
R

ISE 5 In-Depth
Tutorial

ISE 5 In-Depth Tutorial www.xilinx.com
1-800-255-7778

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, Rocket I/O, SelectI/O, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2002 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

ISE 5 In-Depth Tutorial www.xilinx.com
1-800-255-7778

ISE 5 In-Depth Tutorial www.xilinx.com 5
1-800-255-7778

R

Preface

About This Tutorial

About the In-Depth Tutorial
This tutorial gives a description of the features and additions to Xilinx ISE 5. The primary
focus of this tutorial is to show the relationship among the design entry tools, Xilinx and
third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE
software or those wanting to refresh their skills and knowledge.

You may choose to follow one of three tutorial flows available in this document. For
information about the tutorial flows, see “Tutorial Flows.”

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this page. You can also directly access some of
these resources using the provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools

Search this database using the search function at

http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Forums Discussion groups and chat rooms for Xilinx software users

http://toolbox.xilinx.com/cgi-bin/forum

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging

http://support.xilinx.com/partinfo/databook.htm

http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://toolbox.xilinx.com/cgi-bin/forum
http://support.xilinx.com/partinfo/databook.htm

6 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Preface: About This Tutorial
R

Tutorial Contents
This guide covers the following topics.

• Chapter 1, “Overview of ISE and Synthesis Tools,” introduces you to the ISE primary
user interface, Project Navigator, and the synthesis tools available for your design.

• Chapter 2, “HDL-Based Design,” guides you through a typical HDL-based design
procedure using a design of a runner ’s stopwatch.

• Chapter 3, “Schematic-Based Design,” explains many different facets of a schematic-
based ISE design flow using a design of a runner’s stopwatch. This chapter also
shows how to use ISE accessories such as StateCad, Project Navigator, CoreGen, and
HDL Editor.

• Chapter 4, “Behavioral Simulation,” explains how to use the ModelSim Simulator to
simulate a design before design implementation to verify that the logic that you have
created is correct.

• Chapter 5, “Design Implementation,” describes how to Translate, Map, Place, Route
(Fit for CPLDs), and generate a Bit file for designs.

• Chapter 6, “Timing Simulation,” explains how to perform a timing simulation using
the block and routing delay information from the routed design to give an accurate
assessment of the behavior of the circuit under worst-case conditions.

Tutorial Flows
This document contains three tutorial flows. In this section, the three tutorial flows are
outlined and briefly described, in order to help you determine which sequence of chapters
applies to your needs. The tutorial flows include:

• HDL Design Flow

• Schematic Design Flow

• Implementation-only Flow

HDL Design Flow
The HDL Design flow is as follows:

• Chapter 2, “HDL-Based Design”

• Chapter 4, “Behavioral Simulation”
Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

• Chapter 5, “Design Implementation”

Xcell Journals Quarterly journals for Xilinx programmable logic users

http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment

http://support.xilinx.com/xlnx/xil_tt_home.jsp

Resource Description/URL

http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/xlnx/xil_tt_home.jsp

ISE 5 In-Depth Tutorial www.xilinx.com 7
1-800-255-7778

Tutorial Flows
R

• Chapter 6, “Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

Schematic Design Flow
The Schematic Design flow is as follows:

• Chapter 3, “Schematic-Based Design”

• Chapter 4, “Behavioral Simulation”
Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

• Chapter 5, “Design Implementation”

• Chapter 6,“Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

Implementation-only Flow
The Implementation-only flow is as follows:

• Chapter 5, “Design Implementation”

• Chapter 6, “Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

8 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Preface: About This Tutorial
R

ISE 5 In-Depth Tutorial www.xilinx.com 9
1-800-255-7778

Preface: About This Tutorial
About the In-Depth Tutorial . 5
Additional Resources . 5
Tutorial Contents . 6
Tutorial Flows . 6

HDL Design Flow . 6
Schematic Design Flow . 7
Implementation-only Flow . 7

Chapter 1: Overview of ISE and Synthesis Tools
Overview of ISE . 13

Project Navigator Interface . 13
Sources in Project Window . 14

Module View . 14
Snapshot View . 15
Library View. 15

Processes for Current Source Window . 15
Process View. 15

Console Window . 16
Error Navigation to Source . 16
Error Navigation to Solution Record . 16

Using Snapshots . 16
Creating a Snapshot . 16
Restoring a Snapshot . 16
Viewing a Snapshot . 17

Using Project Archives . 17
Creating an Archive . 17
Restoring an Archive . 17

Overview of Synthesis Tools . 17
Xilinx Synthesis Technology (XST) . 17

Supported Devices . 17
Process Properties . 18

Synplify/Synplify Pro . 18
Supported Devices . 18
Process Properties . 18

LeonardoSpectrum . 18
Supported Devices . 18
Process Properties . 18

Chapter 2: HDL-Based Design
Overview of HDL-Based Design. 19
Getting Started. 20

Required Software . 20
Optional Software Requirements . 20
VHDL or Verilog? . 20

Table of Contents

10 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

R

Installing the Tutorial Project Files . 20
Copying the Tutorial Files (Optional) . 21
Starting the ISE Software . 21
Stopping the Tutorial . 22

Design Description . 22
Inputs . 23
Outputs . 23
Functional Blocks . 23

Design Entry . 24
Adding Source Files . 24
Analyzing the Source Files . 25
Correcting HDL errors . 25
Creating an HDL-Based Module . 25

Using the New Source Wizard and HDL Editor . 26
Using the Language Templates. 27
Adding the Language Template to Your File . 28

Creating a CORE Generator Module . 29
Creating the CORE Generator Module . 29
Instantiating the CoreGen Module in the HDL Code . 31

Creating a DCM Module. 34
Using DCM Wizard . 34
Instantiating the DCM1 Macro - VHDL Design . 35
Instantiating the DCM1 Macro - Verilog. 36

Synthesizing the Design . 36
Synthesizing the Design using XST . 37

Entering Constraints . 37
Entering Synthesis Options. 38
Synthesizing the Design . 39
The RTL Viewer . 39

Synthesizing the Design using Synplify/Synplify Pro . 40
Examining Synthesis Results . 41

Synthesizing the Design using LeonardoSpectrum . 43
Modifying Constraints . 43
Entering Synthesis Options through ISE. 45
The RTL/Technology Viewer . 46

Chapter 3: Schematic-Based Design
Overview of Schematic-based Design . 49
Getting Started. 49

Required Software . 49
Installing the Tutorial Project Files . 50

wtut_sc project . 50
watch_sc solution project . 50

Copying the Tutorial Files (Optional) . 50
Starting the ISE Software . 50
Stopping the Tutorial . 51

Design Description . 51
Inputs . 52
Outputs . 53
Functional Blocks . 53

ISE 5 In-Depth Tutorial www.xilinx.com 11
1-800-255-7778

R

Design Entry . 54
Opening the Project File in the ECS Schematic Editor Tool . 54
Manipulating the Window View . 54
Creating a Schematic-Based Macro . 55
Defining the CNT60 Schematic . 55

Adding Components to CNT60 . 56
Placing the Remaining Components. 57
Correcting Mistakes . 58
Drawing Wires . 58
Adding Buses . 58
Adding Bus Taps . 60
Adding Net Names. 61
Adding I/O Markers . 61

Saving the Schematic . 61
Creating the CNT60 symbol . 62
Placing the CNT60 Macro . 62
Creating a CORE Generator Module . 63

Creating the CORE Generator Module . 63
Creating a State Machine Module . 65

Opening the State Editor. 66
Adding New States . 67
Adding a Transition . 68
Adding a State Action. 68
Adding a State Machine Reset Condition . 70
Creating the State Machine Macro . 71

Creating a DCM Module. 72
Using DCM Wizard . 72
Creating the DCM1 macro . 73
Placing the STMACH, Tenths, DCM1, outs3, and decode symbols 73

Creating an HDL-Based Module . 74
Using the New Source Wizard and HDL Editor . 74
Using the Language Templates. 76
Adding the Language Template to Your File . 77
Creating the HEX2LED Symbol . 78
Adding the HEX2LED Component to the Schematic . 78

Specifying Device Inputs/Outputs . 79
Hierarchy Push/Pop. 79
Adding Input Pins . 80

Adding I/O Markers and Net Names . 81
Assigning Pin Locations . 82
Completing the Schematic . 83

Chapter 4: Behavioral Simulation
Overview of Behavioral Simulation Flow . 87
Getting Started. 88

