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Abstract

This thesis describes the continual development of the vision system for the

University of Queensland’s humanoid soccer playing robot. The vision system

consist of a camera, vision board with SH4 processor and peripherally, an

inertial measurement unit.

The work on the vision system represents the integration of the previous two

years of work on both hardware and image processing routines to successfully

enable the vision system to detect and track objects in its field of view whilst

online (on the vision board).

It also completes the migration of the cross-platform environment for pro-

gramming the embedded system to windows and begins an exploration into

the concepts required for fusing inertial and visual data to better determine

world-coordinate positions of both objects and robot within its local environ-

ment.
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Chapter 1

Introduction

As an introduction, a brief discussion concerning humanoid robots and vision

systems will be discussed. This is followed by an outline of the remainder of

the thesis.

1.1 Humanoid Robots

Many conventional robots exist in industry performing automated tasks in an

isolated environment away from the challenges posed by the usual interferences

and challenges we as humans subconsciously navigate every day. However, the

push for development of robots to operate within society to aid humans in

tasks trivial in nature has become apparent in recent years.

Despite this increased interest, the challenge of creating a robot that can per-

form even the simplest of tasks in a human environment remains incredibly

complex. This is significantly due to the overwhelming integration of subsys-

tems that are needed to co-operate to achieve a single task. In this respect,

robotics is still far behind the natural ability of a human.

This is where the humanoid robot emerges. It not only emulates an image that

we are comfortable to interact with, but also emulates the advanced nature of

a human’s total integration of sensors and controls.

1
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1.2 RoboCup Competition

The RoboCup is an international competition in which various types of robots

compete against each other in games of soccer. The goal of RoboCup is to

promote research in robotics whilst at the same time providing a series of

increasingly complex problems for robotics and artificial intelligence develop-

ment. The University of Queensland is working on their own humanoid robot,

the GuRoo (”Grossly underfunded Roo”) to compete in future humanoid soccer

competitions.

1.3 GuRoo

The GuRoo is approximately 1.2m high and carries onboard power and com-

puter systems (refer to Figure 1.3.

Figure 1.1: The GuRoo

GuRoo is intended to be fully autonomous. It is controlled from a central com-

puter (iPaq) that is used to drive the many control processors as well as handle

the generation of walking patterns/behaviours and gameplay intelligence.
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Also on board the GuRoo will be a SH4 processor that analyses output from

a CMOS camera as well as an IMU (inertial measurement unit). SH4, camera

and IMU will all be mounted in the GuRoo’s head.

1.4 Robotic Environmental Sensors

One of the most critical problems in robotics involves extracting information

from its surroundings to develop an awareness of both its local environment

and its location within that environment. A variety of sensors can be used to

achieve this task, however the approach to the design of a humanoid robot will

require that this must be attempted in a manner similar to that evolved by

humans.

Fundamentally this entails using the sense of vision coupled with a unit re-

sembling a human’s vestibular (inner ear) system. The vision system is our

primary sensor and is consciously used to identy objects within the external

environment. The vestibular system plays a role that is largely subsconscious,

though no less important. It is critical for balance and in aiding us to predict

responses that cannot be met by our vision system alone.

On a humanoid robot these systems must be online and operating as close

to real time as possible to be useful. This can be a challenging task both in

hardware and software to meet this requirement.

It is planned to further develop and integrate camera, vision board (SH4) and

inertial measurement unit (IMU) to meet this task in relation to the specific

goals required whilst competing in a RoboCup competition (ball detection,

self-localisation, pose determination).
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1.5 Thesis Outline

• Background: Provides an introduction to the Guroo vision system

and the status of both hardware and software at commencement of the

project.

• Project Definition: This chapter outlines the project goals and the

tasks that had be met to further development towards these goals through-

out the course of the year.

• Cross-Platform Programming Environment: Documents the pro-

cesses involved in setting up the cross-platform environment for embed-

ded programming of the SH4 on a Windows host.

• VDebug: This chapter describes the various problems in the Vision

Debugging software as well as the motivation and processes involved in

implementing various extensions to the software.

• VBSH4: The problems in cross-compiling for the SH4 in windows are

discussed as well as the issues that arose in adding the image processing

routines to the program. It also describes the more important elements

of the VBSH4 source code so that future students do not have to spend

unnecessary time in learning how the software operates.

• Future Work: Outlines future work that can be immediately addressed

by students carrying on with the project.

• Visual and Inertial Fusion: An exploratory outline of concepts related

to fusing visual and intertial data that was gained from readings earlier

in the semester.



Chapter 2

Background

This chapter provides a brief introduction to the various hardware and software

applications that constituted the Guroo’s vision system at the commencement

of the project.

2.1 Hardware

Previous work on the Guroo’s vision system had already included the selection

of camera as well as the choice of processor and design for the vision board to

interface with the camera. Together with a PC that can be connected to the

vision board via a serial connection, these currently comprise the subsystems

responsible for image acquisition and processing. Refer to Figure 2.1.

Figure 2.1: Vision System Hardware

5
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In future, once the system is established and mounted on the guroo it is ex-

pected the role of the PC (currently used for debugging the vision routines)

will be replaced by a direct connection to the Guroo’s brain - an iPaq.

2.1.1 Camera

Head Design

Although the Guroo currently has two camera’s mounted into the headpiece,

the system currently only connects one camera to the vision board. At this

early stage of development with the current equipment, the goals are simply

to enable monocular vision. Moving to fulfill design requirements in hardware

and software for stereo vision is projected for future developments.

Figure 2.2: Head Design

The headpiece illustrated in the centre is a makeshift arrangement whilst the

Guroo’s head remains in the process of being redesigned. The redesign is

intended to incorporate a stereo camera arrangement, housing of the vision

board and the addition of an IMU (Inertial Measurement Unit). It also aims

to provide a more aesthetically pleasing look for a humanoid robot.
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Camera

The camera is a CMOS camera controlled by an OmniVision OV7620 onboard

chip. The onboard chip incorporates a wide array of image processing and ac-

quisition features that enable variable bit data output in RGB or YUV format,

subsampling, interlacing, filters and customisable routines that automatically

adjust for image exposure lengths, brightness, gain, and white-black pixel ra-

tios. The default resolution is 640x480 with a frame capture rate of up to

60Hz, however its most important function is its ability to capture a smaller

viewport of the actual image.

The primary advantages of such a system is the removal of processing routines

from the board to the camera chip itself - previously RGB→YUV conversions

and subsampling had to be performed on the vision board itself, necessitating

an expensive time cost to preprocess the images before object detection anal-

ysis could be performed.

The OV7620 manual can be found on the accompanying CD in

”GurooCD://vision-material/documentation/OmniVision OV7620.pdf”

This is an important manual to become familiar with if trying to improve image

quality by configuring various aspects of the image acquisition process.

Lens

The lens chosen for the camera is an AVENIR SSV0358. Both lens and housing

were chosen and remodelled last year by Anthony Peters. More information

on this process can be found in [13].

2.1.2 Vision Board

The vision board was designed by Mark Change for use in the University of

Queensland’s ViperRoos robotic soccer team. The design requirements are

similar in most aspects to that of those required by the GuRoo.
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The core components on the board include an Hitachi SH4 microprocessor ca-

pable of running at 360 million instructions per second (MIPS) for the primary

image processing functions, a Xilinx Spartan II FPGA that resides between

the SH4 and the camera for secondary processing, 512KB static ram (SRAM)

and 16MB static-dynamic ram (SDRAM).

