

L o w - C o s t
W e b

S e r v e r s

 How to Web-Enable
Almost Anything

For Almost Nothing

by the Staff of Geist Technology

Copyright © 2007 Geist Technology, edited by Gerry Cullen
All rights reserved. No part of this book may be used

 or reproduced in any manner whatsoever without written
permission except in the case of brief quotations

embodied in critical articles and reviews. Printed in
United States of America. For information address:

Geist Technology
12885 Research Blvd.

Suite 108A
 Austin, Texas 78750

Draft printing: November, 2007

Library of Congress Cataloging-In-Publication Data:
2007925232

 Cullen, Gerard (Gerry) L., editor

“Low-Cost Web Servers”

	 Alternate title:
“How to Web Enable Almost Anything for Almost Nothing”
edited by Gerry (Gerard) Cullen
p cm.

Summary: How low-cost embedded processor make web accessing of data
economical.
ISBN 9-781599-161730 Review copies

1. Technology - Data communications - non fiction 2. Electronics and soft-

ware - Non-fiction 3. Internet - Non Fiction
PZ7 T5735 Su 2006 2006001345

{[Non Fict]

Contributors: Jason Cohen, Pedro DeKeratry, Ron McCormack, Gary Akins,

David Karoly, Charlie Mayne, Patrick Nance, and Steve Gettel.

Typography & Cover art by Layne Lundstrom
Illustrations by Roman Haliziw
Edited by Shelly Kochhar, MSEE

Review Copy Printing, November, 2007
Second revision, December, 2007

www.geisttek.com

Google, Adobe, Microchip, and ITWatchDogs are trademarks.
Excel, Outlook, Fiddler are Microsoft trademarks.

All information contained in this publication is subject to change.

Contents
Introduction--5

Low-Cost and Very Small
What to do. What to Avoid
Three Rules to Build By

Typical Applications---11
When to Use Internet Access
Typical Data Sources
Power Strip Instrumentation
Air Conditioner Example
Control of Devices

Software Architecture--31
Embedded Processor Architecture
Software Modules
What You Don’t Need
Mistakes to Avoid

Software Modules--53
Operating Systems
TCP/IP Stack
Sensor Drivers
E-Mail
Threads
Memory Management

Finch: Lowest Cost Web Server-----------------------------73
$15 US in Components
In-Line Code Structure
Small Footprint

Microchip
tm

 Processor

Owl: High Performance Web Server------------------85
$32 US in Components
The Owl Cube
Operating System
Flexible I/O Structure
ARM 7 Processor

Web Data Transfer Methods----------------------------------- 101
HTTP Data Transfer
Data Handshaking
Static HTML Pages
Dynamic Pages

Web GUI Techniques---119
 Lightweight, Fast Web Pages
Using Cascade Style Sheets
Examples of Styles

Comparing the Two Servers-------------------------------------157
Hardware Comparison
Software Comparison
Physical Size

SNMP---165
 Communicating with Network
Monitoring Systems

Finch: Software Specifications---------------------------173
Code Functions
Protocols
User Defined Features

Owl: Software Specifications------------------------------179
Code Functions
Protocols
User Defined Features

MicroGoose: A Sample Product---------------------------189
Low-Cost Computer Room Climate Monitor
Owl Processor
Power-over-Ethernet
Temperature & Humidity Sensors
Built in Six Weeks

Data Input and Output Methods---------------------------195
Analog Data Input
Analog Data Output
Digital Data Input
Digital Data Output

I n t r o d u c t i o n

Low-Cost and Very Small

What to do. What to Avoid

Three Rules to Build By

�	 Low Cost Server / Geist Technology

Introduction

The Case for Web Access

When you hear the word “server” you probably think of a
rack-mounted computer costing thousands of dollars living in
a chilled room. Most of the Internet information we see daily is
supplied by millions of these computers.

But there is another type of server available; it’s about the size
of a cube of sugar and costs tens of dollars. Just like the traditional
server it generates web pages upon request. Feed these little servers
information and you can see this data from anywhere in the world.
But these tiny engines can live in fairly hostile environments and
don’t require a staff to keep them running.

These miniature servers are called “embedded” processors
because they don’t stand alone in a large metal box as traditional
computers do. They are small and inexpensive enough to be
included inside an office machine or medical instrument, which
probably explains the etymology of the term “embedded.”

Many manufacturers build products that contain a lot of
information that would be useful to know, and I want a lot of these
products to let me know, over the Internet, what’s going on and
how they are doing.

Here’s an example. Our Texas climate is very hot and humid

This dime-sized computer powers the Owl Web Server. No
dimes where you are? That’s 11/16” or 1.9 cm. It costs about

thirty dimes.

Low Cost Server / Geist Technology �

Introduction

about half of the year and we depend on air conditioning all year.
Because I like to know how the air conditioning system is doing,
I call a technician twice a year to perform several diagnostic tests.
He typically reports, ”Things are fine, Buddy.” (You can call
people Buddy in Texas with no ill effects - it’s considered a default
name for all males including children.) Three months later the
air conditioner fails sending our entire shop home as the office
temperature shoots through 95°F before lunch.

 I want to be able to see from my house or a Montreal hotel
room what’s going on with the office air conditioner. I want to
know what the inlet, discharge and compressor temperatures are,
and I want to see these values graphed over a month using only a
web browser. If I see the temperatures creeping up, I may be able
to prevent a complete outage and save a day of work.

But the manufacturer of my air conditioner didn’t put a web
server in my air conditioner. Even the air conditioner I bought six
months ago didn’t have one. I asked the installer for this feature
but the answer was a simple “no.”

Why? Certainly for the last ten years the answer was “too
expensive, too much trouble to design and a lot more trouble to
develop the software.”

It’s Getting Easier

Not any more. Now, typical development time for a low-cost
web server is about six weeks. The air conditioner company could
easily put our embedded web server in their products and keep
worriers like me happy. But no, they haven’t checked on embedded
server technology lately.

The process of adding a web server has changed from giving
careers to half a dozen software developers to simply adding a
about 30 components to an new design or running wires to an
existing product to get the data.

�	 Low Cost Server / Geist Technology

Introduction

Didn’t Happen Overnight

We’ve built embedded web servers into dozens of products
over the last eight years. Some projects were incredibly hard to
get going and others were difficult to maintain, but we eventually
succeeded. We decided there must be a better way to build
embedded web servers without the headaches and high costs.

Our experiences gave us the insight to know what it takes to
build embedded web servers fast and at the lowest possible cost.
Of course, we would like to be your source of embedded processor
circuits and software, but if you want to go it alone, here’s what we
have learned (in level of importance):

1. Source Code: you or your vendor must have all the source
code. If you only have the compiled (binary) code which you
licensed from some company you are headed for big trouble. The
day will come when your software people say, “the problem’s with
Green Cookie’s code - and they say they can’t fix the problem.” No
matter that you paid for a software license, you are now a victim:
you can’t fix Green Cookie code and they won’t fix it because they
have other, more pressing, things to do. We learned this the hard
way (several times). Never, ever, build a product without no-hassle
access to the source code. Ever.

2. Proprietary Electronic Components: many manufacturers
that build nifty combination packages of microprocessor and
software. Three years later they change the package or discontinue
their microprocessor and you get to do it all over again.

3. One Shop Does All: Circuit design and software
development are done under one roof means no finger pointing
when something doesn’t work.

If you are considering using embedded web servers in your
products, give us a call. We can get you there without the horror
show of multi-vendor projects with poorly supported software.

Gerry Cullen - Geist Technologies

Low Cost Server / Geist Technology �

Introduction

Ty p i c a l
A p p l i c a t i o n s

When to Use Internet Access

Typical Data Sources

Power Strip Instrumentation

Air Conditioner Example

Control of Devices

Low-Cost Web Server / Geist Technology �

Typical Applications

10	 Low-Cost Web Servers / Geist Technology

Typical Applications

Typical Applications

Embedded processors show up in all kinds of places such
as medical instruments, office equipment, traffic signals, room
temperature controls and industrial machines. Many of these
applications would be improved with Internet access because
users who are far away from them would like to know what’s
going on.

 Embedded processors that control a car’s cabin humidity
control are typical of “blind” controllers. If the humidity feels
right, they must be working, otherwise their work goes unnoticed
and probably unappreciated. A modern car can have dozens of
microprocessors.

On the other hand there are thousands of other applications
where the embedded processor’s functions are vital to a company’s
operation, such as the controller in a manufacturing machine.
Operators and managers would like to know what the controller
knows without having to walk up to it for inspection and to see
the read-outs.

When the information contained in these controllers needs to
be made available to a wide group of personnel, then the addition
of an Internet (web) interface becomes a useful function. This is
purpose of our tiny embedded web-servers - being able to access
systems data over the web.

When Is Internet Access Worthwhile?

There are three requirements: first, the information needs to
be accessed over a network - it’s not enough to walk over to the
device and see what’s going on. The information contained inside
the device must be available to users of the Internet, locally and,
perhaps, worldwide.

Second, the device that is to be web enabled must have some
type of data to be monitored. A list of typical sensor inputs to
Low-Cost Web Servers is shown on the following page. These

Low-Cost Web Server / Geist Technology 11

Typical Applications

Typical Sensor Inputs to Low-Cost Web Servers

Voltage
Current
Power Factor

Electrical

Temperature
Humidity
Pressure
Speed
Torque

Sound
Wind Speed
Altitude
GPS location

Physical

Hydraulic
Barometric
Differential

pH
Density
Mass Flow
Chromatograph
ColorChemical

RPM
Vibration
Motor direction
Open/Closed PositionMechanical

A wide variety of sensors are available which produce digitally-formatted data.
These sensors can be used as part of a new design or existing products can be

adapted to add a web server.

12	 Low-Cost Web Servers / Geist Technology

Typical Applications

properties are easily monitored by embedded web servers.

Third, the utility of the web interface expands greatly
when the user desires to control some function of the embedded
processor. For example a remote generator’s operating test schedule
could be easily changed to accommodate a work crew on-site who
doesn’t want to be bothered by the generator’s roar as they repair
the roof. And once the roof is repaired, the manager can remotely
start the generator again, and even check the output to see that
nothing was disturbed during the repairs.

 The remote manager doesn’t even have to travel to the
generator to know if the roof leaks - a water detector attached to the
embedded processor will inform him if water is on the floor.

While managing a single generator across town doesn’t
seem a formidable challenge, imagine if you had to manage fifty
generators in six states. Having web access to each one would
greatly simplify the task of knowing if the generators are ready for
operation when needed and scheduled.

The Basic Components

The number of electronic components necessary to construct
the physical aspect of an embedded web server amounts to four
integrated circuits and several dozen supporting components.

Geist Technology offers two designs: one is the lowest possible
cost to manufacture and has a minimum software feature set
that can be used in any application. This unit is referred to as the
Finch. The Finch is based on a microprocessor manufactured by
Microchip, Inc..

A companion unit called the Owl, is based on a much more
powerful processor using an Advanced RISC Machine (ARM)
architecture. We chose this because the ARM consortium makes
the process of selecting a microprocessor straightforward by
standardizing the design and giving the reassurance that if one
processor vendor stops producing their chip, another vendor’s chip
can be substituted with minimal changes.

Low-Cost Web Server / Geist Technology 13

Typical Applications

A typical air conditioner system without any monitoring capabilities. A common
office air conditioner can cost $10,000 US and be vital to keeping production

going. Unless you have a modern (expensive) building management system, you
have no idea how this critical machine is performing.

Air Conditioner - No Web Monitoring

Fan motor

Evaporator

Compressor

Motor

Condensor

Motor

14	 Low-Cost Web Servers / Geist Technology

Typical Applications

The Owl uses a mid-range ARM processor produced by
Philips Semiconductors. The Philips line of processors offers a wide
range of capabilities.

Air Conditioning Monitoring and Control Example

The illustration on the facing page shows how a typical
refrigerant air conditioning web monitor might be constructed. The

following table shows the data sampling and control points:

By adding these monitor, control and display points as
shown on the following page the user can open a browser and see
the current state of the air conditioner. By looking at the graphs
showing historical data, the user can see if any trends are apparent
that the machine may be deteriorating or need maintenance. The
graphs are a key part of the web page display. If you have only
numeric values, the steady change in a machine’s performance
from week to week is not apparent.

Now take monitoring one step further because the internal
logic of the microprocessor allows an e-mail to be sent to building
management notifying them that the room has become hot and the
back-up air conditioner has been turned on.

And from your condo in Aspen, you can see all this happening

 Monitoring
Temperature 1 Return Air Room Leak
Temperature 2 Discharge Air Efficiency
Temperature 3 Condenser Temp Refrigerant
Current 1 Fan Motor Filter
Current 2 Compressor Motor Too hot

Control
Relay Aux. Air Conditioner On/Off

Display
LED panel Scrolling conditions Status

Low-Cost Web Server / Geist Technology 15

Typical Applications

A variety of sensors and a small display are added to the air conditioner. Even a
small auxiliary air conditioner control has been added. By observing the graphs of

the unit’s operation, the user has a much better chance of predicting failure.

In 91.1F
Local display

Relay

Aux. A/C Unit

Evaporator

Fan motor

Compressor

Motor

Condensor

Discharge
Temp.

Condensor Temp.

T1

T2

T3

Current
Sensor 2

Current Sensor 1

Web
Server

Ethernet to
Internet

Return Air
Temperature

Adding Sensors and Web Access to the Air Conditioner

16	 Low-Cost Web Servers / Geist Technology

Typical Applications

using only an Internet browser.

The typical cost of electronic component parts to do all this is
probably less than $200.

How much more valuable is the air conditioner if it has a
web interface? Depends how hot your climate is and how critical
is temperature control to your processes. If you are storing critical
medicines in a chilled room, it would be very important.

Power Strip Monitoring - Watch the Costs

Electrical power costs continue to rise. A price of $0.10 US
per kWh (kilowatt hour) is not uncommon in many countries. In
legacy computer rooms and large data centers, power can be a
major expense if not the most expensive item. Google released a
study showing that their highest corporate expense was electricity�.

Considering that a typical power strip can consume 20
amps continuously and that the yearly cost of power continues

to escalate it would be valuable to know what each power strip is
consuming. But learning how much power a strip is drawing is not

�	 There are a number of sites describing this ongoing concern about
spiralling energy costs at Google. We recommend you use Google to get the latest
about Google’s efforts.

Power Strip Electrical Consumption
20 amps Fully loaded strip

120 volts Typical voltage
2400 watts Watts = Volts * Amps

2.4 kiloWatts Divide by 1000
24 hours Full time operation

5.76 $US/day Cost per day
365 days Multiply by days

$2,102 $/year Expensive power strip!

Low-Cost Web Server / Geist Technology 17

Typical Applications

The drawing shows a single power receptacle instrumented for current, voltage
and control functions. Watts and power factor can be derived from knowing
these values. A relay can be used to remotely control the power on/off via the
web. An embedded processor could control dozens of receptacles in a single
power strip. A local display is shown attached to the microprocessor as an

optional component.

Instrumenting the Power Strip

RMS Calculator Circuit

Current Measurement
 (toroid)

Receptacle (one of many)

Voltage
Measurement

On/Off
Control
(relay)

Microprocessor
(typically Finch)

16.4 amps

Local Display

18	 Low-Cost Web Servers / Geist Technology

Typical Applications

a simple task.

With conventional non-metered power strips a common
method is to modify the power strip by having an electrician insert
a temporary in-line ammeter, power the equipment up, and read
the meter. Once the meter has been read, the process is reversed
and the ammeter removed.

There are two difficulties with this method: first, the power
has to be removed temporarily from the equipment usually
irritating the computer manager, and second, the reading is only
accurate until electrical equipment is removed and/or replaced. If
the power strip is only partially used the reading is accurate only
until the next piece of equipment is installed.

When power strips are conveniently and continuously
monitored, users report dramatic improvements between power
consumption and cost reduction.

By monitoring the individual receptacle, the facility manager
can determine which devices are energy hogs and replace
them with more power-efficient equipment. By knowing each
receptacle’s current usage the data center management can
administratively account for energy usage and distribute energy
costs back to each device.

Add to this the cost of keeping the equipment cool which
is typically as much as the cost of powering the gear. This could
translate into a $4,000 US a year to power and air condition the
devices on one power strip.

With one power strip consuming so much money, it makes
sense to monitor the quantity and the quality of the power.

Instrumenting the Power Strip

There are a number of variables that will be useful to know
about the operation of each power strip.

The diagram on the opposite page shows the basic
components of a typical power meter assembly using the Finch-

Low-Cost Web Server / Geist Technology 19

Typical Applications

Using a Toroid For Current Monitoring

Typical Multi-Receptacle Monitoring Board

This Finch-based board will monitor up to 40 receptacles for voltage and current
(RMS) and provide a local display. The circuit board will easily fit into most

existing power strip housings. The number of receptacles to be monitored can be
easily customized.

An inexpensive toroid measures the strength of the magnetic field in a wire to
determine the current in the wire. A Finch can typically measure the current in
dozens of these devices. A single toroid can measure the aggregate current in a

power strip used on an individual power receptacle.

20	 Low-Cost Web Servers / Geist Technology

Typical Applications

based web server component.

	 • Total Amps (current consumed by entire strip)

	 • Individual Amps (current consumed at each receptacle)

	 • Volts (level)

	 • Amps

	 • Power Factor (quality of power)

The Importance of RMS Power Measurement

When doing power measurements, the current and voltage
measurements must be done in phase, Watts = Volts x Amps and
both values are measured at the same instant in time. In other
words, the current and voltage must be measured at the same time
going into the same device, and the multiplication is done before
the power is supplied to the device (not after.)

Power usage in power strips should be measured in using the
Root Mean Square (RMS) method, not the peak-to-peak method
as used in many earlier power monitors. RMS is a fundamental
measurement of the magnitude of an AC signal.

The RMS value assigned to an AC signal is the amount of DC
required to produce an equivalent amount of energy in the same
load. This is the real amount of power consumed. The peak-to-
peak method as used in many earlier power monitors is invalid as
it does not give usable results. All of Geist power metering circuits
use RMS measurements.

Graphing Power Data

Many data center managers believe electric power is a steady,
uniform value, but this is not the case. Electric utility power
constantly fluctuates in magnitude, frequency and quality.

In one office location our small server room’s power
approached brown-out conditions almost nightly as generators
switched off or as industrial plants came on-line. Initially, we

Low-Cost Web Server / Geist Technology 21

Typical Applications

The photo shows two printed circuit cards which were part of an existing power
distribution product. The cards provide an LED readout of voltage, current, and

watts consumed by the power strip. The small device between the two larger
cards is the Finch web server which converts the serial data on the boards to a

web interface.

Typical Power Graph

Graphs are available in the Owl-based power meter. Here, a typical power
strip graphs not only the power values but also the climate of the computer

room using optional sensors. The graphs clearly show trends such as
voltage sags or spikes.

Finch Existing
Measurement
Board

Existing
Display
Board

22	 Low-Cost Web Servers / Geist Technology

Typical Applications

suspected intermittent processors or aging disk drives as the cause
of the nightly re-booting of servers, but upon adding a graphing-
capable power monitor, we discovered the real cause was the
nightly sagging of the voltage on the electric utility’s power lines.

These brown-out conditions cost us time and production.
We added a UPS to solve the problem but it too disconnected
from the same low voltage conditions. After several requests, the
electric utility fixed the problem, but only after we showed them
the trends. We needed to be armed with this information to get the
utility to understand the situation.

Today, graphing and viewing current and historic data, has
become an essential component of monitoring devices.

Climate Monitor - Product Example

Both the Finch and Owl devicess have been used to make a
variety of climate monitors. The chapter “Sample Products Using
Embedded Processors” has more detail and photographs of these
products.

Climate monitoring is a good example of an application
where multiple types of sensors provide a wide variety of inputs.
Applications for climate monitors are endless and include
computer server rooms, animal testing cages, pharmaceutical
testing chambers, wine storage buildings, freezers, cell phone
control buildings, and data centers.

Common sensors include:

	 • Temperature
	 • Humidity
	 • Light level
	 • Air Flow
	 • Door position (open/close contacts)
	 • Sound level
	 • Water on floor
	 • Video Camera (external webcam)

Low-Cost Web Server / Geist Technology 23

Typical Applications

A Finch or Owl with a variety of sensors makes a low-cost climate monitor
suitable for monitoring computer rooms or other rooms where a stable

environment is needed. Note the use of both on-board and remote sensors.

Internal (on-board) Sensors

Contac
t Posit

ion

Se
nsin

g
Remote Sensors: Up to 1000 feet

Climate Monitor Application

Temperature

to Internet
Humidity

Light Level

Air Flow Serial
Digital

Analog

Loop
current
Sensing

“1-Wire”
Serial
Bus

Multiple Types of Remote Sensors
- Serial Connection Flow

Micro
 Processo

r

24	 Low-Cost Web Servers / Geist Technology

Typical Applications

A climate monitored with these sensors provides enough
information to the facility manager to give him a good idea of the
physical condition in the remote room. With graphing capability
added, the manager can see the present condition of the room as
well as the last few weeks of monitored operations data.

The example used in this application uses the Owl web server
using internal and external sensors. This techniques makes the
embedded web server even less expensive because the cost of the
remote sensors amortizes the cost of the embedded web server over
multiple sensors.

 Control Applications

Many applications require that something be controlled
remotely. In the air conditioner application, the auxiliary (back-
up) air conditioner is turned on by a remote user through a web
interface. Many users have concerns about hackers finding ways
into the remote sites and changing settings, or, in this case, turning
on (or off) the remote air conditioners.

There are three ways to cope with this:

	 • Only control harmless devices
	 • Use multiple password level protection
	 • Use encryption (SSL, multiple types)

The harmless approach could be the air conditioner
application. A hacker could turn on the air conditioner which
would increase the power bill and make the room colder which is a
relatively harmless event. A hacker who turned off the auxiliary air
conditioner when the main air conditioner was broken becomes a
dangerous situation. If the device being remotely controlled is not
critical, perhaps no security is required.

Passwords are the most typical method of security and
multiple passwords (admin, user level 1, user level 2, etc.) are the
most common. Hackers have to go to extremes to learn passwords
which could require hardware monitoring equipment. In the

Low-Cost Web Server / Geist Technology 25

Typical Applications

level of equipment is not harmful or not dangerous to personnel
if hacked, password protection is likely to be adequate. In our
experience, unhappy or terminated employees are the most likely
to hack web-accessible control operations.

The third and most protective method is encryption. This is
bank-level transaction security and can be implemented in many
levels. While this encryption defeats transmission-cable “sniffing”
intruders, the system is still vulnerable to password misuse.

Levels of Encrypted Security
Finch: None
Owl: Secure Socket Link - 64 bit

Secure Socket Link - 128 bit

Internet Delays

Connect to remote: 10 seconds?

Remote server responds: 2 seconds?

Request device state change: 5 seconds?

Confirm: update web page: 2 seconds?

Waiting for the light to turn on a thousand miles away? Internet packets can
have lots of delays. The example shows almost twenty seconds of delay between
a request for a control change session. Users who expect almost instant response

face disappointment on a heavy internet traffic day.

26	 Low-Cost Web Servers / Geist Technology

Typical Applications

Use of SSL algorithms imposes a considerable processing
burden on the embedded processor and only the Owl-class
processor can implement this security.

Delays in Internet Communications on Control and Sensing

You flip a light switch and the lamp illuminates with no
perceptive delay. This is not the case with Internet-based devices
- the amount of delay is indeterminate. If you have a remote lamp
that is connected to a web interface there are multiple delays
possible.

The timing table diagram on the previous page shows possible
traffic delays on a busy Internet day. Products developed on high-
speed Intranets and then moved to dial-up Internet access can
disappoint users - plan on slow Internet speeds.

Feedback on Control Signals

We once built a remote coffee pot Internet control in order
to save going downstairs in the office. A pre-loaded coffee pot
could be remotely turned on by a second-floor user. Since there
was no way to know if the pot actually did turn on, a user walked
downstairs to confirm the pot had started heating the water.

The message was clear, a commercial grade coffee maker
would need an internal temperature sensor to see if the water had
begun heating: entering a command is one thing, knowing that the
machinery actually responded is another. (Control engineers call
this a feedback loop.)

If your remote coffee pot is located in another country, you
need to know if it responds to your control signal.

Since relays are a common way of controlling devices, Geist
Technology has a patented method of determining whether the
relay has moved. The problem with a relay is that the electrical part
may work but the mechanical part may not.

By using an electrostatic sensor, Geist’s method can tell if the
relay physically moved. This method can easily be integrated into a

Low-Cost Web Server / Geist Technology 27

Typical Applications

circuit board for less than ten cents per relay.