Required Files . 88
Xilinx Simulation Libraries . 88

Unisims Library . 88
XilinxCoreLib Library . 89
Viewing the Modelsim.ini File . 89
Setting the Environment Variable . 89

12 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

R

Adding an HDL Testbench . 89
VHDL Design . 90
Verilog Design . 90

Creating a Testbench Waveform Using HDL Bencher . 90
Creating a Testbench Waveform Source . 90
Initializing Inputs . 92

Behavioral Simulation Using ModelSim . 93
Selecting Simulation Processes . 93
Specifying Simulation Properties . 93
Performing Simulation . 95
Adding Signals . 95
Saving the Simulation . 96

Chapter 5: Design Implementation
Overview of Design Implementation . 97
Getting Started. 98

Tutorial Option 1 . 98
Tutorial Option 2 . 98

Creating an Implementation Project . 98
Specifying Options . 100
Translating the Design . 103
Using the Constraints Editor . 103
Using the Pin-out Area Constraints Editor (PACE) . 106
Mapping the Design . 109
Using Timing Analysis to Evaluate Block Delays After Mapping. 111

Estimating Timing Goals with the 50/50 Rule . 111
Report Paths in Timing Constraints Option . 111

Placing and Routing the Design . 112
Using FPGA Editor to Verify the Place and Route . 113
Evaluating Post-Layout Timing . 115
Creating Configuration Data . 116
Creating a PROM File with iMPACT . 118

Chapter 6: Timing Simulation
Overview of Timing Simulation Flow . 123
Getting Started. 123

Required Software . 123
Required Files . 123
Xilinx Simulation Libraries . 124

Starting ModelSim . 124
Specifying Simulation Process Properties . 124

Simulation Properties . 125
Display Properties . 126
Simulation Model Properties . 126

Performing Simulation . 127
Adding Signals . 128
Saving the Simulation. 129

ISE 5 In-Depth Tutorial www.xilinx.com 13
1-800-255-7778

R

Chapter 1

Overview of ISE and Synthesis Tools

This chapter includes the following sections:

• “Overview of ISE”

• “Overview of Synthesis Tools”

Overview of ISE
ISE controls all aspects of the design flow. Through the Project Navigator interface, you can
access all of the various design entry and design implementation tools. You can also access
the files and documents associated with your project. Project Navigator maintains a flat
directory structure; therefore, the user must maintain revision control through the use of
snapshots.

Project Navigator Interface
The Project Navigator Interface is divided into four main subwindows, as seen in
Figure 1-1. On the top left is the Sources in Project window which hierarchically displays
the elements included in the project. Beneath the Sources in Project window is the
Processes for Current Source window, which displays available processes. The third
window at the bottom of the Project Navigator is the Console window which displays
status messages, errors, and warnings and is updated during all project actions. The fourth
window to the right is the HDL Editor window. HDL Editor enables you to edit source files
and to access the Language Templates, which is a catalog of ABEL, Verilog and VHDL
language templates that you can use and modify for your own design. These windows are
discussed in more detail in the following sections.

14 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

Sources in Project Window
This window consists of three tabs which provide information for the user. Each tab is
discussed in further detail below.

Module View

The Module View tab displays the project name, any user documents, the specified part
type and design flow/synthesis tool, and design source files. Each file in the Module View
has an associated icon. The icon indicates the file type (HDL file, schematic, core, or text
file, for example). For more information about the file icons, see the Project Navigator
online help. Select Help → Project Navigator, expand the About Projects and Sources
section, and click Source File Types.

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. HDL files
have this + to show the entities (VHDL) or modules (Verilog) within the file. You can
expand the hierarchy by clicking the +. You can open a file for editing by double-clicking
on the filename.

Figure 1-1: Project Navigator

ISE 5 In-Depth Tutorial www.xilinx.com 15
1-800-255-7778

Overview of ISE
R

Snapshot View

The Snapshot View tab displays all snapshots associated with the project currently open in
Project Navigator. A snapshot is a copy of the project including all files in the working
directory, and synthesis and simulation sub-directories. A snapshot is stored with the
project for which is was taken, and can be viewed in the Snapshot View. You can view the
reports, user documents, and source files for all snapshots. All information displayed in
the Snapshot View is read-only. Using snapshots provides an excellent version control
system, enabling subteams to do simultaneous development on the same design.

Note: Remote sources are not copied with the snapshot. A reference is maintained in the snapshot.

Library View

The Library View tab displays all libraries associated with the project open in Project
Navigator.

Processes for Current Source Window
This window contains the Process View tab.

Process View

The Process View tab is context sensitive and changes based upon the source type selected
in the Sources for Project window. From the Process View tab, you can run the functions
necessary to define, run and view your design. The Process Window provides access to the
following functions:

• Design Entry Utilities

Provides access to symbol generation and instantiation templates.

• User Constraints

Provides access to editing location and timing and constraints.

• Synthesis

Provides access to check syntax, synthesis, and synthesis reports. This varies
depending on the synthesis tools you use.

• Implement Design

Provides access to implementation tools, design flow reports, and point tools.

• Generate Programming File

Provides access to the configuration tools and bitstream generation.

The Processes for Current Source window incorporates automake technology. This enables
the user to select any process in the flow and the software automatically runs the processes
necessary to get to the desired step. For example, when you run the Implementation
process, Project Navigator also runs the synthesis process because implementation is
dependent on up-to-date synthesis results.

Note: To view a running log of command line arguments in the Console window, expand Design
Entry Utilities and select View Command Line Log File.

16 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

Console Window
The Console window displays errors, warnings, and informational messages. Errors and
warnings are signified by a red box next to the message, while warnings have a yellow box.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Console window to the
location of the error in a source HDL file. To do so, select the error or warning message,
right-click the mouse, and from the menu select Goto Source. The HDL source file opens
and the cursor moves to the line with the error.

Error Navigation to Solution Record

You can navigate from an error or warning message in the Console window to the relevant
solution records on the support.xilinx.com website. These type of errors or warnings can
be identified by the web icon to the left of the error. To navigate to the solution record,
select the error or warning message, right-click the mouse, and from the menu select Goto
Solution Record. The default web browser opens and displays all solution records
applicable to this message.

Using Snapshots
Snapshots enable you to maintain revision control over the design. A snapshot contains a
copy all of the files in the project directory. See also “Snapshot View.”

Creating a Snapshot

To create a snapshot:

1. Select Project → Take Snapshot.

2. In the Take a Snapshot of the Project dialog box, enter the snapshot name and any
comments associated with the snapshot.

In the Snapshot View, the snapshot containing all of the files in the project directory along
with project settings displays.

Restoring a Snapshot

Since snapshots are read-only, a snapshot must be restored in order to continue work.
When you restore a snapshot, it replaces the project in your current session. To restore a
snapshot:

1. In the Snapshot View, select the snapshot.

2. Select Project → Make Snapshot Current.

Before the snapshot replaces the current project, you must place the current project in a
snapshot so that your work is not lost.

ISE 5 In-Depth Tutorial www.xilinx.com 17
1-800-255-7778

Overview of Synthesis Tools
R

Viewing a Snapshot

The Snapshot View contains a list of all the snapshots available in the current project. To
open a snapshot to review a report or verify process status:

1. Select the snapshot.

2. Right-click the mouse.

3. From the menu, select Open.

Using Project Archives
You can also archive the entire project into a single compressed file. This allows for easier
transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:

1. Select Project → Archive.

2. In the Create Zip Archive dialog box, enter the archive name and location.

The archive contains all of the files in the project directory along with project settings.
Remote sources are not zipped up into the archive.

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can
be extracted with any ZIP utility and you can then open the extracted file in Project
Navigator.

Overview of Synthesis Tools
You can synthesize your design using three synthesis tools. The following section lists the
devices supported by each synthesis tool and includes some process properties
information.

Xilinx Synthesis Technology (XST)
This synthesis tool is part of the ISE package and is available for both an HDL- or
Schematic-based design flow.

Supported Devices

• VirtexTM/-E /-II /-II Pro

• SpartanTM-II /-IIE

• XC9500TM /XL/XV

• CoolrunnerTM /-II

18 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

Process Properties

Process properties enable you to control the synthesis results of XST. Two commonly used
properties are Optimization Goal and Optimization Effort. Through these properties you
can control the synthesis results for area or speed, and the amount of time the synthesizer
runs.