The FPGA is not currently utilised, future development may include it to buffer

the data before it reaches the SH4 as well as carrying out some pre-processing

on the data before it reaches the SH4.

The board also includes usb and serial output connections. The debugging

utility on the PC currently makes use of the serial connection and is adequate

for its purpose. The usb interface would improve the ease of debugging, however

the interface needs the development of an accompanying usb driver set for the

board. Consequently it is not a priority at this time.

2.1.3 PC

The PC provides a suitable platform for execution of the vision debugging

software Vdebug. The Vdebug software may optionally run on either Linux or

Windows platforms. The software sends requests for images or data (or both)

to the vision board via the serial communication link between PC and vision

board.

2.1.4 Inertial Measurement Unit (IMU)

Although not strictly part of the vision system, its inclusion here is a direct

consequence of its importance in conjunction with the vision system to enable

location and pose estimation for the GuRoo. An exploratory discussion on

these concepts will be investigated in Chapter 8.

The IMU is a product of the CSIRO labs and consists of three primary sensor

units:

• One (1) 3-Axis Gyroscope.
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• Three (3) Magnetometers.

• Four (4) Accelerometers.

Unlike most inertial measurement units, it also incorporates complementary

filtering and correctional analysis on the measured data to provide estimates

of velocities and positions. More information can be found in [2].

2.2 Software

2.2.1 VBSH4

VBSH4 is the application name for the software compiled to be run on the

SH4 processor located on the vision board. It is responsible for configuring

and acquiring images from the camera. Upon commencement of the project,

VBSH4 was functional in terms of its capability to acquire images, although

image quality and rate of acquisition had room for improvement. Analysis and

the continued development of VBSH4 is detailed in Chapter 6.

2.2.2 VDebug

Vdebug is a debugging utility that allows transfer and display of images from

the vision board to the PC. It was originally written on Linux in ansi C using

gcc and the openGL and glut libraries, but was ported to MSVC++ and Win-

dows last year by Anthony Peters [13]. Upon commencement of the project,

VDebug displayed the images retrieved from the vision board and performed

a cursory analysis that produced a YUV map of the image as well as a his-

togrammatical representation of the RGB/YUV componets.

2.3 Image Processing Analysis

In 2001, David Prasser investigated techniques for object detection and tested

various algorithms on static images in his undergraduate thesis [14]. His pro-
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cedures can be found on the accompanying CD in

”GurooCD://vision-material/software/guroo stonier/prasser/”

In order to integrate David Prasser’s image work into the vision software a

thorough understanding of the techniques involved is required. This is essential

in ironing out the inevitable bugs as well in acquiring enough knowledge to

intelligently optimise the routines - a concern of high priority given the limited

processing power and memory available on the vision board. A description of

the more important image processing concepts relevant to robotic vision and

object detection is outlined below - for more detailed information, refer to [14].

2.3.1 Overview

Real time object detection in robotic vision is notoriously difficult and is pre-

sented with many of the difficulties encountered in human vision. Rapid

changes in the sampled images can provide little in the way of useful infor-

mation and differing levels of ambient illumination can entirely change the

context of our search for objects within the images. Typically in the RoboCup

competitions however, the colours of all significant objects is standardised and

landmark features are often used. Processes used for extraction of objects

within the image are usually simple and optimised for speed. The first step

in developing the GuRoo’s vision sytem is to extract real-time information

concerning the location of an orange soccer ball.

2.3.2 YUV Colour Space

One of the primary difficulties in extracting useful colour information from an

image is in resolving the problems that varying levels of illumination can cause.

These effects can be minimised by working in YUV space (as opposed to the

more familiar RGB space). In YUV space, Y represents the intensity of the

light, while U and V represent red and blue chrominance respectively.

Note that in many situations, the role of U and V is swapped, that is, U and

V represent blue and red chrominance respectively. The representation defined
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above however is the representation the camera uses within its specifications.

YUV can be a little difficult to visualise. Often it is easiest to begin with the

RGB colour cube - refer to the first diagram in Figure 2.3.2.

Figure 2.3: RGB Cube and YUV Space

The gray line represents the Y axis, while the UV plane lies transverse to this

axis (though not quite perpendicularly). Some UV maps for varying levels of

luminance (Y) are illustrated in Figure 2.3.2. The advantage in using YUV

space is that changes in luminance largely affect only the Y value. This can

be seen in the UV maps in Figure 2.3.2. The actual transformations relat-

ing RGB to YUV values is linear but varies slightly from camera to camera.

As the camera may be programmed to calculate these internally, there is no

need to implement the transformations on the vision board, but the reverse

transformations are required for displaying the image in Vdebug. These will

be covered in detail in Chapter 5.

2.3.3 Luminance Thresholding

Thresholding is a simple technique traditionally used for distinguishing between

foreground and background objects, although its usefulness does extend in
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Figure 2.4: UV Maps

principle to other concepts.

Determing the average luminance of the image can be useful in normalising

the image around a central value. This value can then be used to select a

UV lookup map (see below) appropriate to the local conditions for colour

segmentation of the image. The camera however, can run (on by default)

automatic routines that adjust for the local brightness - this can offset the need

for doing expensive average luminance calculations. A qualitative analysis on

the need for such calculations would be useful.

Thresholding can also be used to discard colours in regions of the image that

are excessively dark or bright. Ordinarily these regions are typically of little

significance for object detection, but they also become increasingly difficult to

segment properly. Recalling the RGB cube in 2.3.2, it should be easy to observe

that as one approaches the corners at either end of the gray line (the luminance

axis), the corresponding UV space (slice) must become vanishingly small. Con-

sequently the process of colour classification in these regions becomes sensitive

to measurement errors.

When thresholding dark and bright regions, a segmentation process will typi-

cally classify these regions as black or white. It is worth keeping in mind that

white regions can often be a result of specular reflection on coloured surfaces

such as an orange golf ball.
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Colour thresholding can also be utilised, however this greatly increases the com-

putational time (by a factor of three) and classification by UV maps provides

an alternative and much faster segmentation method for colour.

2.3.4 Colour Segmentation

Colour segmentation simply classifies each pixel in the image as belonging to a

subset of colours directly related to the objects we are required to detect. The

colours of importance for the Robocup competition are

White - Field Lines

Orange - Ball

Green - Field

Yellow - Goal

Unclassified - Other

Classification in robot vision is usually done through three dimensional YUV

lookup tables. Each YUV value in the lookup table is associated with a speci-

fied colour - providing a hand customisable mapping which is fast and efficient.

Unfortunately, a three dimensional table can be cumbersome to load into the

limited memory on the vision board. If an 8 bit value (0-255) is associated

with each of the Y, U and V intensities, the resulting three dimensional lookup

table is 2563 bytes (16M) in size.

Reducing the scale or dimensionality of the table are alternative options that

need to be assessed for performance. A vector-based approach used at Carnegie

Mellon University (details can be found in David Prasser’s thesis [14]) is an-

other alternative, but was found to have limitations primarily due to its restric-

tive rectangular classification regions as well as its inability to handle adaptive

Y thresholding.

Another alternative for systems with little memory is to pie slice the regions in

a UV map associated with a particular Y value [15]. This is alot more robust

to variation in light conditions than rectangular classification, and does not

need the memory for a lookup table. It will be mentioned in more detail in
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Chapter 5.

2.3.5 Morphology

The interference caused by noise often associated with segmentation of low

resolution images can often be reduced through the morphological processes of

erosion and dilation. Each operation acts on each colour separately. Erosion

cleans the fringes of coloured clusters whilst dilation will tend to fill in holes

caused by speckled noise or misclassified pixels that lie on the boundary of a

segmentation region. The processes are illustrated in Figure 2.3.5.