Is Internet Web Control Useful?

	 All remotely controlled functions have some element of
risk. Consider the missile silos during the cold war - there were
dozens of these silos with enough automation to remotely control
everything from the warm and cozy offices of Washington, D.C.
One phone call and the missiles would launch, maybe. The military
placed people there to assure the command was carried out.
Feedback was and is the key element.

Thankfully, most applications aren’t this demanding. If you
can wait a few minutes to see if your remote command has been
carried out, Internet control will be adequate for your application.
If you have confirmation that the control event was carried out, like
the coffee pot temperature sensor or the missile guys watching the
rockets fly, so much the better.

Gerry Cullen - Geist Technology.

S o f t w a r e
A r c h i t e c t u r e

Embedded Processor Architecture

Software Modules

What You Don’t Need

Mistakes to Avoid

Low-Cost Web Server / Geist Technology 29

Architecture

30	 Low-Cost Web Servers / Geist Technology

Architecture

The Embedded Processor Race: More for Less

Embedded processor architecture is a moving target. In just a
few years we’ve watched processor speeds, memory capacities, and
the availability of third-party tools, double several times over.

It’s very much like the desktop computer explosion of the
1990’s. Every 18 months we’d be blown away by new capacities
and speeds, all for a fraction of the cost we’d expect. Nowadays the
desktop computer world has slowed – we’re happy with Windows
XP (now four years old) and 2-3 Ghz processors (also four years
old).

Now the embedded world is exploding. Four years ago a 20
Mhz processor and 128K of memory was a state-of-the-art, low-
cost package; now 200Mhz processors and 16M of RAM is cheaper.
Four years ago, just having a web page at all was a miracle; now IT
administrators look to every object in the data center and demand
web pages, security protocols, integration to console software,
email and SMS support, XML data streams, and remote monitoring
and control.

In short, IT administrators look at their iPhone and wonder
why it can’t be the same with their power strip / cabinet /
thermostat / UPS / building control / door / lock / whatever.

All this in four years.

In this chapter we give a high-level overview of what goes into
modern embedded processor design. Later chapters will delve into
the nitty-gritty of how each of those components work.

Outside the Black Box

Let’s start with the requirements of the system as seen by users
of the device. Knowing what other systems and human beings
expect from your black-box device sets the perspective for what
we’re doing and also drives the design of the insides.

There me be a lot to digest here, but it’s important because
the IT administrators expect all these features. And every IT guy

Low-Cost Web Server / Geist Technology 31

Architecture

has his favorite protocol, so if you don’t support everything – and
support it well – you’ll risk alienating whole groups of IT people.
And if your competitor supports something and you don’t, that
could turn the tide of the sale.

IE, FireFox, and Safari- the User’s View

Nowadays, he first way humans want to interact with any
device is through web pages. This has become the standard way
of accessing everything from printers to power strips. HTTP, and
its secure counterpart HTTPS, are the protocol standards for all
browsers.

And it’s important to support all modern browsers. Gone
are the days of one-browser-to-rule-them-all; FireFox is now the
preferred browser of geeks, IE still wins on most desktops, and
the recent rise of Mac OS X and Apple’s porting of their browser to
Windows puts Safari on the map as well. They’re all used heavily,
so having poor support for one of them will piss off a lot of people.

It’s critical that the web server be fast, efficient, and simple.
The first impression of your device will come from its web page,
so everything depends on getting it right. If it takes 20 seconds
to load, your device feels sluggish, unresponsive, and perhaps
untrustworthy. If the page looks like “My First Website” from
1994, your device feels unfinished and unprofessional. If your
web page depends on having Active X installed, most users will
send it back right away -- seasoned IT guys know that’s the path to
security problems and firewall hassles.

Mail - Who Speaks Anymore?

Consider an IT administrator who lives in San Jose. He’s in
charge of 300 power strips for a data center in Omaha. Each power
strip has a web page with a wealth of information – Amps, Volts,
Watts, Phases, Deci-coulombs, and who knows what else. His
real concern, however, is which power strips are about to blow a
breaker. He knows the breakers pop at 20 amps, so he probably
chooses to keep things below 15 amps.

32	 Low-Cost Web Servers / Geist Technology

Architecture

How does he monitor all of these strips? By opening up
Internet Explorer and visiting all 300 pages, every day? Impossible.

What he needs is an alert – a proactive notification when any
power strips reads more than 15 amps. And the most common
form of notification is email.

Email is great because everyone has it, everyone knows how
to read it, filter it, take it with them on laptops, get messages on
their cell-phones or pagers or Blackberries or iPhones, back it up,
log it, and so on.

And IT guys know even more – they can set up special
addresses that trigger other things, so perhaps an email about 16
amps could trigger another email to the local administrator asking
what’s going on, plus a special “high priority” email to the IT guy’s
PDA.

There are lots of email protocols on the Internet in general,
but few of them are needed for embedded applications. To name
a few: POP3, APOP, SMTP, ESMTP, IMAP. Fortunately, most of the
protocols involve features that a simple notification application
doesn’t care about. All we need to do is send an email to various
addresses.

Turns out you need three protocols. SMTP is the standard
“Send a message” protocol, and for some installations that’s all you
need to configure. You specify the SMTP server (a machine that IT
administrators will already have set up for general office email),
list some email addresses you want to notify against, and off you
go. ESMTP is a cousin – the E stands for “Extended” – which you
sometimes need because of increased security.

POP3 is the protocol for checking email. It seems counter-
intuitive that you need to get email from an embedded device
– we just need to send email, right? – but as you may have noticed
when your Outlook client was set up, some email servers require
you to first check your email before you can send. More of that
security stuff. So because some systems are locked down that way,

Low-Cost Web Server / Geist Technology 33

Architecture

sometimes the embedded system actually does need to check his
own mailbox before he can send!

All these servers, protocols and rules get complex, and we
cover it thoroughly in a later chapter.

Another unexpected use for email is in SMS (Short Message
Service text messaging) paging. This is the “text messaging”
service that has been common in Europe and Asia for years and has
recently caught on in America as well. Fortunately it’s easy to send
SMS messages using email protocols. So we get SMS alerts “for

These three components plus the supporting electronic components and a power
supply form the structure for web-enabling a device. The microprocessor shown

uses internal memory.

Components of an Embedded Processor

Jack (RJ-45)

External
Memory

The external memory
saves data and logging
functions.

Micro
Processor

Interface to
Ethernet

(MAC/PHY)

The familiar network
jack that the
Ethernet cable plugs
into. This miniature
silver box also
contains magnetic
transformers.
Sometimes referred
to as a MagJack.

An integrated
circuit dedicated
to receiving the
Internet data
packets. The chip
is commonly
called the
“Mac-Phy”
circuit.

The processor
which receives
and transmits
serial or parallel
data to the
devices being
web enabled.

34	 Low-Cost Web Servers / Geist Technology

Architecture

free” as long as we do it the right way.

Big Brother is Watching

So far we’ve been talking about things that are familiar to
most Internet users today. But IT administrators have other tools
and protocols that you probably haven’t heard of before. They can
be mystical if you ask an IT guy about it – most can’t be bothered
to explain their complex and intricate details – but really these are
quite understandable if you just want to know how they work.

More importantly, if you walk into an IT guy’s office and your
device doesn’t support his special protocols and tools, you just lost
the sale. Web pages and emails are nice, but not enough.

The first special tool IT managers have is called an “SNMP
Console” or “Management Console.” If you’ve ever walked into a
Network Operating Center (NOC) you’ve seen one of these – one
of the functions of such a console is to display current status and
alerts on big screens.

These are very useful. You can see things like network
bottlenecks, devices that are down or in trouble, warnings and
alerts from all around the data center, current network traffic levels,
and more. And you thought they put up those big flat panels
“because we can.” (Well, that too.)

Already all of the IT guy’s devices are talking to this central
console. Depending on how advanced the data center is, this can
include web servers, email servers, network switches, database
health, UPS battery levels, power usage, temperature settings, door
positions, water levels, and a variety of other inputs.

And since all this data is coming into one console, not only
can you display it, you can react to it.. NOC operators can set rules
about when to notify people of alarms, how to log errors, when to
escalate, and so on. Some console software can even take action,
like turning on a backup air conditioner if it gets too hot. This is
monitoring, alerting, and control for all devices in the data center.

Low-Cost Web Server / Geist Technology 35

Architecture

No wonder the IT guys love it!

Of course if you walk in with your device and it doesn’t plug
into their console, you’re sunk. You need support for a protocol
called SNMP, and this is harder than it sounds. Here’s why.

SNMP is the protocol used by all those consoles. Some
support other protocols, but all support SNMP. SNMP stands for
“Simple Network Management Protocol,” and that in itself an
inside joke among network gurus. Why? Because it’s anything but
simple.

In 2003 we first added support for SNMP in our
WeatherGoose product line. We tested it in-house four different

page 42

Embedded
System

Network Protocols

SMTP/POP3
(Email)

syslog
(Logging)

SNMP
(Monitoring)

HTTPS
(Secure Web)

HTTP
(Web)

Human Interfaces

Management
Consoles

(WUG, OpenView,
IPSentry)

Email Clients
(Outlook, SMS,
pagers, PDA’s)

Web Browsers
(IE, FireFox,

Safari)

The world of the embedded processor. It must conform to the network
protocols and also give the user a variety of means to access the data.

The two aspects are complex and critical to the system developer.

How Humans Talk to Embedded Processors

36	 Low-Cost Web Servers / Geist Technology

Architecture

ways: What’s Up Gold (one of the most popular commercial
consoles), ipSentry (another popular, low-cost commercial console),
netSNMP (the gold standard SNMP open-source tool for Linux),
and Ethereal (the premier network packet-sniffer that can decode
data and tell you if the data is malformed).

We beat up (software term for stress testing) our code until it
passed all the tests. We were coming up properly in all four test
scenarios. So we released it.

Over the last four years later, we’ve had to revise the SNMP
protocols no fewer than 17 times. Why? Because in the process
of supporting over 12 other SNMP consoles, we discovered a few
things. The standards documents? They’re just guides. Every
console did whatever it felt like. Some could read these fields,
others couldn’t, and others just crashed. Some needed alerts
to come in this way, others that way. Some had bugs with the
encoding of certain numbers so we had to make sure we encoded
them in special ways.

It Was a Nightmare

We learned a lot during those years. The good news is that,
today we have that knowledge encoded in our own embedded
SNMP server. We don’t have to worry about it any more. We have
the know-how now, but I wouldn’t want to go through that again!

Before we leave management consoles, you need to know
about another little protocol called syslog. Not an acronym this
time, just a contraction of “System Logger.” This is a Unix protocol
for collecting logging information from multiple sources and
giving the IT administrator a single place to store the log messages
on disk, organize those files, rotate old files into storage, and filter
which logging messages he really wants to keep.

Although not as prevalent as SNMP, syslog is another way
that you can keep many IT administrators happy because you’re
plugging into their system rather than making them figure out how

Low-Cost Web Server / Geist Technology 37

Architecture

to get data from your device.

Plus syslog has another advantage – it allows us to log all
sorts of diagnostic information that is invaluable when tracking
a problem. Most of the time it’s a network problem or system
configuration problem, but whether the bug is external or internal
it’s great to be able to get detailed log information from a device in
the field.

Things You Don’t Need

There are other protocols on the Internet. Generally it’s best to
support as few protocols as you can while providing all the same
functionality, because more protocols means more code to support,
more chances for bugs, and more ways a hacker might be able to
get at the device.

Lots of devices support FTP as a way to transfer files, usually
to upload software updates. Being able to load software updates in
the field is critical, but why support a whole new protocol just for
that? FTP doesn’t play nice with most firewalls, so it has additional
strikes against it.

Instead, we allow users to upload software updates through
the web interface. It’s as easy as attaching a file to an e-mail from a
web-based e-mail client like Gmail, Yahoo or Exchange.

Another common one is TELNET, one of the oldest protocols
still active on the Internet. TELNET provides text-based access
to the device. If you’ve ever used a modem to connect to a BBS
(bulletin board service) from the 80’s or 90’s, it’s like that. If you
haven’t, just saying “Like in the 80’s or 90’s” should be enough to
give you the idea.

Geeks like text-based interfaces because it allows them device
control and information access without using pesky things like
mice and web browsers. Instead they can write programs that
interact directly with the device.

That’s an important attribute to keep – geeks need to write

38	 Low-Cost Web Servers / Geist Technology

Architecture

their programs! But with the advent of the web page it turns out
you don’t need text-based access any more. Why? Because as long
as you design your web pages properly, they are just as easy to
read by a machine as by a human. And nowadays there are many
free tools that assist geeks in making their automated programs, so
it’s actually easier to control the device through the web page than
through TELNET!

On top of that, there’s a new data format in town called XML.
Without going into details, it has become the lingua franca for
machine-to-machine communications (as opposed to machine-
to-human, like a web browser). So if your device supports XML,
you’re also supporting the geeks with their automated tools. We
support XML as well, but this is a technical subject covered in a
later chapter.

Four Rules - We Learned Them the Hard Way

Now that we’ve identified what the unit has to do from the
outside, what are the design considerations for the insides? Years
of experience in embedded design have led us to some important
design rules that will save you millions of dollars of time and
mistakes.

The first rule is: Only use commodity parts. That specialized
system-on-a-chip component might seem like the perfect fit for
your project, and maybe it is… today. But what happens a year
from now?

On one project the part manufacturer went out of business just
as the first 100 units rolled off the assembly line. The product died
before it ever saw the inside of a catalog.

Another time the manufacturer declared the product line
obsolete. We had to scramble around reseller’s inventory bins
to keep our units going until we could design around it – at
exorbitant prices, of course. We lost money on units for four
months and spent two months redesigning the board.

Low-Cost Web Server / Geist Technology 39

Architecture

Still another time the manufacturer was bad at inventory
control, so sometimes we’d be stuck without being able to build
product for weeks at a time. Sure we could have inventoried more
parts ourselves, but this was an expensive part and we didn’t have
hundreds of thousands of dollars laying around for inventory.

So now we buy only commodity parts. That means multiple
vendor sources and multiple resellers, so if (or when) any one place
goes out of business, we’re not hurt. And because parts are being
made in the millions, not thousands, there’s always someone who
can overnight 10,000 units if necessary.

The Second Rule - Trusted Vendors

The second rule is: Only buy from trusted vendors. That
doesn’t mean “buy from large companies,” in fact often it’s the
large companies that treat you poorly and the small, starving
companies that will dig you out of a hole, even if it’s your fault.

This means developing relationships with the vendors. Will
they answer your phone calls? Do you have access to technical
people on their side so your engineers can talk to their engineers
directly without sales people or “Level 1 Support” slowing things
down and mis-communicating? Are they passionate enough about
making you successful that they’ll go out of their way to help?

We’ve developed great relationships with several vendors, so
we know we have help if we need it.

The Third Rule - Source Code Access

The third rule is: You have to have all the source code. This
doesn’t mean everything has to be open-source (as in, you have
the source code and it’s completely free), but you must have easy
access to the code.

There are many reasons for this. The most important
one is that you can fix any bug. We’ve had a vendor on the
WeatherGoose Climate Monitor project whose code had more
than twenty open bugs – twenty! – that we couldn’t fix (because

40	 Low-Cost Web Servers / Geist Technology

Architecture

we don’t have the source code) and which the vendor refused to
fix. (Who knows why, maybe they think adding features is more
important than making the features work).

It’s called a hostage situation. Except that sometimes you can’t
even pay them to do it. You’re a victim, at their mercy. Not fun,
especially for your own software engineers who are helpless and
having to ship code they know doesn’t work.

On the Finch project we also had twenty bugs, but this time
we had the source code. We fixed every one of them without help,
and currently we have no known open bugs. That’s peace of mind.

The other reason is that it helps to be able to read the code.
Sometimes the vendor code works, but it’s hard to understand
what it’s doing. Allowing the developers access to the insides can
save hours of sleuthing. Otherwise it’s like taking your car to the
mechanic and saying, “Fix this car, but you’re not allowed to open
the hood or put the car up on jacks.”

The Fourth Rule - Automated Testing

The fourth rule is: All components must be testable through
automation. This is a rule that the non-embedded software
development world has already embraced, but for some reason
it’s all too common for embedded developers to ignore automated
testing completely.

The most basic form of software test is called the “unit test,”
and NASA’s been using this for years to achieve zero-bug software.
The idea is that you isolate a tiny bit of code and rig up a test
harness to exercise it. For example, let’s say it’s a bit of code that
takes a number and gives you back text that makes it an ordinal
number. So 1 would become 1st, 2 would become 2nd, 1011 would
become 1011th.

You would write some other program that would run that
code against various inputs. The inputs I just gave would be an
example. This separate test code compares the actual output with

Low-Cost Web Server / Geist Technology 41

Architecture

the expected output, and alert the software developer if the two
don’t match.

The trick is that because the test is another program, and not a
human, it can be run at any time, like every night, and before any
code goes out the door. This is important for several reasons.

First, it’s great when bug reports come in. Let’s say my
program used the following rule: If the input ends in the number
1, use “st,” if ends in 2 use “nd,” if 3 then “rd,” and otherwise

use “th.” This would work for most tests. But then QA reports
a sighting of “11st” in the web page. Oops! 11 is a special case!
That’s “th” even though the last digit is a 1.

So here’s how you fix it. First you make new tests for 10, 11,
12, 13, and anything else you can think of that might also be broken
(e.g. 111, 1011). Run the unit tests. Of course they will fail – that’s

page 52

SensorSensor

Sensor

Sensor

Embedded System Architecture

MAC/PHY
(Ethernet/Internet)

ARM 7 / PIC
(CPU) Reset Switch

Network

Sensor

Remote
Device

Port
Flash Memory
(Saved Data)

sdRAM Memory
(Runtime)

In/Out Pins
(General I/O)

PIC
(Sensor

Processor)

 A typical embedded processor architecture is shown. Each rectangle
represents an integrated circuit. Don’t let the simplicity lull you into
thinking that these are unsophisticated devices. A typical Owl system

can have over 30,000 lines of code

42	 Low-Cost Web Servers / Geist Technology

Architecture

good, because now they’re actually testing these cases properly.
Now you fix the code until the tests pass again.

You’ve enhanced your tests and you’re sure the code works
now. But because there were other tests as well, you’ve ensured
you didn’t also break cases that used to work. For example, in
fixing this bug I might have thought “Oh, if it ends in 1 just make it
‘th,’” but then that would break the tests for 21 and 101, so the tests
prevent me from breaking one thing as I fix another.

The second major thing it does is enable safe code rewrites.
For example, let’s say we run this ordinal program a lot, and it
turns out it’s really slow. So we decide to rewrite that code to
make it faster. Fine, but that’s exactly the kind of thing where you
end up putting a bug in the code because you forgot some corner
case. Here’s where the tests come in again – if you know your tests
cover all normal and corner cases, you can rewrite code with the
confidence that you’re not putting in new bugs.

In our code we have thousands of tests. Just having thousands
of tests that pass the gives developers comfort. It’s nice to know
that at least in thousands of normal cases, the code definitely
works! And it’s nice to know you can rewrite code when you need
to without fear. Otherwise the code base can become stale out of
fear of change.

Cracking the Black Box

So much for the outside of the black box and general design
requirements. Let’s crack it open and see what we’ve got.

This is a high-level discussion intended to communicate the
big picture of what it takes. In later chapters we’ll describe in
excruciating detail exactly how all this works.

 The brain of the system is the CPU, or Central Processing
Unit. All subsystems eventually connect to this central processing
plant. When you think about “loading the code” into the system,
this is where it goes.

Low-Cost Web Server / Geist Technology 43

Architecture

For the Owl family, the CPU is an ARM 7. This is possibly
the most popular processor in the industry due to its low cost,
flexibility, and extensive software tool support. The Finch family
uses a Microchip PIC processor, less powerful than the ARM 7 but
much less expensive and it also comes in several packages.

All computer systems have various kinds of “memory,”
the place where data is stored permanently or temporarily. On
common desktop computers you’re probably familiar with at
least two kinds of memory – hard disks and RAM. The disk is
where things are stored “forever,” even when you power off
the computer; whereas RAM is for “working memory,” which
programs use like scratch paper while they’re running and which is
completely lost when the computer is turned off.

You might be wondering why we don’t use hard disks for
everything – after all, it’s all bits and bytes, and hard disk data
remains after powering down, so isn’t it better? It turns out there
are engineering trade-offs that make it useful to have two kinds of
memory. Hard disk memory is very slow but quite inexpensive.
RAM memory is thousands (yes, thousands) of times faster, but
costs hundreds (yes, hundreds) of times more.

Embedded systems have the same kinds of needs and trade-
offs, just on a smaller scale and with different products. You still
need RAM, but less of it. Our typical Owl system comes with 16
megabytes of RAM (your laptop probably has 500-1000 times more
RAM) and instead of a hard drive we keep permanent memory in
a Flash memory chip of 16 megabytes (your laptop probably has
2500 times that much memory). So it’s smaller, and the names have
changed (i.e. “Flash” instead of “hard drive,”) but the functionality
and the trade-offs are the same.

In fact there are even more kinds of memory than this, with
deeper technical and cost considerations, but we’ll delve into this
in a later chapter.

The internal part that talks to the Internet is called the MAC /

44	 Low-Cost Web Servers / Geist Technology

Architecture

PHY (pronounced “Mac Fy”). This is actually a set of components
including a tiny microprocessor. A full discussion of this system
and how it communicates appears in a later chapter.

Dinosaurs Showed the Way

For systems that support external sensors, we often employ an
additional out-board processor. This is akin to the Brontosaurus
who had a small brain in its butt to complement the bigger (but still
not that big) brain in its head. The butt-brain was useful because
without it, it took too long to get signals from the head to the tail.

Similarly, we use a small, cheap, Microchip PIC processor
as our out-board butt-brain. This processor is fast enough to do
the time-sensitive protocols needed to communicate with many
types of sensors. This also allows the CPU to do things like service
Internet requests and do signal processing without messing up
the delicate timings often needed with sensors. The CPU and PIC
communicate with a simple, human-readable serial protocol, so all
communication is easily understood and debugged.

The Finch architecture looks the same as the ARM, but with
fewer and cheaper parts. Here’s a high-level comparison:

The Soft Spot

Fifteen years ago, embedded systems meant 95% hardware
with 5% software. Now it’s the reverse. Software runs everything
– schematics often show little more than various software-powered
microprocessors talking to each other.

What does the software look like inside the Owl? There’s a lot
on this diagram shown on the previous two pages, so let’s take it

Owl Finch
Processor ARM 7 Microchip PIC
CPU Clock Speed 70MHz 25MHz
Cost of Components (no assembly) $33 $15

Low-Cost Web Server / Geist Technology 45

Architecture

Unit Test Suite
(Windows)

Web Server
Error
Pages

Static
Content

Dynamic
Pages

Dynamic
Images

Basic Auth-
 entication Control

Device Manager

Periodic
Updater

Current
State

PIC
Mediator

Internal
Temp

Humidity
Air Flow

CCAT
Power

SNMP Server

GET

1-
Wire

PIC

On- Board
Sensors

46	 Low-Cost Web Servers / Geist Technology

Architecture

OS
(FreeRTOS)

TCP/IP Stack
(LightweightTCP)

MAC/PHY Ethernet

Threads

Socket Manager

File System

page.html
logo.gif

stylesheet.css
mib.txt
oem.txt Data

Flash

Alarms Manager

Alarm
Triggers

SMTP

SNMP
 Trap

- Input/Output buffers
- SSL buffers
- Encoding/Compression
- Unit testing

Owl So�ware Map

I/O
Algorithms

Firmware Updater

Se�ings

Data Manager

Logging Graphing

SSL / HTTPS

Hardware Reset

OEM Vars

syslog

Real-Time Clock

Low-Cost Web Server / Geist Technology 47

Architecture

piece by piece.

The Prime Mover

The “operating system” or OS is the heart of any computer
system. In our case we’re using the open-source FreeRTOS (Real
Time Operating System) package.

The OS controls which programs execute at what time. Some
code runs all the time, like a web server, but only needs to be active
occasionally, such as when it’s actually servicing a web request.
Other code runs at regular intervals, such as periodically checking
the values of all the external sensors.

These different programs, executing at various times, are
called “threads,” and it’s the OS’s job to manage them in an efficient
and fair way. Efficient means we shouldn’t waste processor time on
threads that don’t have something to do right now, and fair means
we shouldn’t allow any one thread to take up all the processor
time, which stifles other threads that need to run too.

The TCP/IP Stack

The “Stack” is programmer jargon for the part of the code
that implements the basic Internet protocol of TCP/IP. Although
we discussed many protocols before (e.g. HTTP, SMTP, SNMP), all
of these actually ride on top of the same horse, called TCP/IP. We
have much more on all this in a later chapter.

