
Financial Econometrics

MFE MATLAB Notes

Kevin Sheppard
University of Oxford

September 28, 2007

2

c©2005-2007 Kevin Sheppard

Contents

1 Introduction to MATLAB 7

1.1 The Interface . 7

1.2 The Editor . 7

1.2.1 ; . 9

1.2.2 Comments . 10

1.2.3 . . . (dot-dot-dot) . 10

1.3 Help . 11

1.4 Demos . 11

1.5 Exercises . 11

2 Basic Input 13

2.1 Variable Names . 14

2.2 Entering Vectors . 14

2.3 Entering Matrices . 15

2.4 Higher Dimension Arrays . 15

2.5 Empty . 15

2.6 Concatenation . 16

2.7 Accessing Elements of Matrices . 17

2.8 Calling functions . 18

2.9 Exercises . 19

3 Entering and Saving Data 21

3.1 Getting Data Into MATLAB . 21

3.2 Robust Data Importing . 21

3.3 Reading Excel Files . 22

3.4 CSV Data . 26

3.5 Text . 26

3.6 MATLAB Data Files (.mat) . 26

3.7 Reading Poorly Formatted Text . 27

3.8 Stat Transfer . 28

3.9 Getting Data Out of MATLAB . 29

3.9.1 Saving Data . 29

3.9.2 Exporting Data . 29

3.10 Exercises . 29

3

4 CONTENTS

4 Basic Math 31

4.1 Operators . 31

4.2 Matrix Addition (+) and Subtraction (-) . 31

4.3 Matrix Multiplication (*) . 32

4.4 Matrix Division (/) . 32

4.5 Matrix Right Divide (\) . 33

4.6 Matrix Exponentiation (∧) . 33

4.7 Parentheses . 33

4.8 . operator . 33

4.9 Transpose . 34

4.10 Operator Precedence . 34

4.11 Exercises . 35

5 Basic Functions 37

5.1 Exercises . 45

6 Special Matrices 47

6.1 Exercises . 48

7 Matrix Functions 49

8 Inf, NaN and Numeric Limits 53

8.1 Exercises . 54

9 Logical Operators and Find 55

9.1 >, >=, <, <=, == ,∼= . 55

9.2 & (AND), | (OR) and∼ (NOT) . 56

9.3 logical . 56

9.4 all and any . 57

9.5 find . 58

9.6 is* . 58

9.7 Exercises . 59

10 Flow Control 61

10.1 If Elseif Else . 61

10.2 Switch Case Otherwise . 62

10.3 Exercises . 64

11 Loops 65

11.1 for . 65

11.2 while . 68

11.3 break . 69

11.4 continue . 70

11.5 Exercises . 70

CONTENTS 5

12 Plotting Data 73

12.1 Support Functions . 73

12.2 Plot . 73

12.3 Plot3 . 76

12.4 Scatter . 78

12.5 Surf . 79

12.6 Mesh . 80

12.7 Contour . 80

12.8 Subplot . 81

12.9 Advanced Graphics . 84

12.9.1 Point-and-click . 84

12.9.2 Handle Graphics . 85

12.10Exercises . 85

13 Exporting Plots 87

13.1 Exercises . 88

14 Custom Functions 91

14.1 Comments . 93

14.2 Debugging . 93

14.3 Exercises . 94

15 Probability and Statistics Functions 95

15.1 quantile . 95

15.2 prctile . 95

15.3 regress . 95

15.4 *cdf, *pdf, *rnd, *inv . 95

15.5 The JPL Toolbox . 96

15.6 Exercises . 96

16 Optimization 97

16.1 fminunc . 98

16.2 fminsearch . 99

16.3 fminbnd . 100

16.4 fmincon . 101

16.5 optimset . 104

16.6 Other Optimization Routines . 104

17 Dates and Times 105

17.1 datenum . 105

17.2 datestr . 107

17.3 datevec . 107

17.4 now and clock . 108

17.5 tic and toc . 108

17.6 etime . 108

6 CONTENTS

17.7 datetick . 108

18 String Manipulation 111

18.1 Exercises . 115

19 File System and Navigation 117

19.1 The MATLAB path . 117

19.2 Setting up a Custom Path in a Shared Environment . 118

19.3 Exercises . 118

20 Quick Function Reference 119

20.1 General Math . 119

20.2 Rounding . 120

20.3 Statistics . 121

20.4 Random Numbers . 122

20.5 Logical . 123

20.6 Special Values . 123

20.7 Special Matrices . 123

20.8 Matrix Functions . 124

20.9 Matrix Manipulation . 125

20.10Set Functions . 125

20.11Flow Control . 126

20.12Looping . 127

20.13Optimization . 128

20.14Graphics . 128

20.15Date Functions . 130

20.16File System . 131

20.17MATLAB Specific . 131

20.18Input/Output . 133

Chapter 1

Introduction to MATLAB

These notes provide a brief introduction to MATLAB. All topics relevant to the MFE curriculum should be

covered at some basic level but if some important topic is missing or under-explained, please let me know

and I’ll add examples as necessary.

This set of notes follows a few conventions. Typewriter font is used to denote MATLAB commands and

code snippets. The double arrow symbol >> is used to indicate MATLAB input (Note: This is the symbol

used in MATLAB in the command window). Math font is used to denote algebraic expressions.

MATLAB is available on the Economics department servers, either xlbs.econ.ox.ac.ukor nlbs.econ.ox.ac.uk,

using Microsoft’s Remote Desktop Client. For help using the RDC, consult the information that accompa-

nied your username, or consult the IT help desk.

For more information on programming in MATLAB, I recommend the book Mastering MATLAB 7 by

Bruce L. Littlefield and Duane C. Hanselman (ISBN: 0131857142). It was the first book I used – back when

it was MATLAB 5 – and it is comprehensive with many examples ranging from the basics to more advanced

topics.

1.1 The Interface

Figure 1.1 contains an image of the main MATLAB window. There are three sub-windows visible. The

command window, labeled 1, is commands are entered, functions are called and m-files are run (MAT-

LAB batch files). The current directory window, labeled 2, shows the files located in the current directory.

Normally these will include m-files and data. Along the bottom of this window there is a second tab la-

beled workspace. Clicking on workspace reveals a list of the variables in memory, for example data loaded

or variables declared. The final window, labeled 3, contains the command history where MATLAB records

commands recently executed. The history can be copied and pasted into the command window to re-run

commands. The history can also be scrolled through in the command window by pressing the up arrow (↑)
key.

1.2 The Editor

MATLAB contains an editor which is aware of MATLAB syntax, highlights code to improve the its readability

and provides limited error checking. The editor can be launched from the main window in one of two

7

8 CHAPTER 1. INTRODUCTION TO MATLAB

Figure 1.1: Basic MATLAB Window. The standard setup has three pains. 1: The command window, 2: Cur-
rent Directory and Workspace, 3: Command History

ways, either by clicking File>New>M-File or entering edit into the command window directly. Figure 1.2

contains an example of the editor and syntax highlighting.

M-files can contain batches of commands or complete functions. While m-file names can include let-

ters, numbers and underscores, they must begin with a letter and it is important to avoid reserved words

(if, else, for, end, while, . . .) and existing function names (mean, std, var, cov, sum, . . .). To

verify whether a name is already in use, the MATLAB command which filename can be used to list the file

MATLAB would use if filename was entered in the command window.

>> which for
built-in (C:\MATLAB\R2006b\toolbox\MATLAB\lang\for)
>> which mean
C:\MATLAB\R2006b\toolbox\MATLAB\datafun\mean.m
>> which mymfile
’mymfile’ not found.

To check whether a files already created is using duplicating the name of another function, use the

1.2. THE EDITOR 9

Figure 1.2: MATLAB editor. The editor is a useful tool for programming in MATLAB. It can be used to create
batch files or custom functions (both called m-files). Note the syntax highlighting.

command which filename -all to produce a list of all files matching that name.

>> which mean -all
C:\MATLAB\R2006b\toolbox\MATLAB\datafun\mean.m
C:\MATLAB\R2006b\toolbox\MATLAB\timeseries\@timeseries\mean.m % timeseries method
C:\MATLAB\R2006b\toolbox\finance\ftseries\@fints\mean.m % fints method

1.2.1 ;

MATLAB uses a semicolon (;) at the end of a line to suppress output. The semicolon instructs MATLAB

to process a line without returning anything to the command window. To get a feel for the effect of a ;,

examine the result of these two commands,

10 CHAPTER 1. INTRODUCTION TO MATLAB

>> x=ones(3,1);
>> x=ones(3,1)

x =

1
1
1

It is generally a good idea to suppress the output of commands, although in certain cases, such as debug-

ging or examining the output of a particular command, it can be useful to leave them off until the code is

functioning as expected.

1.2.2 Comments

Writing clear comments is an essential practice when coding. Comments assist in tracking completed tasks,

documenting unique approaches to solving a difficult problem and are useful if the code needs to be shared.

In MATLAB, the percentage symbol, %, is used to signify a comment. MATLAB will stop processing anything

on that line to the right of the % symbol and will resume with the next line. MATLAB, unfortunately, doesn’t

support block comments and so any comment blocks must use a % in front of each line.

% This is the start of a
% comment block.
% Every line must have a %
% symbol before the first text

1.2.3 . . . (dot-dot-dot)

. . . is a special expression that can be used to continue a long expression which is not easily expressed on

a single line. . . . instructs MATLAB to concatenate the next line onto the present line when processing. It

exists purely to improve the readability of code.

These two expressions are identical to MATLAB:

x = 7;
x = x + x * x - x + exp(x) / log(x) * sqrt(2*pi);

x = 7;
x = x + x * x - x ...

+ exp(x) / log(x) * sqrt(2*pi);

1.3. HELP 11

1.3 Help

MATLAB has an extensive and thorough help system which is available both in the command window and

in a separate browser. The browser-based help is generally more complete and has the added advantage

that it is both indexed and searchable.

Two types of help are available from the command line: toolbox and function. Toolbox help produces a

list of available functions in a toolbox. It can be called by help toolbox where toolbox is the MATLAB name

of the toolbox (e.g. stats, optim, etc.). help, without a second argument, will produce a list of toolboxes.

while function specific help can be accessed by calling help function, for example help mean.

The help browser can be accessed by hitting the F1 key, selecting Help>Full Product Family Help a the

top of the command window, or entering helpbrowser in the command window. The documentation of a

function can be jumped to directly by entering doc function in the command window (e.g. doc mean).

1.4 Demos

MATLAB contains an extensive selection of demos. To access the list of available demos, simply enter demo

in the command window.

1.5 Exercises

1. Become familiar with the MATLAB Command Window.

2. Launch the help browser and read the section MATLAB, Getting Started, Introduction.

3. Launch the editor and explore its interface.

4. Enter demo in the command window and play with some of the demos. The demos in the Graphics section

are particularly entertaining.

12 CHAPTER 1. INTRODUCTION TO MATLAB

Chapter 2

Basic Input

MATLAB doesn’t require any memory management and variables can be input with no setup. The generic

form of an expression in MATLAB is

Variable Name = Expression.

and expressions are processes by assigning the value on the right to variables on the left. For instance,

x = 1;
x = y;
x = somefunction(y);

are all valid assignments for x. The first assigns 1 to x, the second assigns the value of another variable, y, to

x and the third assigns the output of somefunction(y) to x. Assigning one variable to another assigns the

value of that variable; not the variable itself. Thus, in the lines y = 1; and x = y;, any changes to y will not

be reflected in the value of x.

>> y = 1;
>> x = y;
>> x
x =

1
>> y = 2;
>> x
x =

1
>> y
y =

2

13

14 CHAPTER 2. BASIC INPUT

2.1 Variable Names

Variable names can take many forms, although they can only contain numbers, letters (both upper and

lower), and underscores (_). They must begin with a letter and are CaSe SeNsItIve. For example,

x
X
X1
X_1
x_1
dell
dell_returns

are all legal and distinct variable names, while

x:
1X
X-1
_x

are not.

2.2 Entering Vectors

All data in MATLAB are matrices by construction, even if they are 1 by 1 (scalar), K by 1 or 1 by K (vectors).

Vectors, both row (1 by K) and column (K by 1) can be entered directly into the command window. The

mathematical notation

x = [1 2 3 4 5]

is entered into MATLAB in a natural way:

>> x=[1 2 3 4 5];

In the above input, [and] are reserved MATLAB symbols which are interpreted as begin array and end

array, respectively. The column vector,

x =

1

2

3

4

5

2.3. ENTERING MATRICES 15

has a slightly less intuitive structure in MATLAB:

>> x=[1; 2; 3; 4; 5];

When inside an array, ; is interpreted as new row.

2.3 Entering Matrices

Matrices are just column vectors of row vectors. For instance, to input

x =

 1 2 3

4 5 6

7 8 9

in to MATLAB, enter the matrix one row at a time, separating the rows with a ;:

>> x = [1 2 3 ; 4 5 6; 7 8 9];

2.4 Higher Dimension Arrays

MATLAB is capable of working with N dimensional arrays where N can be a very large number (up to about

30, depending on the size of each matrix dimension). Unlike scalars, vectors and matrices, higher dimen-

sion arrays can only be constructed by calling functions and cannot be directly allocated, such as zeros(2,

2, 2). Higher dimensional arrays can be useful for tracking matrix valued functions over time, such as a

conditional covariance.

2.5 Empty

There is one unusual matrix worth mentioning. The empty matrix is one with no elements, x = [];.

Empty matrices can be returned from functions in certain cases (e.g. if some criteria is not met) and can

cause problems, although have some useful applications. First, they can be used for lazy vector construc-

tion using repeated concatenation. For example

>> x=[]
x =

[]
>> x=[x;1]
x =

1

16 CHAPTER 2. BASIC INPUT

>> x=[x;2]
x =

1
2

>> x=[x;3]
x =

1
2
3

Second, they are needed for calling some functions when multiple inputs are required but do not with

to specify all, for example somefunction(x,[],y).

2.6 Concatenation

Concatenation is the process by which one vector or matrix is appended to another. Both horizontal and

vertical concatenation are possible. For instance, suppose

x =

[
1 2

3 4

]
and y =

[
5 6

7 8

]
;

and

z =

[
x

y

]
.

needs to be constructed. This can be accomplished by treating x and y as elements of a new matrix.

>> x=[1 2; 3 4];
>> y=[5 6; 7 8];

z can be defined in a natural way:

>> z=[x; y];

This is an example of vertical concatenation. x and y can be horizontally concatenated in a similar fashion:

>> z=[x y];

Note: Concatenating is exactly like using block-matrix forms in standard matrix algebra.

2.7. ACCESSING ELEMENTS OF MATRICES 17

2.7 Accessing Elements of Matrices

Once data have been entered into a vector or matrix, it is important to be able to access the elements indi-

vidually. MATLAB stores matrices in a form known as column major. This means elements are indexed by

first counting down rows and then across columns. For instance, in the matrix

x =

 1 2 3

4 5 6

7 8 9

the first element of x is 1, the second element is 4, the third is 7, the fourth is 2, and so on.

Elements can be accessed by element number using parenthesis (x(#)). After defining x, the elements

of x can be accessed

>> x=[1 2 3; 4 5 6; 7 8 9]

x =
1 2 3
4 5 6
7 8 9

>> x(1)
ans =

1
>> x(2)
ans =

4
>> x(3)
ans =

7
>> x(4)
ans =

2
>> x(5)
ans =

5

The single index notations works well if x is a vector, in which case the indices correspond directly to

the order of the elements in x. However, in the matrix case, single index notation is confusing. Fortunately,

double indexing of matrices is available using the notation x(#,#).

>> x(1,1)
ans =

1
>> x(1,2)
ans =

2
>>x(1,3)
ans =

18 CHAPTER 2. BASIC INPUT

3
>> x(2,1)
ans =

4
>> x(3,3)
ans =

9

Higher dimension matrices can also be accessed in a similar manner, x(#, #, #). For example, x(1, 2,

3) would return the element in the first row of the second column of the third panel of a 3-D matrix x.

The colon operator (:) plays a special role in accessing elements. When used, it is interpreted as all

elements in that dimension. For instance, x(:,1), is interpreted as all elements from matrix x in column 1.

Similarly, x(2,:) is interpreted as all elements from x in row 2. Double : notation produces all elements

of the original matrix; naturally, x(:,:) returns x. Finally, vectors can be used to access elements of x. For

instance, x([1 2],[1 2]), will return the elements from x in rows 1 and 2 and columns 1 and 2, while x([1

2],:) will returns all columns from rows 1 and 2 of x.

>> x(1,:)
ans =

1 2 3
>> x(2,:)
ans =

2 5 8
>> x(:,:)
ans =

1 2 3
4 5 6
7 8 9

>> x
ans =

1 2 3
4 5 6
7 8 9

>> x([1 2],[1 2])
ans =

1 2
4 5

>> x([1 3],[2 3])
ans =

2 3
8 9

>> x([1 3],:)
ans =

1 2 3
7 8 9

2.8 Calling functions

Functions calls have slightly different conventions other expressions in MATLAB. The biggest difference is

that functions can take more than one input and return more than one output. The generic structure of a

2.9. EXERCISES 19

function call is [out1, out2, out3, . . .]=function(in1, in2, in3, . . .). The important aspects of this structure

are

• If only one output is needed, brackets ([]) are optional, for example y=mean(x).

• If multiple outputs are required, the outputs must be encapsulated in brackets, such as in [y, index]

= min(x).

• The number of output variables determines how many outputs will be returned. Asking for more

outputs than the function provides will generally result in an error.

• Both inputs and outputs must be separated by commas (,)

• Inputs can be the result of other functions as long as only the first output is requires (e.g. mean(var(x))).

• Inputs can contain only selected elements of a matrix or vector (e.g. mean(x([1 2] ,[1 2]))).

The usage of function calls will be clarified as they are described throughout the notes.

2.9 Exercises

1. Enter the following mathematical expressions into MATLAB:

u = [1 1 2 3 5 8]

v =

1

1

2

3

5

8

x =

[
1 0

0 1

]

y =

[
1 2

3 4

]

z =

 1 2 1 2

3 4 3 4

1 2 1 2

w =

[
x x

y y

]
2. What command would pull x would of w ? (Hint: w([?],[?]) is the same as x .)