Figure 2.5: Morphological Operations of Dilation and Erosion

A combination of these two processes are often used in tandem. An opening is

the process of an erosion followed by a dilation, whilst a closing is the oppo-

site. David Prasser implemented erosion on 1x3 structuring elements (compare

with the 3x3 elements pictured in Figure 2.3.5) as a quick means of reducing

noise. Relevant demonstrations of how this compared to other combinations

(openings, 3x3 structural elements) in terms of effectiveness and speed were

not available.
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2.3.6 Run Length Encoding

Run Length Encoding is the first stage of the grouping process. An often

used representation for bitmaps, a run length encoded image encapsulates each

horizontal block of pixels of identical colouring. This allows the image to be

stored in a compressed format (convenient for transmitting to the iPaq/PC if

necessary where it can be reconstructed).

Each run length encoded structure is identified by the following parameters:

• begin: The x co-ordinate corresponding to the beginning of a run.

• end: The x co-ordinate corresponding to the end of a run.

• y: The y co-ordinate of the run.

• colour: The colour of the pixels in the run.

• tag: The number of the run counting from the bottom left corner.

• blobpointer: A pointer to the RLE’s blob structure.

The last two values are necessary for further grouping analysis methods (blob-

bing). The tag value of zero is reserved for terminating a list, whilst blobpoint-

ers are initially set to null.

2.3.7 Blobbing

After run length encoding, neighbouring runs (in the vertical sense) are grouped

together into blobs if they are connected by at least four pixels. If two runs

are connected and no blob has yet been set for them, a new blob object is

manufactured, otherwise both blob pointers are set to point at the older blob

(or at the defined blob if only one of the runs currently points at a blob). The

process is illustrated in Figure 2.3.7.
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Figure 2.6: Grouping Runs into Blobs

The process occasionally involves reiterating over the entire list of runs up

to the current point to properly sort the blob list. This is an essential step

although not quite obvious at first glance in the code.

Each blob is associated the following parameters:

• colour: The blob’s colour.

• xmin,xmax,ymin,ymax: Bounding corners of the blob.

• area: Blob area. Updated as each new run (or blob) is added to the

blob.

• valid: Identifies if it is currently an active part of the blob list or has

been discarded.

• cx,cy: Blob centroid - centre of the rectangle defined by xmin,xmax,ymin,ymax.

Determination of the blob’s centroid can be more effectively determined using

more complicated algorithms at the cost of processing speed.
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2.3.8 Blob Analysis

The final stage of object detection is to correctly distinguish objects from pos-

sible incorrect matches. This process is dependant on the type of objects being

detected and the algorithms will ultimately depend on the final implementa-

tion.

The first step is to correctly detect and classify a soccer ball within the image

which is relatively easy to classify given its rotational invariance. To properly

distinguish them from other blobs of identical colouring may require additional

parameters to be assigned to the blob that evaluate how well an ellipse may

be fitted to the structure.



18 CHAPTER 2. GUROO’S VISION SYSTEM



Chapter 3

Project Definition

The previous chapter provides an evaluation of the status of the Guroo’s vision

system at the commencement of the project. Although David Prasser estab-

lished the basic image processing routines (tested on static images only) to

be used for the vision system in 2001 and Anthony Peter solved some of the

hardware related issues in 2003, the system had yet to be integrated as a fully

functional real-time system.

3.1 Vision System Goals

The primary target requirements of a real-time vision system for the Guroo

involve

• Object Localisation - Identify and track target objects in its field of

view.

• Self Localisation - Identify landmarks in the surrounding environment

to determine the robot’s location.

• Pose Information - Obtain a good estimate for the robot’s pose in three

dimensional space.
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3.2 Project Tasks

In meeting these goals, the following issues were identified as necessary steps.

3.2.1 Improving Image Quality

The quality of image being received from the camera/vision board remained

below par despite the hardware improvements made in the previous year. Con-

sequently improving the image quality was to be a priority for the duration of

the project.

3.2.2 Repairing Vdebug

Vdebug in its current state at the commencement of the project was quickly

found to have some major problems in its code. Callbacks, zooming, scaling,

region of interest specifications, colour transformations (related to improving

image quality) and yuv/histogram mapping were all either broken (after the

addition of various features in the previous year) or incorrectly implemented

mathematically. These had to be systematically re-written.

3.2.3 Creating a Cross-Platform Environment

Previous programming for the SH4 had been done using cross-compiling tools

on a Linux or Solaris host platform. Moving the programming environment to

Windows was a priority so that undergraduate students unfamiliar in a *nix

environment would not lose time in familiarising themselves before beginning

further development on the vision system. It was originally understood that

this had already been done in the previous year, however apart from porting

Vdebug’s code for the PC into Visual C++, any details regarding setting up

the environment for SH4 programming in windows turned out to be invalid

and untested.
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3.2.4 Integration of David Prasser’s Routines

This involved taking David’s routines and implementing them in a functional

manner on the vision board to enable object detection in real time. This was

the primary task in realising a fully functional real time tracking system.

3.2.5 Extensions to Vdebug

Testing and debugging of image routines on the SH4 is largely a ’blind’ process

that is inherently difficult. Very early on it was realised that efficient progress in

this direction would require extensions built in to Vdebug to enable processing

and testing of routines offline.

3.2.6 Exploration of Visual and Inertial Fusion

The problem of determining the robot’s pose had become an issue in the pre-

vious year when investigating the problem of balance for the humanoid robot.

Currently GuRoo estimates a position of the head through a cumulative cal-

culation of joint angles (ankle, knee, waist). This often transpired to a large

error in the determination of GuRoo’s head which had an adverse affect on the

control loops.

Using the newly installed IMU in conjunction with the vision system has re-

cently become a fairly important issue in robotic vision and the process of

fusing the data from both sources in an intelligent way can lead to a far better

estimation of robot location and pose than by using either source alone.

This task had originally been the primary focus of the thesis on the assumption

that integrating the object detection code with the current system was to be

a trivial operation (which unfortunately did not turn out to be the case).

3.2.7 Documentation

In previous years Mark Chang (designer of the vision board and creator for

most of the software) had been at hand to provide advice with regards to both
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software and hardware involved in the GuRoo vision system.

He has since moved on and the lack of documentation has often slowed progress

in certain areas. With the continual nature of the project, documentation of

methods and code has become a high priority. This thesis will hopefully help

fill that void.

3.3 Progression

The tasks listed above were not tackled in a linear fashion. Some were not

realised until problems had been uncovered and quickly became a priority.

The GuRoo was also not available for the first two months (during this time

the GuRoo was in residence at CSIRO) and so the first few weeks were used

in exploring different approaches used for visual and data fusion.

Nevertheless, I’ve addressed the issues in this thesis in this particular order

so that it will make logical sense to a reader continuing development on the

GuRoo’s vision system in future years. Visual and Inertial fusion can only

logically be addressed once we have a functional vision system that can per-

form object detection, which, in turn can only be addressed once software and

hardware problems are solved.

To this end, I have decided to leave the results of a literature review and

investigation into visual and inertial data fusion until Chapter 8 so that ideas

and concepts do not get intermingled between the comparatively separate tasks

involved in getting the vision system to detect objects within its field of view

in real time.



Chapter 4

Cross-Platform Programming

Environment

The aims of this chapter (and chapters 5 and 6) are twofold. Most importantly

they document the progress made in the continuing development of the vision

system. They also aim to provide suitable documentation for students contin-

uing the project in future years (something that was greatly missed this year).