The stack is responsible for running all the Internet protocols.
This means keeping up with web browsers, email servers, and
management consoles. It means making sure connections aren’t
dropped, data is re-transmitted if the other end didn’t get the
message, and other more complex work. The TCP/IP stack is a
complex beast, so we want to insulate the rest of the code from its
activities.

The “Socket Layer” is another subsystem who’s job it is to
provide a simple model of the Internet for the rest of the code. For
example, the web server can tell the Socket Layer that it would like

48	 Low-Cost Web Servers / Geist Technology

Architecture

to be notified when a web browser wants to talk.

The web server thread can rest until this event occurs. Once
the connection is made, the web server receives data from the web
browser in an in-box, and can talk back by putting data into an
out-box. The Socket Layer is responsible for delivering data to and
from the in-box and out-box.

Thus, although the TCP/IP stack has to do complex work to
manage all these bytes flying around, the Socket Layer provides a
simple in-box/out-box mechanism for the web server, so the web
server doesn’t have to contend with anything difficult.

The Socket Layer can do other things too. For encrypted
protocols (such as HTTPS, the secure web browser protocol), the
Socket Layer can do all the encryption on the spot. So the web
server still puts its bytes in the out-box and the Socket Layer
encrypts them before sending them out on the Internet.

Finally, the Socket Layer provides an invaluable service in
quality assurance. After all, since the web server just knows about
its boxes, it doesn’t know whether there’s a real web browser on
the other end or whether it’s actually a special test harness that
we’ve created! The Socket Layer can mimic a web browser without
an Internet connection. This means we can set up all kinds of
complex, automated test cases, and make sure our web server is
doing the right thing. Assuring high-quality quality control before
our units ever leave the building.

Servers, Servers, Servers

For every one of the Internet protocols described above, we
have a program called a “server” to manage the particulars of that
protocol. There’s a web server to handle HTTP requests, an SNMP
server to handle management consoles, and an email server to
handle sending SMTP alarms.

These are all described in detail elsewhere in this book. What
they have in common is that all send and receive data through

Low-Cost Web Server / Geist Technology 49

Architecture

the Socket Layer, and all have one or more threads from the OS to
control when they execute. Some, like the web server, have more
than one thread. This allows us to service requests from more than
one web browser at the same time, which makes everything appear
to run faster for the end user.

External Devices and Sensors

External devices and sensors is a complex topic on its own,
so an entire subsystem is devoted to it. Our subsystem was built
from years of experience with over 30 different kinds of sensors
from different vendors. We can handle all sorts of protocols, rules,
dynamically-changing external sensors, error conditions and more.

Error-handling is especially difficult with remote sensors. All
kinds of things can go wrong – the sensor could be bad, the cabling
to the sensor could be flaky, electromagnetic noise in the room can
introduce errors in the dataflow, a connector could be bad, and a
human can unplug and plug in sensors at will. However we have
a system that ensures only “good” data is ever saved, and that we
properly recover from any kind of error that could occur along the
way. The user sees only good data.

In the Owl system we also store sensor data in an internal
log. This log is used for several things, but the most interesting use
is graphing. Graphs show trends of a sensor over time, which is
often more informative than the actual sensor value.

For example, when an A/C unit goes bad, you usually see
signs months in advance. If you look at a graph of temperature,
humidity, and airflow of an A/C duct, you see these nice patterns
of rise and fall as the condenser kicks on and off. When the system
starts to go bad, the pattern becomes more erratic, swings more,
and the values don’t stay in nice boxes. With such a warning, IT
personnel can replace the unit during scheduled down-time rather
than in crisis mode when it finally gives out completely.

Jason Cohen - CTO of Geist Technologies

S o f t w a r e
M o d u l e s

Operating Systems

TCP/IP Stack

Sensor Drivers

E-Mail

Threads

Memory Management

Low-Cost Web Server / Gerry Cullen 51

Software

52	 Low-Cost Web Servers / Geist Technology

Software

Processor Functions

An embedded web server performs many operations
throughout its lifetime. Besides presenting a web interface, some
of its other functions might include: sending e-mail, synchronizing
its clock, querying a variety of sensors, managing user preferences,
responding to various network requests, and even updating its
own firmware code.

Each of these tasks are distinct, however there is one
major component in common with them all - the hardware. All
the tasks execute on the same Central Processing Unit (CPU),
memory, and Input/Output devices (I/O). While it is possible
for a skilled programmer to design each task so that it allocates
its own processing time and memory space, and interfaces
directly to peripheral devices, this method introduces complexity,
redundancy, and is prone to error.

The Operating System as Manager

The software that facilitates in managing these resources is
termed the operating system (OS). Operating systems are available
in a wide range of capabilities and features, but in general they
are all geared toward the same goal: allowing user applications
to define how to use the system’s resources in order to solve a
particular problem. A system designed with an OS should at the
very least obtain two basic benefits: efficiency and convenience.

Efficiency is possible because the operating system has
knowledge of what all user applications are doing. Contrast this to
a single user application that has limited knowledge, if any, of what
other user applications are doing. It stands to reason that a user
application is in an inherently inferior position regarding resource
management decisions.

In other words, an operating system can perform operations
efficiently at the system level, whereas a single user application
simply cannot.

Low-Cost Web Server / Gerry Cullen 53

Software

These are the building blocks that enable web and e-mail communication. Each
requires thousands of lines of program code. Both the Finch and the Owl contain

these components although the Finch does not have SSL or SysLog due to memory
limitations.

Protocol Stack for Internet Communications

Internet Protocol (IP)

Ethernet

Secure Socket
Layer (SSL)

Transmission Control
Protocol (TCP)

Simple Network
Monitoring Protocol

(SNMP)

Cell Phones/PDA

HyperText Transfer
Protocol (HTTP)

Simple Mail Transfer
Protocol (SMTP)

User Datagram
Protocol (UDP)

Systems Log
(SysLog)

Console Monitoring-
Systems (NOC)

Web Browser

online

73

54	 Low-Cost Web Servers / Geist Technology

Software

The second basic benefit, convenience, is an equally important
and powerful advantage that the OS brings through the use of
abstraction. Abstraction allows the operating system to hide away
the complexities of underlying hardware and software mechanisms
so that user applications get the OS provisions they need without
getting bogged down in unnecessary details.

Remember, the goal of an operating system is to manage
hardware such as the CPU, memory, and I/O devices, and make
them easily and efficiently available to user applications. Some
operating systems focus solely on one aspect, while others
balance a combination of both. Selecting which operating system
to use depends on the software goals and the kind of hardware
it is expected to run on. In general, the more varied the user
applications and hardware are, the more flexible and complicated it
must be.

The gamut of operating systems range from the nonexistent,
to the basic, to the fully managed. Each of these operating systems
are described very briefly.

Using No Operating System (Finch)

A nonexistent operating system is a viable option if your
software requirements are simple or the hardware is simply
incapable of running an OS. Naturally, without an OS, no major
conveniences through abstraction nor resource-wide efficiency
advantages are possible. However, they are not necessarily
needed because ideally the software is simple enough to execute
commands serially.

That is, each function the software needs to perform executes
correctly even though it is always executed in the same order
relative to other software functions. Further, since the hardware
is accessed directly, there are no complex software maneuvers for
operation nor extensive timing coordination with other software
functions.

Examples of nonexistent OS setups are prevalent in 8-bit

Low-Cost Web Server / Gerry Cullen 55

Software

The status of the tasks is indicated by the number above;

 * At (1) task 1 is executing.

 * At (2) the kernel suspends task 1 ...

 * ... and at (3) resumes task 2.

 * While task 2 is executing (4), it locks a processor peripheral for it’s
own exclusive access.

 * At (5) the kernel suspends task 2 ...

 * ... and at (6) resumes task 3.

 * Task 3 tries to access the same processor peripheral, finding it locked
task 3 cannot continue so it suspends itself at (7).

 * At (8) the kernel resumes task 1.

 * Etc.

 * The next time task 3 is executing (9) it finishes with the processor
peripheral and unlocks it.

 * The next time task 2 is executing (10) it finds it can now access the
processor peripheral and this time executes until suspended by the kernel.

Tasks Running in Processor

Task One Executing

Task Two Executing

Task Three Executing

t1 t2 t3 t4 t5Time slices:

1 2 3

4

5
6

7

8 9

10

56	 Low-Cost Web Servers / Geist Technology

Software

microcontrollers such as the Microchip PIC which is the processor
on the Finch.

Basic Operating System Features

A basic OS provides the minimum feature set required
for classification as an OS, namely, the concepts of tasks and
synchronization. Systems of moderate complexity cannot usually
be arranged in a strict linear order for execution, due to timing
requirements of their software components. If these systems are
executed without the time allocation management an operating
system provides, their software timing requirements would be
very difficult, if not impossible, to ensure.

 Operating systems that provide this time allocation
management are called realtime and use an abstraction called a
task to achieve it. The task abstraction provides a convenience to
programmers that allows them to write task code as if it were the
only code executing on the CPU. The task code may be tailored
specifically to its goal without worrying if and how its timing
requirements are met. In this way a programmer is free to think of
tasks as software components that are executing simultaneously
on the system. Of course, the tasks are not actually all executing
at the same time, although they appear to do so through a method
called timesharing.

Multiple Tasks and Synchronization Semaphores

The other abstraction convenience provided by a basic OS is
synchronization. Sometimes multiple tasks must share a resource
that may only be accessed by one or a few entities at a time. Tasks
must have a way of knowing if they can safely access the protected
resource.

This is referred to as synchronization between tasks. In the
jargon of operating systems, synchronization is implemented
using something termed a semaphore. Each semaphore is created
with a count that signifies the maximum number of entities that
may use it at any given time.

Low-Cost Web Server / Gerry Cullen 57

Software

A semaphore with a count of one is so commonly used that
it has its own term, a mutex. The basic idea is that any code that
accesses a protected resource is encapsulated by a semaphore so
that synchronization is ensured.

Examples of basic operating systems are uC/OS-II and
FreeRTOS.

Threads and Fibers

A fully managed operating system provides significantly
more features than just task and synchronization management.

page 130

All tasks appear to be executing simultaneously

Time-Slicing Tasks

Task One Executing

Task Three Executing

Time Slices:

Task Two Executing

t1 t2 t3 t4 t5

But each task only gets a fraction of the processor’s time

Task One Executing

Task Three Executing

Time Slices:

Task Two Executing

t1 t2 t3 t4 t5

The speed of the embedded processor plus the ability of allocation
time segments makes multiple tasks appear as if they are all

running simultaneously. The amount of time allocated to each task
can be adjusted.

58	 Low-Cost Web Servers / Geist Technology

Software

First, direct hardware access by a user application is simply never
allowed. Hardware driver infrastructure allows an interface
for user applications to access the hardware. Besides providing
protection from illegal hardware access, the infrastructure is
flexible allowing support for a variety of hardware devices. Second,
the concept of a task is more flexible in an advanced OS; processes,
threads, and fibers are the terms used to describe these specialized
tasks.

Processes are heavy duty tasks that have much more system
resource information associated with them. This extra information
allows the operating system to make even better decisions on how
best to efficiently fulfill process needs. Threads and fibers allow
user applications to timeshare code fragments within a process
while sharing the parent process’s contextual information. And
lastly, memory is abstracted away and tightly controlled.

Memory Management

The operating system uses a technique called virtual memory
that allows a process to execute as though it has the maximum
amount of system memory available for its own personal use.
The operating system translates virtual memory addresses to real
hardware memory addresses invisibly and keeps tabs on them
to ensure processes access only their designated memory areas.
Examples of fully managed Oses are the Windows and Unix based
operating systems.

Armed with some basic knowledge of operating system
offerings, it is now possible to select an OS based on a project’s
requirements. What follows is a discussion on OS selection and
implementation for two web server platforms: Owl and Finch.

Owl Platform

The Owl platform’s primary goal is to provide moderate
software and hardware features at low cost. The Owl software is
expected to provide a multi-threaded web server capable of serving

Low-Cost Web Server / Gerry Cullen 59

Software

up to four requests simultaneously and at the same time perform
other duties such as fulfill SNMP requests, send out e-mails,
synchronize to time servers, query domain name servers, manage a
flash file system, log data, and interface to a realtime clock.

Furthermore, it must perform more intense tasks like
encrypting HTTP/web server transactions using SSL. All in all,
many different kinds of tasks are expected from the Owl, and
for this reason the use of an OS to help manage these tasks is
undoubtedly needed. The only question is which class of OS to use.
Although it is tempting to immediately select a fully managed OS
for use because it has more features, these features come at a price.
The biggest drawback being the resources required to support it.

The Embedded Processor has multiple tasks to accomplish just to maintain
Internet communications. Add to this the task of collecting and processing

the data that needs to be displayed, and the tasks are considerable.

Embedded
System

Network Protocols Human Interfaces

HTTP
(Web)

HTTPS
(Secure Web)

SMTP/POP3
(Email)

SNMP
(Monitoring)

syslog
(Logging)

Web Browser
(IE, Firefox,

Safari)

Email Clients
(Outlook, SMS,
pagers, PDA’s)

Mangement
Consoles

(WUG, OpenView,
IPSentry)

Communication Protocols

60	 Low-Cost Web Servers / Geist Technology

Software

The Owl contains 4MB of RAM and an effective 4MB of Flash
memory. A fully managed operating system, even one specifically
trimmed down for use in embedded systems, will still eat a
significant portion of these resources.

Other drawbacks include the Owl CPU’s lack of hardware
for taking full advantage of all OS features and it requires a
more complex installation. Overall, the features provided by a
fully managed operating system are simply not needed for the
Owl because it runs and interfaces to predetermined tasks and
hardware.

End-users are not expected to run and interface arbitrary code
and hardware, so the general purpose nature of a fully capable OS
will go mostly unused. The reasonable choice is to select a more
basic operating system.

FreeRTOS - The Owl’s Operating System

FreeRTOS was selected for use on the Owl platform. This
OS is free and comes with full source code already ported to
many target hardware platforms. In fact, a specific FreeRTOS
implementation for the Owl CPU and compiler is readily available.
It has a very small memory footprint and requires few CPU
hardware features for it run.

These hardware features are a timer interrupt and a software
interrupt both of which the Owl CPU already has. In concert these
two features work together allowing effective CPU timesharing.
The hardware timer is used to implement a particular FreeRTOS
configuration called preemptive task switching. This translates to
forcibly switching out the running task with a new pending task
every specified period of time.

When a hardware timer triggers an interrupt, FreeRTOS
understands it is to save the state of the current running tasks and
restart another task that has been waiting for its prescheduled time.
By adjusting the trigger interval of the hardware timer it is possible

Low-Cost Web Server / Gerry Cullen 61

Software

to control the maximum amount of time any one task may execute
per task switch. A typical trigger interval is ten milliseconds and
is commonly called a timeslice. With this the method the CPU
seemingly executes tasks simultaneously.

The second hardware feature, the software interrupt, allows
timesharing to occur even more efficiently.

Allocating Resources - Semaphores

Take the case of a task that need only perform operations
every few minutes: if it uses up the entire timeslice each time it
switches in, then thousands of tasks switches are wasted over the
span of those idle minutes. That is wasted time that is possibly
better spent by other waiting tasks.

Instead of waiting for its timeslice to expire, a task may trigger
a software interrupt and give control back to FreeRTOS, effectively
saying that it yields the remainder of its current timeslice. The
same method is also used to communicate the desire to yield
a specified number of future timeslices. In this way FreeRTOS
ensures that a task is switched in only when it is the correct time to
do so and executes only as long as needed.

The other basic feature provided by FreeRTOS, semaphores,
is also implemented by manipulation of interrupts. Recall that the
purpose of semaphores is to allow only a specific number of tasks
to access an encapsulated code section at any one time. When the
the time comes for a task to enter that protected code section, the
hardware timer interrupt is disabled. Then and only then is the
semaphore’s count checked to see if access to the code fragment is
permitted.

If access is granted then the semaphore count is incremented,
the hardware timer interrupt is re-enabled, and the task is allowed
to go forth and execute the protected code. If access is denied
because the semaphore count is already at the maximum permitted
value, the hardware timer interrupt is still re-enabled, but the task
is forced to yield or execute other nonprotected code.

62	 Low-Cost Web Servers / Geist Technology

Software

The disabling of the hardware timer interrupt is critical and
ensures that the semaphore’s count value is tested and changed, if
at all, by one and only one executing task at a time because while
the interrupt is disabled it cannot trigger and thus force another
task to switch in. FreeRTOS provides a few more features, however,
tasks and semaphores are its fundamentals and provide enough
operating system functionality to run Owl’s software demands.

Finch Platform

The Finch platform’s primary goal is to provide the lowest cost

web server with acceptable software and hardware features. The
Finch software is expected to provide a single-threaded web server,
handle SNMP requests, and run a basic FTP server that accepts
software component updates.

Naturally, CPU capability on the Finch is far less than that
on the Owl; lower operating speeds, smaller instruction set

Tasks Running - No Operating System (Finch)

Task One Executes

Task Two Executes

Task Three Executes

10

Start

In the Finch, there is no operating system. This saves memory space and
keeps the cost down. The processor executes each task, completes that task and

moves to the next task.

Start

Task One Executes

Task Two Executes

Task Three Executes

Low-Cost Web Server / Gerry Cullen 63

Software

architecture, fewer hardware features, and smaller memory sizes
forces the Finch to perform fewer software duties at a significant
cost savings.

Given that, there are really only two operating system
choices: no operating system or a reduced basic operating system.
In general, an operating system may be preferred, but it was
decided to run Finch without one. At the time the Finch was
originally developed, the main constraint was time to market, and
furthermore, all of the main software components were already
provided by the Finch CPU’s manufacturer, Microchip.

These software modules were designed to run in an
environment with no OS, and in the end it took less time to modify
them to suit our design requirements than it would have to re-
design them to run correctly on an OS.

 Pedro DeKeratry - software developer

Sensor Interface - Device Drivers

The Owl obtains information about the real-world conditions
being monitored from a variety of sensor devices. A device may
have one or more sensors. The product into which an Owl is
integrated may have one or more devices.

The product will always have at least one sensor device,
known as the “internal” device, which is always available because
it is permanently attached to the Owl. Again, there may be
multiple sensors on the internal device. The product may have
zero or more “external” devices of various types which can be
added or removed during normal operation. The Owl software
dynamically detects when external devices are attached and
removed.

External devices all have unique serial numbers which enables
the Owl to distinguish between multiple external devices of the

64	 Low-Cost Web Servers / Geist Technology

Software

same type. If an external device be removed or replaced, the Owl
recognizes it as having been previously attached or updates the
system with the replacement serial number.

The Owl stores information about all of the attached devices,
including their unique serial numbers, in non-volatile memory; so
the Owl recognizes previously attached devices when the system
starts up after being powered off. This is important because system
alarms (for example, a high temperature alarm) are linked to
individual sensors by the sensor’s device serial number.

Select the Devices

Naturally, the Owl software is able to communicate only with
device types it recognizes. All necessary information about each
known device type is kept in system tables in the Owl software.
This information consists of specifics about the measurements a
given device’s sensors can take and how to communicate with the
sensors to obtain these measurements.

The Owl system software polls all devices on a regular
interval, typically every few seconds. At the beginning of each
polling cycle, a complete scan is made to find devices that have
been added (plugged in) since the previous cycle. All currently
attached devices are contacted using the methods specified in the
system device type tables described above.

Measurements obtained during the device scan are stored
so that they can be checked for any alarm conditions and so
measurement values are available for display on web pages, SNMP,
logging, etc.

If communication with an attached device cannot be
successfully completed (it has either been unplugged or is
unavailable for any reason), the device is marked as being
unavailable and appropriate actions are taken by the Owl system
software, such as reflecting this on various web pages and
generating alert e-mails.

Low-Cost Web Server / Gerry Cullen 65

Software

The method for communicating with a sensor is governed
either by the communication protocol that the sensor recognizes or
by the device’s PIC microprocessor, if that type of device has one.

On devices that have a PIC, the communication protocol may
be as simple as sending a single command to the PIC and the PIC
responding with the sensor measurement. The protocol depends
on the program running on the PIC.

On devices that do not have an integrated PIC, the protocol
will be determined by the manufacturer of the sensor. For any
protocol that is more complex than sending a single command, the
Owl side of the protocol is implemented in a software routine and
is linked into the Owl system via a pointer to the routine in the
device tables described above.

Typically the routine is a function written in C, but it could be
in any language with a compatible Application Binary Interface.
This mechanism allows the integration of devices with arbitrarily
complex protocols. For example, some protocols incorporate
computed check sums to validate transmitted data buffers.

Charlie Mayne – Software Developer

How Serial Data Is Usually Received:

comma delimited data

string data, non delimited

Typical External Data Sources (sensors):

remote temperature

airflow/humidity/temperature

door position

water

current monitor

millivolt

dewpoint

digital

66	 Low-Cost Web Servers / Geist Technology

Software

Email

The Owl architecture is able to use its networking facilities
to send email messages. In particular, two widely used email
protocols are supported: Simple Mail Transfer Protocol (SMTP) and
Post Office Protocol version 3 (POP3).

A very natural application of sending email would be to alert
a user when something of note has occurred. In the WeatherGoose,
for instance, an email message is automatically sent to the user
whenever one of the environment sensors reaches a user-defined
value (e.g. when the temperature exceeds 70°F).

An email message sent on a regular interval might also
be used to give the operator a status update on the device. In
particular, receipt of the message confirms that the device is both
alive and talking to the network.

Although the Owl is able to send email, it will not act as the
mail server; the user must provide his own SMTP and/or POP3
server and configure the Owl device to interact specifically with
it. Most SMTP servers are implemented using the Sendmail mail
transfer agent (http://www.sendmail.org/) but Postfix (http://www.
postfix.org/), Exim (http://www.exim.org/), and qmail (http://
cr.yp.to/qmail.html) are all also very common. POP3 servers will
typically be implemented using either Qpopper (http://qpopper.
sourceforge.net/) or popa3d (http://www.openwall.com/popa3d/).

SMTP (Simple Mail Transport Protocol)

SMTP is the protocol the Owl uses to create and send each
email message. When a message is to be sent, the Owl connects
to the user’s specified SMTP server (usually on TCP port 25) and
executes the appropriate commands.

In particular, each email message must contain an email
address that it’s coming from, an email address that it’s going to,
and the content of the message, all of which are specified by the
user. Behind the scenes, the SMTP server decides which path the

Low-Cost Web Server / Gerry Cullen 67

Software

E-Mail Goes to POP Server or E-Mail Client

Owl-based Product
sends alarm e-mail

SMTP
ESMTP

To:
From:

SMTP Server
Outgoing

Mail

get mail ACCT

POP3

POP3 Server
Incoming

and
Authentication

1. Behind firewall
- SMTP

2. POP3 -
authenticates
SMTP message

3. ESMTP -
Extended version
includes authentication

or

Internet

Three ways that mail is sent:

The Owl e-mail alarm and status reports are sent directly to a SMTP
server or authorized first through a POP3 server. Multiple e-mails
can be sent through an escalation method as conditions continue to

decay (or improve).

message must take on the network in order to get to where it needs
to go.

If the message is destined for the local server, it will simply
be deposited in the user’s mail box and the work is done; if it’s
destined for a remote server, then it will be routed appropriately
and handled by the remote machine’s SMTP server.

There is no user access verification built into SMTP – that is,
a user need not authenticate with the SMTP server before being

68	 Low-Cost Web Servers / Geist Technology

Software

allowed to send messages. Access control is usually handled by
restricting incoming access to the server by IP address or by only
allowing emails to be sent which are specified to come from a
particular domain.

If a more traditional method of authentication is desired – one
which allows a user to send mail if he is able to provide a valid
username/password pair – it is possible for the user to configure
a POP3 sister server to act in conjunction with the SMTP server
(this is discussed further in the POP3 section). Extended SMTP
(ESMTP), a separate protocol, is a direct offshoot of SMTP, which
does allow for authentication, but the authentication mechanism is
not currently supported by the Owl architecture.

It should be noted that emails are sent on an honor system, of
sorts, in that the user is not required to even specify a valid sender
email address. This means that it is very easy to impersonate
somebody else with critical inspection of who was the actual
sender of the email. As a result, it is very important that an SMTP
server relay email only for trusted users.

POP3 (Post Office Protocol 3)

Although POP3 is most often used as a means of retrieving
email messages from a remote server and storing them on a client
machine, the Owl uses it to help overcome the absence of user
authentication in SMTP.