More detailed information is available in the XST User Guide, available in the collection of
software manuals on the web, at
http://support.xilinx.com/support/sw_manuals/xilinx5/.

Synplify/Synplify Pro
This synthesis tool is not part of the ISE package and is not available unless purchased
separately. This synthesis tool is not available for a schematic-based design.

Supported Devices

• VirtexTM/-E /-II /-II Pro

• SpartanTM -II/-IIE

• XC9500TM /XL /XV

• CoolrunnerTM /-II

Process Properties

Process properties enable you to control the synthesis results of Synplify/Synplify Pro.
Most of the commonly used synthesis options available in the Synplify/Synplify Pro
stand-alone version are available for Synplify/Synplify PRO synthesis through ISE.

More detailed information about the specific synthesis options is available in the
Synplify/Synplify Pro online help.

LeonardoSpectrum
This synthesis tool is not part of the ISE package and is not available unless purchased
separately. Two commonly used properties are Optimization Goal and Optimization
Effort. Through these properties you can control the synthesis results for area or speed and
the amount of time the synthesizer runs.This synthesis tool is available for both an HDL-
and Schematic-based design flow.

Supported Devices

• VirtexTM/-E /-II /-IIPro

• SpartanTM -II/-IIE

• XC9500TM /XL /XV

• CoolrunnerTM /-II

Process Properties

Process properties enable you to control the synthesis results of LeonardoSpectrum. Most
of the commonly used synthesis options available for the LeonardoSpectrum stand-alone
version are available for LeonardoSpectrum synthesis through ISE.

For more information, see the LeonardoSpectrum online help.

http://support.xilinx.com/support/sw_manuals/xilinx5/

ISE 5 In-Depth Tutorial www.xilinx.com 19
1-800-255-7778

R

Chapter 2

HDL-Based Design

This chapter includes the following sections:

• “Overview of HDL-Based Design”

• “Getting Started”

• “Design Description”

• “Design Entry”

• “Synthesizing the Design”

Overview of HDL-Based Design
This chapter guides you through a typical HDL-based design procedure using a design of
a runner’s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design.
This design targets a Virtex-II device; however, all of the principles and flows taught are
applicable to any Xilinx device family, unless otherwise noted.

The design is composed of HDL elements and a CORE Generator macro; you can
synthesize the design using Xilinx Synthesis Technology (XST), LeonardoSpectrum, or
Synplify.

This chapter is the first in the “HDL Design Flow.” It is followed by Chapter 4, “Behavioral
Simulation”, in which you simulate the HDL code using the ModelSim Simulator. In
Chapter 5, “Design Implementation”, you will implement the design using the Xilinx
Implementation Tools. The simulation, implementation, and bitstream generation are
described in subsequent chapters.

For an example of how to design with CPLDs, see the ISE Software Interactive Tutorial for
Xilinx CPLDs http://support.xilinx.com/support/techsup/tutorials/index.htm.

http://support.xilinx.com/support/techsup/tutorials/index.htm

20 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Getting Started
The following sections describe the basic requirements for running the tutorial.

Required Software
To perform this tutorial, you must have the following software and software components
installed:

• Xilinx Series ISE 5.x

• ModelSim (necessary for Behavioral and Timing Simulation)

• Virtex-II libraries and device files

Note: For detailed software installation instructions, refer to the ISE Installation Guide and Release
Notes.

This tutorial assumes that the software is installed in the default location c:\xilinx. If you
have installed the software in a different location, substitute c:\xilinx for your installation
path.

Optional Software Requirements
The following third-party synthesis tools are incorporated into this tutorial, and may be
used in place of ISE’s XST synthesis tool:

• Synplify/Synplify PRO 7.x

• LeonardoSpectrum 2002.1b (or above)

VHDL or Verilog?
This tutorial supports both VHDL and Verilog designs and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial, and download the appropriate
files accordingly.

Installing the Tutorial Project Files
The Stopwatch tutorial projects can be downloaded from
http://support.xilinx.com/support/techsup/tutorials/tutorials5.htm. Download either
the VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the web, unzip the tutorial
projects in the c:\xilinx directory, and replace any existing files. The files downloaded from
the web have the most recent updates.

After you unzip the tutorial project files in c:\xilinx, the directory wtut_vhd (for a VHDL
design flow) or wtut_ver (for a Verilog design flow) is created within c:\xilinx\ISExamples,
and the tutorial files are copied into the directories.

These directories contain complete and incomplete versions of the design, done in VHDL
and Verilog, respectively. The incomplete projects are used in this tutorial to step through
the ISE flow. The completed projects are provided for reference.

http://support.xilinx.com/support/techsup/tutorials/tutorials5.htm

ISE 5 In-Depth Tutorial www.xilinx.com 21
1-800-255-7778

Getting Started
R

The following table lists the locations of both the complete and incomplete projects.

Note: Do not overwrite any files in the solutions directories.

The watchvhd(_u) and watchver(_u) solution projects contain the design files for the
completed tutorials, including HDL files and the bitstream file. To conserve disk space,
some intermediate files are not provided.

Copying the Tutorial Files (Optional)
You can either work within the project directory as it has been downloaded, or you can
make a copy to work on. To make a working copy of the tutorial files, use Windows
Explorer to copy the wtut_ver or wtut_vhd directory to another location. The project
directory contains all of the necessary project files to follow the tutorial.

Starting the ISE Software
To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop or select Start →
Programs → Xilinx ISE → Project Navigator.

Table 2-1: Tutorial Project Directories

Directory Description

wtut_vhd Incomplete Watch Tutorial - VHDL

wtut_ver Incomplete Watch Tutorial - Verilog

watchvhd_u Solution for Watch - VHDL (UNIX)

watchver_u Solution for Watch - Verilog (UNIX)

watchvhd Solution for Watch - VHDL

watchver Solution for Watch - Verilog

Figure 2-1: Project Navigator Desktop Icon

22 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

2. From Project Navigator, select File → Open Project. The Open Project dialog box
appears.

3. In the Directories list, browse to c:\xilinx\ISEexamples\wtut_vhd or
c:\xilinx\ISEexamples\wtut_ver.

4. Double-click wtut_vhd.npl (VHDL design entry) or wtut_ver.npl (Verilog design entry).

Stopping the Tutorial
You may stop the tutorial at any time and save your work by selecting File → Save All.

Design Description
The design used in this tutorial is a hierarchical, HDL-based design, which means that the
top-level design file is an HDL file that references several other lower-level macros. The
lower-level macros are either HDL modules or CORE Generator modules.

The design begins as an unfinished design. Throughout the tutorial, you complete the
design by generating some of the modules from scratch and by completing others from
existing files. When the design is complete, simulate it to verify the design’s functionality.

The Watch design is a simple runner’s stopwatch. Throughout this tutorial, the design
you’ll work with is referred to as Watch. There are three external inputs and three external
output buses in the completed design. The system clock is an externally generated signal.
The following list summarizes the input lines and output buses.

Figure 2-2: Getting Started Dialog Box

ISE 5 In-Depth Tutorial www.xilinx.com 23
1-800-255-7778

Design Description
R

Inputs
The following are input signals for the tutorial stopwatch design.

• STRTSTOP

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

• RESET

Resets the stopwatch to 00.0 after it has been stopped.

• CLK

Externally generated system clock.

Outputs
The following are outputs signals for the design.

• TENSOUT[6:0]

7-bit bus which represents the tens digit of the stopwatch value. This bus is in 7-
segment display format viewable on the 7-segment LED display.

• ONESOUT[6:0]

Similar to TENSOUT bus above, but represents the ones digit of the stopwatch value.

• TENTHSOUT[9:0]

10-bit bus which represents the tenths digit of the stopwatch value. This bus is one-hot
encoded.

Functional Blocks
The completed design consists of the following functional blocks.

• STATMACH

State Machine module defined and implemented in StateCAD.

• CNT60

HDL-based module which counts from 0 to 59, decimal. This macro has 2 4-bit
outputs, which represent the ones and tens digits of the decimal values, respectively.

• TENTHS

CORE Generator 4-bit, binary encoded counter. This macro outputs a 4-bit code which
is decoded to represent the tenths digit of the watch value as a 10-bit one-hot encoded
value.

• HEX2LED

HDL-based macro. This macro decodes the ones and tens digit values from
hexadecimal to 7-segment display format.

• SMALLCNTR

A simple Counter.

24 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

• DECODE

Decodes the CORE Generator output from 4-bit binary to a 10-bit one-hot output.

