

Demonstrating TMS320C2xx
Pipeline Operation During an
Interrupt

APPLICATION BRIEF: SPRA357

James Doublesin

Digital Signal Processing Solutions
 January 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... .. 7
Product Support on the World Wide Web... 8
TMS320C2xx Pipeline Scenarios... 9
Interrupt Occurring Around SETC and CLRC... 10
Changing IMR Register Bit to Protect Code without Globally

Disabling Interrupts.. 19

Examples
Example 1. C2xx Pipeline Interrupt at XOR... 10
Example 2. C2xx Pipeline Interrupt at LACL ... 11
Example 3. C2xx Pipeline Interrupt at SETC... 12
Example 4. C2xx Pipeline Interrupt at ADD... 13
Example 5. C2xx Pipeline Interrupt at SACL ... 14
Example 6. C2xx Pipeline Interrupt at CLRC... 15
Example 7. C2xx Pipeline Interrupt at SUB... 16
Example 8. C2xx Pipeline Interrupt at SACH .. 17
Example 9. C2xx Pipeline Interrupt at AND... 18
Example 10. Unprotected Code During an IMR Change ... 19
Example 11. Protecting the Code During an IMR Change... 20

Demonstrating TMS320C2xx Pipeline Operation During an Interrupt 7

Demonstrating TMS320C2xx Pipeline
Operation During an Interrupt

Abstract

This application brief describes the behavior of the Texas
Instruments (TI™) TMS320C2xx pipeline during an interrupt
occurring around the SETC and CLRC instructions. This brief also
explains how to change the appropriate bit in the IMR register to
protect a block of code without globally disabling interrupts.

Each scenario was tested using the TMS320C209SE (’C209SE)
DSP and its internal timer as the interrupt source. Pipeline
operation was verified using actual code traces on the
XDS511/522 emulator.

SPRA357

8 Demonstrating TMS320C2xx Pipeline Operation During an Interrupt

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA357

Demonstrating TMS320C2xx Pipeline Operation During an Interrupt 9

TMS320C2xx Pipeline Scenarios

Example 1 through Example 9 show an analysis of the
TMS320C2xx DSP pipeline behavior during an interrupt occurring
around the SETC and CLRC instructions. Example 10 and
Example 11 focus on changing the appropriate bit in the IMR
register to protect a block of code without globally disabling
interrupts.

For each example:

� The interrupts have a one-cycle synchronization to the CPU
core. When an interrupt occurs, the synchronization circuitry
actually recognizes it on the rising edge of the clock (between
each cycle). If the interrupt is valid on the clock edge, the
synchronization circuitry sends a low pulse to the core
(interrupt recognized). There is no interrupt synchronization
on the ’C2xlp core, but the diagrams can be adjusted
depending on the type of synchronization you have.

� During a CLRC INTM instruction, the CPU automatically holds
off any interrupt through the execution phase for it and the
following instruction.

� An interrupt occurs in the CPU by jamming an INTR instruction
into the decode phase of the pipeline. The address of the
most recently fetched instruction is pushed to the stack so that
normal operation can continue on return from the interrupt.

� When an interrupt occurs, all instructions in the pipeline will
complete through the execute phase.

� CLRC INTM changes INTM in the execution phase. SETC
INTM changes INTM in the decode phase.

� SACL IMR changes the IMR in the execution phase, and the
change in the IMR is not realized until the next cycle.

� The pipeline is represented with zero wait state operation.

