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Abstract

Balence control analysis of humanoid robot based on
Zero Moment Point{ZMP) feedback control is pre-
sented. ZMP is mostly used as standard evaluation
of stability of humanoid robot, and balance control is
conducted by controlling ZMP position so that it is al-
ways n convex hull of the foot-support area. To sim-
plify design of controller, it is mainly used one mass
inverted pendulum model which represents lower body
of humanoid robot model. However this model causes
system become non-minimum phase and performance
limitation of system is occured, because of the pres-
ence of Waterbed effect in frequency domain and un-
avoideble undershoot in time domain. This paper
proposes ZMP feedback control using two masses in-
verted pendulum model which represents lower and
upper body of humanoid robot and creates minimum
phase system. The design of controller based on pro-
posed model using Linear Quadratic by considering
output is described and confirmed using simulation.

1 Introduction

Zero Moment Point(ZMP) is mostly used as stan-
dard evaluation of stability of humanoid robot and
firstly introduced by Vukobratovic [1]. ZMP is de-
fined as the point on the floor at which the moment
T : (T;,T,,T;) generated by the reaction force and
the reaction torque satisfies T, =0 and T, = 0. If
ZMP is in convex hull of the foot-support area then
humanoid robot can stand or walk without falling
down. Thus to mantain the balance of humanoid
robot, it is usually conducted by controlling the po-
sition of ZMP so that it is always in convex hull of
the foot-support area.

Most of the research to mantain the balance of hu-
manoid robot is conducted by planning the desired
trajectory of ZMP such that it is always in convex
hull of the foot-support area while humanoid robot
stands or walks, then the controller is designed so
that the actual value of ZMP realizes the desired tra-
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jectory. The planning of desired trajectory of ZMP
can be carried out both of offline or online.

To simplify the design of the controller and to min-
imize the calculation time during real time applica-
tion to mantain the balance, it is mainly used one
mass model of inverted pendulum which represents
the lower body of humanoid robot model. Thus, the
balance control of humanoid robot is conducted by
moving the waist of humanoid robot so that the ac-
tual position of ZMP tracks the desired position of
ZMP, while the upper body of robot is not move
too much. However using cne mass model inverted
pendulum model to design the controller causes the
system become non-minimum phase and the limita-
tion in the performance of the system is occured as
will be described in this paper. Thus one mass model
of inverted pendulum is not appropriate and to over-
come this problem, this paper proposes the balance
control of humanoid robot based on ZMP feedback
contro!l using two masses model of inverted pendulum
which will create minimum phase system. Based on
the proposed model, the controller is designed using
Linear Quadratic optimal control and confirmed by
computer simulation.

2 Preliminaries
In this section, the concept of Sensitivity function

- and undershoot in control theory is described. This

concept is used to show the limitation of the perfor-
marnce in feedback control.

General block diagram of control system can be
shown in Fig. 1. From this block diagram, the trans-
fer function from reference r, disturbance d, sensor
noize n to error e can be described as follows,

1 1
Ets) = 1+ C’(s)P(s)R(S) 14 C’(s)P(s)D(S-) +
C(s)P(s)

T C@PE

From the expression above, Sensitivity function of
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Figure 1: General block diagram of control system
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Figure 2: Characteristics of Sensitivity function

feedback system is defined as,

1 1

SO = T e@PE - 1T LE)

Sensitivity function maps the reference and distur-
bance to the error of the system, and has relation
with closed-loop performance and robustness prop-
erties of the system. In above equation, L(s) :=
C(s)P(s) is open loop transfer function.