Advantages to Using Email for Notification

E-mail is an inexpensive medium to use for notifications, both
in terms of network traffic and computer processing power. E-mails
do not require much to generate and send and, they’re always sent
in an on-demand fashion so they don’t consume disk space while
latent.

Mail servers are typically very easy to configure and, most
Linux or UNIX distributions come with them ready to go out of the
box. E-mail is a very well-understood and accepted medium for

Low-Cost Web Server / Gerry Cullen 69

Software

transferring information and most computer users these days are
familiar with it.

Although POP3 is most often used as a means of retrieving
e-mail messages from a remote server and storing them on a client
machine, the Owl uses it to help overcome the absence of user
authentication in SMTP. This is accomplished using a program
called smtp-poplock (http://www.davideous.com/smtp-poplock/)
and will typically be chained with the qmail mail transfer agent.

Whenever a user wants to relay a message through the SMTP
server, smtp-poplock will check to see if the user’s IP address is
located in a recent authentication database. If so, the email will be
allowed to be sent; if not, the user must authenticate through the
POP3 server.

Upon successful authentication, the user’s IP address will be
stored in the database for a defined period of time and, thus, be
allowed to send email freely.

Disadvantages to Using Email for Notification

Because email messages do not require credentials verifying
the sender’s address is valid and accurate, a user can be easily
impersonated by simply claiming the message is from a person
when it is not.

Much like the postal service, an email message is neither
guaranteed to arrive nor will the sender be given a receipt proving
its arrival. Most SMTP servers will bounce back a “message
undeliverable” email to the sender if the emails cannot be
delivered. If the email contains critical or timely information, it is
best to send the mail to several receipients through separate SMTP
servers.

Of course, this is not helpful if the SMTP server itself is not up
and running.

Patrick Nance - Software Developer

F i n c h : L o w e s t
C o s t W e b

S e r v e r

$15 US in Components

In-Line Code Structure

Small Footprint

Microchiptm Processor

Low-Cost Web Server / Geist Technology 71

Finch: Low Cost

72	 Low-Cost Web Servers / Geist Technology

Finch: Low Cost

Finch - Lowest Cost Web Server

When low cost and a small space footprint are the primary
factors, the Finch web server meets the need. This server is based
on Microchip, Inc. integrated circuits. Microchip has a history of
manufacturing reliable components with low prices.

	 A customer came to us with a request: he wanted to add
Ethernet, and a web browser interface to his entire product line of
power-monitoring products. However, the interface had to meet
the following conditions of size, cost, development time and source
code availability.

Small Size: It had to be small enough to fit into the same space
as the RS232 serial-interface board it would be replacing, so the
customer wouldn’t have to redesign or retool all of the equipment,
plastic (molded) cases, and mounting brackets.

Very Low Cost: It had to be inexpensive to manufacture, the
target was $30 or less, to keep the customer’s products inside their

The largest component of the Finch web server is the Ethernet connector.
The printed circuit board is about one inch square. This design was

built to replace a serial data connection. Other configurations are easily
produced. The components (not assembled) are about $15 US and are

readily available.

Low-Cost Web Server / Geist Technology 73

Finch: Low Cost

desired retail-price targets.

Fast Development: The solution had to be available off-
the-shelf, or at least something that could be made from easily-
available components, and preferably one that would continue to
be available for several years into the future keeping the customer
from having to change his design every few months.

Source Code Available: The customer knew how lack of
source code could defeat the project, especially when bugs or
new requirements appeared. We agreed the source code must be
available.

Four integrated circuits plus a dozen or so discrete components form the hardware
base of the Finch. The popular 18F65J15 microprocessor is the engine. Total

component cost is about $15 US and this cost becomes less yearly as Microchip
releases new versions of this circuit. Serial communications is the common way of

passing data to the web server.

Finch: Lowest Cost Web Server Components and Costs

Ethernet
MAC/PHY
Interface

ENC28J60

Voltage
Regulator

3.3 vdc

$2$3

$2

RJ45 Ethernet
Connector

(with integrated
magnetics)

PIC Micro
Processor
18F65J15

EEPROM 32K
for application

data storage
(25LC256)

Serial Data Input and
Output

$2

$2

74	 Low-Cost Web Servers / Geist Technology

Finch: Low Cost

	 This customer hadn’t been able to find anything on the
market that could meet all of these requirements. Cost and size
seemed to be the biggest obstacles; most of the embedded web
server devices on the market were either too expensive for his
needs, or too large to fit into his existing equipment housings. A
custom design seemed to be the only practical solution -- but was
it possible to build an embedded web server from scratch without
spending an inordinate amount of time and money on the project?

Fortunately, all of the building blocks were already available
and all that was needed was to put them together in the right
combination.

Finch Components: Easily Available

	 The key to the Finch architecture’s small size and low cost
is the combination of two inexpensive, yet powerful components
from Microchip Technology Inc.:

1. The PIC18F65J15 Microprocessor, and the

2. The ENC28J60 Stand-Alone Ethernet Controller.

Together, these two devices form a small yet powerful
embedded-processor core with an Ethernet interface, requiring
only the addition of the appropriate software and a little external
Flash or EEPROM memory. Now we have a fully-functional
embedded web server suitable for any number of small-scale,
single-function applications.

The Microprocessor (PIC18F65J15)

	 Based on Microchip’s high-performance PIC18 processor
core, the PIC18F65J15 microprocessor contains 32Kb of Flash
program memory and 2Kb of RAM, plus multiple onboard I/O
interfaces including two independent SPI ports and two USARTS
for asynchronous serial communication.

This single chip provides all of the computing power required
to support the Ethernet interface, the web server, and the user’s
application. An internal 4x clock multiplier allows the CPU to run

Low-Cost Web Server / Geist Technology 75

Finch: Low Cost

Typical Design Using Finch Components

Ethernet
Connector
with
Internal-
Magnetics

Power
Regulator

Microchip
PIC

Processor

Flash
Memory
(Data
Storage)

Crystal
Clock

Top View

Bottom View

Power and
Data

Connectors

Ethernet
Interface

Chip

Programming Connector

Reset Switch

Using only a few integrated circuits, the Finch is based on a popular
Microchip microprocessor. When cost must be kept to a minimum and a

small physical size is important, the Finch is the ideal choice.

76	 Low-Cost Web Servers / Geist Technology

Finch: Low Cost

at speeds as high as 40MHz with an inexpensive 10MHz crystal.
(The stock Finch architecture uses the 6.25MHz signal provided by
the ENC28J60 to run at 25MHz, but this can easily be changed for
user applications requiring faster clock speeds.)

Stand-Alone Ethernet Controller (ENC28J60)

	 Introduced in 2006 as a companion support chip for the
PIC microprocessor family, the ENC28J60 from Microchip packs an
amazing amount of power into a tiny package. This chip provides
both an IEEE 802.3-compliant Medium Access Control (MAC)
layer, accessible to the host controller via an industry-standard
SPI serial interface, and a built-in Physical (PHY) layer capable of
directly driving the appropriate pulse-transformer magnetics of the
Ethernet connector without requiring any additional external drive
circuitry.

It also provides a 6.25MHz clock output that can be used to
drive the PIC microprocessor, helping to further reduce the system
cost by eliminating the need for a second crystal to run the PIC.

EEPROM (25LC256)	

 The EEPROM communicates with the microprocessor via
the SPI-bus serial port. This inexpensive 8-pin chip provides an
additional 32Kb of data storage, giving the Finch plenty of space
for storing user settings and web page data including simple
graphics and page layouts.

While this information could be stored inside the
PIC18F65J15’s internal Flash space, an external EEPROM is
generally preferable because the Flash is optimized for program
storage rather than data storage. (This is a result of the Harvard
memory architecture used by the PIC microprocessor.) Also, the
internal Flash has a relatively low write endurance, compared to an
external EEPROM, making it unsuitable for storing data which is
frequently changed or overwritten.

Low-Cost Web Server / Geist Technology 77

Finch: Low Cost

Good I/O Capabilities

	 Even with all of the above, many of the PIC18F65J15
microprocessor’s I/O capabilities remain available for other uses,
making the Finch an excellent choice for small-scale, price-sensitive
applications (such as environmental monitoring, simple relay
controls, or simple sensor-data acquisition) that don’t require
highly complex calculations, multi-user access, or massive amounts
of data processing, and thus don’t need the added complexity and
expense of a more powerful CPU or high-level operating system.
With the appropriate code, any combination of the following is
potentially available for your application:

• Up to 37 general-purpose digital I/O pins which
can be connected to switches, relays, or other digital
on/off devices

• Up two 12 analog inputs with 10-bit A/D resolution

• A second SSP port allows the user to add SPI or
I2C-based devices to the system without needing to
worry about servicing the Ethernet MAC/PHY or
EEPROM, which are connected to an independent
SPI bus.

• Two independent USART modules allow for
asynchronous serial communication with existing
data-acquisition systems, desktop PCs, terminals,
etc.

Low Costs That Keep Getting Lower

Since only a single CPU is required to provide the Ethernet
interface, the web server, and the user’s acquisition-and-control
application, the Finch makes it possible to construct simple
Internet-enabled devices much more economically than other, more
complex solutions which try to separate these functions across
multiple microprocessor and controller chips.

Only a single 3.3VDC is required to run the entire system,

78	 Low-Cost Web Servers / Geist Technology

Finch: Low Cost

making the power-supply design much simpler and easier
compared to other designs which require multiple I/O and CPU-
core voltages.

Since the Finch core consists of only three chips, all of which
are available in standard SOIC and QFP sized packages, a Finch-
based design can easily be constructed on relatively inexpensive
two- and four-layer boards. More complex designs typically use
BGA (ball-grid array) parts, which almost always demand the use
of more expensive six- or eight-layer boards with extremely tight
manufacturing tolerances.

Power-over-Ethernet

	 Since the Finch architecture has relatively low power
requirements, Finch-based devices are a natural fit for power-over-
Ethernet (PoE) applications. This capability can easily be added
to the Finch simply by using an Ethernet jack with the appropriate
magnetics for separating power and data, and the addition of a few
readily available support components to derive the appropriate
supply voltages from the PoE-supplied 48VDC line voltage.

If the Finch-based device is to provide connections for other
external devices or add-ons, note that it is important to use a DC-
DC converter with full isolation between input and output to
avoid accidental cross-connection of positive- and negative-ground
circuitry.

Easy Add-on to Existing Devices

The Finch web server allows easy web implementation of data
from existing electronic devices. The user needs only to supply
the Finch with space-delimited serial data. Many existing serial
interfaces can supply this data without major modifications. Upon
a web page request, the Finch uses the latest data received from the
device and converts it to HTML and XML code. (See sample web
page on next page.)

The Finch is completely self-contained. All the software

Low-Cost Web Server / Geist Technology 79

Finch: Low Cost

is factory shipped and resides in Flash memory. The web page
software can easily be customized to show logos and other brand
information.

The printed circuit board can be ordered in custom sizes upon
request and properly sized sheet metal or plastic housings are also
available on request.

Specifications

Power: 3.3 VDC, 150 ma (separate power supply required)

Connector: RJ-45

Ethernet: 10Mbps, full duplex

Protocols: 	 HTML Web Page

		 XML: Meta tagged

		 SNMP: MIB stored in memory

Configuration: IP address, Gateway, Network mask

Dimensions: 1.7” x 1.8” x 0.6”

A Finch installed inside power strip produces this web page. the numbers
show the amps drawn by each receptacle. The Finch can also measure

voltage, power factor, and watts. All these values are computed using the
RMS (Root Mean Square) method.

80	 Low-Cost Web Servers / Geist Technology

Finch: Low Cost

Indicators (LED): Link and Data lights on receptacle.

Data String Format Example

In the example below, the Finch is receiving data from a power
meter with an eight channel output. Data is sent every second with
each channel sending three integer values in the format shown
below. The asterisk is replaced with the number of the channel [1-
8]. See the illustration on the opposite page for the resulting web
page display.

CT*[1-8]<space><space>[0-9][0-9].[0-9]A;

Other data formats can be used.

Data Collector (Console) Software

Where multiple Finches are used, the Geist Console, a
software program, can collect, graph and log the data from a group
of Finches. The resulting consolidated information can be viewed
from a single web page. Operation is simple, the user only needs to
key in the IP address and logging begins. Console documentation
is available by request.

Gary Akins - Engineering Support

Low-Cost Web Server / Geist Technology 81

Finch: Low Cost

O w l : H i g h
P e r f o r m a n c e

W e b S e r v e r

$32 US in Components

The Owl Cube

Operating System

Flexible I/O Structure

ARM 7 Processor

Low-Cost Web Server / Geist Technology 83

Owl: Powerful

84	 Low-Cost Web Servers / Geist Technology

Owl: Powerful

Owl - Lots of Power, Many Features

Like its smaller cousin the Finch, the Owl architecture is
designed to allow a single compact module to act both as a general
micro-controller and as an Ethernet/web-server interface in a wide
variety of embedded-processor applications. The Owl is powerful

enough to perform encryption plus other user-friendly functions
such as graphing.

The Owl offers a much richer feature set than the Finch,
thanks to a powerful 32-bit ARM 7 processor that makes it possible
to support more complex internet protocols (including SSL
encryption) and to perform more complex control tasks with larger
amounts of data.

This power makes it a good choice for demanding
applications such as multi-station environmental monitoring,

The Owl Cube: a complete, plug in, web server based on the Owl
processor. This stacked, two printed circuit board assembly method
reduces the area needed for the more expensive eight-layer printed

circuit board. The assembly mounts to a printed circuit board with a
miniature 18 pin connector.

Low-Cost Web Server / Geist Technology 85

Owl: Powerful

Owl - High Performance Web Server Components and Costs

MagJack

MAC/PHY
Part number?

ARM Processor
LPC2220

Voltage
Regulator
3.3 vdc

$2

$3

$2
PSRAM
Volatile Data
Memory

Flash Memory
Non-volatile
Code/Web pages

Real-time
Clock

Capacitor
Serial Data Input

and Output

$2
$2

$2$2

The Owl’s architecture accommdates small and large memory
requirements. The ARM processor has a wide variety of I/O options

(serial is the only type shown in the drawing).

86	 Low-Cost Web Servers / Geist Technology

Owl: Powerful

building-wide security systems, point-of-sale terminals, scientific
equipment, and industrial control systems.

The stock Owl architecture offers the following features:
• ARM 7 microprocessor running at 70MHz
• 64Kb of static RAM (internal to the CPU�)
• 4Mb of pseudostatic RAM1

• 16Mb of Flash memory for application code1

• Realtime Clock with independent backup power
• 16C550-compatible USART for serial communications with

external devices

1The actual amount of memory available for user applications will vary
depending on which OWL O/S and device-support libraries are compiled into the
application code.

Owl Plug-In Webserver Top View

ARM Processor

RAM Memory Flash Memory

Firmware Loading Jack
Power Regulator

This cube-shaped Owl web server has the principal integrated circuits
mounted on the top circuit board. This footprint permits the Owl Cube to
be added to existing electronic products without taking additional space.

Low-Cost Web Server / Geist Technology 87

Owl: Powerful

The principal component on the bottom of the Owl Cube is the 18 pin connector
which permits transfer of power and data to and from the Cube.

• 5 general-purpose, 5V-tolerant I/O pins
• High-speed SPI port�

• Integrated Ethernet jack with built-in isolation magnetics
and optional Power-over-Ethernet support�

• JTAG port for programming and debugging /
diagnostics

• Realtime operating system (RTOS) and TCP/IP network
stack, plus support libraries

•single-supply (3.3VDC) operation

2this requires dedicating some of the GPIO pins to the SPI signals, thereby
reducing the number of GPIOs available for other uses. However, if the USART is
not required, its pins may be reassigned as GPIO pins.

3implementing Power-over-Ethernet (PoE) support requires additional
support circuitry in the form of a PoE Controller/Regulator. This is not included
in the standard Owl design, but can be added to a customer’s design, for a modest
additional cost, if required.

Owl Cube Plug-In Web Server Components - Bottom View

18 Pin Jack (to other circuits)

Ethernet Receptacle

88	 Low-Cost Web Servers / Geist Technology

Owl: Powerful

Owl: Big Processing Power in a Tiny Package

The core of the OWL architecture is a Philips ARM7
microprocessor, surrounded by a number of inexpensive yet
powerful support components packed into a small space. External
PSRAM and Flash memory chips allow for flexible memory
configurations, while the Microchip ENC28J60 Stand-Alone
Ethernet Controller (the same chip used in the Finch) provides an
Ethernet interface to the outside world with a minimum of external
components. An external realtime clock chip with its own backup-
power source, keeps accurate time even during system shutdowns.

The ARM/Philips Microcomputer (ARM7TDMI-S)

	 The LPC2220 microcontroller is based on a 16/32-bit
ARM7TDMI-S CPU core. Internally, it offers multiple 32-bit
timers and external-event counters, an 8-channel 10-bit ADC, PWM
channels, external interrupt pins, a Vectored Interrupt Controller
(VIC) with configurable priorities and vector addresses, a fast I2C

The soul of a little machine. This sub-dime sized part costs about $2 US
and executes instructions at 70 million times per second. The core is
designed by the Advanced RISC Machine Consortium and is used by

many integrated circuit manufacturers. This particular chip is made by
Philips Semiconductor. If Philips stop making this model, there are other

manufacturers to replace it without draconian software rewrites. We
avoid proprietary chip designs.

Low-Cost Web Server / Geist Technology 89

Owl: Powerful

(400 kbit/sec) interface, multiple power-saving modes, 5V-tolerant
I/O pins, and an internal watchdog timer to reboot the CPU in case
of a software crash or system lock-up.

For critical code-size applications, an alternative 16-bit
Thumb mode can reduce code by more than 30% with minimal
performance penalty. (Note that not all of these features may
be available simultaneously; some combinations of features will
depend on the hardware configuration required for a particular
application.)

32Mbit PseudoStatic RAM (PSRAM)

	 This high-speed CMOS PSRAM combines the best features
of static (SRAM) and dynamic (DRAM) memories. By combining a
DRAM memory matrix with an internal controller and self-refresh
circuitry we avoid the need for an external memory controller.
A burst-mode Flash-style interface increases throughput and
allows it to coexist on a Flash memory bus. The stock Owl design
uses a 32Mbit PSRAM chip, organized as 2Mb x 16, but other
configurations are possible depending on the user’s application
requirements and desired cost.

Flash Memory (128Mbit)

	 The stock Owl design offers plenty of space for both
operating system and user applications with a 128Mbit page-mode
Flash memory, organized as 8Mb x 16. For applications which
don’t require such a large amount of code space, cost-reductions
are possible by using a smaller 64Mbit or 32Mbit part. Conversely,
for more demanding applications, larger amounts of Flash or
PSRAM memory are also possible.

Stand-Alone Ethernet Controller (ENC28J60)

Introduced in 2006 as a companion support chip for the PIC
microcontroller family, Microchip has packed an amazing amount
of power into a tiny package. This chip provides both an IEEE
802.3-compliant Medium Access Control (MAC) layer, accessible

90	 Low-Cost Web Servers / Geist Technology

Owl: Powerful

to the host controller via an industry-standard SPI serial interface,
and a built-in Physical (PHY) layer capable of directly driving the
appropriate pulse-transformer magnetics without any additional
external drive circuitry required.

The controller also provides a 6.25MHz clock output that can
be used to drive the PIC microcontroller, helping to further reduce
the system cost by eliminating the need for a second crystal to run
the PIC.

Realtime Clock (DS1340U)

In order to keep power consumption to a minimum, the Owl
architecture employs a separate, ultra-low-power, realtime clock
chip rather than using the ARM 7 CPU’s onboard realtime clock.
Able to operate on as little as 100uA, with a typical accuracy of
+/- 15ppm, this chip allows the Owl to maintain accurate time
even while the rest of the system is inactive. In the stock Owl
configuration, backup power is provided by an aerogel “super-
capacitor” which can sustain the clock for approximately two
weeks. If longer power-down times are required, a larger capacitor
can be used; alternatively, a NiCd or lithium battery can also be
employed for backup power with minor modifications to the
software that controls the onboard charging circuitry.

Extensive I/O Capabilities

The LPC2220 offers a broad array of I/O capabilities, thanks to
its sophisticated set of internal peripherals. The inclusion of a true
realtime operating system (RTOS) in the Owl architecture makes it
relatively easy to put these devices to work while still maintaining
an acceptable degree of system responsiveness to the internet-based
user interfaces. Among the available I/O features are:

• Up to 45 general-purpose, 5V-tolerant I/O pins which can be
connected to switches, relays, or other digital on/off devices

• One 10-bit A/D converter with up to 8 available input
channels

Low-Cost Web Server / Geist Technology 91

Owl: Powerful

Owl components are small - here they are integrated into server room
climate monitor called a MicroGoose. The monitor contains an on-board

temperature and humidity sensor. Power is supplied by a wall plug
transformer. The overall size of this printed circuit board is about 1.5”

x 3.” All the components are present. The user simply plugs in the wall
transformer and an Ethernet cable to begin monitoring the climate.

Owl Product Example: Climate Monitor (MicroGoose)

Power
Regulator

ARM 7
Processor

Flash
Memory
(Code)

RAM
Memory

Sensor
Processor

Data
Flash-
Memory

Temperature and
Humidity Sensor

Ethernet
Connector
with Internal
Memory

92	 Low-Cost Web Servers / Geist Technology

Owl: Powerful

• Up to two 16C550-compatible USARTs for asynchronous
serial communication with existing data-acquisition systems,
desktop PCs, “dumb” serial terminals, etc.

• Hardware-driven PWM output with up to six output
channels, suitable for motor-speed control, heating-element
temperature regulation, and other such applications

• 400 kbit/sec I2C interface

• SPI port (clocked at 8.75MHz) for use with serial EEPROMs
or other SPI-based devices

• JTAG port for in-system programming and diagnostics

	 Note that not all of these features can be available
simultaneously because some of them share I/O pins with each
other; however, with the appropriate programming and judicious
selection of features, many combinations are possible to suit a wide
variety of potential applications.

Compact, Inexpensive, and Easy-to-Use

The standard Owl device, including the Ethernet jack and
capacitor backup for the RTC (realtime clock), occupies a space
about the size of an ice cube.

Variations designed for specific applications can often be
made to fit a customer-specified shape and size as required. If
the objective is to replace an existing module with an Owl-based
substitute, even the pinouts can be made to match an existing
specification.

The Owl is built from easily-available commodity parts; the
design contains no expensive custom silicon, and long lead-time
parts have been avoided wherever possible. The Owl operates from
a single 3.3V power supply, with no need for separate “core” and/
or “I/O” voltages.

All of the external I/O lines are 5V-tolerant, simplifying the
task of interfacing to existing TTL and CMOS-based circuit designs.

Low-Cost Web Server / Geist Technology 93

Owl: Powerful

Realtime Clock (RTC)

The Owl system uses current time and date (a.k.a., “real time”) in
several ways:

•	 System event logging (such as tripped alarm
conditions)

•	 Data point collection
•	 Graphing logged historical data
•	 Any network communication
•	 E-mails are time stamped
•	 Current local time, day and date are displayed on

the user interface web pages
The Owl is equipped with a realtime clock (RTC) that is

separate from the central processor so it can be sustained by a
backup power source during any power interruptions to the unit.
The Owl’s backup power source maintains the RTC’s date and
time registers and keep the oscillator circuit powered for up to
two weeks. When system power is restored, the accurate time and
date are available immediately without having to be reset. If the
power outage is too long for the backup power to sustain the RTC,
this condition is detected on system startup and the invalid RTC
timestamp is not used until it has been successfully reset - either
manually (via a user interface web page) or automatically by the
Owl software accessing a Simple Network Time Protocol (SNTP)
server, assuming one is available.

Many SNTP servers are accessible on the Internet. For
example, the Owl’s default primary and secondary SNTP servers
are the US Navy’s servers:

tick.usno.navy.mil (192.5.41.40)

tock.usno.navy.mil (192.5.41.41)

Hundreds of well known SNTP servers are maintained by
universities, government agencies, commercial companies, non-
profit organizations, etc. If an Owl is on a LAN that does not

94	 Low-Cost Web Servers / Geist Technology

Owl: Powerful

allow access to the Internet, a private SNTP server can be set up to
serve the LAN. Software to have a PC serve this function is readily
available.

Alternately, the time and date can be set manually by a user
through a web page. This web page allows the user to do the
following:

•	Select between manual mode and automatic mode
(i.e., accessing a SNTP server)

•	Specify the time and date if manual mode is
selected

•	Specify primary and secondary SNTP servers to
use if automatic mode is selected

•	Specify the offset between local time and

Knowing the current time allows the embedded system’s software to add
accurate time stamps to functions like logging, graphing and e-mail alerts.
The alternative is using an Internet-based time source but this method has
drawbacks when the network connection is lost temporarily and the time is

not available.

