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Abstract 
 

 

The focus of this thesis is the development of DC motor controller boards for UQ’s 

humanoid robot, “GuRoo”. With the project now in its fourth year of development, 

the original lower limb DC motor controller boards were in need of an upgrade. A 

new hardware design was finalised in late 2003. Over the course of 2004, the 

progressive construction and testing of these new boards has brought them from blank 

PCB’s to near fully operational status. 

 

The new design incorporates a Motorola 68376 DSP superior to the Texas 

Instruments TMS320F243 processor controlling the old boards. This thesis details the 

progressive programming and testing of the new boards performed to achieve near 

full functionality. Software was developed to utilise pulse width modulation(PWM) 

and quadrature decoding capabilities of the 68376’s TPU(Timer Processor Unit). 

Code was also developed to make use of the new processor’s TouCAN(Controller 

Area Network)  and QADC(Queued Analog to Digital Converter) modules. After 

verifying correct operation of these functionalities, the existing software of the 

original 2001 boards was updated to suit the new design. 

 

An initialisation routine was developed for GuRoo’s joint positioning on power-up. 

This was achieved through position control of GuRoo’s motors about encoder index 

pulses. CAN communication enables the robots joints to be incremented between 

successive index positions. 

 

Software was developed to demonstrate the new boards functionality, including the 

index positioning initialisation. This demonstration software proved that the control 

loop speed can now be drastically increased. 

 

Through harnessing the new board's superior capabilities, further work following this 

thesis will enable GuRoo's joint control performance to be enhanced. 
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1.  Introduction 
 

Research and development of humanoid robot technology is more than just a novel 

idea. Robots might not be widespread in today’s society, but where they do exist their 

presence can be very beneficial, e.g., rescue robots performing tasks in environments 

that may be hazardous to human life. Reliable manoeuvrability and interaction of a 

robot within its environment is a common problem for any robotics project. Humans 

have contributed to this problem by adapting the world around us to suit our own 

geometries and capabilities. It therefore makes sense that the more human like a robot 

is, the easier it will be able to interact with us and our environment. Hence the reason 

for humanoid development is well justified. 

 

The University of Queensland’s humanoid 

robot, GuRoo, has been an ongoing project 

since 2001. Weighing in at 38kg, this 1.2m tall 

humanoid is fully autonomous, with the ability 

to crouch, stand on one leg and walk unaided at 

a speed of 0.1m/s. Now in its fourth year of 

development, this project involves the efforts 

of a large team of undergraduate and 

postgraduate students and staff of UQ. Joint 

control in particular, has proved to be a major 

focus of GuRoo’s development.  

Figure 1.1: GuRoo The Humanoid Robot 

 

GuRoo’s original lower limb joint design was constructed in 2001. Since then, a new 

superior design has been developed. The topic of this thesis is the development and 

testing of this new design. 

 

1.1  RoboCup 
 

The immediate purpose of GuRoo is to participate in the International Robocup 

Competition, an ongoing quest to develop soccer playing humanoid robots by the year 

2050. 
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Figure 1.2: Robocup. Humanoid Soccer - A Goal for 2050. [8] 

 

RoboCup officially began in 1997, with the humanoid league of the competition 

commencing in 2002. The humanoid competition has included challenges such as 

walking, balancing, standing on one leg and freestyle. GuRoo competed in 2002 with 

respectable success. He obtained 7
th
 place in the walking competition and the freestyle 

competition, and was the best competitor in the “stand on one leg” event [6]. Active 

joint control played a major part in GuRoo’s success. 

 

1.2  Thesis Goals and Overview 
 

The primary goal of this thesis was to develop GuRoo’s new 2004 lower limb DC 

motor controller boards to an operational status, sufficient for installation into 

GuRoo’s existing system. Achieving this goal required building the new boards from 

blank PCB’s whilst simultaneously developing software for the new board’s Motorola 

68376 DSP. Unfortunately, due to time constraints this goal has not been completely 

achieved. At present the boards are at a stage where they are almost ready for 

installation. A few more hardware and software issues require finalisation before 

installation may take place. Details of these minor issues will be discussed throughout 

this document. 

 

A secondary goal for this thesis was to develop software for these new boards that 

would initialise each joint on power-up of the robot. Prior to this thesis, an 

initialisation process was non-existent. It was requested that initialisation purely 

involve the positioning of joints to encoder index pulses. A successful initialisation 
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routine has been developed that uses CAN to command each joint to increment to 

encoder index pulse positions. 

 

This thesis has also intended to serve as a document which collates details of the new 

design and its features, and the design decisions that were made in order to justify its 

existence. 

 

Chapter Two briefly outlines the history of GuRoo’s joint control and provides a short 

description of the operation of the lower limb joint control. This is followed by a brief 

description of the new 2004 lower limb controller board design. 

 

Chapter Three discusses the board development process required to achieve the 

required functionality. 

 

Chapter Four Details the new software developed. This includes the updates that have 

been required for the existing software to suit the 68376, and the implementation of 

the new initialisation routine. 

 

Chapter Five concludes this document, and discusses the outcomes of this thesis.  

 

Chapter Six gives a brief outline of the further work that is required before the boards 

can be installed into GuRoo. It also discusses ideas for further development of the 

new joint controllers. 
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2.  GuRoo’s Joint Control 
 

2.1  A History of GuRoo’s Joint Control Development 
 

The past three years have seen a major contribution of work towards developing 

GuRoo’s joint control. The past theses that have directly influenced GuRoo’s 2004 

joint controller design are listed in Table 2.1. 

 

Thesis Title Author Year Completed 

Design and Implementation of a 

Distributed Digital Control System 

in an Industrial Robot. 

James Kennedy 1999 

Design of DC Motor Controllers for 

a Humanoid Robot 

Jarad Stirzaker 2001 

Design & Implementation of Small 

Scale Joint Controllers for a 

Humanoid Robot 

Tim Cartwright 2001 

Distributed Motion Controllers for 

a Humanoid Robot 

Andrew Hood 2002 

Gait Generation & Control 

Algorithms for a Humanoid Robot 

Adam Drury 2002 

Mobile Robot Electrical Design Doug Turk 2003 

 

Table 2.1: Past Theses Relating to GuRoo’s Joint Control. 

 

In 1999, James Kennedy[12] designed hardware and software for a distributed control 

system for actuation of a Kawasaki PUMA 560 industrial robot arm as shown in 

Figure 2.1. Kennedy’s distributed control system consisted of a network of DC motor 

control boards distributed throughout the robot, with each board situated as close as 

possible to the motors it controlled. The joint control design that existed in the PUMA 

arm prior to his design utilised complex control electronics, with a bulky unreliable 

cable driving each joint from a central controller. Kennedy’s design resulted in a 

simplified, more reliable joint control system, with a major reduction in the 

complexity and cost of the wiring harness. In many ways, Kennedy’s design became 
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the foundation for the control system that exists in GuRoo and the subsequent new 

2004 design. 

 

 

Figure 2.1: The PUMA Arm(left) & Kennedy’s Distributed Controller Design(right). [4] 

 

GuRoo’s original and existing joint controller hardware was designed and developed 

by Stirzaker[4] and Cartwright[15] in 2001. Stirzaker’s thesis focused on the design 

of the lower limb controller boards, as shown in Figure 2.2, for the control and 

actuation of GuRoo’s fifteen lower limb Maxon DC motors. Cartwright’s thesis 

focused on the development of an upper limb control board which actuates the eight 

light-weight servo motors in GuRoo’s upper body. There were many consistencies 

between Stirzaker and Cartwright’s designs. Stirzaker’s lower limb design was then 

made fully operational by Hood[3] and Drury[6] in 2002. Hood’s work focused on the 

development of low level software for control of the lower limb boards while Drury 

developed software for the PI velocity control algorithm and velocity profiles for gait 

patterns. 

 

Hood also performed a complete review of the existing lower limb controller boards, 

and made specifications for a new board design. Finally, in Nov 2003, Kee[9] 

designed and manufactured the joint controller PCB used in this thesis. This finalised 

design incorporated the same microcontroller and memory configuration that is to be 
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incorporated into Turk’s[13] new electrical design for UQ’s mobile soccer playing 

robot project, the RoboRoo’s. 

 

 

Figure 2.2: 2001 Lower Limb Motor Controller Board. [4] 

 

 

2.2  GuRoo’s Existing Joint Control 
 

GuRoo’s gait’s are implemented by a distributed control system. Movement patterns 

are generated by an external computer. The external computer communicates with the 

various motor controller boards throughout its body. Each motor controller then 

processes the instructions it receives, to regulate each motor’s speed such that 

GuRoo’s body moves in a desired fashion. 

 

2.2.1  Degrees of Freedom & Board Locations 

 

Overall, there are currently 23 joints or “degrees of freedom” in GuRoo’s body, as 

outlined in Figure 2.3. A DC motor actuates each joint. The neck, shoulder and elbow 

joints are actuated by eight, low power, low weight Hi-Tech HS705-MG RC servo 

motors. The lower limbs are actuated by more powerful, Maxon 70W RE32 brushed 

DC motors, fifteen in total. [17] 

 

All 23 of these motors are controlled by six boards spread throughout GuRoo’s 

chassis. Their locations are indicated in Figure 2.4. One motor controller board 
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(Board 6) is located on the back of the torso controlling all eight upper joints, while 

the lower limb controllers (Boards 1 to 5) are located as follows:  

- One board in the stomach, controlling the three waist joints. 

- One board in each thigh controlling the three respective hip joints. 

- One board in each ankle controlling the respective knee and two ankle joints. 

 

 

Figure 2.3: The 23 Degrees of 

Freedom in GuRoo’s body. [1] 

 Figure 2.4: Board Placement 

in GuRoo’s Body. [3] 

 

Each lower limb motor controller board controls three motors. Desired joint velocities 

are transmitted through serial communication from an external computer to Board 6. 

The signals are then transmitted to each of the lower limb controllers through a 

Controller Area Network(CAN) serial communication protocol. 

 

2.2.2  CAN Communication Network 

 

CAN is a multi-master system with software identifiable nodes. Utilising a simple 

two-wire bus, the standard includes sophisticated error checking and a high bandwidth 

of up to 1Mbps [3]. Figure 2.5 outlines the flow of communication in GuRoo. When a 

message is sent through CAN, it is broadcast to all nodes, and software defineable 

message buffers at each node either accept or reject messages. Nodes are software 

programmable for message reception. 
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Figure 2.5: Flow of Control/Communication in GuRoo. [9] 

 

 

 

Figure 2.6: CAN Data Frame. [11] 

 

Figure 2.6 outlines a CAN data frame. Each CAN frame can contain up to 8 bytes of 

data. The Arbitration(ID) field forms the first part of every message sent across a 

CAN network. Message prioritisation in the event of multiple nodes sending messages 

synchronously is given to the message with the lowest ID field. In GuRoo’s 

communication network, each board has software defined CAN message buffers that 

will either accept or reject messages sent to them. This allows each board not only to 

receive the applicable incoming desired velocity settings but also to transmit 

performance information back to the external computer. 
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CAN makes use of a two wire bus, CANH (high) and CANL (low). The CAN bus can 

be placed in two states, dominant and recessive. In the dominant state both lines are 

driven to 2.5V, and when recessive, CANH is driven to 5V and CANL is driven to 

0V. When a message is converted into CAN format, logical one bits are referred to as 

recessive bits and logical zero bits are referred to as dominant bits. 

 

2.2.3  Motor Control Process 

 

On reception of incoming desired motor velocity settings, the motor controllers 

perform all low level control. Less powerful processors are required and 

communication complexity is reduced through the local computation of motor control 

[12].  

 

Figure 2.7 shows a block diagram of the lower limb motor controller board signal 

flow. Desired joint velocities arrive at each board at 50Hz from the CAN bus and are 

fed into the DSP message buffers. The DSP then uses these desired speed settings to 

run a PI velocity control loop at 250Hz. Motor drive is governed by pulse width 

modulation (PWM) of motor voltage. Feedback of motor current and motor position 

sensing allows for closed loop control of motor speeds. 

 

 

Figure 2.7: Block Diagram of Controller Board Components and Signal Flow. [3] 

 

2.2.4  Pulse Width Modulation(PWM) – Bipolar and Unipolar Topologies 

 

Velocity control is achieved through varying the voltage across the terminals of a 

motor. Pulse Width Modulation is the continuous fast switching of motor voltage. By 

varying the duty cycle from 0% to 100%, the effective voltage across a motor can be 

established from a set input voltage (Vmotor).  
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Two basic topologies for the implementation of PWM are unipolar PWM and bipolar 

PWM. As described in Figure 2.8, bipolar PWM involves the switching of voltage 

between a positive and a negative set voltage(Vmotor). Under this configuration a net 

positive voltage across the motor can be achieved for a positive duty cycle greater 

than 50%. This will drive the motor forward, provided that generated torque is greater 

than load torque. In the opposite case, if the net voltage across the motor is negative, 

the motor will be driven in reverse, provided that generated torque is greater than load 

torque. If the duty cycle is maintained at 50% the motor will remain stationary, 

provided there is no load torque applied. 

 

 

Figure 2.8: Bipolar PWM(above) and Unipolar PWM(below). [3] 

 

Unipolar PWM involves only switching the voltage across the motor between 0 and 

Vmotor or –Vmotor to achieve forward and reverse motion respectively. If a duty cycle of 
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0 is applied, the motor will remain stationary, again provided that the motor is 

unloaded. 

 

The advantage of unipolar PWM is that ripple current can be significantly lower than 

that for bipolar switching. Ripple current is related to the inductance of the armature 

and the voltage ripple component of voltage across the motor’s armature[16]:- 

 

vr ≈ La(dir/dt)  

 

where vr = the voltage ripple component of armature voltage (V). 

La = armature inductance (H). 

ir = the current ripple component of armature current (A). 

 

 

 

Bipolar PWM effectively doubles the voltage swing across the motor terminals and 

drastically increases the voltage ripple component of armature voltage and 

consequently the ripple current. Power losses associated with this ripple current 

are[16]:- 

 

P∆I = Ra(Ir)
2
 

 

where Ra = armature resistance (Ω). 

Ir = RMS value of the current ripple component (A). 

 

Observation of this Ir
2 
relationship entails that power losses associated with ripple 

current can be significantly reduced by lowering the ripple current . 

 

2.2.5  Motor Drive – The H-bridge 

 

PWM is implemented through the use of an H-bridge. A simplified H-bridge 

configuration is shown in Figure 2.9. By varying switch states, the motor can be 

placed in the following states: 
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1) Driving forward (T1 on, T4 on) 

2) Driving in reverse (T2 on, T3 on) 

3) Braked to ground (T3 on, T4 on) 

4) Braked to Vmotor (T1 on, T2 on) 

5) Neutral/ Floating (all switches off) 

 

 

 

Figure 2.9: A Simplified H-bridge Configuration. 

 

Bipolar switching only makes use of states 1 and 2. Unipolar switching involves states 

1 and 2 and one of either 3 or 4. GuRoo’s original control boards implemented bipolar 

PWM. 

 

2.2.6  PI Velocity Control Implementation 

 

PI, Proportional plus Integral velocity control is achieved through digital feedback 

from each motor, gearbox and encoder unit. As shown in Figure 2.10, input PWM 

duty cycles are fed to motor terminals proportional and integral to the error between 

the desired input velocity profile and the actual motor velocity. Motor velocities are 

expressed as functions of the difference in motor position per control loop. The 

integral component removes the steady state error in velocity control. 
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Figure 2.10: Implementation of PI Control in the Lower Limb Controllers. 

 

2.2.7  Quadrature Decoding 

 

Feedback of motor position is achieved through Quadrature Decoding of encoder 

position. Encoders are attached to each motor’s rotating shaft. Quadrature decoding 

enables relative motor positions to be deciphered through the incrementing or 

decrementing of forward and reverse encoder counts respectively. This is achieved 

through the processing of two pulsating, 90 degree, out of phase waveforms(channels) 

output from each encoder. As described in Figure 2.11, if Channel A is leading, the 

motor is rotating clockwise and if Channel B is leading, the motor is rotating anti-

clockwise. 

 

 

Figure 2.11: Encoder Waveforms for Forward and Reverse Position Feedback. [13] 
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The encoders on GuRoo’s lower limbs are each accompanied by 500 pulse per 

revolution encoders. The existing system decodes for each channel on both rising and 

falling edges, to give a resolution of 2000 counts per revolution. This is then 

transferred through a 156:1 gearhead which gives a total theoretical resolution of 

0.00115 degrees per revolution. 

 

 

2.3  Existing Control Software for GuRoo’s Lower Limb Boards 
 

Operation of the existing joint controller code required closed loop control of joint 

velocities as outlined in Figure 2.12. All code is written in C++ which is compiled 

down to machine language and ported to the flash memory of the microcontrollers. 

The 2001 boards are each controlled by a Texas Instruments TMS320F243 16 bit 

DSP. 

 

When GuRoo is first switched on, control of each motor is initiated by the main() 

function in startup.c. This source file initialises the DSP’s appropriate register values 

and sets up a periodic interrupt that calls b1_control() in board1.c. 

b1_control() is the function that implements the PI velocity control algorithm. 

 

 

Figure 2.12: Block Diagram of 2001 Controller Code. [3] 
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The code has been kept modular so that all firmware code(lowlevel.c, can.c and 

startup.c) can be updated without modifiying the control algorithm code. What this 

means is that board1.c(b1_control()) requires no alteration. b1_control() is 

also used by the simulator and therefore maintaining this code as a separate module 

enables it to be used by both systems.  

 

b1_control() achieves PI velocity control by calling upon methods in 

lowlevel.c and can.c. For each particular motor, the can_receive() function 

supplies the desired velocity from the CAN bus and the read_enc() function 

supplies the current encoder reading. From the desired velocity and current encoder 

reading, b1_control() dictates an estimate of the required PWM setting to 

achieve the desired velocity. This required PWM setting is set via the set_pwm() 

function. 

 

The purpose of the read_curr() function is to continually monitor the armature 

current of each motor and if required, alter the required PWM setting to a maximum 

safe setting that will not damage the motor. This feature is currently not utilised on the 

2001 boards. 

 

2.3.1  PWM Duty Cycle Feathering 

 

In 2001 Hood discovered that when low duty cycles were required there was not 

enough resolution for duty cycle settings. Originally, PWM duty cycle had a 

resolution of -100 to 100 for full reverse and full forward motion respectively 

(actually a number from 0 to 200 – Bipolar PWM). Under the direction of Dr Gordon 

Wyeth, a procedure called “feathering” was implemented to give finer resolution. 

 

An integer between -1600 and 1600 is passed as a parameter for desired duty cycle. 