The characteristics of Sensitivity function S(s) is
shown in Fig. 2. From the figure, the characteristic
can be divided to 3 zones in frequency domain. In
zone I, ||S(jw)|| < 1 comprises, the error decreases
about the reference which results the output of the
system approaches the reference. In this zone, the
reference to the system can be tracked quickly with-
out problem. In zone II, {|S{jw)|| > 1 comprises, the
error increases about the reference which results the
output of the system is far from the reference. Thus,
overshoot will be occurred since the presence of feed-
back. On the other hand, in zone III, ||S(jw)|| =1
comprises, the reference will directly appear in the
error which corresponding to system being uncon-
trolled. Thus to make the system can track the ref-
erence quickly, it is needed to make the Sensitivity
function S(jw) < 1 as possible.

2.1 Waterbed Effect for
Phase System

By means of constructing the controller, the form

of Sensitivity function S(s) can be restructed, how-

ever in the case of non-minimum phase system, i.e.

Non-Minimum

QOutpu COversheot

ref

Time

Figure 3: Undershoot and Overshoot

open loop transfer function of system has unstable
zero, decreasing the magnitude of Sensitivity func-
tion in one area will increase the magnitude of it in
other area. This is known as waterbed effect which
is shown in the following theorem.

Theorem 1 [3/

Suppose that plant P has o zero at z with Re(z) > 0.
Then there exist positive constants ¢; and ¢y, depend-
ing only on wy, we, and 2, such that

c1log My + calogMy > log|Sep(2)~1 2 0. (1)

where

z = po+jwo Unstable zero,

My = max [SQGw)| = [IS(Gw)llus,
wy Swwy

My = max|S(jw)| = [18(w)lleo-

O
In general, Sensitivity function S(s) can be written
as the product of all-pass and minimum phase trans-
fer function as,

S(s) = Sa;p(s)smp(s): (2)

where S,,(s) is all-pass transfer function and Syp(s)
is minimum phase transfer function. The all-pass
transfer function consists of unstable zeros of Sensi-
tivity function S(s}, has magnitude 1 at all frequen-
cies and can be written in the form,

_(=sells—s) -
Sl = )

2.2 Unavoidable Undershoot for
Minimum Phase System

In thme domain, the response of the system gener-

ally can be shown in Fig. 3. Suppose that transfer

function from reference to output of the system is

described as follows,

_ N(s) _ k(s 21)(s+22) - (s + 7m)
D(s)  (s+p)(s+p2}--(s+pa)

Non-

H(s)

3
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where it is assumed that k > 0 and n > m.

Using final value theorem and initial value theorem of
Laplace transform, the steady state and initial out-
put of the system can be found as the following,

= (3)1 . N{s)
y(co0) = dmspes T D)
— k21z2 Zm
pip2- J\F(l
/ = sN(s}1 sN(s)
y(OJ") - 81_,[1010 D(s) s BE{.!O D(S)’
0t = tim oS NEI NG

oo’ D(s) s sox  D(s)
k

If all the poles and zeros are stable, which results
p1pe---Pn > 0 and 2125 -- -2, > 0, then for positive
reference value, the initial velocity, acceleration and
50 On are zero or positive as shown below. In this
case, the happening of undershoot in the system can

not be determined.
y{o0)
5(07)

kzlzg e Zm
P2 Pn
0,

>0,

0N = k>0,

If all the poles are stable and odd number of ze-
ros are unstable, which results p1ps---pp, > 0 and
Z129 - - - zn < 0, then for negative reference value, the
initial velocity, acceleration and so on are zero or
positive as shown below. In this case, undershoot of
the system is inevitably occured.

kz1zp+  zm
o0) = ~m—— <0,
y( ) mp2--Pn
y(0+) = 0;

yUOY) = k>0

If all the poles are stable and even number of ze-
ros are unstable, which results p1p2---p, > ¢ and
z122 -+ zn > 0, then for positive reference value, the
initial velocity, acceleration and so on are zero or
positive as shown below. In this case, the happening
of undershoot for the system can not be determined.

kzi2o -2y,

o0) = —2m oS
(o) PiP2 Pn
#(07) = 0,

Y 0%) = k>0

Figure 4: One mass model of ZMP feedback

control

From the above results, for non-minimum phase sys-
tem with odd number of unstable zeros, undershoot
of the system is always occurred and can not be
avoided.