20 CHAPTER 2. BASIC INPUT

3. What command would pull [x; y] out of w? Is there more than one? If there are, list all alternatives.

4. What command would pull y out of z ? List all alternatives.

Chapter 3

Entering and Saving Data

The first real challenge is getting data into and out of MATLAB.

3.1 Getting Data Into MATLAB

Getting data into MATLAB ranges from moderate to very difficult, depending on the data. First, a few general

pointers:

• The file imported should contain numbers only, with the exception of the first row which should

contain the variable name.

• Use another program, such as Microsoft Excel, to manipulate the data before importing.

• Each column of the spreadsheet should contain a single variable.

• Dates should be imported as numbers by first formatting the columns as Excel Dates and then refor-

matting as a number (dates with base year 1900). For example, January 1, 2000 would be 36526.

3.2 Robust Data Importing

The simplest and most robust method to import data into MATLAB is to use a correctly formatted Excel file

and the import wizard. The key to the import is to make certain the Excel file has a very particular structure:

• One variable per column

• The variable name for the column in the first position

• All other data in the column must be numeric, especially dates.

As an example, consider importing a month of GE prices downloaded from Yahoo! Finance historical prices.

The original data can be found in GEPrices.xls and is presented in figure 3.1. This data file is nearly fits

the requirement although the first column, containing the dates, falls short. To prepare this data for import,

only the date, close and volume columns were chosen. The key step is to convert the dates from Excel dates

21

22 CHAPTER 3. ENTERING AND SAVING DATA

Figure 3.1: The raw data as taken from Yahoo! Finance historical prices. Most of the columns are well
formatted with variable names in the first row and numeric content. However the date column contains
Excel dates and not numbers. This structure will prevent MATLAB from correctly parsing the excel file.

to numbers. To perform the conversion, select the dates, right click and choose format. Select “Number”

from the dialog box the pops up. If the conversion was performed correctly, the output should be similar to

figure 3.2. This “clean” file can be found in GEPricesClean.xls.

Once the excel file has been formatted, the final step is to import it. First, change the Current Directory

to the directory with the Excel file to be imported. Next, select the Current Directory browser in the upper

left pane of the main window.1 The Excel file should be present in this view. To import the file, right click

on the filename and select Import (see figure 3.3). This will trigger the dialog in figure 3.4. To complete the

import, make sure Create vectors from each column using column names is chosen and click finish. If

the import fails the most likely cause is the format of the Excel file. Make certain this conforms to the rules

above.

3.3 Reading Excel Files

Data in excel sheets can be imported using the function xlsread from the command window. Accompany-

ing this set of notes is an excel file, deciles.xls which contains returns for the 10 CRSP deciles from January

1If this pane is absent, it can be enabled in the Desktop tab along the top of the MATLAB window.

3.3. READING EXCEL FILES 23

Figure 3.2: This correctly formatted file contains only the variables to import: date, close and volume. Note
that the date column has been converted from Excel date to a number so January 3, 2007 appears as 39085.

1, 2000 to December 31, 2004. The first column contains the dates while columns 2 through 11 contain

the portfolio returns from decile 1 through decile 10 respectively. To load the data into MATLAB, use the

command

>> data = xlsread(’deciles.xls’);}

This command will read the data in sheet1 of file deciles.xls and assign it to data in MATLAB. xlsread

can handle a number of other situations, including reading sheets other than sheet1 or reading only spe-

cific blocks of cells. For more information, see help xlsread. Data can be exported to an Excel file using

xlswrite. Extended information about an excel file, such as sheet names and can be read using the com-

mand xlsflinfo.

Note: MATLAB and Excel do not agree about dates. MATLAB tracks dates as days past January 1, 0000

(inclusive) while Excel tracks dates as day past January 1, 1900. Thus, to convert imported Excel dates into

MATLAB dates, datenum(’30DEC1899’) must be added to the column of data representing the dates. Re-

turning to the example above,

24 CHAPTER 3. ENTERING AND SAVING DATA

Figure 3.3: To import data, select the Current Directory view, right click on the Excel file to be imported, and
select Import. This will trigger the import wizard in figure 3.4.

>> [A,finfo]=xlsfinfo(’deciles2.xls’)
A =
Microsoft Excel Spreadsheet
finfo =

’Cleaned Data’ ’Original Data’
>> data = xlsread(’deciles2.xls’,’Cleaned Data’,’A2:K1257’);
>> dates = data(:,1);
>> datestr(dates(1))
ans =
03-Jan-0100
>> dates = dates + datenum(’30DEC1899’);
>> datestr(dates(1))
ans =
03-Jan-2000

Alternatively, the function x2mdate can be used to convert the dates.

3.3. READING EXCEL FILES 25

Figure 3.4: As long as the data is correctly formatted (see figure 3.2), the import wizard should pull the data
into MATLAB and create variable with the same name as the column headers. To complete this step, make
sure the second radio button is selected (Create vectors from each column using column names) and then
select Finish.

>> data = xlsread(’deciles2.xls’,’Cleaned Data’,’A2:K1257’);
>> dates = data(:,1);
>> datestr(dates(1))
ans =
03-Jan-0100
>> dates = x2mdate(dates);
>> datestr(dates(1))
ans =
03-Jan-2000

This example uses a files deciles2.xls which contains two sheets, Original Data and Cleaned Data. Open-

ing the files in Excel shows that Cleaned Data contains column labels as well as the data. To import data from

this file, xlsread needs to know to pull data from Cleaned Data from cells A2:K1275 (upper left and lower

right corners of block). xlsread(’deciles2.xls’, ’Cleaned Data’, ’A2:K1257’) does exactly this. Fi-

nally, the dates disagreement is illustrated and the correction is shown to work. For more on dates, see the

Chapter 17 on date manipulation.

26 CHAPTER 3. ENTERING AND SAVING DATA

3.4 CSV Data

CSV data, or comma-separated values, is much like Excel data. Note that CSV files must not contain any-

thing but numeric values. If the file contains strings, such as variable names, the import will fail. To over

come this limitation, use the Import Wizard as described in Section 3.2. The command to read CSV data is

essentially identical,

>> data = csvread(’deciles.csv’);

Like xlsread, other forms can also begin reading at a specific cell

>> data = csvread(’deciles.csv’,0,1);

or to read specific blocks of cells

>> data = csvread(’deciles.csv’,1,0,[1 0 1256 10]);

Data can be exported to csv using csvwrite.

3.5 Text

Reading in text, if it only contains numbers, is also fairly straight forward. The standard command is

textread and is called identically to xlsread,

data = textread(’deciles.txt’);

textread can handle a variety of data formats, but it is recommend to keep data files as simple as pos-

sible and to only use tab delimited text files (like the example deciles.txt). See help textread for further

information.

3.6 MATLAB Data Files (.mat)

The native format for MATLAB data are known as MATLAB data files, or .mat files. These are the easiest to

work with and data is loaded simply by entering

3.7. READING POORLY FORMATTED TEXT 27

load deciles.mat

There is no need to specify an input variable as the .mat file contains both variable names and data. See

below for saving data in .mat format.

3.7 Reading Poorly Formatted Text

MATLAB can be convinced to read just about any text format. MATLAB has functions for reading arbitrary

text which can then be converted to numbers. This is an advanced technique and should be avoided if

possible. However, there are some situations where this is the only viable alternative. For instance, suppose

the raw data is in a very large file (too large for Excel) and is poorly formatted. In this case, the simplest

procedure is to write a program to read the file line by line and process each line separately.

The file IBM_TAQ.txt contains a simple example of data that is difficult to get into MATLAB. This file

was downloaded from WRDS and contains all prices for IBM from the TAQ database in the interval January

1,2001 through January 31, 2001. It has too many lines to use in Excel and has both numbers, dates and text

on each line. The following code block shown how the data in this file can be parsed using MATLAB:

fid=fopen(’IBM_TAQ.csv’,’rt’);
%Count number of lines
count=0;
while 1

line=fgetl(fid);
if ~ischar(line)

break
end
count=count+1;

end
%Close the file
fclose(fid);

%Pre-allocate the data
dates = zeros(count-1,1);
time = zeros(count-1,1);
price = zeros(count-1,1);
%Reopen the file
fid=fopen(’IBM_TAQ.csv’,’rt’);
%Get one line to throw away since it contains the column labels
line=fgetl(fid);
%Use count to index the lines this pass
count=1;
%while 1 and break work well when reading test
while 1

line=fgetl(fid);
%If the line is not a character value we’ve reached the end of the file
if ~ischar(line)

break
end
%Find all the commas, they delimit the file
commas = strfind(line,’,’);

28 CHAPTER 3. ENTERING AND SAVING DATA

%Dates are places between the first and second commas
dates(count)=datenum(line(commas(1)+1:commas(2)-1),’yyyymmdd’);
%Times are between the second and third
temptime=line(commas(2)+1:commas(3)-1);
%Times are colon separates, so they need further parsing
colons=strfind(temptime,’:’);
%Convert the text representing the hours, minutes or and seconds to numbers
hour=str2double(temptime(1:colons(1)-1));
minute=str2double(temptime(colons(1)+1:colons(2)-1));
second=str2double(temptime(colons(2)+1:length(temptime)));
%Convert these values to seconds past midnight
time(count)=hour*3600+minute*60+second;
%Read the price from the last comma to the end of the line and convert to number
price(count)=str2double(line(commas(3)+1:commas(4)-1));
%Increment the count
count=count+1;

end
fclose(fid);

This block of code does a few thing:

• Open the file directly using fopen

• Reads the file line by line using fgetl

• Counts the number of lines in the file

• Pre-allocates the dates, times and price variables using zeros

• Rereads the file parsing each line by the location of the commas using strfind to locate the delimiting

character

• Uses datenum to convert string dates to numerical dates

• Uses str2double to convert strings to numbers

To read poorly formatted data file, see the documentation for fopen, fscanf, fread, fgetl, dlmread,

and textscan and consult Chapter 18 on basic string manipulation.

3.8 Stat Transfer

There is one final method worth mentioning to import data. StatTransfer is available on the servers and is

capable of reading and writing approximately 20 different formats, including MATLAB, GAUSS, Stata, SAS,

Excel, CSV and text files. It allow users to load data in one format and output some or all of it in another.

StatTransfer can make some hard-to-manage situations (e.g. poorly formatted data) substantially easier.

StatTransfer has a comprehensive help file to provide assistance.

3.9. GETTING DATA OUT OF MATLAB 29

3.9 Getting Data Out of MATLAB

3.9.1 Saving Data

Once the data has been loaded into MATLAB, save it and any changes in the native MATLAB data format.

This is easily accomplished by calling

>> save filename

This will produce a file filename.mat containing all variables in memory. filename can be replaced with any

valid filename. To save a subset of those variables in memory, entering

>> save filename var1 var2 var3

which produces a file filename.mat containing var1, var2 and var3 .

3.9.2 Exporting Data

One easy method to get data out of MATLAB is to call save with the arguments -double -ascii. This will

produce a tab delimited file of the variables listed. It is generally a good practice to only export one variable

at a time using this method. Exporting more than one results in a poorly formatted file that may be hard to

import into another program. For example,

>> save filename var1 -ascii -double

would save var1 in a tab delimited text file. The restriction to a single variable should not be seen as a

severe limitation as another variable, var1, can always be constructed from other variables (e.g. var1=[var2

var3];. Alternative methods to export data include xlswrite, csvwrite and dlmwrite.

3.10 Exercises

1. The file exercise3.xls contains three columns of data, the date, the return on the S&P 500, and the return

on XOM (Exxon Mobil). Using Excel, convert the date to a number and save the file. (Hint: Format the cells

with dates as numbers. They should be 30000ish).

2. Use xlsread to read the file saved in the previous exercise. Load in the three series into a new variable

names returns.

3. Parse returns into three variables, dates, SP500 and XOM. (Hint, use the : operator).

4. Save a MATLAB data file exercise3 with all three variables.

5. Save a MATLAB data file dates with only the variable dates.

30 CHAPTER 3. ENTERING AND SAVING DATA

6. Construct a new variable, sum_returns as the sum of SP500 and XOM. Create another new variable,

output_data as a horizontal concatenation of dates and sum_returns.

7. Export the variable output_data to a new .xls file using xlswrite. See the help available for xlswrite.

Chapter 4

Basic Math

Math in MATLAB closely follows the rules of linear algebra. Anything that can be done in linear algebra can

be done in MATLAB; most thing that aren’t allowed in linear algebra aren’t allowed in MATLAB. For instance,

to multiply two matrices together, they must conform along their inside dimensions; attempting to multiple

nonconforming matrices produces an error.

4.1 Operators

MATLAB has the standard operators:

Operator Meaning Example Algebraic

+ Addition x + y x + y

- Subtraction x - y x − y

* Multiplication x * y x y

/ Division (Left divide) x / y x
y

\ Right divide x \ y y
x

∧ Exponentiation x ∧ y x y

When x and y are scalars, the behavior of these operators is obvious. When x and y are matrices, things

are a bit more complex.

4.2 Matrix Addition (+) and Subtraction (-)

Addition and substraction require x and y to have the same dimensions or to be scalar. If they are both

matrices, z=x+y produces a matrix with z(i,j)=x(i,j)+y(i,j). If x is scalar and y is a matrix, z=x+y results

in z(i,j)=x+y(i,j).

Suppose z=x+y:

31

32 CHAPTER 4. BASIC MATH

y

Scalar Matrix

Scalar Any Any

x z = x + y z i j = x + yi j

Matrix Any Both Dimensions Match

z i j = y + x i j z i j = x i j + yi j

Note: These conform to the standard rules of matrix addition and substraction.

4.3 Matrix Multiplication (*)

Multiplication requires the inside dimensions to be the same or for one input to be scalar. If x is N by M

and y is K by L and both are non-scalar matrices, x*y requires M = K . Similarly, y*x requires L = N . If x is

scalar and y is a matrix, then z=x*y produces z(i,j)=x*y(i,j).

Suppose z=x*y:

y

Scalar Matrix

Scalar Any Any

x z = x y z i j = x yi j

Matrix Any Inside Dimensions Match

z i j = y x i j z i j =
∑M

k=1 x i k yk j

Note: These conform to the standard rules of matrix multiplication. x i is row i of x and y j is column j of y .

4.4 Matrix Division (/)

Matrix division is not generally defined in linear algebra and its use is slightly tricker. The intuition for

matrix division comes from thinking about a set of linear equations. Suppose there is some z , a M by L

vector, such that

y z = x

where x is N by M and y is N by L. Division finds z as the solution to the linear equations by least squares,

and so z = (y ′y)−1(y ′x).

Suppose z=x/y:

y

Scalar Matrix

Scalar Any Left Dimensions Match

x z = x
y z = (y ′y)−1y ′x

Matrix Any Left Dimensions Match

z i j =
x i j

y z = (y ′y)−1y ′x

Note: Like linear regression, matrix division is only well defined if y is nonsingular and thus has full rank.

4.5. MATRIX RIGHT DIVIDE (\) 33

4.5 Matrix Right Divide (\)

Matrix right division is simply the opposite of matrix division.

Suppose z=x\y:

y

Scalar Matrix

Scalar Any Any

x z = y
x z i j =

yi j

x

Matrix Right Dimensions Match Right Dimensions Match

z = (x ′x)−1x ′y z = (x ′x)−1x ′y

Note: Like linear regression, matrix division is only well defined if x is nonsingular.

4.6 Matrix Exponentiation (∧)

Matrix exponentiation is only defined if at least one of x or y are scalars.

Suppose z=x∧y:

y

Scalar Matrix

Scalar Any y Square

x z = x y Strange, Do Not Use 1

Matrix x Square N/A

z = x y

Note: In the case where x is a matrix and y is an integer, and z=x*x*. . .*x (y times). If y is not integer, this

function involves eigenvalues (see help mpower).

4.7 Parentheses

Parentheses can be used in the usual way to control the order mathematical expressions are evaluated.

Parentheses can be nested to create complex expressions. See Operator Precedence for more information

on the order MATLAB evaluates mathematical expressions.

4.8 . operator

The . operator (read dot operator) changes usual operations into element by element operations. For in-

stance, suppose x and y are N by N matrices. z=x*y results in usual matrix multiplication where z(i,j) =

x(i,:) * y(:,j), while z = x .* y produces z where z(i,j) = x(i,j) * y(i,j). Multiplication (.*),

division (./), right division (.\), and exponentiation (.∧) all have “.” forms.

34 CHAPTER 4. BASIC MATH

z=x.*y z(i,j)=x(i,j)*y(i,j)

z=x./y z(i,j)=x(i,j)/y(i,j)

z=x.\ y z(i,j)=x(i,j)\y(i,j)
z=x.∧y z(i,j)=x(i,j)∧y(i,j)

Note: These are sometimes called the Hadamard operators, especially .*.

4.9 Transpose

Matrix transpose is available MATLAB, and is expressed using the ’ operator. For instance, is x is an M by N

matrix, x’ is it’s transpose with dimensions N by M .

4.10 Operator Precedence

Computer math, like standard math, has operator precedence. This determines how mathematical expres-

sions like

2∧3+3∧2/7*13

are evaluated. The order of evaluation is:

Operator Name Rank

() Parentheses 1

’, ∧, .∧ Transpose, All Exponentiation 2

∼ Negation (Logical) 3

+,− Unary Plus, Unary Minus 3

, ., / , ./ , \, .\ All multiplication and division 4

+, - Addition and subtraction 5

: Colon Operator 6

<, <=, >, >=, ==, = Logical operators 7

& Element-by-Element AND 8

| Element-by-Element OR 9

&& Short Circuit AND 10

|| Short Circuit OR 11

In the case of a tie, operations are executed left-to-right. For example, x∧y∧z is interpreted as (x∧y)∧z.

Note: Unary operators are + or - operations that apply to a single element. For example, consider the

expression (-4). This is an instance of a unary - since there is only 1 operation. (-4)∧2 produces 16.

However, -4∧2 produces -16 since MATLAB interprets this as -(4∧2) since - is no longer unary.

4.11. EXERCISES 35

4.11 Exercises

1. Using the matrices entered in exercise 1 of chapter 2, compute the values of u + v ′, v + u ′, v u , u v and

x y

2. Is x\ 1 legal? If not, why not. What about x/1?

3. Compute the values (x+y)∧2 and x∧2+x*y+y*x+y
∧2. Are they the same?

4. Is x∧2+2*x*y+y
∧2 the same as either above?

5. When will x∧y and x.∧y be the same?

6. Is a*b+a*c the same as a*b+c? If so, show it, if not, how can the second be changed so they are equal.

7. Suppose a command x∧y*w+z was entered. What restrictions on the dimensions of w, x, y and x must be

true for this to be a valid statement?