Without such documentation, alot of time was spent familiarising myself with

the system and configuring a suitable environment.

4.1 Introduction

The GuRoo vision programs (VBSH4 and VDebug) were originally written and

compiled on the Linux platform. With the decision to move the programming

environment to Windows, several changes were needed.

It is important to realise immediately that it is not as straight forward as com-

piling the programs in Microsoft Visual C++, the environment most students

would be familiar with. This is due to the lack of a cross-compiler and the in-

ability to manage the project with makefiles - both of which will be explained

in the following sections.
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4.2 Managing the Project

Most projects created in IDE’s (such as MSVC++) automatically manage the

code for you. They typically use a system that manages your project in a way

keeps the process transparent from the programmer. This has the advantage

of reducing the level of complexity in a large project at the cost of portability

(to different IDE’s) and the ability to customise the way in which the program

is managed.

Makefiles are an alternative way of managing programming projects (they can

also be used to manage any other style of computing project you have also -

it doesn’t have to be a programming project). They simply supply a list of

instructions and inference rules that may be collected together and executed by

the current shell. Typically they provide rules for compiling, linking instruc-

tions, pointers to libraries and commands for general file management. They

may be auto-generated to manage your project by your IDE or programming

environment or they may be hand-written to manage a project that can span

several applications at once where all that is needed to manage the project is

access to a shell.

The original code written by Mark Chang utilises Makefiles to manage the

GuRoo vision system code (VBSH4 and VDebug) and although VDebug was

created as a separate project within MSVC++ last year, the same is not pos-

sible of VBSH4. Firstly a cross-compiler is needed (as mentioned above) and

secondly the Makefiles for VBSH4 contain a very customised set of instructions

that would prove difficult if not impossible to translate into an auto-managed

project. In addition, the using makefiles provides us with the advantages of

being able to transport the code between different IDE’s with ease and the

flexibility in being able to customise the makefiles as we wish. Learning the

fundamental principles of using makefiles is not overly complex and should not

take more than a couple of hours. I used a particularly good introduction

in Chapter 5 of [5]. Alternatively there are many tutorials on the net that

should prove instructive when looked at in conjunction with the makefiles in

the VBSH4 and vdebug code directories on the accompanying CD.

On a linux platform, an environment suitable for executing makefiles is auto-

matically provided by default, the only difficulty lies with windows where such
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an environment must be installed and configured.

4.3 MinGW/MSYS

MinGW provides a minimalistic runtime environment for the GNU gcc cop-

milers. It compiles and links code to be run on win32 platforms, provides

several fundamental libraries and utilises the Microsoft runtime libraries.

MSYS is a minimal POSIX and shell environment for use with MinGW. It

provides several shell utilities as well as the standard packages that allow use

of Makefiles to manage your project. It is a recent fork of the more traditional

Cygwin environment which provides a full POSIX layer and many more utilities

for the win32 environment.

The MinGW/MSYS was chosen in preference to setting up the full Cygwin

environment simply for its ease in installation and configuration. The home

page for MinGW and MinSYS can be found at [10].

4.3.1 Installation

Installers for MinGW and MSYS can be found on the accompanying CD:

”GurooCD://vision-material/programs/MinGW-3.1.0-1.exe”

”GurooCD://vision-material/programs/MSYS-1.0.10.exe”

Installation instructions:

• Install MinGW-3.1.0-1.exe to C:\mingw.

• Install to MSYS-1.0.10.exe to C:\msys.

• Whilst installing MSYS allow it to recognize your MinGW directory.

• Go to Control Panel→System→Advanced→Environment Variables, edit

the user’s path variable and append to it ”c:\mingw\bin;c:\msys\bin”
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To utilise the shell environment simply open the shortcut provided with MSYS

or open a command prompt within windows.

4.4 Compilers

Compiling programs and creating binaries (executables) is dependant on both

the host platform the program is compiled on and the target processor the

program is expected to run on. In most cases both host and target are equiv-

alent.

For example, a MSVC++ compiled program is designed with host and tar-

get being the win32 platform/processor. No other option is possible, hence

alternative solutions and compilers must be found.

When host and target are different, the process is referred to as cross-compiling.

For each combination of host/target pair, a different compiler is required. For

our purposes, we wish to be able to compile VBSH4 and VDebug under the

following situations:

Host Target

VBSH4 Windows SH4

Linux SH4

VDebug Windows Windows

Linux Linux

The GNU Toolchain provides a standard set of compilers and cross-compilers

that can be utilised across several platforms. Generating the binaries for these

compilers can be a difficult process with the plethora of options. There are

however several pre-made binaries available in a form ready for us to use with

the vision project.

gcc : Linux compiler. Installed by default on linux platforms.

gcc : Windows compiler. Installed with the MinGW environment.

sh4-linux-gcc : Linux-SH4 cross-compiler. Installed separately.

sh4-elf-gcc : Windows-SH4 cross-compiler. Installed separately [8].
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The linux and windows cross-compiler binaries have been placed within the

GuRoo project directories (”GuRooCD://vision-material/software/guroo stonier/cross-

sh4”) and are already referenced correctly by the project Makefiles.

4.4.1 Installation

If it is necessary to re-install the windows cross-compiler, simply run the in-

staller in

”GurooCD://vision-material/programs/cross-sh4-win/gnushv0402.exe”

pointing the installer to

”Guroo://vision-material/software/guroo stonier/cross-sh4/sh4-win/”.

4.5 OpenGL and GLUT

VDebug makes use of the OpenGL libraries for rendering images. The OpenGL

libraries should already be installed on whatever platform is being used if

current drivers for the video card have been installed (if this isn’t the case

the MESA libraries are an option, but it hasn’t been necessary to explore this

option yet).

By default however, glut is not installed. Glut is the GL Utility Toolkit. It is

a cross-platform window management library that provides an extra layer to

make the process of handling window operations identical on any platform the

glut libraries are available for.

4.5.1 Installation

RPM’s for linux and Windows installers (zipped) can be found in

”GurooCD://vision-material/programs/glut/”
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Simply unpack the RPM’s on linux. On windows unzip the relevant zip file

depending on whether you are using MinGW (gcc) or MSVC++ to compile

VDebug.

• Copy the dll into c:\windows\system32.

• Copy the lib into c:\(path to compiler)\libs

• Copy the headers into c:\(path to compiler)\include

4.6 Integrated Development Environment

While it is possible to execute the Makefiles to compile VBSH4 and VDebug

from the command line, the project is much more easily managed from an IDE.

I found IBM’s Eclipse with the CDT (C Development Tools) provided a useful

development environment for both VBSH4 and VDebug on both Linux and

Windows. Useful information for both Eclipse and the CDT can be found at

[3] and [4] respectively.

4.6.1 Installation

Java

Eclipse requires the Java Runtime Environment. On the university’s com-

puter’s this is presently installed with their images. If it isn’t, an rpm (linux)

and installer (windows) can be obtained from Sun’s websites or alternatively

use those found in

”GurooCD://vision-material/programs/java/”

Eclipse

Zipped versions of eclipse for linux and windows can be found in
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”GurooCD://vision-material/programs/eclipse/zips/”

Simply unzip the file to the directory of your choice. The executable is located

in the first directory down.

CDT

Similarly, zipped versions of eclipse for linux and windows can be found in

”GurooCD://vision-material/programs/eclipse/cdt/”

Unzip in the same place as eclipse was placed in, overwriting files if necessary.

4.6.2 Using Eclipse

In windows, eclipse must be started from the command prompt to obtain the

full features made available by the MinGW/MSYS environment.