• DCM1

DCM Wizard macro with internal feedback and duty-cycle correction.

Design Entry
For this hierarchical design, you will examine HDL files, correct syntax errors, create an
HDL macro, and add a CORE Generator module, and you will create and use each type of
design macro. All procedures used in the tutorial can be used later for your own designs.

With the wtut_vhd.npl or wtut_ver.npl project open in Project Navigator, the Sources in
Project window displays all of the source files currently added to the project, with the
associated entity or module names (see Figure 2-3). In the current project, smallcntr and
hex2led are instantiated, but the associated entity or module is not defined in the project.
Instantiated components with no entity or module declaration are displayed with a red
question-mark.

Adding Source Files
HDL files must be added to the project before they can be synthesized. Four HDL files have
already been added to this project. One file must still be added.

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the process window displays all processes available for
this file.

Next, add the remaining HDL file to the project.

2. Select Project → Add Source.

3. Select smallcntr.vhd or smallcntr.v from the project directory.

4. In the Choose Source Type dialog box, select HDL Module.

5. Click OK.

Figure 2-3: Sources in Project Window

ISE 5 In-Depth Tutorial www.xilinx.com 25
1-800-255-7778

Design Entry
R

The red question-mark (?) for smallcntr should change to a V.

Analyzing the Source Files
After adding the file to the project, the file is not automatically analyzed. To analyze the
source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the Processes for Current Sources in Project window
displays all processes available for this file.

2. Double-click Analyze Hierarchy in the Synthesize hierarchy to update the files.

Correcting HDL errors
The SMALLCNTR design contains a syntax error that must be corrected. The red “x”
beside the Analyze Hierarchy process indicates an error was found during analysis. The
Project Navigator reports errors in red and warnings in yellow in the console.

To display the error in the source file:

1. Double-click on the error message in the console window.

2. Correct any errors in the HDL source file. The comments next to the error explain this
simple fix.

3. Select File → Save to save the file.

4. Re-analyze the file by selecting the HDL file and double-clicking Analyze Hierarchy
in the Synthesize hierarchy.

Creating an HDL-Based Module
Next, create a module from HDL code. With ISE, you can easily create modules from HDL
code using the HDL Editor tool. The HDL code is then connected to your top-level HDL
design through instantiation and is compiled with the rest of the design.

Now, you will author a new HDL module. This macro serves to convert the two 4-bit
outputs of the CNT60 module into a 7-segment LED display format.

Figure 2-4: smallcntr.vhd file in Source in Project window

26 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Using the New Source Wizard and HDL Editor

In order to create the module, first create a file using the New Source Wizard specifying the
name and ports of the component. The resulting “skeleton” HDL file is then modified
further in the HDL Editor.

To create the source file:

1. Select Project → New Source.

A dialog box opens in which you specify the type of source you want to create.

2. Select VHDL Module or Verilog Module.

3. In the File Name field, type ‘hex2led’.

4. Click Next.

The hex2led component has a 4-bit input port named hex and a 7-bit output port named led.
To enter these ports:

1. Click in the Port Name field and type HEX.

2. Click in the Direction field and set the direction to in.

3. In the MSB field enter 3, and in the LSB field enter 0. Refer to Figure 2-5.

Repeat the previous steps for the LED[6:0] output bus. Be sure that the direction is set
to out.

4. Click Next to complete the Wizard session.

A description of the module displays.

5. Click Finish to open the empty HDL file in HDL Editor.

Figure 2-5: New Source Wizard

ISE 5 In-Depth Tutorial www.xilinx.com 27
1-800-255-7778

Design Entry
R

The VHDL file is found in Figure 2-6. The Verilog HDL file is found in Figure 2-7.

In the HDL Editor, the ports are already declared in the HDL file, and some of the basic file
structure is already in place. Keywords are printed in blue, data types in red, comments in
green, and values are black. This color-coding enhances readability and recognition of
typographical errors.

Using the Language Templates

The ISE language templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will used the HEX2LED Converter template for this exercise. This
template provides source code to convert a 4-bit value to 7-segment LED display format.

Note: You can add your own templates to the language template for components or constructs you
use often.

Figure 2-6: Skeleton VHDL File in HDL Editor

Figure 2-7: Skeleton Verilog File in HDL Editor

28 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

To invoke the Language Templates and select the template for this tutorial:

1. Select Edit → Language Templates.

Each HDL language in the Language Template is divided into four sections:
Component Instantiations, Language Templates, Synthesis Templates, and User
Templates. To expand the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template in the right-hand pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Templates
hierarchy and select the template called HEX2LED Converter. Use the appropriate
template for the language you are using.

3. To preview the HEX2LED Converter template, click the template in the hierarchy. The
contents display in the right-hand pane.

Figure 2-8: Language Templates

Adding the Language Template to Your File

You will now use the drag and drop method for adding templates to your HDL file. A copy
and paste function is also available from the Language Template Edit Menu and the right-
click menu.

ISE 5 In-Depth Tutorial www.xilinx.com 29
1-800-255-7778

Design Entry
R

To add the template to your HDL file using the drag and drop method:

1. In the Language Template, click and drag the HEX2LED Converter name into the
hex2led.vhd file under the architecture statement, or the hex2led.v file under the module
declaration.

2. Close the Language Templates window.

3. (Verilog only) After the input and output statements and before the HEX2LED
converter that you just added, add the following line of code to the HDL file to allow
an assignment:

reg LED;

You now have complete and functional HDL code.

4. Save the file by selecting File → Save.

5. Select hex2led in the Sources in Project window and double-click Check Syntax under
Synthesize in the Processes for Current Source window.

6. Exit the HDL Editor.

Creating a CORE Generator Module
CORE Generator is a graphical interactive design tool used to create high-level modules
such as counters, shift registers, RAM and multiplexers. You can customize and pre-
optimize the modules to take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called Tenths. Tenths is a 4-bit
binary encoded counter. The 4-bit number is decoded to count the tenths digit of the
stopwatch’s time value.

Creating the CORE Generator Module

Create the CORE Generator module using the New Source Wizard in Project Navigator.
This invokes CORE Generator in which you can select and define the type of module you
want.

To create the module:

1. In Project Navigator, select Project → New Source.

2. Select Coregen IP as the source type.

3. Enter ‘tenths’ in the File Name field.

4. Click Next and then Finish.

The Xilinx CORE Generator opens and displays a list of possible COREs available.

5. Double-click on Basic Elements - Counters.

6. Double-click on Binary Counter to open the Binary Counter dialog box.

This dialog box enables you to customize the counter to the design specifications.

30 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

7. Fill in the Binary Counter dialog with the following settings:

♦ Component Name: tenths

Defines the name of the module.

♦ Output Width: 4

Defines the width of the output bus.

♦ Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

♦ Count Style: Count by Constant

Allows counting by a constant or a user supplied variable.

♦ Count Restrictions: Enable and Count To Value A (HEX)

This dictates the maximum count value.

8. Select the Next button.

9. Continue to fill in the Binary Counter dialog with the following settings:

♦ Threshold Options: Threshold 0 set to A

Signal goes high when the value specified has been reached.

♦ Threshold Options: Registered

10. Click the Register Options button to open the Register Options dialog box.

11. In the Register Options dialog box, enter the following settings:

♦ Clock Enable: Selected

♦ Asynchronous Settings: Init with a value of 1

♦ Synchronous Settings: None

Figure 2-9: CoreGen Module Selector

ISE 5 In-Depth Tutorial www.xilinx.com 31
1-800-255-7778

Design Entry
R

12. Click OK.

13. Check that only the following pins are used (used pins will be highlighted on the
model symbol to the left side of the CORE Generator window):

♦ AINIT

♦ CE

♦ Q

♦ Q_THRESH0

♦ CLK

14. Click Generate.

The module is created and automatically added to the project library.

A number of other files are added to the project directory. These files are:

♦ tenths.sym

This is a schematic symbol file.

♦ tenths.edn

This file is the netlist that is used during the Translate phase of implementation.

♦ tenths.vho or tenths.veo

This is the instantiation template that is used to incorporate the CORE Generator
module in your source HDL.

♦ tenths.vhd or tenths.v

These are simulation-only files.

♦ tenths.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

♦ coregen.prj

This file stores the Coregen configuration for the project.

15. Click Cancel and close Core Generator.

Instantiating the CoreGen Module in the HDL Code

Next, instantiate the Coregen Module in the HDL code using either a VHDL flow or a
Verilog flow.