8. What is the value of -2∧4? What about (-2)∧4?

36 CHAPTER 4. BASIC MATH

Chapter 5

Basic Functions

This section provides a reference for a set commonly used functions with a discussion of how they behave.

length

To find the size of the maximum dimension of x, use z=length(x). Note: If y is T by K , T > K , z = T .

If K > T , z = K . length is a risky command because the value it returns can be the number of columns

or the number of rows, depending on which is larger. It is better practice to use size(y,1) and size(y,2)

depending on whether the number of rows of the number of columns is required.

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> length(x)
ans =

3
>> length(x’)
ans =

3

size

To find the size of a dimension of a matrix, use z=size(x,DIM), where DIM is the dimension. Note that di-

mension 1 is the number of rows while dimension 2 is the number of columns, so if x is T by K , z=size(x,1)

returns T while z=size(x,2) returns K . Alternatively, s=size(x) returns a vector s with the size of each di-

mension.

>> x=[1 2 3; 4 5 6]
x =

1 2 3

37

38 CHAPTER 5. BASIC FUNCTIONS

4 5 6
>> size(x,1)
ans =

2
>> size(x,2)
ans =

3
>> s=size(x)
s =

2 3

sum

To compute the sum matrix,

z =
T∑

t=1

x t

use the command sum(x). z=sum(x) returns a K by 1 vector of the sum of each column, so z(i) = sum(x(:,i))

= x(1,i) + x(2,i) + . . . + x(T,i). Note: If x is a vector, sum will add all elements of x whether it is a row

ro column vector.

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> sum(x)
ans =

5 7 9
>> sum(x’)
ans =

6 15

min

To find the minimum element of a vector or the rows of a matrix,

min x i t , i = 1, 2, . . . , K

use the command min(x). If x is a vector, min(x) is scalar. If x is a matrix, min(x) is a K by 1 vector of the

minimum values of each column.

>> x=[1 2 3; 4 5 6]
x =

1 2 3

39

4 5 6
>> min(x)
ans =

1 2 3
>> min(x’)
ans =

1 4

max

To find the maximum element of a vector or the rows of a matrix,

max x i t , i = 1, 2, . . . , K

use the command max(x). If x is a vector, max(x) is scalar. If x is a matrix, max(x) is a K by 1 vector of the

maximum values of each column.

sort

To sort the values of a vector or the rows of a matrix from smallest to largest, use the command sort(x). If

x is a vector, sort(x) is vector where x(1)=min(x) and x(i)≤x(i+1). If x is a matrix, sort(x) is a matrix of

the same size where each column is sorted from smallest to largest.

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> sort(x)
ans =

1 2 3
4 5 6

>> sort(x’)
ans =

1 4
2 5
3 6

exp

To take the exponential of a vector or matrix (element by element),

e x

use exp. z=exp(x) returns a vector or matrix the same size as x where z(i,j)=exp(x(i,j)).

40 CHAPTER 5. BASIC FUNCTIONS

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> exp(x)
ans =

2.7183 7.3891 20.0855
54.5982 148.4132 403.4288

log

To take the natural logarithm of a vector or matrix,

log x

use log. z=log(x) returns a vector or matrix the same size as x where z(i,j)=log(x(i,j)).

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> log(x)
ans =

0 0.6931 1.0986
1.3863 1.6094 1.7918

sqrt

To compute the element-by-element square root of a vector or matrix,

√
x i j

use sqrt. z=sqrt(x) returns a vector or matrix the same size as x where z(i,j)=sqrt(x(i,j)).

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> sqrt(x)
ans =

1.0000 1.4142 1.7321
2.0000 2.2361 2.4495

Note: This command produces the same result as z=x.∧(1/2).

41

mean

To compute the mean of a vector or matrix,

z =

∑T
t=1 x t

T

use the command mean(x). z=mean(x) is a K by 1 vector containing the means of each column, so z(i) =

sum(x(i,:)) / length(x(i,:)). Note: If x is a vector, mean will compute the mean of x whether it is a

row ro column vector.

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> mean(x)
ans =

2.5000 3.5000 4.5000
>> mean(x’)
ans =

2 5

var

To compute the sample variance of a vector or matrix,

σ̂2 =

∑T
t=1(x t − x̄)2

T − 1

use the command var(x). If x is a vector, var(x) is scalar. If x is a matrix, var(x) is a K by 1 vector contain-

ing the sample variances of each column. Note: This command uses T − 1 in the denominator unless an

optional second argument is used.

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> var(x)
ans =

4.5000 4.5000 4.5000
>> var(x’)
ans =

1 1

cov

To compute the sample covariance of a vector or matrix

42 CHAPTER 5. BASIC FUNCTIONS

Σ̂ =

∑T
t=1(xt − x̄)′(xt − x̄)

T − 1

use the command cov(x). If x is a vector, cov(x) is scalar (and is identical of var(x)). If x is a matrix, cov(x)

is a K by K matrix with sample variances on the diagonals and sample covariances on the off diagonals.

Note: This command uses T − 1 in the denominator unless an optional second argument is used.

x =
1 2 3
4 5 6

>> cov(x)
ans =

4.5000 4.5000 4.5000
4.5000 4.5000 4.5000
4.5000 4.5000 4.5000

>> cov(x’)
ans =

1 1
1 1

std

To compute the sample standard deviation of a vector or matrix,

σ̂ =

√∑T
t=1(x t − x̄)2

T − 1

use the command std(x). If x is a vector, std(x) is scalar. If x is a matrix, std(x) is a K by 1 vector con-

taining the sample standard deviations of each column. Note: This command always uses T − 1 in the

denominator, and is equivalent to sqrt(var(x)).

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> std(x)
ans =

2.1213 2.1213 2.1213
>> std(x’)
ans =

1 1

skewness

To compute the sample skewness of a vector or matrix,

43

skew =

∑T
t=1(xt−x̄)3

T

σ̂3

use the command skewness(x). If x is a vector, skewness(x) is scalar. If x is a matrix, skewness(x) is a

K by 1 vector containing the sample skewness of each column. Note: This command uses T − 1 in the

denominator unless an optional second argument is used.

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> skewness(x)
ans =

0 0 0
>> skewness(x’)
ans =

0 0

kurtosis

To compute the sample kurtosis of a vector or matrix,

κ =

∑T
t=1(xt−x̄)4

T

σ̂4

use the command kurtosis(x). If x is a vector, kurtosis(x) is scalar. If x is a matrix, kurtosis(x) is a

K by 1 vector containing the sample kurtosis of each column. Note: This command always uses T − 1 to

compute the sample variance.

>> x=[1 2 3; 4 5 6]
x =

1 2 3
4 5 6

>> kurtosis(x)
ans =

1 1 1
>> kurtosis(x’)
ans =

1.5000 1.5000

: operator

The : operator has two uses. One, to access elements in a matrix of vector (e.g. x(1,:)), has already been

described. The other is to create a row vector with evenly spaced points. In this context, the : operator has

two forms, first:last and first:increment:last. The basic form, first:last, produces a row vector of the form

44 CHAPTER 5. BASIC FUNCTIONS

[first, first + 1, . . . first + N]

where N is the largest integer such that first+N ≤last. In common usage, first and last will be integers and

N =last-first. Three examples to show how this construction works:

>> x=1:5
x =

1 2 3 4 5
>> x=1:3.5
x =

1 2 3
>> x=-4:6
x =

-4 -3 -2 -1 0 1 2 3 4 5 6

The second form for the : operator includes an increment. The resulting sequence will have the form

[first, first + increment, first + 2(increment), . . . first + N (increment)]

where N is the largest integer such that first+N(increment)≤last. Consider these two simple examples:

>> x=0:.1:.5
x =

0 0.1000 0.2000 0.3000 0.4000 0.5000
>> x=0:pi:10
x =

0 3.1416 6.2832 9.4248

The increment does not have to be positive. If a negative increment is used, the general form is un-

changed but he stopping condition changes to N is the largest integer such that first+N (increment)≥last.

For example,

>> x=-1:-1:-5
x =

-1 -2 -3 -4 -5
>> x=0:-pi:-10
x =

0 -3.1416 -6.2832 -9.4248

Note: first:last is the same as first:1:last where 1 is the increment.

linspace

linspace is similar to the : operator. Rather than producing a row vector with a predetermined increment,

linspaceproduces a row vector with a predetermined number of nodes. The generic form is linspace(lower,upper,N)

5.1. EXERCISES 45

where lower and upper are the two bounds of the series and N is the number of points to produce.

If inc is defined as inc=(upper-lower)/(N -1), the resulting sequence will have the form

[lower, lower + inc, lower + 2(inc), . . . lower + (N − 1)(inc)]

and the command linspace(lower,upper,N)will produce the same output as lower: (upper-lower)/(N-1):

upper.

Note: Remember : is a low precedence operator so operations involving : should always enclosed in

parenthesis if there is anything else on the same line. Failure to do so can result in undesirable or unex-

pected behavior. For instance, consider:

>> N=4;
>> lower=0;
>> upper=1;
>> linspace(lower,upper,N)-(lower:(upper-lower)/(N-1):upper)
ans =

1.0e-015 *
0 0 -0.1110 0

>> linspace(lower,upper,N)-lower:(upper-lower)/(N-1):upper
ans =

0 0.3333 0.6667 1.0000

MATLAB (correctly, based on its rules) interprets the second line as

>> (lower:(upper-lower)/(N-1):upper-lower):(upper-lower)/(N-1):upper

logspace

logspaceproduces points uniformly distributed in log10 space. logspace(lower, upper, N) is the same

as 10.∧linspace(lower, upper, N).

>> logspace(0,1,4)
ans =

1.0000 2.1544 4.6416 10.0000

5.1 Exercises

1. Load the MATLAB data file created in the Chapter 4 exercises and compute the mean, standard deviation,

variance, skewness and kurtosis of both returns (SP500 and XOM).

2. Create a new matrix, returns = [SP500 XOM]’. Repeat exercise 1 on this matrix.

46 CHAPTER 5. BASIC FUNCTIONS

3. Compute the mean of returns’.

4. Using both the : operator and linspace, create the sequence 0, 0.01, 0.02, . . . , .99, 1.

5. Create a custom logspace using the natural log (base e) rather than the logspace created in base 10 (which

is what logspace uses). Hint: Use linspace AND exp.

6. Find the max and min of SP500. Create a new variable SP500sort which contains the sorted values of this

series. Verify that the min corresponds to the first value of this sorted series and the max corresponds to the

last Hint: length or size.

Chapter 6

Special Matrices

MATLAB contains commands to produce a number of useful matrices.

ones

ones does exactly what it appears to do: generate a matrix of 1’s. Ones is generally called with two argu-

ments, the number of rows and the number of columns.

oneMatrix = ones(N,M)

will generate a matrix of 1’s with N rows and M columns. Note: To use the function call above, N and M must

have been previously defined (e.g. N=10; M=7).

eye

eye generates an identity matrix (matrix with ones on the diagonal, zeros every where else). An identity

matrix is always square so it only takes one argument.

In = ones(N)

zeros

zeros produces a matrix of 0’s in the same way ones produces a matrix of 1’s, and is useful for initializing a

matrix to hold values produces by another procedure.

47

48 CHAPTER 6. SPECIAL MATRICES

x = zeros(N,M)

6.1 Exercises

1. Produce two matrices, one containing all zeros and one containing only ones, of size 10× 5.

2. Multiply these two matrices in both possible ways.

3. Produce an identity matrix of size 5. Take the exponential of this matrix, element-by-element.

4. How could these be replaced with repmat?

Chapter 7

Matrix Functions

MATLAB has a number of functions specifically designed to take matrix inputs. Some are mathematical in

nature, for instance computing the eigenvalues and eigenvectors of a matrix, while other are simply func-

tions for manipulating the elements of a matrix.

repmat

repmat, along with reshape, are among the most useful non-mathematical functions available in MATLAB.

repmat replicates a matrix according to a specified size vector. To understand how repmat functions, imag-

ine forming a matrix composed of blocks. The generic form of repmat is repmat(X, M, N) where X is the

matrix to be replicated, M is the number of rows in the new block matrix, and N is the number of columns

in the new block matrix. For example, suppose we had a matrix

X =

[
1 2

3 4

]
and we needed to form the block matrix

Y =

[
X X X

X X X

]
This could be accomplished by manually constructing y as

>> x = [1 2; 3 4];
>> y = [x x x; x x x];

However, y could also be constructed using repmat

>> x = [1 2; 3 4];
>> y = repmat(x,2,3);

49

50 CHAPTER 7. MATRIX FUNCTIONS

repmat has two clear advantages over manual allocation: (1) it can be executed based on some parameters

determined at run-time, such as the number of explanatory variables in a model and (2) it can be used for

arbitrary dimensions. Manual matrix construction becomes tedious and error prone with as few as 5 rows

and columns.

reshape

reshape transforms a matrix with one set of dimensions and to one with a different set, preserving the

number of elements. reshape can transform an M by N matrix x into an K by L matrix y as long as M N =

K L – and thus the number of elements does not change. The most useful call to reshape switches a matrix

into a vector or vice versa. For example

>> x = [1 2; 3 4];
>> y = reshape(x,4,1)
y =

1
3
2
4

>> z = reshape(y,1,4)
z =

1 3 2 4
>> w = reshape(z,2,2)
w =

1 2
3 4

The crucial detail to remember when using reshape is that MATLAB will always use the column-major

notation to determine the shape of the new matrix. MATLAB always counts down then across, and will

place elements of the old matrix into their same position in the new matrix. In other words, x (1) = y (1),

x (2) = y (2), and so on.

diag

diag can produce one of two results depending on the form of the input. If the input is a square matrix, it

will return a column vector of the elements along the diagonal of a matrix. If the input is a vector, it will

return a matrix with the elements of the diagonal along the vector. Consider the following example:

>> x = [1 2; 3 4];
x =

1 2
3 4

>> y = diag(x)
y =

1

51

4
>> z=diag(y)
z =

1 0
0 4

det

det computes the determinant of a square matrix.

trace

trace computes the trace of a square matrix (sum of diagonal elements) and so trace(x) equals sum(diag(x)).

chol

chol computes the Cholesky factor of a positive definite matrix. The Cholesky factor is a lower triangular

matrix and is defined as C in

C ′C = Σ

where Σ is a positive definite matrix.

inv

inv computes the inverse of a matrix. inv(x) can alternatively be computed using x∧(-1).

eig

eig computes the eigenvalues and eigenvector of a square matrix. To get both the eigenvalues and eigen-

vectors, two output arguments are required, [vec,val]=eig(x).

kron

kron computes the Kronecker product of two matrices,

z = x ⊗ y

and is written as z = kron(x,y) in MATLAB code.

52 CHAPTER 7. MATRIX FUNCTIONS

Chapter 8

Inf, NaN and Numeric Limits

MATLAB has three special expressions reserved to indicate certain non-numerical “values”.

Inf standard for infinity. MATLAB understands both Inf and -Inf. Inf can be constructed in a number

for ways, for instance 1/0 or exp(1000).

NaN stands for not-a-number. NaNs are created when ever a function produces a result that cannot be

clearly defined as a number of infinity. For instance, inf/inf produces a NaN.

MATLAB has some numeric limits. The easiest to understand are the upper and lower limits, which

are 1.7977e+308 and -1.7977e+308. Numbers larger (in absolute value) than these are Inf in MATLAB.

The smallest non-zero number MATLAB can express is 2.2251e-308. Numbers between -2.2251e-308 and

2.2251e-308 are 0 in MATLAB.

However, the hardest concept to understand about numerics is the limited precision. MATLAB has a

precision of 2.2204e-016 (MATLAB command eps gives this number, and it may vary based on the type of

CPU that is running MATLAB). Numbers which are outside of a relative range of 2.2204e-016 are considered

the same. To explore the role of eps, examine the results of the following:

>> x=1
x =

1
>> x=x+eps/2
x =

1
>> x-1
ans =

0
>> x=x+2*eps
x =

1.0000
>> x-1
ans =

4.4409e-016

To understand what is meant by relative range, examine the following output

53

54 CHAPTER 8. INF, NAN AND NUMERIC LIMITS

>> x=10
x =

10
>> x+2*eps
ans =

10
>> x-10
ans =

0

In the first example, eps/2< eps so it has no effect while 2*eps> eps so it does. However in the second

example, 2*eps/10 < eps, it has no effect when added. This is a very tricky concept to understand, but

failure to understand numeric limits can results in errors in code that appears to be otherwise correct.

8.1 Exercises

1. What is the value of log(exp(1000)) both analytically and in MATLAB? Why do these differ?

2. What is the value of eps/10?

3. Is .1 different from .1+eps/10?

3. Is 1e120 (1× 10120) different from 1e120+1e102? (Hint: Test with ==)

Chapter 9

Logical Operators and Find

Logical operators are useful when writing batch files or scripts. Logical operators, when combined with flow

control, allow for complex choices to be compactly expressed.

9.1 >,>=,<,<=,== ,∼=

The core logical operators are

> Greater than

>= Greater than or equal to

< Less than

<= Less then or equal to

== Equal to

∼= Not equal to

Logical operators can operate on scalars, vector or matrices. All comparisons are done element-by-

element and return either 1 (logical true) or 0 (logical false). For instance, suppose x and y are matrices.

z=(x<y); will be a matrix of the same size as x and y composed of 0’s and 1’s. Alternatively, if one is scalar,

say y, then the elements of z are z(i,j)=(x(i,j)<y);.

Logical operators can be used to access elements of a vector or matrix. For instance, suppose z = x L

y where L is one of the logical operators above such as <. The following table examines the behavior when

x and/or y are scalars or matrices.

Suppose z=x<y:

y

Scalar Matrix

Scalar Any Any

x z = x < y z i j = x < yi j

Matrix Any Same Dimensions

z i j = x i j < y z i j = x i j < yi j

55

56 CHAPTER 9. LOGICAL OPERATORS AND FIND

Logical operators are used in portions of programs known as flow control (for example if . . . else

. . . end blocks), which will be discussed later. It is important to remember that vector or matrix logical

operations return vector or matrix output and that flow control blocks require scalar logical expressions.