Eclipse uses perspectives to construct the appropriate window environment for

the language you are programming in. Subsequently the first thing to do after

installing is to switch to the C/C++ perspective (Window→Open Perspective).

The GuRoo project file (containing both VBSH4 and VDebug) is stored in

”GurooCD://vision-material/software/guroo stonier/.cdtproject”

Simply select File→Import and browse to the directory containing the .cdt-

project file.

Since we are not working with an automatically managed project, you will

also need to turn off the option for automatic builds (Project→Build Au-

tomatically). In windows you may also need to turn off Project Indexing

(Project→Properties) to prevent crashing. I haven’t used it in Windows ex-

tensively and am not sure what causes this yet. Compiling simply involves
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Figure 4.1: Eclipse

right clicking on the appropriate makefile target in the right hand window

(note ’make clean’ removes object files and ’make clobber’ removes objects

and executables).

Once compiled VBSH4 is ready to be loaded onto the vision board while VDe-

bug can run from either the command line or by setting up a ’run’ in the drop

down menu within Eclipse. Different runs can be made by passing different

command-line options in its setup.
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Figure 4.2: Compiling VDebug/VBSH4
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Chapter 5

Vision Debugging Software

5.1 VDebug - Overview

VDebug’s purpose is to provide a platform upon which images retrieved from

GuRoo’s camera can be retrieved and analysed, as well as providing an appli-

cation upon which image processing routines can be tested offline.

Initially VDebug’s sole mode of operation was to retrieve images from the vision

board via a serial connection ( very slow transfer ≈ 0.2Hz) and as noted earlier,

many of its features were buggy. Throughout the year these features were

recoded and various extensions added to make further testing as convenient as

possible. The remainder of this chapter will proceed to document the various

changes and additions added to the VDebug application.

5.2 Callbacks

With the late addition of the status window (top window - Figure 5.1) in 2003,

keyboard and mouse callbacks had been broken. This was a minor fix, but

essential to enable switching between modes of operation.
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Figure 5.1: VDebug

5.3 Zooming

An attempt to define a zoom factor for the rendered image last year failed to

work properly. It was also defined in the header files so zoom changes could not

be affected without a recompile. Even recompilation would not properly allow

a change in the zoom level without needing subsequent changes in the window

size definitions. I decided to implement extra routines to allow command line

parsing and added an option for passing the executable a zoom factor. The

zooming function itself was recoded to allow OpenGL and GLUT to do the

appropriate scaling/smoothing of the texture (the rendered image) and resizing

of the rendering window.

5.4 Region of Interest Definitions

A region of interest can be specified in VDebug by using the mouse to draw a

rectangle on the rendered image. This then causes the histogram and UVmap

routines to focus solely on the defined region. The addition of the zoom factor
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in the previous year broke the relative co-ordinates the callbacks were using to

specify the region - these also had to be recoded.

5.5 UVMaps

U and V definitions for red and blue chrominance (as defined in the camera

manual [11] are opposite to the usual definitions (ordinarily U is blue and V

is red). This meant the UVMap window was actually displaying a VU map.

This was corrected and now displays an accurate reconstruction of a UV map

for the camera.

5.6 Improving the Image Quality

Since we did not have a means of verifying that the image seen rendered by

VDebug was actually what the camera was viewing, there was no means of

determining whether the initial lack of image quality was being caused by

camera configuration or by rendering problems within VDebug. Checking the

problem at the camera level whilst unsure of the rendered map by VDebug

was not a logical option, so VDebug was investigated first. Two primary issues

concerning VDebug’s coding arose.

5.6.1 Pixellation

Whilst correcting the zoom levels within the code it was found that each pixel

in the image was being copied and pasted four times within the rendered image

(effectively creating a crude 2x stretching of the actual image). As a result,

the image size of 256x64 that previous theses had claimed to be receiving was

in actual fact only 128x32. The intentions behind the process were not obvious

and appeared to serve no purpose. Consequently the process was removed and

VDebug was reconfigured to render the actual 128x32 image and the zooming

factor allowed resizing of the image using the smoothing applied by the OpenGL

routines. As expected, this removed the heavy pixellation originally seen within
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the image.

5.6.2 Static Image Rendering Modules

Pixel data from images received from the vision board comes in YUV format.

VDebug has to then apply YUV→RGB transformations so that the OpenGL

libraries can render it as a texture. There were several commented transforma-

tions in the code, so the first check was to ensure the correct transformations

were being used. To do this however required having VDebug render a known

image so a definitive comparison could be mad.

To implement this, several single colour pictures were scripted in plain ascii

in a format closely resembling the information received by the application. A

module was added that would use these static files as input rather than the

serial connection and the resulting image displayed. The end result produced

images that were considerably duller (by approximately 20%) than the original

YUV colours specified in the ascii files. This implied the transformations were

not extending across the full spectrum of RGB values.

YUV↔RGB Transformations

A review of the formulas involved in YUV↔RGB transformations revealed

a lack of any standard definition. Most cameras supply pixel data in RGB

format, but for those that supply data in YUV format (as is the case for this

project) the transformations are dependant to a small degree on the algorithms

used in their respective cameras. The Omni Vision manual [11], supplies the

following transformation for its camera:

Y = 0.59G + 0.31R + 0.11B,

U = R− Y,

V = B − Y.

This yields the relative proportions required in the transformation however the

data supplied by the camera to the vision board provides YUV information
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calibrated within a 16-240 range (in fact it does not explicitly state this in the

manual, though it does note that RGB and YCrCb data is calibrated to this

range and testing has so far not proven inaccurate to any great degree with

regards to this). Consequently translation and scaling operations on the above

transformations given RGB and YUV values in the 16-240 range yield

Y = 0.59G + 0.31R + 0.11B,

U = (R− Y )/(1.38) + 128,

V = (B − Y )/(1.88) + 128,

The corresponding inverse transformations must accept the incoming YUV

data in the 0-240 range and provide RGB data to the OpenGL texturing algo-

rithm in the 0-255 range. These are given by

R = (255/224) ∗ [(Y − 16) + (U − 128) ∗ 1.38],

B = (255/224) ∗ [(Y − 16) + (V − 128) ∗ 1.38],

G = (255/224) ∗ [(Y − 16)− 0.31 ∗R− 0.11 ∗B].

Small errors were involved in the process of rounding integers that occasionally

output values marginally beyond the 0-255 range so a check was added to limit

lower and upper values to 0 and 255 respectively.

With these transformations, the test image displayed correctly and the images

received from the camera showed a significant improvement in colour intensity.

Ascii and Bitmap File Readers

Whilst developing the module to read in ascii files the, usefulness of having an

offline image reader became apparent, particularly in the light of employing,

testing and debugging the image routines in the near future. Subsequently the

ascii image reader module was formally integrated into the program, a bitmap

reader was also added and command line arguments to enable both modes of

operation also included.
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5.7 Image Processing Routines

The following routines were added to Vdebug’s functionality:

• Average Luminance Calculation

• Colour Segmentation

• Run Length Encoding

• Blobbing

• Cursory Ball Detection

5.7.1 Average Luminance

These calculations were included as a permanent feature. The current calcula-

tion is displayed in the Status window.

5.7.2 Colour Segmentation

The colour segmentation routines were initially trialled using a simple UV

lookup table that was utilised for any Y value. After running into memory

problems on the SH4 at a later stage, a pie slicing method was implemented and

retained to compare processing results on the SH4 with VDebug’s processing

routines. An illustration of the segmentation of a standard UV gradient can

be seen in Figure 5.7.2.

