVIEW 14 

 

 

 

Figure 9 - Run Length Encoding and Grouping (Prasser, 2001:30) 

 

Upon the completion of the grouping process, the image is ready for analysis to determine the 

location of objects within the image. 

 

 

2.3 Image Analysis and Object Detection 
 

The historical background of digital image processing dominates the field of computer vision 

with regards to object recognition [8]. Digital image processing originated for use in static 

remote sensing, where the intensive evaluation of single images prevails. 

 



CHAPTER 2. LITERATURE REVIEW 15 

 

 

This simple principle of evaluating single images, particularly when combined with state 

information in image sequences, can produce very useful information for object detection and 

tracking. For example, using a single image, it is possible to locate any given object within it, 

however with a substantial processing overhead. Knowing the location of the object in the 

image, we can now use this information to reduce the search space in the following image, if 

we are required to locate the same object again. This method can be used to reduce the 

processing required to locate objects within an image. 

 

With regards to actually locating objects within an image, it is imperative that a prior 

knowledge of the search objects be known. This helps the detection algorithm recognise an 

object based on specific properties which can be used to distinguish them. 

 

The basic idea is to extract features from the image [4]. These features are simple properties 

such as area, perimeter and colour. Each image segment is analysed by assigning the values of 

its feature vector. The resulting feature vector is then matched to a predefined set of feature 

vectors, which correspond to the search objects. The identity of the search object can then be 

discovered. 

 

The greatest problem with this method is obtaining enough information to ensure the correct 

placement of the decision boundaries [4]. For example, if the feature vectors of multiple 

search objects are similar within a certain threshold, a small error in the classification of an 

image segment may result in identical feature vectors for quite distinct objects in the image. 

Other methods may not expose this possible complication. The solution lies in the acquisition 

of a suitable quantity of information about an image segment and the careful selection of 

feature elements. 

 

One of the main problems presenting itself with machine vision is the presentation of 2D 

projections of a 3D reality. The problem lies, as mentioned above, with feature selection. It is 

exceedingly difficult to derive feature measurements which use object properties which are 

invariant to the relative image positioning, in addition to distance and lighting factors. 

 



CHAPTER 2. LITERATURE REVIEW 16 

 

 

2.4 Hardware Programming Applications 
 

The software used to control the hardware and its appropriate functions are written in C. A 

serial uploading program called ploader has been written by Mark Chang to accompany his 

SH4 vision board. The program communicates with the SH4 via the available SCI interface. 

Details of how to the use ploader (both the Linux and Win32 versions) can be found in 

Appendix A. 

 

In order to compile the software required for the SH4, the GNU SH cross compiler is used. 

This is a cross compiler built on the GCC framework, and requires the Linux operating 

environment to function. Details on how to build such a cross development environment can 

be found in an article title “ Building A Cross Development Environment Targeting SH4 

Systems” . [9] 

 

 

2.5 Vision Debug Applications 
 

Apart from the hardware debugging methods previously mentioned, an application has been 

developed, VDebug, which displays on a PC what the vision system is currently “ seeing” . 

This program communicates directly with the SH4 vision board, and requests the relevant 

information through the SCI interface. 

 

VDebug is written according to the ANSI C standard, and makes extensive use of the 

OpenGL graphics libraries for display functionality. The program displays the relevant 

information for the current frame in three windows. The first window is used to display the 

image, the second shows a YUV Map of the image, and the final window shows an RGB 

Histogram of the image. Each of these windows are rendered as RGB textures in OpenGL and 

mapped to their appropriate windows. 

 



 

 17 

 

 

 

Chapter 3 

Problem Specification 
 

 

Independently, both the hardware and software subsystems have been implemented and their 

functionality verified experimentally. However, no attempt has been made to integrate these 

systems with GuRoo, and demonstrate their functionality in conjunction with other GuRoo 

behaviours. 

 

The scope of this project involved the collaboration of the existing subsystems and verifying 

their ability to function cooperatively, along with the integration of the vision system with 

GuRoo. 

 

Before this integration could be attempted, the various debugging applications used in 

conjunction with the vision system, which were initially written for a Linux execution 

environment, needed to be ported to the Microsoft Windows environment. 

 

In addition to the redevelopment of the debugging applications, various add-ons required 

development for these applications which allowed the visual analysis and verification of the 

image processing functions. 



CHAPTER 3. PROBLEM SPECIFICATION 18 

 

 

3.1 Software Redevelopment for Win32 
 

The existing software for GuRoo’ s vision system, including both the embedded software and 

system debugging software, had been developed exclusively for the Linux operating 

environment. This enforced knowledge of the Linux operating system as a prerequisite for 

any work on this vision system. This restriction has in the past caused setbacks and 

interruptions to development of this vision system. This project was no exception. 

 

This project goal was added after initial problems with the procurement of a Linux system 

with the required software for use in this project. These hindrances to progress prompted the 

addition of the goal of redeveloping the existing software for use under a Microsoft Windows 

environment, in an attempt to reduce the likelihood of such obstacles manifesting themselves 

in the future. 

 

The primary objective when redeveloping the software for use under Windows was to allow a 

seamless transition between Windows and Linux. This allows changes to be made to the 

functionality of the embedded software and/or the debugging applications using the operating 

environment of choice without inflicting the need to make the changes again under the 

alternate operating environment. 

 

 

3.2 Hardware and Software Integration 
 

The hardware used for GuRoo’ s vision system is currently being used to capture frames using 

the image capture subsystem, and then using the image processing subsystem to transmit 

these frames to the PC as requested. This functionality is well below that of the intended use 

of the vision system, and makes no use of the current image processing algorithms which 

have been developed for use by the system. 

 



CHAPTER 3. PROBLEM SPECIFICATION 19 

 

 

The image processing algorithms have been written and tested on the SH4 processor; 

however, these algorithms have only been tested on static images, which have been uploaded 

to the SH4 for testing purposes. No real-time analysis of images has been attempted. 

 

This project objective required the integration of the image processing algorithms with the 

image processing subsystem to allow the real-time analysis of frames taken from the image 

capture subsystem. 

 

As a consequence of this project requirement, further development of additional functionality 

in the debugging applications was required to allow the debugging of the image processing 

functions. 

 

 

3.3 Vision System Integration with GuRoo 
 

The primary reason for this project objective was to demonstrate the ability of the current 

vision system to function in the dynamic environment which GuRoo has been built to operate 

in. The objective entailed correcting several aspects of the vision system which have, thus far, 

warranted no further attention. These aspects were factors such as the effects of ambient light 

on the captured images, and its effects on colour segmentation, along with the correction of 

various focal issues which present themselves when working in a dynamic environment. 

 

The reason these aspects have not been considered before is due to the fact that the system has 

not been tested in a real-time environment. Working with static images allows the selection of 

images which lend themselves better to their intended use. Unfortunately, a dynamic 

environment such as that which GuRoo will be operating in does NOT lend itself to such 

luxuries. 

 

 

 

 



 

 

 

 20 

 

 

 

Chapter 4 

Software Developments 
 

 

The software developments required for this project fall into two distinct categories. These 

areas are the vision debugging applications, and the hardware control software for the SH4. 

 

Due to the nature of this project objective, a relatively in-depth understanding of both the 

vision debugging applications and the hardware control software was required. For this 

reason, it was undertaken as a task for this project to produce documentation for the relevant 

applications, as at the commencement of the project, no such documentation had been 

produced. 

 

The applications were documented in a non-formal manner, and user’ s guides were produced 

which will give the user a detailed insight into the application logic and data flow used in each 

of the applications. This style of documentation allows a developer to determine where 

additional functionality should be inserted into the existing program logic, and also allows the 

easy identification of the location of program settings in the event that changes are required. 

These user guides are included in “ Appendix A: Hardware User Guide”  and “ Appendix B: 

Software User Guide” . 

 

 



CHAPTER 4. SOFTWARE DEVELOPMENTS 21 

 

4.1 Win32 Software 
 

The software developed by Mark Chang for the SH4, along with its accompanying debugging 

applications, have quite a unique file architecture. The technique used is called “ common 

compile-time libraries” . This technique allows the sharing of data structures and definitions 

among multiple applications without requiring redefinition. The file structure adopts a 

minimalist approach to application design, allowing an entire suite of programs to share a 

single header file. This header file contains settings and definitions which are common to 

several applications. An example of this in the application system in question is the output 

resolution. This is a setting that is common to both the SH4 software and the debugging 

application. To ensure that the settings are the same, the appropriate values are stored in a 

library which is referenced externally by both applications. The architecture has its roots in 

Linux software development, and as such offers most of its benefits to an implementation in 

such an environment. 

 

In accordance with this project’ s objective of enabling developments to be made on the 

software for GuRoo’ s vision system under either a Linux or Win32 environment, it is 

necessary to preserve this file architecture when redeveloping the applications for Win32. 

Fortunately, it is a trivial task to work with such an architecture under Win32. The software 

environment chosen for the development of the Windows versions of the software is 

Microsoft Visual C++. Project workspaces for each of the required applications in GuRoo’ s 

vision system application suite are created over the top of the existing architecture, making 

reference to the common header files, allowing the existing system to be used in the same 

manner under both Linux and Win32. 

 

 



CHAPTER 4. SOFTWARE DEVELOPMENTS 22 

 

4.1.1 SH4 Software 
 

In order to enable further development of the SH4 software under Windows, it was necessary 

to use a cross-compiler for the SH4 which was compatible with Windows. Most of the 

commercially available cross-compilers are targeted at the Linux environment; however, there 

are numerous products available for Windows. 

 

Renesas, the owners of Hitachi’ s semiconductor electronics division, makes available a 

product called “ SuperH RISC Engine C/C++ Compiler Package” , which includes a compiler, 

assembler and linker for the SH4. This product was available for download from Renesas’  

website (www.renesas.com) under the “ Products”  section. 

 

An alternative to the official compiler package for the SH4 was the GNU movement’ s 

compiler collection, GNU-SH, which is based on GCC. The Win32 version of this compiler 

collection was distributed by a company called KPIT Cummins (www.kpit.com). To gain 

access to the “ Downloads”  section of their website, registration was required. 

 

The object files generated by the compiler can conform to one of several object file formats. 

The most popular of these object file formats are ELF (Executable and Linking Format) and 

COFF (Common Object File Format) [10]. Both these file formats are similar in almost all 

respects, including the functionality they each offer. They both allow the specification of 

object code (which is generated by the compiler) and executables (which is generated by the 

linker). 

 

GNU GCC generates files using the ELF file format, and as such, in order to keep file formats 

consistent, the chosen cross-complier for Windows should also produce files in the ELF 

object file format. Fortunately, both the Renesas and GNU cross-compilers for the SH4 are 

available in versions which produce object files in the ELF and COFF object file formats. The 

ELF versions have both been trialled, and both are equally capable of being used for this 

project. 

 



CHAPTER 4. SOFTWARE DEVELOPMENTS 23 

 

An integrated development environment called High-performance Embedded Workshop 

(HEW) [11] was developed by Renesas for use with its compiler collection. Fortunately, the 

GNU cross-compiler was also recognised by this system, allowing either compiler chain to 

work cooperatively with it. In alternative to HEW are the command line tools which are also 

shipped with each of the above mentioned compiler chains. 

 

4.1.2 Debugging Software 
 

Porting the debugging application for GuRoo’ s vision system, VDebug, to Win32 was a 

trivial task. As mentioned earlier, creating a Microsoft Visual C++ project over the top of the 

existing file architecture leaves few issues unresolved. 

 

The primary concerns when redeveloping the applications for Windows are the display and 

communication functionality. The display modules of VDebug make use of the OpenGL 

graphics libraries. The convenience of this is that the OpenGL libraries are readily available 

for both the Windows and Linux platforms from the OpenGL website (www.opengl.org). In 

addition to the standard OpenGL libraries, VDebug employs functionality from a non-

standard OpenGL library called the OpenGL Utility Kit (GLUT). GLUT exposes functions 

which specialise in window creation and manipulation. These form the framework for 

VDebug. For details on setting up VDebug for Windows, refer to “ Appendix B: Software 

User Guide” . 

