Video Communications Over Mobile IP Networks

Daehee Kim

Contents

- 3G-Mobile Networks
- Packetization
- General Packet Radio Service (GPRS)
- Universal Mobile Telecommunications Systems (UMTS)
- Problems of Packetization
- Real-Time Transport Protocol (RTP)
- Quality Control
- Prioritized Transport

Aim of 3G Mobile Network

- Combination
 - Multimedia Service of Internet
 - Digital Cellular Concept of Mobile Network
- Real-Time Mobile Multimedia Service
 - Over Mobile Wireless Platforms
 - Combinations
 - Video/Speech/Audio
 - Data Text
 - High Data Rates

3G Mobile System (IMT-2000)

- Better Voice Communication Service than 2G
- Connection to Internet
 - E-mail and Web Service
- Conversational Video Communication
 - Multi-User Capability
 - Multi-Party Video Conferencing
 - Among various Fixed and Mobile Users
- Internet Connection (Ubiquitous Connection)
 - E-Commerce/E-Business
- Selective and On-Demand Coverage of Live Events
 - Breaking News, Sports in the Form of Streaming Audiovisual Content
 - High Quality Highlight of TV Scene/Remote Audiovisual Clips

End-to-End Mobile Network

- QoS: Function of Different Connection Parameters
 - End-to-End delay, Error Rate, Frame Dropping Rate
- Each Mobile Terminal
 - Access to A Number of Channels
 - Each Channel Offering Different QoS to Various Services
- Internet Protocol
 - Widespread Success
- Hypertext Transfer Protocol (HTTP)
- Combination and Interoperability
 - Universally Accepted Application
 - Network-Layer Standards
- Real Time Transmission of Compressed Video Data
 - Encapsulated in IP Packets over the Future Mobile Networks

Video Communication over Network

- Video Communication Networks
 - Video Telephony and Conference
 - Video On-Demand Service
 - Distance Learning Application
- Requirements
 - Networks for Routing of Multimedia Traffic
 - More than Two Users at the Same Time
- Markets of Multimedia Services
 - from PC-based Applications
 - to Multi-Sharing Services on Worldwide Basis


Synchronization

- Time Synchronization Between Sender and Receiver
- Asynchronous Communication
 - Data Stream in the Form of Symbols
 - Symbol
 - Predefined Number of Bits
 - Start Bit and Parity Bit
- Synchronous Transmission
 - Without Any Start and End Indicators
 - Packet
 - Indication of Beginning and End of a Block Data
 - Preamble Bit Pattern and Post-amble Bit Pattern
 - Fixed Length (ATM Cell 53Bytes)
 - Variable Length (IP Packet)

Packets

- Compressed Video Stream
 - Low Tolerance to Delay
 - No Retransmission
 - Possibility of Error Control about Losses
 - Special Data Structure -> Packet
- Packetization
 - Video Payload & Protocol Header

Packetization/Depacketization

Multiplexing by Packet Header

- Traffic Flow between Two End Points
 - Various Traffic Types
- Type Filed in Each Packet Header
 - To Identify Traffic Type of Payload
 - To Multiplex Various Streams onto the Same Channel
- Multiplexing of Various Streams
 - Efficient Sharing of Available Bandwidth
 - Statistical Multiplexing