Low-Cost Web Server / Geist Technology 95

Owl: Powerful

Greenwich Mean Time (GMT; a.k.a., Coordinated
Universal Time – UTC)

•	Set the frequency with which the Owl will
synchronize to a SNTP server

When the Owl is in automatic mode, it contacts an SNTP
server on system startup and at subsequent time intervals set by
the user, to synchronize the RTC with the time and date provided
by the SNTP server. This frequency is typically daily or weekly. The
actual elapsed time of the SNTP packet round trip transmission on
the network is incorporated into the RTC synchronization software
to obtain accuracy well within the one second resolution provided
by the RTC.

The Owl’s RTC chip is a Dallas Semiconductor DS1340 that
interfaces to the central processor serially via an I2C bidirectional
bus. The backup power to the clock chip is provided by a super
capacitor connected to the chip’s secondary power supply pin.

The Owl system software configures the clock chip to control
the trickle charging of the super capacitor. The DS1340 has a
Trickle-Charger Register allowing the Owl software to enable a
trickle charge and select resistors in the DS1340 to limit current
level on the Secondary Power Supply pin, which controls the
capacitor charge rate. On system power up, the Owl sets the
DS1340 to charge the capacitor at a low current, slow rate. This
protects the capacitor in the event that it was discharged to a very
low level during power outage.

After a short time period, 90 seconds, when the capacitor
is sufficiently charged to safely accept a higher current, the Owl
software sets the Trickle-Charger Register to charge at a higher rate
for ten minutes to rapidly bring the capacitor to a fully charged, or
near fully charged, state. Then, the Owl software sets the Trickle-
Charger Register to select a low current level to top it off and
keep the capacitor in a fully charged state. If the power supply
to the DS1340’s Vcc pin falls below a given threshold, the DS1340

96	 Low-Cost Web Servers / Geist Technology

Owl: Powerful

automatically switches from Vcc to the Secondary Power Supply
pin connected to the super capacitor to maintain the data registers
and keep the oscillator going.

Charlie Mayne - Software Developer

Backup Power: Battery vs. “Super-Capacitor”

	 Until recently, nearly all devices which needed to keep
certain sections, such as memory or realtime clocks, continuously
“live” and operational even when main power was removed from
the system, have used some type of battery source.

In recent years, however, so-called “super-capacitors”
have become increasingly viable for such applications; by
using a carbon aerogel as their dielectric, super-capacitors (or
“SuperCaps”) can have plates and dielectric separators with
astonishingly high surface areas for their size, allowing super-
capacitors to achieve very high capacitances and hold sufficient
amounts of charge to make them a viable substitute for batteries in
low-current applications.

Realtime Clock - Battery Powered

Super
Capacitor

Realtime
Clock

DS1340

Owl
Processor

ARM LPC2220

A clock is particularly useful in embedded applications. Logging,
e-mails, and scheduled events depend on knowing what time it is.

Network time servers can supply a time but this actual time can be
lost if the network connection goes down.

Low-Cost Web Server / Geist Technology 97

Owl: Powerful

	 Which choice is best depends, of course, on the particular
application. In the case of the Owl’s realtime clock, the current
draw of the clock circuitry is extremely low when in standby/
power-down mode, so even a relatively small (0.2F) SuperCap can
keep the clock running for several weeks. Of course, a lithium-cell
battery could potentially run the chip for much longer than that,
but a SuperCap is the better choice primarily for two reasons:

1. Easy Rechargeability: Unlike a NiCd cell (a common
choice for such applications), SuperCaps can be recharged almost
indefinitely, and do not exhibit any of the “memory effect” issues
commonly associated with such cells that are repeatedly recharged
without first being fully discharged first. This allows SuperCaps to
be continuously trickle-charged to maintain a fully-charged state,
while the system is running on main power.

2. Long-term Viability: Batteries tend to self-discharge over
time, even when no current is being drawn from them, raising the
possibility that if a device were to be in continuous operation for
months or years, the battery could self-discharge to the point that
it would no longer be able to run the clock when a power failure
occurs. A lithium “coin cell”, for example, can self-discharge to
unusability in as little as 18 months.

	 While neither of these problems are insurmountable, they
would have increased the complexity of the design. Since the
consequences of eventually losing power to the realtime clock are
relatively low (for most of the applications we had in mind, if the
users’ installations loses power for several weeks, he has far more
serious problems to worry about than whether or not the clock
was keeping the right time!) The SuperCap is definately the most
obvious and best choice.

Gary Akins - Engineering Support

W e b D a t a
Tr a n s f e r
M e t h o d s

HTTP Data Transfer

Data Handshaking

Static HTML Pages

Dynamic Pages

Low-Cost Web Server / Geist Technology 99

HTML & HTTP

100	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

HTTP Server

Web enabling your product allows users to interact with it
from anywhere using an ordinary web browser. To make this a
reality requires a web server small enough to embed inside your
product. This chapter describes our small embedded web server.

Note that a web server is also referred to as an HTTP server
because the information exchanged between client (the browser)
and server is defined by the HyperText Transfer Protocol (HTTP).
The full specification of HTTP can be found in RFC2616 but this
chapter explains the aspects relevant to understanding the server
implementation. HTTP is considered to an application layer
protocol meaning it relies on other lower level protocols such as
TCP, IP and Ethernet that are described elsewhere.

In this chapter we first describe the messages that are
exchanged between the user’s web browser and the embedded
server. We will start with describing the simplest case which is a
request for a pre-defined set of data and build towards complex
pages containing dynamic data and forms that allow users to enter
data. Building on this background, we describe the architecture
of the embedded web server and explain how it works. The goal
is to enable you to define your own web pages that display data
generated by generated by your product and control its operation.

A Simple Request

When you type this

http://192.168.123.123/dyn_help.htm

into the address bar of your browser and press enter, the browser
to establishes a TCP connection to the embedded server at IP
address 192.168.123.123 on port 80. Port 80 is the default port
where the web server listens for incoming requests.

The web browser and the embedded web server then
exchange some information in the form of lines of text. This

Low-Cost Web Server / Geist Technology 101

HTML & HTTP

Figure : Browser – Server communication for first retrieval of a static page which
is then cached by the browser. Subsequent request asks if page has been modified
since the first retrieval, if no newer page exists in the server, the server returns

code 304, and the browser uses the cached image.

TIME

Embedded Web Server
192.168.123.123PC

User types

23/mypage.htm
into their browser

GET /mypage.htm HTTP/1.1
…

User’s
browser
renders the
page
described by
the HTML
code
received in
the response.

HTTP/1.0 200 OK
Date: Fri, 05 Oct 2007 22:11:49 GMT
Server: ITW Embedded Web Server
(v1.0.12)
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC … >
<html>
…
</html>

Server
generates
the HTML
describing
the page.

1. Browser request and server response for a basic HTML page.

102	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

communication between the web browser and the webserver
can be captured and displayed by means of an HTTP debugging
proxy such as Microsoft’s Fiddler. Fiddler is a very useful tool for
revealing how the browser and server interact with each other.

Figure 1 illustrates the interaction between the user’s web
browser and the embedded server when a basic web page is
requested.

For the sake of brevity and clarity, some of the lines of text
exchanged between the browser and the embedded server have
been removed from Figure 1. These are indicated by the ellipses
(…). The content of these omitted lines are not important for our
understanding of the basic operation.

Each line of text ends with the carriage return and line feed
characters. Lines may be of any length, but our web server rejects
requests containing lines exceeding a limit set by the #define MAX_
LINE_LENGTH. This prevents buffer overflow errors which are
potential security vulnerabilities.

The general format of the information in both directions is
similar and can be divided into three parts. The first line sent from
the browser to the server is known as the Request Line, in the
opposite direction the first line is known as the Response Line.
The first line is followed by a series of lines each beginning with
an identifier that ends with a colon (:). These lines are known as
headers and they are used to convey certain information between
browser and server. These will come into play later when we
discuss more complicated interactions between browser and server.
A blank line marks the end of the headers and, in our simple case,
the end of the request. Requests using the POST method will have
data following the blank line; this will be discussed in more detail
later.

The Request Line has three fields; these define the method, the
path and the revision of HTTP. The method field may be “GET”,
“HEAD” or “POST”. The RFC defines some additional methods

Low-Cost Web Server / Geist Technology 103

HTML & HTTP

but these are not commonly used and are not supported by our
webserver.

The GET method is used to request a web page. It can also
be used to submit data to the webserver. POST is an alternative
method for submitting data to the server. Submitting data to the
web server, for example when the user fills out a form, will be
discussed in more detail later. HEAD is used when it is desired to
retrieve only the header portion of the response.

The path field of the request line is of key importance in
locating the page. The path is the portion of the URL (“the web
address”) from the first slash (‘/’) to the end. The path is used by
the web server to identify which page is being requested and this
determines how it goes about generating the content that will be
returned. We will describe the more complicated ways the content
can be generated later. For now we consider the simplest case is
where the path corresponds to a file name in the flash file system.
The content of the file will be the returned as the body of the
response.

The first line of the response contains three fields: the name/
version of the protocol being used; a numeric return code, and a
human readable status string.

The code 200, “OK”, means the request was processed
successfully, therefore you don’t normally see this in your web
browser. On occasion you probably have seen code 404, “Not
Found”. Other return codes are used to cause the browser to take
certain actions, and are explained in subsequent sections.

The response contains header lines between the first line of the
response and a blank line.

In our simple scenario the Content-Type header provides
information to the browser that determines how the data content
should be rendered. The value text/html will result in the content
being interpreted as HTML code and any HTML tags that, for
example, define the appearance or layout of the text will take

104	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

effect. The value text/plain will result in the content being rendered
simply as text; any HTML tags will not have their intended effect.
GIF images may be identified by the value image/gif.

In later scenarios, the purpose of other headers sent by the
server will be explained.

After the blank line comes the body of the response. In Figure
1 this is shown as an HTML document, but it could be plain text or
the data defining an image.

Speeding Things Up

As was explained in the previous section, a request might
reference a static page which is a page whose content does not
change from one request to the next. For example, pages that are
just files stored in the flash file system don’t change unless we
upload a new flash file system image. Static pages might be such
things as a Cascading Style Sheet or images, such as a corporate
logo or a background that are referenced by multiple HTML pages.

For static pages the server’s response includes the Content-
Length header which provides the browser with the number of
bytes returned in the body of the response. This is easily provided
for static pages because it is the size of the corresponding file in the
flash file system.

We can gain a significant performance improvement by
caching static pages in the browser. Figure 2 illustrates how this is
done.

At the top of Figure 2, the web browser is requesting the page
for the first time and the server responds by transmitting the entire
page. This is essentially the same we discussed previously, except
that because the server knows this is a static page, it includes the
header Last-Modified. This header contains a timestamp that the
browser will store along with the page in its cache.

The next time the browser needs the page, it checks its cache
for a copy and uses the header If-Modified-Since to send the stored

Low-Cost Web Server / Geist Technology 105

HTML & HTTP

Browser request and server response for a static page which is then
cached by the browser. Subsequent requests ask if the browser has a

version of the page that is newer than that stored in the browser cache.

Embedded Web Server
192.168.123.123PC

2. Browser request and server response for a static page.

Users
browser
requests an
image that
happens to be
a static page

GET /image.gif HTTP/1.1 Server
returns the
image,
which may
be a large
amount of
data. Server
includes the
header
Last-
Modifed.

HTTP/1.0 200 OK
Date: Fri, 05 Oct 2007 22:12:45 GMT
Server: ITW Embedded Web Server
(v1.0.12)
Connection: close
Content-Type: image/gif
Content-Length: 1047
Last-Modified: Fri, 28 Sep 2007
11:00:42 -0500

{contents of static file here, could be
huge}

Browser stores the
image and the
timestamp obtained
from the
Last-Modified
header.

The server
determines
that the time
stamp on the
file in the
server’s file
system is
not more
recent than
the
timestamp
in the
If-modified-
Since
header, so it
returns 304.
This saves
time by not
transmitting
the huge file.

HTTP/1.0 304 Not Modified
Date: Fri, 05 Oct 2007 22:17:48 GMT
Server: ITW Embedded Web Server
(v1.0.12)
Connection: close

A subsequent
request from the
user’s browser
requests the image
and uses the
If-Modified-Since
header to send
back the

Browser sees the
304 response
and uses the
image in its
cache.

GET /image.gif HTTP/1.1
…
If-Modified-Since: Fri, 28 Sep 2007
11:00:42 -0500
…

TIME

106	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

timestamp back to the server. When the server gets the request,
it compares the time stamp it received to the timestamp on the
file it currently has. If the timestamp on the file is not more recent
than that it received from the browser, it knows that the browser
is already in possession of an up-to-date copy of the page. It then
sends back the response 304, “Not Modified”.

This response is very short just consisting of the status line
and header lines with no body. This is much more efficient than
resending the entire file.

Configuring Your Device

Almost every web-enabled device has some user configurable
settings; these can be presented to your user as a web form
displaying the current settings and allowing the user to submit new
settings by clicking a button in the form. There are two possible
methods that can be used to deliver the information to the server.
You decide which method to use when you write the HTML code
that defines the form.

GET is one method that can be used. When the user clicks the
submit button, a request is sent to the web server just as in Figure 1.
The URL used is the form page URL with a question mark and the
encoded form data appended to it. The appended data looks like
this:

name1=value1&name2=value2& ….. &nameN=valueN

The names correspond to names assigned in the HTML
code to particular controls on the page. The values are what the
user entered. The names and the values are “URL encoded” by
the browser which converts certain reserved characters to a form
that can be transmitted without ambiguity. For example a ‘+’ is
converted a ‘%’ followed by the two digit hexadecimal ASCII value
of the character. Any spaces are converted to ‘+’.

The result of submitting data using GET is that the first line of
the request will contain the submitted names and values as part of
the path field.

Low-Cost Web Server / Geist Technology 107

HTML & HTTP

Browser request and server response to POSTing data to a web based
form showing POST-redirect-GET.

Embedded Web Server
192.168.123.123PC

TIME

User
requests a
page
containing a
form.

GET /dyn_config.htm
HTTP/1.1

Server
generates
HTML
describing
the form
and the
current data
values.

HTTP/1.0 200 OK
Date: Mon, 08 Oct 2007 15:51:02 GMT
Server: ITW Embedded Web Server
(v1.0.12)
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01
Transitional//EN" >
<html>

Broswer
displays the
form.

POST /dyn_config.htm HTTP/1.1
…
Referer:
http://192.168.123.123/dyn_config.ht
m
Content-Type: application/x-www-
form-urlencoded
Content-Length: 37

gen_unitname=Unit-
name&gen_tempunit=0

User fills out
the form and
clicks a submit
button within
the form.

The request
body contains
the urlencode
names of the
form fields
and data
values.

The server
processes
the
submitted
data and
responds
with a
redirect to
the URL
given in the
Referer
header.

HTTP/1.0 303 See Other
Date: Mon, 08 Oct 2007 15:52:27 GMT
Server: ITW Embedded Web Server
(v1.0.12)
Connection: close
Content-Type: text/html
Location:
http://192.168.123.123/dyn_config.htm

In response
to the
redirect, the
browser now
uses GET to
request the
page
specified by
the Location
header.

GET /dyn_config.htm HTTP/1.1
…

Server
generates
HTML
describing the
form and the
current data
values.

HTTP/1.0 200 OK
Date: Mon, 08 Oct 2007 15:51:02 GMT
Server: ITW Embedded Web Server
(v1.0.12)
Connection: close
Content-Type: text/html

<!DOCTYPE html PUBLIC
"-//W3C//DTD HTML 4.01
Transitional//EN" >
<html>
…

Browser
displays the
page. If the
user were to
click the
refresh
button, the
GET would
be redone
rather than
the
resubmitting
the POST.

3. Browser request and server response to POSTing data

108	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

POST is the other method that can be used to submit form
data. POST submits the name-values pairs in the body of the
request (following the blank line terminating the headers). This
is preferred for large amounts of data as the long string of name-
value pairs does not appear in the browser address bar as it does if
GET is used.

There is an issue that arises when POST is used. The issue is
that if the user clicks their browser refresh button after submitting
the form, they are unwittingly sending the POST request a second
time. Many browsers warn the user by popping up a message box
asking if they are sure they want to do this. This is annoying. The
way around this is to use a strategy known as POST-redirect-GET
that is shown in Figure 3. This involves some new headers and
response codes.

 The top of the diagram shows the user requesting and
receiving the web form. This occurs as we described earlier.

Next, after filling the form data, the user clicks the submit
button on the form. This results in the browser sending a POST
request to the server. The data that was entered is sent in the
request body. Note that the browser includes the header Referer
(yes, this is the spelling that is specified by the RFC and is
necessary for it to work) which provides the URL of the form.

The server responds with a code 303, “See Other” and it
includes the header Location which contains the URL that was
provided by the Referer line in POST request.

When the browser sees the code 303, it uses GET to load the
page at the URL provided. Since this is the URL of the form, what
the user sees is the same form. The result is that if they click the
refresh button, they are reloading the form via the last GET rather
than resubmitting the POST. The annoying warning pop-up will
not appear.

Another thing to keep in mind about forms is that they are
an example of what we call a dynamic page. A dynamic page

Low-Cost Web Server / Geist Technology 109

HTML & HTTP

contains variables whose values are substituted in at the time the
server sends the HTML code to the browser. The relevance of this
for forms is that this mechanism allows us to display the current
values of the settings in the form. After the user submits changes,
the POST-redirect-GET scheme puts a fresh copy of the form with
the current settings inserted in it. This provides some feedback to
the user that the submitted changes were accepted. If they were
not accepted the fresh copy of the form can contain error messages
pointing out which fields need correction.

More About the Response Body

For a static page the response body consists of the contents of
the flash file system file corresponding to the URL.

Dynamic web pages contain content, for example a
temperature reading, that may change each time the user loads the
page into their browser. Such pages are not cached by the browser
so that the information presented is always up to date.

For a dynamic page the webserver creates the HTML code
in the response body by executing a write_content function
corresponding to the URL. The write_content function is C code
that extends and customizes the webserver for your application.
Writing this C code directly is tedious and error prone, so we have
created a system that allows developing each dynamic web page
as a file containing HTML code. These files are then all processed
by our pagecompiler.pl script, which creates the required C source
code for the write_content functions for each page.

Our pagecompiler also supports special tags we defined
which cause substitution of data values to take place when function
write_content function is executed. This enables pages to display
values that are generated dynamically inside your product.

Webserver Architecture

Now that we have explained the information exchanged
between the user’s web browser and the web server embedded in

110	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

your product, the necessary background is in place to delve into
how the webserver is structured and how it works.

At the top level, the code module http_test.c contains a
continuously running task that accepts incoming TCP socket
connections and passes the socket to the function that implements
the generic processing of the webserver. That function is called
ws_process_request and is located in webserver.c.

Note that http_test could be structured to implement a multi-
threaded web server that handles multiple requests simultaneously.
To do so, http_test would have to create a new OS task for each
connection accepted and the socket connection would be handled
off to that task. The new task would be responsible for calling ws_
process_request and passing it the socket. The code in ws_process_
request and all related functions are implemented in a thread safe
manner.

The function ws_process_request reads the various lines of
the HTTP request that were described in a previous section and
as it does so fills in a data structure called request. The request
data structure keeps track of the method, the path portion of the
URL, the names and values of any data the user entered in the
fields of a form, among other things. This data can be efficiently
communicated to other functions by passing the address of the
request structure (a pointer) to the other functions.

The request data structure and other buffers used to process
the request are automatic variables allocated on the stack when
function ws_process_request is called. This provides for a thread
safe design. Any necessary processing of the data in these variables
is done in place to reduce memory usage and enhance performance
by eliminating unnecessary copying of data. For example, data
submitted in a form is enters the webserver in encoded form where
all the name value pairs are concatenated into a long string in the
buffer. The decoding process null terminates each individual string
in the buffer and sets up pointer variables to the individual strings.

Low-Cost Web Server / Geist Technology 111

HTML & HTTP

The actual mechanics generating the response to a request
for a particular webpage is handled by C modules we call page
handlers. Page handlers consist of a standard set of functions and
a data structure consisting of pointers to those functions. The
webserver can support multiple page handlers, each responsible
for generating the response to request for a particular type of page.

The webserver identifies the appropriate page handler for
the requested page by stepping through its set of page handlers
and calling the function is_page_handler within each handler. The
function is_page_handler examines the path portion of the URL
and returns true if the handler is the one assigned to respond to
that request. This process continues until the webserver receives
an affirmative (true) response or there are no more handlers to
try. If after searching the entire set of handlers none of them have
identified themselves as capable of handling the request, a code
404, “Not Found” is returned to the browser.

Another function that the handler must provide is write_
mime_headers, whose purpose to to return the part of the response
header that is particular to the type of request the handler is
designed to handle. For example, requests for static pages generate
responses that include the headers Content-Type, Content-Length
and Last-Modified. Since the path for a static page corresponds to
a file in the flash file system of the server, the header information is
readily obtained from the file system and included in the response.

For dynamic pages the portion of the response header
generated by write_mime_headers is typically just Content-Type:
text/html.

Various other functions provided by a page handler are used
by the webserver to determine what kind of processing needs to be
done to generate the response. Among these additional functions
are is_static which returns 1 if the page is a static page, i.e. one that
can be cached and reused by the browser. The function redirected
returns 1 if the page contains a form and the request used the POST

112	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

method. In such a case the POST-redirect-GET response sequence
is used. See Figure 3. The function parse_postdata returns 1 if the
request method was a POST and the page is one that contained a
form, in such a case the webserver must decode and process the
form response data contained in the body of the request.

The key function contained in all page handler modules is
write_content. The write_content function in a handler for static
pages simply opens the file in the flash file system identified by the
path portion of the URL, and writes the data in the file to the TCP
socket.

In the case of a dynamic page, write_content function contains
statements that write out the HTML code that defines the web
page that the user will see. Typically, the HTML code is broken into
pieces output by different tcp_sock_write statements. The write_
content function may contain code that algorithmically generates
the HTML code. In the next section, we will explain how to create
the write content functions for your own web pages.

Defining a New Web Page

Creating the write_content function directly in C language
is tedious and error prone because the relationships between the
pieces of HTML code tend to get lost in the structure of the C-code.
This is problematic on a number of levels but it presents particular
difficultly with ensuring that the various HTML tags are all
matched with their proper closing tags.

To avoid these difficulties, we have created a system that
allows you to define each web page as a separate file containing
HTML code, possibly with some additional markup tags we will
describe shortly. The names of these files should end with a .wc
extension. The HTML code can reference other static pages such as
a style sheet or an image by using standard HTML link or img tags
that include the file name where the static page is found in the flash
file system. Details on how to use HTML and CSS to define a web
page are provided in another chapter.

Low-Cost Web Server / Geist Technology 113

HTML & HTTP

By running the following command:

perl pagecompiler.pl *.wc

a C-source file will be automatically generated from each .wc
file. Note that you must process all .wc files at once because some
may have dependencies on others. Each C-source file contains
one function that will send the HTML stream for a web page
when called by the write_content function of the webserver. The
path portion of the request identifies the specific page the user
requested and is used in write_content to determine which of the
functions to call.

In addition to the .c files created for each web page, the
pagecompiler also creates the a file dyn_pages.h that declares
all the generated functions defined in all the .c files, and a file
dyn_pages.c that includes all the .c files. This makes it possible for
the makefile used to build the system to only name dyn_pages.
c and for the parts of the code that call the generated functions to
just include dyn_pages.h. This eliminates the need to change the
makefile when adding or removing web pages.

Dynamic Content

But standard HTML is not enough to support creating
dynamic webpages, pages that have content that is not known until
the time the user accesses the webpage. Examples of such content
would be the current value of a sensor reading or the current
setting of a user configurable option. Such values must be obtained
from other parts of the product’s software, by calls to functions
outside the webserver code.

To support dynamic content, we have created a set of tags
that extend HTML and define a standard programming interface
to the rest of code. For example, if you want the title of the page to
be obtained from elsewhere in your code, you use the <?= … ?> tag
with a C expression inside

114	 Low-Cost Web Servers / Geist Technology

HTML & HTTP

<title><?= getPageTitle() ?></title>

The pagecompiler translates into, among other things, a
function call to a function that must have a declaration like this

int getPageTitle(char *buf, size_t buflen, [,…])

The function must return less than zero on error, zero or
greater on success. The buf and buflen arguments are mandatory.
The notion [,…] indicates that such a function may or may not
have additional arguments. Such functions constitute part of
the interface to the rest of the software making up your product.
The declaration of these functions should be included in the file
dyn_globals.h to ensure that dynamically generated functions have
access to them.