 

The other major concern was the communication module. Serial communications are handled 

not too differently in Windows with comparison to Linux, however, changes do need to be 

made in order for the module to work. Both Linux and Windows refer to the serial device as a 

file. This allows the standard file I/O functions to be used to access the device. The difference 

lies in the way the different platforms refer to open files. Linux refers to an open file using a 

file number, which is declared of type integer. Windows, on the other hand, uses a derived 

data structure called a handle. This difference prevents the use of the same function 

definitions in a C header file, inflicting the need to redefine the functions according to the 

current operating environment. 



CHAPTER 4. SOFTWARE DEVELOPMENTS 24 

 

In order to allow the software to compile with the correct function definitions, it is necessary 

to incorporate the declaration a global constant which indicates the current operating 

environment. This is achieved by including the declaration of a constant called “ WIN32”  in 

the Visual C++ project settings. Each of the locations where changes are necessary due to the 

operating environment checks whether this constant is defined, and declares the appropriate 

functions. 

 

Another area of major work on the debugging application was the addition of a frame status 

window. The information displayed in this window is that pertaining to the current frame. 

These details include: 

• Frame resolution 

• Frame number 

• Current frame rate 

• Application running time 

• Ball and goal locations, sizes and distances 

• Ball speed and direction 

 

In order for this information to be transmitted from the SH4, an appropriate protocol needed 

to be defined. The protocol was designed to be able to transmit information about each of the 

objects detected, while frame information such as resolution and frame rate can be calculated 

on the client (or PC) side. The protocol can be seen in Figure 10. 

 
OBJECT BALL 

PROPERTY X Centre Y Centre Speed Size Distance Direction 

FIELD SIZE (bits) 10 10 10 20 10 9 

BIT START 0 10 20 30 50 60 

 
OBJECT BLUE GOAL YELLOW GOAL 

PROPERTY X Centre Y Centre Size Distance X Centre Y Centre Size Distance 

FIELD SIZE (bits) 10 10 20 10 10 10 20 10 

BIT START 69 79 89 109 119 129 139 159 

Figure 10 - Frame Status Protocol 

 



CHAPTER 4. SOFTWARE DEVELOPMENTS 25 

 

This protocol allows the transfer of all relevant image data in a 22 byte header attached to 

each image. The field sizes were chosen to accommodate the largest possible values in each 

of the specified areas. For example, using a 10-bit field for the x-centre and y-centre will 

allow the ball to be located anywhere in an image up to 1024 x 1024. This is well outside the 

operating range of the current hardware. 

 

 

4.2 SH4 Improvements 
 

4.2.1 Resolution Improvements 
 

The OmniVision OV7620 camera chip used in the current vision system has a 664 x 492 

image array. The size of this image array is what determines the maximum image resolution, 

as each array element translates to a single pixel in the image captured by the camera. The 

size of the images captured at this resolution far exceeds that of an image capable of being 

processed on the SH4, so a lower resolution is required in order for the vision system to 

function. Windowing is a feature of the camera chip which allows this to be achieved. The 

windowing process defines a horizontal and vertical boundary for the camera chip to use 

when determining which portion of the captured image constitutes a frame. The OV7620 

allows windowing to be used to reduce the image size from the maximum resolution of 664 x 

492 pixels to as small as 4 x 2 pixels. 

 

However, there are also negative consequences of windowing. The field of view captured in 

the image reduces proportionally to the reduction in the image size. The effects of a reduction 

in to the field of view are obvious; it may prevent the detection of an object which may 

otherwise have been detected, simply because it fell outside the windowing range. Hence, 

ideally, windowing should be kept to a minimum. Unfortunately, restrictions imposed by the 

current image processing system prevent such advice from being adhered to. 

 



CHAPTER 4. SOFTWARE DEVELOPMENTS 26 

 

Initially, GuRoo’ s vision system was designed for use by The University of Queensland’ s 

ViperRoos local vision soccer team [12]. Given the nature of these robots, the field of view 

requirements are significantly different. The ViperRoos’  perspective is located approximately 

20cm above ground level, reducing the vertical field of view required to locate the objects of 

interest. This allows a larger proportion of the pixels to be invested into the horizontal field of 

view. GuRoo, however, has a perspective located around 1m above ground level. This 

enforces a requirement for a greater vertical field of view, which in turn diminishes the 

available pixels for a horizontal field of view. 

 

The resolution used by the vision system when implemented for the ViperRoos was 256 x 64. 

This reflects the availability of greater horizontal resolution due to a sacrificed vertical 

resolution. The effects of such a resolution on the field of view can be seen in Figure 11. 

 

 

 

Figure 11 - Initial Resolution (256 x 64) vs Improved Resolution (128 x 128) 

 

In order to improve the field of view available to the image processing functions, an image 

resolution is required that more evenly distributes the horizontal and vertical field of view. 

Initially, the resolution was increased to 128 x 128. This was chosen to keep the memory 

required to store the image constant, however, correct the field of view problem. At this 

resolution, an interesting trend became apparent. The pixels transmitted by the camera were 

not square. Further investigations, at higher resolutions, revealed that the pixels were 

exhibiting a height-to-width ratio of 1:2. The reason this was not investigated further is due to 

the fact that circumventing the problem was trivial; the vision debug software incorporates a 

“ zoom factor”  on each of the horizontal and vertical axes when displaying the image. The 

horizontal zoom factor was set to twice that of the vertical to enable a more accurate 

visualisation. 



CHAPTER 4. SOFTWARE DEVELOPMENTS 27 

 

 

  

Figure 12 – Height-to-width comparison - 1:1 vs 2:1 

 

Using the current image processing algorithms, this “ make-do”  correction of the problem will 

have little-to-no effect, as the objects are identified based on the area of the image consumed 

by the object. This value will be invariant to the zoom factor used at the display end of the 

data pipeline. However, if the image processing algorithms were to, at a later evolution, apply 

such constraints as height-to-width ratio in the detection of objects, this problem will need to 

be investigated further and corrected. 

 

Another solution to the field of view problem is the use of the camera’ s QVGA mode. QVGA 

mode works in a similar manner to interlacing. It halves the output data by ignoring every 

second line of data, and using full interlaced resolution on each line. This enables the use of 

the entire image for the analysis and detection of objects, while effectively reducing the 

memory required to store the image. 

 

 

4.2.2 Speed Improvements 
 

The overall performance of the vision system is dependent on many factors. There are 

potential performance bottlenecks at several locations in the data pipeline, including the 

transmission of frame data across the SCCB (Serial Camera Control Bus) from the camera to 

the SH4, the processing of the image on the SH4, and the transmission of the frame through 

the SH4 board’ s SCI interface to the PC. In order to achieve the maximum system 

performance, each of these potential performance bottlenecks should be optimised to function 

at their highest possible data rate. 



CHAPTER 4. SOFTWARE DEVELOPMENTS 28 

 

Initially, the vision system was functioning at a frame rate of 0.1 Hz at a resolution of 256 x 

256, with no image processing. This frame rate would not be very useful in a dynamic 

environment, for obvious reasons. It was necessary to find the cause of this frame rate, and 

optimise the bottleneck as required. The process used to achieve this was to trace the data 

flow back from the PC to the camera, and analyse the operation of each of the possible 

bottlenecks. 

 

The first bottleneck inspected was the serial link between the SH4 and the PC. This link 

operated at 115.2 kbps. At a resolution of 256 x 256, with 16 bits/pixel, it is necessary to 

transmit a total of 1,048,576 bits/frame. This allowed a frame rate of 0.1 Hz through the link. 

This marked the identification of the first, and primary bottleneck. Unfortunately, the SCI 

interface on the SH4 does not operate at a higher data rate, making this issue unresolvable. 

 

Although the SH4 was currently not processing the images, but rather buffering them and 

transmitting them, investigating the processor for bottlenecks was not necessary. The work of 

Mark Chang however, had demonstrated that performance benefits were possible through the 

enabling of the SH4’ s instruction cache. In accordance with instructions supplied by Mark, 

the instruction cache was enabled. This will allow greater performance of the image 

processing functions when they are implemented on the vision board. 

 

Finally, the link between the camera board and the SH4 was interrogated. Communication 

between these devices happens over the serial camera control bus (SCCB). The SCCB is a 

direct data link which operates at 400 kbps. Again, a prohibiting factor was identified. The 

SH4 is responsible for requesting frames from the camera chip. The rate of requests from the 

SH4 was currently set well below that which the OV7620 is capable of responding to. This 

was set deliberately to enable the SH4 to manage the data coming from the camera. This 

request rate was not amended, to allow for the implementation of the image processing 

functions on the SH4. 

 



 

 

 29 

 

 

 

Chapter 5 

System Integration 
 

 

The final project objective of integrating the vision system with GuRoo required the 

resolution of several minor issues inherent with the vision system. The apparent issues 

included the poor focusing of the lens, and the failure of the current camera housing to 

eliminate the penetration of ambient light to the imaging sensor. These issues had not effected 

the performance of the vision system when used for testing the hardware and software 

independently, however, when used concurrently, various calibration issues where inevitably 

going to arise. It appeared necessary to correct these issues prior to amalgamating the image 

processing software with the hardware, to ensure the process went smoother. 

 

 

5.1 Focus Correction 
 

Poor focus has certain benefits in image processing. It reduces the effects of noise in the 

acquired images, and can, in certain cases, eliminate the need for an erosion phase in the 

processing pipeline. However, the benefits of poor focus can be compensated for by software 

functions. The negative effects of poor focus, such as the exclusion of small or distant objects, 

can not be. Therefore, the more preferable option for a vision system is to have a well focused 

image which takes marginally longer to process. 

 



CHAPTER 5. SYSTEM INTEGRATION 30 

 

 

 

Figure 13 - Focus - Old Spacers 

 

In order to achieve a correctly focused image from GuRoo’ s vision system, it was first 

necessary to gain a better understanding of the operation of the lens. The details of the lens 

used have not previously been documented, and the properties of the lens needed to be 

inferred. The details which could be ascertained from the lens are it’ s focal length and 

aperture. The focal length is 2.8 mm, and the aperture is 1.4. The focal length reflects the 

centre of curvature for that particular lens, while the aperture represents the ratio between the 

effective diameter and the focal length. This is what determines the brightness of the image. 

 

Further research into the functionality and characteristics of CCTV lenses revealed that such 

lenses are available which produce images in various image sizes, for example, 1/2” , 1/3”  and 

1/4”  formats. After referring to the documentation for the camera chip used, it was determined 

that the lens used in the vision system complies with the 1/3”  format. 

 

Armed with this new characteristic of the lens, it was then possible to attempt to find a retailer 

who stocked the lens, and who would be able to provide more detailed information. 

Fortunately such a stockist exists, and had the required information published on their website 

[13]. The focal length was published as 3.5 – 8.0 mm. 

 

The initial understanding of how the lens operated was that the imaging sensor could be 

located anywhere within the range of the focal length, and optimal focus would be achieved. 

Experimental results proved otherwise. The imaging sensor was placed at a distance of 5 mm, 

and the image was found to exhibit no better focus than that achieved with the old spacers, 

which were cut at arbitrary length. 

 



CHAPTER 5. SYSTEM INTEGRATION 31 

 

 

Further tests demonstrated that as the spacing from the lens to the imaging device approached 

the published maximum of 8.0 mm, the image became more focused. Surprisingly, however, 

even at 8.0 mm, the focus of the image was not even close to that which was expected. This 

implied that perhaps the information acquired regarding the characteristics of the lens was 

inaccurate, or that the understanding of the operation of the lens was flawed. Further 

investigations were undertaken into the operation of the lens and it was found that the latter 

were the case. 

 

Video lenses are in fact “ lens systems” , which have characteristics that differ quite 

considerably from that of normal lenses. These characteristics are introduced through the lens’  

construction. All video lenses have a 1st and 2nd Principal Point [14]. The 1st Principal Point is 

the focal point for the first lens. The rays pass through this point and are reflected from the 

interior of the lens housing. These rays then coincide again at the 2nd Principal Point. A 

second lens is placed at this point which is responsible for creating the image of the desired 

format (1/2” , 1/3” , etc) at the necessary focal length. This focal length behind the lens is 

known as the “ back focal length” . Another metric worth noting is one called the “ flange 

length” . This is the distance between the contact point between the lens and the camera 

housing and the focal point. Each of the two standard camera mount types, C and CS, have 

fixed values for this flange distance. These points are illustrated in Figure 14 and Figure 15. 