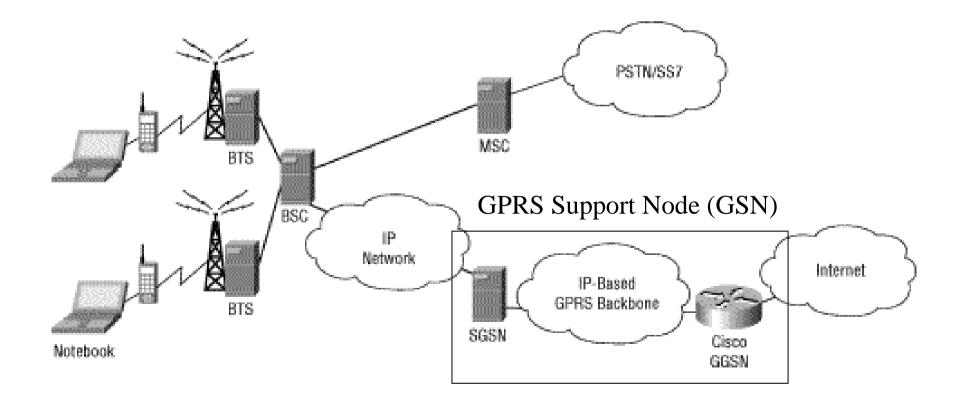
Resynchronization of Packet

- Information Loss and Bit Errors
 - from Excessive Delays and Interference
 - Serious Degradation of the Decoded Video Quality
- Packetization
 - Effects of Bit Error & Information Loss
 - Affect Only One Single Packet
 - Resynchronization at Following Error-Free Packet
 - MBs in Video Packet
 - Predicted Independently of MBs in Other Packets
 - Independent Segment Decoding (Annex R of H.263+)

Connectionless Service

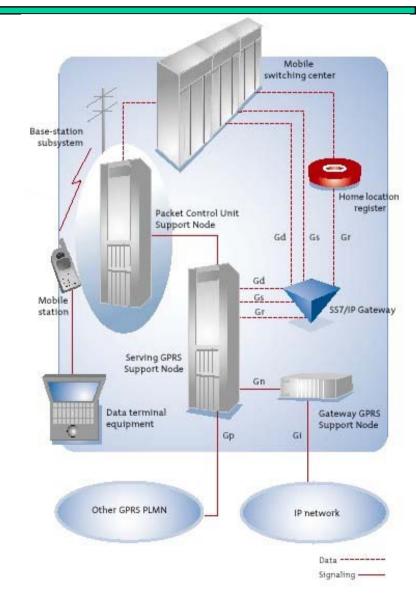
- High Flexibility
 - In Selection of Path between Two End Points
- High Channel Utilization
 - No Prior Bandwidth Allocation
- Out of Sequence Arrival of Packets
 - Multipath Fading and Varying Network Conditions
 - Reordering Received Packets by Depacketizer

Checking Network Status


- Network Check by Decoder
 - Acknowledgement of Correct Delivery
 - Periodically Report to Encoder
 - Controls by Encoder
 - Output Rate, Error Protection Mechanism
- Encoder Adaptation
 - on the Latest Status of the Network
 - Flow Control, Error Resilience
 - Reference Picture Selection Techniques (H.263+)
 - Priority Control
 - Dropping Low-Priority Packets in Case of Network Congestion
 - Reducing Output Rate for Graceful Quality Degradation

General Packet Radio Service

- GSM
 - Insufficient Capabilities for the Routing of Packet Data
- GPRS
 - Packet Data Transmission
 - Efficient Radio Access to External IP-based Networks
 - End-to-End Mobile Packet Radio Communication System
 - Same Radio Architecture as GSM
 - Packet Mode Data Transmission/Reception without Circuit Switched Resources
 - Accommodation to Video Communication
 - Multi-Slotting Feature
 - More Time Slot or PDTCH (Packet Data Traffic Channel)
 - IP Support


Network Infrastructure for GPRS

- IP-Based Network
- Static or Dynamic IP are Assigned to MS

GPRS Support Node (GSN)

- SGSN (Serving GSN)
 - Access Network
 - Location Information
 - Security & Access Control
- GGSN (Gateway GSN)
 - Interworking Unit
- SGSN & GGSN
 - Connected by IP-Based Transport Network

GPRS Logical Protocol Architecture

- MAC (Medium Access Control)
 - Multiple MSs Share a Common Transmission Medium
 - Each Time Slot to be Multiplexed between up to 8 Users
 - Each User to Use up to 8 Time slots
- RLC (Radio Link Control)
- Physical Link Layer
 - Interleaving of Radio Blocks
 - Method to Detect Link Congestion

Application					
IP/X.25					IP / X.25
SNDCP	Header Compression, Data Mutiplexing Highly Reliable Link (1520 Octets)		Relay SNDCP BSSGP		GTP
LLC				UDP/ TCP	UDP/ TCP
RLC	RLC	BSSGP	BSSGP	IP	IP
MAC	MAC	Network Service	Network Service	L2	L2
GSM RF	GSM RF	L1bis	L1bis	L1	L1