The lower four bits of this number are masked off to give a “feather_count” between 

0 and 15. What remains is a duty value between -100 and 100. A “pwm_low” is then 

assigned as that duty value between 0 and 100 and a “pwm_high” value is assigned as 

that duty value plus one (or -1, if the duty value is between 0 and -100). The 100kHz 

timer which in fact generates the PWM, enables a counter to be incremented every 

10us. If feather_count is less than counter, the duty cycle is set to pwm_high. If the 
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feather_count is less than counter, the duty cycle is set to pwm_low. When counter 

reaches 16 it is reset to 0. 

 

The overall effect is that the PWM duty cycle can be passed a decimal amount 

between  -100 and 100. The decimal value consists of feather_count / 16. 

 

 

2.4  2001 Controller Design Flaws 
 

The design specifics of the old controller boards will not be mentioned in this 

document. For a detailed description of the full 2001 design refer to Stirzaker[4]. 

Only the components of their design that impeded board performance will be 

described here. 

 

Based upon Hood’s analysis of the 2001 design, the following discussion outlines the 

flaws of the 2001 lower limb controllers. It is these issues that necessitated the design 

of the new 2004 controller boards. 

 

2.4.1  Control Loop Speed 

 

After the development of control code by Drury and Hood in 2002, it was found that 

the control loop was not able to operate at Stirzaker’s originally anticipated speed of 

2kHz. This was mainly due to limitations of the 2001 controller’s CPU. The Texas 

Instruments TMS320F243 processors are only equipped with a single quadrature 

decoder channel. Since each board was required to control three motors, a single 

channel was not enough. 

 

To compensate for this Stirzaker designed his boards to have two external quadrature 

decoders. These IC’s process the encoder pulses and feed 16 bit encoder count values, 

one byte at a time, into the TMS chip via its data bus. This proved to be a major 

bottleneck for the control loop algorithm. 

 

The end result is that each control loop actually requires 1.28ms to process, and thus 

4ms(250Hz) has been allowed for each loop in order to cater for additional serial 

feedback of sensor data to an external computer for analysis. [3] 
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2.4.2  Power Consumption 

 

The 2001 controllers feature motor drive circuitry that consumes power inefficiently. 

  

Stirzaker chose an integrated motor driver circuitry package for the H-bridge 

circuitry, the L6203 from ST. Unfortunately these packages were found to very 

inefficient, requiring the dissipation of a large amount of heat. This required the 

mounting of large heat sinks adding weight to GuRoo’s lower limbs. Hood’s work 

uncovered that losses in the L6203 were mainly conduction losses of the switching 

devices within due to their large on resistance(RON). [3] 

 

The L6203 package also required the use of bipolar switching, which as stated in 

section 2.2.4 is a relatively inefficient switching method. When GuRoo was first 

powered up, it was found that there were so much conduction losses that within 

minutes the MAXON motors became hot to touch. This was reduced by introducing 

separate inductors in series with the motors, proving that most of the losses were due 

to a large amount of ripple current dissipation. This halved the ripple current and the 

motors ran cold, but the addition of extra inductors also added unnecessary weight to 

GuRoo’s lower limbs. [3] 

 

T rectify these problems, Hood made design specifications for a more efficient semi-

discrete motor driving circuitry. 

 

2.4.3  Implementation of Design 

 

The PCB layout of the 2001 controllers needed review. Positioning of the components 

on the board was found to be poor. There was a large amount of wasted space and few 

useful test points. Placing clip test leads to ground on the boards was inconvenient. 

The DSP itself was difficult to access. Motor power headers were not placed in order, 

which posed a possible threat to wiring up motors incorrectly. There was also a lack 

of debugging LED’s on the board. The wiring harness proved to be complicated and 

impractical. [3] 
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2.4.4  Lack of Initialisation Software 

 

It was found by Hood that initialisation of the robot prior to starting a gait routine was 

impractical. Power would be applied to GuRoo while on its stand followed by placing 

it on the ground and the positioning of each joint by eye[3]. A very time consuming 

and potentially difficult process. 

 

Propositions for an initialisation routine have been made prior to this thesis. The 

original plan was to use mechanical stops or switches and driving GuRoo’s limbs to 

their mechanical limits followed by retraction to a set point. Hood proposed an optical 

sensor alignment scheme.It was decided that this would add unnecessary complexity 

to the system. 

 

Instead it was decided that utilising the index pulses of the encoders would provide a 

means for initialisation. Index pulse initialisation was achieved as part of this thesis 

and the successful results of a routine developed to do so are discussed in section 4.2. 

 

 

2.5  2004 Lower Limb Controller Design 
 

This section outlines the fundamental components of the new design. The full 

schematic is contained in Appendix A for board’s 1-5 and Appendix B for board 6. 

Note that this schematic has been updated to include the adaptions made during the 

course of this thesis. The details of the adaptations made will be explained further in 

section 3. 

 

2.5.1  Microcontroller 

 

The microcontroller chosen for the new boards is the Motorola MC68376. It was in 

fact the original desired processor by Stirzaker & Cartwright in 2001, but due to cost 

and availability was not chosen [4]. Hood also outlined its superior aspects when 

considering processor selection for a new controller design. This processor has the 

following features: 
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- 32 bit architecture. 

- On board TPU(Timer Processing Unit) with which 16 pins can be individually 

programmed to use its capture register (to decode quadrature pulses) or 

compare register (for PWM generation). 

- Analog to Digital Converter for current sensing. 

- TouCAN communication module. 

- Operating speeds of up to 21MHz. 

  

The most advantageous of these features is the TPU module’s capabilities. It features 

16 independent timer channels. This allows for three PWM outputs and six quadrature 

decoding lines(two are required for each encoder) leaving seven TPU lines to spare. 

This addresses the former quadrature decoding bottleneck as raised by Hood, of the 

2001 controllers. 

 

Note that Hood also expressed desirability for this processor but did not actually 

specify for it in his design, again due to issues of cost and availability. Subsequently 

the 2004 controller boards have all been designed to incorporate the Motorola 68376. 

 

2.5.2  Memory Setup 

 

The Motorola 68376 itself has limited on board EEPROM and SRAM, 8kB and 4kB 

respectively. Therefore the supply of larger external programmable flash and SRAM 

was a necessity. 

 

Turk and Kee originally specified 64K x 16 of AS7C1026 SRAM from Alliance 

Semiconductor for its 16 bit bus width and fast access time[13]. The 16 bit bus width 

enables direct interfacing with the MC68376’s 16 bit external memory bus, and hence 

single word accesses per bus cycle. At a later date, an AS7C4098 package was 

specified for the 2004 GuRoo boards. This package has the same pin configuration 

but has a larger capacity of 256K x 16, enabling a total supply of 512kB[14] to the 

microcontroller. 

 

Two ST M29F010B 128K x 8 flash memory chips were specified by Turk and Kee 

for program memory. The two chips are interfaced in parallel with the MC68376 
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allowing 16 bit word accesses through the memory bus. This supplies a total of 256kB 

of EEPROM program memory to the microcontroller. 

 

2.5.3  Motor Driver Circuitry 

 

2.5.3.1  H-bridge Design 

 

Hood mad specifications for a semi-discrete H-bridge design for the 2004 controller’s 

motor driver circuitry. Although this requires more board space and greater circuit 

complexity, the trade off is improved power efficiency and device control [3]. 

 

Hood specified IRFZ44NS MOSFETS for the switching devices. At a later date, 

IRF530NS MOSFET’s manufactured by International Rectifier were selected. The 

IRF530NS were chosen over the IRFZ44NS because they feature faster switching 

times[18]. Faster switching times equates to a reduction in MOSFET switching losses. 

The IRF530NS also feature a higher voltage rating of 100V as opposed to 55V for the 

IRFZ44NS, which is very close to the motor voltage supply of 42V. The circuit 

schematic for the 2004 controller H-bridge design is shown in Figure 2.13. 

 

 

Figure 2.13: 2004 Controller H-bridge Design. 
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2.5.3.2  MOSFET Driver Design 

 

In order to supply power to the high side of the H-bridge a bootstrap voltage must be 

applied to the gate of the desired MOSFET switch. As part of the semi-discrete 

design, Hood chose HIP4081 IC MOSFET drivers by Intersil. These drivers are 

capable of providing the sufficient bootstrap voltage with a switching frequency well 

above the required 100kHz. [3] 

 

The circuit schematic for the MOSFET driver circuitry is shown in Figure 2.14. The 

purpose of the NAND gate configuration preceding input for the lower gate drivers, is 

to enable unipolar PWM. The PWM line is an output line from the TPU of the 68376. 

Varying combinations of PWM and PWMDIR enables the H-bridge to be configured 

for three modes of operation, driving forward, driving in reverse and braked to 

ground. The input truth logic for PWM and PWMDIR is outlined in Table 2.2. 

 

 

Figure 2.14: 2004 Controller H-bridge Driver Design. 

 

 

Table 2.2: Truth Table for Input Logic to MOSFET Drivers. 
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2.5.4  Current Sensing and Motor Protection 

 

As shown in Figure 2.15, each H-bridge features a hardwired 5A fuse to prevent 

motor current from damaging the motors. Alternative to this, current is intended to be 

limited in software through the use of current sensing circuitry. 

 

Figure 2.13 shows two low ohmic current sensing resistors that lie in either lower leg 

of the H-bridge. The voltage drop across these resistors is used to measure the current 

flowing through the H-bridge.  

 

The voltage drop across each resistor is first fed through a low pass filter to dampen 

the voltage ripple present due to the PWM of motor voltage. Because the voltage 

measurements are so small, they are then amplified by LMC6082 op-amps from 

National Semiconductors, and fed to the ADC input channels of the DSP. 

 

 

Figure 2.15: 2004 Controller Current Sensing Circuitry. 

 

The amplifier has been designed to yield the following gain:- 

 

GAIN = VOUT/VIN = 1 + (R2/R1) 

∴GAIN = 1 + (33000/1200) = 28.5 

 

where R1 (R62) = 1.2 kΩ. 

             R2 (R61) = 33 kΩ. 
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The Analog to Digital Converter of the 68376 has been setup through hardware to 

convert input voltages in the range of 0 to 5V. The resistances of the current sensing 

resistors in the lower legs of the H-bridge are 0.033Ω. The amplifier gain was 

designed so that for 5A of current flowing through the H-bridge the corresponding 

voltage input to the ADC channels are:- 

 

V5A = GAIN(I x RSENSE) 

∴V5A = 28.5(5 x 0.033) = 4.703 V 

 

This almost gives a 1:1 relationship between armature current and input voltage. The 

amplifier has been designed to convert up to 5A, because each motor driving circuitry 

has 5A fuse protection. 

 

2.5.5  Power Supply 

 

Power supply for the boards requires three different input voltages all sharing a 

common ground rail. All board logic requires +5V with the exception of the 

MOSFET drivers, which require +12V. Lower limb motor power is supplied directly 

from two 42V NiMH battery packs. 

 

Figure 2.16 details the power supply circuitry for boards 1 to 5. Logic power is 

supplied from two 7.2V RC(radio controlled) car batteries which is regulated down to 

5V. This is achieved through a 5V LM2940C 1A voltage regulator from National 

Semiconductor [19]. A 5A fuse preceding the regulator provides logic circuitry power 

protection. 

 
Figure 2.16: Lower Limb Board Power Circuitry. 
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Power supply for the MOSFET drivers is not yet specified. Hood made specifications 

for buck converters to derive 12V and 5V from the 42V NiMH battery packs. A final 

design decision is yet to be made for the supply of these voltage rails. It is anticipated 

that 12V will be converted from the 42V supply and transferred to both the MOSFET 

drivers and the 5V voltage regulators. 

 

Power distribution throughout GuRoo is achieved through daisy chaining the power 

wiring harness from board to board. Twin power headers on each board allow for this.  

 

2.5.6  Communication 

 

Communication throughout GuRoo is achieved through a CAN protocol. CAN 

requires a two wire bus that is daisy chained from board to board. The Motorola 

68376 is equipped with a TouCAN module that handles formatting of the CAN 

frames. These CAN frames are then further manipulated into the required CAN-H, 

CAN-L format for transmission across the network by a PCA82C251 CAN 

transceiver, manufactured by Phillips. 

 

Successful communication requires that termination of the CAN network be imposed 

at terminal nodes of the network. Each board is capable of becoming a terminal node 

through the insertion a jumper that shorts the CANH and CANL pins of the 

transceiver through a 120Ω resistor. The presence of the resistor eliminates reflected 

signals[11]. 

 

The Motorola 68376 comes equipped with a Queued Serial Module(QSM). This 

module enables two wire RS232(SCI - Serial Communication Interface) transmission 

and reception and also features a Queued Serial Peripheral Interface(QSPI). Figure 

2.17 outlines the communication circuitry present on the 2004 controllers. As yet, the 

SCI is the only part of the QSM that has been configured for use. 
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Figure 2.17: CAN Communication Circuitry(left). QSPI and RS232 Headers (right). 

 

2.5.7  Additional Features 

 

The new 2004 controllers feature eight debugging LED’s enabling data to be viewed a 

whole byte at a time. Two push buttons can be programmed as external interrupts. 

Extra headers have been laid out for future use of the unused TPU channels and CTM 

lines. Each board is also capable of supporting a small speaker which may prove to be 

useful for debugging purposes in the future. 

 

The new boards have also been setup to take advantage of index pulsing of the 

encoders. Index lines have been routed to the 68376’s external interrupt lines. The use 

of these lines for initialisation of the robot is detailed in section 4.2. 

 

 

Figure 2.18: ICD Programmer - In System Programming. 
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The Motorola 68376 also features a Background Debug Mode(BDM) which enables 

in system programming through an ICD(In Circuit Debugging) Programmer. This 

method of programming is very rapid.  

 

The 2004 boards have also been equipped with 4-bit DIP switches that can be utilised 

to define each board’s location(board ID). These switches enable software to define 

CAN message buffers on reset. It is also intended for all six boards to be programmed 

with the same code, with the relevant sections of code segmented out based upon the 

board ID defined by the switches. 

 

2.5.8  Board Layout and Placement 

 

Board layout has been drastically improved in this design. Motor connectors are 

clearly numbered. Motor, power, CAN, BDM and encoder headers are all easily 

accessible, and a ground header has been provided for oscilloscope measurements. 

The new 2004 controller board layout is detailed in Appendix C. 
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3.  Development of the 2004 Controller Boards 
 

In late April 2004, the 2004 Controller PCB’s were received. One of these PCB’s was 

populated with the basic components – microcontroller, power supply and LED’s. 

 

3.1  Board Development Plan 
 

Board development involved a step by step approach. The plan was to initially 

construct a single prototype board, achieving the following milestones:- 

 

• Setup code development environment using Microsoft Visual C++. 

• Successfully program a board. 

• Write an LED pattern program that utilises the push buttons. 

• Develop serial(RS232) communication between board and PC for debugging 

purposes. 

• Generate PWM using the 68376’s TPU. 

• Populate and test the motor driving circuitry for a single motor to be driven. 

• Generate and test the quadrature decoding capabilities of the 69376’s TPU. 

• Develop a feedback loop utilising PWM and quadrature decoding. 

• Populate and test the current sensing circuitry through configuration of the 

68376’s QADC module. 

• Populate and test the two remaining motor driver circuitries. 

• Configure the TouCAN module and test communication. 

• Develop software to run a PI velocity control loop driving a GuRoo motor. 

• Futher develop this software to simultaneously control the velocity of three 

GuRoo motors deriving their desired velocity from a separate board through 

the CAN network. 

  

Once a single board was developed the plan was then to populate a further four 

boards. Software could then be updated to suit the new boards, followed by their 

installation into GuRoo. 

  

All of the development stages listed were successfully completed over the course of 

this thesis, with the exception of final installation into GuRoo. It was also requested 
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that current sensing AD be conversions be calibrated and correlated with motor 

torque. This was attempted but unfortunately due to technical issues and time 

constraints could not be finalised. 

 

 

3.2  Configuring the Motorola 68376 
 

In order to program the 68376 a development environment was created using 

Microsoft Visual C++. It involved porting the existing RoboRoo’s programming 

environment and modifying it for use on the GuRoo boards. The RoboRoo’s are 

centrally controlled by a Motorola 68332, hence most of their software was 

compatible with the 68376. The development environment, “board.dsw”, 

incorporating all new software has been submitted on the accompanying CD-ROM. 

 

3.2.1  Initial Hardware Issues 

 

Upon successful programming of the boards a hardware design fault was found that 

was inhibiting the processor from running. As shown in Figure 3.1, the MODCLK pin 

was being pulled low on reset when it was actually required to be pulled high. The 

68376 is configured on power up or reset by holding certain pins high or low(reset 

conditions)[10]. By pulling this pin low on reset the processor is configured to use an 

external clock source driven onto the EXTAL pin. This was not the intended mode of 

operation. Instead the MODCLK pin was actually required to be held high on reset. 

This would allow the 68376’s clock synthesiser to generate a clock source using the 

external 4.194304MHz crystal oscillator. Diode D1 was removed and a 10K pull up 

resistor was inserted between VDD and MODCLK. 

 

Following this it was observed that the processor would stall after approximately five 

seconds of run time. Phantom interrupt requests were being generated by the 

unconnected, IRQ6 & IRQ7 pins. It was discovered that a reset condition was 

configuring the processor to allow external interrupts on power up. The processor was 

crashing because there were no interrupt routines configured in software. The problem 

was rectified by the insertion of a missing jumper link, JP1, which ensures DATA9 

(pin 100) remains low during reset, as shown in Figure 3.1. By holding this pin low 

on reset, PORT F is configured for normal I/O, disabling the interrupt request lines. 
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Figure 3.1: Original Reset Conditioning Circuitry. 

 

It is possible to run a program without the jumper link present by setting PORT F to 

I/O mode early in software. However there is no foreseen benefit in doing this and it 

is not recommended, as index pulses from GuRoo’s encoders which are also 

connected to PORTF, may trigger the same problematic behaviour. 

 

3.2.2  System Clock Speed 

 

The system clock speed, fsys, is synthesised from an external 4.194304MHz crystal on 

reset. This is configured by setting the SYNCR register of the System Integration 

Module(SIM) during power up in socpwr.as. At present fsys is synthesised to a 

maximum recommended speed of 20.972MHz. 

 

 

3.3  Memory Map 
 

The 68376 has been configured to utilise 24 bit addressing. Base registers for memory 

addressing the flash, SRAM and the internal registers and SRAM are all configured 

by an assembly file called “socpwr.as”. This file contains the boot code for the 

processor when it is reset. 