 

 

Figure 14 - 1st and  2nd Principal Points [14] 

 

Figure 15 - Flange Distance [15] 

 



CHAPTER 5. SYSTEM INTEGRATION 32 

 

 

This new understanding of video lenses explained the behaviour previously experienced, ie, 

the image becoming sharper as the spacing approached the upper extreme of the focal range.  

The lens used in this vision system uses a CS-mount, which has a back flange distance of 

12.526 mm. 

 

 

5.2 Saturation Suppression 
 

The primary concern which makes itself evident from the effects of an over-concentration of 

ambient light on an image is the reduction of definition of colour. For example, a particular 

problem which presented itself in the course of this project was the detection of red objects as 

a pale shade of red, or pink. This can have extreme effects on the accuracy of the detection of 

objects, and must be compensated for in the calibration of the lookup tables used in the 

segmentation process. 

 

 

Figure 16 - Saturated Image 

 

The reason such a high concentration of ambient light was present was due to the poor fit of 

the camera PCB in its housing. When properly inserted, the PCB leaves a fissure 

approximately 2mm in width around its edge, as seen in Figure 17. 

 



CHAPTER 5. SYSTEM INTEGRATION 33 

 

 

To achieve the best results from the image processing 

functions, this problem needed to be corrected. The 

chosen resolution was a redesign of the camera 

housing. The new camera housing was designed in 

cooperation with Damien Kee, who was responsible for 

the technical drawings along with ordering its 

manufacture. The new camera housing was designed 

with two objectives in mind. The first was to eliminate 

the presence of ambient lighting, and the second was to 

allow an easier correction to the focal problems, previously described. Details of the new 

camera housing design can be seen in “ Appendix E: Camera Housing Redesign” . 

 

To eliminate the ambient light, the new housing was designed to allow the camera PCB to fit 

inside with 0.5 mm around it to allow for insertion and removal. The length of the housing 

was also increased to allow the back of it to be sealed. The problem with sealing the back of 

the housing is doing it in such a way that the data and power cables used to connect the 

camera board to the SH4 board may extrude from the housing unobstructed. This was 

achieved through the use of a flexible backing, which has a hole marginally large enough to 

accommodate the size of the cables. 

 

To correct the focal problems previously described, spacers where machined to the diameter 

and length necessary to separate the image sensor from the lens at the precise distance to 

achieve the desired focus. 

 

 

 

Figure 17 - Old Camera Housing 



CHAPTER 5. SYSTEM INTEGRATION 34 

 

 

5.3 Vision System Integration with GuRoo 
 

In order to demonstrate the vision system functioning with GuRoo, certain issues needed to be 

corrected. The first of these was the mounting of the system on GuRoo. This year saw the 

conclusion of the work with CSIRO to produce an embedded inertial measurement unit 

(eIMU) [16]. This device has since been incorporated with GuRoo, and used in such projects 

as the Active Balance System for a Humanoid Robot [17]. It was decided that the eIMU 

would be connected in the head region of GuRoo. The existing head design did not allow for 

such an addition, hence it was decided that GuRoo’ s head would be redesigned. This head 

redesign was also to allow for the mounting of two cameras in preparation for stereo vision, 

along with a place to mount the SH4 vision board. The current head does not make allowance 

for a secure mounting of the board at all. Details of the new head design are shown in 

“ Appendix D: Head Redesign” . 

 

At the completion of this project, the new head was still in the construction stage, and due to 

the need for the presence of the eIMU, a “ make-do”  solution has been used, which allows the 

secure attachment of the eIMU, along with the attachment of the camera. Unfortunately, it 

was not feasible to securely attach the SH4 vision board at this time. 

 

 

Figure 18 - "Make-do" Head Solution 

 



CHAPTER 5. SYSTEM INTEGRATION 35 

 

 

Another issue which prevented the mounting of the vision system on GuRoo was the existing 

serial board. Due to an educational background that did not include a great deal of electronics, 

the diagnosis of a malfunctioning serial circuit did not prove to be the trivial task it should 

have been. After a great deal of reading, it was found that it was in fact the ICL232 chip 

which was not functioning correctly. The output of the transmission pin was operating at 

±4.6V, as opposed to the prescribed ±12V. This was preventing communications taking place 

over a distance any greater than 10-15 cm. The simplest way to resolve this issue was to 

construct a new serial board. This was achieved with the assistance of Damien Kee. 

 

 

 

 



 

 

 36 

 

 

 

Chapter 6 

Project Evaluation and Future Work 
 

 

The vision system discussed in this document is far from being ready for use in the target 

environment it is being built to operate in. There are large amounts of work left in areas 

ranging from hardware redesign and optimisation, through to the research and implementation 

of stereo vision. This project has turned out to be a bridging project, which took the vision 

system from what was primarily a static test environment, and fine-tuned each of the required 

aspects necessary to prepare the system for its target, dynamic environment. 

 

Some of the work which was undertaken during the course of this project still remains 

incomplete, primarily the incorporation of the image processing algorithms with the existing 

hardware. No significant progress was made towards completing this goal. This can be 

attributed to the numerous side-steps taken during the project. For example, at the outset of 

the project, it was not anticipated that such problems as the image focus and lighting issues 

would need to be corrected in order to allow the image processing functions to operate. These 

sub-objectives turned out to be more time consuming than initially anticipated. 

 

 



CHAPTER 6. PROJECT EVALUATION AND FUTURE WORK 37 

 

 

6.1 Flash for SH4 Vision Board 
 

One of the more tedious aspects of the project is the need to reprogram the SH4 board every 

time it is turned on. This is due to the current use of an EEPROM to store the uploaded 

program. The work of Mark Chang has seen the incorporation of a flash memory unit into the 

vision system design, which will result in the need to reprogram the board only when changes 

are made to the firmware. 

 

While this work was completed prior to the conclusion of this project, time constraints 

prevented the addition of the flash unit into the vision system. Various software changes need 

to be made in order for the system to accept the flash unit, which is not a trivial task. The 

completion of this task would be a great time-saving exercise in the long-term. 

 

 

6.2 Detection of Additional Objects 
 

The existing vision system has a field of view that falls considerably short of the maximum 

field of view achievable with the current vision hardware. The importance of the field of view 

to a vision system is incredibly high. This is due to several reasons. Firstly, in order to make 

GuRoo’ s vision system comparable to that of the human vision system, which forms the 

ultimate goal, allowing it to have the same field of view is paramount. While the 

implementation of stereo vision would be a large step towards achieving this goal, the 

existing system can be optimised in certain ways to bring the goal closer to realisation.  

 

Secondly, the field of view of the vision system is the one of the greatest determining factors 

in the object detection process. No calibre of image analysis algorithms can find objects 

which do not appear in the image to start with. In order to mimic the human visual system, a 

careful balance between lens and camera must be selected. 

 



CHAPTER 6. PROJECT EVALUATION AND FUTURE WORK 38 

 

 

One of the challenges which arises during the process of increasing the field of view of a 

vision system is the inherent increase in resolution. This has certain repercussions on both the 

hardware and software. The camera chip currently used in GuRoo’ s vision system, 

fortunately, offers a solution to this resolution dilemma. This solution is its QVGA mode. 

This camera mode allows the maximum field of view of the lens to be utilised, while 

providing a significant reduction to the required resolution to accommodate that field of view. 

Enabling the QVGA mode halves the resolution of the acquired images by using every second 

line of the image in a full-interlaced format to create the image. This is turn allows an 

increased field of view at an incredibly reduced processing cost. 

 

 

6.3 Redesign of SH4 Vision Board 
 

The SH4 vision board has been designed as a general purpose vision board, which offers 

many features which aren’ t currently, nor ever will be, used by GuRoo’ s vision system. The 

removal of these hardware components will provide numerous benefits to the vision system. 

These benefits include a reduction in the cost of producing the boards, along with significant 

savings in the size of the board. It is anticipated that a vision board which contained only the 

required components to offer the required functionality would be approximately half the size 

of the current board. This space saving would have positive repercussions in the head design 

of GuRoo. 

 

 



 

 39 

 

 

Chapter 7 

Conclusion 
 

GuRoo’ s vision system, incorporating the SH4 vision board, has been fine-tuned for use in a 

dynamic, volatile environment. The system is now capable of streaming higher resolution 

images with better colour definition and focus. These improvements to the vision system will 

improve the accuracy and reliability of the image processing functions, featuring the object 

detection algorithms. 

 

Previous difficulties and delays encountered due to a deficit knowledge of the UNIX 

operating environment have been prevented through the redevelopment of the vision system’ s 

firmware and debugging applications to a Microsoft Windows environment. These packages 

have been ported in such a way that the underlying architecture has remained intact. This will 

allow an easy transition from one operating environment to the other without the need to 

make redundant changes. The vision system’ s application suite has been documented to allow 

an easy orientation for future work on the project. 

 

The focus of the images captured by the vision system has been corrected. This was achieved 

through the adjustment of the spacing between the lens and the imaging device. The saturating 

effects of ambient light inside the camera housing have been eliminated through the redesign 

of the camera housing. The new camera housing still complies with all the mounting 

requirements of GuRoo’ s up and coming head, while eliminating the penetration of light. 

 

Although GuRoo is still waiting for his new head, the vision system has been mounted onto 

the “ make-do”  head (Figure 18), which accommodates the eIMU. The serial board used to 

communicate between the vision system and the PC used for debugging has been remade, 

with the assistance of Damien Kee. 



 

 40 

 

 

 

Bibliography 
 

 

[1] RoboCup Website [Online], 11 Apr, 2003 – last update. Available: 

http://www.robocup2003.org [accessed 16 Apr. 2003]. 

 

[2] RoboCup Regulations [Online], 2 Sept, 2002 – last update. Available: 

http://www.robocup.org/regulations/4.html [accessed 16 Apr. 2002] 

 

[3] Hitachi Ltd. (2002), SH7750 Series Hardware Manual 

 

[4] B. Horn, Robot Vision, The MIT Press, Cambridge Massachusetts, 1986. 

 

[5] Prasser, D. (2001) Vision Software for a Humanoid Robot, Undergraduate Thesis, 

University of Queensland 

 

[6] Bruce, Balch, Veloso (2000) Fast and Inexpensive Colour Image Segmentation for 

Interactive Robots, Proceedings of the 2000 IEE/RSJ International Conference on 

Intelligent Robots and Systems 

 

[7] Gonzalez, R. & Woods, R. (1992) Digital Image Processing, Addison-Wesley, 

Reading Massachusetts 

 

[8] Jain, A. K. (ed.) (1998) Real-Time Object Measurement and Classification, NATO 

ASI Series (Vol. 42), Springer-Verlag Berlin Heidelberg, Germany 

 



BIBLIOGRAPHY  41 

 

[9] M. Abe, Building Cross Development Environment Targetting SH4 System, 

www.linuxsh.sourceforge.net/docs/abe/2001320-gcc2.97/README_E.php3, August, 

2001. 

 

[10] What are ELF, COFF, and PE COFF? [Online], 2003 – last update. Available: 

http://www.theparticle.com/cs/bc/os/elfpecoff.html [accessed 19 Sept 2003] 

 

[11] Hitachi Ltd. (2000), High-performance Embedded Workshop User’s Manual 

 

[12] ViperRoos Homepage [Online], 2000 – last update. Available: 

http://www.itee.uq.edu.au/~chang/ViperRoos/ [accessed 3 Oct 2003] 

 

[13] Total Turnkey Solutions [Online], 2003 – last update. Available: 

http://www.turnkey-solutions.com.au/cam_avenir_varifocal_lenses.htm 

[accessed 25 Oct 2003] 

 

[14] Rapitron: Technical Notes - CCTV Lenses [Online],  2003 – last update. Available: 

http://www.rapitron.it/guidaobE.htm [accessed 25 Oct 2003] 

 

[15] Navitar Video Lenses: Optical Characteristics of Video Lenses [Online]. Available: 

http://www.navitar.com/zoom/cctv_op_char.htm [accessed 25 Oct 2003] 

 

[16] CSIRO: Robotics and Automation – eIMU [Online]. 2003 – last update. Available: 

http://www.cat.sciro.ay/cmit/automation/commercial/eimu.html 

 

[17] Low, T. (2003) Active Balance System  for a Humanoid Robot, Undergraduate Thesis, 

University of Queensland 

 

 



 

 42 

 

Appendix A 

Hardware User Guide 
 



 

  

   

 

 

9%6+��

86(5�*8,'(�

 

 

v1.0 

 

October 2003 
 

 

 

 



VBSH4 User Guide October 2003 

   

   

 - i - 

 

Preface 
 

This document serves as a guide for setting up and using the VBSH4 vision board 

designed and implemented by Mark Chang. This is not the definitive guide to all the vision 

system has to offer. This document reflects the understanding gained during the course of 

my dealings with the system. Upon the commencement of my project nothing had been 

documented, and much time was wasted gaining an understanding of how the system 

operated. This guide is simply an attempt to reduce the time required by students in the 

future when becoming acquainted with Mark Chang’s vision system. 

