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Abstract

This paper describes experiments conducted in or-
der to simultaneously tune 15 joints of a humanoid
robot. Two Genetic Algorithm (GA) based tuning
methods were developed and compared against a
hand-tuned solution. The system was tuned in or-
der to minimise tracking error while at the same
time achieve smooth joint motion. Joint smooth-
ness is crucial for the accurate calculation of on-
line ZMP estimation, a prerequisite for a closed-
loop dynamically stable humanoid walking gait.
Results in both simulation and on a real robot are
presented, demonstrating the superior smoothness
performance of the GA based methods.

1 Introduction

The University of Queensland GuRoo humanoid project was
started in 2001 with the aim of developing a medium sized
humanoid robot to be used for research. The current robot
can perform a number of basic tasks, such as stand on one leg,
crouch, bow, and can also walk. Two walking gaits have been
developed so far with GuRoo now able to walk unassisted.

1.1 Current gait (open-loop, off-line ZMP)

GuRoo currently walks using a so-called Zero Point Moment
(ZMP) stable gait. The ZMP is the point on the ground plane
where the total forces and moments acting on the robot are
zero. A biped robot is dynamically stable if the ZMP lies
within the support polygon [Vukobratovic and Juricic, 1969].

The method for generating the ZMP stable gait revolves
around the use of parameterised loci of foot movement, where
the parameters are determined using a Genetic Algorithm
[Wyeth et al., 2003]. This process was performed off-line
using a dynamic simulation of GuRoo. The gait generated is
run on the real GuRoo robot in an open-loop fashion, with
the gait generating the desired joint velocities. The ZMP is
therefore not currently calculated on GuRoo.

Figure 1: GuRoo.

1.2 Future gaits (closed-loop, on-line ZMP)

It is of course more desirable to have a closed-loop gait,
where the ZMP is calculated on-line and therefore the robot is
capable of reacting to any external force, or instabilities (the
open-loop gait is not perfect). The calculation of the ZMP
can be simplified by assuming a point-mass model where the
calculation is performed at the centre-of-mass of each link.
This requires a knowledge of the forward kinematics to cal-
culate the position of each link, the joint positions (currently
available using encoders), the pose of the robot (roll and pitch
angles) and the accelerations at each link.

The pose (roll and pitch angles) and the acceleration of a
single link may be determined using an Inertial Measurement
Unit (IMU) which is strapped down to the link in question.
Forward kinematics can then be used to derive the pose and
accelerations of the remaining links.

GuRoo has recently been fitted with a low-cost IMU (the
EiMU from CSIRO). This device uses a 3-axis rate gyro and



3-axis accelerometer to calculate roll and pitch angle infor-
mation, along with the acceleration information needed for
on-line ZMP calculation. The unit is mounted in the head of
GuRoo.

1.3 “The shakes”

A significant problem with on-line ZMP calculation is mea-
surement of link accelerations. Until now, the PI joint con-
trollers have been hand-tuned to minimise tracking error.
However, this has been at the expense of joint error smooth-
ness. The hand tuning of these controllers has resulted in a
system that is good enough for GuRoo to walk successfully,
but has resulted in a robot with a high-frequency shake. This
shake is too small to see by looking at GuRoo, but can be
easily heard as a rattling noise. The result of this shake is
extremely high oscillatory accelerations at each link, making
the resultant ZMP values unusable. One solution is to heav-
ily filter the acceleration values prior to the ZMP calculation.
However, a more elegant solution is to eliminate the shakes.

High-frequency shaking is also bad for GuRoo mechanical
health. A smoother robot will last longer.

1.4 Paper overview

The remainder of this paper deals with the problem of achiev-
ing smooth joint motion in order to guarantee smooth link ac-
celerations, and hence a usable (low noise) on-line ZMP es-
timate. The following section briefly summarizes the GuRoo
development platform, including the hardware, control archi-
tecture and the simulator. Section 3 then describes the prob-
lem of tuning the joint controllers in order to achieve a smooth
motion and outlines a potential solution to this problem using
a Genetic Algorithm. Section 4 describes the implementation
of the GA using the simulation environment, and shows the
results. Sections 5 and 6 show some experiments on the sim-
ulated and real robots respectively using the gains generated
by the GA. Finally, Section 7 lists some conclusions.