9.2 & (AND), | (OR) and∼ (NOT)

Logical expressions can be combined using three logical devices,

& AND

| OR

∼ NOT

Recall that ∼ (NOT) has higher precedence than & (AND) and | (OR). They follow the same as other

logical operators. If used on two matrices, the dimensions must be the same. If used on a scalar and a

matrix, the effect is the same as calling the logical device on the scalar and each element of the matrix.

Suppose x and y are logical variables (1 or 0’s). Suppose z=x&y:

y

Scalar Matrix

Scalar Any Any

x z = x &y z i j = x &yi j

Matrix Any Same Dimensions

z i j = x i j &y z i j = x i j &yi j

9.3 logical

The MATLAB command logical is use to convert non-logical elements to logical. MATLAB treats logical

values and regular numbers differently. Logical elements only take up 1 byte of memory (The smallest unit

of memory MATLAB can address) while regular numbers require 8 bytes. In certain situations, a logical

value is required. One such example is in indexing an array. As previously demonstrated, the elements of

a matrix x can be accessed by x(#) where # can be a vector of indices. Since the elements of x are indexed

1,2,. . ., an attempt to retrieve x(0) will return an error. However, if # is not a number but a logical value, this

behavior changes. MATLAB interprets logical indices as indicator functions. Consider the behavior in the

following code:

>> x = [1 2 3 4];
>> y = [1 1];
>> x(y)
ans =

1 1
>> y = logical([1 1]);
>> x(y)
ans =

1 2

9.4. ALL AND ANY 57

>> y = logical([1 0 1 0]);
>> x(y)
ans =

1 3

The effect of logical is clear: It forces MATLAB to interpret the indices as indicator variables when de-

ciding what to return. For another example, consider the following block of code

>> x = [1 2 3 4];
>> y = x<=2;
>> x(y)
ans =

1 2
>> y
ans =

1 1 0 0

Note: logical turns any non-zero value into logical true (1), although MATLAB will generate a warning if

the values differ from 0 or 1. For example

>> x=[0 1 2 3]
x =

0 1 2 3
>> logical(x)
Warning: Values other than 0 or 1 converted to logical 1.
ans =

0 1 1 1

9.4 all and any

The MATLAB commands all and any take logicals as input and are self descriptive. all returns logical(1)

if all logical elements in a vector are 1. If all is called on a matrix of logical elements, it works column-by-

column, returns 1 if all elements of the column are logical true and 0 otherwise. any returns logical(1)

if any element of a vector is logical true. Again, if called on a matrix, any operates column-by-column,

returning logical true if any element of that column is true.

>> x = [1 2 3 4];
>> y = x<=2;
y =

1 1
0 0

>> all(y)
ans =
0

58 CHAPTER 9. LOGICAL OPERATORS AND FIND

>> any(y)
ans =
1
>> x = [1 2 ; 3 4];
>> y = x<=3;
y =

1 1
1 0

>> all(y)
ans =
1 0
>> any(y)
ans =
1 1

9.5 find

find is an useful function for working with multiple data series. It isn’t logical itself, but it takes logical inputs

and returns matrix indices where the logical statement is true. There are two primary ways to call find.

indices = find (x < y) will return indices (1,2,. . .,numel(x)) while [i,j] = find (x < y) will return

pairs of matrix indices what correspond to the places where x<y.

>> x = [1 2 3 4];
>> y = x<=2
y =

1 1 0 0
>> find(y)
ans =

1 2
>> x = [1 2 ; 3 4];
>> y = x<=3
ans =

1 1 1 0
>> find(y)
ans =

1 2 3
>> [i,j] = find(y)
i =

1 2 1
i =

1 1 2

9.6 is*

MATLAB provides a number of special purpose logical tests to determine if a matrix has special character-

istics. Some operate element-by-element and produce a matrix of the same dimension as the input matrix

while other produce only scalars. These function all begin is.

9.7. EXERCISES 59

isnan 1 if NaN element-by-element

isinf 1 if Inf element-by-element

isfinite 1 if not Inf element-by-element

isreal 1 if not complex valued. scalar

ischar 1 if input is a character array scalar

isempty 1 if empty scalar

isequal 1 if all elements are equal scalar

islogical 1 if input is a logical matrix scalar

isscalar 1 if scalar scalar

isvector 1 if input is a vector (1×K of K × 1). scalar
There are a number of other special purpose is* expressions. For more details, search for is* in the help file.

>> x=[4 pi Inf Inf/Inf]
x =

4.0000 3.1416 Inf NaN
>> isnan(x)
ans =

0 0 0 1
>> isinf(x)
ans =

0 0 1 0
>> isfinite(x)
ans =

1 1 0 0

Note: isnan(x)+isinf(x)+isfinite(x) always equals 1, implying any element falls into one (and only

one) of these categories.

9.7 Exercises

1. Using the MATLAB data file created in Chapter 4, count the number of negative returns in both the S&P

500 and Exxon Mobile.

2. For both series, create an indicator variable that takes the value 1 is the return is larger than 2 standard

deviations or smaller than -2 standard deviations. What is the average return conditional on falling into this

range for both returns.

3. Construct an indicator variable that takes the value of 1 when both returns are negative. Compute the

correlation of the returns conditional on this indicator variable. How does this compare to the correlation

of all returns?

4. What is the correlation when at least 1 of the returns is negative?

5. What is the relationship between all and any. Write down a logical expression that allows one or the

other to be avoided (i.e. write myany = ??? and myall = ????).

60 CHAPTER 9. LOGICAL OPERATORS AND FIND

Chapter 10

Flow Control

The previous chapter explored one use of logical variables, selecting elements from a matrix. Logical vari-

ables have another important use: flow control. Flow control allows different code to be executed depend-

ing on whether certain conditions are met. Two flow control structures are available: if . . . elseif . . .

else and switch . . . case . . . otherwise.

10.1 If Elseif Else

if . . . elseif . . . else blocks always begin with an if statement immediately followed by a scalar logical

expression and must be terminated with end. elseif and else are optional and can always be replicated

using nested if statements at the expense of more complex logic. The generic form of an if . . . elseif . . .

else block is

if logical1

Code to run if logical1 true
elseif logical2

Code to run if logical2 true and logical1 false
elseif logical3

Code to run if logical3 true and logicalj false, j < 3
. . .
. . .
else

Code to run all logical’s false
end

However, simpler forms are more frequently used:

if logical1

Code to run if logical1 true
end

61

62 CHAPTER 10. FLOW CONTROL

or

if logical1

Code to run if logical1 true
else

Code to run if logical1 false
end

Note: Do not forget that all logical’s must be scalar logical values.

A few simple examples

>> x = 5;
>> if x<5

x=x+1;
else

x=x-1;
end

>> x
ans =

4

and

>> x = 5;
>> if x<5

x=x+1;
elseif x>5

x=x-1;
else

x=2*x;
end

>> x
ans =

10

These examples have all used simple logical expressions. However, any scalar logical expressions, such

as (x<0 || x>1) && (y<0 || y>1)or isinf(x) || isnan(x), can be used in if . . . elseif . . . elseblocks.

10.2 Switch Case Otherwise

switch. . .case. . .otherwise blocks allow advanced flow control although they can be completely replicated

using only if . . . elseif . . . else flow control blocks. Do not feel obligated to use these if not comfortable

in their application. The basic structure of this block is to find some variable whose value can be used

to choose a piece of code to execute (the switch variable). Depending on the value of this variable (its

case), a particular piece of code will be executed. If no cases are matched (otherwise), a default block of

10.2. SWITCH CASE OTHERWISE 63

code is executed (otherwise can safely be omitted. In this case, nothing is done if one of the cases is not

matched). However, at most one block is matched. Matching a case causes that code block to execute

then the program continues running on the next line after the switch . . . case . . . otherwise block. The

generic form of an switch . . . case . . . otherwise block is

switch variable

case value1

Code to run if variable=value1 true

case value2

Code to run if variable=value2 true

case value3

Code to run if variable=value3 true

. . .

. . .

otherwise
Code to run if variable 6= valuej ∀j

end

Note: There is an equivalence between switch . . . case . . . otherwise and if . . . elseif . . . elseblocks.

However, if the logical expressions contain inequalities, logical variables must be created prior to using a

switch . . . case . . . otherwise block . These blocks differ from standard C behavior since only one case

can be matched per block. After the first match, the block is exited and the program resumes with the next

line after the block.

A simple switch . . . case . . . otherwise example:

x=5;
switch x

case 4
x=x+1;

case 5
x=2*x;

case 6
x=x-2;

otherwise
x=0;

end
>> x
ans =

10

cases can include multiple values for the switch variable using the notation case {case1,case2,. . . }. For

example,

64 CHAPTER 10. FLOW CONTROL

x=5;
switch x

case {4}
x=x+1;

case {1,2,5}
x=2*x;

otherwise
x=0;

end
>> x
ans =

10

10.3 Exercises

1. Write a code block that would take a different path depending on whether the returns on two series are

simultaneously positive, both are negative, or they have different signs using an if . . . elseif . . . else

block.

2. Construct a variable which takes the values 1, 2 or 3 depending on whether the returns in exercise 1

are both positive (1), both negative (2) or different signs (3). Repeat exercise 1 using a switch . . . case . . .

otherwise block.

Chapter 11

Loops

Loops are the most useful programming structure in MATLAB. They make many problems, particularly

when combined with flow control blocks, simple (and in many cases, possible). MATLAB has two loop

blocks: for. . .end and while. . .end. for blocks loop over a predetermined iterator and while blocks loop

as long as some logical expression is satisfied. All for loops can be expressed as while loops although the

opposite is not true. They are nearly equivalent when break is used, although it is generally preferable to

use a while loop to a for loop and a break statement.

11.1 for

for loops begin with for iterator=vector and end with end. The generic structure of a for loop is

for iterator=vector
Code to run

end

iterator is a variable name the loop is iterating over. For example, i is a common iterator. vector is a vector

of data. It can be an existing vector or it can be generated on the fly using linspace or a:b:c syntax (e.g.

1:10). One subtle aspect of loops in MATLAB is that the iterator can contain any vector data, including

non-integer and/or negative values. Consider these three examples:

count=0;
for i=1:100

count=count+i;
end

count=0;
for i=linspace(0,5,50)

count=count+i;
end

65

66 CHAPTER 11. LOOPS

count=0;
x=linspace(-20,20,500);
for i=x

count=count+i;
end

The first loop will iterate over i = 1, 2,. . . , 100. The second loops over the values produced by the func-

tion linspace which creates 50 uniform points between 0 and 5, inclusive. The final loops over x, a vector

constructed from a call to linspace. Loops can also iterate over decreasing sequences:

count=0;
x=-1*linspace(0,20,500);
for i=x

count=count+i;
end

or vector with no order:

count=0;
x=[1 3 4 -9 -2 7 13 -1 0];
for i=x

count=count+i;
end

The key to understanding for loop behavior is that MATLAB always iterates over the elements of vector in

the order they are presented (i.e. vector(1), vector(2), . . .). Loops can also be nested:

count=0;
for i=1:10

for j=1:10
count=count+j;

end
end

and can contain flow control variables:

returns=randn(100,1);
count=0;
for i=1:length(returns)

if returns(i)<0
count=count+1;

end
end

11.1. FOR 67

One particularly useful loop construct is to loop over the length of a vector, which allows each element to

be modified one at a time.

trend=zeros(100,1);
for i=1:length(trend)

trend(i)=i;
end

Finally, these ideas can be combined to produce nested loops with flow control.

matrix=zeros(10,10);
for i=1:size(matrix,1)

for j=1:size(matrix,2)
if i<j

matrix(i,j)=i+j;
else

matrix(i,j)=i-j;
end

end
end

of loops containing nested loops that are executed based on a flow control statement.

matrix=zeros(10,10);
for i=1:size(matrix,1)

if (i/2)==floor(i/2)
for j=1:size(matrix,2)

matrix(i,j)=i+j;
end

else
for j=1:size(matrix,2)

matrix(i,j)=i-j;
end

end
end

Note: The iterator variable must NOT be modified inside the for loop. Changing the iterator can produce

undesirable results. For instance,

for i=1:100;
i
i=1;
i

end

Produces the output

68 CHAPTER 11. LOOPS

...
i =

99
i =

1
i =

100
i =

1

which can lead to unpredictable results if i is used inside the loop.

11.2 while

while loops are useful when the number of iterations needed is unknown. while loops are commonly used

when a loop should only stop if a certain condition is met, such as the change in some parameter is small.

The generic structure of a while loop is

while logical

Code to run

Update to logical inputs
end

Two things are crucial when using a while loop: 1. logical should be true when the loop begins (or the

lop will be ignored) and 2. The inputs to the logical variable must be updated inside the loop. If they are not,

the loop will continue for ever (hit CTRL+C to break an errant loop). The simplest while loops are drop-in

replacements for for loops:

count=0;
i=1;
while i<=10

count=count+i;
i=i+1;

end

which produces the same results as

count=0;
for i=1:10

count=count+i;
end

11.3. BREAK 69

while loops should generally be avoided when for loops will do. However, there are situations where

no for loop equivalent exists.

mu=1;
index=1;
while abs(mu)>.0001

mu=(mu+randn)/index;
index=index+1;

end

In the block above, the number of iterations required is not known in advance and since randn is a standard

normal pseudo-random number, it may take many iterations until this criteria is met. Any finite for loop

cannot be guaranteed to meet the criteria.

11.3 break

break can be used to break out of a loop and can make for loops behave nearly like a while loop:

for iterator=vector
Code to run
if logical

break
end

end

The only difference between this loop and a standard while loop is that the while loop could potentially

run for more iterations and it0erator. break can also be used to end a while loopbefore running the code

inside the loop. Consider this slightly strange loop:

while 1
x = randn;
if x<0

break
end
y = sqrt(x);

end

The use of while 1 will produce a loop, if left alone, that will run indefinitely. However, the break

command will stop the loop if some condition is met. More importantly, the break will prevent the code

after it from being run, which is useful if the operations after the break will create errors if the condition is

not true.

70 CHAPTER 11. LOOPS

11.4 continue

continue, when used inside a loop, has the effect of advancing the loop to the next iteration and skipping

any remaining code in the body of the loop. It use can always be avoided using if. . .else blocks, but it can

make code tidier. It’s effect is best seen through a block of code:

for i=1:10
if (i/2)==floor(i/2)

continue
end
i

end

which produces output

...

...
i =

7
i =

9

demonstrating that continue is forcing the loop to the next iteration when ever i is even (and (i/2)==

floor(i/2) is logical true).

11.5 Exercises

1. Simulate 1000 observations from an ARMA(2,2) with normal innovations. The process of an ARMA(2,2) is

given by

yt = φ1yt−1 + φ2yt−2 + θ1εt−1 + θ2εt−2 + εt

Use the values φ1 = 1.4, φ2 = −.8, θ1 = .4 and θ2 = .8. Note: When simulating a process, always

simulate more data then needed and throw away the first block of observations to avoid start-up biases.

This process is fairly persistent, at least 100 extra observations should be computed. As a rule, I always

compute at least 2000 extra data points to throw away, even when simulating a short series.

2. Simulate a GARCH(1,1) process with normal innovations. A GARCH(1,1) process is given by

yt = εt

√
h t

h t = ω + αεt−1 + βh t−1

Use the valuesω = 0.05, α = 0.05 and β = 0.9.

11.5. EXERCISES 71

3. Simulate a GJR-GARCH(1,1,1) process with normal innovations. A GJR-GARCH(1,1) process is given by

yt = εt

√
h t

h t = ω + αεt−1 + γεt−1I [εt−1<0] + βh t−1

Use the valuesω = 0.05, α = 0.02 γ = 0.07 and β = 0.9. Hint: Some form of logical expression is needed

in the loop. I [εt−1<0] is an indicator variable that takes the value 1 if the expression inside the [] is true.

4. Simulate a ARMA(1,1)-GJR-GARCH(1,1)-in-mean process,

yt = φ1yt−1 + θ1εt−1

√
h t−1 + λht + εt

√
h t

h t = ω + αεt−1 + γεt−1I [εt−1<0] + βh t−1

Use the values from Exercise 3 for the GJR-GARCH model and use theφ1 = −0.1, θ1 = 0.4 and λ = 0.03.

5. Using a while loop, write a bit of code that will do a bisection search to invert a normal CDF. A bisection

search cuts the interval in half repeatedly, only keeping the sub interval with the target in it. Hint: keep track

of the upper and lower bounds of the random variable value and use flow control. This problem requires

normcdf.

6. Test out the loop using by finding the inverse CDF of 0, -3 and pi. Verify it is working by taking the

absolute value of the difference between the final value and the value produced by norminv.

72 CHAPTER 11. LOOPS

Chapter 12

Plotting Data

MATLAB has extensive plotting facilities and that a wide range of graphical data representations. Despite

the broad capabilities of the graphics system in MATLAB, this chapter will emphasize the basics.

12.1 Support Functions

All plotting functions have a set of support functions which are useful for providing labels for various por-

tions of the plot or making adjustments to the range. Remember to fully label plots so others can clearly tell

which series are being plotted and the units of the plot.

• legend labels the various elements on a graph. The specific behavior of legend depends on the type

of plot and the order of the data. legend takes as many strings as unique plot elements. Standard

usage is legend(’Series 1’,’Series 2’) where the number of series is figure dependent.

• title places a title at the top of a figure. Standard usage is title(’Figure Title’).

• xlabel, ylabel and zlabel produce text labels on the x , y and z –if 3D – axes respectively. Standard

usage is xlabel(’X Data Name’).

• axis can be used to both get the axis limits and set the axis limits. To retrieve the current axis limits,

enter AX = axis();. AX will be a row vector of the form [xlow xhigh ylow yhigh (zlow) (zhigh)] where

zlow and zhigh are only included if the figure is 3D. The axis can be changed by calling axis([xlow

xhigh ylow yhigh (zlow) (zhigh)]) where the z-variables are only allowed if the figure is 3D. axis

can also be used to tighten the axes to include only the minimum space required to express the data

using the command axis tight.

These four are the most important, but there are many additional functions available to tweak figures.