 

Having said this, the work I did with the system did not make use of many of the features it 

has to offer. If any feature of the system is not covered in this document, or something 

covered is found to be incorrect or incomplete, I encourage any additions which may 

enhance the quality and completeness of this guide. 

 

I hope this guide accomplishes its goal, and you have many fascinating hours playing with 

the intriguing piece of work that is the SH4 vision board. 

 

 

Anthony Peters 

October 2003 

 

 

 

Version History 
 

 October 2003 Anthony Peters Initial version 



VBSH4 User Guide October 2003 

   

   

 - ii - 

 

 

 

 

Table of Contents 
 

 

 1. Hardware Requirements.…………………………………………. 1 

 2. Connecting the Hardware.……………………………………….. 3 

 3. Hardware Programming.………………………………………….. 8 

 3.1 Programming…….………………………………………… 9 

 3.2 Module Descriptions………………………………………. 11 

 4. Firmware………...………………………………………………….. 12 

 

 

 



 

 3 

 

 

1 

 

 

Hardware Requirements 
 

 

 

 



VBSH4 User Guide October 2003 

   

   

 - 4 - 

 

In components which constitute GuRoo’s vision system are various. In addition to the SH4 

vision board and camera board, there is also several other components. These are shown 

in Figure 1. 

 

 

 

Figure 1 - Vision System Components 

 

 

The components seen in the above image are the camera board spacers to the left, the 

camera housing to the top, with the backing to the bottom. The lens is also shown. 

 

Details on how to connect the hardware is given in “Chapter 2: Connecting the Hardware”. 

 

 



VBSH4 User Guide October 2003 

   

   

 - 5 - 

 

 

2 

 

 

Connecting the Hardware 
 

 

 



VBSH4 User Guide October 2003 

   

   

 - 6 - 

 

Before preceding with this chapter, please identify the components shown in “Chapter 1: 

Hardware Requirements”. 

 

In order to set-up the vision system follow the procedure outlined below. 

 

1. Identify the ribbon cables used to connect the camera board to the SH4 board. One 

of these cables will have a resistor attached to the cable. This is the power cable. 

 

 

Figure 2 - Ribbon cables to connect the camera board to the SH4 board 

 

2. The connectors on both the camera board and the SH4 board are labelled. One 

cable is for the signal, the other for power. Ensure when connecting these cables 

that the power cable is connected to the power connector on both boards. Likewise 

for the signal cable. 

 



VBSH4 User Guide October 2003 

   

   

 - 7 - 

 

Figure 3 - Connecting the power and signal 

cables for the camera 

 

Figure 4 - The SH4 and camera board connectors 

are labelled 

 

3. Once the camera board is connected to the SH4 board, the camera can be 

enclosed in the camera housing. Before doing this, place the spacers on the screws 

as shown. The spacers will allow the lens to focus the image properly. 

 

 

Figure 5 - The spacers are required to focus the image 

 

 

4. Inserting the camera board into the housing requires care, and can become quite 

tedious if care is not taken. This is due to the spacers falling off the screws. The 

easiest way to insert the camera board into the housing is to do it on the side, as 

shown in Figure 6. Ensure to try to line up the screws with their holes before 

inserting the camera board. 



VBSH4 User Guide October 2003 

   

   

 - 8 - 

 

 

Figure 6 - Inserting the camera board into the housing 

 

5. Screw the camera board into place. At least 2 screws are required to hold the board 

in place. Up to 4 screws may be used, however, in most cases, is not necessary. 

 

 

Figure 7 - Securing the camera board in the housing 

 

6. Once the camera board is secured in the housing, the housing can be sealed to 

prevent light from getting in. To attach the seal, simply separate the top and bottom 

at the split, and slide over the cables. Screw the seal onto the housing as shown in 

Figure 8. 

 

 



VBSH4 User Guide October 2003 

   

   

 - 9 - 

 

Figure 8 - Securing the housing seal 

 

7. Now that the camera housing is sealed, the lens can be attached to the front. 

Simply screw the lens in as far as possible. 

 

8. Connect the camera housing to GuRoo. Be cautious when doing this. The camera 

board may be damaged if screws are placed in the front holes. Ensure that the 

board is not obstructing the holes before attempting to put the screws in. 

 

 

Figure 9 - Attaching the camera to GuRoo 

 



VBSH4 User Guide October 2003 

   

   

 - 10 - 

 

9. Now that the vision system is fully assembled, it can be connected to the PC. To do 

this, connect the serial cable to the SCI connector on the SH4 board. The serial 

cable can be connected directly to the PC, or attached to an extension serial cable 

if desired. 

 

 

Figure 10 - Connecting the SH4 to the PC 

 

 

 



VBSH4 User Guide October 2003 

   

   

 - 11 - 

 

 

3 

 

 

Hardware Programming 



VBSH4 User Guide October 2003 

   

   

 - 12 - 

 

3.1 Programming 
 

Using ploader to upload a program to the SH4 is very simple. Before attempting to use this 

program however, the SH4 must be powered correctly, and must have completed its boot 

sequence. 

 

The SH4 vision board should be powered between +7 and +12 VDC. The power indicators 

on the board will indicate if this voltage is being received. If this is correct, the IPL will 

complete the boot sequence, and the boot status LEDs will show do their “LED-shuffle”. 

Once complete, only the orange LED will remain on. Now the board may be programmed.  

 

 

Figure 11 - The SH4 has booted successfully 

 

If using Linux, open a terminal window and navigate to the directory where ploader is 

located. If using Windows, open a Command Prompt window in the similar directory. The 

command for Linux and Windows is slightly different. The Windows version requires that 

the serial port to use is specified in the command line. The Linux version will only work 

with ttyS0, or COM1. The command line for ploader is as follows: 

 

Linux: Windows: 



VBSH4 User Guide October 2003 

   

   

 - 13 - 

 ./ploader <filename> 

 

Example: 

 ./ploader vbsh4.bin 

 ploader <port name> <filename> 

 

Example: 

 ploader COM1 vbsh4.bin 

 

Once the upload is complete, a message similar to that shown in Figure 12 will be 

displayed. 

 

 

Figure 12 - Successful upload with ploader 

 

In the event that ploader fails when attempting to upload the program, firstly ensure that 

the board has been powered and that it is waiting for an upload. It is common to attempt to 

send the program early, before the boot sequence has completed. Should this be the 

case, simply wait until the boot sequence has finished, then attempt the upload again. 

 

If this was not the problem, ensure that all the cables are connected to the correct ports. It 

is also quite common to connect the serial cable to the wrong port on the PC or vision 

board. 

 

 



VBSH4 User Guide October 2003 

   

   

 - 14 - 

3.2 Testing the upload 
 

Once the program has been successfully uploaded, the green LED will remain on 

constantly, the red LED will heartbeat at a constant rate, and the orange LED will toggle 

with the receipt of each frame from the camera. 

 

If this is not the response from the vision board, the board will be transmitting an error over 

the SCI interface to the PC. This message can be received by using an appropriate serial 

communications program on the PC. If under Linux, use minicom, on Windows, 

HyperTerminal. 

 

To use minicom, type minicom -s and adjust the settings to ensure that all modem settings 

are cleared (initialisation string, etc), and that the program is listening on the correct 

device. Save the setup, and re-enter minicom by typing minicom. The error message being 

sent from the SH4 should be displayed on the screen. 

 

If using HyperTerminal, create a new connection. Set the baud rate to 115200, and turn off 

flow control. Make sure the program is listening to the correct port number. Leave all other 

settings default. Again, the error message begin sent from the SH4 should be displayed on 

the screen. 

 

 

 

 



VBSH4 User Guide October 2003 

   

   

 - 15 - 

 

 

 

4 

 

Firmware 
 



VBSH4 User Guide October 2003 

   

   

 - 16 - 

4.1 Software Flowcharts 

START

set up GIO control

END

configure FPGA

initialise LEDs

configure
FPGA

no

File: vbsh4.c

show boot
status

(boot_intc)

initialise
interrupt
control

show boot
status

(boot_sci)

initialise INTC

initialise SCI

initialise
camera

initialise TMU

main program
loop

INITIALISE INTC

END

INITIALISE SCI

END

set up interrupt
handler for errors

set up interrupt
handler for receive

set up interrupt
handler for

transmit

enable DMAC for
SCI

show boot
status

(boot_cam)

INITIALISE
CAMERA

END

camera
initialised

nosend string
"CAMERA
FAILED"

TERMINATE

initialise SCI

sh/intc.c

debug.c debug.c

debug.c

sh/sci.c

set frame
parameters

initialise
camera

ov7620.c

show boot
status

(boot_tmu)

INITIALISE TMU

END

debug.c

set up TMU
interrupts

enable TMU
interrupts

set initial time
count

set reload
constant

start TMU

MAIN PROGRAM
LOOP

END

set LED 1 to ON

copy image to raw
image buffer

transmit raw
image buffer over

SCI

set LED 1 to OFF

set all LEDs to
OFF

frame available

noframe request
from PC

no

 



VBSH4 User Guide October 2003 

   

   

 - 17 - 

SHOW BOOT
STATUS

(BOOT_INTC)

END

set LED 1 to ON

set LED 2 to ON

set LED 3 to OFF

set LED 4 to OFF

SHOW BOOT
STATUS

(BOOT_SCI)

END

set LED 1 to OFF

set LED 2 to OFF

set LED 3 to ON

set LED 4 to OFF

SHOW BOOT
STATUS

(BOOT_CAM)

END

set LED 1 to OFF

set LED 2 to ON

set LED 3 to OFF

set LED 4 to ON

SHOW BOOT
STATUS

(BOOT_TMU)

END

set LED 1 to OFF

set LED 2 to ON

set LED 3 to ON

set LED 4 to ON

SHOW BOOT STATUS
(BOOT_CAM_SCCB)

END

set LED 1 to ON

set LED 2 to ON

set LED 3 to OFF

set LED 4 to ON

SHOW BOOT STATUS
(BOOT_CAM_SET)

END

set LED 1 to OFF

set LED 2 to OFF

set LED 3 to ON

set LED 4 to ON

SHOW BOOT STATUS
(BOOT_CAM_DMA)

END

set LED 1 to ON

set LED 2 to OFF

set LED 3 to ON

set LED 4 to ON

File: debug.c

 



VBSH4 User Guide October 2003 

   

   

 - 18 - 

File:  ov7620.c

INITIALISE
CAMERA

END

set camera mode
parameters

clear frame buffers

set up GIO pins for
data

set up GIO pins for
SCCB

set up GIO pins for
PCLK control

confirm
manufacturer ID

designate frame
buffers

set up DMA
parameters

show boot status
(boot_cam_sccb)

debug.c

set camera
mode

initialise DMA

show boot status
(boot_cam_dma)

debug.c

designate frame
buffers

SET CAMERA
MODE

reset camera chip
for default settings

set pixel clock rate
to determine frame

rate

set horizontal
window start

set horizontal
window end

set vertical window
start

set vertical window
end

set output image
format

set interlacing
mode

set signal
processing

controls

set common
control registers

END

sh/dmac.c

 



VBSH4 User Guide October 2003 

   

   

 - 19 - 

File: sh/intc.c

INITIALISE
INTERRUPT
CONTROL

END

clear all interrupt
vectors

 

File: sh/sci.c

INITIALISE
RECEIVE AND

TRANSMIT

END

enable SCI receive

enable SCI
transmit

 
 

File: sh/dmac.c

INITIALISE DMA

END

check for valid
channel

enable DMA
globally

set up DMA
interrupts

set up addresses

 



VBSH4 User Guide October 2003 

   

   

 - 20 - 

4.2 File Dependencies 
 

main.c

common\comtypes.h comms\comms.h

sh\sci.h

sh\scif.h

sh\gio.h

sh\tmu.h

sh\intc.h

sh\dmac.h

sh\rtc.h vbsh4\vbsh4.h

vbsh4\isr.h

vbsh4\ov7620.h

vbsh4\sram.h

vbsh4\fpga.h

vbsh4\fpgadata.h

common\stdtypes.h

sh\sh.h

sh\sh7750.h

sh\sh7709.h

common\imgtypes.h

 

 



 

 64 

 

Appendix B 

Software User Guide 
 

 

 

 



 

   

 

   

 

 

9'HEXJ�

86(5�*8,'(�

 

v1.0 

 

October 2003 

 
 

 

 

 

 



VDebug User Guide October 2003 

   

 

   

 - i - 

Preface 
 

This document serves as a guide for installing and using the VDebug vision debug 

software which accompanies the SH4 vision board designed and implemented by Mark 

Chang. This is not the definitive guide to all the software has to offer. This document 

reflects the understanding gained during the course of my dealings with the software. 