2 The GuRoo Development Platform

The GuRoo is an anthropomorphic robot with 23 degrees of
freedom. GuRoo is 1.2m tall, weighs 38kg with batteries
and is constructed out of aluminium. This section briefly
summaries the GuRoo development platform. A detailed de-
scription of the GuRoo robot and simulator may be found in
[Wyeth et al., 2001; Kee et al., 2003].

2.1 Joints and actuators

Figure 2 shows a CAD model of GuRoo indicating the loca-
tion of the 23 joints. The unnaturally wide legs are the result
of the length of the actuators used for the ankles, knees and
hips. The multiple degrees of freedom found in the human
hips and shoulders (ball joints) are implemented in GuRoo
using small sequential links. Table 1 outlines the type and
number of all joints. Brushed DC motors are used to power
the joints of the lower limbs and spine (capable of maximum

Figure 2: GuRoo: CAD model (left), location of the 23 joints
(right).

continuous output torque of 10Nm with a maximum speed of
5.2rad/s at 2A current consumption). All these joints use the
same motor and gear-head combination (these motors com-
prise 33% of the weight of the robot). The joints of the upper
body (arms, shoulders, neck and head) are actuated by large
RC servo motors (capable of 1.4Nm output torque at speeds
of 5.2rad/s).

| Joint | Type | Axis | No. |

Head/Neck | RC Servo Pitch + Yaw 2

Shoulder RC Servo Pitch + Roll 2x2
Elbow RC Servo Pitch 2x1
Spine DC Brushed | Pitch + Roll + Yaw | 3

Hip DC Brushed | Pitch + Roll + Yaw | 2x3
Knee DC Brushed | Pitch 2x1
Ankle DC Brushed | Pitch + Roll 2x2

Table 1: Summary of the 23 joints ("2x” indicates left and
right side).

In the unpowered state and when lifted from the ground,
the legs will naturally swing together (due to the centre of
mass of the leg being located outside the line of the hip joint).
To overcome this problem, two torsion springs are located
in parallel with the hip roll actuators (1INm/degree). These
springs are set such that when unpowered, the legs of the
robot hang straight down.



2.2 Control architecture

The control architecture consists of six distributed joint con-
troller boards and either a Compaq iPaq PDA or standard PC
as the central controller (Figure 3). The six joint controller
boards are based around the TMS320F243 DSP from Texas
Instruments. These boards communicate via the CAN Bus.

CAN Bus
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Lapt()p H[ Right Hip Controller ]
H[ Left Hip Controller J
Serial
1—}‘ Right Leg Controller ]
Head + Arms «—
Controller H[ Left Leg Controller ]

Figure 3: The distributed control architecture.

Control of the 15 DC brushed motors is split evenly be-
tween 5 joint controller boards (known as motor controller
boards), each being responsible for 3 motors. All power elec-
tronics has been custom designed and implemented on the
joint controller boards. Each board reads the current position
of its joints and implements local PI controllers.

The sixth joint controller board controls the position of the
upper body RC servos, and is known as the servo controller
board. The central controller calculates the desired velocities
for each joint and sends them to the servo controller board via
an RS232 serial link. These commands are then forwarded
onto the motor controller boards via the CAN Bus. Finally,
the EIMU module also sends its data out on the CAN Bus.

2.3 The simulator

The GuRoo simulator is an important part of the overall
GuRoo development platform. Its development has been the
key to the overall success so far of the GuRoo project.

The simulator is based on the DynaMechs dynamic sim-
ulation package [McMillan, 1995] which uses the OpenGL
3D graphics libraries. The basic DynaMechs package has
been adapted to include the specific characteristics of GuRoo.
More specifically, the distributed control architecture is fully
simulated including simulations of the joint controller boards
and CAN Bus communications (including delays). The mod-
ified Denavit-Hartenburg parameters and CAD surface area
provide the graphical representation of the GuRoo simulation
(Figure 4).

The choice of DynaMechs and hence OpenGL means
that the simulation runs on multiple platforms such as MS-
Windows, Linux, and Solaris.

3 Controller Tuning

The remainder of this paper will deal with the lower 15 joints
only, ie. the high-power DC brushed motor joints (spine, hips,
knees and ankles).

