BigTable

Min Cha
minslovey@gmail.com

mailto:minslovey@gmail.com

I What is BigTable?

» Designed to scale to a very large size.

I « A distributed storage system based on GFS.
« Dynamic control over data layout and format.

I Data Model

« Sparse, distributed, persistent multi-

I « 3D table -> row * column * timestamp
dimensional sorted map.

I Data Model - Row

 The row like the row of RDB.
I Arbitrary strings in 64KB.

Atomic

I Data Model — Row
I Atomic

* Every read or write of data under a single
I row key is atomic.
* S0, clients should not worry as concurrent
updates to the same row.

Data Model — Row
Tablet

» BigTable maintains data in lexicographic
order by row key. The row range for a table is
dynamically partitioned. Each row range is
called a tablet.

* 'maps.google.com/index.html’ is stored as
'‘com.google.maps/index.ntml'

 When we read the row range for some
domain, it might be more efficient due to
lexicographic order as above example.

I Data Model — Column Families

* A BigTable could have numbers of column
families.

* The syntax of a column key is as following.
'family:qualifier’

« A column family Itself could be a column key.
ex. '‘content:’

I » The category of column keys.

I Data Model - Timestamps

* 64Dbit integer.

e |t could be current microseconds or explicitly
assigned from client applications.

* Old timestamps could be removed by
garbage-collection.

I » The multiple versions of same data.

I API
* The Bigtable API provides functions for
I creating and deleting tables and column
famlies.

« A BigTable could be used as an input source
and an output target for MapReduce jobs.

Building Blocks

GFS Chubby

I Building Blocks
| SSTable

* This is used internally to store Bigtable data.
I * Look up using a key, iterate over all
key/value pairs in specified key range.

SSTable

Block INDEX
s \/ A

Block 1 Block 2 Block N

I Building Blocks
I Chubby

« Highly-available and persistent distributed

I lock service.

« Chubby provices namespace that consists of
directories and small files. They can be used
as a lock.

* We could think of Chubby as the global lock

repository of BigTable.

I Implementation

I » There are three major components.

Client Library
Master Server

Tablet server

I Implementation
I Master Server

« Detecting the addition and expiration of tablet
servers.

« Balancing tablet-server load.

« Garbage collecting of files in GFS.

I » Assigning tablets to table servers.

I Implementation
I Tablet Server

 Managing a set of tablets.

I « Handling read and write requests to the
tablets.

« Splitting tablets that have grown too large.

I Implementation

I Tablet Location

* Three-level hierarchy analogous to that of a
I B+ tree.

 Root tablet, METADATA tablets, UserTables

I Implementation

I Memtable
* The recently committed logs are stored in
I memory in a sorted buffer called a memtable.

 When a read operation arrives, it is executed
on a merged view of the sequence of
SSTables and the memtable.

 When a write operation arrives, it is written to
the commit log in memtable.

 When the memtable size reaches a
threshold, it is converted to an SSTable and
written to GFS. It's called as Compactions.

Summary

Client

Chubby

Tablet Server

Tablet
(SSTable)

Master Server

Tablet Server

Tablet
(SSTable)

Tablet Server

Tablet
(SSTable)

Tablet Server

Tablet
(SSTable)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