Upon the commencement of my project nothing had been documented, and much time 

was wasted gaining an understanding of how the software operated. This guide is simply 

an attempt to reduce the time required by students in the future when becoming 

acquainted with the debug software. 

 

Having said this, the work I did with the software did not make use of many of the features 

it has to offer. If any feature of the software is not covered in this document, or something 

covered is found to be incorrect or incomplete, I encourage any additions which may 

enhance the quality and completeness of this guide. 

 

I hope this guide accomplishes its goal, and you have many fascinating hours playing with 

the intriguing piece of work that is the SH4 vision system. 

 

 

Anthony Peters 

October 2003 

 

 

Version History 
 

 October 2003 Anthony Peters Initial version 



VDebug User Guide October 2003 

   

 

   

 - ii - 

 

 

 

Table of Contents 
 

 

 

 1. Program Overview………………………………………………… 1 

 2. Installation………………………………………………………….. 3 

 2.1 Linux Installation….……………………………………….. 5 

 2.2 Windows Installation….…………………………………… 5 

 3. Technical Operation……………………………………………….. 6 

 3.1 File Dependencies.………………………………………… 7 

 3.2 Module Descriptions……………………………………….. 8 

 4. Software Flowcharts……………………………………………….. 11 

 

 



 

 3 

 

 

1 

 

 

Program Overview 
 

 

 

 



VDebug User Guide October 2003 

   

 

   

 - 4 - 

 

VDebug is a program written by Mark Chang for the purpose of assisting in the debugging 

of the SH4 Vision Board used by the University of Queensland Robotics Department. 

 

The program was originally written to allow the user to see a copy of the image captured 

by the vision system. The program has since been extended to give post-analysis 

information such as object location and velocities. 

 

Given the nature of the application, the bottleneck for the execution of this program will 

always be the communication with the SH4. Whether this bottleneck appears due to the 

communication interface, as is the current situation, or whether the bottleneck appears on 

the SH4 due to processing requirements, it would contradict the purpose of this application 

to detract from the performance of the vision system. 

 

 

 

 

 

 



VDebug User Guide October 2003 

   

 

   

 - 5 - 

 

 

2 

 

 

Installation 
 

 

 



VDebug User Guide October 2003 

   

 

   

 - 6 - 

 

Installation of VDebug on any platform requires the installation of the OpenGL drivers. All 

versions of Windows ship these drivers standard, while most Linux installations will also 

install them, it may be necessary to manually install them if no games were installed. 

Amazingly, these are the only Linux programs that depend on the drivers. In the event that 

the drivers are not installed, the latest drivers are available from www.opengl.org. 

 

An extension to the OpenGL libraries, which will not be installed by default on any 

platform, is the OpenGL Utility Toolkit (GLUT). These drivers are also available from the 

Open website. 

 

VDebug is included in the “guroo_vs” application suite. In order to use the software, unzip 

the GuRoo_VS.zip file. A directory structure will be created under the guroo_vs directory, 

which forms the root directory for the above mentioned guroo_vs application suite. 

 

 



VDebug User Guide October 2003 

   

 

   

 - 7 - 

2.1 Linux Installation 
 

The program files for VDebug reside in guroo_vs/vdebug. For a description of the contents 

of these files, see “Chapter 3: Technical Operation”. 

 

The program is now installed. In order to make changes to the application, open the 

relevant file in any text editor. To recompile the executable, type make in the 

guroo_vs/vdebug directory. 

 

2.2 Windows Installation 
 

The Windows installation of VDebug is not too different from that of Linux. Once the 

“guroo_vs” application suite has been unzipped, the VDebug application files can be found 

in the guroo_vs/vdebug directory. Inside this directory is vc directory. This is the location of 

the Visual C++ project files. The executable for VDebug can be found in the 

guroo_vs/vdebug/vc/Debug directory. 

 



VDebug User Guide October 2003 

   

 

   

 - 8 - 

 

 

3 

 

 

Technical Operation 
 

 

 



VDebug User Guide October 2003 

   

 

   

 - 9 - 

3.1 File Dependencies 
 

 

 

 

 

imgtypes.h

stdtypes.h

vdebug.c

vdebug.h

vdcb.h vddisp.h

vdcb.c vddisp.c

serial.h

serial.c

gl.h glu.h glut.h
 



VDebug User Guide October 2003 

   

 

   

 - 10 - 

3.2 Module Descriptions 
 

3.2.1 vdebug.h 

 

This module defines the operating constants for the application. Most of the settings 

declared in this module should never need to be altered. 

 

 

#includes 

common\imgtypes.h 

 

#defines 

typedef struct VDebug HIST_SIZE glColourRed() 

ZOOM HIST_R glColourGreen() 

WIN_YUV_XSIZE HIST_G glColourBlue() 

WIN_YUV_YSIZE HIST_B glColourlRed() 

TEX_MAIN HIST_Y glColourlGreen() 

TEX_YUV HIST_U glColourlBlue() 

TEX_HIST HIST_V  

 

Functions 

None 

 

 



VDebug User Guide October 2003 

   

 

   

 - 11 - 

3.2.2 vdcb.h 
 

This module declares the functions used to receive the image data and convert it to a 

format usable by OpenGL as a texture. 

 

#includes 

 None 

 

#defines 

 None 

 

Functions 

 void IdleFunc (void); 

 void convert_image (void); 

 void time_event (int value); 

 

 



VDebug User Guide October 2003 

   

 

   

 - 12 - 

3.2.3 vddisp.h 
 

This module contains the definitions for the functions which are used to redraw the various 

program windows. These are declared in the main module as OpenGL callback functions. 

 

#includes 

 None 

 

#defines 

 None 

 

Functions 

 void win_main_init (int width, int height); 

 void win_main_resize (int width, int height); 

 void win_main_draw (void); 

 void win_yuv_init (int width, int height); 

 void win_yuv_resize (int width, int height); 

 void win_yuv_draw (void); 

void win_hist_init (int width, int height); 

 void win_hist_resize (int width, int height); 

 void win_hist_draw (void); 

 

 



VDebug User Guide October 2003 

   

 

   

 - 13 - 

3.2.4 imgtypes.h 
 

This module declares all the program constants which pertain to the image format and 

size. These settings are used to window sizes on startup. 

 

#includes 

 common\stdtypes.h 

 

#defines 

IMG_XSIZE IMG_RGB YUVMAP_SIZE 

IMG_YSIZE IMG_GREY YUVMAPIMG_SIZE 

IMG_SIZE IMG_YUV YUVMAP_TABLE_SUBSAMPLE 

IMG_GREY_XSIZE YUVMAP_XSIZE  

IMG_GREY_YSIZE YUVMAP_YSIZE  

IMG_GREY_SIZE YUVMAP_PSIZE  

 

Functions 

 None 

 

 



VDebug User Guide October 2003 

   

 

   

 - 14 - 

3.2.5 stdtypes.h 
 

This module declares a set of standard macros which are used in various places 

throughout the application. 

 

#includes 

 None 

 

#defines 

CLIP2MS(t) FALSE HALF_PI 

TIME2MS(t) OK QUARTER_PI 

CLIP2SEC(t) ERR THREEQUARTER_PI 

TIME2MIN(t) ERROR TWO_PI 

CLIP2MIN(t) MAX(a,b) RAD2DEG(r) 

TIME2HOUR(t) MIN(a,b) DEG2RAD(d) 

BASIC_TYPE ABS(a) CLIPDEG360(d) 

NULL SGN(a)  

EVER ROUND(f)  

KBYTE AVG(a,b)  

MBYTE CLIP(v,t)  

TRUE PI  

 

Functions 

 None 



VDebug User Guide October 2003 

   

 

   

 - 15 - 

 

 
 

4 

 

Software Flowcharts 



VDebug User Guide October 2003 

   

 

   

 - 16 - 

 START

END

define textures

create YUV
histogram
window

create YUV
map window

create main
window

create status
window

initialise serial
device

main program
loop

close serial device

CREATE YUV
HISTOGRAM

WINDOW

initialise display
mode create window

END

define
callback
functions

initialise
window

CREATE MAIN
WINDOW

create window

END

define
callback
functions

initialise
window

CREATE YUV
MAP WINDOW

create window

END

define
callback
functions

initialise
window

CREATE STATUS
WINDOW

create window

END

define
callback
functions

initialise
window

define main
callback
functions

DEFINE
CALLBACK

FUNCTIONS

define display
function

END

define reshape
function

INITIALISE
WINDOW

enable texturing

END

set viewport
parameters

set texture
parameters

File: vdebug.c

 



VDebug User Guide October 2003 

   

 

   

 - 17 - 

File: vddisp.c

DRAW MAIN
WINDOW

create texture
based on current

frame

END

clear window

bind new texture to
window

redraw window

DRAW YUV
HISTOGRAM

WINDOW

END

clear window

redraw window

DRAW YUV MAP
WINDOW

END

create texture
based on current

YUV map

bind new texture to
window

redraw window

draw
histogram

draw YUV
map

clear window

DRAW STATUS
WINDOW

clear window

END

set viewport
parameters

draw status
information

redraw window

DRAW
HISTOGRAM

clear current
histogram

END

calculate
histogram for

region of interest

normalise
histogram

draw histogram

region of
interest defined

calculate
histogram for
entire image

no

DRAW YUV MAP

clear current YUV
map

END

calculate YUV
map for region of

interest

clear YUV map
window

update YUV map
display

region of
interest defined

calculate YUV
map for entire

image

no

 



VDebug User Guide October 2003 

   

 

   

 - 18 - 

MAIN PROGRAM
LOOP

flush serial buffers

END

convert
image

File: vdcb.c

get image

send request to
SH4

receive frame from
SH4

print first 16 bytes
of image for
debugging

no

draw main
window

draw
histogram
window

draw yuv map
window

increment frame
counter

CONVERT IMAGE

copy input image
to YUV buffer

convert YUV to
RGB

convert YUV to
greyscale

select the output
image format

region of
interest defined

draw region of
interest

END

draw status
window

no

 



 

 84 

 

Appendix C 

Additional Code 
 

The following code is a portion of code found in the vdebug.c file. The code was written with 

the purpose of creating a status window in order to display the current frame information. 