 

Figure 3.2 outlines the memory map for the 68376 memory configuration. The TPU 

SRAM is mapped by an initialisation routine for the TPU in software, initTPU(). 
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24 Bit 
Addressing 

16 Bit Words 
(2 Bytes Wide) 

0x000000 
 
0x03FFFF 

256kB External Flash Memory (EEPROM) 
(ST Microelectronics – M29F010B) 

0x040000 
0x0FE000 

Unused 

0x0FF000 
0x0FFFFF 

4kB Internal SRAM 

0x100000 
 
0x17FFFF 

512kB External SRAM 
(Alliance Semiconductor - AS7C4098) 

0x180000 
0x1FFFFF 

Unused 

0x200000 
0x200DFF 

3.5kB Internal TPU SRAM 

0x200E00 
0xFFEFFF 

Unused 

0xFFF000 
0xFFFFFF 

Internal Registers 

 

Figure 3.2: Internal and External Memory Addressing on the Motorola 68376. 

 

 

3.4  Serial Communication Development 
 

Using the Queued Serial Module(QSM) of the  68376, code was developed to 

transmit data from board to PC. Communication requires an RS232 connector and a 

DB9 cable, as shown in Figure 3.3, to connect to a PC COM port. The SCI enables 

the processor to send ASCII bytes, one character at a time. Output characters can be 

viewed and/or captured to a text file using a software package such as Microsoft 

Hyperterminal. 

 

Setting up the SCI involved configuring the SCCR registers of the QSM module to 

enable the transmitter and select an appropriate baud rate. A baud rate of 38400 

(bits/sec) has been implemented, as testing uncovered that this was the fastest setting 

that could successfully transmit to the PC. Testing involved adjusting the SCCR0 

register to give a matching configuration for the predefined baud rates in Microsoft 

Hyperterminal. SCCR0 specifies the prescaling of an appropriate baud rate from the 

system clock(fsys). Because fsys is configured to an ambiguous speed of 20.972 MHZ, 

it is difficult to match baud rates between board and PC, and 38400 bits/s was the 

fastest speed setting that would function correctly. 



 39 

Two functions, transmitChar() and transmitShort() were written to 

transmit char and short variables respectively. Transmitted numbers can be viewed in 

hexadecimal format using Hyperterminal or any other suitable communications 

program. These functions are contained in the updated lowlevel.c. 

 

Care should be taken when using these functions as the baud rate is currently very 

slow and transmission times may hinder other processing. For debugging purposes, it 

is best to use CAN to transmit data to a central board for storage followed by SCI data 

transmission on completion of testing. Each board is equipped with 512kB of RAM 

which allows for a large amount of data storage. 

 

 

Figure 3.3: RS232 Connector for Board to PC Serial Communication. 

 

 

3.5  Timer Processor Unit Development 
 

Because the RoboRoo’s use a Motorola 68332 processor, PWM and quadrature 

decoding software was already written for them. This was directly ported for use on 

the GuRoo boards. This software is all contained in tpu.c. 

 

The Motorola 68376 processors that were supplied (package type (order number) – 

MC68376BGCFT25) contained the wrong pre-programmed TPU function set, which 

was incapable of PWM generation and QD[5]. Instead of writing custom made TPU 
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functions, a programming routine was written by Turk[13] to upload a RoboRoo TPU 

library function set to the flash each time the new boards are programmed. During 

reset, initialisation code transfers this function set from flash memory into the TPU 

RAM for use. 

 

3.5.1  Pulse Width Modulation Generation 

 

The TPU clock is derived from the system clock and has been configured to prescale 

for a maximum frequency of 5.243MHz. Therefore the minimum time quanta the 

TPU can utilise is 191ns. The tpuPWM_init() function in tpu.c, is used for 

configuring TPU channels for PWM. It is passed parameters for period and duty cycle 

as quantities of this time quanta. Once a TPU channel has been initialised for PWM, 

the duty cycle can be altered using the tpuPWM_set() function. Figures 3.4 and 3.5 

show successful use these functions to generate PWM at approximately 100kHz and 

50kHz respectively. 

 

Because the time quantum is fixed at 191ns, increasing PWM frequency lowers the 

resolution of duty cycle settings. For example, for a theoretical PWM frequency of 

104.9kHz, the PWM period should be set to 50 time quanta, giving a duty cycle 

resolution of 0 to 50. During velocity and position control testing this proved to cause 

problems when high frequencies of PWM were used and very low duty cycles were 

desired. An attempt was made to rectify this problem by implementing a simplified 

version of feathering, as used on the 2001 boards. This could still not provide a fine 

enough resolution. Further explanation of this attempt is detailed in section 4.1.2.1. 
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Figure 3.4: TPU Generating PWM (~100kHz, 20% duty cycle). 

 

 

Figure 3.5: TPU Generating PWM (~50kHz, 50% duty cycle). 

 

3.5.2  Quadrature Decoding 

 

TPU channels can be configured as input capture channels for QD using the 

QDEC_init() function in tpu.c. This function is passed as parameters the two out 

of phase channels for decoding. Reading the decoded value is performed by using the 

QDEC_read() function in tpu.c to read the desired TPU channel. 
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Testing the QD capabilities involved running a motor at slow speed and outputting the 

encoder counts to the SCI. This testing showed the QD was able to increment and 

decrement as expected for forward and reverse rotation respectively. 

 

Other testing included running and stopping a motor after a number of complete 

revolutions corresponding to a particular number of encoder clicks, to verify there 

was no accumulation of error. By observation, the motor was stopping precisely after 

complete revolutions and hence appeared to be functioning properly. 

 

Further verification that the quadrature decoding functions correctly is supported by 

the serial output obtained from index positioning testing as shown in Table 4.1. 

 

 

3.6  Current Sensing Development 
 

The 68376 has a Queued Analog To Digital Converter Module(QADCM) for ADC 

processing. Operation of this module requires setting up a list(“queue”) of channels 

from which AD conversions are required. When ADC’s takes place, the processor 

sequentially samples and converts each channel in the queue. The code developed 

triggers for these conversions to take place when required in software, running a 

single pass(“scan”) through the queue. Once the conversions are completed they can 

be read from memory. 

 

3.6.1  Configuring the Analog to Digital Converter 

 

Operation of this module is very sensitive to timing because sufficient time must be 

allowed for accurate conversions to take place. The QADC module runs off a separate 

clock, the Q-CLK, which is prescaled from the system clock. The Q-CLK 

frequency(fq-clk) and its duty must be set within a tolerable range to ensure correct 

operation of the module[5]. 

 

Setting up the Q-CLK requires programming the Q-CLK high time and low time. As 

recommended by the 68376 datasheet, a fq-clk of 1.0MHz was aimed for in order to 

ensure accurate conversions. Optimimum ADC performance is achieved when the 

duty cycle of the Q-CLK is as close as possible to 75% [5]. Based upon formulas 
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provided in the datasheet, the high time(tPSH) was programmed to 739ns and the low 

time(tPSL) to 262ns, giving a fq-clk of 0.999MHz, as shown in Figure 3.6. 

 

 

Figure 3.6: QADC Q-CLK Duty Cycle. 

 

Overall conversion time can be programmed between 18 and 32 Q-CLK periods by 

programming the final sample time. Figure 3.7 outlines the sequence of events during 

an ADC conversion. An arbitrarily selected final sample time of 8 Q-CLK cycles was 

chosen. This results in an overall conversion time of 24 Q-CLK cycles, hence the 

overall theoretical conversion time is 24/fq-clk = 24/0.999MHz = 24.02us. 

 

 

Figure 3.7: AD Conversion Timing. [5] 

 

3.6.2  Conversion Times 

 

If the control loop has to perform six conversions per control loop for the six 

corresponding current sensing resistors, then the overall length of time required to 

take ADC readings alone is approximately 6 x 24.02us = 144.1us. Considering that 

the control loop is intended to run at a speed of 2kHz(500us) the ADC conversions 

will form a major portion of the overall control loop processing time. 
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An ADC test program was developed to test conversion times. Actual conversion time 

for a single current sensing resistor was tested by switching on and off an LED before 

and after a conversion took place. Figure 3.8 shows the output signal generated across 

the LED on an oscilloscope. As can be seen, the actual time taken is 27.2us which is 

close to the theoretically calculated time of 24.02us. The additional 3.2us is due to the 

small amount of additional code surrounding the conversion and the natural 

inefficiency in the compiled code. 

 

 

Figure 3.8: Time Taken for a Single AD Conversion. 

 

The time taken for a queue of all six current sensing resistor readings was also tested. 

As shown in Figure 3.9, the time taken for six consecutive reading is 141.8us which is 

also close to the theoretical amount calculated. 

 

This conversion time may be slightly decreased by reducing the final sample time. 

This will have little or no impact on accuracy of AD conversions. Testing would need 

to be performed to verify consistency in conversion accuracy. 
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Figure 3.9: Time Taken For Six Consecutive AD Conversions. 

 

If the QCLK is prescaled to its maximum operating frequency of 2.0972MHz, it is 

theoretically possible to have a minimum conversion time of 6.7uS. This would 

require enabling amplifier bypass mode, for which the minimum input sample time is 

4 QCLK cycles. At an operating frequency of 20.972MHz, the QCLK period is 

477ns. Amplifier bypass mode only requires an input sample(4 QCLK’s) and 

resolution time(10 QCLK’s)[5] resulting in a minimum conversion time of, 14 x 

477ns = 6.7us. This is not recommended as conversion accuracy is reduced as 

maximum QCLK frequency is approached[5]. 

 

3.6.3  Resolution of Current Sensing 

 

The QADC module performs conversions of ten bit resolution. The module utilises 

the input 5V and GND rails as reference voltages through VRH(voltage reference 

high) and VRL(voltage reference low) respectively. This gives a theoretical 

conversion resolution of 0 to 2
10
 (0 to 1024) corresponding to voltages between 0 and 

5V. Therefore the AD conversions theoretically have a resolution of approximately 

5V/1024 ≈ 4.9 mV per ADC bit increment. 

 

With the existing op-amp configuration preceding input to the ADC module the 

theoretical current sensing range can be read from 0 to 5A corresponding to 0 to 4.7V. 

This therefore gives a theoretical resolution of 4.7/1024 = 4.6 mA per ADC bit 

increment.  
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It should be noted that this is only theoretical calibration factor. The tolerance of 

logical 5V is likely to be within 5.00V +/- 200mV with respect to the ground rail. 

Resistor tolerances and accuracy of the QADC module is also questionable. These 

factors will all contribute to inconsistencies with the theoretical calculations above. 

 

3.6.4  Current Sensing Testing 

 

Some quick tests were performed to check accuracy of the calculated calibration 

factor in the previous section. The LED’s were used to output the 10 bit AD 

conversions for two samples of current flowing through the H-bridge. Testing was 

performed using a load consisting of a series connected 5W 47Ω resistor and a 470uH 

inductor. 15V was supplied to the motor voltage rail and PWM frequency was set to 

50kHz. Figure 3.10 shows the DC current flowing for a 50% duty cycle and the 

corresponding AD reading displayed to the LEDs. Figure 3.11 shows the reading for a 

100% duty cycle under the same conditions. A push button was utilised to display the 

upper 2 bits of the conversion, but for both test cases the upper two bits were zero. 

Readings under these conditions were observed to vary  +/- one bit. 

 

 

Figure 3.10: ADC Conversions for 50khz PWM, 50% duty cycle. 

 

As shown in Figure 3.10, the conversion obtained a decimal value of 85. Multiplying 

this value by the theoretical calibration factor of 4.6 gives 85 x 4.6 = 391 mA, which 

is grossly different to the current displayed on the multimeter (153mA). 
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Figure 3.11: AD Conversion for 50khz PWM, 100% duty cycle. 

 

Figure 3.11 shows that for a 100% duty cycle, a decimal conversion of 245 is 

obtained. Using the calibration factor yields an expected current flow of 1127mA, 

which is again grossly different to the current flow displayed by the multimeter. 

 

The conclusion to these brief tests suggests that using the theoretical calibration factor 

to convert the 10 bit ADC reading to a current in mA is grossly inaccurate. It is 

possible that this calibration factor may hold more truth for higher current flow. 

Regardless, these results strongly suggest that ADC conversions need to be calibrated 

by correlation of tested current readings with AD conversions. This is proposed for 

future work following this thesis. 

 

3.6.5  Calibration of Current Sensing & Motor Torque Correlation 

 

An attempt was made to calibrate current sensing AD conversions and measure 

correlation of output torque. The apparatus shown in Figure 3.12 was intended for this 

testing. 
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Figure 3.12: Attempted Current Sensing and Torque Correlation Test Apparatus. 

 

One of GuRoo’s legs was clamped down to the workbench and a half metre length 

beam was mounted to the plate attached to the thigh motor. This enabled for torque 

loads of approximately up to 10Nm to be applied to the motor using a 2L water jug 

attached at 0.5m along the beam length. This remains under the 13.81Nm, maximum 

permissible continuous torque for the motors transmitted through the gearbox [17]. A 

set of hanging scales was to be used to measure the mass weight of the water 

container. The intended torque loads were to consist of the combined weight of the 

water jug, hanging scales and beam. 

 

A controller was connected to the thigh motor and programmed to run a position 

control loop. The beam was able to be manoeuvred to desired positions using a push 

button on the controller board. Provided that the beam and motor shaft were level, and 

the position control was smooth, the torque counter-acted by the thigh motor could be 

measured. The torque component of the thigh plate could be considered void through 
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its symmetry about the rotor shaft provided that the beam remained level. A spirit 

level was used to ensure that the beam remained level. 

 

The SCI was then used to transmit current sensing AD conversions to a PC. It was 

found that AD readings were erratic, with differences for a fixed load in the order of 

approximately +/- 300, and hence consistent readings were not possible. It was later 

discovered that the main reason for this was because the SCI header was connected 

whilst AD conversions were taking place. It is theorised that because the negative 

terminal of the laboratory power supply feeding the rails of the board was not 

grounded to mains, the QADC’s 0V reference was being disrupted. This is because 

the SCI header’s ground is connected through the DB9 cable to the PC’s reference 

ground. 

 

Completion of this task is proposed for future work. The current sensing circuitry in 

general is currently under further investigation. Once this is finalised, the same 

methodology can be applied to calibrate the current sensing and motor torque 

correlation.   

 

 

3.7  CAN Communication Development 
 

The 68376 is equipped with a TouCAN module for CAN communication. Developing 

functionality of this module required programming the appropriate configuration 

registers and testing for correct transmission of messages. 

 

Each TouCAN module can utilise up to 16 message buffers that can be configured for 

transmission or reception of messages. Each reception buffer can be defined with an 

individual arbitration ID, and a global mask register pre-filter’s messages for all 

buffers. This allows for messages to be sent specifically to individual buffers or 

multiple buffers within a single node or across multiple nodes. 
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3.7.1  TouCAN Module Configuration 

 

Configuration of the touCAN module required specifying the CAN bit timing 

parameters outlined in Figure 3.13. The TouCAN module has been configured to 

clock directly from the system clock in order to achieve the maximum CAN bit rate of 

1Mbit/s. Each nominal CAN bit time consists of the following segments: 

 

• Synchronisation Segment – Each node synchronises to the transmitting node 

by ensuring that the first edge of a message lies within this segment. 

• Propogation Segment – This compensates for delays on the CAN network. 

• Phase Segment 1 & 2 – The CAN message bit value is sampled between 

these segments. Segment 2 allows time for the module to process the message 

bit. The sampling point is automatically altered by the TouCAN module by the 

Resynchronisation Jump Width(RJW) so that a receiving node can 

resynchronise with a transmitting node. 

 
Figure 3.13: CAN Bit Timing Parameters. [11] 

 

The bit time segments and the RJW are each comprised of an amount of system clock 

time quanta, specified by TouCAN control registers on initialisation, as follows: 

• Synchronisation segment  =   1 time quanta (fixed) 

• Propagation segment   =   6 time quanta 

• Phase segment One    =  7 time quanta 

• Phase segment Two    =   8 time quanta 

• RJW          =  2 time quanta 
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This allows for a total of 21 time quanta per CAN bit. RJW was arbitrarily assigned to 

2 time quanta. Since system clock time quanta are each 47.7ns (fsys = 20.972MHz), 

the total CAN bit time is therefore 21 x 47.7 = 1.00us. According to the 68376 

datasheet, the only requirements for these parameters are that propagation segment 

two be greater than two time quanta, and total CAN bit time be greater than or equal 

to 9 time quanta. Therefore, the time quanta for each segment have been arbitrarily 

distributed to meet these requirements, and to make full use of the time between CAN 

bits of 1.0 us (1 MBit/s). 

 

3.7.2  Message Transmission & Reception 

 

The TouCAN module has only been configured for very basic communication. The 

software that has been written does not handle TouCAN error counters or utilise 

interrupts triggered by the TouCAN module. Brief testing did not uncover that these 

were required, however as future work it is recommended that routines be 

implemented to make use of these functions. 

 

The TouCAN module supports both standard(11 bit) and extended(29 bit) identifier 

message formats. 11 bit message identification is ample for GuRoo’s current 

distributed control system which only consists of 7 nodes, and therefore only the 

standard message format has been catered for in the new software. The standard CAN 

message buffer structure is outlined in Figure 3.14. 

 

 

Figure 3.14: Standard CAN Message Buffer Structure. [5]  
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Message buffers are configured for transmission or reception by writing an 

appropriate word to the CODE field. When configured for message reception the 

ID[28:18] field defines the 11 bit reception ID for the buffer. Message transmission 

requires writing the ID of the destination buffer to this same field. The length of the 

message for transmission also requires definition in the LENGTH field. The actual 

data of the message either transmitted or received, is contained in the DATA BYTE 

[0 : 7] fields. 

 

Each TouCAN module also utilises an 11 bit global receive mask register for message 

ID acceptance. There is a direct correspondence between each bit in this register and 

the ID bits in each buffer. When mask bits are set to 0, the corresponding bits in the 

ID fields of reception buffers are neglected for message arbitration. The software that 

is currently implemented sets this mask register to 0x7FF so that every ID bit must be 

checked for message buffer acceptance. 

  

3.7.3  CAN Software Implementation 

 

At present only simple CAN software has been implemented in can.c. Finalisation of 

can.c is proposed for future work following this thesis.  

 

On reset, each board defines two buffers for active message reception. The first buffer 

utilises the board ID DIP switches to define its arbitration ID. The second buffer’s ID 

is arbitrarily defined with 0x80 plus the defined board ID for handling incoming 

board commands. A separate buffer for command messages is required so that the 

robot’s joints can be initialised on command after power up. Further details of the 

initialisation routine are contained in section 4.2. 