VHDL Flow

To instantiate the Coregen Module using a VHDL flow:

1. In Project Navigator, double-click stopwatch.vhd to open the file in HDL Editor.

2. Place your cursor after the line that states:

“-- Insert Coregen Counter Component Declaration”

3. Select Edit → Insert File and choose Tenths.vho.

The VHDL template file for the Coregen instantiation is inserted.

32 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Note: The Component Declaration does not need to be modified.

4. Highlight the inserted code from

“-- Begin Cut here for INSTANTIATION Template”

to

“AINIT=>AINIT);”

5. Select Edit → Cut.

6. Place the cursor after the line that states:

“--Insert Coregen Counter Instantiation”

7. Select Edit → Paste to place the instantiation here.

8. Change “your_instance_name” to XCOUNTER.

Figure 2-10: VHDL Component Declaration of Coregen Module

ISE 5 In-Depth Tutorial www.xilinx.com 33
1-800-255-7778

Design Entry
R

9. Edit this instantiated code to connect the signals in the Stopwatch design to the ports
of the Coregen module as shown in Figure 2-11.

10. Save the design using File → Save, and close HDL Editor.

Verilog Flow

To instantiate the Coregen Module using a Verilog flow:

1. In Project Navigator, double-click stopwatch.v to open the file in HDL Editor.

2. Select File → Open and open the tenths.veo file.

3. Highlight the inserted code in tenths.veo from

“Tenths YourInstanceName”

to

“AINIT=(AINIT));”

4. Select Edit → Copy.

5. Place the cursor after the line in stopwtch.v that states:

“// Place the Coregen Component Instantiation for Tenths here.”

6. Select Edit → Paste to place the instantiation here.

7. Change “YourInstanceName” to XCOUNTER.

Figure 2-11: VHDL Component Instantiation of Coregen Module

34 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

8. Edit this code to connect the signals in the Stopwatch design to the ports of the
Coregen module as shown in Figure 2-12.

9. Save the design using File → Save and close stopwatch.v in HDL Editor.

Creating a DCM Module
The DCM Wizard, one part of the Xilinx Architecture Wizard, enables a user to graphically
select Digital Clock Manager (DCM) features that you wish to use. In this section, create a
basic DCM module with CLK0 feedback and duty-cycle correction.

Using DCM Wizard

To create the DCM1 module:

1. In Project Navigator, select Project → New Source.

2. In the New Source dialog box, select Architecture Wizard and type ‘DCM1’ for the
File Name.

3. Click Next, then Finish.

The Xilinx Architecture Wizard is launched.

4. In the Xilinx Architecture Wizard selection box, select DCM Wizard and click OK.

The DCM Wizard is launched.

5. Deselect RST and LOCKED.

6. Type 50 for the Input Clock Frequency.

Figure 2-12: Verilog Component Instantiation of the CoreGen Module

ISE 5 In-Depth Tutorial www.xilinx.com 35
1-800-255-7778

Design Entry
R

7. Verify the following settings:

♦ CLKIN Source: External

♦ Feedback Source: Internal

♦ Feedback Value: 1X

♦ Phase Shift: None

♦ Duty Cycle Correction: Yes

8. Select the Advanced button.

9. Change Wait for DCM lock before DONE signal goes high to Yes.

10. Select OK and Next.

An informational message displays the locked signal and the STARTUP_WAIT option.

11. Select OK and Finish.

DCM1.xaw is added to the list of project source files in the Sources in Project window.

Note: The newly created DCM1_arwz.ucf does not need to be added to the projects as all of the
constraints are passed into the relevant source file(s).

Instantiating the DCM1 Macro - VHDL Design

Next, instantiate the DCM1 macro for your VHDL or Verilog design. To instantiate the
DCM1 macro for the VHDL design:

1. In Project Navigator, in the Sources in the Project window, select DCM1.xaw.

2. Double-click on View HDL Instantiation Template under the Design Entry Utilities in
the Processes for Current Source window.

3. From the newly opened HDL Instantiation Template copy the component declaration
template:

COMPONENT DCM1

PORT(

clkin_in : IN std_logic;

clk0_out : OUT std_logic

);

END COMPONENT;

4. Paste the component declaration into the section in stopwatch.vhd labeled
-- Insert DCM1 component declaration here.

5. From the newly opened HDL Instantiation Template copy the instantiation template:

Inst_DCM1: DCM1 PORT MAP(

clkin_in => ,

clk0_out =>

);

6. Paste the instantiation template into the section in stopwatch.vhd labeled
-- Insert DCM1 instantiation here.

7. Connect the DCM1 port clkin_in to signal clk.

8. Connect the DCM1 port clk0_out to signal clk_dcm.

36 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

9. If you encounter an error when trying to view the HDL instantiation template, the
design will not synthesize properly. To resolve the potential synthesis problem:

a. Select File → Open, and select DCM1.vhd.

b. In HDL Editor, scroll down to the port map of the DCM.

c. Add DSSEN => GND, after CLKFB => CLKFB_IN,

d. Select File → Save.

Instantiating the DCM1 Macro - Verilog

To instantiate the DCM1 macro for your Verilog design:

1. In Project Navigator, in the Sources in the Project window, select DCM1.xaw.

2. Double-click on View HDL Instantiation Template under the Design Entry Utilities in
the Processes for Current Source window.

3. From the newly opened HDL Instantiation Template, copy the instantiation template:

DCM1 instance_name (

 .CLKIN_IN(CLKIN_IN),

 .CLK0_OUT(CLK0_OUT)

);

4. Paste the instantiation template into the section in stopwatch.v labeled
//Insert DCM1 instantiation here.

Synthesizing the Design
So far, the design in the tutorial has been using XST for syntax checking and analysis. The
next portion of the design is the synthesis of the HDL code that you entered into the
project. The job of a synthesis tool is to take HDL code and generate a supported netlist
type (EDIF or NGC for the Xilinx implementation tools). The synthesis tools perform three
general steps (although all synthesis tools further break down these general steps) to create
the netlist:

• Analyze

Checks the syntax of the source code.

• Compile

Translates and optimizes the HDL code into a set of components that the synthesis tool
can recognize.

• Map

The components from the compile stage are translated into the target technology’s
primitive components.

The synthesis tool can be changed at any time during the design flow. Changing the design
flow results in the deletion of implementation data. You have not yet created any
implementation data.

For projects that contain implementation data, Xilinx recommends that you take a
snapshot of the project before changing the synthesis tool to preserve this data. For more
information about taking a snapshot, see “Creating a Snapshot.”

A summary of available synthesis tools is available in “Overview of Synthesis Tools.”

ISE 5 In-Depth Tutorial www.xilinx.com 37
1-800-255-7778

Synthesizing the Design
R

To change the synthesis tool:

1. Select the targeted part in the Sources in Project window.

2. Select Source → Properties.

3. In the Project Properties dialog box, click the Design Flow column and use the
pulldown arrow to select the desired synthesis tool from the list.

Next, perform design synthesis using one of the following tools:

• “Synthesizing the Design using XST”

• “Synthesizing the Design using Synplify/Synplify Pro”

• “Synthesizing the Design using LeonardoSpectrum”

Synthesizing the Design using XST
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available for synthesis using XST:

• View Synthesis Report gives a mapping and timing summary as well as synthesis
optimizations that took place.

• View RTL Schematic, accessible from the Launch Tools hierarchy, generates a
schematic of your HDL code.

• Analyze Hierarchy will set up the HDL in its hierarchical order.

• Check Syntax verifies that the HDL code is entered properly.

Entering Constraints

Starting in the 5.1i release, XST supports a new User Constraint File (UCF) style syntax to
define synthesis and timing constraints. Xilinx strongly suggests that you use this syntax
style for your new designs.

Figure 2-13: Specifying Synthesis Tool

38 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Note: Xilinx supports the old constraint syntax without any further enhancements for this release of
XST, but eventually support will be dropped.

This new syntax style format is called the Xilinx Constraint File (XCF). The XCF must have
an extension of .xcf. XST uses this extension to determine if the syntax is related to the new
or old style. Please note that if the extension is not .xcf, XST will interpret it as the old
constraint style.

To create a new Xilinx Constraint File:

1. Select Project → New Source.

2. In the New Source dialog box, select User Document as the source type, and enter the
file name ‘stopwatch.xcf’.

3. Select Next, and Finish.

The new XCF file launches in HDL Editor.