12.2 Plot

plot is the most basic plotting command. Like most commands, it can be used many ways. However, the

most straight forward is

73

74 CHAPTER 12. PLOTTING DATA

plot(x1,y1,format1,x2,y2,format2,. . .)

where xi and yi are vector of the same size and formati is a format string of the form color shape linespec.

color can be any of

b blue

g green

r red

c cyan

m magenta

y yellow

k black

shape can be any of

o circle

x x-mark

+ plus

* star

s square

d diamond

v triangle (down)
∧ triangle (up)

< triangle (left)

> triangle (right)

p pentagram

h hexagram

and linespec can be any of

- solid

: dotted

-. dashdot

- - dashed

(non) no line

The three arguments are combined to form a format string. For instance ’gs-’ will produce a green

solid line with squares at every data point while ’r+ ’ will produce a set of red + symbols at every data

point. Arguments which are not needed can be left out. For instance, to produce a green dotted line with

no symbol, use the format string ’g:’. If no format string is provided, MATLAB will use an automatic color

scheme and plot solid lines with no markers. Suppose the following x and y data were created in MATLAB.

12.2. PLOT 75

x = linspace(0,1,100);
y1 = 1-2*abs(x-0.5);
y2 = x;
y3 = 1-4*abs(x-0.5).^2;

Calling plot(x,y1,’rs:’,x,y2,’bo-.’,x,y3,’kp-’) will produce the plot in figure 12.1. A line’s color

information is lost when documents printed are in black and white. Always use physical characteristics to

distinguish multiple series – either different line types or different markers, or both.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12.1: Simple plot of three lines. The lines were plotted with the command
plot(x,y1,’rs:’,x,y2,’bo-.’,x,y3,’kp- -’).

All plots should be clearly labeled and this one is no exception. The following code block labels the axes,

gives the figure a title, and provides a legend. The results of running the code along with the plot command

above can be seen in figure 12.2.

xlabel(’x’);
ylabel(’f(x)’);
title(’Plot of three series’);
legend(’f(x)=1-|x-0.5|’,’f(x)=x’,’f(x)=1-4*abs(x-0.5).^2’);

76 CHAPTER 12. PLOTTING DATA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

Plot of three series

f(x)=1−|x−0.5|
f(x)=x

f(x)=1−4*abs(x−0.5).2

Figure 12.2: Labeled plot of three lines. Be certain to clearly label axes and provide a title and legend so
other can comprehend the contents of a figure.

One other form of the plot command is worth mentioning. plot(y) will plot the data in vector y

against a simple series which labels each observation 1, 2, . . ., length(y). In fact, plot(y) is equiva-

lent to plot(1:length(y),y) when y is a vector. If y is a matrix, plot will draw each column of y as if

it was a separate series. When y is a matrix, plot(y) is equivalent to plot(1:length(y(:,1)), y(:,1),

1:length(y(:,2)), y(:,2), . . .).

12.3 Plot3

plot3 is behaves similarly to plot with the exception it plots a series against two other series in 3-space. All

arguments are the same and the generic form is

plot3(x1,y1,z1,format1,x2,y2,z2,format2,. . .)

The following code block demonstrates the use of plot3.

12.3. PLOT3 77

figure(2)
N=200;
x=linspace(0,8*pi,N);
x=sin(x);
y=linspace(0,8*pi,N);
y=cos(y);
z=linspace(0,1,N);
plot3(x,y,z,’rs:’);
xlabel(’x’);
ylabel(’y’);
zlabel(’z’);
title(’Spiral’);
legend(’Spiraling Line’)

The results of this block of code can be seen in figure 12.3.

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Spiral

y

z

Spiraling Line

Figure 12.3: 3D Spiral plot. 3D lines can be plotted using the plot3 command. This line was plotted by
calling plot3(x,y,z,’rs:’);.

78 CHAPTER 12. PLOTTING DATA

12.4 Scatter

scatter, like most graphing functions in MATLAB, is self descriptive. It produces a scatter plot of the el-

ements of a vector x against the elements of a vector y . Formatting, such as color or market shape can

only be changed by either using handle graphics or manually editing the plot. Simple example of these are

included at the end of this chapter. Consult the MATLAB help file for scatter for further information.

The following code produces a scatter diagram of 1000 pseudo-random numbers from a normal distri-

bution, each with unit variance and correlation of 0.5. The output of this code can be seen in figure 12.4.

figure(4)
x=randn(1000,2);
Sigma=[2 .5;.5 0.5];
x=x*Sigma^(0.5);
scatter(x(:,1),x(:,2),’rs’)
xlabel(’x’)
ylabel(’y’)
legend(’Data point’)
title(’Scatter plot of correlated normal random variables’)

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

x

y

Scatter plot of correlated normal random variables

Data point

Figure 12.4: Scatter plot. This plot contains a scatter plot of a bivariate normal random deviations with unit
variance and correlation of 0.5. This line was plotted by calling scatter(x(:,1),x(:,2),’rs’);.

12.5. SURF 79

12.5 Surf

The next three graphics tools all plot a matrix of z data against vector of x and y data. All three uses the

results from a bivariate normal probability density function. The PDF of a bivariate normal with mean 0 is

given by

f X (x) = −
1

2π|Σ|
1
2

exp(−1

2
x ′Σ−1x)

In this example, the covariance matrix, Σ, was chosen

Figure 12.5: Surface plot. surf plots a 3D surface from vectors of x and y data and a matrix of z data. This
surf contains the PDF bivariate of a bivariate normal, and was created using surf(x,y,pdf) where x, y and
pdf are defined in the text.

Σ =

[
2 0.5

0.5 0.5

]
A matrix of pdf values, pdf was created with the following code:

N = 100;
x = linspace(-3,3,N);
y = linspace(-2,2,N);

80 CHAPTER 12. PLOTTING DATA

pdf=zeros(N,N);
for i=1:length(y)

for j=1:length(x)
pdf(i,j)=exp(-0.5*[x(j) y(i)]*Sigma^(-1)*[x(j) y(i)]’)/sqrt((2*pi)^2*det(Sigma));

end
end

The first two lines initialize the x and y values. Since x has a higher variance, it has a larger range. The surf

(figure 12.5) was created by

surf(x,y,pdf)
xlabel(’x’)
ylabel(’y’)
zlabel(’PDF’)
title(’Surf of normal PDF’)
shading interp

The command shading interp changes how the colors are applied form a discrete to grid to a continuous

grid.

Note: The x and y arguments of surf must match the dimensions of the z argument. If [M,N]=size(z),

then length(y) must be M and length(x) must be N. This is true of all 3D plotting functions that draw

matrix data. In the code above, i is the row iterator which corresponds to y and j is the column iterator,

corresponding to x.

12.6 Mesh

mesh produces a graphic similar to surf but with empty space between grid points. Mesh has the advantage

that the hidden side can be seen, potentially revealing more from a single graphic. It also produces much

smaller files which can be important when including multiple graphics in a presentation or repot. Using the

same bivariate normal setup, the following code produces the mesh plot evidenced in figure 12.6.

mesh(x,y,pdf)
xlabel(’x’)
ylabel(’y’)
zlabel(’PDF’)
title(’Mesh of normal PDF’)

12.7 Contour

Contour is similar to surf and mesh in that it takes three arguments, x , y and z . However, it differs in that

it produces a 2D plot. contour plots, while not as eye-catching as mesh plots, are often better at convey-

ing meaningful information. Contour plots can be either called as contour(x,y,z) or contour(x,y,z,N)

12.8. SUBPLOT 81

−3

−2

−1

0

1

2

3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

Mesh of normal PDF

y

P
D

F

Figure 12.6: Mesh plot. mesh produce a figure similar to surf but with gaps between grid points, allowing the
backside of a figure to be seen in a single view. This mesh contains the PDF bivariate of a bivariate normal,
and was created using mesh(x,y,pdf) where x, y and pdf are defined in the text.

where N instructs MATLAB how many contours to produce. If omitted, MATLAB will determine the number

of contours based on the variance of the z data. The code below and figure 12.7 demonstrate the use of

contour.

contour(x,y,pdf);
xlabel(’x’)
ylabel(’y’)
title(’Contours of normal PDF’)

12.8 Subplot

Subplots allow for multiple plots to be placed in the same figure. All calls to subplot must specify three

arguments, the number of rows, the number of columns, and which cell to place the graphic. The generic

form is

subplot(M,N,#).

where M is the number of rows, N is the number of columns, and # indicates the cell to place the graphic.

Cells in a subplot are counted across then down For instance, in a call to subplot(3,2,#), the #’s would be

82 CHAPTER 12. PLOTTING DATA

x

y

Contours of normal PDF

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 12.7: Contour plot. A contour plot is a set of slices through a surf plot. This particular contour plot
contains iso-probability lines from a bivariate normal distribution with mean 0, variances of 2 and 0.5, and
correlation of 0.5.

1 2

3 4

5 6

A call to subplot should be immediately followed by some plotting function. In the simplest case, this

would be a call to plot. However, any graphic function in MATLAB can be used in a subplot. The code below

and output in figure 12.8 demonstrates how different data visualizations may be used in every cell. These

also show a few of the available graphics function that are not described in these notes.

subplot(2,2,1);
x = [5 3 0.5 2.5 2];
explode = [0 1 0 0 0];
pie(x,explode)
colormap jet
title(’pie function’)
axis tight

subplot(2,2,2);
Y = cool(7);
bar3(Y,’detached’)

12.8. SUBPLOT 83

title(’Detached’)
title(’bar3, ’’Detached’’’)
axis tight

subplot(2,2,3)
bar3(Y,’grouped’)
title(’bar3, ’’Grouped’’’)
axis tight

subplot(2,2,4);
x = 1:10;
y = sin(x);
e = std(y)*ones(size(x));
errorbar(x,y,e)
title(’errorbar’)
axis tight

38%

23%

4%

19%

15%pie function

1
2

3

1
2

3
4

5
6

7

0

0.5

1

bar3, ’Detached’

1
2

3
4

5
6

7

0

0.2

0.4

0.6

0.8

1
bar3, ’Grouped’

2 4 6 8 10

−1.5

−1

−0.5

0

0.5

1

1.5

errorbar

Figure 12.8: Subplot example. Subplots allow for more than one graphic to be included in a figure. This
particular subplot contains three different types of graphics with two variants on the 3D bar. The upper left
contains a call to pie, the upper right contains a call to bar3 specifying the option ’grouped’, the lower left
contains a call to bar3 specifying the options ’detached’ and the lower right contains the results to a call
to errorbar.

Note: The graphics code in each subplot was taken straight form the MATLAB help files. The help system

is very comprehensive and illustrates most functions with example code.

84 CHAPTER 12. PLOTTING DATA

12.9 Advanced Graphics

While the standard graphics functions of MATLAB are very powerful and can directly accomplish many

tasks, sometimes they are not sufficiently general. For instance, if is often useful to change the thickness of

a line in order to improve its appearance or to add an arrow to highlight a particular feature of a graph.

Fortunately, MATLAB provides two mechanisms to add elements to a plot. The first, which will be re-

ferred to as “point-and-click”, involves manually editing the plot in the figure window. The second, and

more general of the two, is known as handle graphics. Handle graphics provides a mechanism to program-

matically change anything about a graph.

12.9.1 Point-and-click

The simplest method to improve plots is to use the editing facilities of the figure windows directly. A number

of buttons are available along the top edge of a plot. One the of these is an arrow, (1) in figure 12.9. Clicking

on the arrow will highlight it and allow any element, such as a line, to be selected. Double-clicking on a line

will bring up a Property Editor (2) dialog which contains elements of the selected item that can be changed.

These include color, line width, and marker (3). For more information in editing plots, search for Editing

Plots in the MATLAB help.

Figure 12.9: point-and-click editing. Most features of a plot can be editing using the interactive editing tools
of a figure window. Interactive editing is started by first selecting the arrow icon along the top of the figure
(1), then clicking on the element to be edited (e.g. the line, the axes, any text label). This will bring up the
Property Editor (2) where the item specific properties can be changed (3).

12.10. EXERCISES 85

12.9.2 Handle Graphics

Part of the power of MATLAB graphics is that it is fully programmable. Anything that can be accomplished

through manual editing of a plot can be accomplished by using handle graphics. Every graphical element

is assigned a handle. The handle contains everything there is to know about the particular graphic, such as

colors or line widths. Once familiar with handle graphics, they can be used to create spectacularly complex

data visualizations. However, their use will be illustrated through a simple example.

The example will illustrate the use of handle graphics by showing both before and after plots using

subplot.

e = randn(100,2);
y = cumsum(e);
subplot(2,1,1);
plot(y);
legend(’Random Walk 1’,’Random Walk 2’)
title(’Two Random Walks’)
xlabel(’Day’)
ylabel(’Level’)

subplot(2,1,2);
h = plot(y);
l = legend(’Random Walk 1’,’Random Walk 2’)
t = title(’Two Random Walks’)
xl = xlabel(’Day’)
yl = ylabel(’Level’)
set(h(1),’Color’,[1 0 0],’LineWidth’,2,’LineStyle’,’:’)
set(h(2),’Color’,[1 .6 0],’LineWidth’,2,’LineStyle’,’-.’)
set(t,’FontSize’,14’,’FontName’,’Bookman Old Style’,’FontWeight’,’demi’)
set(l,’FontSize’,14’,’FontName’,’Bookman Old Style’,’FontWeight’,’demi’)
set(xl,’FontSize’,14’,’FontName’,’Bookman Old Style’,’FontWeight’,’demi’)
set(yl,’FontSize’,14’,’FontName’,’Bookman Old Style’,’FontWeight’,’demi’)
parent = get(h(1),’Parent’);
set(parent,’FontSize’,14’,’FontName’,’Bookman Old Style’,’FontWeight’,’demi’)

Most things that can be accomplished through handle graphics can be accomplished using the point-

and-click editing method outlined above. However, the advantage of handle graphics is are more apparent

when a figure needs to be updated or redrawn. When redrawing a figure, ff using handle graphics, only the

code needs to be updates code and rerun. If using the point-and-click editing method, each change must

be manually reapplied after any every change in the data.

For more on handle graphics, please consult the Handle Graphics Properties in the MATLAB help file.

12.10 Exercises

1. Generate two random walks using a loop and randn. Plot these two on a figure and provide all of the

necessary labels.

2. Generate a 3D plot from

86 CHAPTER 12. PLOTTING DATA

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

8

10

12

Day

L
e
v
e
l

Two Random Walks

Random Walk 1

Random Walk 2

0 20 40 60 80 100
−10

−5

0

5

10

15

Day

L
e
v

e
l

Two Random Walks

Random Walk 1

Random Walk 2

Figure 12.10: Handle graphics. The top subplot is a standard call to plot while the bottom highlight some
of the possibilities when using handle graphics. It is worth nothing that all of these changes evidenced int
eh bottom subplot can be reproduces using the point-and-click method.

x = linspace(0,10*pi,300);
y = sin(x);
z = x*y;

Label all axes, title the figure and provide a legend.

3. Generate 1000 draws from a normal. Plot a histogram with 50 bins of the data.

4. Using the Dell and S&P 500 data, produce a subplot with 4 windows containing:

• A scatter plot of the two series

• Two histograms of the series

• One plot of the two series against the dates. Change the axis labels to text using datetick.

Chapter 13

Exporting Plots

Once a plot has been finalized, it must be exported to be included in an assignment, report or project.

Exporting is straight forward. On the figure, click File, Save As (1 in figure 13.1). In the Save as type box,

select the desired format (TIFF for Microsoft Office uses, EPS file for LATEX(2 in figure 13.2)), enter a file name

(1 in figure 13.2) and save. Figures 13.1 and 13.2 contain representations of the steps needed to export from

a figure box.

Figure 13.1: Steps to export a figure. To export a figure, click Save As. . . in the file menu of a figure (1). The
dialog in figure 13.2 will appear.

If the exported figure does not appear as desired, some options in Page Setup may need to be altered

(2 in figure 13.1). Specifically, it may be useful to change the paper orientation to Landscape (Paper tab)

and then hit Fill Page, Fix aspect ratio and Center (1, 2 and 3 in figure 13.4) on the Size and Position Tab.

Figures 13.3 and 13.4 contain representation of the Page Setup screens needed to change the page size for

exporting.

Note: Figures can be exported programmatically using the print command.

87

88 CHAPTER 13. EXPORTING PLOTS

Figure 13.2: Save as dialog. To export a figure, enter a file name and use the drop-down box to select a file
type. Select TIFF image if using Microsoft Office or EPS File (Encapsulated Postscript) if using LATEX.

Figure 13.3: Page Setup, Paper tab. If the exported figure is too small, change the paper to Landscape and
then change the size using the Size and Position tab (figure 13.4).

13.1 Exercises

1. Export the plot from exercise 1 of the previous chapter as a TIFF and an EPS. View the files created outside

of MATLAB.

2. Use page setup to change the orientation and dimensions as described in this chapter. Re-export the

13.1. EXERCISES 89

Figure 13.4: Page Setup, Size and Position tab. After changing the paper orientation to Landscape (figure
13.3), make sure the page is filled by clicking on (1) Fill Page, (2) Fix aspect ratio and then (3) Center. This
will produce large, high quality exported figures which can be resized in Office or LATEX.

figure as both a TIFF and EPS (using different names) and compare the new images to the old versions.

90 CHAPTER 13. EXPORTING PLOTS

Chapter 14

Custom Functions

In addition to writing batch files and calling predefined functions, MATLAB allows custom functions to per-

form repeated tasks or to use as the objective of an optimization routine. All functions in MATLAB begin

with the line of the form function [out1, out2, . . .] = functionname(in1,in2,. . .) where out1, out2,

. . . are variables the function returns to the command window, functionname is the name of the function

(which should be unique and not a reserved word) and in1, in2, . . . are input variables. Obviously func-

tions can take multiple inputs sand return multiple outputs. However, to get started, consider this simple

function:

function y = func1(x)
x = x + 1;
y = x;

This function, which isn’t particularly well written1, takes one input and returns one output, incrementing

the input variable (whether a scalar, vector or matrix) by one.

Functions have a few important differences from standard m-file scripts.

• Functions operate on a copy of the original data. Thus, the same variable names can be used inside

and outside of a function without risking any data.2

• Any variables created when the function is running, or any copies of variables made for the function,

are lost when the function completes.

In the function above, this means that only the value of y is returned and everything else is lost. Specifi-

cally changes in x do not persist. For example, suppose the following was entered in MATLAB

1It has no comments and superfluous commands. The function should only contain y = x +1; and a description.
2For anyone with a programming background, MATLAB uses a copy-on-change model where data is only copied if modified. If

unmodified, variables passed to functions behave as if passed by reference.