 

The TouCAN module features a 16 bit interrupt flag register with each bit 

representing an individual message buffer. In the event that a message buffer receives 

a new message, its corresponding flag bit is set. Incoming message reception is 

checked regularly as part of the main loop through polling of these flag bits. Further 

details of software implementation of CAN are detailed in section 4.1.1 & 4.1.3. 
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A program was written to verify correct operation of the new CAN software. Two 

boards, with specific DIP switch settings defining board functionality, were connected 

through a CAN line. By pressing a push button on one board, a counter would be 

incremented and transmitted to the other board. When that message was received by 

the other board it would display the correct counter amount on the LEDs. If the 

board’s ID’s were changed, they would no longer function as required. This code 

verified truth in message reception and that the DIP switches could be used to define 

buffer arbitration ID’s. 

 

Further verification of correct CAN functionality was achieved through the 

implementation of the demonstration software discussed in section 4.3. The 

demonstration software transmits a sin wave velocity profile at 50Hz from an external 

board to a board installed in GuRoo’s left leg. The board ID switches are not only 

used to define the message buffer ID’s but also to define the sections of code relevant 

to each board. Figure 3.15 displays an example of a new velocity setting being 

transmitted to the board in GuRoo’s leg. 

 

 

Figure 3.15: Transmission of a Velocity Profile CAN Frame. 
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3.8  MOSFET Driver Issues 
 

The MOSFET driver’s feature a disable pin. When this pin is held high the MOSFET 

driver maintains all MOSFET’s in non-conducting state. It was found during board 

development that if the MOSFET driver’s 12V voltage supply was switched on after 

motor voltage, the H-bridge would transform into a shoot-through condition. This 

behaviour was also observed if the reset button were to be pressed whilst the board 

was receiving 12V and motor voltage supplies. 

 

In an attempt to solve this problem, pull up resistors were applied to each disable line 

to disable MOSFET’s on reset. The disable lines were also re-routed to PORTE which 

exists in an undefined state on reset, thereby enabling the disable lines to remain high 

on reset by the pull up resistors. 

 

It was later found, that this behaviour is specifically triggered if MOSFET drivers are 

enabled whilst the motor voltage supply is on. This problem still exists and finding a 

solution is proposed for future work. 

 

Because the disable lines were re-routed to PORTE, the three LED lines that were 

disconnected are now re-routed to PORTC, as shown in Figure 3.16. 

outputToLEDs() was written so that the LEDs could continue to output data a 

whole character at a time.  

 

 

 

Figure 3.16: Re-routing of the MOSFET Driver Disable Lines. 
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3.9  2004 Lower Limb Controller Power Consumption 
 

The existing power supply for GuRoo is currently being reconsidered. Now that a 

semi-discrete motor driving circuitry is used, an additional power rail of 12V is 

required for the MOSFET drivers. Hood proposed the use of a buck converter to 

achieve 12V from the 42V NiMH batteries followed by another buck converter for 

12V down to 5V. 

 

With the voltage regulators already in place, an input voltage to them of at least 6.25V 

is required for them to properly supply 5.0V [19]. It makes little sense to further 

convert 12V down to 6.25V or more. It is therefore envisaged that logic will be 

powered from 12V also. Although this involves wasted power dissipation through the 

voltage regulator, it is fairly insignificant with respect to the motor conduction losses. 

  

The advantage of this plan is that the 7.2V RC batteries will no longer be required, 

reducing the weight in GuRoo’s upper body. It will also reduce complexity of the 

power supply. The drawback is that more power will be required of the 42V supply. 

 

In anticipation of this, the current required for the new boards was measured for the 

original and the envisaged arrangements, using a laboratory DC power supply and a 

multimeter. Table 3.2 lists the measurements taken. 

 

Voltage  

Supplied 

Logic Current  

Drawn 

MOSFET Driver 

Current Drawn 

Total Power 

Consumption 

7.2V & 12.0V for 

Logic & MOSFET 

Drivers 

140 mA 55 mA 1.7 W 

Shared 12.0V 215 mA 2.6W 

 

Table 3.1: 2004 Controller Power Consumption. 

 

Therefore the total additional power loss under this new arrangement is approximately 

0.9W. It should be noted that these are fairly crude measurements, but it gives an 

approximate figure of the power consumption of the 2004 boards, and a comparison 

between both configurations. 
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4.  2004 Controller Software 
 

The existing software structure was generally maintained for the new boards but 

required modification to suit the new processor and the implementation of unipolar 

PWM. The Microsoft Visual C++ development environment was ported from the 

RoboRoo’s and a considerable amount of their compatible code was salvaged for use 

on the 68376. The new software structure is shown in Figure 4.1. It is a little more 

complex than the original TMS320F243 software interaction outlined in Figure 2.12, 

but the original structure has been maintained. 

  

Updating the software generally involved rewriting startup.c and lowlevel.c. An 

incomplete version of can.c has been written as part of this thesis to demonstrate 

board functionality but requires further development. A simplified version of 

board1.c was also written purely for demonstration purposes. The newly written 

startup.c, lowlevel.c and can.c are contained in Appendix D. 

 

 

 
 

Figure 4.1: Interaction of Software on the 2004 Controllers. 
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Modularity has once again been maintained for ease of readability and future 

alterations: 

 

• socpwr.as configures the processor on reset. 

• startup.c initialises the processor for the necessary functionality and contains 

the main() function which calls upon the velocity control loop. 

• board1.c contains b1_control(), the PI velocity control loop. 

• can.c handles the software for CAN communication 

• lowlevel.c contains the firmware functions for setting PWM, reading the 

encoders and reading current sensing through the ADC. 

• tpu.c has been ported from RoboRoos software and handles the interaction of 

the TPU with lowlevel.c commands. 

• intr.c has also been ported from RoboRoos software and handles interrupt 

processing code. 

• defs.h defines global constant definitions and new data types for use by all 

other source files.  

• mc68376.h maps register addressing for the 68376 modules. 

 

 

4.1  Updated Software 
 

4.1.1  startup.c and socpwr.as 
 

On reset, the processor itself is initialised by socpwr.as, which configures the clock 

speed, the memory bus and base registers for memory addressing. Following this, 

flow of control is passed to the main() function in startup.c. 

 

startup.c contains the source code that initialises I/O registers and configures the 

processor for PWM, quadrature decoding, ADC and SCI functionality. CAN 

communication is initialised by calling upon setupCAN() in can.c. Interrupt 

processing is set up through intr_init(), which is called from intr.c to intitialise 

the interrupt vector table. As discussed in section 3.5, initTPU() transfers TPU 

microcode from the flash memory to the TPU SRAM on reset. It also configures the 

TPU clock by calling upon TPU_init() in tpu.c. 
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Board ID is defined during initialisation by reading the DIP switches. At present this 

defines CAN buffer ID’s for message reception. It is also intended for these DIP 

switches to define the gains that are used by each joint under control. The control 

software is currently functioning but not finalised. At present b1_control() runs 

the control loop at 1kHz. At this frequency the proportional and integral gains were 

required to be significantly lower then those defined for the old control loop speed of 

250Hz. The present gains were selected through trial and error and as future work 

following this thesis, gains for the finalised control loop speeds will require 

calculation. 

 

tpu.c and intr.c are source code files that have been directly ported from Roboroo’s 

software. They only required minor modification for use on the GuRoo boards. In 

order to maintain their originality and modularity they have remained as separate files 

for interaction with the existing software structure. 

 

Once initialisation is complete, startup.c then follows into a continuous loop that 

handles index positioning initialisation and velocity control. Initially, this loop 

periodically calls upon posnCtrlIndex() to perform index position control to 

initialise the robots limbs. Once an incoming velocity profile has been detected PI 

velocity control commences and the continuous loop instead periodically calls upon 

b1_control(). These routines are discussed further in sections 4.2 and 4.3 

respectively. 

 

Detection of the incoming velocity profile is currently polled in the main loop by 

calling chkForMsgs() from can.c. It is proposed that incoming velocity profiles 

will be updated by an interrupt routine for CAN message reception. Due to time 

constraints, interrupt processing has not yet been finalised. 

 

4.1.2  lowlevel.c 
 

lowlevel.c contains the functionality code for control loop processing. These 

functions have been updated so that b1_control() can call upon firmware without 

itself requiring modification . 
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4.1.2.1  set_PWM() 

 

This procedure sets the duty cycle and direction of a particular motor based upon an 

int parameter passed to it between -1600 and 1600. The motor number is also passed 

as a parameter. Motors are numbered from 0 to 2 for motors labelled 1 to 3 

respectively on the 2004 boards. The sign of the duty cycle parameter is then used to 

configure the MOSFET driver to control the H-bridge to drive forward or reverse, as 

detailed by the input logic shown in Table 2.2. At present a PWM frequency of 

approximately 15.4kHz is used, giving a duty cycle resolution of 0 to 800. Brief 

testing showed that this was the required resolution for fine duty cycles. The duty 

cycle is then divided by two, and negated if appropriate, to give an int amount 

between 0 and 800. This number is then used to set the duty cycle through 

tpuPWM_set(). 

 

As discussed, as PWM frequency is increased, the resolution of duty cycle settings is 

decreased. Because of this it was found that at high PWM frequencies, when very low 

duty cycle settings were required for position control and velocity control, the lowest 

duty cycle was still too high. Instead of neatly maintaining position or zero velocity, 

the motors would continuously oscillate back and forth due to constantly overshooting 

a desired position. This behaviour was particularly noticeable in joints under a small 

amount of load. This problem was also experienced by Hood in 2002, for which the 

solution of “feathering” PWM was developed. 

 

An attempt was made to implement a simplified version of feathering on the 2004 

boards, but brief testing showed that the resolution was still inadequate. To remain 

consistent with the original software, set_PWM() was programmed to accept an 

input desired duty cycle parameter between -1600 and 1600. The bottom five bits 

were masked off to give a number from 0 to 31 and the desired duty cycle was then 

logically right shifted 5 bits to give a duty from -50 to 50. This masked off number 

between 0 and 31 then became the feather_count and a pwm_high and pwm_low 

value of duty+1 and duty respectively were assigned. Using a PWM frequency of 

100kHz gave a resolution of 50 duty cycle increments. 
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Figure 4.2: PWM Feathering Waveform for a Duty Cycle of “1” with 50kHz PWM 

(Time scales of 2ms, 50us and 2us are shown from top to bottom respectively)  

 

The 68376 features a Periodic Interrupt Timer(PIT) which was configured for 

interrupts at its maximum attainable frequency of 8kHz. The PIT was used to compare 

the feather_count with a counter that incremented every PIT in the same manner as 
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Hood’s original feathering method. After 32 increments b1_control() was called 

and the counter was reset. Figure 4.2 shows a breakdown of a feathered PWM 

waveform for a duty cycle of 1/1600 using this method. The feathered PWM 

waveform signal is shown zooming in from top to bottom of Figure 4.2. 

 

Not only did this method still not provide enough resolution but it also made the 

motors audibly noisy. It is possible that feathering the PWM with a 100kHz interrupt 

in the same manner as Hood, may improve the resolution and eliminate the audible 

noise whilst maintaining a high PWM frequency. A high PWM frequency is desirable 

because ripple current losses are lowered with increasing PWM frequency. However, 

as PWM frequency is increased, switching losses of the MOSFET’s are also 

increased. A compromise needs to be established through testing. It is also important 

for PWM frequency to be greater than 25kHz, as this is the approximate audible limit 

for the human ear. At the present frequency of 15.4kHz, the motor’s emit a slightly 

irritating “whine”. 

 

This problem requires rectification. Unfortunately due to time constraints interrupt 

processing has not yet been fully established in the current software, so feathering at 

100kHz could not be tested. This is proposed for future work following this thesis.  

 

4.1.2.2  read_curr() 

 

This function simply takes as parameters the motor number for which armature 

current is desired and returns the armature current in mA. Based upon the motor 

number from 0 to 2, an ADC queue is setup for the corresponding H-bridge legs and 

the conversions commence. The larger of the two readings is then selected as the 

correct armature current conversion. The 10 bit conversion is then multiplied by a 

calibration factor and returned as an unsigned integer. 

 

At present this function has a calibration multiplier of 5 to convert the 10 bit ADC 

reading to an amount in mA. This calibration factor is inaccurate. Once calibration of 

current sensing is completed, a more appropriate calibration factor will be inserted. 
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4.1.2.3  read_enc() 

 

This function is passed as a parameter the motor number from 0 to 2, for the 

corresponding desired encoder channel and the current encoder count is returned as an 

unsigned integer. This function also makes use of tpu.c. 

 

4.1.2.4  transmitShort() and  transmitChar() 

 

transmitShort() and transmitChar() were written for debugging purposes. 

When passed a short parameter, transmitShort(), will output to the SCI the 

corresponding ASCII character set for its hexadecimal value. transmitChar(), 

will do the same for character variables. 

 

The output hexadecimal numbers can be viewed using a program such as Microsoft 

Hyperterminal as detailed in section 3.4. 

  

4.1.2.5  outputToLEDs() 

 

outputToLEDs() is a function that can be used to output an entire character to the 

LEDs for debugging purposes. Because the MOSFET driver lines were re-routed, the 

upper three LED’s are no longer connected to PORT E of the SIM module. 

 

outputToLEDs() performs some bit shifting so that the uppers three bits can be 

output to their newly routed PORT F locations. Board 6 did not require re-routing and 

hence when this command is used with the DIP switches defining board 6, characters 

are directly output to PORT E. 

 

4.1.3  Additional Code for the New Processors 

 

In order to purely demonstrate functionality of the boards only a simplified version of 

can.c was written. In its present state, this source file only contains an initialisation 

routine for the TouCAN module and a function that checks for incoming CAN 

messages. Transmission code fragments are spread throughout the demonstration 

software where CAN transmission is required. Finalisation of can.c is proposed for 

future work following this thesis. The basic can.c currently in place will provide a 

good framework for its development. 
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tpu.c and intr.c were ported from RoboRoo’s software and slightly modified for the 

2004 boards. They handle the TPU functionality and interrupt processing respectively. 

Interrupt processing software remains incomplete. Due to time constraints, external 

interrupts have not yet been implemented. The 2004 boards have been routed so that 

the push buttons and encoder index lines connect directly to external interrupt lines. 

At present these lines are only polled, which can lead to them sometimes not being 

recognised in software. This is also proposed for future work. 

 

mc68376.h is another source file that was adapted from RoboRoo’s software. This 

header file defines addressing for the various registers of the 68376 modules. It has 

been adapted to specifically suit the 68376. Figure 4.3 shows the register map for the 

68376 which mc68376.h defines. Note that figure 3.4 of the Motorola MC68376 

datasheet[5] contains an error. It shows the TouCAN and ADC modules listed in the 

register map in the wrong order. This error has been corrected in Figure 4.3. 

 

 

Figure 4.3: Register Addressing – Mapped by mc68376.h. [5] 

 

The defs.h source file was created to define all global constants and new data types. 



 64 

4.2  Initialisation Code 
 

As discussed prior, GuRoo was in need of an initialisation routine for joint alignment 

on power up. Code has successfully been written and tested for an initialisation 

routine that uses the encoder index pulses. This section details how this routine has 

been implemented. 

 

4.2.1  Index Position Control 

 

The method developed for initialisation basically performs position control of the 

motors about index encoder pulses. Figure 4.4 is a flowchart describing how this 

method has been implemented in software. This software utilises a CAN message 

buffer on each board for commanding the initialisation process. The initialisation 

routine is contained in startup.c. 

 

On reset, each board runs through the initialisation sequence detailed in section 4.1.1. 

Flow of control is then passed to a continuous loop in the main() function which 

continuously checks for incoming CAN command messages. Upon reception of a 

message to commence index positioning, the periodic interrupt timer(PIT) 

commences to trigger the posnCtrlIndex() function at 1kHz.  

 

posnCtrlIndex() serves two functions. When this function is first called it 

slowly increments the PWM duty cycle for each of the motors until they begin to 

move forward. The forward direction is defined as anticlockwise rotation of motor 

shafts. Once moving forward the duty cycle ceases to increment and the motors rotate 

until an index pulse is detected. Index pulses are continuously polled in between 

calling the posnCtrlIndex() function during the main loop. Once detected, the 

index positions are read from the encoders and posnCtrlIndex() switches its 

functionality to PI position control of motors about their index positions. 
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Figure 4.4: Flowchart for Index Positioning Initialisation. 
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The PI position control loop operates in a similar manner to PI velocity control.  For 

each motor/encoder system, posnCtrlIndex() first reads the current encoder 

position and calculates the error between current position and index position. The 

accumulation of this error effectively integrates the position error. Multiplication of 

these errors by suitable gains gives an appropriate duty cycle that is then set by 

set_PWM() to maintain the motors position about its corresponding index pulse. 

These gains were arbitrarily selected through trial and error. As mentioned prior, the 

current low PWM frequency requires attention. If a version of feathering is 

implemented or if the PWM frequency is changed then suitable gains will need to be 

reselected. This is proposed for future work. 

 

In the event that the processor receives a CAN message to move a particular motor to 

its next index position posnCtrlIndex() breaks out of position control and 

begins moving to the next forward index pulse. Immediately a waypoint is set 500 

encoder clicks forward of the current encoder position to avoid confusion with the 

current index pulse. Duty cycle is again incremented until the motor is driving 

forward and posnCtrlIndex() continuously checks the current encoder reading. 

Once the encoders indicate that the waypoint has been passed, searching for the new 

index pulse commences. Once detected, posnCtrlIndex() recommences position 

control about the new index pulse position. 

 

4.2.2  Index Position Control Performance 

 

The processing time for posnCtrlIndex() was measured to ensure that the loop 

frequency of 1kHz was appropriate. This was measured by turning on and off an LED 

before and after calling the posnCtrlIndex() function. Figure 4.5 shows the 

oscilloscope output viewing this LED. As can be seen, the position control loop 

requires 252us of processing time. This proves that running the loop at a frequency of 

1kHz is not too fast for the processor to handle. 

 

Testing showed that this index positioning technique would consistently locate the 

exact index position. This was proved by using an oscilloscope to probe the index 

input lines to the processor whilst the motors were under index position control. 
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Figure 4.5: Position Control Loop Processing Time. 

 

Repeatability was verified by outputting index position encoder counts for 

consecutive index positions of GuRoo’s left knee joint to an external PC. Table 4.1 

lists a sample of the encoder index positions that were transmitted through the SCI. 

The index encoder counts are consistently 2000 counts apart, which is the exact 

encoder count distance between index pulses. As indicated by the second sample, 

because index detection is only polled, this technique has the tendency to sometimes 

miss the index pulse. 