Injecting arbitrary text strings into the outgoing HTML code
introduces an issue of safety. Say the string includes the character
‘<’, if this is not properly encoded, the browser will interpret this as
the beginning of an HTML tag resulting in the browser rendering
the page in some unintended way that may depend on what
character(s) follow the ‘<’.

To avoid this problem, the <?= … ?> tag automatically encodes
the emitted string, preventing you from forgetting to do this and
accidentally introducing this vulnerability into your system. In
the event that you really do need to output the string without
encoding, we provide the <?=raw ?> tag.

Another tag, <?msg KEYNAME ?>, provides support
for obtaining strings from a centralized message catalog. The
pagecompiler substitutes a function call for these tags that will,
at run time, retrieve and insert into the HTML stream the string
associated with the value of KEYNAME. This makes it possible to
store all the strings your application displays to the users in a file
in the flash file system. This makes it very easy to create a version
of your product to be sold under a different brand or into a market

Low-Cost Web Server / Geist Technology 115

HTML & HTTP

where a different language is spoken just by changing out the
message catalog file. The message catalog file format is described in
the chapter on the message catalog.

Finally, another tag we provide is <?include OTHERPAGE ?>
where other page is the name of another .wc file containing some
HTML. OTHERPAGE should not include the .wc suffix. The file
could, for example, define a standard header or footer, that can
appear on multiple pages just by using the <?include OTHERPAGE
?> tag in each of the other pages.

David Karoly - Electrical Engineer and Software Developer

W e b G U I
T e c h n i q u e s

 Lightweight, Fast Web Pages

Using Cascade Style Sheets

Examples of Styles

Low-Cost Web Server / Geist Technology 117

User Interface

118	 Low-Cost Web Servers / Geist Technology

User Interface

Web Page GUI Design

The GUI (Graphical User Interface) provides the tools by
which the user interacts whith your device. You can have a great
product but a poorly designed interface can ruin it. The interface
shouldn’t be an obstacle someone has to overcome to use your
device. Hopefully, in the following chapters we can provide some
hints that will help you make a better GUI.

Consistency

An important part of designing an effective GUI is to ensure
consistency. What does this really mean? It means choose an
approach and stick with it. For instance if you have a navigation
bar, keep it in the same place on every page. If there is a submit
button make sure it’s it looks the same on every page. The user
doesn’t expect these sorts of items to change. The expectation is
they will be the same on every screen. In other words interfaces are
expected to be consistent.

Shows consistent subject headings and enclosures.

Low-Cost Web Server / Geist Technology 119

User Interface

Responsiveness

A reasonable user knows not to expect an embedded device to
respond as quickly as a workstation, but they don’t expect to have
to wait too long either. If an action will take some time keep the
user informed with a countdown timer, but don’t leave the user

guessing. Better yet restructure some code or optimize it to make
the device more responsive.

For example, we had a device that could turn on a light. When
the user clicked on the control it took several seconds to turn the
light on. The user expected it to come on quickly. They were left
wondering what the unit was doing.

Did the unit die? Did it just ignore my request? This wasn’t
acceptable. After looking through the code we found that we were
only checking for an on/off change every 10-15 seconds. We had
the system check more frequently and were able to get the delay,
between button click and the light change, down to just a few
seconds. The lesson here is a product that is slow to respond seems
inferior, even if it’s a good product.

Familiarity

Consider the sort of interfaces the user is familiar with. Is
there a piece of software they use on a daily basis? What sort of

Shows an example of response feedback.

120	 Low-Cost Web Servers / Geist Technology

User Interface

interface does it have? Study it to get some ideas on how to create a
better interface for that type of user.

Our devices are web-enabled. We assume that the customer
is comfortable navigating web pages, so our interface looks like a
normal web page. It has a header, footer, body and navigation bar
(nav-bar) just like a typical web page. The user knows how to use
this interface without instruction, because he is already familiar
with it.

This way the user doesn’t have to fight through a boring
manual or have to call technical support. The user has expectations
about interfaces based on what they are familiar with. If you know
these expectations the user will interact with your device smoothly
and will be happy he doesn’t have to take the time to learn a new
interface.

Feedback

Interaction between the user and the device is a two-way
street. If the user performs an action he expects some sort of
feedback, especially in the case of an error. A good error message
informs the user what can be done to remedy the problem. This
means don’t just give a message like “Error 134.” Such a message
is useless, and forces the user to look up the error code or call
technical support. Even when not dealing with errors it’s best
to keep the user informed about what the device is doing. For

While the styling is different, standard input
elements are used.

Low-Cost Web Server / Geist Technology 121

User Interface

instance if the user selects an option to turn on a relay in 30
seconds, provide a countdown. This way the user isn’t left guessing
what the device is doing, just sitting there for 30 seconds. The goal
of feedback is to help the user navigate the interface and better

understand what is going on.

Simplicity

The key to a successful GUI is to distill it down to the basics. A
simple interface is easier to use and takes less time to understand.
If a user has to trudge through the manual to figure something out,
it’s probably too complicated and will likely lead to more errors for
the user and more bugs for the developers to clean up.

Find out as much as possible about the features required by
your endusers. You know who your audience right? Don’t try to

Shows feedback to prevent errors.

A simple interface to turn on/off a power receptacle.

122	 Low-Cost Web Servers / Geist Technology

User Interface

develop in a vacuum, guessing at what people might use. Go ask
your target market and find out their necessary features. Get rid of
the rest. This will simplify the design and keep you from spending
time adding features no one wants or will use. Once the users get
your interface they’ll give you feedback on how to make it better.
That’s the time to add extra features. This helps you get your
product to market quicker and ultimately should save you money.

Attractiveness

This can be a difficult issue to handle. People have different
opinions about what looks good. Again a good place to start is to
find out which websites or interfaces your users like. Consider the
color schemes and basic layout of these sites. If the site uses HTML
or HTML and CSS, you can look at the page source code to find out
the colors used and how the site is put together.

Maintenance

It’s just about impossible to predict what the requirements
will be for future products or which new features we might add
to current ones. About the only thing that can be counted on is
change. We have to consider this when creating a GUI. One area in

particular is the nav-bar.

In earlier products we used a nav-bar at the top. This was
fine for a while, but over time we kept adding new items to this

With a left navigation bar a new tab can be added without
effecting the text on the right.

Low-Cost Web Server / Geist Technology 123

User Interface

bar. Eventually it got too crowded and some of the items had to be
moved into the header. Now, we put the nav-bar on the left side of
the screen. This way it will grow vertically instead of horizontally.
Users seem to tolerate scrolling down instead of sideways.

Another important part of this design was to make each
button in this bar a div element. To add a new button we just add
a new div. If the the nav-bar was a series of images, or worse
one single image, then every change would require the creation
of new images. Because of situations like the following, we have
to consider the how difficult it may be to add or subtract elements
from the design. Some hints:

1. If text is used in an image, then a new image must be made
when a new item is added to the menu

2. If CSS is used it can help isolate changes to a single
document

3. If an image is used for buttons then a background template
can speed up the process

HTML

We commonly write HTML by hand. There are many
programs a person could use to design web pages without having
to mess with HTML, but you never know what sort of HTML it will
create. In an embedded environment, memory is at a premium, so
we can not afford to use bloated HTML code created by another
program. We can also ensure the HTML is clean and structured the
way we want.

We start with an editor that can properly color HTML. This
helps us spot mistakes like a missing quote on an attribute. A
good practice we use when working with an editor is to indent the
portion of text inside a tag. This helps us make up tags to ensure
they are closed and helps make the structure of the document more
apparent.

Another invaluable tool is a web page validator. We use the

124	 Low-Cost Web Servers / Geist Technology

User Interface

web-based one provided by the W3C. This helps catch a complete
array of bugs, like the dreaded missing close tag. By using the
right tools we can produce compact and readable HTML files.

When creating an HTML file it is important to test it with
many different browsers. There are a variety of known bugs in the
different browsers. Many of the bugs already have a solution that
can be found by searching the Internet.

Some guidelines for writing HTML:

1. Indent the text inside a tag.

2. Validate your HTML often to catch mistakes early.

3. Test your HTML files with many browsers to find
compatibility problems.

Stylin’ with CSS

HTML provides reasonable control over the appearance of a
web page. However, CSS (Cascading Style Sheet) provides much
greater control. We use CSS to globally set the appearance of things
like links, font type, and background colors. In the following
sections we give a brief introduction to CSS.

There are several ways to style with CSS. An attribute “style”
can be added to just about any tag. This allows control of the
appearance of just one tag at a time. We try to use this only when
one item needs to be styled.

If we want to change the styling for many instances of a tag
then we use one of the other methods. For this we use a stylesheet.
These can be internal or external. An internal stylesheet is placed
in the head section of the HTML file, but we don’t use this method
because internal stylesheets can’t be shared between HTML
files. This is one of the great strengths of CSS, because it creates
consistent styles across many pages. For this reason we use external
stylesheets. To create an external stylesheet you just need to create
a text file with CSS commands and save it with a .css extension.
Tell the HTML page to use this stylesheet by adding the following

Low-Cost Web Server / Geist Technology 125

User Interface

command in the head section:

<link rel=”stylesheet” type=”text/css” href=”file_name.
css”>

CSS Syntax

Now that you know how the include style commands in a
document, let’s actually look at the syntax of CSS.

 The basic syntax for CSS is:

selector { property: value }

Let’s look at each part of this individually just to get an
idea of what it would look like. The following command sets the
background color of all div tags in the page to green:

div { background-color: green; }

If you are applying the style attribute to an HTML tag then
you only use the property: value part. For example, let’s say you
want to set the background color of just one div. The line of code
looks like:

<div style=”background-color: green;”> some_material_
in_here </div>

Now let’s look at the component parts of the CSS syntax.

Selector

The first part is the selector. As the name implies this tells
the browser which items you will be setting the attributes of. There
are several types of selectors. In the example above the selector
chooses the div tag. Most of the other tags in HTML can be used
in the same way. Two other common ways of selecting are by id
and by class. An HTML tag can have an id or class attribute. If id is
used this needs to be unique in the document. For instance to style
a certain h1 tag use the following command:

126	 Low-Cost Web Servers / Geist Technology

User Interface

<h1 id=”maintitle”>Tiny Web Servers</h1>

This makes a unique item with the id of “maintitle.” To select
this in CSS put an ‘#’ before the id as the selector. This is shown
below:

#maintitle
{
 font-size: 20px;
 color: green;
}

Make sure that only one tag in the entire HTML file uses
“maintitle” for an id. This works for styling single items, but often
you want to style all items of a given type. CSS provides a class
selector. In HTML add the attribute class to a tag. For example:

<h1 class=”original”> Title </h1>
<p class=”original”> Some text </p>

As you can see class can be applied to multiple tags and those
tags don’t have to be the same type. To style these tags you put a ‘.’
in front of the name, like in the following example.

.original
{
 color: green;
 background-color: blue;
}

When several HTML elements share style attributes you can
group them together. For example, if you wanted to set the color of
the text inside a div and p element the code is:

div, p
{{
 color: red;
}

There are many other ways to use selectors to refine the
selection of elements to style. Below are several other examples:

Low-Cost Web Server / Geist Technology 127

User Interface

p.original
{
 color: blue;
}

This selects elements of p with a class of “original”.

div p
{
 text-align: right;
}

Descendants are elements contained inside a parent element.
In this case this selector looks for p element descendants of div. In
other words p elements contained within a div element.

The above types of selectors are supported well by most
browsers. There are some selectors that let you select with even
finer control, but some browsers don’t support them. There are
many good tutorials and references on the Internet if you are
interested in learning about the other selectors.

Now let’s look at the property portion and value portion of
CSS syntax.

Property/Value

Property/value pairs describe the style that will be applied to
an HTML element. There are many properties that you can set for
an element. The following is a small set of them.

background-color - ex. background-color: green;
background-image - ex. background-image: url(‘bg_im-
age.gif’);
color - ex. color: #ff0000;
text-align - ex. text-align: left;
font-size - ex. font-size: 12px;
font-weight - ex. font-weight: bold;
border - ex. border: 5px;
margin - ex. margin: 10px;
padding - ex. padding: 4px;
width - ex. width: 45%;
height - ex. height: 105px;

The value part of a property/value pair can be one of several

128	 Low-Cost Web Servers / Geist Technology

User Interface

units. For colors one of the following forms can be used:

color_name - ex. red
rgb(x, x, x) - ex. rgb(255, 0, 255)
#rrggbb - ex. #ff00ff

For measurements some of the common units are:

% - percentage of space available, grows with increase
in screen size
em - equal to the current font size, used to adapt to
user defined font size
pt - point (1/72 of an inch), often used to specify a
font size
px – pixel (one dot on the screen), often used in fixed
width webpages

As shown in some of the previous style examples, more
than one property/value pair can be used when writing a style.
Each property/value needs to be separated by a ‘;’. Technically
the last property/value does not need to end by a semi-colon, but
it’s normally a good idea to include it anyway. Often styles are
changed while developing a web page, so ending every property/
value with a semi-colon helps protect against errors.

CSS Box Model

An important part of styling in CSS is understanding the CSS
box model. In CSS each element is viewed as a box. This box has
4 areas. The inner most layer is the content area. This is where
text and images are placed. Surrounding the content area is the
padding area. Padding is used to separate the content area from the
border. The border surrounds the padding area. The last area is the
space around the outside of the box. This is called the margin. This
space is used to provide space between boxes. The combination of
the sizes of the content area, padding and borders gives the final

size of the box. For example suppose the box is defined as follows:

#header
{
 width: 750px;

Low-Cost Web Server / Geist Technology 129

User Interface

 padding: 5px;
 border: 1px;
 margin: 10px;
}

Applying this style to an element, the resulting box would has
a content area 750 pixels wide. Around this is a padding area of 5
pixels on each side. The border encloses the padding adding one
pixel to each side. The final box has a width of 762 (750 content +
(2 * 5 padding) + (2 * 1 border)) pixels. The margin around the box
pushes it away from other boxes by 10 pixels.

There is a known bug in Internet Explorer where it uses it own
box model instead of the CSS box model. In this model if you set
the width of a box it refers to the whole box including the padding
and border. In the CSS model this width only refers to the content
area. This difference causes boxes in IE to be smaller than those
that use the CSS box model. This difference is supposed to be fixed
in IE version 7. Many work-arounds exist. One work around is to

Sample of a css box

130	 Low-Cost Web Servers / Geist Technology

User Interface

enclose a div within a div then apply a width to the outer box and
the padding and border values to the inner box.

This has been a brief tour of CSS. There are many great
tutorials on the web. We recommend the CSS tutorial at the W3
Schools (http://www.w3schools.com)

CSS Positioning

In the past web page layout was usually done with tables. This
was for good reason. Tables are supported correctly in all browsers.
Conceptually tables make sense. There are some arguments
against using tables though. One is that they tie layout and content
together. Some developers believe they have better control putting
content in HTML and creating the layout in a CSS file. An upside
to separating them is that the layout of the HTML elements can be
significantly altered just by editing the CSS file. The current trend
favors using CSS to control layout and only putting content in an
HTML file. The decision involves weighing the benefits of separate
layout versus inconsistencies in how browsers render CSS. As
support for CSS improves this should become less of an issue.

Instead of using tables the element most commonly used is
div. A div is just a container for others things like text, images
or another div. This is the main building block. The key to layout
with CSS is positioning these containers. Other elements can also
be positioned like span. We’ll go through five ways to position
a block. Before we go into these the term normal flow needs
to be explained. Normal flow is the layout (position) of HTML
elements if you don’t use any CSS positioning. This is important
because some elements get removed from the normal flow during
positioning. If they are moved then the elements around it are
positioned like as if they never existed. Here are the four position
types. We’ll cover the fifth way to position in the next section.

1. static: This is the default position for the element (normal
flow). In this case CSS is not positioning the element. All position

Low-Cost Web Server / Geist Technology 131

User Interface

offsets will be ignored (we’ll get to these later).

The text “test” is styled with a static position as shown. The
HTML file used to create this image follows.

<html>
 <head>
 <title>Position Tests</title>
 <style type=”text/css”>
 #test
 {
 background-color: #aaa;
 position: static;
 top: .75em;
 left: .5em; 			
 }
			
 #content
 {
 border: 1px solid black;
 }

 body
 {
 font-size: 2em;
 padding: 1em;
 }
			
 </style>
 </head>
	
 <body>
 <div id=”content”>
 This is a test of CSS po-
sitioning. This is a test of CSS positioning. This is
a test of CSS positioning.
 </div>
 </body>
</html>

2. relative: The element is placed in the normal flow and then
offset by some amount. Since the element is first placed in the
normal flow, the other elements around it are positioned as if the

The test box is styled with

position:static.

132	 Low-Cost Web Servers / Geist Technology

User Interface

element was still there. This leaves a gap after the element is moved
as shown. The change made in the test style code is also given.

#test
{
 background-color: #aaa;
 position: relative;
 top: .75em;
 left: .5em;
}
#test
{
 background-color: #aaa;
 position: absolute;
 top: .75em;
 left: .5em;
}

3. absolute: With this type the element is never placed in the
normal flow, so there is no gap. The element is positioned a certain
distance from the origin. This origin is the top-left corner of the
container holding the element, that has a position other than static.
If all of the parent containers are static then the origin is the top-left
corner of the browser area.

This figure shows what happens when the position of “test” is

changed to absolute. It is in a very different position from relative.
In this case the origin was top-left corner of the browser area as
shown when the offset is reduced to 0. This can be easily seen next.

The effect of

position:relative.

The “test” box changes position
with absolute.

Low-Cost Web Server / Geist Technology 133

User Interface

The browser ignores the top-left corner of the content area, because
it has a static position. To get it to use the “content” area as the
origin, the content must have a position other than static. Next we
see the results of setting this to relative.

#test
{
 background-color: #aaa;
 position: absolute;
 top: 0em;
 left: 0em;
}
#content
{
 border: 1px solid black;
 position: relative;
}

4. fixed: Like absolute, with fixed positioning the element is
removed from normal flow. Then its place is based on an offset
with the origin at the top-left corner of the browser area. It ignores
all parent containers regardless of what position type they use.
Also this element stays fixed at this location even if the user scrolls
the page. One thing to note is not all browsers support this type of
positioning.

The next page shows what happens when the position on the
“test” box is set to fixed. Notice it ignores its parent container even
though it has a non-static position. The full HTML text for this
example follows the figure.

The “test” box moves to the origin
when the offset is 0.

The origin for “test” has changed to
the content area.

134	 Low-Cost Web Servers / Geist Technology

User Interface

<html>
 <head>
 <title>Position Tests</title>
 <style type=”text/css”>
 #test
 {
 background-color: #aaa;
 position: fixed;
 top: 0em;
 left: 0em;
 }
			
 #content
 {
 border: 1px solid black;
 position: relative;
 }

 body
 {
 font-size: 2em;
 padding: 1em;
 }
			
 </style>
 </head>
	
 <body>
 <div id=”content”>
 This is a test of CSS po-
sitioning. This is a test of CSS positioning. This is
a test of CSS positioning.
 </div>
 </body>
</html>

Float

The position property is used some in CSS layouts, but the
more common way to layout elements is to use float. In the past
support for floats was poor, but now most browsers have good

Fixed positioning uses the
browser area as its origin.

Low-Cost Web Server / Geist Technology 135

User Interface

support. To float an element use the property float with right,
left, or none for the value. In the following example float:none is
used of the style “box.” This is the normal flow for this element, as
shown here. The HTML we will use for this example follows.

<html>
 <head>
 <title>Float Tests</title>
 <style type=”text/css”>
 #box
 {
 background-color: #aaa;
 float: none;
 width: 2em;
 height: 2em;
 }

 #content
 {
 border: 1px solid black;
 position: relative;
 }

 body
 {
 font-size: 2em;
 padding: 1em;
 }
			
 </style>
 </head>
	
 <body>
 <div id=”content”>
 <div id=”box”></div>
		 This is a test of CSS float. This is a
test of CSS float. This is a test of CSS float.
 </div>
 </body>

</html>

Shows the normal flow for “box.”

136	 Low-Cost Web Servers / Geist Technology

User Interface

Now let’s change from float:none to float:left or float:
right. The HTML follows for float:left and HTML for float:
right is obvious.

#box
{
 background-color: #aaa;
 float: left;
 width: 2em;
 height: 2em;
}

Notice that along with float there is a width property. A
width is required when floating an element. What float does is
to remove the element (now with a given width) and aligns it
flush with either the left or right side of the parent container or
the edge of another float element. A float of none is the default
for elements, so no float is done. The content after the floated
element flows around the floated element. Let’s look at an example
where two elements will eventually be floated. We’ll start with
the elements in normal flow, as shown here. The HTML for this

Shows the “box”

float:right.

Shows the “box”

float:left.

Two of the “box” class in
normal flow.

Low-Cost Web Server / Geist Technology 137

User Interface

example follows.
<html>
 <head>
 <title>Float Tests</title>
 <style type=”text/css”>
 .box
 {
 background-color: #aaa;
 float: none;
 width: 2em;
 height: 2em;
 margin: .1em;
 }
			
 #content
 {
 border: 1px solid black;
 position: relative;
 }
			
 body
 {
 font-size: 2em;
 padding: .25em;
 }
			
 </style>
 </head>
	
 <body>
 <div id=”content”>
 <div class=”box”></div>
 <div class=”box”></div>
 This is a test of CSS float. This is a test of
CSS float. This is a test of CSS float.
 </div>
 </body>

</html>

Now lets float the two boxes to the left. This allows the text
to flow around as in the previous example. Notice here though the
boxes line up horizontally. See the figure on the following page.
The rule is that a floated element goes as far to one direction as
possible until it meets the border or another float. (Shown on an
earlier page.) The code change for two boxes float:left is given
following the figure.

138	 Low-Cost Web Servers / Geist Technology

User Interface

.box
{
 background-color: #aaa;
 float: left;
 width: 2em;
 height: 2em;
 margin: .1em;
}

But if we want to stop an element from flowing around a
floated one, the property to apply is clear. The values for clear
are left, right, both, and none. An element with the clear
property goes below the elements on the side indicated. We’ll start
out again with elements in the normal flow. The HTML used to

create this example follows the figure.

<html>
 <head>
 <title>Float Tests</title>
 <style type=”text/css”>
 .box
 {
 background-color: #aaa;
 float: left;
 width: 2em;
 height: 2em;
 margin: .1em;
 }
			
 #content
 {
 border: 1px solid black;

Two “box” divs

float:left.

Nothing is cleared with

clear:none.

Low-Cost Web Server / Geist Technology 139

User Interface

 position: relative;
 }
			
 body
 {
 font-size: 2em;
 padding: .25em;
 }
			
 #text
 {
 clear: none;
 }
			
 </style>
 </head>
	
 <body>
 <div id=”content”>
 <div class=”box”></div>
 <div id=”text”>
 This is a test of CSS float. This is a test of
CSS float. This is a test of CSS float.
 </div>
 </div>
 </body>
</html>

Now let’s make the change below and use clear:left. This will
give the placement that follows.

#text

{
 clear: left;
}

We’ve covered only some of the issues involved with using

Result of using clear:left.

140	 Low-Cost Web Servers / Geist Technology

User Interface

float for positioning. Searching the web will provide more details
about CSS positioning.

Some hints:

A div with a class of clear that applies only clear:both is
useful to make a parent container big enough to contain a floated
element if it is the last element in the parent.

.clear
{
 clear: both;
}

<div>
 This is a test of a “clear” div.
 <div id=”box”></div>
 <div class=”clear”></div>
</div>

It can be difficult to create columns with an equal height.
There are several “tricks” to get this effect. One is called faux
columns. Start by enclosing the two columns you want to be the
same size within a parent div. Add a background image to the
parent div that repeats only in the y-axis. The image to repeat is a
single line the width of the parent div with colors the same width
as the children columns.

Images

There are many image formats available, but the two most
common types used on the web are gifs and jpgs. Format png is
used some, but currently browser support for this image format
is inconsistent. When browser support is corrected for png it may
become one of the predominant image formats.

JPG (JPEG)

We use this format for full-color images. It does a good job
taking an image and compressing it to a reasonable file size. The
downside is that compressing the image degrades it. You can see
this in the figure on the following page. There is a trade-off here,

Low-Cost Web Server / Geist Technology 141

User Interface

the more compression the smaller the image size, but also the more
degraded the image. Some image editors like Adobe Photoshop
have a preview function that allows you to see how an image looks
at different compression levels and gives the size of the final image.
This really helps in finding the right ratio between image quality
and image size. Again, remember that every time the image is
saved the quality degrades, because the image is recompressed.