 
// ***************************** 

// Status WINDOW 

 

   glutInitWindowSize(800, 300); 

   glutInitWindowPosition(100, 400); 

   g_vdebug->win_status = glutCreateWindow("VDebug Frame Status"); 

 

   win_status_init(300, 300); 

 

   glutDisplayFunc(&win_status_draw); 

   glutReshapeFunc(&win_status_resize); 

 

   glutIdleFunc(&IdleFunc); 

   glutKeyboardFunc(&keyPressed); 

   glutMotionFunc(motion_func); 

   glutMouseFunc(mouse_func); 

 

   // Open Serial Device 

   g_vdebug->fd = serial_open(SERIAL_DEVICE); 

   serial_init(g_vdebug->fd); 

 

   win_main_init(IMG_XSIZE * ZOOM, IMG_YSIZE * ZOOM); 

 

   g_vdebug->roi_xs = 0; 

   g_vdebug->roi_ys = 0; 

   g_vdebug->roi_xe = 0; 

   g_vdebug->roi_ye = 0; 

 

   g_vdebug->frame = 0; 

   g_vdebug->frame_rate = 5; 

   g_vdebug->img_type = IMG_RGB;  

   g_vdebug->get_image = 1; 

 



APPENDIX D. ADDITIONAL CODE 85 

 

   // initial object parameters 

   g_vdebug->frame_info.b_xloc = 128; 

   g_vdebug->frame_info.b_yloc = 180; 

   g_vdebug->frame_info.b_size = 500; 

   g_vdebug->frame_info.b_dist = 1.5; 

   g_vdebug->frame_info.b_speed = 5; 

   g_vdebug->frame_info.b_dir = 90; 

 

   g_vdebug->frame_info.bg_xloc = 0; 

   g_vdebug->frame_info.bg_yloc = 0; 

   g_vdebug->frame_info.bg_size = 0; 

   g_vdebug->frame_info.bg_dist = 0; 

 

   g_vdebug->frame_info.yg_xloc = 0; 

   g_vdebug->frame_info.yg_yloc = 0; 

   g_vdebug->frame_info.yg_size = 0; 

   g_vdebug->frame_info.yg_dist = 0; 

 

 

The following code is a portion of code found in the vddisp.c file. The code was written with 

the purpose of displaying the status window containing the current frame information. 

 
// We call this right after our OpenGL window is created. 

void win_status_init(int width, int height) { 

   glutSetWindow(g_vdebug->win_status); 

   glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // Clear The Background Color To Black 

 

   glMatrixMode(GL_PROJECTION); 

   glLoadIdentity();    // Reset The Projection Matrix 

 

 // Calculate The Aspect Ratio Of The Window 

   glOrtho(-1.0, 1.0f, -1.0f, 1.0f, 0.0f, 10.0f);  

   glMatrixMode(GL_MODELVIEW); 

} 

 

/* display a string at the raster position (x,y) */ 

void displayStr(const char *str, GLfloat x, GLfloat y) 

{ 

 /* choose what font we wish to use */ 

 void* fontName = GLUT_BITMAP_HELVETICA_12; 

 unsigned int index = 0; 

 

 /* where do we want the text to go */ 

 glRasterPos2f (x, y); 

 



APPENDIX D. ADDITIONAL CODE 86 

 

 /* Display the string on the screen character by character. 

 c strings are null terminated. 

 */ 

 while (str[index] != 0 && index < 1000) 

 { 

  glutBitmapCharacter (fontName, str[index]); 

  ++index; 

 } 

} 

 

void win_status_resize(int width, int height) 

{ 

   if (height==0) // Prevent A Divide By Zero If The Window Is Too Small 

      height=1; 

 

   glMatrixMode(GL_PROJECTION); 

   glLoadIdentity(); 

 

 // Calculate The Aspect Ratio Of The Window 

   glOrtho(-1.0, 1.0f, -1.0f, 1.0f, 0.0f, 10.0f);  

   glMatrixMode(GL_MODELVIEW); 

} 

 

 

void win_status_draw(void) 

{ 

   char str[50]; 

 

   glutSetWindow(g_vdebug->win_status); 

   glClear(GL_COLOR_BUFFER_BIT);  // Clear The Screen And The Depth Buffer 

 

   glColor3f(0.0, 1.0, 0.0); 

    

   glMatrixMode(GL_PROJECTION); 

   glLoadIdentity(); 

   glOrtho(0, 10, 0, 10, 1, -1); 

 

   /* Show header info */ 

   displayStr("FRAME INFORMATION",  0.3, 9.3); 

   displayStr("___________________", 0.3, 9.1); 

 

   /* Show IMAGE info */ 

   displayStr("IMAGE:", 0.5, 8.2); 

 

   sprintf(str, "%ix%i", IMG_XSIZE, IMG_YSIZE); 

   displayStr("Resolution:", 0.7, 7.4); 

   displayStr(str,  1.7, 7.4); 

 



APPENDIX D. ADDITIONAL CODE 87 

 

   sprintf(str, "%4.2f fps", g_vdebug->frame_rate); 

   displayStr("Frame Rate:", 0.7, 6.6); 

   displayStr(str,  1.7, 6.6); 

 

   sprintf(str, "%i", g_vdebug->frame); 

   displayStr("Frame:", 0.7, 5.8); 

   displayStr(str,  1.7, 5.8); 

 

   sprintf(str, "%4.2f s", glutGet(GLUT_ELAPSED_TIME)/1000.0); 

   displayStr("Timer:", 0.7, 5.0); 

   displayStr(str,  1.7, 5.0); 

 

   /* Show BALL info */ 

   if (g_vdebug->frame_info.b_xloc == 0 && g_vdebug->frame_info.b_yloc == 0) 

      displayStr("BALL: (Not found!)", 3.0, 8.2); 

   else 

      displayStr("BALL:", 3.0, 8.2); 

    

   if (g_vdebug->frame_info.b_xloc == 0 && g_vdebug->frame_info.b_yloc == 0) 

      sprintf(str, "N/A"); 

   else 

      sprintf(str, "(%i,%i)", g_vdebug->frame_info.b_xloc, g_vdebug->frame_info.b_yloc); 

   displayStr("Location:", 3.2, 7.4); 

   displayStr(str,  4.0, 7.4); 

 

   if (g_vdebug->frame_info.b_size == 0) 

      sprintf(str, "N/A"); 

   else 

      sprintf(str, "%i pixels", g_vdebug->frame_info.b_size); 

   displayStr("Size:",  3.2, 6.6); 

   displayStr(str,  4.0, 6.6); 

 

   if (g_vdebug->frame_info.b_dist == 0) 

      sprintf(str, "N/A"); 

   else 

      sprintf(str, "%i.00 m", g_vdebug->frame_info.b_dist); 

   displayStr("Distance:", 3.2, 5.8); 

   displayStr(str,  4.0, 5.8); 

    

   if (g_vdebug->frame_info.b_speed == 0) 

      sprintf(str, "N/A"); 

   else 

      sprintf(str, "%i pixels/frame", g_vdebug->frame_info.b_speed); 

   displayStr("Speed:", 3.2, 5.0); 

   displayStr(str,  4.0, 5.0); 

 

   if (g_vdebug->frame_info.b_dir == 0) 

      sprintf(str, "N/A"); 



APPENDIX D. ADDITIONAL CODE 88 

 

   else 

      sprintf(str, "%i degrees", g_vdebug->frame_info.b_dir); 

   displayStr("Direction:", 3.2, 4.2); 

   displayStr(str,  4.0, 4.2); 

 

   /* Show BLUE GOAL info */ 

   displayStr("BLUE GOAL: (Not found!)", 5.2, 8.2); 

    

   displayStr("Location:", 5.4, 7.4); 

   displayStr("N/A",  6.2, 7.4); 

 

   displayStr("Size:",  5.4, 6.6); 

   displayStr("N/A",  6.2, 6.6); 

 

   displayStr("Distance:", 5.4, 5.8); 

   displayStr("N/A",  6.2, 5.8); 

 

   /* Show YELLOW GOAL info */ 

   displayStr("YELLOW GOAL: (Not found!)", 7.5, 8.2); 

    

   displayStr("Location:", 7.7, 7.4); 

   displayStr("N/A",  8.5, 7.4); 

 

   displayStr("Size:",  7.7, 6.6); 

   displayStr("N/A",  8.5, 6.6); 

 

   displayStr("Distance:", 7.7, 5.8); 

   displayStr("N/A",  8.5, 5.8); 

 

   glutSwapBuffers(); 

} 

 

The following is portion of code taken from vdcb.c, and forms the main program loop. It 

defines the protocol used to receive the frame information for the SH4. 

 
void IdleFunc(void) 

{ 

#define BUFFER_SIZE 8 

 

   int img_size; 

   int img_size_r; 

   int img_size_x; 

   int img_size_y; 

   int status; 

 

   int i, j; 



APPENDIX D. ADDITIONAL CODE 89 

 

 

   unsigned char read_buffer[BUFFER_SIZE]; 

 

   serial_flush(g_vdebug->fd); 

 

#ifdef WIN32 

   Sleep(3); 

#endif 

 

   if (g_vdebug->get_image == 1) 

   { 

      i = 0; 

 

      serial_writebyte(g_vdebug->fd, g_vdebug->img_type); 

      printf("<WRITE>\n"); 

 

      img_size   = IMG_SIZE; 

      img_size_r = IMG_SIZE + IMG_YSIZE; 

      img_size_x = IMG_XSIZE; 

      img_size_y = IMG_YSIZE; 

 

    /* Read the frame information */ 

    // Added Anthony Peters 

    serial_readbyte(g_vdebug->fd, read_buffer); 

    g_vdebug->frame_info.b_xloc = read_buffer[0]; 

      serial_readbyte(g_vdebug->fd, read_buffer); 

    g_vdebug->frame_info.b_yloc = read_buffer[0]; 

      serial_readbyte(g_vdebug->fd, read_buffer); 

    g_vdebug->frame_info.b_size = read_buffer[0]; 

      serial_readbyte(g_vdebug->fd, read_buffer); 

    g_vdebug->frame_info.b_dist = read_buffer[0]; 

      serial_readbyte(g_vdebug->fd, read_buffer); 

    g_vdebug->frame_info.b_speed = read_buffer[0]; 

      serial_readbyte(g_vdebug->fd, read_buffer); 

    g_vdebug->frame_info.b_dir = read_buffer[0]; 

 

    /* Ensure that the read buffer is REALLY empty */ 

    memset(read_buffer, 0x00, sizeof(read_buffer)); // Added Anthony Peters 

 

      while (i < img_size) 

      { 

         status = serial_readbyte(g_vdebug->fd, read_buffer); 

 

         if (status > 0) 

         { 

            for (j = 0; j < status; j++) 

            { 

               g_vdebug->img_org[i] = read_buffer[j]; 



APPENDIX D. ADDITIONAL CODE 90 

 

               i++; 

            } 

         } 

      } 

 

   } 

 

   // print the first 16 byte for debug purpose 

   for (i = 0; i < 16; i++) 

   { 

      printf("%3u ", g_vdebug->img_org[i]); 

      if (i % 4 == 3) 

         printf(" | "); 

      if (i % 16 == 15) 

         printf("\n"); 

   } 

   printf("\n"); 

 

   convert_image(); 

   win_main_draw(); 

   win_hist_draw(); 

   win_yuv_draw(); 

   win_status_draw(); 

 

   g_vdebug->frame_rate = (float)g_vdebug->frame * 1000 / (float)glutGet(GLUT_ELAPSED_TIME); 

 

   g_vdebug->frame++; 

 

} 

 

The following portion of code is the contents of serial.h. This file is responsible for defining 

the serial functions appropriate for the current operating system. 

 
#ifndef __SERIAL_H 

#define __SERIAL_H 

 

#ifdef WIN32 

#define BAUDRATE CBR_115200  //Changed by Prasser 

#else 

#define BAUDRATE 115200 // Added by Anthony Peters 

#endif 

 

#ifdef WIN32 /* Wiindows serial definitions */ 

 

 #include <windows.h> //Added by Prasser 

 HANDLE serial_open(char* port_name); 



APPENDIX D. ADDITIONAL CODE 91 

 

 void serial_close(HANDLE fd); 

 void serial_init(HANDLE fd); 

 int serial_flush(HANDLE fd); 

 int serial_readbyte(HANDLE fd, unsigned char *ch); 

 int serial_writebyte(HANDLE fd, unsigned char ch); 

 int serial_writebstring(HANDLE fd, const char *str, int len); 

 //int serial_getcodedbyte (HANDLE fd, unsigned char *c); 

 int serial_readcodedbyte (HANDLE fd, unsigned char *c); 

 //int serial_putcodedbyte (HANDLE fd, unsigned char c); 

 int serial_writecodedbyte (HANDLE fd, unsigned char c); 

 

#else /* UNIX serial definitions */ 

 

 int serial_open(char* port_name); 

 void serial_close(int fd); 

 void serial_init(int fd); 

 int serial_readbyte(int fd, unsigned char *ch); 

 int serial_writebyte(int fd, unsigned char ch); 

 int serial_writebstring(int fd, const char *str, int len); 

 int serial_getcodedbyte (int fd, unsigned char *c); 

 int serial_putcodedbyte (int fd, unsigned char c); 

   int serial_flush(int fd); 

 

#endif 

 

#endif 

 

The following portion of code is the contents of serial.c. This file is responsible for defining 

the serial functions appropriate for the current operating system. 