The gray region in the middle was classified using simple if then calls with

minimum and maximum U, V bounds. The slices in the four quadrants were

initially classified by angle, but later classified by linear equations to remove

the cost in computing trigonometric angles (in addition, the arithmetic on the

SH4 cannot use floating point values, so VDebug’s algorithms were switched

to integer calculations to match). For example, classifying the yellow region

pictured uses the following rule:
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Figure 5.2: Pie Slicing the Standard (Y = 128) UV Gradient

if( (V + 3*U < 0) && ( U > 0 ) ) then

colour = COLOUR_YELLOW

elseif ...

Colour segmentation was implemented in VDebug as a separate mode of view-

ing (along with RGB/YUV modes). An rendering of a segmented image using

the slicing algorithm can be seen in Figure 5.7.2.

Figure 5.3: Colour Segmentation Results
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5.7.3 Run Length Encoding/Blobbing

Some bugs were found in the run length encoding algorithm (problems with

ordering of tags and discarding of run lengths encompassing entire rows) and

were resolved. Otherwise the run length encoding and blobbing worked with

few difficulties.

5.7.4 Ball Detection

A very simple (and temporary) algorithm for finding the ball was implemented

at this early stage. It simply searches the blob list for the first available blob of

a previously specified minimum size with the correct colour attribute. Object

co-ordinates are saved and continually updated in the status window and a

cross-hair is placed over the rendered image at the location of the specified

object. Image processing (RLEncoding, blobbing and ball detection) can be

toggled on and off by pressing ’p’ within VDebug.

5.8 Noimage, Nodata and Default Modes

Once ball detection procedures had been implemented, three new modes were

added to the execution of VDebug. These ran VDebug in serial mode (in

connection with the vision board) requesting periodically both image and ball

data (default mode), ball data only (noimage mode) or image data only (nodata

mode).

• Default mode is useful for general debugging.

• Noimage mode allows for demonstration of the real-time tracking of

objects in the robot’s field of view and illustrates the information the

iPaq will theoretically receive.

• Nodata mode is expected to be useful for testing image processing

routines newly implemented on Vdebug that have not yet made it to the

vision board. This allows VDebug to perform all processing operations

whilst only requiring image transfer from the vision board.
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All three modes may be specified on the command line.

5.9 Command Line Arguments for VDebug

The following is simply a reference for the command line options now passable

to VDebug.

–help Help menu (this list).

–text <filename> Retrieve data from a text file (.yuv format)

–bmp <filename> Retrieve data from a bitmap (.bmp format)

–zoom <1-9> Zoom level. Take care this is not too large.

–process Process image for blob analysis (default).

–noimage Retrieve ball data only from the serial connection.

–nodata Retrieve image only from the serial connection.

–both Retrieve image and ball data from the serial connection (default).
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5.10 VDebug Code Road Map

All code relevant to building VDebug may be found on the accompanying CD

in

”GurooCD://vision-material/software/guroo stonier/”.

The relevant directories and files pertaining to the VDebug application are as

follows:

• vdebug-2 0

– vc: MSVC++ project files for VDebug,

– images: Test images.

– vdebug.c: Contains main().

– initialise.c: Contains argument processing, variable and window

initialisations.

– vddisp.c: Window display routines.

– vdcb.c: Callbacks and glut idle loop.

– vdimage.c: Image Processing Routines.

– serial.c: Serial cable communications routines.

• include

– common: Header files common to vbsh4 and vdebug ( note img-

types.h).

– vdebug: VDebug header files.



Chapter 6

The Vision Software

6.1 Introduction

VBSH4 is the software that runs on the SH4 processor and controls the variety

of components on the vision board. Its projected tasks include:

• Camera initialisation and configuration.

• Control the image acquisition process.

• Perform image processing on the images as they are received.

• Extract the relevant data from image processing (ball location, size, robot

location).

• Transfer images/data to VDebug for processing.

• Transfer data to the iPaq for integration with information from GuRoo’s

other subsystems.

As noted in Section 2.2.1, VBSH4 initially performed camera initialisation

and handled the image acquisition process. It could also pass along images

when requests were made from VDebug via a serial connection. The rest of

this chapter aims to document the improvements made to VBSH4 as well as

providing a guide to the software mechanisms used in VBSH4.
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6.2 Loading VBSH4 onto the Vision Board

Unfortunately at this stage, VBSH4 must be loaded onto the vision board

manually each time it is powered up. Details illustrating this process and can

be found in [12].

6.3 Cross-Compilers

Since VBSH4 is targeted for the SH4 processor, it must be compiled using

either the windows or linux cross-compilers. Compiling involves pre-processing

of the .S instruction files, compilation and linking. Instructions for these are

provided in the makefiles, so all that is needed is to make the appropriate target

(either from command line or by specifying one of the targets in Eclipse).

The linux cross-compiler has previously been the compiler of use, however some

issues arose with the new windows cross-compiler.

6.3.1 SH3 and SH4 Target Flags

The cross-compiler can be targeted at any one of the SH processor family.

Initially GuRoo’s code had been written for use with an SH3 processor, then

later recoded for use with the SH4. SH3 code was left intact, and compilation

for routines designed for one or the other was dependant on whether the SH3

or SH4 macro had been passed to the compiler.

Unfortunately a known bug with the windows cross-compiler causes the SH3

macro to remain permanently on for all SH targets. This caused compilation

of the SH3 rather than the SH4 code. The #if directives were recoded to avoid

using the SH3 macro.

The SH3 code could be removed - at this stage it is currently redundant as we

are no longer working with the SH3.
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6.3.2 Linking and Symbol Recognition

The windows cross-compiler uses a different output format and also differs when

recognising symbols associated with the programs functions. This required

some editing of the pre-processing files leading to a split in the make process.

Separate makefiles and pre-processing files were written for both linux and

windows compilations, whilst the source code remained identical for both.

Compilation can be initiated on the command line with either ”make win”

or ”make linux”, or alternatively by selecting the appropriate target within

Eclipse.

6.4 Memory Usage

Once the image processing routines were included in VBSH4, free memory in

the 512K SRAM became scarce. The following list represent the difficulties

that arose as well as providing some direction for future students working with

the vision board.

6.4.1 Memory Allocation

Memory on the SRAM is partitioned between memory reserved for the pro-

gram, variables and data. Allocations are defined in vbsh4-<host>-lds.S

and variables in sram.h.

There was initially approximately 256K allocated for the program itself and

another 256K for the program variables. Since the actual program is relatively

small (≈ 20K) 128K was borrowed from program space and allocated to vari-

able space. This was be done by redefining the address that the RAM PTR

points to in sram.h.

Once the extra memory was reserved, the SH4 was able to process images with

a resolution of 128x128.
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6.4.2 Lookup Tables

With little room on the SRAM, lookup tables were skipped for the present

and the simpler pie slicing algorithm used. There is the option of placing the

lookup tables on SDRAM (although slower). This will be discussed further in

Chapter 7.

6.5 Camera Configuration

There are a host of configuration options that may be set and tuned for the

camera in ov7620.c. Care needs to be taken when adjusting these parameters,

particularly with anything that redefines the image size as handling the images

in main.c requires explicit information from the programmer as to how large

the incoming images are.

If changing viewport settings, image resolution, interlacing or subsampling -

changes to IMG XSIZE and IMG YSIZE (defined in imgtypes.h) must also

be made!

6.5.1 Automatic Routines

The camera has many adjustable routines (automatic exposure, gain and white/black

pixel ratios) that can be reconfigured to provide varied image quality in return.

These were experimented with in a cursory fashion.