Figure 4: Screen shot of the graphical part of the GuRoo dy-
namic simulation.

3.1 The problem

The aim of the GuRoo project is to create a humanoid robot
that can perform human-like motions and hence tasks, such as
walking, crouching, reaching, etc. In order for these motions
to be realised, it is essential that the lowest-level controllers,
the joint controllers, perform well.

Each joint controller is implemented as a simple PI con-
troller around joint velocity. Each joint must therefore be
tuned, i.e. optimal values of the P and | gains must be found
for each of the 15 joints.

It should be realised that all joints must remain active dur-
ing all phases of a motion. Even the act of standing up straight
and remaining still requires all joints to be active. GuRoo
simply slumps to the floor if it loses power! This implies that
all 15 joint controllers must be tuned simultaneously in or-
der to achieve the best outcome. An oscillation in one joint
(because its controller is poorly tuned) will effect the perfor-
mance of every other controller due to subsequent vibration
and motion (generated at that joint) being transmitted through
the robot to all the other joints.

3.2 Gain scheduling

All leg joints (ankles, knee and hips) currently use a single
set of gains for both the supported phase (where the leg is in
contact with the ground) and the unsupported phase (where
the leg is in the air and not in contact with the ground). The
loads experienced at the joints during these two phases are
quite different, and so gain scheduling seems an obvious and
natural way of dealing with these differences. That is, we will
use one set of gains for the supported phase and another set
for the unsupported phase.



3.3 Reducing the problem

We are interested in tuning 15 joints simultaneously, each
with two gains (a P and an | gain), making 30 gains in to-
tal. However, there is symmetry in GuRoo, and the legs can
be considered to be identical. Hence, the problem maybe re-
duced to finding 18 gains (6 for the spine and 12 for a leg). If
we are to use gain scheduling on the legs then we must find
30 gains (6 for the spine and 24 for a leg).

In order to simplify the problem, we can restrict the pos-
sible values of the gains to a range that we know is roughly
correct. It is unrealistic to tune all 15 controllers simultane-
ously without restricting the values of the gains. The robot
must actually walk most of the time for us to perform the tun-
ing experiments.

The PI controllers are implemented on the motor controller
boards. These boards have limited processing power and
hence the controllers have been implemented using a bit shift-
ing strategy for speed. Hence, the P and | gains are not floats,
but integers with unit values of 1, 2, 4 and 8 which corre-
sponds to bit shifting values of 0, 1, 2 or 3. This allows gains
to be represented as a 2-bit number. When the output of the
P1 control law is computed, the proportional error and inte-
gral error are shifted the number of bits corresponding to the
P and | gains respectively. We know from experiments that
gains set in this range will allow GuRoo to walk (at least very
roughly).

3.4 Genetic algorithms for controller tuning

There are numerous traditional methods available to the con-
trol engineer to tune PI controllers. A vast amount of material
has been published in the area. A summary of the most popu-
lar techniques is given in [O’Dwyer, 2003]. It should be noted
however, that most of these deal with the tuning of a single
controller in isolation.

Since the early 1990’s, Genetic Algorithms (GAs) have
been successfully used to tune P1 and PID controllers [Porter
and Jones, 1992; Wang and Kwok, 1994; Herrero et al.,
2002]. As with more traditional approaches to tuning, most
of these GA methods have only been applied to single con-
trollers. However, [Bomfin et al., 2000] use GAs to simulta-
neously tune multiple power system damping controllers.

The remainder of this paper demonstrates the use of Ge-
netic Algorithms to simultaneously tune the 15 high power
joints on GuRoo. Both gain scheduled and non-gain sched-
uled approaches are investigated with both being compared
with the current hand-tuned solution.

4 Tuning

The current focus of GuRoo research is to develop a highly
stable walking gait. Therefore the GA was run on the most
stable walking gait so far developed for GuRoo [Wyeth et al.,
2003]. This gait was generated based on a method using the
parameterised loci of foot movement, where the parameters
of motion were themselves determined suing a GA.

The GuRoo simulator provides the perfect environment on
which to run a GA. Running the GA on the real robot would
be difficult due to the constant need to move the robot back
to the starting position every run and the problem that a poor
run, where the gains are sub-optimal, may result in a highly
unstable robot, which may fall over.