 

Motor Index 
Encoder Count 
(Hexadecimal) 

Motor Index 
Encoder Count 

(Decimal) 

Index Encoder Count 
Increment 

(This – Previous) 

0217 535 NA 

11B7 4535 4000 

1987 6535 2000 

2157 8535 2000 

2927 10535 2000 

30F7 12535 2000 

38C7 14535 2000 

4097 16535 2000 

4867 18535 2000 

5037 20535 2000 

 

Table 4.1: Repeatability of Index Positioning. 
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It is anticipated that once external interrupt processing is implemented, software will 

be written to use interrupt processing to detect index pulses. This will eliminate the 

current problem where index pulses are sometimes missed. 

 

Verification of index positioning repeatability was also proved visually by using a 

scribed mark on the ankle joint of GuRoo’s left leg. The joint would consistently 

manoeuvre to the same index position, observed from the parallel scribed marks 

shown in Figure 4.6. 

  

 

Figure 4.6: Visual Verification of Index Positioning Repeatability with a Scribed Mark. 

 

 

4.3  Demonstration Software 
 

4.3.1  Control Loop Demonstration Code 

 

In order to demonstrate correct functionality of the new software, a simplified version 

of board1.c was written to implement PI velocity control. A new 2004 board was 

installed into a detached leg of GuRoo. Another external board was connected for 

CAN communication to generate an input velocity profile that was updated every 

50Hz, in line with the existing system in GuRoo. This velocity profile consisted of a 

sin wave trajectory with an amplitude of 10 encoder counts per control loop and 

period 8s. The board in GuRoo’s leg was wired for running three motors 
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simultaneously. The DIP switches were utilised for CAN message identification and 

software sharing. The installed board’s DIP switches were set to 0x1(board 1), and the 

external board’s switches were set to 0x7(board 7). 

 

Following power up the index positioning routine was initiated by pressing push 

button one on board 7. This transmitted a command message to board 1 to initialise all 

three joints to their nearest forward index positions. Push button two on board 7 could 

be repeatedly pressed to transmit a command message to move the knee joint to its 

consecutive index positions. Pressing push button one again, commenced 

transmission of the velocity profile. Upon reception of this incoming velocity profile 

on board 1 the PI velocity control loop would commence. All three motors were 

configured to use this velocity profile as the desired velocity for PI control. The knee 

joint was programmed to run the inverse of the velocity profile, giving a crouching 

effect to the leg. Figure 4.7 shows a still shot of the leg manoeuvring the three lower 

motors through this trajectory.  

 

 

Figure 4.7: Demonstrating the New Software – Initialisation and Velocity Control. 
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This demonstration software verified correct operation of all of the board 

functionality achieved in this thesis, except for AD conversions. 

 

4.3.2  PI Velocity Control Loop Processing Time 

 

Section 2.4.1 discussed that a major flaw for the 2001 controllers was their limited 

control loop speed due to the use of external quadrature decoders. The QD capabilities 

of the 68376’s TPU eliminated this problem. A simplified version of board1.c was 

written to implement the PI velocity control loop in the demonstration software. 

 

The time taken for processing this velocity control loop was measured on an 

oscilloscope by turning on and off an LED before and after b1_control() was 

called from the main loop. Figure 4.8 shows that the control loop took 208us to 

process. 

 

 

Figure 4.8: 1kHz PI Velocity Control Loop Processing Time(No AD Conversions). 

 

The control loop used in the demonstration software did not however include any AD 

conversions. These needed to be included in order to fully simulate the actual control 

loops intention. The software was altered to include read_curr() for each motor 

in b1_control(). Figure 4.9 shows the altered processing time of 402us for the 

control loop, including the six AD conversions required to read the current flowing 

through all three H-bridges. This is a drastic improvement on the 1.28ms taken for the 

2001 controllers to run a control loop. The processing time of 402us proves that the 
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original target of 2kHz is achievable on the new 2004 controllers, with ample time to 

spare for CAN transmission of feedback data. 

 

 

Figure 4.9: 1kHz PI Velocity Control Loop Processing Time(6 AD Conversions Per Loop). 

 

A comparison of the control loop processing time with and without AD conversions 

shows a difference of 194us. This is almost half of the total control loop processing 

time, indicating that AD conversions are the bottleneck for required control loop 

processing time. 

 

4.4  Memory Consumption 
 

The compiler outputs memory utilisation data after the successful compilation and 

downloading of programs to the 68376. It was observed that the demonstration 

software only used 9.4kB of flash memory and 1.2kB of SRAM. The new boards are 

equipped with 256kB of program memory space(flash) and 512kB of variable 

memory space(SRAM). The memory utilisation of the demonstration software 

therefore suggests that even after the CAN software for the new 2004 boards is 

completed, there will still be ample room for further development of software for the 

new controllers. 



 72 

5.  Thesis Outcomes and Conclusion 
 

Desired functionality for the new controllers was completely achieved by early 

September. Implementation of this functionality is yet to be finalised for CAN 

communication and current sensing. 

 

After approximately 150 hours of soldering, five new control boards were completely 

populated. Figure 5.1 shows one of the new 2004 lower limb controller boards. 

 

By late October, the software was fully updated to suit the Motorola 68376 with the 

exception of can.c and an intialisation routine was implemented to position the 

robot’s joints to index positions. The intialisation routine was proven to be accurate 

and repeatable, with the exception of sometimes missing index pulses due to polling 

their detection. 

 

Demonstration software was developed to verify correct functionality of the new 

boards and the new software written for them. The demonstration software proved 

that the new boards were able to run the velocity control loop at a speed of 1kHz. 

Much faster than the control speed of 250Hz on the 2001 control boards. It was shown 

that attaining a control loop speed of 2kHz is highly possible. 

 

 

Figure 5.1: The New 2004 Lower Limb Controller Board. 
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6.  The Road Ahead 
 

The new boards only require a minor amount of further work before they may be 

installed in GuRoo and function with the existing gait systems. There are however 

further issues that require attention before the full potential of the new controllers can 

be utilised.  

 

It was discussed that the MOSFET’s are triggered into a shoot-through condition if 

the reset push button is pressed or if motor voltage is turned on before the MOSFET 

driver’s are enabled. This problem requires prompt attention. It is potentially 

dangerous to GuRoo and those surrounding it if a shoot-through condition is 

accidently triggered whilst GuRoo is operating. GuRoo’s joints could potentially draw 

full current and rapidly extend or collapse. 

 

It is anticipated that a new current sense resistor value will be chosen to give greater 

resolution of armature current feedback, closer to the typical operating current range. 

Alterations to current sensing circuitry need to be finalised before calibration of 

current sensing can commence. In order to avoid damaging the motors, calibration of 

current sensing is required so that the current joint control routine can provide 

adequate feedback of armature current. 

  

Correlation of armature current and torque also requires testing. This will provide a 

means for the implementation of torque feedback control. An appropriate method for 

calibration of current sensing and torque correlation was suggested in section 3.6.5. 

 

Due to time constraints, interrupt processing software could not be finalised as part of 

this thesis. Implementation of an external interrupt routine for index pulse detection 

will eliminate the problem where index pulses can be missed. The use of external 

interrupts will also be beneficial for push button functionality and CAN message 

reception. 

 

Index positioning software has only been written to increment index positioning of 

GuRoo’s joints. Enabling GuRoo’s joints to move both forward and backwards 

between index pulses would be extremely beneficial. It would not be difficult to 
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further develop the intialisation routine to do so. It is envisaged that the index 

positioning eventually be controlled from an external PC. Messages could be 

generated from a GUI controller on the PC and serially transmitted across to board 6 

to implement CAN command control of index positioning. 

  

The limited resolution of PWM duty cycle also requires attention. It is recommended 

that a feathering routine similar to that used by Hood be trialled. This will eliminate 

the current problem with audible noise and give smoother control where low duty 

cycles are required. 

 

It is recommended that the control loop speed be maximised once the duty cycle issue 

is resolved. An analysis of control loop performance can then be performed. It is 

anticipated that joint control position error will be significantly reduced with an 

increased control loop speed. New optimum joint gains will need to be calculated 

when the control loop speed is increased. 

 



 75 

References 
 

 

[1] Kee D., Wyeth G., Cerebellar Joint Compensation for a Humanoid Robot, in 

Department of Information Technology and Electrical Engineering. 2004, 

University of Queensland: Brisbane. 

 

[2]  Kee D., Official GuRoo Website. 

   http://www.itee.uq.edu.au/~damien/GuRoo 

   (Accessed: 21/4/2004) 

 

[3] Hood A., Distributed Motion Controllers for a Humanoid Robot, in 

Department of Information Technology and Electrical Engineering. 2002, 

University of Queensland: Brisbane. 

 

[4] Stirzaker J., Design of DC Motor Controllers for a Humanoid Robot, in 

Department of Information Technology and Electrical Engineering. 2001, 

University of Queensland: Brisbane. 

 

[5]  MC68336/376 User’s Manual, 15 Oct 2000, DATASHEET, Motorola Inc. 

 

[6] Drury A., Gait Generation & Control Algorithms for a Humanoid Robot, in 

Department of Information Technology and Electrical Engineering. 2002, 

University of Queensland: Brisbane. 

 

[7] Matthews-Frederick S., Embedded Hardware for a Humanoid, in Department 

of Information Technology and Electrical Engineering. 2004, University of 

Queensland: Brisbane. 

 

[8]  Robocup, Official Robocup Website. 

   http://www.robocup.org 

   (Accessed: 21/4/04) 

 

[9] Kee D., Wyeth G., Hood A., Drury A., GuRoo: Autonomous Humanoid 

Platform for Walking Gait Research, in Department of Information 

Technology and Electrical Engineering. 2004, University of Queensland: 

Brisbane. 

 

[10] Darley S., Maiolani M., Melear C., An Introduction to the MC68331 and 

MC68332. 1996, Motorola Inc. 

 

[11] Dobbin A., Stereo Audio Transmission Over the CAN Bus Using The 

Motorola 68376 With TOUCAN Module(AN1776/D). Rev 1.0, July 10, 1998, 

Motorola Inc. 

 

[12] Kennedy J., Design and Implementation of a Distributed Digital Control 

System in an Industrial Robot, in Department of Computer Science and 

Electrical Engineering. 1999, University of Queensland: Brisbane. 

 



 76 

[13] Turk D., Mobile Robot Electrical Design, in Department of Information 

Technology and Electrical Engineering. 2004, University of Queensland: 

Brisbane. 

 

[14] Alliance Semiconductor, AS7C4098 Datasheet, 23/05/02(v1.8), Alliance 

Semiconductor Corporation. 

 

[15] Cartwright, T., Design and Implementation of Small Scale Joint Controllers 

for a Humanoid Robot,in Department of Information Technology and 

Electrical Engineering. 2001, University of Queensland: Brisbane. 

  

[16] Mohan, Undeland, Robbins, Power Electronics, (3
rd
 Edition). 2004, John 

Wiley & Sons, Inc. NJ, USA. 

 

[17] Kee D., Drive System Selection and Simulation for a Humanoid Robot, in 

Department of Information Technology and Electrical Engineering. 2001, 

University of Queensland: Brisbane. 

  

[18]  International Rectifier, IRF530NS Datasheet, 9/04/02(PD-91352B). 

 

[19] National Semiconductor, LM2940/LM2940C Datasheet, March 2000, National 

Semiconductor Corporation. 

  

 



 

A
p
p
en

d
ix
 A
 - U

p
d
a
ted

 2
0
0
4
 C
o
n
tr
o
ller B

o
a
rd

 1
-5
 S
ch

e
m
a
tic 

 

1 2 3 4 5 6 7 8

A

B

C

D

87654321

D

C

B

A

Title

Number RevisionSize

A2

Date: 26-Oct-2004 Sheet    of 

File: H:\sem1_2004\metr4900\2003ControllerSchematic\GuRoo2004.DdbDrawn By:

AN0/ANW/PQB0
34

AN1/ANX/PQB1
35

AN2/ANY/PQB2
36

AN3/ANZ/PQB3
37

AN48/PQB4
38

AN49/PQB5
39

AN50/PQB6
40

AN51/ PQB7
41

BERR
71

BKPT /DSCLK
67

CANRX0
160

CTM2C
159

EXTAL
57

T2CLK
127

TSTME /TSC
68

VDDA
45

VDDSYN
56

VRH
42

VRL
43

VSSA
44

VSTBY
135

XFC
60

ADDR0
91

ADDR1
11

ADDR10
23

ADDR11
24

ADDR12
25

ADDR13
26

ADDR14
27

ADDR15
28

ADDR16
29

ADDR17
31

ADDR18
32

ADDR2
13

ADDR23/ CS10/ ECLK
126

ADDR3
14

ADDR4
16

ADDR5
17

ADDR6
18

ADDR7
19

ADDR8
21

ADDR9
22

CANTX0
1

CLKOUT
63

CPWM5
156

CPWM6
155

CPWM7
154

CPWM8
153

CTD3
158

CTD4
157

CSBOOT
113

FREEZE/ QUOT
66

HALT
70

IPIPE /DSO
64

PC1/FC1/CS4
118

PC3/ ADDR19/ CS6
122

PC4/ ADDR20/ CS7
123

PC5/ ADDR21/ CS8
124

PC6/ ADDR22/ CS9
125

R/W
82

RST
69

XTAL
55

AN52/ MA0/ PQA0
46

AN53/ MA1/ PQA1
47

AN54/ MA2/ PQA2
48

AN55/ ETRIG1/ PQA3
49

AN56/ ETRIG2/ PQA4
50

AN57/ PQA5
51

AN57/ PQA6
52

AN59/ PQA7
53

BG/CS1
115

BGACK/CS2
116

BR/CS0
114

CTD10
151

CTD9
152

DATA0
112

DATA1
111

DATA10
99

DATA11
98

DATA12
97

DATA13
96

DATA14
94

DATA15
93

DATA2
110

DATA3
108

DATA4
107

DATA5
105

DATA6
104

DATA7
103

DATA8
102

DATA9
100

FC0/CS3
117

IFETCH /DSI
65

MISO/PQS0
10

MOSI/PQS1
9

PCS0/SS/PQS3
7

PCS1/PQS4
6

PCS2/PQS5
5

PCS3/PQS6
4

PE0/DSACK0
90

PE1/DSACK1
89

PE2/AVEC
88

PE3/RMC
87

PE4/DS
86

PE5/AS
85

PE6/SIZ0
84

PE7/SIZ1
83

PF0/ MODCLK
79

PF1/ IRQ1
78

PF2/ IRQ2
77

PF3/ IRQ3
76

PF4/ IRQ4
75

PF5/ IRQ5
74

PF6/ IRQ6
73

PF7/ IRQ7
72

RXD
2

SCK/PQS2
8

TPUCH0
150

TPUCH1
148

TPUCH10
136

TPUCH11
133

TPUCH12
132

TPUCH13
130

TPUCH14
129

TPUCH15
128

TPUCH2
147

TPUCH3
145

TPUCH4
144

TPUCH5
143

TPUCH6
142

TPUCH7
139

TPUCH8
138

TPUCH9
137

TXD/PQS7
3

PC2/FC2/CS5
119

U1

MC68376(160)

QDEC1A
QDEC1B

QDEC2A
QDEC2B

QDEC3A
QDEC3B

PWM1

PWM2
PWM3

TPU0

TPU1
TPU2

D0

D1
D2
D3

D4
D5

D6
D7
D8

D9
D10
D11

D12
D13
D14

D15

NC
6

A16
10

WE
7

A15
11

NC
9

A12
12

A14
5

A7
13

A13
4

A6
14

A8
3

A5
15

A9
2

A4
16

A11
1

A3
17

OE
32

A2
18

A10
31

A1
19

CE
30

A0
20

DQ7
29

DQ0
21

DQ6
28

DQ1
22

DQ5
27

DQ2
23

DQ4
26

DQ3
25

U3

M29F010B45N1

NC
6

A16
10

WE
7

A15
11

NC
9

A12
12

A14
5

A7
13

A13
4

A6
14

A8
3

A5
15

A9
2

A4
16

A11
1

A3
17

OE
32

A2
18

A10
31

A1
19

CE
30

A0
20

DQ7
29

DQ0
21

DQ6
28

DQ1
22

DQ5
27

DQ2
23

DQ4
26

DQ3
25

U4

M29F010B45N1

89

U17D

74HC04

A7
A8
A5

A6
A3

A4
A1
A2

A9
A10
A11

A12
A13

A14
A17
A15

A16

A1
A2
A3

A4
A5

A6
A7
A8

A9
A10
A11

A12
A13

A14
A15
A17

A16

A8
A6
A5

A7
A11

A9
A10
A12

A4
A3
A2

A1
A13
A14

A15
A16

A0

A1
A2

A3
A4
A5

A6
A7
A8

A9
A10
A11

A12
A13

A14
A15
A16

A17

D0
D1

D2
D3
D4

D5
D6

D7

D8
D9

D10
D11
D12

D13
D14

D15

/CSBOOT

/CS0

/CS1

/CS2

/CS0

/CS1
/CS2

R/W

R/W

D7
D6
D5

D4
D3

D2
D1
D0

D15
D14
D13

D12
D11
D10

D9
D8

/RESET

PWMDIR1
PWMDIR2

PWMDIR3
PE5
PE6

PE7

TESTCLKOUT

TESTECLK

INDEX1
INDEX2

INDEX3
PUSHBUTTON1

232RXD

232TXD

MISO

MOSI

PC0

PCS3

ANALOG1B

ANALOG2A

ANALOG2B

ANALOG3A

ANALOG3B

ANALOG6
ANALOG7

ANALOG1A

/BERR

SS

CTM2C

EXTAL

TSC

VRH
VRL

XFC

/IFETCH

DSCLK

FREEZE
/HALT

/IPIPE

XTAL

T2CLK

Y1

4.194 MHzC4

12pF

C5

12pF

R1
1.5k

R2

1M

XTAL EXTAL

1234

8765

S4
SW DIP-4

R26
10K

R29
10K

R17
1k

R18
1k

D2

S1A(FCH)

D3

S1A(FCH) 