4. In the new XCF document, type in the following:

NET “CLK” TNM_NET = “CLK_GROUP”;

TIMESPEC “TS_01”=PERIOD “CLK_GROUP” 50 MHz;

BEGIN MODEL stopwatch

NET RESET LOC = A5;

END;

5. Select File → Save.

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor”
and “Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used option is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a signal from a flip-flop or setting the desired
frequency of the design.

Figure 2-14: Contents of stopwatch.xcf

ISE 5 In-Depth Tutorial www.xilinx.com 39
1-800-255-7778

Synthesizing the Design
R

To enter synthesis options:

1. Highlight stopwatch.vhd (or stopwatch.v) in the Sources in Project window.

2. Right-click on the Synthesize process and select Properties.

3. Under the Synthesis Options tab click in the Synthesis Constraints File field and
select stopwatch.xcf.

4. Check the Write Timing Constraints box.

5. Select the OK button.

Synthesizing the Design

Now, you are ready to synthesize your design. To take the HDL code and generate a
compatible netlist:

1. Select stopwatch.vhd (or stopwatch.v).

2. Double-click the Synthesize process in the Processes for Current Source window.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Current Source window, and selecting Process → Run.

The RTL Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code is helpful for analyzing your design to see a graphical
connection between the various components that XST has inferred. To view a schematic
representation of your RTL code:

1. In Project Navigator, expand the Synthesize process.

2. Double-click on the View RTL Schematic.

40 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

The RTL Viewer (part of E Capture Schematic (ECS) tool) displays the schematic. Right-
click on the schematic to view various options for the schematic viewer.

You have completed XST synthesis. At this point, an NGC file exists for the Stopwatch
design. Go to:

• Chapter 4, “Behavioral Simulation” to perform a pre-synthesis simulation of this
design.

• Chapter 5, “Design Implementation” to place and route the design.

• Chapter 6, “Timing Simulation” for post-place and route simulation.

Note: For more information about XST constraints, options, reports, or running XST from the
command line, see the XST User Guide, available in the collection of software manuals on the web,
at http://support.xilinx.com/support/sw_manuals/xilinx5/.

Synthesizing the Design using Synplify/Synplify Pro
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify
outside of ISE.

Figure 2-15: XST’s RTL Viewer

ISE 5 In-Depth Tutorial www.xilinx.com 41
1-800-255-7778

Synthesizing the Design
R

To synthesize the design, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).

2. Right-click Synthesis in the Processes for Current Source window.

3. From the menu, select Properties.

4. Set the Default Frequency to 50MHz, and check the Write Vendor Constraint File box.

5. Click OK to accept these values.

6. Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process to run
synthesis.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Current Source window, and selecting Process → Run.

Examining Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the
Synthesize process. The report consists of the following three sections:

• “Compiler Summary”

• “Timing Report”

• “Mapping Report”

Compiler Summary

The compiler summary gives a brief report on the analysis, compile and mapping stages
that Synplify does to the HDL design. Each of the summaries report on the files in the
project, giving the errors and warnings that are associated with each file.

Note: Black boxes (modules not read into Synplify’s design environment) are always noted as
Unbound in the Synplify reports. As long as the underlying netlist (.xnf, .ngo, .ngc or .edn) for a black
box exists in the project directory, the Implementation tools merge the netlist into the design during
the Translate phase. Since the Tenths module was built using CORE Generator called from the
project, the tenths EDN file is found.

42 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Timing Report

The timing report section details information on the constraints that you entered along
with delays on portions of the design that had no constraints. The delay values are based
on wireload models, and therefore, are considered preliminary. Consult the post place and
route timing reports discussed in Chapter 5, “Design Implementation,” for the most
accurate delay information.

Mapping Report

The mapping report lists all of the components used for the design, such as LUTs, flip-
flops, and block RAMs.

You have now completed Synplify synthesis. At this point, an netlist EDN file exists for the
Stopwatch design.

• To perform a pre-synthesis simulation of this design, see Chapter 4, “Behavioral
Simulation”.

• To place and route the design, see Chapter 5, “Design Implementation”.

• To perform post-place and route simulation, see Chapter 6, “Timing Simulation”.

Figure 2-16: Synplify’s Estimated Timing Data

ISE 5 In-Depth Tutorial www.xilinx.com 43
1-800-255-7778

Synthesizing the Design
R

Synthesizing the Design using LeonardoSpectrum
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available in LeonardoSpectrum synthesis include:

• Check Syntax

Checks the syntax of the HDL code.

• Modify Constraints

Launches the LeonardoSpectrum tool to enable you to enter constraints.

• View Synthesis Report

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

• View Synthesis Summary

Gives a detailed map and timing report with no information on the synthesis
optimizations.

• View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of your HDL code

• View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of your HDL code mapped to the primitives associated
with the target technology.

• View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of the critical path of your HDL code mapped to the
primitives associated with the target technology.

Modifying Constraints

LeonardoSpectrum enables you to enter constraints to control optimization options and
pass timing specifications to the implementation tools. All timing specifications are stored
in the netlist constraints file (NCF) which is used by the implementation tools. Some of the
timing constraints are used by the synthesis engine to produce better synthesis results for
the place and route tools.

To modify constraints:

1. Expand the Synthesize process.

2. Double-click on the Modify Constraints process.

LeonardoSpectrum displays. First time users of the LeonardoSpectrum tool launch
LeonardoSpectrum in ’Quick Setup’ mode.

44 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

3. Click on the Advanced Flow icon as shown below.

4. Click the Constraints tab.

The constraints sub-tabs are as follows.

Global

Enables you to enter constraints that affect all of your design: PERIOD, OFFSETs and pad-
to-pad type constraints. The constraints entered here modify LeonardoSpectrum’s run
script only. A constraints file is not generated.

Clock

Enables you to enter a more detailed clock constraint accounting for pulse width and duty
cycle as well as the period. The constraints entered here modify LeonardoSpectrum’s run
script only. A constraints file is not generated.

Input

Constraints that affect the input ports such as arrival time, fanout, pin location, and pad
type.

Output

Constraints that affect the output ports such as required time, pin location, and pad type.

Signal

Individual signal constraints such as preserve signal, a low skew constraint and a max
fanout constraint.

Module

Tell the synthesiS tool to synthesize a module differently then the rest of the design.

Path

Create false and multicycle paths.

Report

A current report of constraints that have been entered.

Figure 2-17: LeonardoSpectrum Advanced Flow Icon

Figure 2-18: LeonardoSpectrum Constraints Tab

ISE 5 In-Depth Tutorial www.xilinx.com 45
1-800-255-7778

Synthesizing the Design
R

In the Constraints tab, enter the following constraints:

1. Select the Input sub-tab.

2. Select the Reset input pad.

3. In the Pin Location field, enter A5.

4. Click Apply.

5. Select the Report sub-tab, and check that the constraints were applied.

6. In order to get LeonardoSpectrum to write out a constraints file (.ctr), select any tab
(the Technology tab for example).

7. Save the constraints file to the default name stopwatch.ctr.

8. Exit LeonardoSpectrum.

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor”
and “Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used options is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a signal from a flip-flop or setting the desired
frequency of the design.

Set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).

2. Right-click the Synthesis process.

3. From the menu, select Properties.

4. Click the Synthesis Options tab, and set the Default Frequency to 50MHz.

5. Click the Netlist Options tab, and ensure that the Do Not Write NCF box is unchecked.

6. Click the Constraint File Options tab, and select the stopwatch.ctr file created in
LeonardoSpectrum, in the “Modifying Constraints” section above.

7. Click OK to accept these values.

Figure 2-19: LeonardoSpectrum Technology Tab

46 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

8. Select stopwatch.vhd (or stopwatch.v) and double-click on the Synthesize process in the
Process Window.

The RTL/Technology Viewer

LeonardoSpectrum can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code is helpful for analyzing your design to see a
graphical connection between the various components that LeonardoSpectrum has
inferred. To launch the design in LeonardoSpectrum’s RTL viewer, double-click View RTL
Schematic.

Figure 2-20: LeonardoSpectrum Synthesis/Implementation Window

ISE 5 In-Depth Tutorial www.xilinx.com 47
1-800-255-7778

Synthesizing the Design
R

LeonardoSpectrum also has the capability of generating a technology-specific view of the
design after synthesis called the Technology Viewer. This schematic representation is
useful for verifying that the inferred elements are what were intended to be for the design.