91

92 CHAPTER 14. CUSTOM FUNCTIONS

>> x = 1;
>> y = 1;
>> z = func1(x);
>> x
ans =

1
>> y
ans =

1
>> z
ans = 2

Thus, despite the function using variables names x and y, the values of x and y in the workspace do not

change when the function is called.

Functions with multiple inputs and outputs can also be constructed. A simple example is given by

function [xpy, xmy] = func2(x,y)
xpy = x + y;
xmy = x - y;

This function takes two inputs and returns two outputs. It is important to note that despite the two outputs

of this function, it does not need to be called using both. For example, consider the following use of this

function

>> x = 1;
>> y = 1;
>> z1 = func2(x, y);
>> z1
ans =

2
>> [z1, z2] = func2(x ,y);
>> z1
ans =

2
>> z2
ans =

0

There are a number of advanced function specific variables available to convey environmental parameters

such as how many input variables were provided to the function (nargin), how many output were requested

(nargout), that allow variable numbers of input and outputs (varargin and varargout, respectively) and

allow for early termination of the function (return). This course ca be completed without using any of

theses. However, they are available if needed them other research.

14.1. COMMENTS 93

14.1 Comments

Like batch m-files, comments in custom functions are also made using the % symbol. However, comments

have an additional purpose in custom functions. Whenever help function is entered in the command win-

dow, MATLAB will display the first continuous block of comments in the command window. For instance,

if the function func is given by

function y = func(x)
% This function returns
% the value of the input squared.

% The next block of comments will not be returned when
% ’help func’ is entered in the Command Window
% This line does the actual work.
y=x.^2;

entering help func would return

>> help func

This function returns
the value of the input squared.

Initial comments usually contain the possible combinations of input and output arguments as well as a

description of the function. While comments are strictly optional, they should be included both to assist in

reading the function and to assist others if the function is shared.

14.2 Debugging

Since the data modified in the function is not available when the function is run, debugging can be some-

what difficult. There are three basic strategies to debug a function:

• Write the “function” as a script and then convert it to a proper function.

• Leave off ; as needed to write out the value of variables to the command window. Alternatively, use

disp.

• Use keyboard and return to interrupt the function in order to inspect the values.

The first of these methods is often the easiest. Consider a script version of the function above,

94 CHAPTER 14. CUSTOM FUNCTIONS

x = 1;
y = 2;
%function [xpy, xmy] = func2(x,y)
xpy = x + y;
xmy = x - y;

Running this script would be equivalent to calling the function func2(1,2). However, when calling it as

a script, variables can be examined as they change. The second method can be useful but is clumsy. Of-

ten the output window becomes filled with numbers and find the problematic code may be difficult. The

third options is the most advanced. Adding keyboard to a function instructs MATLAB to interrupt the func-

tion and return control to the keyboard. When in this situation, the usual >> prompt changes to a K>>.

When in keyboard mode, variables inside the function are treated as if they were script variables. Once fin-

ished inspecting the variables, enter return to continue the execution of the function. A simple example of

keyboard can be adapted to the function above,

function [xpy, xmy] = func3(x,y)
keyboard
xpy = x + y;
xmy = x - y;
keyboard

Calling this function will result in an immediate keyboard session (note the K>>. Entering whos will list two

variables, x and y. When return is entered, a second keyboard session open. Entering whos will now list

four variables, the original two and xpy and xmy. When a function has been completely debugged, either

comment out the keyboard commands or remove them entirely.

14.3 Exercises

1. Write a function summstat that take one input, a T by K matrix, and returns a matrix of summary statistics

of the
mean(x(:,1)) std(x(:,1)) skewness(x(:,1)) kurtosis(x(:,1))

mean(x(:,2)) std(x(:,2)) skewness(x(:,2)) kurtosis(x(:,2))
...

...
...

...

mean(x(:,K)) std(x(:,K)) skewness(x(:,K)) kurtosis(x(:,K))

2. Rewrite the function so that it outputs 4 vectors, one each for mean, std, skewness and kurtosis.

3. Write a function called normloglikihood that takes two arguments, params and data (in that order) and

returns the log-likelihood of a vector of data. Note: params = [mu sigma2]′ consists of two elements, the

mean and the variance.

4. Append to the previous function a second output that returns the score of the log-likelihood (a 2 × 1

vector) evaluated at params.

Chapter 15

Probability and Statistics Functions

MATLAB, through the statistics toolbox, contains an extensive range of statistics function.

15.1 quantile

quantile returns the empirical quantile of a vector. However, it’s function is simple and can easily be re-

placed using sort, length and floor or ceil.

15.2 prctile

prctile is identical to quantile except it expects an argument from 0 to 100 rather than an argument

between 0 and 1.

15.3 regress

regress performs basic regression and returns key regression statistics. I’m not a big fan of MATLAB imple-

mentation and recommend writing a custom regression function as an exercise.

15.4 *cdf, *pdf, *rnd, *inv

The most valuable code in the statistics toolbox are the CDFs, PDFs, random number generators and inverse

CDFs contained within. All common distributions have the complete set of four provided, including

• χ2 (chi2-)

• β (beta-)

• Exponential (exp-)

• Extreme Value (ev-)

95

96 CHAPTER 15. PROBABILITY AND STATISTICS FUNCTIONS

• F (f-)

• Γ (gam-)

• Lognormal (logn-)

• Normal (Gaussian) (norm-)

• Poisson (poiss-)

• Student’s t (t-)

• Uniform (unif-)

15.5 The JPL Toolbox

The JPL toolbox, available from http:\\www.spatial-ecnometics.com, contains many econometric func-

tions written by academics. Best of all, it is free. It also has a number of useful plotting functions such as

pltdens which plots an kernel smooth of an empirical density. I suggest downloading this toolbox before

writing a custom own functions to avoid needless reinvention.

15.6 Exercises

1. Have a look through the statistics toolbox in the help browser and explore the functions available.

2. Download the JPL toolbox and extract its contents. Have a look through the list of functions available.

Chapter 16

Optimization

The optimization toolbox contains a number of routines that use numerical techniques to find extremum

of user-supplied functions. Most of these implement a form of the Newton-Raphson algorithm which uses

derivatives to find the minimum of a function. Note: MATLAB can only find minimums. However, if f is a

function to be maximized,− f is a function with the minimum at the same point as the maximum of f .

To use MATLAB to optimize function (for example a log-likelihood or a GMM quadratic form) a custom

function that returns the function value at a set of parameters must be constructed. All optimization tar-

gets must have the parameters as the first argument. For example consider finding the minimum of x 2. A

function which would allows MATLAB’s optimizer to work correctly would have the form

function x2 = optim_target1(x)

x2=x^2;

When multiple parameters (a parameter vector) are used, the objective function must take the form

function obj = optim_target2(params)

x=params(1);
y=params(2);

obj= x^2-3*x+3+y*x-3*y+y^2;

Optimization targets can have additional inputs,

function obj = optim_target3(params,hyperparams)

x=params(1);
y=params(2);

c1=hyperparams(1);

97

98 CHAPTER 16. OPTIMIZATION

c2=hyperparams(2);
c3=hyperparams(3);
obj= x^2+c1*x+c2+y*x+c3*y+y^2;

This form is particularly useful in econometrics where optimization targets typically require at least two

inputs: parameters and data. Once an optimization target function has been specified, the next step is to

use one of the MATLAB optimizers find the minimum.

16.1 fminunc

fminunc performs derivative based unconstrained minimization. Derivatives can be provided by the user

or approximated numerically by MATLAB. The generic form of fminunc is

[p,fval,exitflag]=fminunc(’fun’,p0,options, var1, var2,. . .)

where fun is the optimization target, p0 is the vector of starting values, options is a user supplied optimiza-

tion options structure (see 16.5), and var1, var2, . . . are (optional) variables containing data or other constant

values. Typically, three outputs are requested, the parameters at the optimum (p), the function value at the

optimum (fval) and a flag to determine whether the optimization was successful (exitflag). For example,

suppose

function obj = optim_target4(params,hyperparams)

x=params(1);
y=params(2);

c1=hyperparams(1);
c2=hyperparams(2);
c3=hyperparams(3);
obj= x^2+c1*x+c2+y*x+c3*y+y^2;

was our objective function (and was saved as optim_target.m). To minimize the function, call

>> options = optimset(’fminunc’);
>> options = optimset(options,’Display’,’iter’);
>> p0 = [0 0];
>> hyper = [-3 3 -3];
>> [p,fval,exitflag]=fminunc(’optim_target4’,p0,options,hyper)

which produces

[x,fval,exitflag]=fminunc(’optim_target4’,[0 0],options,hyper)
First-order

Iteration Func-count f(x) Step-size optimality

16.2. FMINSEARCH 99

0 3 -3 3
1 6 -8 0.333333 2
2 9 -12 1 1.19e-007

Optimization terminated: relative infinity-norm of gradient less
than options.TolFun.
x =

1 1
fval =

0
exitflag =

1

fminunc has minimized this function and returns the optimum value of 0 at x = (1, 1) and the exitflag has

the value 1, indicating the optimization was successful.

16.2 fminsearch

fminsearch also performs unconstrained optimization but uses a derivative free method (using a simplex).

fminsearch uses a virtual amoeba to crawl around in the parameter space that will always move to lower

objective function values. fminsearch has the same generic form as fminunc

[p,fval,exitflag]=fminsearch(’fun’,p0,options, var1,var2,. . .)

where fun is the optimization target, p0 is the vector of starting values, options is a user supplied opti-

mization options structure (see 16.5), and var1, var2, . . . are (optional) variables of data or other constant

values. Returning to the previous example but using fminsearch,

>> options = optimset(’fminsearch’);
>> options = optimset(options,’Display’,’iter’);
>> [x,fval,exitflag]=fminsearch(’optim_target4’,[0 0],options,hyper)
Iteration Func-count min f(x) Procedure

0 1 3
1 3 2.99925 initial simplex
2 5 2.99775 expand
3 6 2.99775 reflect
4 8 2.99475 expand
5 9 2.99475 reflect

\ldots
\ldots
\ldots
57 107 8.93657e-009 contract inside
58 109 3.71526e-009 contract outside
59 111 1.99798e-009 contract inside
60 113 5.82712e-010 contract inside

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004
and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-004
x =

1.0000 1.0000
fval =

5.8271e-010
exitflag =

1

100 CHAPTER 16. OPTIMIZATION

fminsearch requires more iterations and many more function evaluations and should not be used if

fminunc works satisfactorily. However, for certain problems, such as objective functions which are not dif-

ferentiable, fminsearch may be the only option.

16.3 fminbnd

fminbnd performs minimization of single parameter problems over a bounded interval using a golden sec-

tion algorithm. The generic form is

[p,fval,exitflag]=fminbnd(’fun’,lb,ub,options, var1,var2,. . .)

where fun is the optimization target, lb and ub are the lower and upper bounds of the parameter, op-

tions is a user supplied optimization options structure (see 16.5), and var1, var2, . . . are (optional) variables

containing data or other constant values.

Since fminbnd only minimizes univariate objectives, consider finding the minimum of

function obj = optim_target5(params,hyperparams)

x=params(1);

c1=hyperparams(1);
c2=hyperparams(2);
c3=hyperparams(3);
obj= c1*x^2+c2*x+c3;

and optimizing using fminbnd

>> options = optimset(’fminbnd’);
>> options = optimset(options,’Display’,’iter’);
>> hyper=[1 -10 21];
>> [x,fval,exitflag]=fminbnd(’optim_target5’,-10,10,options,hyper)
Func-count x f(x) Procedure

1 -2.36068 50.1796 initial
2 2.36068 2.96601 golden
3 5.27864 -3.92236 golden
4 5 -4 parabolic
5 4.99997 -4 parabolic
6 5.00003 -4 parabolic

Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-004

x =
5

fval =
-4

exitflag =
1

16.4. FMINCON 101

16.4 fmincon

fmincon performs constrained optimizations using linear and/or nonlinear constraints which can be either

equality of inequality constraints. fmincon minimizes f (x) subject to any combination of

• AEQ x = b EQ

• Ax ≤ b

• C N EQ (x) = d N EQ

• C (x) ≤ d

where x is K by 1 parameter vector, A is aQ×K matrix and b is aQ×1 vector. In the second set of constraints,

C (·) is a function fromRK toRP where P is the number of nonlinear constraints and d is a P × 1 vector (EQ

and N EQ are simply used to distinguish the equality constraints form the inequality constraints). Note that

any≥ constrain can be transformed into a≤ constraint by multiplying by−1.

The generic form of fmincon is

[p,fval,exitflag]=fmincon(’fun’, p0,A,b, AEQ ,bEQ ,LB, UB,nlcon,options,var1,var2,. . .)

where fun is the optimization target, p0 is the vector of starting values, A and AEQ are matrices as de-

scribed above for inequality and equality constraints, respectively and b and b EQ are conformable vectors

as described above. LB and UB are vectors with the same size as p0 that contain upper and lower bounds,

respectively. Note: LB and UB can always be represented in A and b . For instance, suppose the constraint

was−1 ≤ p ≤ 1, then A and b would be

A =

[
−1

1

]
b =

[
1

1

]
which are MATLAB expressions for−p ≤ 1 (which is equivalent to p ≥ −1) and p ≤ 1. nlcon is a nonlinear

constraint function that returns the value of C (x)− d and C N EQ (x)− d N EQ (This is tricky function. See doc

fmincon for specifics). options is a user supplied optimization options structure (see 16.5), and var1, var2,

. . . are (optional) variables of data or other constant values.

Consider the problem of optimizing a CRS Cobb-Douglas utility function of the form U (x1, x2) = xλ1 x 1−λ
2

subject to a budget constraint p1x1 + p2x2 ≤ 1. This is a nonlinear function subject to a linear constraint

(note, we need x1 ≥ 0 and x1 ≥ 0. First, specify the optimization target

function u = crs_cobb_douglas(x,lambda)

x1=x(1);
x2=x(2);

u=x1^(lambda)*x2^(1-lambda);
u=-u %Must change max problem to min!!!

The optimization problem can be formulated in MATLAB by

102 CHAPTER 16. OPTIMIZATION

>> options = optimset(’fmincon’);
>> options = optimset(options,’Display’,’iter’);
>> prices = [1 1]; %Change this set of parameters as needed
>> lambda = 1/3; %Change this parameter as needed
>> A = [-1 0; 0 -1; prices(1) prices(2)]
A =

-1 0
0 -1
1 1

>> b=[0; 0; 1]
b =

0
0
1

>> p0=[.4; .4]; %Must start from a feasible position, usually off the constraint
>> [x,fval,exitflag]=fmincon(’crs_cobb_douglas’,x0,A,b,[],[],[],[],[],options,lambda)

max Directional First-order
Iter F-count f(x) constraint Step-size derivative optimality Procedure

0 3 -0.4 -0.2
1 6 -0.529134 0 1 -0.106 0.129
2 9 -0.529134 0 1 -4.14e-025 2.01e-009

Optimization terminated: first-order optimality measure less
than options.TolFun and maximum constraint violation is less
than options.TolCon.

Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin

3
x =

0.3333
0.6667

fval =
-0.5291

exitflag =
1

the exitflag value of 1 indicates success. Suppose that dual to the original problem, that of cost minimiza-

tion, is used instead. In this alternative formulation, the optimization problems becomes

min
x1,x2

p1x1 + p2x2 subject to U (x1, x2) ≥ Ū

Again, to solve this problem in MATLAB, first specify an objective function

function cost = budget_line(x,prices,lambda,Ubar)

x1=x(1);
x2=x(2);

p1=prices(1);
p2=prices(2);

cost = p1*x1+p2*x2;

Since this problem has a nonlinear constraint, we must specify a nlcon function,

16.4. FMINCON 103

function [C, Ceq] = compensated_utility(x,prices,lambda,Ubar)

x1=x(1);
x2=x(2);

u=x1^(lambda)*x2^(1-lambda);

con=u-Ubar; %Note this is a >= constraint
C=-con; %This turns it into a <= constraint
Ceq = []; %No equality constraints

Note: The constraint function and the optimization must take the same optional arguments in the same

order, even if they do not need them. This problem can be solved in MATLAB using

>> options = optimset(’fmincon’);
>> options = optimset(options,’Display’,’iter’);
>> prices = [1 1]; %Change this set of parameters as needed
>> lambda = 1/3; %Change this parameter as needed
>> A = [-1 0; 0 -1] %Note, we still need x1 and x2>=0
A =

-1 0
0 -1

>> b=[0; 0]
b =

0
0

>> Ubar = .5291;
>> x0 = [1.5;1.5]; %Start with all constraints satisfied, since -1.5+1<0 (-u+ubar).
>> [x,fval,exitflag]=fmincon(’budget_line’,x0,A,b,[],[],[],[],’compensated_utility’,...

options,prices,lambda,Ubar)
Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure
0 3 3 -0.9709
1 6 1.05238 6.451e-005 1 -1.95 0.982
2 10 0.952732 0.02503 0.5 -0.199 0.083 Hessian modified
3 13 0.999469 0.0004091 1 0.0467 0.0365
4 16 0.999653 0.0001502 1 0.000184 0.00127
5 19 0.999936 1.615e-007 1 0.000283 2.34e-005 Hessian modified
6 22 0.999936 2.535e-011 1 3.05e-007 1.31e-008 Hessian modified

Optimization terminated: first-order optimality measure less
than options.TolFun and maximum constraint violation is less
than options.TolCon.

Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin

1
x =

0.3333
0.6666

fval =
0.9999

exitflag =
1

104 CHAPTER 16. OPTIMIZATION

These two examples are relatively simple problems where the answers can be analytically verified. Un-

fortunately, in many it is impossible to verify that the global optimum was been found (for instance, if there

are local minima). In these cases, the standard practice is to try many different starting values and use the

lowest fval. If things are working well, many of the starting values should produce parameter estimates

near the others with similar fvals.

Note: Many aspects of constrained optimization (and optimization in general) are more black magic than

science. Worse, most are problem class specific so general rules are hard to derive. The only way to become

proficient at minimizing function is to practice.