D
8

D9

1

2 JP1
JUMPER

L1
5V

E0

R20

1K

R30

1K

Reset Data line conditioning
R4
10k

R5
10k

R6
10k

R7
100k

R8
100k

R15
1K2

/B
E
R
R

D
S
C
L
K

/H
A
L
T

/I
P
I
PE

R11

10k

F
R
E
E
Z
E

/I
F
E
T
C
H

/RESET
S1

SW-PB

S3
SW-PB

R12

10k

R13

10k

T
2C
L
K

C
T
M
2
C

R25

10k

PUSHBUTTON2

C6
100n

C7

100n

X
F
C

C8
10n

Crystal and internal oscillator stabilization

Pulled-up and pulled-down signals

R14

10k

T
SC

C1
100nF

R9
10k

D
1

SCK

D
IP
0

D
IP
1

D
IP
2

D
IP
3

PCS2

PUSHBUTTON2

PF6
PF7

PCS1

TPU3
TPU4
TPU5

TPU6

MODCLK
DISABLE3

PE0

PE1
PE2

PE3

DISABLE1
PE4

DISABLE2

MCU, flash, SRAM decoupling: Multilayer ceramic

R16
10K

M
O
D
C
L
K

CANRX

E1

R31

1K

E2

R32

1K

E3

R33

1K

E4

R34

1K

E5

R35

1K

E6

R36

1K

E7

R37

1K

Port E indicator LED's

CANTX

M1

Motor

Q1

IRFZ44NS

Q2

IRFZ44NS

Q3

IRFZ44NS

Q4

IRFZ44NS

R51
0R033

R52
0R033

F2
FUSE2

C16 0.1uF100V
C15

100uF Electro

VMotor

BHB
1

BHO
20

BHS
19

BLO
18

AHB
10

AHO
11

AHS
12

ALO
13

BHI
2

BLI
5

HDEL
8

DIS
3

AHI
7

ALI
6

LDEL
9

V
ss

4
V
c
c

1
5

V
d
d

1
6

BLS
17

ALS
14

U8

HIP4081A

D5

ES1B

A
1

K
2

D4

ES1B

R42
10R

R41

10R

C11

0.1uF 100V ceramic

C12

0.1uF 100V ceramic

12VC13
0.1uF 50V

C14
100uF electro

R44
200K

R43
200K

12V
1 2
3 4

5 6

H6

Enc1

R39
3k3 R40

3k3

VCC

VCC

R45

100k

R46

33k

R47

1.2k

VCC

C17

470pF

R48

100k

R49

33k

R50

1.2k

VCC

C18

470pF

M1_BHO

M1_AHO

M1_BHS M1_BHS

M1_BLO

M1_BLO

M1_BLS

M1_BLS

M1_AHO
M1_AHS

M1_AHS

M1_ALO

M1_ALO

M1_ALS M1_ALS

M1_BHO

M1_ALS

M1_BLS

ANALOG1A

ANALOG1B

PWM1

PWMDIR1 VCC

VCC
VCC

VCC
S2
SW-PB

R24

10k

PUSHBUTTON1

VCC

1 2
3 4

5 6
7 8
9 10

H2

CBDM

PE4 /BERR

/RESET

DSCLK

FREEZE
/IFETCH

/IPIPE

VCC

1

2
3
4

H1

Power connection

12V

Vin
1

G
N
D

2

Vout
3

U5

VOLTREG

C2
47uF

C3
47uF

VCCF1

5A FUSE

VCC

L2
BATT

R21

10K

1
A

2
K

L3
12V

R22

4K7

12V

L4
V+

R23

4K7

V+VMotor

R10

1k

R3
1k

V
R
H

V
R
L

QDEC1A

QDEC1B

INDEX1

VCC
OpAmp decoupling Multilayer Ceramic Encoder decoupling Multilayer Ceramic

VCC

VCC

C9
100nF

BDM Programming Header

1 2 3 4 5 6 7 8

H9

LED Hookup

V
c
c

3
G
N
D

2

CANH
7

CANL
6

Rx
4

Tx
1

Rs
8

Vref
5

U7

PCA250

VCC

1

2

H4

CON2

1
2

H5

CON2

1

2

JP2
JUMPER

R19
120R

CANRX

CANTX

C10
100nF

1

2
3
4

5
6
7

8
9

10

H10

QSPI

VCC

MISO

MOSI

SCK

SS

PCS1

PCS2

PCS3

VCC

1

2
3
4

5
6
7

8
9

10

H11

TPU spare

VCC

TPU0
TPU1

TPU2
TPU3

TPU4

TPU5

TPU6

CPWM5
CPWM6
CPWM7

CPWM8
CTD3
CTD4

CTD9
CTD10

1

2
3
4

5
6
7

8
9

10

H12

PWM OUT

VCC

CTD3

CTD4

CTD9

CTD10

CPWM5

CPWM6
CPWM7

CPWM8

VCC VCC VCC

VCC

DISABLE1

DIP0
DIP1
DIP2

DIP3

Motor2

M2

G
1

D
2

S
3

Q5
IRFZ44NS

Q6
IRFZ44NS

Q7

IRFZ44NS

Q8

IRFZ44NS

R66
0R033

R67
0R033

F3
FUSE2

C24 0.1uF 63V
C23

100uF Electro

VMotor

BHB
1

BHO
20

BHS
19

BLO
18

AHB
10

AHO
11

AHS
12

ALO
13

BHI
2

BLI
5

HDEL
8

DIS
3

AHI
7

ALI
6

LDEL
9

V
ss

4
V
cc

1
5

V
dd

1
6

BLS
17

ALS
14

U9

HIP4081A

D7

ES1B

D6

ES1B

R57
10R

R56

10R

C19

0.1uF 100V ceramic

C20

0.1uF 100V ceramic

12VC21
0.1uF 50V

C22
100uF electro

R59
200K

R58
200K

12V
1 2

3 4
5 6

H7

Enc2

R54
3k3 R55

3k3

VCC

VCC

R60

100k

R61

33k

R62

1.2k

VCC

C25

470pF

R63

100k

R64

33k

R65

1.2k

VCC

C26

470pF

M2_BHO

M2_AHO

M2_BHS M2_BHS

M2_BLO

M2_BLO

M2_BLS

M2_BLS

M2_AHO

M2_AHS

M2_AHS

M2_ALO
M2_ALO

M2_ALS M2_ALS

M2_BHO

M2_ALS

M2_BLS

ANALOG2A

ANALOG2B

QDEC2A

QDEC2B

INDEX2

Motor3

M3

Q9

IRFZ44NS

Q10

IRFZ44NS

Q11
IRFZ44NS

Q12
IRFZ44NS

R81
0R033

R82
0R033

F4
FUSE2

C31 0.1uF 63V

1
1

2
2

C32
100uF Electro

VMotor

BHB
1

BHO
20

BHS
19

BLO
18

AHB
10

AHO
11

AHS
12

ALO
13

BHI
2

BLI
5

HDEL
8

DIS
3

AHI
7

ALI
6

LDEL
9

V
ss

4
V
c
c

1
5

V
d
d

1
6

BLS
17

ALS
14

U10

HIP4081A

D9

ES1B

D8

ES1B

R72

10R

R71

10R

C27

0.1uF 100V ceramic

C28

0.1uF 100V ceramic

12VC29

0.1uF 50V

C30

100uF electro

R74
200K

R73
200K

12V
1 2
3 4

5 6

H8

Enc3

R69
3k3 R70

3k3

VCC

VCC

R75

100k

R76

33k

R77

1.2k

VCC

C33

470pF

R78

100k

R79

33k

R80

1.2k

VCC

C34

470pF

M3_BHO

M3_AHO

M3_BHS M3_BHS
M3_BLO

M3_BLO

M3_BLS

M3_BLS

M3_AHO
M3_AHS

M3_AHS

M3_ALO

M3_ALO

M3_ALS M3_ALS

M3_BHO

M3_ALS

M3_BLS

ANALOG3A

ANALOG3B

QDEC3A
QDEC3B

INDEX3

VCC
NAND decoupling Multilayer Ceramic

8
4

2

3
1

U14A

LMC6082AIM(8)

5

6

7

8
4

U14B
LMC6082AIM(8)

8
4

2

3
1

U15A
LMC6082AIM(8)

5

6
7

8
4

U15B
LMC6082AIM(8)

8
4

2

3

1

U16A

LMC6082AIM(8)

5

6

7

8
4

U16B

LMC6082AIM(8)

1

2

3

U11A

74HC08

G
N
D

7

11
12

13 V
C
C

1
4

U11D

74HC08

8
9

10

U11C

74HC08

4

5
6

U11B

74HC08

PWM2

PWMDIR2

DISABLE2

PWM3

PWMDIR3

DISABLE3

8
9

10

U13C

74HC08

4

5

6

U13B

74HC08

1

2
3

U13A

74HC08

VCC

VCC

G
N
D

7

11

12

13 V
C
C

1
4

U13D

74HC08

C35

100nF

C36

100nF

C37

100nF

C38

100nF

C39

100nF

C40

100nF

C41

100nF

C42

100nF

C43

100nF

C44
100nF

C45
100nF

C46
100nF

C47
100nF

C48
100nF

C49
100nF

C50
100nF

C51
100nF

C52
100nF

C53
100nF

C54
100nF

C55
100nF

C56
100nF

C57
100nF

C58
100nF

VCC

V
D
D

V
S
S

P
E
0

P
E
1

P
E
2

P
E
3

P
E
4

P
E
5

P
E
6

P
E
7

P
E
0

P
E
1

P
E
2

P
E
3

P
E
4

P
E
5

P
E
6

P
E
7

VMotor

VMotor 12V

V
M
o
to
r

1
2V

1

2

3

U12A

74ALS00

8

9

10

U12C

74ALS00

4

5
6

U12B

74ALS00 G
N
D

7

11
12

13 V
C
C

1
4

U12D

74ALS00

1

2
3
4

H1A

Power

12V
VMotor

1

2

tp1

Speaker

1

2

tp2

CLKOUT

1
2

tp3

GND

TESTCLKOUT
1
2

3
4

H3
RS232VCC

232TXD
232RXD

V+

C
A
N
H

C
A
N
L

A17
A18

A18

A0
5

A1
4

A2
3

A3
2

A4
1

A5
44

A6
43

A7
42

A8
27

A9
26

A10
25

A11
24

A12
21

A13
20

A14
19

A15
18

OE
41

UB
40

LB
39

CE
6

WE
17

A16
22

A17
23

NC
28

D0
7

D1
8

D2
9

D3
10

D4
13

D5
14

D6
15

D7
16

D8
29

D9
30

D10
31

D11
32

D12
35

D13
36

D14
37

D15
38

U2

AS7C4098-22TC

CPWM5

C59
100nF

TPU0

TPU1
TPU2

TPU3
TPU4
TPU5

TPU6

C60
100nF

R26
10K

R28
10K

10K

10K

10K

VCC

VCC

VCC



 

A
p
p
en

d
ix
 B
 - U

p
d
a
ted

 2
0
0
4
 C
o
n
tr
o
ller B

o
a
rd

 6
 S
ch

e
m
a
tic 

  

 

1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

C

Date: 26-Oct-2004 Sheet    of 
File: H:\sem1_2004\metr4900\2003ControllerSchematic\GuRoo2004.DdbDrawn By:

AN0/ANW/PQB0
34

AN1/ANX/PQB1
35

AN2/ANY/PQB2
36

AN3/ANZ/PQB3
37

AN48/PQB4
38

AN49/PQB5
39

AN50/PQB6
40

AN51/ PQB7
41

BERR
71

BKPT /DSCLK
67

CANRX0
160

CTM2C
159

EXTAL
57

T2CLK
127

TSTME /TSC
68

VDDA
45

VDDSYN
56

VRH
42

VRL
43

VSSA
44

VSTBY
135

XFC
60

ADDR0
91

ADDR1
11

ADDR10
23

ADDR11
24

ADDR12
25

ADDR13
26

ADDR14
27

ADDR15
28

ADDR16
29

ADDR17
31

ADDR18
32

ADDR2
13

ADDR23/ CS10/ ECLK
126

ADDR3
14

ADDR4
16

ADDR5
17

ADDR6
18

ADDR7
19

ADDR8
21

ADDR9
22

CANTX0
1

CLKOUT
63

CPWM5
156

CPWM6
155

CPWM7
154

CPWM8
153

CTD3
158

CTD4
157

CSBOOT
113

FREEZE/ QUOT
66

HALT
70

IPIPE /DSO
64

PC1/FC1/CS4
118

PC3/ ADDR19/ CS6
122

PC4/ ADDR20/ CS7
123

PC5/ ADDR21/ CS8
124

PC6/ ADDR22/ CS9
125

R/W
82

RST
69

XTAL
55

AN52/ MA0/ PQA0
46

AN53/ MA1/ PQA1
47

AN54/ MA2/ PQA2
48

AN55/ ETRIG1/ PQA3
49

AN56/ ETRIG2/ PQA4
50

AN57/ PQA5
51

AN57/ PQA6
52

AN59/ PQA7
53

BG/CS1
115

BGACK/CS2
116

BR/CS0
114

CTD10
151

CTD9
152

DATA0
112

DATA1
111

DATA10
99

DATA11
98

DATA12
97

DATA13
96

DATA14
94

DATA15
93

DATA2
110

DATA3
108

DATA4
107

DATA5
105

DATA6
104

DATA7
103

DATA8
102

DATA9
100

FC0/CS3
117

IFETCH /DSI
65

MISO/PQS0
10

MOSI/PQS1
9

PCS0/SS/PQS3
7

PCS1/PQS4
6

PCS2/PQS5
5

PCS3/PQS6
4

PE0/DSACK0
90

PE1/DSACK1
89

PE2/AVEC
88

PE3/RMC
87

PE4/DS
86

PE5/AS
85

PE6/SIZ0
84

PE7/SIZ1
83

PF0/ MODCLK
79

PF1/ IRQ1
78

PF2/ IRQ2
77

PF3/ IRQ3
76

PF4/ IRQ4
75

PF5/ IRQ5
74

PF6/ IRQ6
73

PF7/ IRQ7
72

RXD
2

SCK/PQS2
8

TPUCH0
150

TPUCH1
148

TPUCH10
136

TPUCH11
133

TPUCH12
132

TPUCH13
130

TPUCH14
129

TPUCH15
128

TPUCH2
147

TPUCH3
145

TPUCH4
144

TPUCH5
143

TPUCH6
142

TPUCH7
139

TPUCH8
138

TPUCH9
137

TXD/PQS7
3

PC2/FC2/CS5
119

U1

MC68376(160)

D0
D1
D2
D3

D4
D5
D6
D7

D8
D9
D10

D11
D12
D13
D14

D15

NC
6

A16
10

WE
7

A15
11

NC
9

A12
12

A14
5

A7
13

A13
4

A6
14

A8
3

A5
15

A9
2

A4
16

A11
1

A3
17

OE
32

A2
18

A10
31

A1
19

CE
30

A0
20

DQ7
29

DQ0
21

DQ6
28

DQ1
22

DQ5
27

DQ2
23

DQ4
26

DQ3
25

U3

M29F010B45N1

NC
6

A16
10

WE
7

A15
11

NC
9

A12
12

A14
5

A7
13

A13
4

A6
14

A8
3

A5
15

A9
2

A4
16

A11
1

A3
17

OE
32

A2
18

A10
31

A1
19

CE
30

A0
20

DQ7
29

DQ0
21

DQ6
28

DQ1
22

DQ5
27

DQ2
23

DQ4
26

DQ3
25

U4

M29F010B45N1

89

U17D

74HC04

A7

A8
A5
A6
A3

A4
A1
A2

A9
A10
A11
A12

A13
A14
A17
A15

A16

A1

A2
A3
A4
A5

A6
A7
A8

A9
A10
A11
A12

A13
A14
A15
A17

A16

A8
A6

A5
A7
A11
A9

A10
A12
A4

A3
A2
A1
A13

A14
A15
A16

A0
A1
A2
A3

A4
A5
A6

A7
A8
A9
A10

A11
A12
A13
A14

A15
A16
A17

D0
D1
D2

D3
D4
D5
D6

D7

D8
D9
D10

D11
D12
D13
D14

D15

/CSBOOT

/CS0

/CS1
/CS2

/CS0
/CS1

/CS2

R/W

R/W

D7
D6

D5
D4
D3
D2

D1
D0
D15

D14
D13
D12
D11

D10
D9
D8

/RESET

SERVO_ENABLE

TESTCLKOUT

TESTECLK

INDEX1

INDEX2
INDEX3
PUSHBUTTON1

232RXD

232TXD

MISO

MOSI

PC0

PCS3

ANALOG1B

ANALOG2A
ANALOG2B

ANALOG3A
ANALOG3B

ANALOG6

ANALOG7

ANALOG1A

/BERR

SS

CTM2C
EXTAL

TSC

VRH

VRL

XFC

/IFETCH

DSCLK

FREEZE
/HALT
/IPIPE

XTAL

T2CLK

Y1

4.194 MHzC4
12pF

C5
12pF

R1
1.5k

R2

1M

XTAL EXTAL

R17
1k

R18
1k

D2
S1A(FCH)

D3
S1A(FCH) 