To launch the design in LeonardoSpectrum’s Technology Schematic viewer, double-click
View Technology Schematic.

Note: Viewing the technology schematic will most likely result in a multi-page schematic. To view a
different page, right-click inside the schematic and select the appropriate option from the menu.

To view the path with the worst timing delay (the critical path) of the design, launch
LeonardoSpectrum’s Technology Viewer with LeonardoSpectrum’s timing engine by
double-clicking View Critical Path Schematic. Click the View Trace button in
LeonardoSpectrum to display the critical path of the design.

Figure 2-21: RTL View of Stopwatch Design

Figure 2-22: LeonardoSpectrum View Trace Button

48 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Double-click View Synthesis Report and View Synthesis Summary to see the details of
the synthesis.

The Synthesis Report summarizes the compilation, mapping and timing of the design. The
Synthesis Summary goes into more detail on the mapping and timing of the design.

Figure 2-23: LeonardoSpectrum Critical Path Schematic

ISE 5 In-Depth Tutorial www.xilinx.com 49
1-800-255-7778

R

Chapter 3

Schematic-Based Design

This chapter includes the following sections.

• “Overview of Schematic-based Design”

• “Getting Started”

• “Design Description”

• “Design Entry”

Overview of Schematic-based Design
This chapter guides you through a typical FPGA schematic-based design procedure using
a design of a runner’s stopwatch. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices that you can apply to
your own designs. The Watch design targets a Virtex-II device; however, all of the
principles and flows taught are applicable to any Xilinx device family, unless otherwise
noted.

For an example of how to design with CPLDs, see the ISE Software Interactive Tutorial for
Xilinx CPLDs http://support.xilinx.com/support/techsup/tutorials/index.htm.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you
will use the ISE design entry tools to complete the design. The design is composed of
schematic elements, a state machine, a CORE Generator component, and an HDL macro.
After the design is successfully entered in the Schematic Editor, you will perform a
behavioral simulation with ModelSim (Chapter 4, “Behavioral Simulation”),
implementation with the Xilinx Implementation Tools (Chapter 5, “Design
Implementation”), and timing simulation with ModelSim (Chapter 6, “Timing
Simulation”).

Getting Started
The following sections describe the basic requirements for running the tutorial.

Required Software
You must have Xilinx ISE 5.x to perform this tutorial. For this design you must install the
Virtex-II libraries and device files.

This tutorial assumes that the software is installed in the default location, c:\xilinx. If you
have installed the software in a different location, substitute c:\xilinx for your installation
path.

http://support.xilinx.com/support/techsup/tutorials/index.htm

50 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Note: For detailed instructions about installing the software, refer to the ISE 5.1i Installation Guide
and Release Notes.

Installing the Tutorial Project Files
The tutorial project files can be downloaded to your local machine from
http://support.xilinx.com/support/techsup/tutorials/tutorials5.htm.

You can download and install the following schematic project directories with the tutorial.

• c:\xilinx\ISEexamples\wtut_sc
(incomplete schematic tutorial)

• c:\xilinx\ISEexamples\watch_sc
(complete schematic tutorial)

Unzip the tutorial projects in the c:\xilinx directory, and replace any existing files. The files
downloaded from the web have the most recent updates. The schematic tutorial files are
copied into the directories when you unzip the project files.

wtut_sc project

The wtut_sc project contains an incomplete copy of the tutorial design. You will create the
remaining files when you perform the tutorial. As described in a later step, you can copy
this project to another area and perform the tutorial in this new area if desired.

watch_sc solution project

The watch_sc solution project contains the design files for the completed tutorial including
schematics and the bitstream file. To conserve disk space, some intermediate files are not
provided. Do not overwrite any files in the solutions directories.

Copying the Tutorial Files (Optional)
You can either work within the project directory as it has been downloaded, or you can
make a copy to work on. To make a working copy of the tutorial files, use Windows
Explorer to copy the wtut_sc directory to another location. The wtut_sc project directory
contains all of the necessary project files.

Starting the ISE Software
To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop or select Start →
Programs → Xilinx ISE → Project Navigator.

Figure 3-1: Project Navigator Desktop Icon

http://support.xilinx.com/support/techsup/tutorials/tutorials5.htm

ISE 5 In-Depth Tutorial www.xilinx.com 51
1-800-255-7778

Design Description
R

2. From Project Navigator, select File → Open Project.

3. Browse to the directory c:\xilinx\ISEexamples\wtut_sc.

4. Double-click wtut_sc.npl. If you cannot see this file, first change the file type to Project
Files (*.npl).

Stopping the Tutorial
If you need to stop the tutorial at any time, first save your work by selecting File → Save.

Design Description
The design used in this tutorial is a hierarchical, schematic-based design, which means that
the top-level design file is a schematic sheet that refers to several other lower-level macros.
The lower-level macros are a variety of different types of modules, including a schematic-
based module, CORE Generator module, state machine module, DCM Wizard Module,
and HDL module.

Throughout this tutorial, the runner’s stopwatch design you’ll work with is referred to as
Watch.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by creating some of the modules and by completing some others from existing files.
After the design is complete, you will simulate the design to verify its functionality. For
more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

Figure 3-2: Open Project Dialog Box

52 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Watch is a simple runner’s stopwatch. The completed schematic is shown in the following
figure.

There are three external inputs and three external outputs in the completed design. The
following list summarizes the inputs and outputs, and their respective functions.

Inputs
The following are input signals for the runner’s stopwatch design:

• STRTSTOP

Starts and stops the stopwatch. This is an active-low signal that acts like the start/stop
button on a runner’s stopwatch.

• RESET

Resets the stopwatch to 00.0 after it has stopped.

• CLK

System clock for the Watch design.

Figure 3-3: Completed Watch Schematic

ISE 5 In-Depth Tutorial www.xilinx.com 53
1-800-255-7778

Design Description
R

Outputs
The following are output signals for the design:

• TENSOUT(6:0)

7-bit bus that represents the tens digit of the stopwatch value. This bus is in 7-segment
display format to be viewable on the 7-segment LED display.

• ONESOUT(6:0)

Similar to the TENSOUT bus above, but represents the ones digit of the stopwatch
value.

• TENTHSOUT(9:0)

10-bit bus which represents the tenths digit of the stopwatch value. This bus is one-hot
encoded.

Functional Blocks
The completed design consists of the following functional blocks. Most of these blocks do
not appear on the schematic sheet in the tutorial project until after you create and add them
to the schematic in this tutorial.

• STMACH_V

State Machine macro defined and implemented in StateCAD.

• CNT60

Schematic-based module which counts from 0 to 59 decimal. This macro has two 4-bit
outputs, which represent the ones and tens digits of the decimal values, respectively.

• TENTHS

CORE Generator 4-bit, binary encoded counter. This macro outputs a 4-bit code that is
decoded to represent the tenths digit of the watch value as a 10-bit one-hot encoded
value.

• HEX2LED

HDL-based macro. This macro decodes the ones and tens digit values from
hexadecimal to 7-segment display format.

• OUTS3

Schematic-based macro containing inverters.

• DECODE

Decodes the CORE Generator output from 4-bit binary to a 10-bit one-hot output.

• DCM1

DCM Wizard Macro with internal feedback and duty-cycle correction.

54 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Design Entry
In this hierarchical design, you will create various types of macros, including schematic-
based macros, HDL-based macros, state machine macros, and CORE Generator macros.
You will learn the process for creating each of these types of macros, and connect them
together to create the completed Watch design. All procedures used in the tutorial can be
used later for your own designs.

Opening the Project File in the ECS Schematic Editor Tool
To open the stopwatch.sch file in the Engineering Capture System (ECS) schematic editor
tool, double-click the file name stopwatch.sch in the Sources in Project window.

The Watch schematic diagram opens in ECS. The Watch schematic is incomplete at this
point. The unfinished design is shown in the figure below.

Manipulating the Window View
The View menu commands enable you to manipulate how the schematic is displayed.
Select View → Zoom → In until you can comfortably view the schematic.

Figure 3-4: Incomplete Watch Schematic in Engineering Capture System (ECS)

ISE 5 In-Depth Tutorial www.xilinx.com 55
1-800-255-7778

Design Entry
R

Creating a Schematic-Based Macro
A schematic-based macro consists of a symbol and an underlying schematic. You can
create either the underlying schematic or the symbol first. ECS then generates the
corresponding symbol or schematic file.