3 Performance Limitation in One Mass
Inverted Pendulum Model

To simplify the design of the controller, it is mainly
used one mass mode] of inverted pendulum which
represents the lower body of humanoid robot model.
The balance control is conducted by moving the
waist of the robot so that the actual position of ZMP
tracks the desired position of ZMP. In this case, effect
of the motion of upper body of humancid robot is as-
sumed to be neglectible. This model can be shown in
Fig. 4, linearizing the equation of motion around ori-
gin results the following state space representation,

alo] = [oo]la]+ Ml
P [¢ o]{g]+[—l°/g]u-

In this model, the input to the system is angular
acceleration of link and the output of the system is
the position of ZMP p. The actual input to link
is torque instead of acceleration, however since the
actual model of one mass inverted pendulum can be
linearized using feedback linearization, considering
the input to the system as acceleration is similar as
considering torque to actual system.

il

The transfer function of this system can be described
a'S!
gl — 252 .
P(s) =
() = £ )
This sytem has two zercs and one of the zeros is
unstable, thus it is non-minimum phase system.
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3.1 Waterbed Effect for One Mass Inverted
Pendulum Model
Since this system is non-minimum phase system, the
form of Sensitivity function can not be freely con-
structed since minimizing the magnitude of Sensi-
tivity function in one frequency range will make the
" magnitude of it become very large in the different
frequency range. This effect is called waterbed ef-
fect, using Theorem 1 which is described in the pre-
vious section, the resulted limitation can be shown
as follows. Suppose that the Sensitivity function is
minimized between frequency range 0 and wnqx, and
the maximum magnitude of Sensitivity function in
this range is ||S{jw)||w,, while the maximum mag-
nitude of Sensitivity function in overall frequency
range is |[S(jw}l|co. Then the relation between wy,z,
[|15(iw)llw,. and [|S(jw)]lec can be found by the fol-

lowing relation,
{
arctan(wmaﬂ / 5)

T arctan(umest] <)
1 }2 — arctan{wWmaz p

115 () fena
(6)

Since ||S(jw){lw, € 1, the maximum magnitude
of Sensitivity function over all frequency ranges
[|8(jw)l|eo increase, thus it will make the response of
the system in other frequency ranges become worst.
This relation is shown in Fig. 5. Making the track-
able frequency range between 0 and 10 [rad/s], and
18w v, = —1.0 [dB] will make the maximum
magnitude of |[S(jw)|lec in other frequency range
become bigger than 4 [dB]. The more trackable
frequency range is increased or {|S(jw)||.,, is min-
imized, the bigger {|5(jw)||oo will become.
IS{e)ll. [3B]

nﬂwmmz{

S ()t [AB]
0

“RLatDvaD

[
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Figure 5: Relation between wmqz, S{(jw)|lu,, and
[|S(jw)|leo for ome mass model

3.2 Unavoidable Undershoot for One Mass
Inverted Pendulum Model

One mass inverted pendulum model which is used

to control ZMP of robot has two zeros which one

Figure 6: Two masses model of ZMP feedback con-
trol

of this zeros is unstable. Thus from the result in
the previous section, undershoot in this system is
inevitably occured no matter what kind of feedback
controller is used.

The physical interpretation of this undershoot can be
described as follows. Suppose that robot in the rest
position, to move the position of ZMP into ahead
of robot need to actuate robot links to move ahead,
however at this time the position of ZMP moves to
the backward.