Adjusting the white/black pixel ratios were found to dramatically affect the

brightness of the image once the automatic routines had settled. A filter for

indoor settings was also enabled providing a slight improvement to image qual-

ity.

6.5.2 Known Issues

The other aspect of configuration applies to image dimensions and setting the

viewport. Currently there is an ongoing problem with the dimensions being
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received from the camera. The horizontal dimension is being subsampled,

although retaining its full field of view. In progressive scan mode (retrieval

of every vertical field) this causes the image to appear stretched. Current

settings use interlaced mode (alternately odd and even fields are scanned) and

process each alternate image as though it was a separate image. This is only

a temporary solution and ideally needs to be solved.

6.6 Speed

Real-time tracking of a ball was achieved very late in the project. Several

tests were made with an image at a resolution of 128x128. The first test used

vbsh4 compiled solely for image acquisition, the latter for vbsh4 compiled for

image acquisition and image processing (segmenting, RLE, blobbing and data

extraction).

Hz Processing Time/Frame

Image Acquisition Mode 2.6 N/A

Image Processing Mode 2.5 ≈ 25ms

This indicates a problem with the image acquisition mode. The camera is rated

at approximately 60Hz. Download to the vision board will consume some time,

however the frequency at which it is running is far under what we had expected.

Unfortunately there was no time to investigate this issue.
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6.7 VBSH4 Code Road Map

All code relevant to building VBSH4 may be found on the accompanying CD

in

”GurooCD://vision-material/software/guroo stonier/”.

The relevant directories and files pertaining to the VBSH4 are as follows:

• cross-sh4: Location of cross-compiler binaries.

• include

– common: Header files common to vbsh4 and vdebug ( note img-

types.h).

– sh: SH4 header files.

– vbsh4: VBSH4 header files.

• sh: Contains routines specific to the SH4 processor.

– gio.c: Vision board LED routines (used for output signals).

– intc.c: SH4 interrupt handler.

– tmu.c: SH4 Timer Unit.

– dmac.c: SH4 Dmac.

– sci.c: SH4 Serial Communication Interface routines.

– rtc.c: SH4 Timer Clock.

• ploader: Source code for the program that loads vbsh4.bin onto the

SH4.

• vbsh4-2 0

– src

∗ main.c: Primary File.

∗ isr.c: Interrupt Service Routines.
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∗ ov7620.c: Camera configuration and camera interrupt rou-

tines.

∗ vbimage.c: Image processing routines.

– vbsh4.bin: VBSH4 binary (executable).

– ploader.exe: Loads vbsh4.bin onto the SH4 via serial connection.

– entry.S: Interrupt definition file (pre-processed).

– vbsh4-lds.S: Defines memory layout on the vision board (pre-processed).
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Chapter 7

Future Work

The vision system is now in a functional state for real time tracking. Unfortu-

nately this was only reached late in the semester and optimisations could not

be implemented to improve its performance. This is an area which is critical

since both memory and speed of performance are a high priority. The following

issues are immediate areas of interest with regards to performance.

7.1 Camera Configuration

A systematic analysis of the possible configuration modes for the camera could

do alot to improve image quality. I do not think this has been done in any

depth yet - initial configuration appears simply to have been directed towards

obtaining a functional system.

7.2 Image Acquisition

Transfer rate from the camera to the control board is currently slow. An inves-

tigation into the cause of this is necessary to enable a worthwhile processing

rate (>5Hz). There is the possibility that this is being caused by the way

VBSH4 handles incoming images from the camera.
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7.3 Image Analysis

7.3.1 Lookup Tables

Lookup tables are generally the preferred method for colour segmentation.

They are customisable and fast. With a lack of memory for a suitably sized

table on SRAM, it may be worth considering placing the lookup table on the

16MB of SDRAM. The SDRAM however is significantly slower - tests should

be made to determine if using a lookup table here is more beneficial than using

alternative methods akin as the pie slicing currently implemented.

If the pie slicing method is retained (or something similar) then it should be

extended to cater for varying ranges in luminance. That is, it needs a tree-

based branching of decisions to cater for segmentation on more than a single

UV map. This is particularly important in the classification between yellow and

orange values where yellow only clearly exists on a UV map at high luminance

(Y).

7.3.2 Morphology

To date there has not been a systematic analysis of the effects of various mor-

phological routines. This would be useful to implement and optimise for the

most useful approach as the camera’s image is sometimes speckled in nature

and has difficulties in highly specular regions.

7.3.3 Blob Analysis

Currently the blob analysis is a very cursory inspection of the blob lists for a

minimally sized blob list. Ultimately this will be better replaced by routines

which fit the shape of blobs to ellipses (to detect spherical balls for instance)

as well as various rules for discarding erroneous images.
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7.3.4 Edge Line Detection

Routines for detecting edge lines will eventually have to be implemented to

recognize a playing field. They can also be used as self localisation aids when

a lack of landmark features are experienced. David Prasser has more details

on this in his thesis [14] and a few introductory routines in his code.
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Chapter 8

Visual and Inertial Fusion

8.1 Why Visual and Inertial Fusion?

The need for sensory information is critical to a human’s ability to perform any

task, trivial or complex. Our primary channel for gathering this information

is through our sense of vision. However, as with many human subsystems,

the data obtained from our sense of vision is supported by information from a

secondary source - our vestibular (inner ear) system.

Both systems have means of obtaining similar data. They are each able to

determine a vertical cue (aiding in balance) and to a lesser extent calculate

self-motion within the local environment. This appears at first be redundant

but by having both systems acting simultaneously it actually provides a very

robust solution. Where one sense may at times provide insensible information

the other sense will take priority.

For example, our vision system becomes relatively inaccurate at high linear or

angular speeds - the images our brain receives become very blurred, yet our

vestibular system is able to provide us with a reasonable estimation of our

self-motion.

In addition, it is also suspected that the brain fuses the data from both sources

in some way - though medical research cannot yet confirm or disprove this yet.

When applying these concepts to robots, the need for fusing information from
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camera (vision) and inertial measurement unit (vestibular) becomes even greater.

A robot’s senses, particular the vision sense, is still nowhere near as advanced

as a human’s. Sample rates are much slower than the human eye, and sensory

measurement is in general severely affected by noise.

The other appealing attribute of combining information from vision and inertial

sources is due to the fact that their sources of error are complimentary.

• Visual Data can only be processed at low speeds, has low uncertainty at

low speeds and suffers from low frequency noise.

• Inertial Data can be delivered at high speeds, has high uncertainty at low

speeds, but low uncertainty at high speeds and suffers primarily from high

frequency noise.

8.2 The Inertial Measurement Unit - Review

A typical inertial measurement unit consists of 3 gyrometers and 3 accelerom-

eters accounting for the three axes of rotation and translation.

8.2.1 Vertical Cue

While the linear accelerations experienced by the robot remain relatively small

in comparison to that of gravity, the resultant linear acceleration vector can

be used as a cue for the vertical. An accurate measurement of the vertical can

be useful in determing the robot’s pose and to aid in extraction of data from

the camera.

8.2.2 Drift

Given these accelerations and an initial position, it is possible to integrate and

gain an estimate velocities and positions in time. These estimations however

suffer from one important problem - drift.
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This can be observed by considering the simple problem of accelerating in a

linear direction. Sampling results in discrete dynamics for the system given by

xk+1 = Axk + Buk,[
xk+1

ẋk+1

]
=

[
1 ∆t

0 1

] [
xk

ẋk

]
+

[
∆t2/2

∆t

]
uk.

where uk is the sampled acceleration. Simulating with an acceleration of u(t) =

cos(t), yields position and velocity estimates illustrated in Figure 8.2.2.