SPRA357

10 Demonstrating TMS320C2xx Pipeline Operation During an Interrupt

Interrupt Occurring Around SETC and CLRC

Example 1. C2xx Pipeline Interrupt at XOR

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL X X X B
Decode XOR INTR X X X B
Read XOR INTR X X X B ...
Execute XOR INTR X X X B

1) INT
goes low
here

2) Interrupt recognized
here
(synchronizers
pulse INTn)

3) INTR jammed
into decode phase
of pipeline

Address of LACL
pushed to stack

int occurs here

4) Soft interrupt
executes

5) First instruction
at interrupt vector
is fetched

Code Example

SPRA357

Demonstrating TMS320C2xx Pipeline Operation During an Interrupt 11

Example 2. C2xx Pipeline Interrupt at LACL

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR
LACL
SETC X X B

Decode XOR INTR X X X B
Read XOR INTR X X X B ...
Execute XOR INTR X X X B

3) INTR jammed
into decode phase
of pipeline

Address of SETC
pushed to stack

int occurs here

4) Soft interrupt
executes

5) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt recognized
here
(synchronizers
pulse INTn)

(INTM did not
change yet)

 XLACL

LACL
LACL

SPRA357

12 Demonstrating TMS320C2xx Pipeline Operation During an Interrupt

Example 3. C2xx Pipeline Interrupt at SETC

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL SETC SACL CLRC AND OR X B

Decode
Read
Execute

int occurs here

7) Soft interrupt
executes

8) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt recognized
here
(synchronizers
pulse INTn)

3) INTR not jammed
into decode phase
of pipeline

Execution continues
normally

(INTM = 1)

 ... X XSACHSUBADD

XOR LACL ADD SACL SACH AND X X ... XINTRSUBCLRCSETC
XOR SETC ADD SUB SACH INTR X ... XANDCLRCSACLLACL

LACL SETC CLRC SUB AND X ...INTRSACHSACLADDXOR

SETC changes
INTM to 1.
Interrupts disabled.

4) CLRC executes
INTM = 0.
Interrupts re-enabled.

5) By definition the next
instruction after CLRC
cannot be interrupted

6) INTR can now
be jammed into
pipeline

Address of OR
pushed to stack

SPRA357

Demonstrating TMS320C2xx Pipeline Operation During an Interrupt 13

Example 4. C2xx Pipeline Interrupt at ADD

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL SETC SACL CLRC AND OR X B

Decode
Read
Execute

int occurs here

7) Soft interrupt
executes

8) First instruction

at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt recognized
here
(synchronizers
pulse INTn)

3) INTR not jammed
into decode phase
of pipeline

Execution continues
normally

(INTM = 1)

 ... X XSACHSUBADD

XOR LACL ADD SACL SACH AND X X ... XINTRSUBCLRCSETC
XOR SETC ADD SUB SACH INTR X ... XANDCLRCSACLLACL

LACL SETC CLRC SUB AND X ...INTRSACHSACLADDXOR

SETC changes
INTM to 1.
Interrupts disabled.

4) CLRC executes
INTM = 0.
Interrupts re-enabled.

5) By definition next
instruction after CLRC
cannot be interrupted

6) INTR can now
be jammed into
pipeline

Address of OR
pushed to stack

SPRA357

14 Demonstrating TMS320C2xx Pipeline Operation During an Interrupt

Example 5. C2xx Pipeline Interrupt at SACL

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL SETC SACL CLRC AND OR X B
Decode
Read
Execute

int occurs here

7) Soft interrupt
executes

8) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt recognized
here
(synchronizers
pulse INTn)

3) INTR not jammed
into decode phase
of pipeline

Execution continues
normally

(INTM = 1)

 ... X XSACHSUBADD
XOR LACL ADD SACL SACH AND X X ... XINTRSUBCLRCSETC

XOR SETC ADD SUB SACH INTR X ... XANDCLRCSACLLACL
LACL SETC CLRC SUB AND X ...INTRSACHSACLADDXOR

SETC changes
INTM to 1.
Interrupts disabled.

instruction after CLRC
5) By definition next

cannot be interrupted

4) CLRC executes
INTM = 0.
Interrupts
re-enabled.