Close-up of a JPG showing the difference between low compression
(top) and high compression (bottom).

142	 Low-Cost Web Servers / Geist Technology

User Interface

GIF

GIF is the format used for limited color images and ones
where we need transparency. Another use for gif is when we need
sharp edges. With jpgs edges can be blurred. Normally we use gifs
for the image portions of an interface. Gifs are reasonably small in
size. The compression scheme used does not degrade the image.
The fewer colors used the smaller the image. The trade-off is how
few colors can you use before the image starts to look bad. This is
shown in the figure below.

Compare the shadow areas in both images. These are the
sorts of places where gifs start to degrade as the number of colors
is reduced. Photoshop has a useful tool for saving images as gifs.
With it the final image can be previewed while decreasing the

Comparison showing how limiting the number of colors
can degrade an image. The top uses 16 colors, while the

bottom uses only 4.

Low-Cost Web Server / Geist Technology 143

User Interface

number of colors used. The tool also allows you to select the most
important colors in the image, so they will be saved when reducing
the number of colors.

Types of GUIs

We’ve identified three types of GUIs. We call them
Contemporary, Midrange, and Austere. They each serve a specific
purpose. The majority of our product line uses the Midrange GUI.
Our new products have all three types allowing the user to select
the one that best suits his needs.

Contemporary

This GUI is based on the common layout of a web page which
appears in the example here. By creating an interface that takes

advantage of a fixed width layout we have the ability to place
elements in predetermined locations. Regardless of the screen
size the layout turns out the same on the user’s screen. Images can
be used to create large portions of the interface. These images fit
together properly because of the fixed width. The downside is this
requires more bandwidth. On a unit with a slow web server this
may lead to a poorly performing interface.

Example of a Contemporary style web page with rounded
corners.

144	 Low-Cost Web Servers / Geist Technology

User Interface

The Contemporary layout typically consists of a box centered
on the screen with a width approximately 750 pixels. The top
portion has a header with a logo and some important information
for the user.

The next area contains buttons that allow you to navigate
through the interface. Sometimes this goes across the top with the
buttons placed horizontally. Our preferred design is to put the
buttons vertically down the left side of the interface. We did this to
allow more room if the number of navigation buttons increases.

Top navigation bars (nav-bar) limit how many buttons can
be placed on a line. We also take advantage of the fixed layout to
use images to create the interface. The keep the interface small
and to load quicker the images are gifs using the least amount of
colors possible. With the nav-bar on the left the content is placed
on the right. The layout is finished with a footer giving support
information.

Midrange

What we call midrange is characterized by a layout width
that expands to fill the full width of the browser window. This is
sometimes called a liquid layout, and was more common a few
years ago. It is still used but it seems the trend is toward more fixed
layouts. This interface has few images, so it loads quickly, making
the interface more responsive. Faster response time is a major
factor in why we continue to use this interface. In our version of
Midrange the header has the same information as the header of
Contemporary including a logo, unit info, and version.

Following the header is the nav-bar. Originally we used a top
nav-bar but over time we added more buttons to the point where
it became crowded and we had to move some of the pieces into the
header. This is part of the reason why we went to a side nav-bar
in our current design. To reduce bandwidth the layout is created
without images as shown on the following page.

Low-Cost Web Server / Geist Technology 145

User Interface

Austere

We put this interface together because of customer requests.
It is designed to be very minimal, mostly text, and it was created
for users who just want the data withou a full figured interface.The
header contains the same information as before.

Again, we used a left nav-bar to allow room for growth
and change. The content is on the right, web page followed by
the footer at the bottom. The placement of the elements is nearly
identical to that of the Contemporary with new styles added. We
use a CSS style sheet and CSS positioning to change between the
different types of interface GUIs.

Examples: Contemporary Owl Web GUI

The Owl GUI uses stylesheets to transform the interface from
Contemporary, Midrange and to Austere. It has a second Mid-

Example of a Midrange web page.

146	 Low-Cost Web Servers / Geist Technology

User Interface

range GUI that looks like Contemporary, but with the interface
images removed. This can be seen on the next page.

Finch GUI

This interface is of the Midrange GUI style. Since the Finch has
limited processing power we had to use a light-weight GUI. The

Example of an Austere style web page.

Example of a “lite” web page. This is a Finch web page.

Low-Cost Web Server / Geist Technology 147

User Interface

logo is the only image that is loaded from the webserver. Even with
the limited power of the Finch, the interface is quite responsive.

Graphing

Knowing the current temperature or humidity value is useful.
But what was the temperature like last night? Did the AC come on?
Many of our customers had this concern. It was obvious we needed
to have graphs. Sure the customer could write a program or
script to hit the unit every minute and save the data to a log. Then
later ran it through a program to get graphs. This takes time and
expertise on the customers side, and what if they want to view it
over the web? Putting these graphs on the web for the customer is a
hassle. Thus began the task of adding graphing to our web server.

To create a graph first we need data. The unit needs to take
readings at some interval and save the points to be later used
in graphing. This data logging portion can be tricky. Storage
space in an embedded product is scarce. Sometimes there is a
trade-off between accuracy and memory usage. Maybe certain
measurements only need to use a byte, while others might need
two bytes. The logging system can be simplified by using the same

Finch web page with extra images.

148	 Low-Cost Web Servers / Geist Technology

User Interface

number of bytes for each reading. But do we use one byte per
reading to save memory, at the expense of losing the accuracy of a
two byte reading? Or do we pad out the one byte readings to two
bytes and waste memory? Of course a more complicated system
can be used to store the one bytes as one and the two bytes as two.
This is just one of several concerns.

Another concern is the logging frequency. What happens if the
user changes it? Do you delete the old data and start over? Maybe
you could open a new “file” and start logging into that location.
You could choose to forgo this problem by fixing the logging
interval. Some people might complain, but that might be better
than fighting bugs in a more complicated system.

Midrange Finch web page featuring few graphics with dominant text.

Low-Cost Web Server / Geist Technology 149

User Interface

Yet another issue is timestamping the data. You may have
a bunch of data saved, but you need to know when it’s obsolete.
A common timestamp is something like the number of seconds
since a certain point in time. Or maybe the number of clock cycles
since the device started. Using seconds is ok, if the device always
knows what time it is. The device either needs a realtime clock with
backup power or a way of getting the time from the network.

The device could connect to an NTP server but what happens
if it can’t connect to NTP? This is the reason why we moved to an
onboard, realtime clock. Once set, the clock keeps track of the time
even if the unit is off. The trade-off here is the hardware design and
cost issues versus the time trying to fix the problem in software.

Once we have time-stamped data stored in some form in
memory, one last issue is to put a header on the data to identify it.
What device is this data logged for? What is the format of these
bytes of data. To accomplish this, a header id’s what format is used
for the data and for which device. Now you can graph.

Building the Graph

Now we are ready to graph! We start by figuring out the x and
y axes. The x-axis will be a time range. If we graph everything then
this range would go from the oldest timestamp to the newest. This
involves going through each header in memory and determining
this range. The y-axis consists of the range of data values. The min
and max values of the sensor are fixed of course, but if the data
typically stays in a small range, graphing the complete range loses
a lot of detail. Therefore, we use auto-ranging.

We look though the data for each sensor we are going to graph
and find the overall min and max of the data. We use this for the
range of the y-axis. Since the physical size of the graph is fixed we
can now determine how to divide the x and y axes into steps or
ticks. Then we can draw the axes with labels.

Drawing the data is the next step. We use line graphs to show

150	 Low-Cost Web Servers / Geist Technology

User Interface

trends in the data and to be able to fit graphs for many devices
on one graph. This invites comparison between readings. Maybe
you’ll notice that the sound level increases when the light level
is high. Suppose the temperature drops then also. This might be
evidence that someone came into the equipment area, turned on
the lights and turned down the AC. Another good reason for using
a line graph is that it is straightforward.

To graph, pick a series of points between the start of the time
period to graph and the end. The number of points you pick will be
determined by how large the graph is and how detailed you want
it. Then lines are drawn connecting the points and a line graph is
displayed. Do this for all of the sensors to be graphed and you’re
done.

One thing to note is artifacting that could occur when selecting
the points to graph. Although one way is to pick points at a fixed
intervals across the time span, a problem is that spikes in the data
may be missed. The graph may appear to change abruptly between
subsequent renderings. Another method is to average points across
a span to create a data point. The downside to this is that now
averages and not actual values are graphed, it also takes longer and
ties up more resources.

One last method is to look through the data for spikes or other
areas of interest and graph them. This method would probably
require the most resources of the three methods to implement.
These costs and the limited resources of an embedded system have
to be taken into consideration.

We use the first method of regular time intervals because it is
fast to calculate and it does a good job showing basic trends. Any
spikes of interest trigger an alarm condition. If a customer wants to
view the data in more detail, he can download the full data log.

The last piece of the graph is a legend. Without it a viewer
won’t be able to identify which data relates to which sensor. The
graphs on the following pages demonstrate the topics in this

Low-Cost Web Server / Geist Technology 151

User Interface

section. The y-axis is set for the range of data, so that it gives
enough detail to make comparisons. The x-axis shows the time
range of the data, over 14 days. The lines are color-coded and tied
to a legend that identifies the sensor.

A graph example showing the y-axis scaled to fit data.

A typical graph before figuring out the axis ranges.

152	 Low-Cost Web Servers / Geist Technology

User Interface

This section shows the importance of graphing to see trends in
the data and make comparisons. We’ve demonstrated many of the
steps in the process and have shown where problems can occur.

Ron McCormack - Software Developer

A graph with data including a legend.

Low-Cost Web Server / Geist Technology 153

User Interface

C o m p a r i n g t h e
Tw o S e r v e r s

Hardware Comparison

Software Comparison

Physical Size

Low-Cost Web Server / Gerry Cullen 155

Comparision

156	 Low-Cost Web Servers / Geist Technology

Comparision

Which One to Use?

Before we compare the two systems, let’s look at what the two
products have in common:

Software Source Code: All the source code is on-hand at Geist
Technologies.

Programming Language: All software is written in the “C”
programming language.

Microprocessors: We use Philips (ARM) and Microchip
processors. Both are readily available, low-priced and well
supported. Specialized, non-commodidty integrated circuits are
avoided.

Size: The smallest is the Finch which can be reduced to a few
tiny integrated circuits. The Owl is slightly larger.

Ease of Assembly: The Finch can be assembled by hand or by
basic “pick and place” automatic circuit board assembly machines.
The Owl, however, requires BGA (Ball Grid Array) assembly which
must be machine assembled with late-model assembly equipment.
The cost of the BGA Owl assembly is slightly higher than the Finch
processor.

Costs: You can look up the current costs of the components
through DigiKey (catalog component house) or almost any
component distributor. Owl components cost over twice what the
Finch does. The primary reason for the Owl’s extra cost is the more
sophisticated ARM processor and the dual external memories. The
Finch will likely be the lowest cost circuit for at least the next year.

Additionally, the printed circuit boards are more expensive for
the Owl because the highly dense circuit connections on the Philips
ARM processor require an eight layer board layout which can cost
more than twice the four-layer Finch board. This can add a lot of
cost to a product.

Our solution to the higher cost eight-layer board was to make
the Owl Cube. This design reduced the eight-layer board to postage

Low-Cost Web Server / Gerry Cullen 157

Comparision

Owl Finch
Processor ARM 7 Microchip PIC

CPU Clock Speed 70 MHz 25 MHz
Code Flash None 32 KB or 64 KB
CPU Clock Speed 70 MHz 25 MHz
CPU Register Size 32 bits 8 bits
External Code Flash Up to 16 MB None
Internal RAM 64 KB 2 KB
External RAM Up to 4 MB None
External Data Flash Up to 2 MB 32 KB
MAC / PHY Microchip PHY Microchip PHY
Outboard sensors Yes, via a PIC No
Reset Button Yes Yes
General-purpose pins 5 0
Cost of Components $30 $15
Current Consumption 150mA 120mA
Remote Firmware Updates X X
Ethernet Speed 10-base-T 10-base-T
RS-232 Serial I/O 115000 9600
SPI (Serial Peripheral I/F) X X
GPIO Up to 45 pins Up to 37 pins
Real-Time Clock (Battery) X
I2C Serial Interface X X
Debugger Interface JTAG Microchip ICE
Hardware Watchdog Timer X X

Comparison Table Between Owl & Finch Hardware

158	 Low-Cost Web Servers / Geist Technology

Comparision

stamp size. The main printed circuit board could be an inexpensive
four-layer design and the Owl Cube simply soldered in with a low-
cost receptacle.

Growth Versus Cost

The Finch can be thought of as a minimalistic approach to a
web server. The absence of SSL (Secure Socket Layer) encryption
probably eliminates all but the simplest control applications and
uses whereas the data placed on the web does not require any kind
of security.

On the other hand, the lowest cost of the components is
certainly attractive in applications where price must be kept to an
absolute minimum. High volume applications usually require a
low cost to manufacture and this is where the Finch has a strong
appeal.

Many applications require complex graphing, multiple alarms,
and logging functions and this requires the processor power of the
Owl’s ARM processor.

The Owl has outboard memories which means you can
select the amount you need for the application. The Owl’s
operating system gives you the ability to prioritize which tasks
need quicker service than others. Also, if the application needs
complex algorithms or formula calculations, these can be easily
accommodated in the Owl.

If the initial application is viewed as a starting point with
more applications to be added continually, then the Owl is the
definite choice.

Using Other ARM Processors

In applications where requiring specialized operations, such
as digital signal processing (DSP) or other high processor load, the
Owl’s ARM 7 can be replaced with a member of the ARM family
that contains that enhanced capability. In most circumstances this
can be accommodated with minimal software changes.

Low-Cost Web Server / Gerry Cullen 159

Comparision

Owl Finch

Operating System FreeRTOS None

Flash File System X X

OEM Message Catalog X

Device Manager/Driver X

Dynamic Device Detection X

Error Handling X

Logging X

Graphing X

Alarms X

SYSLOG X

Friendly Names X X

Non-Volatile Configuration X X

Email

SMTP e-mail X

POP-AUTH X

Plain AUTH X

MD5-AUTH X

Reporting

XML X X
Excel Logging X X

Network Monitoring
SNMP v1 X X
SNMP Get X X
SNMP Set
SNMP Trap X

Development Tools
Dev. Toolchain ARM GCC/

GDB

Software Comparison Table

160	 Low-Cost Web Servers / Geist Technology

Comparision

Owl Finch
Network

SSL X

ARP X X

DNS X

Ping X X

UDP X X

TCP X X

FTP X

DHCP X

IPv4 X X

IPv6

TCP Retransmission X

Out-of-Order Segments X

SNTP (Time Server) X

Web Server

Webserver X X

Webserver Threads 2 1

GET X X

POST X

HEAD X

If-Modified-Since X

Basic AUTH (Password) X

Dynamic Web Pages X

The tables compare the differences between the Finch’s minimalist approach
and the Owl’s full-featured approach. The Finch uses no operating system

- the programs run endlessly in a loop. The Owl, however has a sophisticated
operating system capable of running tasks in time-slice coordination. The Finch

is built for minimum cost with a bare-bones software approach. When more
flexibility or more features are needed, the Owl is the best choice.

Software ComparisionTable, Continued

Low-Cost Web Server / Gerry Cullen 161

Comparision

S N M P

 Communicating with Network

Monitoring Systems

164	 Low-Cost Web Servers / Geist Technology

SNMP

Why SNMP is Useful

The Simple Network Management Protocol (SNMP) is a
client/server method allowing a remote user to view management
information held in a networked device. The SNMP method was
defined by RFC 1157.

	 	 For example, an SNMP application (client) on
the remote user’s system uses the protocol to converse with an
SNMP agent (server) on the device to retrieve the management
information. The SNMP agent provides information about the

A Console Monitoring Program with Multiple SNMP Devices

Console
Application

Server
Trap

Server
Trap

Server
Trap

Server
Trap

SNMP
Packets

Remote embedded processor devices are shown minitored by a central
console program. When alarm levels are exceeded, the remote units send
an SNMP “trap” which alerts the console to an out-of-limit condition.

SNMP is a commmmon means of remote monitoring.

Low-Cost Web Server / Gerry Cullen 165

SNMP

device’s current state, such as the device’s network interfaces or
device specific data (e.g. temperature).

The provided information is stored in a format specified by
the Management Information Base (MIB). The MIB is organized
in a hierarchical tree structure with SNMP objects represented as
leaves on the tree. The Object Identifier uniquely distinguishes
each variable. The MIB was defined by RFC 1155, 1212, 1213. The
MIB specifies the SNMP objects that one can manage and their
format.

SNMP objects are referred to as Object Identifiers (OIDs)
which are unique and paired with a value (e.g. 1.3.6.1.4.1.9999.1
might have the value 77). The digits in the OID number represent
levels in the hierarchical tree. The MIB maps the complicated OID
to a human-understandable token (e.g. TemperatureValue7).

SNMP is highly complicated to implement. OIDs are defined
as byte strings in multiple length data packets along with their
values. Multiple OID/values can be sent in a data packet.

SNMP Operations

An SNMP application reads and/or writes values from the
SNMP devices. The four SNMP operations are:

• Get — request the values of one or more SNMP objects

• Get next — gets the next object in a table one row at a time

• Set — sets the value of an SNMP object

• Trap — sends a packet about an event to the SNMP
application

The device’s SNMP agent listens on Universal Data Port (UDP)
port 161 for SNMP application requests. Trap messages are sent to
UDP port 162. Traps are sent by the device’s SNMP agent to notify
an SNMP application of a significant event.

When an SNMP application wants to know the value of a MIB

166	 Low-Cost Web Servers / Geist Technology

SNMP

token (or OID) of a device, it issues a UDP get request to port 161
containing the OID to the IP of the device. The device then replies
with a get response (“get response” is the fifth type of message)
containing a status and the OID pair requested.

When an SNMP application wants to know the value of MIB
tokens (or OIDs) of a device, it issues a UDP get request to port
161 containing the OIDs to the IP of the device. The device then
replies with a “Get” response containing a status and the OID pairs

SNMP Version 1 Packet Format

Message
Header

Request
ID

Error
Status

Error
Index

OID

Get, Get Next, Set, Response PDU

Protocol data unit (PDU)

PDU
Type

Protocol data unit (PDU)

Value

Trap PDU

Value

OID

Variable
Bindings

Enterprise
Agent

Address
Generic

Trap
Type

OIDTrap
PDU
Type

Value Value

OID

Variable
Bindings

Time
Stamp

Specific
Trap
Type

Low-Cost Web Server / Gerry Cullen 167

SNMP

requested.

To access a device’s “private” data, the OID refers to the
private section of the MIB hierarchy and a manufacturer’s code
follows creating an extensible tree for the “custom” OID/value
pairs.

Regarding traps, there are seven types of generic traps: cold
start, warm start, link down, link up, authentication failure, EGP
neighbor loss, and enterprise specific. An enterprise specific trap
is sent with a unique specific trap identifier. The trap can include
OID pairs to further signify the trap event. This makes it easier to
identify the trap with different SNMP applications.

Steven Gettel - software developer

	 	 	

168	 Low-Cost Web Servers / Geist Technology

SNMP

Typical Owl or Finch MIB - Partial Listing

(Current MIB can be downloaded from actual unit)

	 	
OID name	OID	 access	 type
General System Information OID’s			
sysDescr	 1.3.6.1.2.1.1.1	 read only	 DisplayString
sysObjectID	 1.3.6.1.2.1.1.2	 read only	 OBJECT IDENTIFIER
sysUpTime	 1.3.6.1.2.1.1.3	 read only	 TimeTicks
sysContact	1.3.6.1.2.1.1.4	 read only	 DisplayString
sysName	 1.3.6.1.2.1.1.5	 read only	 DisplayString
sysLocation	 1.3.6.1.2.1.1.6	 read only	 DisplayString
sysServices	 1.3.6.1.2.1.1.7	 read only	 INTEGER(1..100)
OID name	OID	 access	 type
General Device Information OID’s			
deviceInfo	1.3.6.1.4.1.17373.2.1		 other
productTitle	 1.3.6.1.4.1.17373.2.1.1	 read only	 DisplayString
productVersion	 1.3.6.1.4.1.17373.2.1.2	 read only	 DisplayString
productFriendlyName	1.3.6.1.4.1.17373.2.1.3	 read only	 DisplayString
productMacAddress	 1.3.6.1.4.1.17373.2.1.4	 read only	 DisplayString
productUrl	1.3.6.1.4.1.17373.2.1.5	 read only	 DisplayString
alarmTripType	 1.3.6.1.4.1.17373.2.1.6	 read only	 INTEGER(0..9)

Climate Sensor OID’s			
climateTable	 1.3.6.1.4.1.17373.2.2	 no access	 other
climateEntry	 1.3.6.1.4.1.17373.2.2.1	 no access	 other
climateIndex	 1.3.6.1.4.1.17373.2.2.1.1	 no access	 INTEGER(1..1)
climateSerial	 1.3.6.1.4.1.17373.2.2.1.2	 read only	 DisplayString
climateName	 1.3.6.1.4.1.17373.2.2.1.3	 read only	 DisplayString
climateAvail	 1.3.6.1.4.1.17373.2.2.1.4	 read only	 TruthValue
climateTempC	 1.3.6.1.4.1.17373.2.2.1.5	 read only	 INTEGER(-50..100)
climateHumidity	 1.3.6.1.4.1.17373.2.2.1.6	 read only	 INTEGER(0..100)
climateAirflow	 1.3.6.1.4.1.17373.2.2.1.7	 read only	 INTEGER(0..100)
climateLight	 1.3.6.1.4.1.17373.2.2.1.8	 read only	 INTEGER(0..100)
climateSound	 1.3.6.1.4.1.17373.2.2.1.9	 read only	 INTEGER(0..100)
climateIO1	 1.3.6.1.4.1.17373.2.2.1.10	 read only	 INTEGER(0..100)
climateIO2	 1.3.6.1.4.1.17373.2.2.1.11	 read only	 INTEGER(0..100)
climateIO3	 1.3.6.1.4.1.17373.2.2.1.12	 read only	 INTEGER(0..100)

Power Monitor OID’s		 	
powerMonitorTable	 1.3.6.1.4.1.17373.2.3	 no access	 other
powerMonitorEntry	 1.3.6.1.4.1.17373.2.3.1	 no access	 other
powMonIndex	 1.3.6.1.4.1.17373.2.3.1.1	 no access	 INTEGER(1..100)
powMonSerial	 1.3.6.1.4.1.17373.2.3.1.2	 read only	 DisplayString
powMonName	 1.3.6.1.4.1.17373.2.3.1.3	 read only	 DisplayString
powMonAvail	 1.3.6.1.4.1.17373.2.3.1.4	 read only	 TruthValue
powMonKWattHrs	 1.3.6.1.4.1.17373.2.3.1.5	 read only	 Unsigned32
powMonVolts	 1.3.6.1.4.1.17373.2.3.1.6	 read only	 Unsigned32
powMonVoltMax	 1.3.6.1.4.1.17373.2.3.1.7	 read only	 Unsigned32
powMonVoltMin	 1.3.6.1.4.1.17373.2.3.1.8	 read only	 Unsigned32

Low-Cost Web Server / Gerry Cullen 169

SNMP

powMonVoltPk	 1.3.6.1.4.1.17373.2.3.1.9	 read only	 Unsigned32
powMonAmpsX10	 1.3.6.1.4.1.17373.2.3.1.10	 read only	 Unsigned32
powMonRealPow	 1.3.6.1.4.1.17373.2.3.1.11	 read only	 Unsigned32
powMonAppPow	 1.3.6.1.4.1.17373.2.3.1.12	 read only	 Unsigned32
powMonPwrFact	 1.3.6.1.4.1.17373.2.3.1.13	 read only	 INTEGER(0..100)
powMonOutlet1	 1.3.6.1.4.1.17373.2.3.1.14	 read only	 INTEGER(0..100)
powMonOutlet2	 1.3.6.1.4.1.17373.2.3.1.15	 read only	 INTEGER(0..100)

External Temp Sensor OID’s			
tempSensorTable	 1.3.6.1.4.1.17373.2.4	 no access	 other
tempSensorEntry	 1.3.6.1.4.1.17373.2.4.1	 no access	 other
tempSensorIndex	 1.3.6.1.4.1.17373.2.4.1.1	 no access	 INTEGER(1..100)
tempSensorSerial	 1.3.6.1.4.1.17373.2.4.1.2	 read only	 DisplayString
tempSensorName	 1.3.6.1.4.1.17373.2.4.1.3	 read only	 DisplayString
tempSensorAvail	 1.3.6.1.4.1.17373.2.4.1.4	 read only	 TruthValue
tempSensorTempC	 1.3.6.1.4.1.17373.2.4.1.5	 read only	 INTEGER(-50..100)

External Temp/Airflow/Humidity OID’s (RTAF or RTAFH)	 	 	
airFlowSensorTable	 1.3.6.1.4.1.17373.2.5	 no access	 other
airFlowSensorEntry	 1.3.6.1.4.1.17373.2.5.1	 no access	 other
airFlowSensorIndex	 1.3.6.1.4.1.17373.2.5.1.1	 no access	 INTEGER(1..100)
airFlowSensorSerial	 1.3.6.1.4.1.17373.2.5.1.2	 read only	 DisplayString
airFlowSensorName	 1.3.6.1.4.1.17373.2.5.1.3	 read only	 DisplayString
airFlowSensorAvail	 1.3.6.1.4.1.17373.2.5.1.4	 read only	 TruthValue
airFlowSensorFlow	 1.3.6.1.4.1.17373.2.5.1.5	 read only	 INTEGER(0..100)
airFlowSensorTempC	1.3.6.1.4.1.17373.2.5.1.6	 read only	 INTEGER(-50..100)
airFlowSensorHumidity	 1.3.6.1.4.1.17373.2.5.1.7	 read only	 INTE-
GER(0..100)

Power Only OID’s (RSP)	 	 	
powerOnlyTable	 1.3.6.1.4.1.17373.2.6	 no access	 other
powerOnlyEntry	 1.3.6.1.4.1.17373.2.6.1	 no access	 other
powerIndex	 1.3.6.1.4.1.17373.2.6.1.1	 no access	 INTEGER(1..100)
powerSerial	 1.3.6.1.4.1.17373.2.6.1.2	 read only	 DisplayString
powerName	 1.3.6.1.4.1.17373.2.6.1.3	 read only	 DisplayString
powerAvail	 1.3.6.1.4.1.17373.2.6.1.4	 read only	 TruthValue
powerVolts	 1.3.6.1.4.1.17373.2.6.1.5	 read only	 Unsigned32
powerAmps	 1.3.6.1.4.1.17373.2.6.1.6	 read only	 Unsigned32
powerRealPow	 1.3.6.1.4.1.17373.2.6.1.7	 read only	 Unsigned32
powerAppPow	 1.3.6.1.4.1.17373.2.6.1.8	 read only	 Unsigned32
powerPwrFactor	 1.3.6.1.4.1.17373.2.6.1.9	 read only	 INTEGER(0..100)

External Door Sensor OID’s			
doorSensorTable	 1.3.6.1.4.1.17373.2.7	 no access	 other
doorSensorEntry	 1.3.6.1.4.1.17373.2.7.1	 no access	 other
doorSensorIndex	 1.3.6.1.4.1.17373.2.7.1.1	 no access	 INTEGER(1..100)
doorSensorSerial	 1.3.6.1.4.1.17373.2.7.1.2	 read only	 DisplayString
doorSensorName	 1.3.6.1.4.1.17373.2.7.1.3	 read only	 DisplayString
doorSensorAvail	 1.3.6.1.4.1.17373.2.7.1.4	 read only	 TruthValue
doorSensorStatus	 1.3.6.1.4.1.17373.2.7.1.5	 read only	 INTEGER(0..100)

F i n c h
S o f t w a r e

S p e c i f i c a t i o n s

Code Functions

Protocols

User Defined Features

Low-Cost Web Server / Geist Technology 171

Finch Software Specs

172	 Low-Cost Web Servers / Geist Technology

Finch Software Specs

Finch Software Specifications

v1.1 July 18, 2007

This specification gives a list of the software features
contained in the basic Finch configuration. All device access is
through a non-encrypted web page. The device firmware can be
upgraded by the end user.

