
BigTable

Min Cha
minslovey@gmail.com

mailto:minslovey@gmail.com

What is BigTable?

● A distributed storage system based on GFS.
● Designed to scale to a very large size.
● Dynamic control over data layout and format.

Data Model

● 3D table -> row * column * timestamp
● Sparse, distributed, persistent multi-

dimensional sorted map.

Data Model - Row

● The row like the row of RDB.
● Arbitrary strings in 64KB.

Atomic

Lexicographic order

Data Model – Row
Atomic

● Every read or write of data under a single
row key is atomic.

● So, clients should not worry as concurrent
updates to the same row.

Data Model – Row
Tablet

● BigTable maintains data in lexicographic
order by row key. The row range for a table is
dynamically partitioned. Each row range is
called a tablet.

● 'maps.google.com/index.html' is stored as
'com.google.maps/index.html'

● When we read the row range for some
domain, it might be more efficient due to
lexicographic order as above example.

Data Model – Column Families

● The category of column keys.
● A BigTable could have numbers of column

families.
● The syntax of a column key is as following.

'family:qualifier'
● A column family Itself could be a column key.

ex. 'content:'

Data Model - Timestamps

● The multiple versions of same data.
● 64bit integer.
● It could be current microseconds or explicitly

assigned from client applications.
● Old timestamps could be removed by

garbage-collection.

API

● The Bigtable API provides functions for
creating and deleting tables and column
famlies.

● A BigTable could be used as an input source
and an output target for MapReduce jobs.

Building Blocks

GFS

SSTable

Chubby

Building Blocks
SSTable

● This is used internally to store Bigtable data.
● Look up using a key, iterate over all

key/value pairs in specified key range.

SSTable

Block INDEX

Block 1 Block NBlock 2

Building Blocks
Chubby

● Highly-available and persistent distributed
lock service.

● Chubby provices namespace that consists of
directories and small files. They can be used
as a lock.

● We could think of Chubby as the global lock
repository of BigTable.

Implementation

● There are three major components.

Client Library

Master Server

Tablet server

Implementation
Master Server

● Assigning tablets to table servers.
● Detecting the addition and expiration of tablet

servers.
● Balancing tablet-server load.
● Garbage collecting of files in GFS.

Implementation
Tablet Server

● Managing a set of tablets.
● Handling read and write requests to the

tablets.
● Splitting tablets that have grown too large.

Implementation
Tablet Location

● Three-level hierarchy analogous to that of a
B+ tree.

● Root tablet, METADATA tablets, UserTables

Implementation
Memtable

● The recently committed logs are stored in
memory in a sorted buffer called a memtable.

● When a read operation arrives, it is executed
on a merged view of the sequence of
SSTables and the memtable.

● When a write operation arrives, it is written to
the commit log in memtable.

● When the memtable size reaches a
threshold, it is converted to an SSTable and
written to GFS. It`s called as Compactions.

Summary

Client

API Master Server

Chubby Tablet Server
Tablet

(SSTable)

Tablet Server
Tablet

(SSTable)

Tablet Server
Tablet

(SSTable)

Tablet Server
Tablet

(SSTable)

.

.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