4 ZMP Feedback Control using Two
Masses Inverted Pendulum Model

Since limitation in the control performance using
one mass inverted pendulum model to conduct ZMP
feedback control is occured, this paper proposes two
masses inverted pendulum model which is shown in
Fig. 6. This model can tipify the lower and the upper
body of humanoid robot. Linearizing the equation
of motion around origin results the following state
space representation of the system,

df @ (L § 8 0
ceray [ 3181 = (R 41121 (5]
cib P = [ C 0}[g]+Du,

(M
where, 8 = [0,,6:)7, u = [u;,us]” and p are
state, input and output of the system, and define
q = [6,6]T. Similar to one mass inverted pendulum
model, the input to the system is angular accelera-
tion and the output of the system is position of ZMP,
and matrices parameter in the above equation have
the following form,

c, {m1+ ma)li + maly malz ]

my +me 1+ msz
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Cmali ma(h 462 ma(h + )b

D
(m1 +ma2)g (my +ma2)g

4.1 Zero Analysis

The limitation in the performance of feedback con-
trol is happened because of the existence of unsta-
ble zero in the open loop transfer function of the
system. Thus, it is needed to confirm that the pro-
posed model of ZMP feedback control does not cause
the system become non-minimum phase system. It
can be examined by analysis of zero of the system.
However since the proposed model consists of two in-
puts, the concept of zero in multi input multi output
(MIMOQ) system is different from single input single
ouput(SISQ) system. The zero of the system actu-
ally can be found by transforming system’s transfer
function to Smith-McMillan form.

Since the controller can be selected arbitrary, pro-
vided the controller does not have unstable zero, the
zero analysis of open loop transfer function can be
conducted by considering the input output transfer
function of the plant only. The input output transfer
function of the proposed model can be described as

follows,
P(s) = [ ] . 8)

This transfer function has similar Smith-McMillan
form of transfer function which can be described as

4,
o).

where, ~ means similar and § is defined as,

das® + 9
52

di182 4+ 01
po)

5

P~ M) = | & ©)

1 .
Tt m)s it omgEme, kA
2,2
(m1+ma)gly—mifs ' _
—matmag — if my #mz, l2=0,
2g if mp = ma, lg aé 0,
iy —13s2 .
gy if m1=mz, =0

9
From the above result, it can be concluded that pro-
vided that [» # 0, (unstable) zero of the system
does not exist, thus waterbed effect and undershoot
limitation does not occured. The case when I = 0
means that the model is represented by one mass in-
verted pendulum model, and the limitation in the
performance is occured as described in the previous
section.

il 9 A 00 q B
az = —COO Z+—D
v 1= 0 0 v 0
q
y =10 10]]| =z},
v

where, z := [(p"®/ — p) dt is the integration of er-

ror between desired value and actual value of ZMP
and used to track the desired position of ZMP. And
v i= [0y dt is the integration of second link an-
gle and used to make the posture of the robat be-
come straight in steady state. Here, define 1,
[0 1 0 0]JandaT:=[¢gT z v).

4.2 Controller Design

Since there is feedthrough term in the system, to
control the output of the system, it is needed to con-
sider the output as well as the state and the input to
increase the performance of the output. Thus in de-
signing the controller, beside using the general Linear
Quadratic controller with state and input as objec- |
tive function, this paper proposes the designing of
the controller using the following objective function,

J= f {p(OTWp(t) + (1) Qu(t) + u(t)” Ru(t)}dt,
’ (11)
where, p is the position of ZMP which is output of
the system. And from the definition of output p :=
Cx + Du, the objective function can be rewritten
as,

J= f = (m(t)TQ:r:(t) + 22(t)7 Su(t) + u(t)” Ru (t)) .

where, the matrices parameter used above can de-
scribed as,

T - -
Q = [CEVC g]+Q, R=DTWD+R,
CTWD
s - [own).

"To find optimal solution by solving Riccati equation,

Since the purpose of ZMP feedback control is to make

the actual position of ZMP can track the desired po-
sition of ZMP, the problem can be formulated as
servo system. Thus suppose that the desired posi-
tion of ZMP is p™®/ | then by adopting new state into

original state space representation of the system, the -

following extended system will make the actual po-

sition of ZMP can track constant reference of ZMP
pre f ,

2441

it is needed to transform the above objective function
to the form of standard Linear Quadratic objective
function. And it can be done by introducing the
following transformation,

z2'Qx + 2 Su+u Ru=z"(Q- SR 'ST)x+
(u+RIST2)"R(u+ R71S72).