This Finch can be be re-branded with a reseller’s logo and text.
The text “(OEM)” means that it is possible to change this value
by updating files in the Flash File System. This means the values
are permanent from the end user’s point of view, but they are
changeable without changing the firmware.

Web User Interface
Header

Device type (eg,”MicroGoose”) (™)
	 Version number of the firmware (h4)
	 Company logo (OEM)
	 Device friendly name
	 Device current IP address

Footer
Name of the company with copyright and home page link (OEM)
Technical support contact info: email, phone (OEM)

Topbar
Menu of all available pages
Current page is clearly marked in the menu
Link to view sensor data in XML format
Link to download the MIB for the device

Live Sensor Readings Page
Current sensor values
Values are displayed with proper units of measurement
Values are highlighted in red if they are in an alarmed state

Device Configuration Page
Device-wide friendly name

Configuration Page
Network Configuration

Manual
User must set IP address, net mask, and gateway

SNMP
SNMP community string for GET
SNMP community string for TRAP

Low-Cost Web Server / Geist Technology 173

Finch Software Specs

SNMP port to listen on for GET
One IP Addresses to send TRAP on alarm

Alarm Configuration
The device has a set maximum number of possible alarms
Each alarm has the following properties:

Threshold type (high trip only)
Threshold value (sensor value for tripping alarm)
Action (SNMP only)

Firmware
Upload new firmware

XML Page
Format identical to that of standard products
Must work with console
Must work with the Excel logger

Layout
Uses goose-like layout

FTP
Upload changes to Flash File System

Web Server
Single-threaded server, just like WxGoose

SNMP
Only protocol v1.0 will be supported
Server settings are configurable as defined on the configuration screen
MIB is included in the flash file system so it can be downloaded by the

user without CD’s or access to another web site
The server handles GET and GET-NEXT
RFC OID values must be present but most can be faked for now.

Settings that must be there in v1.0 are:
Manufacturer (OEM)

Support contact info (OEM)
IP address info

Our OID values will include at least:
Device type
Device version number
Device friendly name

Sensors
Power monitoring via CT’s
“current sensor values” means “current as of the last successful sensor

sweep.”
Done by the CT read interrupt. Other threads can access only the last-

known-good values in a thread-safe manner
Alarms

Alarms are configured from a web page (described elsewhere)
Each alarm has high-trip only
GNMP only

174	 Low-Cost Web Servers / Geist Technology

Finch Software Specs

When an alarm is triggered:
Trap is sent; var-binds:
Current sensor value

Firmware Upgrades
Firmware is updatable by the enduser
Upgrade system detects invalid firmware – bad headers, bad

checksums, too large, etc.
If the firmware isn’t fully uploaded or is invalid, the device continues

with the existing firmware, even after a reboot
Flash I/O Manager

The manager controls read and write access to the flash chips.
Settings Manager

Manages loading and saving system-wide settings, both user
preferences and internal state that we need to preserve across
reboot

Provides defaults when no settings are present
Ability to “Reset to defaults”

Hard Reset
There is a user-accessible reset button
To reset the device, hold the button.
The “reset” action is specifically:

IP address, net-mask, SNMP settings, channel names, alarm
values, gateway can all be reset to factory defaults

Demo Mode
Web page displays current mode: demo vs. normal

Low-Cost Web Server / Geist Technology 175

Finch Software Specs

O w l
S o f t w a r e

S p e c i f i c a t i o n s

Code Functions

Protocols

User Defined Features

Low-Cost Web Server / Geist Technology 177

Owl Software Specs

178	 Low-Cost Web Servers / Geist Technology

Owl Software Specs

Owl Software Specifications

v1.1 July 18, 2007

This specification give a list of the software features contained
in the basic Owl configuration. All device access is through a non-
encrypted web page. The device firmware can be upgraded by the
enduser.

This Owl can be be re-branded with a reseller’s logo and text.
The text “(OEM)” means that it is possible to change this value
by updating files in the Flash File System. This means the values
are permanent from the enduser’s point of view, but they are
changeable without changing the firmware.

Web User Interface
Header

Device type (eg,”MicroGoose”) (™)
	 Version number of the firmware (h4)
	 Company logo (OEM)
	 Device friendly name
	 Device current IP address
	 General status indicator:

Bold, green text when everything is fine (h5)
Bold, red text when at least one alarm is triggered

Footer
Name of the company with copyright and home page link (OEM)
Technical support contact info: email, phone (OEM)
Device location
Device administrator name, phone, email

Sidebar
Menu of all available pages
Current page is clearly marked in the menu
Link to view sensor data in XML format
Link to download the MIB for the device

Live sensor readings Page
Current sensor values
Entire page refreshes automatically every 60 seconds
Values are displayed with proper units of measurement
Values are highlighted in red if they are in an alarmed state

Device Configuration Page
Device-wide friendly name
Temperature unit can be changed

Low-Cost Web Server / Geist Technology 179

Owl Software Specs

Device Administration
Full Name (optional)
Email Address (optional)
Phone Number (optional)
Device Location (optional)

Alarm Configuration Page
The device has a set maximum number of possible alarms
Each alarm has the following properties:

Device/sensor to monitor
Threshold type (high or low)
Threshold value (sensor value for tripping the alarm)
Action (email, SNMP)

The user cannot configure the ordering of alarms but can create/
destroy alarms at will up to the maximum number

See the Alarms section below for internals
Configuration Page

Reset to defaults button
Network Configuration

Manual
User must set IP address, net mask, and gateway

Automatic
User can specify DHCP

Domain name to IP resolution
Fields to enter IP:port for two DNS servers

Realtime Clock
Fields for user to set local time
Field for user to set offset from GMT
Manual setting or sync to SNTP server
Two SNTP sever addresses: primary, secondary.
User set synchronization internal

Video Cameras
Up to four cameras configurable
Drop-down list of natively-supported camera models, plus one
option for “Custom”
Text box for entering the IP address and port of a supported
camera or a standard URL for the “Custom” field
Individual cameras can be disabled

Email
IP Address of SMTP server
Port number of SMTP server (default 25)
“From” address
Up to 5 “To” addresses
IP Address of POP3 server
Port number of POP3 server (default 110)
Username for email

180	 Low-Cost Web Servers / Geist Technology

Owl Software Specs

Password for email
Button for “send test email” (saves first)

SNMP
SNMP community string for GET
SNMP community string for TRAP
SNMP port to listen on for GET
SNMP port to send TRAP
Two IP Addresses to send TRAP on alarm
Ability to disable SNMP server completely
Button for “send test trap” (saves first)

HTTP
HTTP port number can be set
Flash File System
Form allowing file system uploads

Firmware
Form allowing new firmware uploads

Help Page
A simple help page explaining how things work
No screen shots used
Static content only; served up from flash file system

XML Page
Format identical to that of the goose
Must work with console
Must work with the Excel logger

Layout
Uses contemporary layout

Web Server
Listening port is configurable
Single-threaded server, just like WxGoose
Entire flash file system is always served up by the web server, so

OEM’s can potentially insert entire additional files to be served up
Supports “If-Modified-Since” caching for static content

Security
Supports HTTPS/SSL Cypher Suites shown below:

SSL-RSA-RC4-128-MD5
SSL-RSA-RC4-128-SHA
SSL-RSA-3DES-EDE-CBC-SHA
TLS-RSA-AES-128-CBC-SHA
TLS-RSA-AES-256-CBC-SHA

User accounts: admin, view only, control.
Per page read/write privileges assignable to user accounts

SNMP
Only protocol v1.0 will be supported
Server settings are configurable as defined on the configuration screen
MIB is included in the flash file system so it can be downloaded by the

Low-Cost Web Server / Geist Technology 181

Owl Software Specs

user without CD’s or access to another web site
A single thread is used for the SNMP server

The server handles GET and GET-NEXT
Traps are sent by the alarms thread

RFC OID values must be present but most can be faked for now.
Settings that must be there in v1.0 are:

Manufacturer (OEM)
Support contact info (OEM)
IP address info

Our OID values will include at least:
Device type
Device version number
Device friendly name
Device location
Device administrator information
Current temperature, C
Current temperature, F
Current humidity

Sensors
Temperature, humidity, on-board
“current sensor values” means “current as of the last successful sensor

sweep.” This sweep happens once every 5 seconds or less often if
this activity is pre-empted by a large amount of network activity.
PIC delivers T and H in our usual way

Each time the values are successfully updated, the time-of-last-update
is modified

The sensor-sweeper is in the device manager thread. Other threads
can access only the last-known-good values in a thread-safe
manner

Dallas 1-Wire protocol is supported for remote sensors
Alarms

Alarms are configured from a web page (described elsewhere)
Each alarm has high-trip or low-trip threshold
Sending emails and SNMP traps can be separately enabled

Syslogd
These alerts are always enabled
These messages won’t actually be sent unless the syslogd subsystem is

configured by the user
Only one message per alarm set/clear
Format includes friendly names, current values, threshold values, and

whether this is “set” or “clear” alarm
When an alarm is triggered:

Email is sent
Trap is sent; var-binds:

Base device ID

182	 Low-Cost Web Servers / Geist Technology

Owl Software Specs

Base device friendly name
Remote device ID (same as base for internal sensors)
Remote device friendly name (same as base for internals)
Current sensor value

Syslogd message is sent
When an alarm is cleared:
Email is sent
Syslogd message is sent
Hysteresis so alarms are not repeatedly triggered and cleared if sensor

value vacillates over a threshold value
Email subject lines are brief so can be viewed easily on cell phones
Email content is as brief as possible for easy viewing on cell phones
Alert messages generally use friendly names wherever possible
Alert messages include unique device ID wherever possible
Alarms states are evaluated at the end of every sensor sweep as part of

the sensor sweep thread.
If alerts are necessary, a message is placed in a queue and a separate

thread handles sending the alert.(e.g. e-mail/SMNP trap)
syslogd

The internal logging facility can send logging messages to the serial
debugging port

Firmware Upgrades
Firmware must be updatable in the field
Upgrade system must detect invalid firmware – bad headers, bad

checksums, too large, etc. The user must not be able to kill the
device by uploading a file

If the firmware wasn’t fully uploaded or is invalid, the device must
continue with the existing firmware, even after a reboot

Flash I/O Manager
The manager controls read and write access to the flash chips.
Provides “continuous buffer” API to the rest of the code, so no other

subsystem needs to understand anything about sectors or other
flash-chip-specific information

Auto CRC for all read and write operations, so other subsystems can
assume that a non-error operation has been double-checked.

Automatically ignores trivial writes (a sector-write where no bytes
changed) increasing both speed and flash chip lifetime. Other
subsystems can therefore

Settings Manager
Manages loading and saving system-wide settings, both user

preferences and internal state that we need to preserve across
reboot

Provides defaults when no settings are present
Ability to “Reset to defaults”
All settings accessible using get/set API; no setting is accessed directly

Low-Cost Web Server / Geist Technology 183

Owl Software Specs

by other subsystems
Setting access is thread-safe, and this constraint is managed

completely by the settings manager so other threads can call any
API without worrying about threads.

Error messages are provided in the case that setting a variable was
illegal

These error messages can be propagated up to the user in
situations like the web-based user interface
Error messages include things like “Text too long for this
variable” or “IP address required” or other formatting issues.

System Upgrade Management
Systems get upgraded to new versions; settings must always be

preserved in that case. Sometimes previous settings will affect the
default values during the upgrade.

Existing settings must stay where they are in memory so that system
down-grades will still preserve those settings that existed at that
time. This may mean writing a setting in two places if we needed
to change how the setting was represented.

All system upgrade paths will be supported, but not all downgrades
must be. However we must specifically document when we’re not
supporting downgrading through a certain version so customers
are aware.

OEM Settings
Items marked (OEM) in this spec can be altered using the “flash file

system.” This means these items can be updated at authorized
sites without changing the firmware.

These settings will be in a plain-text file with one setting per line in
“key=value” format. All data will be pulled from this file.

End users are not able to update these items, so for them these things
will appear to just be built into the unit.

New flash file systems can be uploaded using a secret web page.
Secret because there are no links to it and we only tell OEM’s
about it
The page contains a form that allows the user to upload a new
flash file system image
The upload mechanism makes a small attempt to validate the
input – checking that the header is correct – so that if the file is
obviously not really a valid flash file system it will be rejected
and the existing file system will remain
If the file system image appears correct, but later in the file
there is an error or if the end user cancels the operation, the
device might be left without a flash file system at all. The
operator must re-upload a valid file system to remedy
This “secret page” must operate completely independently
from the flash file system since it must be operational even

184	 Low-Cost Web Servers / Geist Technology

Owl Software Specs

without a file system. This means a custom page handler just
for the page without styles, logos, and so on.

Hard Reset
There will be a user-accessible reset button (paperclip or easy-push?)
To reset the device, hold the button for 5 seconds.
The “reset” action is specifically:
IP address, net-mask, gateway reset to factory defaults
Web server port reset to 80

Demo Mode
By use of the user/admin password user functions can be set. In the

WeatherGoose this was called “Demo Mode.”
Graphing

Typical number of variables: 12 typical
Number of colors: 23
Scaling: automatic
Selection of graphed values:
Based on logged data
View trends in sensor data
Plot multiple sensors (data) per graph

Logs
Store sensor data in non-volatile memory
Store up to days/weeks/months of data depending on number of

sensors and user configuration
Download data values in CVS format for analysis by other programs

Real Time Clock
Separate RTC chip interfaced to LPC processor using I2C bus.
RTC chip has on-board backup power source (super capacitor) so that

accurate time is kept over a period of days without an external
power source.

Functions to provide time data strings formatted for display in
web page (local time) and per RFC 2616 for inclusion in HTTP
response headers (GMT).

Local time/date and offset from GMT are entered through the Config
web page.

Parts to be further specified:
FTP
Telnet
BOOTP
SNMP “SET”
daily affirmation
special WAP page

Low-Cost Web Server / Geist Technology 185

Owl Software Specs

M i c r o G o o s e -
A S a m p l e
P r o d u c t

Low-Cost Computer Room Climate Monitor

Owl Processor

Power-over-Ethernet

Temperature & Humidity Sensors

Built in Six Weeks

Low-Cost Web Server / Geist Technology 187

MicroGoose

188	 Low-Cost Web Servers / Geist Technology

MicroGoose

About the size of a candy bar, the MicroGoose contains temperature
and humidity sensors in a metal case. The exposed circuit board

contains the temperature and humidity sensor.

Climate Monitor for Server Rooms with PoE or Cabinets

Worried about hot spots in blade server cabinets or remote
computer rooms? Place these tiny MicroGoose monitors where you
need them. Get e-mail and SNMP alerts with escalations. Add
an optional web camera and see what’s going on. A bare-bones
version of the best-selling WeatherGoose IT climate monitor, this
small monitor fits tight budgets and spaces with PoE and video
options.

Sensors are exposed outside the metal case to minimize
heating by circuitry.

Web Accessed, Self-Contained
Temperature, humidity sensors internal
Web accessed (internal web server)
Power-over-Ethernet optional
E-mail alarms and escalations
Simple installation, built-in brackets

SNMP, XML pre-installed

Optional video camera

Low-Cost Web Server / Geist Technology 189

MicroGoose

Typical Applications

The small size and low cost of the unit and the use of a web
interface make the MicroGoose useful for:

Blade server cabinets - where hot spots need monitoring
Small server rooms - to detect air conditioning failures early
Data centers - to know temperature and humidity in problem

areas.

Note that the MicroGoose can be ordered with the Power-
over-Ethernet option.

Internal Sensors

Temperature: -40°F to 140°F, +/-0.5°C
Humidity: 5%- 100%, +/-5%

Video Camera
Up to four cameras supported
Axis 205, 206 or D-Link 950 (optional)

Specifications
Physical: 4”L x 1.5”H x 1.5”W, 0.5 pounds
Power: 6VDC (supplied wall transformer)
Ethernet: 10 Mbps, RJ-45 receptacle

Power-over-Ethernet Option

The MicroGoose can be powered with an external wall transformer power
supply or Power-over-Ethernet (PoE). The PoE option requires an extra

internal circuit and must be specified at time of ordering.

Wall Transformer

Power over Ethernet

Hub

WebCam MicroGoose

190	 Low-Cost Web Servers / Geist Technology

MicroGoose

Standards: FCC Part 15, 802.3fc (PoE)

Control:

Reset push-button: restores factory settings and factory IP
address (192.168.123.123)

Software Features

HTTP - web access

Alarms - high, low values, multiple addresses

SMTP/POP3 - e-mail alerts, POP password

SNMP - MIB with Gets, Traps and Clears

Paging - e-mail to pager proxy

XML - all values exposed and meta-tagged

Console - multiple MiniGoose viewer available, with log
aggregation, and thumbnail camera views (optional).

Internal Board Heating

The electronics generate a small of amount of heat which can
heat the temperature sensor. Bench tests show a typical internal
heating amount of 3°F in still air. The temperature and humidity
sensors are mounted externally on a thin fiberglass board to

In this drawing, a MicroGoose and an optional webcam monitor a server
room with four cabinets. The IT manager knows the temperature and

humidity plus gets e-mails when the web cam detects motion.

Wall Transformer

Power over Ethernet

Hub

WebCam MicroGoose

Low-Cost Web Server / Geist Technology 191

MicroGoose

minimize this internal heating error.

If the MicroGoose is exposed to a 25 cfm airflow, which
is typical in computer rooms and cabinets, the internal heat is
dispersed by the airflow reducing the heating offset error to less
than 2°F.

The heating error is additive over a wide range. If the actual
room temperature is 70°F the MicroGoose shows 72°F, typically.
At an actual room temperature of 90°F, the MicroGoose indicates
92°F. The actual amount of heating error depends on the amount
of airflow around the unit airflow.

To restore the factory set address and defaults press the
small internal reset switch on the side of the metal case of the
MicroGoose for two seconds.

Model Number:

WxGoos-5 MicroGoose (includes a wall-mounted power supply)

WxGoos-5P Same as above plus an internal Power-over-Ethernet
adaptor.

The simple home page shows the temperature, humidity and
thumbnails of up to four video cameras. The cameras can be

configured to send an e-mail upon detection of motion.

D a t a I n p u t
a n d O u t p u t

M e t h o d s

Analog Data Input

Analog Data Output

Digital Data Input

Digital Data Output

Low-Cost Web Server / Gerry Cullen 193

Inputs & Outputs

194	 Low-Cost Web Servers / Geist Technology

Inputs & Outputs

Analog Data Inputs (Typical)

0 - 5 VDC
0 - 10 VDC
4 - 20 ma
0 - 240 VAC

Analog Data Inputs - Single source

Analog to
Digital
Converter

Scaling or
Conditioning
Circuitry

Analog
Signal

Analog Data Inputs - Multiple Sources

Multiplexor

Multiple
Analog
Signal
Inputs

Micro
Processor

Micro
Processor

Either single or multiple analog inputs can be used. If multiple inputs are
required, a multiplexor circuit can share one analog to digital converter

among dozens of input signals.

Low-Cost Web Server / Gerry Cullen 195

Inputs & Outputs

Analog Data Output - Basic and Amplified

0 - 5 VDC
0 - 10 VDC
4 - 20 ma
0 - 240 VAC

Analog Data Output - Basic voltage output

Digital to Analog Output:
0 - 5 VDC typical

) - 5 VDC

0 - 100 VDC

Boosted Analog Output

SignalAmplifier

Micro
Processor

Micro
Processor

Voltage or current output can also be created in a variety of formats. The native
output of the embedded processor is either 3 or 5 volts. If this is not the voltage
needed or you need a current-based signal, additional circuits are needed. The

output can drive meters, lamps or other devices.

196	 Low-Cost Web Servers / Geist Technology

Inputs & Outputs

Many devices generate serial data which can be used by a variety of circuits.
Serial data is usually easy to convert into web pages since the data formats

normally conform to widely used standards.

Serial Data Inputs (Typical)

RS-232
RS-485
I2C
1-Wire
Modbus

into microprocessor)

Single Serial Data Inputs (Typical)

Multiple Data Inputs - RS-485

Multiple receivers accommodate mixed
types such as RS-232, I2C and others

Mixed Data Inputs - Multiple data formats

Micro
Processor

Micro
Processor

Micro
Processor

Low-Cost Web Server / Gerry Cullen 197

Inputs & Outputs

Many devices have an on-off command. A typical use of this is the control of
a relay which, in turn, controls a remote device such as a motor or light. A
web enabled device could control one or hundreds of relays. A relay can be

specifically sized to handle the amount of control current needed.

198	 Low-Cost Web Servers / Geist Technology

Inputs & Outputs

Digital Data Displays - LED displays and Printers

Parallel Interface LED or LCD display

Parallel Interface Printer

Parallel Interface

1 2 3

Micro
Processor

Micro
Processor

Micro
Processor

Some devices require a parallel format of data. Typical of these devices are
parallel printers, numeric displays, and some types of industrial controllers.
Typical devices use eight data lines plus one for control and error checking.

Many legacy devices use parallel data transmission and reception.

Low-Cost Web Server / Gerry Cullen 199

Inputs & Outputs