 
/* Created by Mark Chang 

 * Changes required by Windows made by David Prasser 

 * UNIX and Windows functions merged and cleaned up by Anthony Peters 

 */ 

 

#include <stdio.h>   /* Standard I/O definitions */ 

#include <string.h>   /* String function definitions */ 

#include <fcntl.h>   /* File control definitions */ 

#include <errno.h>   /* Error number definitions */ 

#include <comms/serial.h> 

 

#ifdef WIN32 

 

#include <io.h>  //Added by Prasser 

#include <windows.h>  //Added by Prasser. 

 



APPENDIX D. ADDITIONAL CODE 92 

 

#else 

 

#include <unistd.h>  /* UNIX standard function definitions */ 

#include <termios.h>  /* POSIX terminal control definitions */ 

 

#endif 

 

#include <common/rftable.h> 

#ifndef _POSIX_SOURCE 

#define _POSIX_SOURCE 1 /* POSIX compliant source */ 

#endif 

 

#ifdef WIN32 // Windows serial functions 

 

HANDLE serial_open(char* port_name) 

{ 

 HANDLE fd; // Prasser File descriptor 

 

 // Praser makes file for generic writing, 0 sharing, NULL security 

 fd = CreateFile(port_name,GENERIC_WRITE|GENERIC_READ,0,  

       NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); 

 if (fd == INVALID_HANDLE_VALUE) 

 { 

  // unable to open port 

  fprintf(stderr, "ERROR (serial_open) : Unable to open %s - %d\n", 

    port_name, GetLastError()); 

 } 

 return (fd); 

} 

 

//  All changed by Prasser. 

void serial_close(HANDLE fd) 

{ 

 if (fd != INVALID_HANDLE_VALUE) 

  return; 

 

 CloseHandle(fd); 

 fd = INVALID_HANDLE_VALUE; 

} 

 

void serial_init(HANDLE fd)  //Prasser fd used to be an int 

{ 

 //struct termios options; 

 DCB options; 

 COMMTIMEOUTS timeouts; 

 

 // Get current options for the serial port 

 //tcgetattr(fd, &options);  //Prasser makes it... 



APPENDIX D. ADDITIONAL CODE 93 

 

 if (!GetCommState(fd, &options)) { 

  printf("Error getting current comms data\n"); 

 }; 

  

 GetCommTimeouts(fd, &timeouts); 

 timeouts.ReadIntervalTimeout = 500; 

 timeouts.ReadTotalTimeoutConstant = 500; 

 timeouts.ReadTotalTimeoutMultiplier = 500; 

 timeouts.WriteTotalTimeoutConstant = 300; 

 timeouts.WriteTotalTimeoutMultiplier = 300; 

 SetCommTimeouts(fd, &timeouts); 

 

 //  Set the baud rate for input and output 

 options.BaudRate = BAUDRATE; //prasser 

 

 // CONTROL OPTIONS 

 options.fOutxCtsFlow = FALSE; //prasser 

 

 options.fBinary = TRUE;  // Member must be true  Prasser 

 options.fOutxDsrFlow = FALSE; 

 options.fDtrControl = DTR_CONTROL_DISABLE; 

 options.fDsrSensitivity = FALSE; 

 options.fOutX = FALSE; 

 options.fInX = FALSE; 

 options.fRtsControl = RTS_CONTROL_DISABLE; 

   

 options.fParity = FALSE; 

 options.Parity = NOPARITY; 

   

 options.StopBits = ONESTOPBIT; 

 options.ByteSize = 8; 

 

 FlushFileBuffers(fd); 

 SetCommState(fd, &options); 

} 

 

int serial_flush(HANDLE fd) 

{ 

 COMSTAT  comStat; 

   DWORD  dwErrors; 

 int  nread, len; 

 unsigned char buf; 

  

   /* 

    * Get number of bytes in the read buffer 

    */ 

 if (!ClearCommError(fd, &dwErrors, &comStat)) { 

    return 0; 



APPENDIX D. ADDITIONAL CODE 94 

 

 } 

 

 len = comStat.cbInQue; 

 

 /* 

  * If data in buffer, read it all 

  */ 

 while (len > 0) { 

    if (ReadFile(fd, &buf, 1, &nread, NULL) == 0) 

       break; 

    len -= nread; 

 } 

 return len; 

 

} 

 

int serial_readbyte(HANDLE fd, unsigned char *ch) 

{ 

 int bytesread; 

 

 ReadFile(fd, ch, 1, &bytesread, NULL); 

 

 if (bytesread == 1)  

  return 1; 

 else 

  return 0; 

} 

 

int serial_writebyte(HANDLE fd, unsigned char ch) 

{ 

 int byteswritten,status; 

 unsigned char c; 

  

 c = ch; 

  

 status = WriteFile(fd, &c, 1, &byteswritten, NULL); 

 

 if (status && (byteswritten != 1)) 

 { 

  fprintf(stderr, "ERROR (serial_writebyte) : failed writing single byte to port."); 

  fprintf(stderr," - written %d, code %d\n",byteswritten,GetLastError()); 

  return 0; 

 } 

 else 

  return 1; 

} 

 

int serial_writestring(HANDLE fd, const char *str, int len) 



APPENDIX D. ADDITIONAL CODE 95 

 

{ 

 int byteswritten, status; 

  

 status = WriteFile(fd, str, len, &byteswritten, NULL); 

  

 if (status && (byteswritten < len)) 

 { 

  fprintf(stderr, 

    "ERROR (serial_writebyte) : failed writing %i characters to port.", len); 

  fprintf(stderr, " - written %d, code %d\n", byteswritten, GetLastError()); 

  return 0; 

 } 

 else 

  return 1; 

} 

 

int serial_readcodedbyte (HANDLE fd, unsigned char *c) 

{ 

   unsigned char ch, cl, tmp; 

 int sh, sl; 

 

 // Get high byte 

 sh = serial_readbyte(fd, &ch); 

 // Get low byte 

 sl = serial_readbyte(fd, &cl); 

 

 // Decode byte 

 tmp = RFdecodingTable[ch]; 

 tmp = (tmp << 4) & 0xF0; 

 *c = tmp; 

 tmp = RFdecodingTable[cl]; 

 *c |= (tmp & 0x0F); 

   

   return (sh && sl); 

} 

 

 

int serial_writecodedbyte (HANDLE fd, unsigned char c) 

{ 

 unsigned char ch, cl, tmp; 

 int sh, sl; 

 unsigned int i; 

 unsigned long delay;  // do delay to allow slow boot up flash 

 

 // Encode byte 

 tmp = c & 0xF0; 

 tmp = tmp >> 4; 

 ch = RFencodingTable[tmp]; 



APPENDIX D. ADDITIONAL CODE 96 

 

 tmp = c & 0x0F; 

 cl = RFencodingTable[tmp]; 

 

 // Send high byte 

 sh = serial_writebyte(fd, ch); 

 for (delay = 0; delay < 0x1FFF; delay++) 

    ; 

 // Send low byte 

 sl = serial_writebyte(fd, cl); 

 for (delay = 0; delay < 0x1FFF; delay++) 

    ; 

 

 for (i = 0; i < 0xFFF; i++)  

    tmp = (unsigned char) sh; 

 

 return (sh && sl); 

} 

 

#else // UNIX serial functions 

 

/* 

 * TCSANOW -  Make changes now without waiting for data to complete 

 * TCSADRAIN -  Wait until everything has been transmitted 

 * TCSAFLUSH -  Flush input and output buffers and make the change 

 */ 

 

/* 

 // BAUDRATE : bps rate 

 // CRTSCTS : output hardware flow control 

 // CS8   : 8n1 (8bit, no parity, 1 stopbit) 

 // CLOCAL  : local connection, no modem control 

 // CREAD  : enable receiving character 

 // IGNPAR  : ignore bytes with parity errors 

 // ICRNL  : map CR to NL 

 // ICANON  : enable canonical input 

 //      disable all echo functionality and don’t send 

 //      signals to calling program 

 

 

// Using Asynchronous Non-Canonical Serial Input Concept, because 

//    Canonical receives input with line transfer 

//    Non-Canonical receives input with fixed size transfer 

*/ 

int 

serial_open(char* port_name) 

{ 

 int fd; // File descriptor 

 



APPENDIX D. ADDITIONAL CODE 97 

 

 // O_NOCTTY - not controlling terminal 

 // O_NDELAY - does not care the state of DCD line 

   // O_NONBLOCK - use instead of the old O_NDELAY 

 fd = open(port_name, O_RDWR | O_NOCTTY | O_NONBLOCK); 

 

 if (fd < 0) 

 { 

    // unable to open port 

    fprintf(stderr, "ERROR (serial_open) : Unable to open %s - \n", port_name); 

 } 

 else 

    fcntl(fd, F_SETFL, 0); 

  

 return (fd); 

} 

 

void 

serial_close(int fd) 

{ 

 if (fd < 0) 

  return; 

 

 close(fd); 

 fd = -1; 

} 

 

 

void 

serial_init(int fd) 

{ 

 struct termios options; 

 

 // Get current options for the serial port 

   // tcgetattr(fd, &options); 

 

   // clear options for serial port 

   bzero(&options, sizeof(options)); 

 

 // Set the baud rate for input and output 

 cfsetispeed(&options, BAUDRATE); 

 cfsetospeed(&options, BAUDRATE);  

 

 // CONTROL OPTIONS 

 options.c_cflag |= BAUDRATE; // baudrate 

 options.c_cflag |= CLOCAL;  // Local mode 

 options.c_cflag |= CREAD;   // Enable receiver 

 options.c_cflag &= ~CRTSCTS; // Disable hardware flow control (old) 

 options.c_cflag &= ~PARENB;  // No Parity 



APPENDIX D. ADDITIONAL CODE 98 

 

 options.c_cflag &= ~CSTOPB;  // One stop bit only 

 options.c_cflag &= ~CSIZE;  // Mask character size bits 

 options.c_cflag |= CS8;  // Select 8 data bits 

 

 // LOCAL OPTIONS 

 options.c_lflag &= ~ICANON;  // Disable Canonical input (use raw input) 

 options.c_lflag &= ~ECHO;  // Disable echoing of input characters 

 options.c_lflag &= ~ECHOE;  // Disable echoing of erase character 

 options.c_lflag &= ~ISIG;  // Disable Signals 

 options.c_lflag = 0;  // no local processing 

 

 // INPUT OPTIONS 

 options.c_iflag = 0;  // no input processing 

 

 // OUTPUT OPTIONS 

 options.c_oflag = 0;  // no output processing 

 

 // CONTROL CHARACTERS 

 options.c_cc[VMIN] = 0;  // blocking read until ?? character arrives 

 options.c_cc[VTIME] = 0;  // timeout in 0.1s unit 

 

/* 

 options.c_cc[VINTR]   = 0;  // Ctrl - c 

 options.c_cc[VQUIT]   = 0;  // Ctrl - \ // 

 options.c_cc[VERASE]   = 0;  // del 

 options.c_cc[VKILL]   = 0;  // @ 

 options.c_cc[VEOF]    = 4;  // Ctrl - d 

 options.c_cc[VSWTC]   = 0;  // ’\0’ 

 options.c_cc[VSTART]   = 0;  // Ctrl - q 

 options.c_cc[VSTOP]   = 0;  // Ctrl - s 

 options.c_cc[VSUSP]   = 0;  // Ctrl - z 

 options.c_cc[VEOL]    = 0;  // ’\0’ 

 options.c_cc[VREPRINT]  = 0;  // Ctrl - r 

 options.c_cc[VDISCARD] = 0;  // Ctrl - u 

 options.c_cc[VWERASE]  = 0;  // Ctrl - w 

 options.c_cc[VLNEXT]   = 0;  // Ctrl - v 

 options.c_cc[VEOL2]   = 0;  // ’\0’ 