6) INTR can now
be jammed into
pipeline

Address of OR
pushed to stack

SPRA357

Demonstrating TMS320C2xx Pipeline Operation During an Interrupt 15

Example 6. C2xx Pipeline Interrupt at CLRC

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL SETC SACL CLRC AND OR X B
Decode
Read
Execute

int occurs here

7) Soft interrupt
executes

8) First instruction

at interrupt vector

is fetched

1) INT
goes low
here

Code Example

2) Interrupt
recognized here
(synchronizers
pulse INTn)

3) INTR not jammed
into decode phase
of pipeline

Execution continues
normally

(INTM = 1)

 ... X XSACHSUBADD
XOR LACL ADD SACL SACH AND X X ... XINTRSUBCLRCSETC

XOR SETC ADD SUB SACH INTR X ... XANDCLRCSACLLACL
LACL SETC CLRC SUB AND X ...INTRSACHSACLADDXOR

SETC changes
INTM to 1.
Interrupts disabled.

instruction after CLRC
5) By definition next

cannot be interrupted

4) CLRC executes
INTM = 0.
Interrupts
re-enabled.

6) INTR can now
be jammed into

pipeline

Address of OR
pushed to stack

SPRA357

16 Demonstrating TMS320C2xx Pipeline Operation During an Interrupt

Example 7. C2xx Pipeline Interrupt at SUB

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL SETC SACL CLRC AND OR X B
Decode
Read
Execute

int occurs here

7) Soft interrupt
executes

8) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt
recognized here
(synchronizers
pulse INTn)

3) INTR not jammed
into decode phase
of pipeline

Execution continues
normally

 ... X XSACHSUBADD
XOR LACL ADD SACL SACH AND X X ... XINTRSUBCLRCSETC

XOR SETC ADD SUB SACH INTR X ... XANDCLRCSACLLACL
LACL SETC CLRC SUB AND X ...INTRSACHSACLADDXOR

instruction after CLRC
5) By definition next

cannot be interrupted

4) CLRC executes
INTM = 0.
Interrupts
re-enabled.

(INTM = 0, but ints
held off because of
CLRC)

6) INTR can now
be jammed into
pipeline

Address of OR
pushed to stack

SETC changes
INTM to 1.
Interrupts disabled.

SPRA357

Demonstrating TMS320C2xx Pipeline Operation During an Interrupt 17

Example 8. C2xx Pipeline Interrupt at SACH

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL SETC SACL CLRC AND OR X B

Decode
Read
Execute

int occurs here

7) Soft interrupt
executes

8) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt
recognized here
(synchronizers
pulse INTn)

4) INTR not jammed
into decode phase
of pipeline

Execution continues
normally

(INTM = 0, but next

 ... X XSACHSUBADD
XOR LACL ADD SACL SACH AND X X ... XINTRSUBCLRCSETC

XOR SETC ADD SUB SACH INTR X ... XANDCLRCSACLLACL
LACL SETC CLRC SUB AND X ...INTRSACHSACLADDXOR

SETC changes
INTM to 1.
Interrupts disabled.

instruction after CLRC
5) By definition next

cannot be interrupted

6) INTR can now
be jammed into
pipeline

3) CLRC executes
INTM = 0.
Interrupts
re-enabled.

Instruction after CLRC
is non-interruptible)

Address of OR
pushed to stack

SPRA357

18 Demonstrating TMS320C2xx Pipeline Operation During an Interrupt

Example 9. C2xx Pipeline Interrupt at AND

XOR *
LACL #0
SETC INTM
ADD *
SACL *
CLRC INTM
SUB *
SACH *
AND *
OR *

Fetch XOR LACL SETC SACL CLRC AND OR X B
Decode
Read
Execute

int occurs here

6) Soft interrupt
executes

7) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

3) Interrupt
recognized here
(synchronizers
pulse INTn)

 ... X XSACHSUBADD
XOR LACL ADD SACL SACH AND X X ... XINTRSUBCLRCSETC

XOR SETC ADD SUB SACH INTR X ... XANDCLRCSACLLACL
LACL SETC CLRC SUB AND X ...INTRSACHSACLADDXOR

instruction after CLRC
4) By definition next

cannot be interrupted

5) INTR is
jammed into
pipeline

2) CLRC changes
INTM = 0.
Interrupts
re-enabled.

