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I What is BigTable?

» Designed to scale to a very large size.

I « A distributed storage system based on GFS.
« Dynamic control over data layout and format.



I Data Model

« Sparse, distributed, persistent multi-

I « 3D table -> row * column * timestamp
dimensional sorted map.



I Data Model - Row

 The row like the row of RDB.
I  Arbitrary strings in 64KB.

Atomic



I Data Model — Row
I Atomic

* Every read or write of data under a single
I row key is atomic.
* S0, clients should not worry as concurrent
updates to the same row.



Data Model — Row
Tablet

» BigTable maintains data in lexicographic
order by row key. The row range for a table is
dynamically partitioned. Each row range is
called a tablet.

* 'maps.google.com/index.html’ is stored as
'‘com.google.maps/index.ntml'

 When we read the row range for some
domain, it might be more efficient due to
lexicographic order as above example.



I Data Model — Column Families

* A BigTable could have numbers of column
families.

* The syntax of a column key is as following.
'family:qualifier’

« A column family Itself could be a column key.
ex. '‘content:’

I » The category of column keys.



I Data Model - Timestamps

* 64Dbit integer.

e |t could be current microseconds or explicitly
assigned from client applications.

* Old timestamps could be removed by
garbage-collection.

I » The multiple versions of same data.



I API
* The Bigtable API provides functions for
I creating and deleting tables and column
famlies.

« A BigTable could be used as an input source
and an output target for MapReduce jobs.



Building Blocks

GFS Chubby



I Building Blocks
| SSTable

* This is used internally to store Bigtable data.
I * Look up using a key, iterate over all
key/value pairs in specified key range.

SSTable
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I Building Blocks
I Chubby

« Highly-available and persistent distributed

I lock service.

« Chubby provices namespace that consists of
directories and small files. They can be used
as a lock.

* We could think of Chubby as the global lock

repository of BigTable.



I Implementation

I » There are three major components.

Client Library
Master Server

Tablet server



I Implementation
I Master Server

« Detecting the addition and expiration of tablet
servers.

« Balancing tablet-server load.

« Garbage collecting of files in GFS.

I » Assigning tablets to table servers.



I Implementation
I Tablet Server

 Managing a set of tablets.

I « Handling read and write requests to the
tablets.

« Splitting tablets that have grown too large.



I Implementation

I Tablet Location

* Three-level hierarchy analogous to that of a
I B+ tree.

 Root tablet, METADATA tablets, UserTables



I Implementation

I Memtable
* The recently committed logs are stored in
I memory in a sorted buffer called a memtable.

 When a read operation arrives, it is executed
on a merged view of the sequence of
SSTables and the memtable.

 When a write operation arrives, it is written to
the commit log in memtable.

 When the memtable size reaches a
threshold, it is converted to an SSTable and
written to GFS. It's called as Compactions.
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