Substituting this transformation to objective func-

tion above and define v’ = v + R™'S7x as new

input, objective function become standard form of
Linear Quadratic objective function as follows,

J / °° (a:(t)T(Q — SR™'ST)x(t)+
0

(u(t) + B STz())T Ru(t) + R_lsT:r:(t))) dt.
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Figure 7; Simulation results of 2 masses inverted
pendulum model

The condition that the optimal solution exist is
given by the following relation,

Q-SR'sT >0 (12)

4.3 Simulation

Using the proposed model and controller which
considering the output objective, the simu-
lation is conducted using weighted matrices
of objective function as, W = diag[1000.0],
Q@ = diag(1.0,1.0,0.01,0.01,5000.0,1.0] and
R = diag[1.0,0.01]. Robot parameters used in
simulation are m; = 30.0 [kg}, ma = 40.0 [kg],
Iy = 1.0 [m], &2 = 0.5 [m], = 9.81 [m/sec?]. In
simulation the output is supposed to track 0.1 [m]
as desired position of ZMP and simulation results
are shown in Fig. 7.

From simulation results, It can be seen that the pro-
posed control method can make the system to track
the desired position of ZMP quickly.And it can be

concluded to track desired position of ZMP, the sec-
ond link which is the upper body of robot, moves in
a large way so that the input of the first link can be
suppresed as shown in Fig. 7(a) and (¢). The mo-
tion of second link can be suppressed by changing the
weighting matrix if the upper body is not desired to
be moved in a large way. In the transient response,
the output goes to the opposite direction as shown
in Fig. 7(d) and it is caused by the alteration in
direction of the input.

5 Conclusion

This paper described performance limitation of ZMP
feedback control using one mass inverted pendulum
model. Thus, this kind of model is not appropriate
to use to design the controller which tracks desired

.position of ZMP. The limitation in the performance

is occured because of the presence of Waterbed effect
in frequency domain and undershoot in time domain.
To overcome this problem, this paper proposed two
mass inverted pendulum model be used to design
controller which tracks desired position of ZMP, and
the controller design based on Linear Quadratic op-
timal control by considering output evaluation is de-
scribed and confirmed by simulation.

The implementation of the proposed model and con-
trol method to real application of humanoid robot is
considered to be the future works of this research.

Acknowledgments

A part of this research is supported by Humanoid
and Human Friendly Robotics System Project of
Ministry of Economy, Trade and Industry Japan.
The authors wish to thank S. Kajita at National In-
stitute of Advanced Industrial Science and Technol-
0gy(AIST) Japan for his suggestions on this work.

References

[1] M. Vukobratovic, B. Borovac, D. Surla, D. Stokic:
“Biped Locomotion: Dynamics, Stability, Control
and Application”, Springer Verlag, 1975.

[2] A.Goswami: “Postural Stability of Biped Robots and
the Foot-Rotation Indicator {(FRI} Point”, The Inter-
national Journal of Robotics Research, Vol. 18, No.
6, pp. 523-533, 1999.

[3] J.C. Doyle, B.A. Francis, A.R. Tannenbaum: “Feed-
back Control Theory”, MacMillan Publishing Com-
pany, 1992.

[4] T. Kailath:"Linear System”, Prentice-Hall, 1980.

[5] J. Cher: “Sensitivity Integral Relations and De-
sign Trade-Offs in Linear Multivariable Feedback Sys-

* tems”, IEEE Transaction on Automatic Control, Vol.
40, No. 10, pp. 17001716, 1995.

{6] B.D.O. Anderson, J.B. Moore: “Linear Optimal Con-

trol”, Prentice-Hall Inc., 1971.

2442



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