Figure 8.1: Drift in Position and Velocity

In this example the drift is caused by the sampling, however the addition of

noise will also create unnecessary drift.

One way to correct the inevitable drift is to realign the position measurement

occasionally from an alternate source. This method was predominately used

in flight navigation before the advent of GPS.

Rotational accelerations can make use of this process by using the vertical cue

obtained from the linear accelerations to realign the rotational co-ordinates.

This however only allows correction against drift for two of the angular rota-

tions - the third can be corrected by obtaining measurements from a magne-

tometer. This process is automatically implemented within CSIRO’s inertial

measurement unit. Using the same process for the linear accelerations requires

obtaining from sources external to the unit itself.
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8.3 Vision System - Review

Information extracted from the vision system is given in terms of image co-

ordinates. These only become useful in determing object and robot localisation

if they can be accurately translated into world co-ordinates.

8.3.1 Perspective Geometry

Perspective transformations provide a convenient approximation for moving be-

tween two dimensional image co-ordinates and their corresponding real-world

point in three dimensional space. The geometry of the transformation is out-

lined in Figure 8.2.

Figure 8.2: Perspective Transformation

Relationships between co-ordinate systems is easily found using similar trian-

gles (f is the focal length),

uf
X

Z
vf

Y

Z
. (8.1)

where f is the focal length. A more detailed construction can be found in

[6]. These are in general the usual approximations used transforming world to

image co-ordinates. They remain accurate whilst the object of interest remains

close to the perpendicular line (i.e. X, Y remain small compared to Z).
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The obvious problem with the above transformation is that image and world

co-ordinates do not have a 1-1 relationship. This is exacerbated by the fact

that the GuRoo is relying on monocular vision and consequently cannot obtain

extra visual informations from another source.

8.3.2 Approximating World Co-Ordinates

Soccer fields provide certain conditions that enable quick approximations to

the transforms from image to world co-ordinates.

• Ground Plane: Objects of interest such as the soccer ball can be assumed

to lie on the ground plane at a specific distance below the level of the

camera. This fixes one of the dimensions from which the other two can

be computed.

• Landmarks: If multiple (known) landmarks can regularly be found within

the robot’s field of view, triangulation can be used to complete the trans-

formations required to determine the robot’s exact position in world co-

ordinates.

These approximations are often used to find rough position estimates on a

soccer playing robot.

8.4 Fusion Techniques

Recent papers (refer to [7, 9, 1, 16, 17, 18, 19, 20]) provide a wealth of solutions

to fusing data in a variety of environments. There seem to be three general

themes which may be of significant interest to the humanoid project.

• 3-Dimensional Feature Recovery using cues from the inertial sensors.

• Improved Estimation of Spatial Awareness by fusing initial estimates ob-

tained from both sensor systems through a series of filters or custom

made algorithm.
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• Gaze Tracking using inertial cues to predict movement of objects in the

image.

8.4.1 3-Dimensional Feature Recovery

Extracting three-dimensional information from the images will ultimately be

essential in assisting the Guroo locate a soccer ball on the playing field as well

as identifying its boundaries and any obstacles in its field of vision. If the

approximations outlined in Section 8.3.2 prove to be inaccurate (which may

be the case if the vertical distance between robot and ground plane does not

remain a constant), then alternative methods need to be found.

The problem then is one of observer design. Given image co-ordinates, can the

inertial measurements be utilised to provide the extra information needed to

estimate the state (object or robot).

This topic is covered in detail in [21]. The system in this state is observable

whilst motion occurs transverse to the radial line between camera and object.

Consequently a period of scanning in a transverse direction is needed before a

control algorithm to approach the target can be made. Refer to Figure 8.4.1

where a) illustrates the transverse movements required to solve the observer

problem and b) illustrates movement in a direction lacking the information to

solve for depth.

Figure 8.3: Observability Problem for a Monocular Camera
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A simple test example was designed in the thesis to perform a systematic anal-

ysis of Kalman Filters and Monte Carlo methods used in attempting to solve

the problem. The Kalman filter proved inaccurate in dealing with the non-

linear relationship (8.1). Even when the Extended Kalman filter was applied,

it required initialisations very close to the actual values otherwise divergence

would rapidly take the estimate away from the true state. The rest of the the-

sis formulates another approach which has been tested on robots at Stanford

University and has proven to be quite successful.

Other feature recovery techniques typically involve geometry techniques to

achieve various tasks. Lobo and Dias [9, 19, 20] provide some useful exam-

ples of ground plane recognition using inertial cues and depth maps recreated

from horizontal line detection. These appear to be better suited to offline

methods.

8.4.2 Improved Spatial Awareness Estimation

If good approximations to world co-ordinates can be retrieved from the images

using the methods in 8.3.2, then the system can be linearised in a manner sim-

ilar to the simple drift example used earlier without the need for the complex

nonlinear observation (8.1). In this situation, it is possible to generate predic-

tive estimates of the new state from both vision and inertial systems and then

fuse these estimates to provide an improved estimate.

This can be seen in [17]. Corke generates estimates for velocity by tracking

features in the image sequence and prioritising them with a statistical signifi-

cance. Extraction is achieved by tracking features with obvious corners (typical

for the terrain it is needed to work in) through the image sequences to derive

estimates for velocities. The end result is fused through a complementary filter

with the inertial accelerations to provide an enhanced estimate of velocity.

In [7] inertial and visual navigation procedures are run simultaneously and

autonomously. Key landmark features with known absolute co-ordinates are

extracted from the images to obtain estimates for position and velocity from the

vision system. Rather than using a filter, autonomous estimations are passed

from one process to the other to evaluate weighted, assisted estimations. The
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principle relies on the fact that the error sources associated with each process

(vision and inertial) are different and independent.

Other techniques adopt a common sense approach to utilising the information

from its most reliable source where appropriate - this is illustrated in [1] where

multiple contours are tracked in the image sequences. From this, a number of

pose estimates is obtained which are more or less effective depending on their

alignment with the projection axis. A Kalman filter is used to provide the most

optimal estimate from these. The process however is uncertain when there are

only small changes in the camera’s orientation from one time step to the next.

When this is the case, the inertial sensors (which do not have problems at low

velocities) are used to provide the missing information.

8.4.3 Gaze Tracking

Not necessarily a fusion technique for better estimation on its own accord, but

the technique does fuse the input to provide improvements in the methods used

by other utilities. For example, accelerational readings can be used to provide

an a reasonably accurate prediction of where objects in the robot’s field of view

may be at the next sampling point (remembering accelerational information

can be delivered at a much faster rate than vision information). This can aid

in

• Tracking of objects so they do not leave the field of view from one instant

to the next.

• Identifying a reduced search region to speed image processing times.



Conclusions

The vision system for the GuRoo has been developed this year to the point

where it can process images and retrieve object data, enabling it to track

a simple object such as a ball. It is at the stage where it can now begin

to usefully pass information to the other subsystems on the Guroo, however

the image processing routines need some refinement to make the system more

reliable in an operating environment and to optimise the speed of the routines.

Other developments include an incremental improvement the image quality,

at the debugging end as well as at the camera and successful migration to a

windows programming environment for the whole vision project - previously a

task set for 2003.

Due to the unforeseen obstacles, the initial goal of moving towards fusing iner-

tial and visual data for a better spatial awareness could not begin on a practical

side, however the collection of papers and summary provided here should assist

in directing future work in the right direction as quickly as possible.
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