D
8

D9

1

2 JP1
JUMPER

L1
5V

R20
1K

Reset Data line conditioning
R4

10k

R5

10k

R6

10k

R7

100k

R8

100k

R15
1K2

/B
E
R
R

D
SC
L
K

/H
A
L
T

/I
P
I
PE

R11

10k

F
R
E
E
Z
E

/I
F
E
T
C
H

/RESET
S1

SW-PB

R12

10k

R13

10k

T
2
C
L
K

C
T
M
2
C

C6
100n

C7
100n

X
FC

C8
10n

Crystal and internal oscillator stabilization

Pulled-up and pulled-down signals

R14

10k

T
S
C

C1
100nF

R9
10k

D
1

SCK

PCS2

PUSHBUTTON2

PF6
PF7

PCS1

MODCLK
PE7

PE0
PE1
PE2

PE3

PE5
PE4

PE6

MCU, flash, SRAM decoupling: Multilayer ceramic

R16

10K

M
O
D
C
L
K

CANRX

CANTX

VCC

VCC

1 2
3 4

5 6
7 8
9 10

H2

CBDM

PE4 /BERR

/RESET

DSCLK
FREEZE

/IFETCH
/IPIPE

VCC

1
2

3
4

H1

Power connection

Vin
1

G
N
D

2

Vout
3

U5

VOLTREG

C2
47uF

C3
47uF

VCCF1

5A FUSE

VCC

L4
V+

R23
4K7

V+

R10

1k

R3

1k

V
R
H

V
R
L

VCC

BDM Programming Header

V
c
c

3
G
N
D

2

CANH
7

CANL
6

Rx
4

Tx
1

Rs
8

Vref
5

U7

PCA250

VCC

1
2

H4

CON2

1
2

H5

CON2

1

2

JP2
JUMPER

R19

120R

CANRX
CANTX

C10
100nF

1

2
3
4
5

6
7
8

9
10

H10

QSPI

VCC

MISO

MOSI
SCK

SS

PCS1

PCS2

PCS3

VCC

1

2
3
4
5

6
7
8

9
10

H11

TPU spare

VCC

TPU0
TPU1

TPU2

TPU3

TPU4
TPU5

TPU6

CPWM5
CPWM6
CPWM7

CPWM8
CTD3
CTD4

CTD9
CTD10

1

2
3
4
5

6
7
8

9
10

H12

PWM OUT

VCC

CTD3

CTD4

CTD9

CTD10

CPWM5

CPWM6

CPWM7

CPWM8

VCC VCC VCC

DIP0
DIP1
DIP2

DIP3

C44
100nF

C45
100nF

C46
100nF

C47
100nF

C48
100nF

C49
100nF

C50
100nF

C51
100nF

C52
100nF

C53
100nF

C54
100nF

C55
100nF

C56
100nF

C57
100nF

C58
100nF

VCC

V
D
D

V
S
S

VMotor 12V

V
M
otor

1
2
V

V+

C
A
N
H

C
A
N
L

A17

A18

A18

A0
5

A1
4

A2
3

A3
2

A4
1

A5
44

A6
43

A7
42

A8
27

A9
26

A10
25

A11
24

A12
21

A13
20

A14
19

A15
18

OE
41

UB
40

LB
39

CE
6

WE
17

A16
22

A17
23

NC
28

D0
7

D1
8

D2
9

D3
10

D4
13

D5
14

D6
15

D7
16

D8
29

D9
30

D10
31

D11
32

D12
35

D13
36

D14
37

D15
38

U2

AS7C4098-22TC

C59
100nF

1234

8765

S4

SW DIP-4

R26

10K

R27

10K

R28

10K

R29

10K

E0

R30
1K

S3

SW-PB

R25
10k

PUSHBUTTON2

D
IP
0

D
IP
1

D
IP
2

D
IP
3

E1

R31
1K

E2

R32
1K

E3

R33
1K

E4

R34
1K

E5

R35
1K

E6

R36
1K

E7

R37
1K

Port E indicator LED's
VCC

S2

SW-PB

R24
10k

PUSHBUTTON1

VCC

1 2 3 4 5 6 7 8

H9
LED Hookup

VCC

P
E
0

P
E
1

P
E
2

P
E
3

P
E
4

P
E
5

P
E
6

P
E
7

P
E
0

P
E
1

P
E
2

P
E
3

P
E
4

P
E
5

P
E
6

P
E
7

1

2

tp1

Speaker

1
2

tp2

CLKOUT

1
2

tp3

GND

TESTCLKOUT

CPWM5

1
2
3

ser1

Servo

1
2
3

ser2

Servo

1
2
3

ser3

Servo

1
2
3

ser4

Servo

1
2
3

ser5

Servo

1
2
3

ser6

Servo

1
2
3

ser7

Servo

1
2
3

ser8

Servo

SERVO1
SERVO2
SERVO3 SERVO4

SERVO5
SERVO6

SERVO7
SERVO8
SERVO9

SERVO1

SERVO2

SERVO3

SERVO4

SERVO5

SERVO6

SERVO7

SERVO8

MOSFET

MOSFET

MOSFET

MOSFET

MOSFET

MOSFET

MOSFET

MOSFET

Q1

MOSFET N

MOSFET

SERVO_ENABLE

TPU0

TPU1
TPU2
TPU3
TPU4

TPU5
TPU6

F2

FUSE2

1
2
3

ser9

servo

SERVO9
MOSFET

V+

V+

V+

V+

V+

V+

V+

V+

V+

R1 IN
13

R2 IN
8

T1 IN
11

T2 IN
10

G
N
D

1
5

V
+

2

V
-

6

V
C
C

1
6

R1 OUT
12

R2 OUT
9

T1 OUT
14

T2 OUT
7

C1+
1

C1 -
3

C2+
4

C2 -
5

U8

MAX232ACPE(16)

VCC

C14
1uF

C11
1uF

C12

1uF

C13
1uF

232TXD

232RXD

1
6
2

7
3
8

4
9
5

H6

DB9

V+

EN1
1

EN2
15

IN 1
2

IN 2
4

IN 3
6

IN 4
10

IN 5
12

IN 6
14

OUT 1
3

OUT 2
5

OUT 3
7

OUT 4
9

OUT 5
11

OUT 6
13

V
C
C

1
6

G
N
D

8

U9

74LS367(16)

EN1
1

EN2
15

IN 1
2

IN 2
4

IN 3
6

IN 4
10

IN 5
12

IN 6
14

OUT 1
3

OUT 2
5

OUT 3
7

OUT 4
9

OUT 5
11

OUT 6
13

V
C
C

1
6

G
N
D

8

U10

74LS367(16)

V+

SER_TPU1
SER_TPU2
SER_TPU3 SER_TPU4

SER_TPU5
SER_TPU6

SER_TPU7
SER_TPU8
SER_TPU9

SER_TPU1
SER_TPU2
SER_TPU3

SER_TPU4
SER_TPU5
SER_TPU6

SER_TPU7
SER_TPU8
SER_TPU9

C15
100nF

C16
100nF

C17
100nF

V+

1

2
3
4

H3
RS232VCC

232TXD

232RXD



 

Appendix C – Board Layout & Placement 
 

 

 



 80 

Appendix D - 2004 Controller Software 
 
 
 
/***************************************************************************** 
 
 File:  startup.c  
 
 Author:  Simon Hall 
 
 Created: 13/10/04 - Modification of Adam Drury & Andrew Hood's code  
     for 2001 lower limb controllers to suit GuRoo's 2004 lower 
     limb controller boards(Motorola 68376). Assistance provided 

by Doug Turk for TPU RAM programming routine. 
 
 Summary: For GuRoo's 2004 lower limb controller boards. 
      Initialises Motorola 68376 processor for desired 
     functionality. Contains "main" loop that calls on other 
     files for functionality and control loop code. This startup 
     routine is intended for all board switch settings. Currently 
     contains code to enable a separate board which when DIP 
     switches are set to 0x7 will transmit over the CAN line, 
     initialisation to encoder index commands and a sin wave 
     velocity profile for PI control. (On Board 7)Press PB1 to  
     move to nearest index. Press PB2 to advance to next indexes. 
     Press PB1 again to start velocity profile sequence. Pressing 
     PB1 finally will set velocity profile permanently to zero. 
 
***************************** INCLUDE ***************************************/ 
 
#include "startup.h" 
#include "mc68376.h" 
#include "board1.h" // This will require updating to reference in "common" 
#include "can.h" 
#include "intr.h" 
#include "tpu.h" 
#include "lowlevel.h"   
 
 
/**************************** CONSTANTS ************************************/ 
 
#define P_POSN_GAIN  10 //(pErrorS/10) 
#define I_POSN_GAIN  800 //(iErrorS/800) 
 
 
/**************************** GLOBALS ***************************************/ 
 
// Board ID set by DIP switches 
uchar boardID = 0; 
 
// counter to prescale PIT so b1_control occurs every 256Hz 
int countPIT = 0; 
 
// "feathering" duty cycle parameters 
//extern int counter1; 
//extern int counter2; 
//extern int counter3; 
//extern int pwm_high_1; 
//extern int pwm_low_1; 
//extern int pwm_high_2; 
//extern int pwm_low_2; 
//extern int pwm_high_3; 
//extern int pwm_low_3; 
 
// variables used by index position control 
uchar foundIndex[3] = {FALSE, FALSE, FALSE}; 
uchar passedWaypoint[3] = {TRUE, TRUE, TRUE}; 
int wayPoint[3] = {0, 0, 0}; 
int oldPosnS[3] = {0, 0, 0}; 
int indexPosn[3] = {0, 0, 0}; 
int iErrorS[3] = {0, 0, 0}; 
int reqdPWMS[3] = {0, 0, 0}; 
uchar commencePI = FALSE; 
uchar findIndex = FALSE; 
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int p; 
 
 
// Variables used by board 7:- 
int commandCount = 0; 
int profIncr = 0; 
int velGen = 0; 
uchar stop = FALSE; 
 
 
// Variables for data retrieval:- 
int dataLog[2000] = {0}; 
int dataLogPointer = 0; 
int dp = 0; 
 
 
/*  
 * main:- 
 *  
 */ 
void main(void) { 
 
 initCPU(); 
 
 // Read board DIP switches & define board number 
 boardID = QADC_REGS.PORTQA & 0x0F; 
 // Display board ID 
 outputToLEDs(boardID); 
 
 setupCAN(); 
  
 // board 7 used as external board for velocity profile generation 
 if (!(boardID==BOARD_7)) { 
  setupADC();   
  initTPU(); 
  setupPWM(); 
  setupQDEC(); 
 } 
 setupPIT(); 
 initSCI(); 
 
 //initGains();  [after board1.c is updated] 
 
 
 while (1) { 
   
  if (!(boardID==BOARD_7)) { 
    
   // check for incoming CAN messages 
   chkForMsgs(); 
 
   // After 32 PIT interrupts b1_control() is processed. 
   // This translates to 256Hz to comply with existing gains. 
   // Change count condition if using feathering(to 32) 
   // (At present feathering not implemented but format remains) 
   // (Currently running 1kHz control loops) 
   if ((countPIT>=1)&&(commencePI==TRUE)) { 
    
    countPIT = 0; 
 
    b1_control();     
 
   } else if (findIndex==TRUE) { 
     
    int n; 
    for(n=0; n<3; n++) { 
     // poll for index pulses 
     if ((SIM_REGS.PORTF&(1<<(n+1)))&&(foundIndex[n]==FALSE) 
        &&(passedWaypoint[n]==TRUE)) { 
 
      // read index position 
      indexPosn[n] = (int)(read_enc(n)); 
 
      if (n==2) { 
       // Transmit index posn to board 7 for serial out 
       CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL&0xFF0F)+0x0080; 
       CAN_REGS.MSGBFR[2].IDHIGH = 0x0000 + (BOARD_7<<5); 
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       CAN_REGS.MSGBFR[2].DATA[0] = indexPosn[n]; 
       CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL&0xFF00)+0x00C4; 
      } 
 
      set_PWM(n, 0); 
      foundIndex[n] = TRUE; 
     } 
    } 
     
    // Change count condition if using feathering(to 8) 
    if (countPIT>=1) { 
     
     countPIT = 0; 
 
     posnCtrlIndex(); 
 
    } 
 
   } 
 
  } else { 
 
   // Board 7 Functionality:- 
 
   chkForMsgs(); 
 
   // polling routine for PB1 
   if (!(SIM_REGS.PORTF & 0x10)) { 
    delayPB(); 
    while (!(SIM_REGS.PORTF & 0x10)); 
    // PB routine starts here 
 
    commandCount++; 
 
    if ((commandCount>2)||(stop==TRUE)) { 
 
     // begin transmitting 0 velocity 
     commandCount = 0; 
     stop = TRUE; 
 
     // send serial data output to PC 
     for (dp=0; dp<dataLogPointer; dp++) { 
      transmitUShort((short)(dataLog[dp])); 
     } 
 
 
    } else if ((commandCount==1)&&(stop==FALSE)) { 
      
     // Transmit command message to board 1 for index positioning 
     CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL&0xFF0F)+0x0080; 
     CAN_REGS.MSGBFR[2].IDHIGH = 0x0000 + ((BOARD_1|COMMAND_CONTROL)<<5); 
     CAN_REGS.MSGBFR[2].DATA[0] = MOVE_ALL_TO_INDEX; 
     CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL&0xFF00)+0x00C4; 
      
    } else if ((commandCount==2)&&(stop==FALSE)) { 
     // Commence sending velocity profile(start PIT) 
     SIM_REGS.PICR |= 0x0400; 
    } 
 
    // PB routine ends here 
    delayPB(); 
   } 
 
   // polling routine for PB2 
   if (!(SIM_REGS.PORTF & 0x20)) { 
    delayPB(); 
    while (!(SIM_REGS.PORTF & 0x20)); 
    // PB routine starts here 
 
    if ((commandCount==1)&&(stop==FALSE)) { 
     // Transmit command message to board 1(move motor 3 to next index) 
     CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL & 0xFF0F)+0x0080; 
     CAN_REGS.MSGBFR[2].IDHIGH = 0x0000 + ((BOARD_1|COMMAND_CONTROL)<<5); 
     CAN_REGS.MSGBFR[2].DATA[0] = MOVE_TO_NEXT_INDEX3; 
     CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL&0xFF00)+0x00C4; 
    } 
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    // PB routine ends here 
    delayPB(); 
   } 
 
  } 
 
 } 
 
} 
 
 
/* 
 * posnCtrlIndex:- 
 *  
 * PI position control loop. Hones in on index pulse. 
 * 
 */ 
void posnCtrlIndex(void) { 
  
 int newPosnS; 
 int pErrorS; 
 int chkPassedWPVar; 
 
 int m; 
 for (m=0; m<3; m++) { 
    
  // index not found, slowly move forward till found 
  if (foundIndex[m]==FALSE) { 
     
   // get current posn 
   newPosnS = (int)(read_enc(m)); 
 
   pErrorS = newPosnS - oldPosnS[m]; 
      
   oldPosnS[m] = newPosnS; 
 
   // check for overflow 
   if (pErrorS>32767) { 
    pErrorS -= 65536; 
   } else if (pErrorS<-32767) { 
    pErrorS += 65536; 
   } 
 
   // if not moving forawrd, rmap up duty cycle 
   if (pErrorS<=0) { 
 
    reqdPWMS[m]++; 
 
    // limit PWM 
    if (reqdPWMS[m]>1000) { 
     reqdPWMS[m] = 1000; 
    } 
 
    set_PWM(m, reqdPWMS[m]); 
   } 
 
   // check if passed waypoint. If so, start checking for index again 
   chkPassedWPVar = newPosnS - wayPoint[m]; 
   if ((chkPassedWPVar<-32767)||((chkPassedWPVar>0) 
      &&(chkPassedWPVar<32767))) { 
    passedWaypoint[m] = TRUE; 
   } 
 
  // index found commence position control 
  } else if (foundIndex[m]==TRUE) { 
 
   pErrorS = indexPosn[m] - (int)(read_enc(m)); 
    
   if (pErrorS>32767) { 
    pErrorS -= 65536;  
   } else if (pErrorS<-32767) { 
    pErrorS += 65536; 
   } 
 
   iErrorS[m] += pErrorS; 
 
   reqdPWMS[m] = pErrorS/P_POSN_GAIN + iErrorS[m]/I_POSN_GAIN; 
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   // limit PWM 
   if (reqdPWMS[m]>1000) { 
    reqdPWMS[m] = 1000; 
   } else if (reqdPWMS[m]<-1000) { 
    reqdPWMS[m] = -1000; 
   } 
 
   set_PWM(m, reqdPWMS[m]); 
   
  } 
 
 } 
 
} 
 
 
/* 
 * PIT_intr:- 
 *  
 * Periodic interrupt routine. Executes every 1.024kHz. 
 * (~50Hz for board 7 velocity generation) 
 *  Does not implemet feathering at present. 
 * (Feathering sections hashed out) 
 * This can be improved once CTM has been set up. 
 * (Beef up to 100kHz and do as before with feathering?) 
 *  
 */ 
void interrupt PIT_intr(void) { 
 
 if (boardID==BOARD_1) { 
 
/*  // If using feathering:- 
  if (countPIT<counter1) { 
   // calls PWM_set function in tpu.c 
   tpuPWM_set(PWM1CH, pwm_high_1); 
  } else { 
   tpuPWM_set(PWM1CH, pwm_low_1); 
  } 
 
  if (countPIT<counter2) { 
   tpuPWM_set(PWM2CH, pwm_high_2); 
  } else { 
   tpuPWM_set(PWM2CH, pwm_low_2); 
  } 
  
  if (countPIT<counter3) { 
   tpuPWM_set(PWM3CH, pwm_high_3); 
  } else { 
   tpuPWM_set(PWM3CH, pwm_low_3); 
  } 
*/ 
  // increment prescaler count 
  countPIT++; 
 
  // Board 7 sends sin wave velocity profile 
 } else if (boardID==BOARD_7) { 
 
  // segment sine wave period into 400 increments 
  if (profIncr>=400) { 
   profIncr = 0; 
  } 
   
  profIncr++; 
   
  if (commandCount==2) { 
   // Calculate new velocity to send 
   // period = 8s, omega = 2*pi*50Hz, peak = 10 enc/loop 
   velGen = roundValue(10*sin(0.015707963*profIncr)); 
  } else { 
   // stop button pressed on board 7 (PB2) 
   velGen = 0; 
  } 
 
  // Set buffer 1 as transmit buffer and send new velocity to other board 
  CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL & 0xFF0F)+0x0080; 
  CAN_REGS.MSGBFR[2].IDHIGH = 0x0000 + (BOARD_1<<5); 



 85 

  CAN_REGS.MSGBFR[2].DATA[0] = velGen; 
  CAN_REGS.MSGBFR[2].CTRL = (CAN_REGS.MSGBFR[2].CTRL & 0xFF00)+0x00C4; 
 
 } 
 
}   
 
 
/* 
 * initCPU():- 
 * 
 * Initialises boards. Sets up IO registers.  
 */ 
void initCPU(void) { 
  
 // Disable interrupts 
 disable(); 
  
 // Turn watchdog off 
 SIM_REGS.SYPCR = 0x00; 
  
 // Wait while clock stabilises 
 #define SLOCK 8 
 while (!(SIM_REGS.SYNCR & SLOCK)); 
 
 // Initialise interrupt table 
 intr_init(); 
  
 // Set PORT E (LEDs) DDR to output, I/O mode and init  
 // & disable MOSFET drivers 
 SIM_REGS.DDRE = 0xFF; 
 SIM_REGS.PEPAR = 0x00; 
 SIM_REGS.PORTE = 0xE0; 
 
 // Setup PORTC pins 1 to 6 for output function(PWMDIR & LED's 5-7) 
 // and clear PORTC pins 
 SIM_REGS.CSPAR[0] &= ~(0x3C00); 
 SIM_REGS.CSPAR[1] &= ~(0x00FF); 
 SIM_REGS.PORTC = 0x00; 
 
 // Set PORT F (Index & PBs) pins to input, I/O mode and init 
 SIM_REGS.DDRF = 0x00; 
 SIM_REGS.PFPAR = 0x00; 
 SIM_REGS.PORTF = 0x00; 
 
 // Setup PORTQA to input for board ID DIP switches 
 QADC_REGS.DDRQA &= 0x00FF; // clear upper 8 bits 
 
 // Enable all interrupts 
 enable(); 
 
} 
 
 
/* 
 * setupADC:- 
 * 
 * Initialise ADC operation. 
 * 
 */ 
void setupADC(void) { 
 
 // Setup QCLK as appropriate for ADC 
 // (TPSH = 739ns, TPSL = 262ns, 0.999MHz QCLK) 
 QADC_REGS.QACR0 = 0x00EC; 
 // Configure queue 1 
 QADC_REGS.QACR1 = 0x0000; 
 // Configure queue 2 
 QADC_REGS.QACR2 = 0x003F; 
 // predefine end of queue 
 QADC_REGS.CCW[2] = ENDOFQUEUE; 
 