Address of OR
pushed to stack

SETC changes
INTM to 1.
Interrupts disabled.

SPRA357

Demonstrating TMS320C2xx Pipeline Operation During an Interrupt 19

Changing IMR Register Bit to Protect Code without Globally
Disabling Interrupts

Example 10. Unprotected Code During an IMR Change

SACL IMR
ADD *
SFL *
LACL #8
OR IMR
SACL IMR
SUB *
SACH *
AND *
OR *

Fetch XOR LACL AND ADD SFL X B
Decode
Read
Execute

int occurs here

6) Soft interrupt
executes

7) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt
recognized here
(synchronizers
pulse INTn)

 X XSACL
XOR LACL SACL ADD X X B XINTRAND

XOR AND SACL X X B XINTRADDLACL
LACL AND INTR X X B ... XADDSACLXOR

0, but too late. INTR
4) IMR bit changes to

is already in pipeline

3) IMR bit has not
changed yet

5) INTR is
jammed into
pipeline

Address of SFL
pushed to stack

XOR *
LACL #0
AND IMR

If you want to protect a block of code
without globally disabling interrupts,
you must change the appropriate bit
in the IMR register. This method,
however, poses some different
problems that the user must be aware
of. First, you must realize that a
SACL IMR instruction changes the
IMR in the execution phase. This is a
problem, because if the interrupt
comes in as shown above, the
interrupt will be executed during the
code that you wanted to protect.

SPRA357

20 Demonstrating TMS320C2xx Pipeline Operation During an Interrupt

Example 11. Protecting the Code During an IMR Change

AND IMR
SACL IMR
CLRC INTM
ADD *
SFL *
LACL #8
OR IMR
SACL IMR
SUB *
SACH *

Fetch XOR SETC LACL CLRC SFL AND OR X X

Decode
Read
Execute

int occurs here

10) Soft interrupt
executes

11) First instruction
at interrupt vector
is fetched

1) INT
goes low
here

Code Example

2) Interrupt
recognized here
(synchronizers
pulse INTn)

 B XSUBORAND

XOR SETC SACL ADD SACH AND X X XINTR SACLLACLLACL

XOR AND CLRC SUB SACH INTR X XANDORSFLSETC

LACL SACL SACL SUB AND INTR XSACHLACLADDXOR

3) IMR bit changes to 0.
That interrupt is
disabled

9) INTR jammed
into pipeline

XOR *
SETC INTM
LACL #0

To properly protect the changing of an
IMR bit to disable an interrupt, you must
include a SETC and CLRC around the
code to protect it during the IMR change.
The code to the right shows how you can
disable an individual interrupt while
keeping global interrupts off for the
shortest possible time. Moving the
CLRC up to take advantage of its delay
in re-enabling interrupts will not work
because the interrupt will be recognized
in between the CLRC INTM and SACL
IMR. If you save the status of the
accumulator in your interrupt service
routine, you can move the SETC INTM
instruction between AND IMR and SACL
IMR to further reduce the time that global
interrupts are disabled. In the code to
the right, all instructions except for the
first (XOR *) and the last (OR *) are
protected from interrupts.

ADD LACL SACHSACLSACL

CLRC SFL SUBORAND

SACL ADD SACLLACLLACL

AND CLRC ORSFLSETC

8) CPU now realizes
it can act upon
the interrupt

4) INTR is not jammed
into pipeline
Global interupts still
disabled

enable global
5) First chance to

interrupts after
IMR has changed.
CLRC executes
to do that

AND *
OR *

;change bit in IMR
;enable global ints
;protected code
;protected code
;setup to enable int in IMR

;change IMR to enable int
;protected code
;protected code

;unprotected code
;disable global ints to change IMR
;setup to disable int in IMR

;protected code
;unprotected code

7) Interrupt
re-enabled
after write
to IMR

6) Global interrupts
enabled, but IMR
bit is set to 0.
Interrupt is held
off. Execution
continues normally.

Address of OR
pushed to stack