MS

SGSN

Enhanced GPRS(EGPRS)

- GPRS in GSM
 - Intermediate Step towards 3rd-Generation UMTS Network
- EGPRS
 - Enough Traffic Availability for Single User
 - Benign Interface Conditions
 - Higher Data Rate than GPRS
 - Same Protocol as GPRS
 - Improvements of Modulation Scheme in Radio Interface
 - Increase in Throughput Availability

UMTS

- Universal Mobile Telecommunications System
- UMTS Infrastructure is Integrated with GSM
- Core Network
 - Circuit Switching Function & Packet Switching Function
- Major Innovation
 - Packet Switched IP Nodes
 - Similar to GPRS
 - BSS Access Segment is Replaced by UTRAN
- Universal Terrestrial Radio Access Network
 - W-CDMA (Wideband Code Division Multiple Network)
 - Interface I_u : Connection between UMTS and UTRAN
 - Specialized in managing both Packet-Switched & Circuit-Switched Components

Corruption in Packet Network

- Three Possible kinds of Errors
- Packet Sequence Number is Affected
 - Unable to Figure Out Correct Order of Packet Transmission
 - Depacketizer Fails to Merge Consecutive Video Packets
- Bit Errors in Payload Generate Packet Delimiter
 - Incorrect Split of Video Data
 - Loss of Synchronization
 - Many Subsequent False Merges/Splits of Video Packets
- Errors of Payload
 - More Frequent Because of Higher Proportion of Packet Length

Other Network Problems

- Network Congestion & Link Overflow
- Completely Discarding the Video Packet
 Excessive Amounts of Delay
- Some Intelligent Content-Based Packetization!
 - To Mitigate Effect of Packet Loss

Packetization

- Structure of Packet
 - Layer at which the Packet is Defined
 - Networking Platform
- MPEG-4
 - Defines Application Layer Packet Structure
 - Application Layer Packet Differs from Transport Layer Packet
- Transport Layer Packet
 - Additional Protocol Headers
 - Reduce Overall Throughput
 - Packetization Overhead Depends on Transport Mechanism
 - Packetization in RTP over IP Network is different from that in ATM over B-ISDN

Layer for Video Coding

- Frame Level
 - Temporal Reference, Picture Header
- GOB Level
 - GOB Number, Quantizer Level for Entire GOB
- MB Level
 - Coded or Non-coded Indication, Optional Quantizer
 - Information about Coded Blocks such as MVs
- Need Frame Header to Decode GOBs
- Need GOB Header to Decode MBs

Video Packetizing

- MBs as the Unit of Fragmentation
 - Not to be Split across Multiple Packets
 - # of Packets could be Packed into a Single Packet
 - − Video Packet Loss → Damage of the Corresponding Frame
- To Limit the Propagation of Errors
 - Independent Segment Coding Mode (Annex R of H.263+)
 - Resynchronization on the Occurrence of a Packet Loss
 - Each Packet Includes Picture Header & GOB Information

Packetizing for ATM Cell

- Fixed Size Packet:
 - 5 Byte Header + 48 Byte Payload = 53 Bytes
- Close Packing Scheme
 - Data is Packed in Payload Field Until ATM Cell is Completely Full
 - Some MBs can be Split between Two Adjacent Cells
 - Unique Bit Pattern (11 Bits)
 - To Designate the End of the Variable-Length Section of Data belonging to the Previous Cell
 - Different from GSC (GOB Start Code)
- Loose Packing Scheme
 - ATM Cell Contains Integral Number of MBs