16.5 optimset

optimset sets optimization options and has two distinct forms. The initial call to optimzet should always

be of the form options = optimset(’fmintype’) which will return the default options for that type. Once

the options structure has been initialized, individual options can be changes by calling

options = optimset(options,’option1’,option value1,’option2’,option value2,. . .)

For example, to set options for fmincon,

>> options = optimset(’fmincon’);
>> options = optimset(options,’MaxFunEvals’,1000,’MaxIter’,1000);
>> options = optimset(options,’TolFun’,1e-3);

For help on the available options or their specific meaning, see doc optimset.

16.6 Other Optimization Routines

MATLAB’s Optimization toolbox contains a number of other optimization algorithms:

fseminf Multidimensional constrained minimization, semi-infinite constraints

fgoalattain Multidimensional goal attainment optimization

fminimax Multidimensional minimax optimization

lsqlin Linear least squares with linear constraints

lsqnonneg Linear least squares with nonnegativity constraints

lsqcurvefit Nonlinear curve fitting via least squares (with bounds)

lsqnonlin Nonlinear least squares with upper and lower bounds

bintprog Binary integer (linear) programming

linprog Linear programming

quadprog Quadratic programming

Chapter 17

Dates and Times

Keeping track of dates is crucial when working with time-series data. MATLAB stores dates as days since

January 1, 0000 known as MATLAB serial dates. For example, January 1, 0000 is 1 in MATLAB date format

while January 1, 2000 is 730,486. MATLAB serial dates store hours as fractional days, so 12:00 January 1, 2000

is 730,486.5. The standard method to get dates into MATLAB is to use Excel to produce Excel dates and to

add a constant to map Excel dates (which are based on January 1, 1900) to MATLAB dates. However, this

isn’t always possible, and MATLAB provides a number of useful functions to manipulating date data.

17.1 datenum

datenum converts either string dates (’01JAN2000’) or numeric dates ([2000 01 01]) into MATLAB serial

dates. To call the function with string dates, use either datenum(stringdate)or datenum(stringdate,format)

where format is composed of blocks from

yyyy Four digit year.

yy Two digit year, risky since it can assume the wrong century.

mmmm Full name of month (e.g. January)

mmm First three letters of month (e.g. JAN)

mm Numeric month of year

m Capitalized first letter of month

dddd Full name of weekday

ddd First three letters of weekday

dd Numeric day of month

d Capitalized first letter of weekday

HH Hour, should be 24 hour format and padded with 0 if single digit

MM Minutes, must be padded with extra 0 if single digit

SS Seconds, must be padded with extra 0 if single digit
MATLAB will automatically recognize most reasonable string date formats. However, the format strings

above can be used to handle non-standard cases. They are particularly useful if the arguments appear

in a strange order, such as yyyyddmm (e.g. 20000101), or if the dates are delimited using nonstandard

characters, such as a ; or , (e.g. 2000;01;01).

105

106 CHAPTER 17. DATES AND TIMES

A few examples

>> datenum(’01JAN2000’)
ans =

730486
>> datenum(’01JAN2000’,’ddmmmyyyy’)
ans =

730486
>> datenum(’01;JAN;2000’,’dd;mmm;yyyy’)
ans =

730486
>> datenum(’01012000’,’ddmmyyyy’)
ans =

730486

datenum also works on string arrays. For example

>> strdates=strvcat(’01JAN2000’,’02JAN2000’,’03JAN2000’)
strdates =
01JAN2000 02JAN2000 03JAN2000
>> datenum(strdates)
ans =

730486
730487
730488

datenum can also be used to convert numeric dates, such as [2000 01 01] to MATLAB serial date format.

For example,

>> datenum([2000 01 01])
ans =

730486
>> years=[2000;2000;2000];
>> months=[01;01;01];
>> days=[01;02;03];
>> [years months days]
ans =

2000 1 1
2000 1 2
2000 1 3

>> datenum(years,months,days)
ans =

730486
730487
730488

datenum can also be used to translate hours, minutes and seconds to fractional days, although it should be

easy to write code to handle this.

17.2. DATESTR 107

17.2 datestr

datestr is the “inverse” of datenum. It produces a human readable string of a MATLAB serial date. By

default, it will return string dates of the form ’dd-mmm-yyyy’. However, it also knows a number of stan-

dard formats such as ’mm/dd/yy’ or ’mmm.dd,yyyy’. To produce one of the nonstandard date formats, use

datestr(serial_date, #) where # corresponds to one of the format strings (see help datestr for a list).

datestr can also produce strings with arbitrary formats using the syntax detailed above (e.g. ’dd; mm; yyyy’

to produce a date string with ; delimiters).

>> serial_date=datenum(’01JAN2000’)
serial_date =

730486
>> datestr(serial_date)
ans =
01-Jan-2000
>> datestr(serial_date,0)
ans =
01-Jan-2000 00:00:00
>> datestr(serial_date,’mmm;dd;yyyy’)
ans =
Jan;01;2000

Like datenum, datestr can take vector input and return vector output.

>> serial_date=datenum(strvcat(’01JAN2000’,’02JAN2000’,’03JAN2000’))
serial_date =

730486
730487
730488

>> datestr(serial_date)
ans =
01-Jan-2000
02-Jan-2000
03-Jan-2000

17.3 datevec

datevec converts MATLAB serial dates into human parsable numeric formats. Specifically, given a MATLAB

serial date, datevec will produce a 1 ×6 vector of the form [Year Month Day Hour Minute Second]. For

example,

>> serial_date=datenum(strvcat(’01JAN2000’,’02JAN2000’,’03JAN2000’))
serial_date =

730486
730487

108 CHAPTER 17. DATES AND TIMES

730488
>> datevec(serial_date)
ans =

2000 1 1 0 0 0
2000 1 2 0 0 0
2000 1 3 0 0 0

which correspond to 0:00 (midnight) on the January 1-3, 2000.

17.4 now and clock

now returns the a MATLAB serial date representation of the computer clock. Clock returns a 1 × 6 vector

(same format as datevec) of the computer clock. datevec(now) produces the same output as clock.

17.5 tic and toc

tic and toc can be used for timing when optimizing code. For example,

>> tic
>> j=1; for i=1:1000000; j=j+1; end
>> toc
Elapsed time is 0.4867477 seconds.

17.6 etime

The elapsed time between two calls to clock can be computed using etime.

>> c=clock;
>> j=1; for i=1:10000000; j=j+1; end;
>> e=etime(clock,c)

e =
0.4830

17.7 datetick

datetick is not a function for explicitly working with dates. datetick converts an axis of a plot expressed

in MATLAB serial dates to text dates. For example,

17.7. DATETICK 109

7.3045 7.305 7.3055 7.306 7.3065 7.307 7.3075 7.308 7.3085 7.309

x 10
5

−20

−15

−10

−5

0

5

10

Q1−00 Q2−00 Q3−00 Q4−00 Q1−01
−20

−15

−10

−5

0

5

10

Figure 17.1: Example of datetick. datetick converts MATLAB serial dates into text strings. Unfortu-
nately, it typically changes the location of points and makes fairly bad choices. The solution is to use
datetick(’x’,’keepticks’,’keeplimits’).

>> dates = datenum(’01Jan2000’):datenum(’31Dec2000’);
>> rw = cumsum(randn(size(dates)));;
>> subplot(2,1,1);
>> plot(dates, rw);
>> subplot(2,2,1);
>> plot(dates, rw);
>> datetick(’x’)

produces the two plots in figure 17.1. The top plot contains MATLAB serial dates along the x-axis while

the bottom contains sting dates. datetick also understands both standard formatting commands (see

datestr) and custom formatting commands (see datenum). This function has an unfortunate tendency

to produce few x-labels. The solution is to first choose the axis label points (in serial dates) and than use

datetick(’x’,’keepticks’,’keeplimits’) as illustrated in figure 17.2.

110 CHAPTER 17. DATES AND TIMES

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11 01/12

−15

−10

−5

0

5

Date

Le
ve

l
Demo plot of datetick with keeplimits and keepticks

Figure 17.2: datetick with keepticks and keeplimits. These two arguments ensure datetick be-
haves sanely. To use them, set up the figure as is should look but with serial dates, and then call
datetick(’x’,’keepticks’,’keeplimits’).

>> h=plot(dates, rw);
>> axis tight
>> serial_dates=datenum(strvcat(’01/01/2000’,’01/02/2000’,’01/03/2000’,’01/04/2000’,...

’01/05/2000’,’01/06/2000’,’01/07/2000’,’01/08/2000’,...
’01/09/2000’,’01/10/2000’,’01/11/2000’,’01/12/2000’),...
’dd/mm/yyyy’);

>> parent=get(h,’Parent’);
>> set(parent,’XTick’,serial_dates);
>> datetick(’x’,’dd/mm’,’keeplimits’,’keeplimits’);
>> xlabel(’Date’)
>> ylabel(’Level’)
>> title(’Demo plot of datetick with keeplimits and keepticks’)

Chapter 18

String Manipulation

While manipulating text is not MATLAB’s strong suit, it does provide a complete set of tools for working with

strings. MATLAB treats strings as matrices of character data. Simple strings can be input from the command

line

str = ’Econometrics is my favorite subject.’;

Since character data are contained in matrices, they respect the standard behavior of most commands (e.g.

str(1:10)). However, using commands designed for numerical data is tedious and MATLAB contains spe-

cial purpose string functions to assist.

The primary use of string functions in MATLAB is for parsing data. In chapter 3, an example of parsing a

poorly formatted file. It uses a number of MATLAB’s string manipulation functions to manipulate and parse

the text of a file.

char

char changes integer numerical values between 1 and 255 into their ASCII equivalent characters. Other

values produce a nonsense result.

>> char(65:100)
ans =
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘abcd
>> char([1.32 pi 256])
ans =

���

double

double changes character strings into their numerical values.

>> double(’MATLAB’)
ans =

77 97 116 108 97 98

111

112 CHAPTER 18. STRING MANIPULATION

strvcat

strvcat vertically concatenates two strings. In normal math mode, to matrices x and y can be vertically

concatenated by [x;y]. However, strings often have different widths which makes concatenation of the

difficult. strvcat makes this easy.

>> strvcat(’apple’,’banana’,’cherry’)
ans =
apple
banana
cherry
>> x=strvcat(’alpha’,’beta’);
>> y=strvcat(’delta’,’gamma’);
>> strvcat(x,y)
ans =
alpha
beta
delta
gamma

strcat

strcat horizontally concatenates strings. z=strcat(x,y) is the same as z=[x y] when x and y have the

same number of rows. If one has a single row, strcat concatenates it to every row of the other vector.

>> strcat(strvcat(’a’,’b’),strvcat(’c’,’d’))
ans =
ac
bd
>> strcat(strvcat(’a’,’b’),’c’)
ans =
ac
bc

strfind

strfind returns all beginnings of any block of text in another string. It is useful in finding delimiting char-

acters in a block of text to assist in parsing. For example, consider a single line from WRDS TAQ output

>> str = ’IBM,02JAN2001,9:30:07,84.5’;
>> strfind(str,’,’)
ans =

4 14 22

113

strfind returns all of the location of ’,’. If more than one character is searched for, strfind can produce

overlapping blocks.

>> str = ’ababababa’
str =
ababababa
>> strfind(str,’aba’)
ans =

1 3 5 7

strcmp and strcmpi

strcmp compares two strings and returns (logical) 1 if they are the same. It is case sensitive. strcmpi does

the same but is not case sensitive.

>> strcmp(’a’,’a’)
ans =

1
>> strcmp(’a’,’A’)
ans =

0
>> strcmpi(’a’,’A’)
ans =

1

strncmp and strncmpi

strncmp compares the first n characters of two strings and returns (logical) 1 if they are the same. It is case

sensitive. strcnmpi does the same but is not case sensitive.

>> strncmp(’apple’,’apple1’,5)
ans =

1
>> strncmp(’apple’,’apple1’,6)
ans =

0
>> strncmp(’apple’,’Apple1’,5)
ans =

0
>> strncmpi(’apple’,’Apple1’,5)
ans =

1

114 CHAPTER 18. STRING MANIPULATION

strmatch

strmatch compares rows of a character matrix with a string and returns the index of all rows that begin with

the string. To match only the entire row, use the optional command ’exact’

>> str = strvcat(’alpha’,’beta’,’alphabeta’);
>> strmatch(’alpha’,str)
ans =

1
3

>> strmatch(’alpha’,str,’exact’)
ans =

1

regexp and regexpi

regexp is similar to strfind but takes standard regular expression syntax commands to find matches. It is

case sensitive. regexpi does the same but is not case sensitive. For examples of regexp, see doc regexp.

str2num

str2num converts string values into numerical varies. The input can be either vector or matrix valued.

>> strvcat(’1’,’2’,’3’)
ans =
1
2
3
>> str2num(strvcat(’1’,’2’,’3’))
ans =

1
2
3

>> str2num([’1 2 3’;’4 5 6’])
ans =

1 2 3
4 5 6

Note the different spacing of strings (no str2num) and numbers.

num2str

num2str converts numerical values into strings. The input can be either vector or matrix valued.

18.1. EXERCISES 115

>> num2str([1;2;3])
ans =
1 2 3
>> num2str([1 2 3;4 5 6])
ans =
1 2 3
4 5 6

18.1 Exercises

1. Load the file hardtoparsetext.mat and inspect the variable string_data. The data in this file are ; delimited

and contain stock name, date of observation, shares out standing, and price. Write a program that will loop

over the rows and parse the data into four variables: ticker,date, shares and price.

Note: Ticker should be a string, date should be a MATLAB serial data, and shares outstanding and price

should be numerical. For values of ’N/A’, use NaN. For help converting the dates to serial dates, see chapter

??.

116 CHAPTER 18. STRING MANIPULATION

Chapter 19

File System and Navigation

MATLAB uses standard DOS file system commands to change working directories. For instance, to change

directory, type

cd c:\MyDirectory

Other standard DOS file navigation commands, such as dir and mkdir are also available from within MAT-

LAB.

Alternatively, the current directory can be changed by clicking the button with . . . next to the Current

Directory box at the top of the command window (see figure 1.1).

19.1 The MATLAB path

While this section sounds like a Buddhist rite of passage, the path is an important set of locations to MAT-

LAB. The path tells MATLAB where to look for files. All of the toolbox directories are automatically on the

path, but it may be necessary to add new directories to use custom or a non-standard toolbox.

To see the current path, enter path in the command window. Alternatively, there is a GUI path browser

available under File>Set Path. . . . The path is sorted from most important directory to least, with the

present working directory (what pwd returns in the command window) silently atop the list. The path con-

trols which files MATLAB will use when evaluating a function or running a batch file.

Suppose a custom function is accidentally titled mean. When mean is entered in the command window,

MATLAB will find all occurrences of mean on the path and rank them based on their order. It will then

execute the highest ranking one. Naturally, existing function names should be avoided. However, mistakes

do happen and if worried that the wrong function is being called, which function -all will show all files

that match function (function, m-files and mat files), returning them in the order they appear on the path.

New directories can be appended to the path using addpath or File>Set Path. . .. The GUI tool provide

additional functionality as it can be used to re-rank directories on the path. To save any changes, use the

command savepath or click on Save Path in the Path GUI.

117

118 CHAPTER 19. FILE SYSTEM AND NAVIGATION

19.2 Setting up a Custom Path in a Shared Environment

In most shared environments, the MATLAB program directory will be read only and the original MAT-

LAB path cannot be directly altered. To work around this issue, create and save a file named STARTUP.M

in U:\MATLAB. MATLAB will automatically look in the startup directory for this file and run it whenever it

is launched. This file should contain the following:

addpath(’U:\Path to Add’);
addpath(’U:\Second Path to Add’);

where ’Path to Add’ and ’Second Path to Add’ are directories to be added to the base path.

19.3 Exercises

1. Use the command window to create a new directory, chapter 13 (mkdir).

2. Change into this directory using cd.

3. Create a new file names tobedeleted.m using the editor in this new directory (It can be empty).

4. Get the directory listing using dir.

5. Add this directory to the path using either addpath or the Path GUI. Save the changes using either

savepath or the Path GUI.

6. Delete the newly created m-file, and then delete this directory from the command line.

7. Remove this folder from the path using either rmpath or the Path GUI.

Chapter 20

Quick Function Reference

This is a brief summary of functions that are useful in the course. It only scratches the surface of what

MATLAB offers. There are about 100 functions listed here; MATLAB and the Statistics Toolbox combine to

produce more than 1400.

20.1 General Math

abs

Returns the absolute value of the elements of a vector or matrix. If used on a complex data, returns the

complex modulus.

diff

Returns the difference between two adjacent elements of a vector. The if the original vector has length T ,

vector returned has length T − 1. If used on a matrix, returns a matrix of differences of each column. The

matrix returned has one less row than the original matrix.

exp

Returns the exponential function (e x) of the elements of a vector or matrix.

log

Returns the natural logarithm of the elements of a vector or matrix. Returns complex values for negative

elements.

log10

Returns the logarithm base 10 of the elements of a vector or matrix. Returns complex values for negative

elements.

119

120 CHAPTER 20. QUICK FUNCTION REFERENCE

max

Returns the maximum of a vector. If used on a matrix, returns a row vector containing the maximum of each

column.

mean

Returns the arithmetic mean of a vector. If used on a matrix, returns a row vector containing the mean of

each column.

min

Returns the minimum of a vector. If used on a matrix, returns a row vector containing the minimum of each

column.

mod

Returns the remainder of division of the elements of a vector or matrix by a scalar.

roots

Returns the roots of a polynomial.

sign

Returns the sign of the elements of a vector or matrix. The sign is defined as x/|x | and 0 if x = 0.

sum

Returns the sum of the elements of a vector. If used on a matrix, produces a row vector containing the sum

of each column.

20.2 Rounding

ceil

Returns the next larger integer. Output is same size as input and ceil operates element-by-element.

floor

Returns the next smaller integer. Output is same size as input and floor operates element-by-element.

round

Rounds to the nearest integer. Output is same size as input and round operates element-by-element.