} 
 
 
/* 
 * initTPU:- 
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 * 
 * Initialises TPU. 
 * 
 */ 
void initTPU(void) { 
 
 // Set base address of TPU RAM to address 0x200000 & enable TPU RAM array 
 // Note error in datasheet - bit 0 high = enable!(not disable) 
 TPURAM_CTRL.TRAMBAR = 0x2001; 
  
 // Copy microengine code to TPU RAM from flash memory(@30010) 
 flashcpy(TPU_MICROCODE_RAM, TPU_MICROCODE_FLASH, (int) 2048/sizeof(ushort)); 
  
 // Initialise TPU  
 TPU_init(); 
 
} 
 
 
/* 
 * flashcpy:- 
 *  
 * Copies n bytes of data from address src in flash to destination dest in 
 * RAM. Used to copy the new TPU function code from FLASH into TPU RAM space. 
 * 
 */ 
void flashcpy(ushort *dest, ushort* src, int n) { 
 ushort *p; 
 for(p = dest; n > 0; n--, p++, src++)  
  *p = *src; 
} 
 
 
/* 
 * 
 * setupPWM:- 
 * 
 * Initialise PWM. 
 * 
 */ 
void setupPWM(void) { 
 
 // Initialse TPU PWM channels 
 tpuPWM_init(PWM1CH, PWM_PERIOD, 0); 
 tpuPWM_init(PWM2CH, PWM_PERIOD, 0); 
 tpuPWM_init(PWM3CH, PWM_PERIOD, 0); 
 
 // Enable all motors after setting all to forward 
 SIM_REGS.PORTC &= (PWMDIR1FWD & PWMDIR2FWD & PWMDIR3FWD); 
 SIM_REGS.PORTE &= (PWMENABLE1 & PWMENABLE2 & PWMENABLE3); 
 
} 
 
 
/* 
 * 
 * setupQDEC:- 
 *  
 * Initialise quadrature decoding. 
 * 
 */ 
void setupQDEC(void) { 
  
 QDEC_init(QDEC1A, QDEC1B); 
 QDEC_init(QDEC2A, QDEC2B); 
 QDEC_init(QDEC3A, QDEC3B); 
 
} 
 
 
/* 
 * 
 * setupPIT:- 
 * 
 *  
 */ 
void setupPIT(void) { 
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 // If using feathering (8kHz) 
 //SIM_REGS.PITR = 0x0001; 
 
 // Sets PIT to frequency of 1.024kHz 
 SIM_REGS.PITR = 0x0008; 
 
 if (boardID==7) { 
  // Set PIT frequency to 49.95Hz for velocity profile transmission 
  SIM_REGS.PITR = 0x00A4; 
 } 
 
 // Setup the interrupt 
 #define PIT_VEC         (2 + INTR_USR_BASE) 
 set_vect(PIT_VEC, PIT_intr); 
 
 // Set interrupt vector and keep PIT disabled 
 SIM_REGS.PICR = 0x0000 | PIT_VEC; 
 
} 
 
 
/* 
 * 
 * initSCI:- 
 * 
 *  
 */ 
void initSCI(void) { 
  
 QSM_REGS.SCCR0 = 0x0011; // baud rate 38400 
 QSM_REGS.SCCR1 = 0x0008; // enable transmitter only 
 
} 
 
 
 
/* 
 * delayPB:- 
 * 
 * Simple delay for push buttons so when pressed they don't 
 * trigger the PB event twice. 
 */ 
void delayPB(void) { 
 
 uchar x; 
 for (x=0; x<100; x++) {} 
 
} 
 
 
/* 
 * roundValue:- 
 * 
 *  Takes a double quantity and rounds it to the nearest 
 *  whole number. That number is returned as an int. 
 * 
 */ 
int roundValue(double inputValue) { 
 
 int outputValue; 
 
 if (inputValue<0) { 
  inputValue = inputValue*(-1); 
  outputValue = (-1)*((int)(inputValue + 0.5)); 
 } else { 
  outputValue = (int)(inputValue + 0.5); 
 } 
 
 return outputValue; 
 
} 
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/***************************************************************************** 
 
 File:  lowlevel.c 
 
 Author:  Simon Hall 
 
 Created: 13/10/2004 - Modification of Andrew Hood's code for 2001 lower 
     limb controllers to suit GuRoo's 2004 lower limb controller 
     boards(Motorola 68376). 
 
 Summary: Functionality code for GuRoo's 2004 lower limb controller 
     boards.     
 
***************************** INCLUDE ***************************************/ 
 
#include "lowlevel.h" 
#include "mc68376.h" 
#include "intr.h" 
#include "tpu.h" 
 
/**************************** GLOBALS ******************************/ 
 
//int counter1 = 0; 
//int counter2 = 0; 
//int counter3 = 0; 
//int pwm_high_1 = 0; 
//int pwm_high_2 = 0; 
//int pwm_high_3 = 0; 
//int pwm_low_1 = 0; 
//int pwm_low_2 = 0; 
//int pwm_low_3 = 0; 
 
int emergency_message; 
 
extern uchar boardID; 
 
 
/* 
 * read_curr:- 
 *  
 * Reads the current sensor flowing through the H-bridge specified 
 * by 'k' and returns current in mA. 
 * 
 */ 
unsigned int read_curr(int k) { 
 
 unsigned int currentADC; 
 
 // Specify queue of ADC channels relating to 'k' 
 switch (k) { 
  case 0: 
   QADC_REGS.CCW[0] = ANALOG1A; 
   QADC_REGS.CCW[1] = ANALOG1B; 
   break;    
  case 1: 
   QADC_REGS.CCW[0] = ANALOG2A; 
   QADC_REGS.CCW[1] = ANALOG2B; 
   break; 
  case 2: 
   QADC_REGS.CCW[0] = ANALOG3A; 
   QADC_REGS.CCW[1] = ANALOG3B; 
   break; 
 } 
 
 // initiate single scan of queue 1 channel list 
 QADC_REGS.QACR1 = 0x2100; 
 
 // wait for queue of conversions to complete(check flag) 
 while(!((QADC_REGS.QASR)&(0x8000))); 
 
 // clear queue 1 completion flag 
 QADC_REGS.QASR &= 0x7FFF; 
 
 // whichever H-bridge has highest AD reading has true current 
 if (QADC_REGS.RJURR[0]>QADC_REGS.RJURR[1]) { 
  currentADC = QADC_REGS.RJURR[0]; 
 } else { 
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  currentADC = QADC_REGS.RJURR[1]; 
 } 
 
 // Display lower byte of unsigned right justified 
 // ADC reading(first one in queue) 
 //outputToLEDs(QADC_REGS.RJURR[0]); 
 
 // This is a crude way of scaling currentADC to actual current 
 currentADC = currentADC * 5; 
 
 return ((unsigned int)(currentADC)); 
} 
 
 
/* 
 * read_enc:- 
 * 
 * Returns the current quadrature decoded encoder count 
 * for motor 'k'. 
 * 
 */ 
unsigned int read_enc(int k) { 
 
 ushort tpuChannel; 
 
 // Specify quadrature decoded TPU channel relating to 'k' 
 switch (k) { 
  case 0: 
   tpuChannel = QDEC1A; 
   break;    
  case 1: 
   tpuChannel = QDEC2A; 
   break; 
  case 2: 
   tpuChannel = QDEC3A; 
   break; 
 } 
 
 // use tpu.c for QD reading 
 return((unsigned int)(QDEC_read(tpuChannel))); 
 
} 
 
 
/* 
 * set_PWM:- 
 * 
 * Sets PWM duty cycle for motor k. Value passed ranges between 
 * -1600 to 1600 representing 100% backward to 100% foward. 
 * (Does not use feathering at present.) 
 * 
 */ 
void set_PWM(int k, int pwm_duty) { 
  
 switch(k) { 
  case 0: 
   if (pwm_duty<0) { 
    // make +ve if -ve 
    pwm_duty = (-1)*pwm_duty; 
    // set direction of motor to reverse 
    SIM_REGS.PORTC |= PWMDIR1REV; 
   } else { 
    // set direction of motor to forward 
    SIM_REGS.PORTC &= PWMDIR1FWD; 
   } 
 
   tpuPWM_set(PWM1CH, pwm_duty/2); 
 
   /* //If using feathering:- 
   // Calculate portion of 0.004s to set PWM to pwm_high 
   counter1 = pwm_duty%32; 
   // At 100kHz PWM, duty cyle has resolution -50 to 50 
   // Therefore dividing 1600/32 = 0 to 50. 
   // high time pwm setting 
   pwm_high_1 = (pwm_duty/32) + 1; 
   // low time pwm setting 
   pwm_low_1 = (pwm_duty/32); */ 
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   break; 
  case 1: 
   if (pwm_duty<0) { 
    pwm_duty = (-1)*pwm_duty; 
    SIM_REGS.PORTC |= PWMDIR2REV; 
   } else { 
    SIM_REGS.PORTC &= PWMDIR2FWD; 
   } 
 
   tpuPWM_set(PWM2CH, pwm_duty/2); 
 
   /* 
   counter2 = pwm_duty%32; 
   pwm_high_2 = (pwm_duty/32) + 1; 
   pwm_low_2 = (pwm_duty/32); 
   */ 
 
   break; 
  case 2: 
   if (pwm_duty<0) { 
    pwm_duty = (-1)*pwm_duty; 
    SIM_REGS.PORTC |= PWMDIR3REV; 
   } else { 
    SIM_REGS.PORTC &= PWMDIR3FWD; 
   } 
 
   tpuPWM_set(PWM3CH, pwm_duty/2); 
 
   /* 
   counter3 = pwm_duty%32 ; 
   pwm_high_3 = (pwm_duty/32) + 1; 
   pwm_low_3 = (pwm_duty/32); 
   */ 
 
   break; 
 } 
  
} 
 
 
/* 
 * get_schedule:- 
 * 
 * Not sure what this is for but was in old software! 
 * 
 */ 
int get_schedule(void) { 
 return emergency_message ; 
} 
 
 
/* 
 * outputToLEDs:- 
 *  
 * Outputs the decimal value input to the debugging LED's. 
 * This function required due to patch for MOSFET drivers. 
 * 
 */ 
void outputToLEDs(uchar value) { 
 
 // Board 6 does not have re-routed LED lines 
 if (!(boardID==BOARD_6)) { 
 
  SIM_REGS.PORTE = (SIM_REGS.PORTE & 0xE0) + (value & 0x1F); 
  SIM_REGS.PORTC = (SIM_REGS.PORTC & 0xF1) + ((value>>6)&(0x02)) + 
   ((value>>4)&(0x04)) + ((value>>2)&(0x08)); 
 
 } else { 
  SIM_REGS.PORTE = value; 
 } 
 
} 
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/* 
 * transmitShort:- 
 *  
 * Sends a short(16 bit word) to the UART. Use RS232 connector. 
 * Hyperterminal will display the binary number 
 * in hexadecimal. Baud rate 38400. 
 * (Caution when inserting in a control loop - takes time) 
 * 
 */ 
void transmitShort(short binNum) { 
 
 uchar lowerHalfByte = (uchar)(binNum & 0x000F); 
 uchar lMiddleHalfByte = (uchar)(((binNum & 0x00F0)>>4)); 
 uchar uMiddleHalfByte = (uchar)(((binNum & 0x0F00)>>8)); 
 uchar upperHalfByte = (uchar)(((binNum & 0xF000)>>12)); 
 
 // Converts each half byte to an ASCII character 
 if (lowerHalfByte<10) { 
  lowerHalfByte += 48; 
 } else { 
  lowerHalfByte += 55; 
 } 
 
 if (lMiddleHalfByte<10) { 
  lMiddleHalfByte += 48; 
 } else { 
  lMiddleHalfByte += 55; 
 } 
 
 if (uMiddleHalfByte<10) { 
  uMiddleHalfByte += 48; 
 } else { 
  uMiddleHalfByte += 55; 
 } 
 
 if (upperHalfByte<10) { 
  upperHalfByte += 48; 
 } else { 
  upperHalfByte += 55; 
 } 
 
 // Transmit digit 
 while(!(QSM_REGS.SCSR&0x00C0)); // wait for transmission 
 QSM_REGS.SCDR = upperHalfByte; // the digit 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = uMiddleHalfByte; 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = lMiddleHalfByte; 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = lowerHalfByte; 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = 0x0A; // new line 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = 0x0D; // CR 
 
} 
 
 
/* 
 * transmitChar:- 
 *  
 * Sends a character(8 bit word) to the UART. Use RS232 connector. 
 * Hyperterminal will display the binary number 
 * in hexadecimal. Baud rate 38400. 
 * (Caution when inserting in a control loop - takes time) 
 * 
 */ 
void transmitChar(char binNum) { 
 
 uchar lowerHalfByte = (uchar)(binNum & 0x0F); 
 uchar upperHalfByte = (uchar)((binNum & 0xF0)>>4); 
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 if (lowerHalfByte<10) { 
  lowerHalfByte += 48; 
 } else { 
  lowerHalfByte += 55; 
 } 
 
 if (upperHalfByte<10) { 
  upperHalfByte += 48; 
 } else { 
  upperHalfByte += 55; 
 } 
 
 // Transmit digit 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = upperHalfByte; // the digit 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = lowerHalfByte; 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = 0x0A; // new line 
 
 while(!(QSM_REGS.SCSR&0x00C0)); 
 QSM_REGS.SCDR = 0x0D; // CR 
 
} 
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/***************************************************************************** 
 
 File:  can.c 
 
 Author:  Simon Hall 
 
 Created: 11/10/04 
 
 Summary: Handles CAN communication between boards. This requires 
     further development. At this stage only includes necessary 
     code for demonstration software. 
 
*****************************************************************************/ 
 
#include "can.h" 
#include "mc68376.h" 
#include "board1.h" 
#include "lowlevel.h" 
 
extern int velProfile[3]; 
extern uchar boardID; 
extern uchar commencePI; 
extern uchar findIndex; 
extern uchar passedWaypoint[3]; 
extern int wayPoint[3]; 
extern int reqdPWMS[3]; 
extern uchar foundIndex[3]; 
extern int oldPosnS[3]; 
 
uchar justStarted = TRUE; 
 
// Variables for data retrieval:- 
extern int dataLog[30]; 
extern int dataLogPointer; 
//uchar dataLatch = FALSE; 
 
 
/* 
 * setupCAN:- 
 * 
 * Initialise CAN operation. This will get altered when  
 * can.c gets written. 
 * 
 */ 
void setupCAN(void) { 
 
 // Setup CAN registers 
 CAN_REGS.CANCTRL0 = 0x00; 
 CAN_REGS.CANCTRL1 = 0x05; 
 CAN_REGS.CANCTRL2 = 0xB7; 
 CAN_REGS.PRESDIV = 0x00; 
 
 // Set buffer 0 ID to that of boardID 
 // & set to active & empty 
 CAN_REGS.MSGBFR[0].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[0].IDHIGH = 0x0000 + (boardID<<5); 
 CAN_REGS.MSGBFR[0].CTRL += 0x0040; 
  
 // Set buffer 1 ID to command receiver plus boardID 
 CAN_REGS.MSGBFR[1].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[1].IDHIGH = 0x0000 + ((boardID|COMMAND_CONTROL)<<5); 
 CAN_REGS.MSGBFR[1].CTRL += 0x0040; 
 
 // Setup remaining CAN buffers as inactive receive buffers 
 CAN_REGS.MSGBFR[2].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[3].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[4].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[5].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[6].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[7].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[8].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[9].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[10].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[11].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[12].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[13].CTRL &= 0xFF0F; 
 CAN_REGS.MSGBFR[14].CTRL &= 0xFF0F; 
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 CAN_REGS.MSGBFR[15].CTRL &= 0xFF0F; 
 
 // CAN Mask register for message filtering (this not really reqd) 
 CAN_REGS.RXGMSKHI = (CAN_REGS.RXGMSKHI & 0x001F) + 0xFFE0; 
 
 // Disable interrupts completely 
 CAN_REGS.CANICR = 0x0000; 
 CAN_REGS.IMASK = 0x0000; 
  
 // Enable CAN 
 CAN_REGS.CANMCR = 0x0000; 
 
} 
 
 
/* 
 * chkForMsgs:- 
 * 
 * Check for new incoming messages. 
 * 
 */ 
void chkForMsgs(void) { 
 
 // Check for received messages in receiver buffer 0 
 // (transmitted velocity profile) 
 if (CAN_REGS.IFLAG & 0x0001) { 
 
  if (boardID==BOARD_7) { 
 
   // Data retreival 
   dataLog[dataLogPointer] = CAN_REGS.MSGBFR[0].DATA[0]; 
   dataLogPointer++; 
 
  } else { 
 
   findIndex = FALSE; 
 
   //dataLatch = TRUE; 
   
   // update velocities 
   velProfile[0] = CAN_REGS.MSGBFR[0].DATA[0]; 
   velProfile[1] = CAN_REGS.MSGBFR[0].DATA[0]; 
   velProfile[2] = (-1)*(CAN_REGS.MSGBFR[0].DATA[0]); 
   
   // enables motor positions to be initialised 
   if (justStarted==TRUE) { 
    justStarted = FALSE; 
    init_pos(); 
    commencePI = TRUE; 
   } 
 
  } 
 
  // Clear CAN buffer filled flag 
  CAN_REGS.IFLAG &= ~(0x0001); 
 
 } 
  
 // Check for received mesages in buffer 1 
 // (Command Control) 
 if (CAN_REGS.IFLAG & 0x0002) { 
   
  // Move all motors to index positions 
  if (CAN_REGS.MSGBFR[1].DATA[0]==MOVE_ALL_TO_INDEX) { 
 
   int w; 
   // get new "old positions" 
   for (w=0; w<3; w++) { 
    oldPosnS[w] = (int)(read_enc(w)); 
   } 
 
   findIndex = TRUE; 
   // enable PIT  
   SIM_REGS.PICR |= 0x0400; 
 
  // Move Motor 3 to next index posisiton 
  } else if (CAN_REGS.MSGBFR[1].DATA[0]==MOVE_TO_NEXT_INDEX3) { 
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   // set waypoint 
   wayPoint[2] = (int)(read_enc(2)) + 500; 
 
   // take care of overflow 
   if (wayPoint[2]>=65536) { 
    wayPoint[2] -= 65536; 
   } 
 
   reqdPWMS[2] = 0; 
   passedWaypoint[2] = FALSE; 
   foundIndex[2] = FALSE; 
   oldPosnS[2] = (int)(read_enc(2)); 
  } 
 
  CAN_REGS.IFLAG &= ~(0x0002); 
 
 } 
 
} 