*/ 

 

 tcflush(fd, TCIFLUSH); 

 

 // Set the new options for the serial port 

 tcsetattr(fd, TCSANOW, &options); 

} 

 

int serial_flush(int fd) 

{ 

   tcflush(fd, TCIFLUSH); 



APPENDIX D. ADDITIONAL CODE 99 

 

   return 0; 

} 

 

int 

serial_readbyte(int fd, unsigned char *ch) 

{ 

 return (read(fd, ch, 1)); 

} 

 

int 

serial_writebyte(int fd, unsigned char ch) 

{ 

 int status; 

 unsigned char c; 

  

 c = ch; 

  

 status = write(fd, &c, 1); 

 if (status <= 0) 

 { 

  fprintf(stderr, "ERROR (serial_writebyte) : failed writing single byte to port.\n"); 

  return 0; 

 } 

 else 

  return 1; 

} 

 

int 

serial_writestring(int fd, const char *str, int len) 

{ 

 int status; 

  

 status = write(fd, str, len); 

 if (status < len) 

 { 

    fprintf(stderr, 

              "ERROR (serial_writebyte) : failed writing %i characters to port.\n", len); 

  return 0; 

 } 

 else 

  return 1; 

} 

 



APPENDIX D. ADDITIONAL CODE 100 

 

int 

serial_readcodedbyte (int fd, unsigned char *c) 

{ 

   unsigned char ch, cl, tmp; 

 int sh, sl; 

 

 // Get high byte 

 sh = serial_readbyte(fd, &ch); 

 // Get low byte 

 sl = serial_readbyte(fd, &cl); 

 

 // Decode byte 

 tmp = RFdecodingTable[ch]; 

 tmp = (tmp << 4) & 0xF0; 

 *c = tmp; 

 tmp = RFdecodingTable[cl]; 

 *c |= (tmp & 0x0F); 

   

   return (sh && sl); 

} 

 

 

int 

serial_writecodedbyte (int fd, unsigned char c) 

{ 

 unsigned char ch, cl, tmp; 

 int sh, sl; 

 unsigned int i; 

 unsigned long delay; // delay to allow slow boot up flash 

 

 // Encode byte 

 tmp = c & 0xF0; 

 tmp = tmp >> 4; 

 ch = RFencodingTable[tmp]; 

 tmp = c & 0x0F; 

 cl = RFencodingTable[tmp]; 

 

 // Send high byte 

 sh = serial_writebyte(fd, ch); 

 for (delay = 0; delay < 0x1FFF; delay++) 

    ; 

 

 // Send low byte 

 sl = serial_writebyte(fd, cl); 

 for (delay = 0; delay < 0x1FFF; delay++) 

    ; 

 

 



APPENDIX D. ADDITIONAL CODE 101 

 

 for (i = 0; i < 0xFFF; i++)  

  tmp = (unsigned char) sh; 

 

 return (sh && sl); 

} 

 

#endif 

 

The following code is the Visual C++ makefile for the VDebug application. 

 
# Microsoft Developer Studio Generated NMAKE File, Based on vdebug.dsp 
!IF "$(CFG)" == "" 
CFG=vdebug - Win32 Debug 
!MESSAGE No configuration specified. Defaulting to vdebug - Win32 Debug. 
!ENDIF  
 
!IF "$(CFG)" != "vdebug - Win32 Release" && "$(CFG)" != "vdebug - Win32 Debug" 
!MESSAGE Invalid configuration "$(CFG)" specified. 
!MESSAGE You can specify a configuration when running NMAKE 
!MESSAGE by defining the macro CFG on the command line. For example: 
!MESSAGE  
!MESSAGE NMAKE /f "vdebug.mak" CFG="vdebug - Win32 Debug" 
!MESSAGE  
!MESSAGE Possible choices for configuration are: 
!MESSAGE  
!MESSAGE "vdebug - Win32 Release" (based on "Win32 (x86) Console Application") 
!MESSAGE "vdebug - Win32 Debug" (based on "Win32 (x86) Console Application") 
!MESSAGE  
!ERROR An invalid configuration is specified. 
!ENDIF  
 
!IF "$(OS)" == "Windows_NT" 
NULL= 
!ELSE  
NULL=nul 
!ENDIF  
 
!IF  "$(CFG)" == "vdebug - Win32 Release" 
 
OUTDIR=.\Release 
INTDIR=.\Release 
# Begin Custom Macros 
OutDir=.\Release 
# End Custom Macros 
 
ALL : "$(OUTDIR)\vdebug.exe" 
 
 
CLEAN : 
 -@erase "$(INTDIR)\serial.obj" 
 -@erase "$(INTDIR)\vc60.idb" 
 -@erase "$(INTDIR)\vdcb.obj" 
 -@erase "$(INTDIR)\vddisp.obj" 
 -@erase "$(INTDIR)\vdebug.obj" 
 -@erase "$(OUTDIR)\vdebug.exe" 
 
"$(OUTDIR)" : 
    if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)" 
 
CPP=cl.exe 
CPP_PROJ=/nologo /ML /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_CONSOLE" /D "_MBCS" 
/Fp"$(INTDIR)\vdebug.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD /c  
 
.c{$(INTDIR)}.obj:: 



APPENDIX D. ADDITIONAL CODE 102 

 

   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cpp{$(INTDIR)}.obj:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cxx{$(INTDIR)}.obj:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.c{$(INTDIR)}.sbr:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cpp{$(INTDIR)}.sbr:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cxx{$(INTDIR)}.sbr:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
RSC=rc.exe 
BSC32=bscmake.exe 
BSC32_FLAGS=/nologo /o"$(OUTDIR)\vdebug.bsc"  
BSC32_SBRS= \ 
  
LINK32=link.exe 
LINK32_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib 
shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib kernel32.lib user32.lib 
gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib 
odbc32.lib odbccp32.lib /nologo /subsystem:console /incremental:no /pdb:"$(OUTDIR)\vdebug.pdb" 
/machine:I386 /out:"$(OUTDIR)\vdebug.exe"  
LINK32_OBJS= \ 
 "$(INTDIR)\serial.obj" \ 
 "$(INTDIR)\vdcb.obj" \ 
 "$(INTDIR)\vddisp.obj" \ 
 "$(INTDIR)\vdebug.obj" 
 
"$(OUTDIR)\vdebug.exe" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS) 
    $(LINK32) @<< 
  $(LINK32_FLAGS) $(LINK32_OBJS) 
<< 
 
!ELSEIF  "$(CFG)" == "vdebug - Win32 Debug" 
 
OUTDIR=.\Debug 
INTDIR=.\Debug 
# Begin Custom Macros 
OutDir=.\Debug 
# End Custom Macros 
 
ALL : "$(OUTDIR)\vdebug.exe" 
 
 
CLEAN : 
 -@erase "$(INTDIR)\serial.obj" 
 -@erase "$(INTDIR)\vc60.idb" 
 -@erase "$(INTDIR)\vc60.pdb" 
 -@erase "$(INTDIR)\vdcb.obj" 
 -@erase "$(INTDIR)\vddisp.obj" 
 -@erase "$(INTDIR)\vdebug.obj" 
 -@erase "$(OUTDIR)\vdebug.exe" 
 -@erase "$(OUTDIR)\vdebug.ilk" 



APPENDIX D. ADDITIONAL CODE 103 

 

 -@erase "$(OUTDIR)\vdebug.pdb" 
 
"$(OUTDIR)" : 
    if not exist "$(OUTDIR)/$(NULL)" mkdir "$(OUTDIR)" 
 
CPP=cl.exe 
CPP_PROJ=/nologo /MLd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_CONSOLE" /D "_MBCS" 
/Fp"$(INTDIR)\vdebug.pch" /YX /Fo"$(INTDIR)\\" /Fd"$(INTDIR)\\" /FD -I /GZ -I ../../include /c  
 
.c{$(INTDIR)}.obj:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cpp{$(INTDIR)}.obj:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cxx{$(INTDIR)}.obj:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.c{$(INTDIR)}.sbr:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cpp{$(INTDIR)}.sbr:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
.cxx{$(INTDIR)}.sbr:: 
   $(CPP) @<< 
   $(CPP_PROJ) $<  
<< 
 
RSC=rc.exe 
BSC32=bscmake.exe 
BSC32_FLAGS=/nologo /o"$(OUTDIR)\vdebug.bsc"  
BSC32_SBRS= \ 
  
LINK32=link.exe 
LINK32_FLAGS=kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib 
shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib kernel32.lib user32.lib 
gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib 
odbc32.lib odbccp32.lib /nologo /subsystem:console /incremental:yes 
/pdb:"$(OUTDIR)\vdebug.pdb" /debug /machine:I386 /out:"$(OUTDIR)\vdebug.exe" /pdbtype:sept  
LINK32_OBJS= \ 
 "$(INTDIR)\serial.obj" \ 
 "$(INTDIR)\vdcb.obj" \ 
 "$(INTDIR)\vddisp.obj" \ 
 "$(INTDIR)\vdebug.obj" 
 
"$(OUTDIR)\vdebug.exe" : "$(OUTDIR)" $(DEF_FILE) $(LINK32_OBJS) 
    $(LINK32) @<< 
  $(LINK32_FLAGS) $(LINK32_OBJS) 
<< 
 
!ENDIF  
 
 
!IF "$(NO_EXTERNAL_DEPS)" != "1" 
!IF EXISTS("vdebug.dep") 
!INCLUDE "vdebug.dep" 
!ELSE  
!MESSAGE Warning: cannot find "vdebug.dep" 
!ENDIF  
!ENDIF  



APPENDIX D. ADDITIONAL CODE 104 

 

 
 
!IF "$(CFG)" == "vdebug - Win32 Release" || "$(CFG)" == "vdebug - Win32 Debug" 
SOURCE=..\serial.c 
 
"$(INTDIR)\serial.obj" : $(SOURCE) "$(INTDIR)" 
 $(CPP) $(CPP_PROJ) $(SOURCE) 
 
 
SOURCE=..\vdcb.c 
 
"$(INTDIR)\vdcb.obj" : $(SOURCE) "$(INTDIR)" 
 $(CPP) $(CPP_PROJ) $(SOURCE) 
 
 
SOURCE=..\vddisp.c 
 
"$(INTDIR)\vddisp.obj" : $(SOURCE) "$(INTDIR)" 
 $(CPP) $(CPP_PROJ) $(SOURCE) 
 
 
SOURCE=..\vdebug.c 
 
"$(INTDIR)\vdebug.obj" : $(SOURCE) "$(INTDIR)" 
 $(CPP) $(CPP_PROJ) $(SOURCE) 
 
 
!ENDIF  
 
 

 

 

 

 



 

 105 

Appendix D 

Head Redesign 
 

 

The head redesign by Damien Kee for GuRoo was made in an attempt to improve the overall 

aesthetic look of GuRoo, while being a little more “ future-ready” . The main element, which is 

also the improved element to note on the new head design is the ability to accommodate 

stereo vision. While the current vision system is still a fair way from achieving coordinated 

stereo vision, the new head design supports such a development when it inevitably does 

happen. The other key feature to note is the position of the CSIRO eIMU in the centre of the 

head. This is intended to give the impression of a brain, as it is currently the closest GuRoo 

has to one. The green region towards the back of the head is where the vision boards will be 

mounted. 

 

 

 

Figure 19 - GuRoo’s Current Head 

  

 

Figure 20 - GuRoo’s Redesigned Head 

 

 



 

 106 

 

Appendix E 

Camera Housing Redesign 
 

 

The objective of redesigning the camera housing is two-fold. The first, and primary reason, is 

to eliminate the ambient light that the old housing allowed to saturate the images captured by 

the vision system. The second purpose was to offer a greater depth for the spacers, which was 

required to obtain a correctly focused image. 

 

The key points to note on the new camera housing are the extended depth, and the back seal. 

The technical work for the housing was completed by Damien Kee. 

 

 

 

Figure 21 - New Camera Housing 

 
 

Figure 22 - Wireframe of New Camera Housing 

 

 

 