Close & Loose Packing

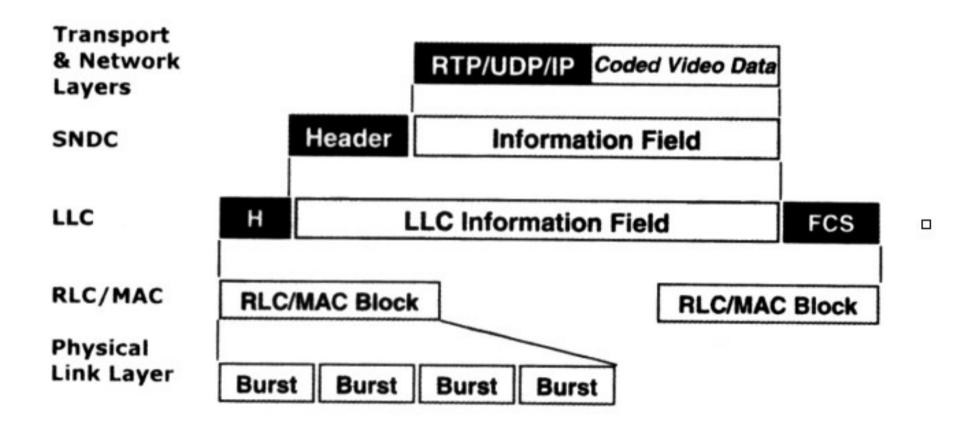
- Both Scheme
 - Cell Sequence Number & Picture Number
 - Absolute Address for First MBs inside ATM Cell
 - Eliminating Effect of Cell Loss Propagation
- Overhead
 - Close Packing Scheme: 4.125 Bytes
 - Loose Packing Scheme: 2.75 Bytes
- Loose Packing Scheme
 - Less Efficient Use of Bandwidth when ATM Cells Carry the Traffic of Multiple Video Sources
 - Better Error Performance than Close Packing Scheme

Effect of Packet Losses

- Variable Size Packet
 - Longer Packets Lead to Improved Throughput
 - Lower Tolerance to Loss
- Predictive Video Coding Techniques
 - Temporal and Spatial Dependencies of Video Data Contained in Different Packets
 - Disastrous Damage to the Forthcoming Video Data Predicted from the Lost Information in both Time and Space

Overheads of GRPS

- QoS for Video Communications
 - Available Throughput & Channel Coding Scheme
- GPRS
 - Packet Data Traffic Channel(PDTCH) after CS-1/2/3/4
 - Multi-slotting Provides Multiple Data Rate of Single Slotting
- Reducing True Available Throughput at App. Layer
 - Overheads of LLC, SNDC, IP, UDP RTP Layer
 - Overhead : 10%~15% at the RLC Layer


Overheads of EGPRS

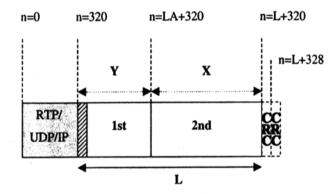
- Joint Modulation Coding Scheme
 - MCS-1~MCS-9
 - Radio Block Headers are Encoded Separately from the Data Payload
 - MCS-7,MCS-8,MCS-9
 - Insertion of two RLC/MAC Blocks into a Single Block
- Better Protocol Efficiency than GPRS
- Wide Range in Value of Available Throughput for Video Service
- Choice of CS-TS
 - Activity of Video Source
 - Error Characteristics of Radio Network

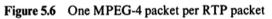
Real-Time Transmissions

- Not Exceeding 200 ms
- No Retransmission
- User Datagram Protocol (UDP) instead of TCP
- IP Protocol
 - Jittering Effect
 - Fluctuation of Inter-Arrival time of Packet
 - Packet could be Delivered Out of Sequence
- Real Time Protocol (RTP) based on UDP
 - Payload Type Identification, Time Stamping
 - Sequence Numbering, Delivery Monitoring

Protocol Architecture

Packetization for MPEG-4


- Optimal Trade-off
 - Channel Utilization & Error Robustness
- Synchronization
 - MPEG-4 Stream & Other RTP Payloads
- Monitoring of MPEG-4 Delivery Performance
 - RTCP (Real-Time Control Protocol)
- Packetization
 - Time Varying Nature of the Mobile Channel
 - To Maintain an Optimal Trade-off between Throughput and Error Resilience at Any Instant of Time


Adaptation of RTP Packet Size

- Time Varying Mobile Channel
 - Error Conditions of Network
- Motion Activity of Video Content
 - Lager Packet in Lower Motion Activity
 - Smaller Packet Size in Higher Motion Activity
- MPEG-4 Video Data
 - First Partition: Header and Motion Data
 - Loss of the whole MPEG-4 Packet
 - Second Partition: Texture Data
 - Video Data following the Position of Errors
- Selecting Long Packet Size
 - Less Robust
 - High Channel Utilization