4.1 Fitness function — tracking and smoothness

As with all applications of GAs the key to success is find-
ing the best fitness function that describes the performance of
the system. In the case of GuR00’s joint controllers we are
interested in optimising two measures, tracking performance
(minimising error) and tracking smoothness. The biggest sin-
gle problem with the hand-tuned controllers was the noisy
tracking performance which would give the robot a high-
frequency shake.

The overall fitness function, f, used was therefore based
on two separate fitness functions based on tracking error (f;)
and smoothness (fs):
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where pé”(t) is the joint tracking error of joint j at time t.

4.2 The GA and its parameters

The type of GA used for tuning was a so-called ‘simple GA’
described in [Goldberg, 1989]. The GAlib C++ library was
used to run the GAs [Wall, 2000]. A simple GA uses non-
overlapping populations and optional elitism, and creates an
entirely new population of individuals each generation. The
GA parameters used were as follows:

e Population size: 100

e Number of populations: 100
e Crossover: 60%

e Mutation: 10%

e Genome: a 36-hit long bit string of concatenated 18 2-
bit gains for the non-gain scheduled method and a 60-bit
long string of concatenated 30 2-bit gains for the gain
scheduled method.

The GA was run over a complete walking cycle which con-
sists of eight elements:

right foot strikes ground

right foot on ground
left foot toe off
left knee straighten



left foot strikes ground

left foot on ground

right foot toe off

right knee straighten

However, the simulation begins with the robot in the standing
position. This pose is not part of the walking gait and so the
robot must first move from the standing position into a walk-
ing pose. This takes place using a extra two elements. The
first cycle of the walk is therefore ‘non-standard” and hence
the fitness function is only computed over the second walk
cycle. Each walk cycle takes 6 seconds to run on a 2GHz PC
(real-time) and so a complete run of a single GA individual
takes 12 seconds. The total time to run the GA as described
above was 1000 minutes (16.6 hours).

Note that an exhaustive search for the optimal gains would
take a little over 68,000 years to complete running on the
same PC.

4.3 GA results

Figure 5 shows how the two GA (gain scheduled and non-gain
scheduled) runs converged. This figure clearly shows that
the non-gain scheduled GA performed slightly better than the
gain scheduled GA, and that the non-gain scheduled GA con-
verged sooner, at 18 generations, compared with 59 genera-
tions for the gain-scheduled GA. It was expected that conver-
gence would be quicker for the non-gain scheduled GA since
the genome is shorter (36-bits compared to 60-bits). How-
ever, it is interesting that the non-gain scheduled GA actually
performs better than the gain-scheduled GA. This is probably
again due to the smaller genome.
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Figure 5: Convergence of the GA.

An interesting feature of both GAs is the fact that the mean
of the generations did not converge to the max (Figure 5).
It improved initially, but then showed no real signs of im-
provement. This is probably due to the fact that the GAs are

already starting from a very roughly tuned point (due to the
constraints applied to the gain values), and not a truly random
point.

5 Simulation Experiments

The gains generated by both GA tuning methods (gain sched-
uled and non-gain scheduled) and the original hand-tuned
gains were run on the simulated GuRoo over a number of
walking cycles.

The results for all three cases are compared in Table 2. This
table gives the break-down of the components of tracking and
smoothness performance. From this table it can be seen that
all three tuning methods track with approximately the same
accuracy, with the non-gain scheduled GA method perform-
ing best and the other two equally well. However, this is
not the case for the smoothness measure which shows that
both GA tuning methods are far superior to the hand tuning
method. Note that the non-gain scheduled GA performed best
with respect to smoothness. On both tracking and smoothness
the non-gain scheduled GA performed best.

Tuning Method Tracking | Smoothness
%) 63)

Hand-tuned 0.116 0.152

GA no gain-scheduling | 0.122 0.310

GA gain scheduling 0.115 0.305

Table 2: Simulation results (showing fitness measures) for
three tuning methods tried (high number is better).