20.3. STATISTICS 121

20.3 Statistics

corrcoef and corr

Computes the correlation of a matrix. If a matrix x is N by M , returns the M by M correlation treating the

columns of x as realizations from separate random variables.

cov

Computes the covariance of a matrix. If a matrix x is N by M , returns the M by M covariance treating the

columns of x as realizations from separate random variables. If used on a vector, produces the same output

as var.

kurtosis

Computes the kurtosis of a vector. If used on a matrix, a row vector containing the kurtosis of each column

is returned.

median

Returns the median of a vector. If used on a matrix, a row vector containing the median of each column is

returned.

quantile

Computes the quantiles of a vector. If used on a matrix, a row vector containing the quantiles of each

column is returned.

skewness

Computes the skewness of a vector. If used on a matrix, a row vector containing the skewness of each

column is returned.

std

Computes the standard deviation of a vector. If used on a matrix, a row vector containing the standard

deviation of each column is returned.

var

Computes the variance of a vector. If used on a matrix, a row vector containing the variance of each column

is returned.

122 CHAPTER 20. QUICK FUNCTION REFERENCE

DISTpdf

Returns the probability density function values for a given DIST , where DIST takes one of many forms

such as t (tpdf), norm (normpdf), or gam (gampdf). Inputs vary by distribution.

DISTcdf

Returns the cumulative distribution function values for a given DIST , where DIST takes one of many forms

such as t (tcdf), norm (normcdf), or gam (gamcdf). Inputs vary by distribution.

DISTinv

Returns the inverse cumulative distribution value for a given DIST , where DIST takes one of many forms

such as t (tinv), norm (norminv), or gam (gaminv). Inputs vary by distribution.

DISTrnd

Produces pseudo-random numbers for a given DIST , where DIST takes one of many forms such as t

(trnd), norm (normrnd), or gam (gamrnd). Inputs vary by distribution.

Note: Most DIST function are available for the following distributions: Beta, Binomial, χ2, Exponential,

Extreme Value, F , Gamma, Generalized Extreme Value, Generalized Pareto, Geometric, Hypergeometric,

Lognormal, Negative Binomial, Noncentral F , Noncentral t , Noncentral χ2, Normal, Poisson, Rayleigh, t ,

Uniform, Discrete, Uniform, Weibull,

20.4 Random Numbers

rand

Uniform pseudo-random number generator.

randn

Standard normal pseudo-random number generator.

random

Generic psuedo-random number generator. Can generate random numbers for the following distributions:

Beta, Binomial,χ2, Exponential, Extreme Value, F , Gamma, Generalized Extreme Value, Generalized Pareto,

Geometric, Hypergeometric, Lognormal, Negative Binomial, Noncentral F , Noncentral t , Noncentral χ2,

Normal, Poisson, Rayleigh, t , Uniform, Discrete, Uniform, Weibull,

20.5. LOGICAL 123

20.5 Logical

all

Returns logical true (1) if all elements of a vector are logical true. If used on a matrix, returns a row vector

containing logical true if all elements of each column are logical true.

any

Returns logical true (1) if any elements of a vector are logical true. If used on a matrix, returns a row vector

containing logical true if any elements of each column are logical true.

find

Returns the indices of the elements of a vector or matrix which satisfy a logical condition.

20.6 Special Values

ans

ans is a special variable that contains the value of the last unassigned operation.

eps

eps is the numerical precision of MATLAB. Numbers differing by more the eps are the same to MATLAB.

Inf

Inf represents infinity in MATLAB.

NaN

NaN represents not-a-number in MATLAB. It occurs as a results of performing an operation which produces

in indefinite result, such as Inf/Inf.

20.7 Special Matrices

eye

z=eye(N) returns a N by N identity matrix.

linspace

z=linspace(L,U,N) returns a 1 by N vector of points uniformly spaced between L and U .

124 CHAPTER 20. QUICK FUNCTION REFERENCE

logspace

z=linspace(L,U,N) returns a 1 by N vector of points logarithmically spaced between 10L and 10U .

ones

z=ones(N,M) returns a N by M matrix of ones.

zeros

z=zeros(N,M) returns a N by M matrix of zeros.

toeplitz

z=toeplitz(x) returns a Toeplitz matrix constructed from a vector x.

20.8 Matrix Functions

chol

Computes the Cholesky factor of a positive definite matrix.

det

Computes the determinant of a square matrix.

diag

Returns the elements along the diagonal of a square matrix. If the input to diag is a vector, returns a matrix

with that diagonal.

eig

Returns the eigenvalues and eigenvectors of a square matrix.

inv

Returns the inverse of a square matrix.

kron

Kronecker product of two matrices.

trace

Returns the trace of a matrix, equivalent to sum(diag(x)).

20.9. MATRIX MANIPULATION 125

tril

Returns a lower triangular version of the input matrix.

triu

Returns a upper triangular version of the input matrix.

20.9 Matrix Manipulation

cat

Concatenates two matrices along some dimension. If x and y are conformable matrices, cat(1,x,y) is the

same as [x; y] and cat(2,x,y) is the same as [x y].

length

Length of the longest dimension of a matrix. In the 2D case, is equivalent to max(size(x, 1), size(x,

2)).

numel

Returns the number of elements in a matrix. If the matrix is 2D with dimensions N and M , numel returns

N M .

repmat

Replicates a matrix according to the dimensions provided.

reshape

Reshapes a matrix to have a different size. The product of the dimensions must be the same before and

after, hence the number of elements cannot change.

size

Returns the dimension of a matrix. Dimension 1 is the number of rows and dimension 2 is the number of

columns.

20.10 Set Functions

intersect

Returns the intersection of two vectors. Can be used with optional ’rows’ argument and same-sized matri-

ces to produce an intersection of the rows of the two matrices.

126 CHAPTER 20. QUICK FUNCTION REFERENCE

setdiff

Returns the difference between the elements of two vectors. Can be used with optional ’rows’ argument

and same-sized matrices to produce a matrix containing difference of the rows of the two matrices.

union

Returns the union of two vectors. Can be used with optional ’rows’ argument and same-sized matrices to

produce an union of the rows of the two matrices.

unique

Returns the unique elements of a vector. Can be used with optional ’rows’ argument and a matrix to

produce the unique rows of the matrix.

sort

Produces a sorted vector from smallest to largest. If used on a matrix, operates column-by-column.

sortrows

Sorts the rows of a matrix using lexicographic ordering, similar to alphabetizing words.

20.11 Flow Control

case

Command which can be evaluated to logical true or false in a switch . . . case . . . otherwise flow control

block.

else

Command that is the default in if . . . elseif . . . else flow control blocks. If none of the if or elseif

statement are evaluated to logical true, the else path is followed.

elseif

Command that is used to continue a if . . . elseif . . . else flow control block. Should be immediately

followed by a statement that can be evaluated to logical true or false.

end

Command indicating the end of a flow control block. Both if . . . elseif . . . else and switch . . . case

. . . otherwise must be terminated with an end. Also ends loops.

20.12. LOOPING 127

if

Command that is used to begin a if . . . elseif . . . else flow control block. Should be immediately fol-

lowed by a statement that can be evaluated to logical true or false.

switch

Command signalling the beginning of a switch . . . case . . . otherwise flow control block. Switch should

be followed by a variable contained in the case.

20.12 Looping

continue

Command that exits the current loop and continues the program at the next (outside of loop) line.

end

All loop blocks in MATLAB must be terminated by an end command. Also ends flow control blocks.

for

One of two types of loops available in MATLAB. For loops loop over a predefined vector unless prematurely

ended by a break or continue command.

while

One of two types of loops available in MATLAB. While loops continue until some logical condition is evalu-

ated to logical false (0) unless prematurely ended by a break or continue command.

break

Can be used to prematurely break out of a loop before the remainder of the code in the loop has been

executed.

continue

Can be used to proceed to the next iteration of a loop while bypassing any code occurring after the continue

statement.

128 CHAPTER 20. QUICK FUNCTION REFERENCE

20.13 Optimization

fmincon

Constrained function minimization using a gradient based search. Constraints can be linear or non-linear

and equality or inequality.

fminbnd

Function minimization with bounds. Find the minimum of a function that exists between L and U .

fminsearch

Function minimization using a simplex (derivative-free) search.

fminunc

Unconstrained function minimization using a gradient based search.

optimget

Gets options structure for optimization.

optimset

Sets options structure for optimization.

20.14 Graphics

axis

Sets or gets the current axis limits of the active figure. Can also be used to tighten limits using the command

axis tight.

bar

Produces a bar plot of a vector or matrix.

bar3

Produces a 3D bar plot of a vector or matrix.

contour

Produces a contour plot of the levels of z data against vectors of x and y data.

20.14. GRAPHICS 129

errorbar

Produces a plot of x data against y data with error bars (confidence sets) around each point.

figure

Opens a new figure window. When used with a number, for example figure(1) opens a window with label

Figure 1. If a windows with label Figure 1 is already open, sets that figure as the active figure.

hist

Produces a histogram of data. Can also be used to compute bin centers and height.

legend

Produces a legend of elements of a plot.

mesh

Produces a 3D mesh plot of a matrix of z data against vectors of x and y data.

plot

Plots x data against y data.

plot3

Plots z data against x and y data in a 3D setting.

scatter

Produces a scatter plot of x data against y data.

subplot

Command that allows for multiple plots to be graphed on the same figure. Used in conjunction with other

plotting commands, such as subplot(2,1,1); plot(x,y); subplot(2,1,2); plot(y,x);

surf

Produces a 3D surface plot of a matrix of z data against vectors of x and y data.

title

Produces a text title at the top of a figure.

130 CHAPTER 20. QUICK FUNCTION REFERENCE

xlabel

Produces a text label on the x-axis of a figure.

ylabel

Produces a text label on the y-axis of a figure.

zlabel

Produces a text label on the z-axis of a figure.

20.15 Date Functions

date

Returns string with current date.

datenum

Converts string dates, such as 1-Jan-1900, to MATLAB serial (numeric) dates.

datestr

Converts serial dates to string dates.

datetick

Converts axis labels in serial dates to string labels in plots.

datevec

Parses date numbers and date strings and returns date vectors of the form [YEAR MONTH DATE HOUR MIN

SEC].

tic

Begins a tic-toc timing loop. Useful for determining the amount of time required to run a section of code.

toc

Ends a tic-toc timing loop.

clock

Returns the current date and time as a 6 by 1 numeric vector of the form [YYYY MM DD HH MM SS].

20.16. FILE SYSTEM 131

etime

Can be used to compute the elapsed time between two readings from clock.

now

Returns the current time as a MATLAB serial date.

20.16 File System

cd

Change directory. When used with a directory, changes the working directory to that directory. When called

as cd .., changes the working directory to its parent. If the desired directory has a space, use the function

version cd(‘c:\dir with space\dir2\dir3’).

delete

Deletes a file from the present working directory. Warning: This command is dangerous; any deleted file is

permanently gone and not in the Recycle Bin.

dir

Returns the contents of the current working directory.

mkdir

Creates a new child directory in the present working directory.

pwd

Returns the path of the present working directory.

rmdir

Removes a child directory in the present working directory. Child directory must be empty.

20.17 MATLAB Specific

clc

Clears the command window.

132 CHAPTER 20. QUICK FUNCTION REFERENCE

clear

Clears variables from memory. clear and clear all remove all variables from memory, while clear var1

var2 . . . removes only those variables listed.

clf

Clears the contents of a figure window.

close

Closes figure windows. Can be used to close all figure windows by calling close all.

format

Changes how numbers are represented in the command windows. format long shows all decimal places

while format short only shows up to 5. format short is the default.

help

Displays inline help for calling a function. Also can be used to list the function in a toolbox (help toolbox)

or to list toolboxes (help).

keyboard

Allows functions to be interrupted for debugging. After verifying function operation, use return to continue

running.

helpbrowser

Opens the integrated help system for MATLAB at the last viewed page.

helpdesk

Opens the integrated help system for MATLAB at the home page.

doc

When used as doc function name, opens the help browser to the documentation of function name.

realmax

Returns the largest number MATLAB is capable of represented. Larger numbers are Inf.

realmin

Returns the smallest positive number MATLAB is capable of representing. Numbers closer to 0 are 0.

20.18. INPUT/OUTPUT 133

which

When used in combination with a function name, returns full path to function. Useful if there may be

multiple functions with same name on the MATLAB path.

whos

Returns a list of all variables in memory along with a description of type and information on size and mem-

ory requirements.

profile

Built-in MATLAB profiler. Reports code dependencies, timing of executed code and provides tips for im-

proving the performance of m-files.

20.18 Input/Output

csvread

Reads variables in .csv files into MATLAB. Requires all data be numeric.

csvwrite

Saves variables from MATLAB to a .csv file.

load

Generally used to load the contents of a MATLAB data file (.mat) into the current workspace. Can also be

used to load simple text files.

save

Generally used to save variables to a MATLAB data file (.mat). Can also be used to save tab delimited text

files. Can be combined with -ascii -double to produce tab delimited text files.

xlsfinfo

Returns information about an .xls file, such as sheet names.

xlsread

Reads variables in .xls files into MATLAB. All data should be numeric, although it does contain methods

which allow for text to be read.

134 CHAPTER 20. QUICK FUNCTION REFERENCE

xlswrite

Saves variables from MATLAB to an .xls file.

Index

. . ., 10

*cdf, 95

*inv, 95

*pdf, 95

*rnd, 95

;, 9

%, 10

edit, 8

all, 57

AND, 56

any, 57

axis, 128

bar, 128

bar3, 128

break, 69, 127

case, 62, 126

cat, 125

cd, 131

cdf, 122

ceil, 120

char, 111

chol, 124

clc, 131

clear, 132

clf, 132

clock, 108, 130

close, 132

Comments, 10

continue, 70, 127

contour, 80, 128

corr, 121

corrcoef, 121

cov, 121

csvread, 26, 133

csvwrite, 26, 29, 133

date, 130

datenum, 105, 130

datestr, 107, 130

datetick, 108, 130

datevec, 107, 130

delete, 131

det, 124

diag, 124

dir, 131

disp, 93

doc, 132

double, 111

eig, 124

else, 61, 126

elseif, 61, 126

end, 126, 127

errorbar, 129

etime, 108, 131

eye, 47

figure, 129

floor, 120

fminbnd, 100, 128

fmincon, 101, 128

fminsearch, 99, 128

fminunc, 128

for, 65, 127

format, 132

help, 132

135

136 INDEX

helpbrowser, 132

helpdesk, 132

hist, 129

if, 61, 127

intersect, 125

inv, 122, 124

keyboard, 93, 132

kron, 124

kurtosis, 121

legend, 73, 76–78, 85, 129

length, 37, 125

load, 27, 133

logical, 56

max, 39

mesh, 80

min, 38

mkdir, 131

NOT, 56

now, 108, 131

num2str, 114

numel, 125

ones, 47

optimget, 128

optimset, 104, 128

OR, 56

otherwise, 62

pdf, 122

plot, 73, 129

plot3, 76, 129

prctile, 95

profile, 133

pwd, 131

quantile, 95, 121

rand, 122

randn, 122

random, 122

realmax, 132

realmin, 132

regexp, 114

regexpi, 114

regress, 95

repmat, 125

research, 93

reshape, 125

rmdir, 131

rnd, 122

round, 120

save, 29, 133

scatter, 78, 129

setdiff, 126

size, 37, 125

skewness, 121

sort, 39, 126

sortrows, 126

sqrt, 40

std, 121

str2num, 114

strcat, 112

strcmp, 113

strcmpi, 113

strfind, 112

strmatch, 114

strncmp, 113

strncmpi, 113

strvcat, 112

subplot, 81, 129

sum, 38

surf, 79, 129

switch, 62, 127

tic, 108, 130

title, 73, 129

toc, 108, 130

trace, 124

tril, 125

INDEX 137

triu, 125

union, 126

unique, 126

var, 121

which, 8, 133

while, 68, 127

whos, 133

x2mdate, 24

xlabel, 73, 130

xlsfinfo, 133

xlsflinfo, 23

xlsread, 22, 133

xlswrite, 23, 134

ylabel, 73, 130

zeros, 47

zlabel, 73, 130

	Introduction to MATLAB
	The Interface
	The Editor
	;
	Comments
	… (dot-dot-dot)

	Help
	Demos
	Exercises

	Basic Input
	Variable Names
	Entering Vectors
	Entering Matrices
	Higher Dimension Arrays
	Empty
	Concatenation
	Accessing Elements of Matrices
	Calling functions
	Exercises

	Entering and Saving Data
	Getting Data Into MATLAB
	Robust Data Importing
	Reading Excel Files
	CSV Data
	Text
	MATLAB Data Files (.mat)
	Reading Poorly Formatted Text
	Stat Transfer
	Getting Data Out of MATLAB
	Saving Data
	Exporting Data

	Exercises

	Basic Math
	Operators
	Matrix Addition (+) and Subtraction (-)
	Matrix Multiplication (*)
	Matrix Division (/)
	Matrix Right Divide ("026E30F)
	Matrix Exponentiation ()
	Parentheses
	. operator
	Transpose
	Operator Precedence
	Exercises

	Basic Functions
	Exercises

	Special Matrices
	Exercises

	Matrix Functions
	Inf, NaN and Numeric Limits
	Exercises

	Logical Operators and Find
	 >, >=, <, <=, == , =
	& (AND), | (OR) and (NOT)
	logical
	all and any
	find
	is*
	Exercises

	Flow Control
	If Elseif Else
	Switch Case Otherwise
	Exercises

	Loops
	for
	while
	break
	continue
	Exercises

	Plotting Data
	Support Functions
	Plot
	Plot3
	Scatter
	Surf
	Mesh
	Contour
	Subplot
	Advanced Graphics
	Point-and-click
	Handle Graphics

	Exercises

	Exporting Plots
	Exercises

	Custom Functions
	Comments
	Debugging
	Exercises

	Probability and Statistics Functions
	quantile
	prctile
	regress
	*cdf, *pdf, *rnd, *inv
	The JPL Toolbox
	Exercises

	Optimization
	fminunc
	fminsearch
	fminbnd
	fmincon
	optimset
	Other Optimization Routines

	Dates and Times
	datenum
	datestr
	datevec
	now and clock
	tic and toc
	etime
	datetick

	String Manipulation
	Exercises

	File System and Navigation
	The MATLAB path
	Setting up a Custom Path in a Shared Environment
	Exercises

	Quick Function Reference
	General Math
	Rounding
	Statistics
	Random Numbers
	Logical
	Special Values
	Special Matrices
	Matrix Functions
	Matrix Manipulation
	Set Functions
	Flow Control
	Looping
	Optimization
	Graphics
	Date Functions
	File System
	MATLAB Specific
	Input/Output