RTP Packet for MPEG-4

- First Packetization
 - Larger Overheads
 - Packet Header
 - First MPEG Partitions
- Second Packetization
 - Higher PSNR
 - Corruption of First Partition
 - Only Loss of the Video Packet
 - Not the Whole RTP Packet

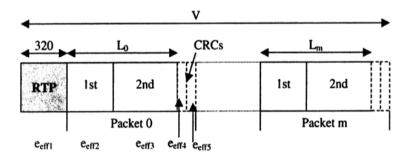


Figure 5.7 Several MPEG-4 packets per RTP packet

Adaptive Quality Control

- Time-Varying Nature of Channel
- Quality Control Tools
 - Mobile Network Condition
 - Type of Video Application
- Various Profiles & Levels
 - Annex X of H.263++
 - Baseline Mode (Profile 0)
 - Error Protection
 - Content Based Adaptive Quality Control

Profile 3

- Profile 0
- Intra Coding (Annex I)
- De-blocking Filter (Annex J)
- Modified Quantization (Annex T)
- Slice Structure Mode (Annex K)
 - Arbitrary Slice Ordering (ASO)
 - Error Resilience Capability
 - Resynchronization Points

Profile 4

- Profile 3
- Data Partitioned Slice Mode (Annex V)
 - Separating MV Data from DCT Coefficient Data within the Same Slice
 - RVLC for MV Information
- Annex W of H.263++
 - Header Repetition
 - Supplemental Enhancement Information
 - Decoder to Recover the Header Information
 - From a Previous Frame in Case of Data Loss or Corruption

Profile 6

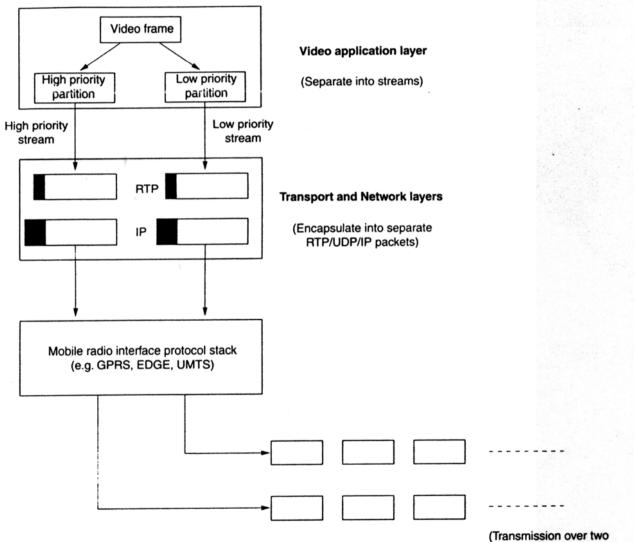
- Conversational Video Services for IP Network
 - Real Time Operation: Delay Factor is Important
 - Drop Excessively Delayed Packets
- Optional Modes Enabled by Profile 5
- Several Enhancements for Coding Efficiency

Content-based Packetization

- Higher Motion Activity
 - Motion Data Increase
 - Highly Sensitive to Errors
 - Set Smaller RTP Packet Size
 - Overheads Increase
 - Robustness Improves
- Combined with Application-Layer Resilience Tools

Content-based Resilience Tool

• Adaptive INTRA Refresh (AIR)


– Annex H of MPEG-4

- Estimation of the Amount of Motion in Video Scene
- # of AIR MBs per Frame
 - Adapted to the Amount of Motion in Video Scene
 - AIR MBs are Intra-coded
- High Motion Activity \rightarrow Large # of AIR MBs

Prioritized Transport

- Scalability
 - Base Layer: High Priority
 - Enhancement Layer: Low Priority
- Data Partition
 - Motion & Header: High Priority
 - Texture: Low Priority
- Limitation at Application Layer
 - Different GRPS Channel Protection Schemes

Prioritized Transport over Mobile Access Network

different radio bearer channels)