Figure 6 shows a comparison of the joint error tracking
performance for two joints during a section of the simulated
walk. The top figure shows the right knee joint and the bot-
tom, the right ankle-pitch joint. The section of the walk cov-
ered by this figure is the start, which encompasses the motion
that takes the robot from the standing position into the walk.
The hand-tuned run exhibits a large error starting at the 1 sec-
ond mark for the knee, and the 2 second mark for the ankle.
These large errors are not present in both GA runs showing a
superior tracking performance in certain situations.

Figure 7 shows a comparison of joint error smoothness for
the same two joints (the right knee and right ankle-pitch). It
is clear that both GA methods have produced far smoother
results when compared to the hand-tuned method.

Finally, Figure 8 shows a comparison of the ZMP during
four complete walking cycles for each of the three tuning
methods. It can be seen that the hand-tuned method has pro-
duced a very noisy ZMP estimate with both GA methods pro-
ducing much cleaner estimates. It should also be noted that
during the hand-tuned run, the robot begins to walk off in the
positive y-direction (this is clear at the 1m mark x-position).
This is probably due to the high-vibration shake allowing the
robot to twist slightly on the floor.
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Figure 6: Comparison of joint error during simulated walking
for the right knee (top) and right ankle (bottom).

6 Real Robot Experiments

The gains generated by the GA tuning method (non-gain
scheduled) and the original hand-tuned gains were run on the
real GuRoo robot over a number of walking cycles. We have
yet to implement GA with gain scheduling on the real robot.

A comparison of the results is given in Table 3. This ta-
ble gives the break-down of the components of tracking and
smoothness performance. From this table it can be seen that
the GA tuning method with no gain scheduling performs best
with respect to tracking and smoothness.

It is interesting to note that the results differ significantly
from the simulation case in that during the real experiments,
the tracking performance was much worse, but the smooth-
ness performance was slightly better. This can probably be
explained by the fact that the real robot is much more com-
pliant than the simulation model and hence ‘wobbles” more
when walking. This compliance has a natural smoothing ten-
dency (hence smoother operation) but makes joint control
more challenging (hence larger tracking errors).
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Figure 7: Comparison of joint error smoothness during sim-
ulated walking for the right knee (top) and right ankle (bot-
tom).

Figure 9 shows a comparison of the joint error tracking per-
formance for two joints during a section of the real walk. The
top figure shows the right knee joint and the bottom, the right
ankle-pitch joint. This is the same section of the walk used
for the simulation results above. The figure for the right ankle
shows a remarkable difference between the tuning methods.
The comparative gains for this joint were P =1, | = 4 for
the hand-tuned method and P = 2, | = 1 for the GA non-gain
scheduled method. This difference in gains produces a very
different result.

Figure 10 shows a comparison of joint error smoothness
for the same two joints (the right knee and right ankle-pitch).
As with in simulation, the GA method produced smoother
results when compared to the hand-tuned method (although
the improvement is not as obvious as in the simulation).
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Tuning Method Tracking | Smoothness
(@ (@
fr fs
Hand-tuned 0.009 0.539
GA no gain-scheduling | 0.011 0.699

Table 3: Real robot results (showing fitness measures) for two
tuning methods tried (high number is better).

7 Conclusions

This paper has described experiments conducted in order to
simultaneously tune 15 joints of a walking humanoid robot.
Two Genetic Algorithm (GA) based tuning methods were de-
veloped and compared against a hand-tuned solution. The
first GA method used a single set of controller gains for all
phases of the walking gait. The second method used gain
scheduling and contained two sets of gains for each of the leg
joint controller (one set for the supported phase and one set
for the unsupported phase).

The system was tuned in order to minimise tracking error
while at the same time achieve smooth joint motion. A fitness
function was developed that incorporated both tracking error
and smoothness performance. The GAs were run off-line us-
ing a humanoid simulation environment.

Simulation experiments were then conducted to compare
the performance of the two GA tuning methods and the orig-
inal hand-tuned method. The results of these experiments
showed that both GA methods performed as well as the hand-
tuned method (with one performing slightly better) while at
the same achieving a significantly better smoothness perfor-
mance.

Experiments on the real robot again showed that the GA
method was superior, but the results differed significantly
from the simulation case in that during the real experiments,
the tracking performance of all methods was much worse, but
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Figure 9: Comparison of joint error during real walking for
the right knee (top) and right ankle (bottom).

the smoothness performance was slightly better.
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