In the following steps, you will create a schematic-based macro by using the New Source
Wizard in Project Navigator. An empty schematic file is then created by ISE that you can
define in ECS with the appropriate logic. The created macro is then automatically added to
the project’s library.

The macro you will create is called CNT60. CNT60 is a binary counter with two 4-bit
outputs, which represent the Ones and Tens values of the stopwatch. The counter counts
from 0 to 59, decimal.

To create a schematic-based macro:

1. In Project Navigator, select Project → New Source. The New Source dialog opens.

The New Source dialog provides a list of all available source types.

2. Select Schematic as the source type.

3. Enter ‘CNT60’ as the file name.

4. Click Next and click Finish.

This creates a new schematic named CNT60 and adds the schematic file to the project.

Defining the CNT60 Schematic
You have now created an empty schematic for CNT60. The next step is to add the
components make up the CNT60 macro. You can then reference this macro symbol by
placing it on a schematic sheet.

Figure 3-5: New Source Dialog Box

56 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Adding Components to CNT60

Components from the device and project libraries for the given project are available from
the Symbol Libraries toolbox to place on the schematic. The available components listed in
this toolbox are arranged alphabetically within each library.

1. From the menu bar, select Add → Symbol or click the Add Symbol icon from the Tools
toolbar.

This opens the Symbol Browser window to the left of the schematic editor, which
displays the libraries and their corresponding components.

The first component you will place is an AND2, a 2-input AND gate.

2. Select this component one of two ways:

♦ Highlight the Logic category from the Symbol Browser and select the component
AND2 from the symbols list.

or

♦ Select All Symbols and type ‘AND2’ in the Symbol Name Filter at the bottom of
the Symbol Browser window.

Figure 3-6: Add Symbol Icon

Figure 3-7: Symbol Browser Dialog Box

ISE 5 In-Depth Tutorial www.xilinx.com 57
1-800-255-7778

Design Entry
R

3. Move the mouse back into the schematic window.

You will notice that the cursor has changed to represent the AND2 symbol.

4. Move the symbol outline to the location shown in Figure 3-8 and click the left mouse
button to place the object.

Note: You can rotate new components being added to a schematic by selecting CTRL+R. You
can rotate existing components by selecting the move mode, selecting the component, and then
selecting CTRL+R.

5. Place the second AND2 symbol on the schematic by moving the cursor with attached
symbol outline to the desired location and click the left mouse button. See Figure 3-8.

Placing the Remaining Components

Follow the steps above in “Adding Components to CNT60” to place the CD4CE, OR2,
CB4CE, INV, and AND4 components on the schematic sheet. Refer to Figure 3-8 for
placement of all components.

To exit the Symbols Mode, press the Esc key on the keyboard.

For a detailed description of the functionality of each of these components, refer to the
Libraries Guide, available in the collection of software manuals on the web, at
http://support.xilinx.com/support/sw_manuals/xilinx5/.

Figure 3-8: Completed CNT60 Schematic

http://support.xilinx.com/support/sw_manuals/xilinx5/

58 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Correcting Mistakes

If you make a mistake when placing a component, you can easily move or delete the
component.

To move the component, click the component and drag the mouse around the window.

Delete a placed component in one of two ways:

• Click the component and press the Delete key on your keyboard.

or

• Right-click the component and click Delete.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called nets) to connect the
components placed in the schematic.

Signals can be logically connected by naming multiple segments identically. In this case,
the nets do not need to be physically connected on the schematic to make the logical
connection. In the CNT60 schematic, draw wires to connect the components together. The
nets for the LSBSEC and MSBSEC buses are drawn in the next section.

Perform the following steps to draw a net between the AND2 and the CB4CE components
on the CNT60 schematic.

1. Select Add → Wire or click the Add Wires icon in the Tools toolbar.

2. Click the output pin of the AND2 and then click the destination pin, CE on the CB4CE
component. ECS draws a net between the two pins.

Draw the nets to connect the remaining components as shown in the Figure 3-8. To specify
the shape of the net:

1. Move the mouse in the direction you want to draw the net.

2. Click the mouse to create a 90-degree bend in the wire.

To draw a net between an already existing net and a pin, click once on the component pin
and once on the existing net. A junction point is drawn on the existing net.

You should now have all the nets drawn except those connected to the LSBSEC and
MSBSEC buses. You will draw these in the next section. Net names will be added in a later
section.

Adding Buses

In ECS, a bus is simply a wire which has been given a multi-bit name. In order to add a bus
follow the same methodology for adding wires and then add the proper name. Once a bus
has been created, you have the option of “tapping” this bus off to use each signal
individually.

Figure 3-9: Add Wires Icon

ISE 5 In-Depth Tutorial www.xilinx.com 59
1-800-255-7778

Design Entry
R

In this CNT60 schematic, create two buses called LSBSEC(3:0) and MSBSEC(3:0), each
consisting of the 4 output bits of each counter. Then connect an I/O marker to each bus in
order to connect them to the CNT60 symbol. The results can be found in the completed
schematic.

To add the buses LSBSEC(3:0) and MSBSEC(3:0) to the schematic, perform the following
steps:

1. Select Add → Wire or click the Add Wires icon in the Tools toolbar.

2. Click to the right of the CB4CE and draw a wire down and to the right of the symbol.

3. Terminate the wire with a double-click on the left mouse button.

To change the wire into a bus, the wire must be named. To name a wire:

4. Select Add → Net Name or click the Add Net Name icon in the Tools toolbar.

5. With the keyboard enter ‘msbsec(3:0)’ and press Enter.

This will attach the bus name to the cursor.

6. Click the mouse cursor, which now displays the bus name, at the end of the bus to
apply the name.

The wire changes to a bus.

7. To verify this, zoom in. The bus is represented visually by a thicker wire.

8. Repeat Steps 1 through 7 for the LSBSEC(3:0) bus, referring to Figure 3-8 for placement
of the wire and the bus name.

9. After adding the two buses, press Esc or right-click to exit the Draw Buses mode.

Figure 3-10: Add Net Name Icon

Figure 3-11: Creating a Bus by Name

60 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Adding Bus Taps

Next, add nets to attach the appropriate pins from the CB4CE and CD4CE counters to the
buses. Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic will enable greater precision when drawing the nets.

To tap off a single bit of each bus:

1. Select Add → Bus Tap or click the Add Bus Tap icon in the Tools toolbar.

The cursor changes, indicating that you are now in Draw Bus Taps mode.

2. From the options window to the left of the schematic, choose the correct orientation for
the bus.

3. Place the tap on the bus so that the wire side of the bus tap is pointing to an
unconnected pin.

Repeat steps 1 to 3 to tap off the other three bits of the bus.

To connect each of the tap off bits:

1. Select Add → Wire or click the Add Wire icon in the Tools toolbar.

2. Draw a wire from the other end of the bus taps to the corresponding pins.

3. Select Add → Net Name or click the Add Net Name icon in the Tools toolbar.

4. Type in ‘msbsec(0)’ in the blank area of the options toolbar.

The net name is now at the end of your cursor.

5. Select Increment the Name in the Add Net names options window.

6. With the Increment Name option selected, start at the top net and continue clicking
down until you have named the fourth and final net msbsec(3).

Note: ECS names the bus taps incrementally as they are drawn. Alternatively, name the first net
msbsec(3) and decrement as nets are named from the bottom up.

Repeat Steps 1 through 6 for the lsbsec(3:0) bus.

7. Press Esc to exit the Add Net Name mode.

8. Draw the nets to connect the msbsec bus taps to the INV and AND4 components. If
necessary, refer to “Drawing Wires” for guidance.

9. Compare your CNT60 schematic again with Figure 3-8 to ensure that all connections
are made properly.

Note: If the nets appear disconnected, select View → Refresh to refresh the screen.

Figure 3-12: Add Bus Tap Icon

ISE 5 In-Depth Tutorial www.xilinx.com 61
1-800-255-7778

Design Entry
R

Adding Net Names

Next, add net names to the clk, clr, and ce nets (wires).

1. Select Add → Net Name or click the Add Net Name icon in the Tools toolbar.

2. Type ‘clk’ in the Name box of the Add Net Name Options window.

Note: The Options window changes depending on which tool you have selected in the Tools toolbar.

The net name clk is now attached to the cursor.

3. Click the end of the clk net.

The name is then attached to the end of the net. The net name will appear above the net
if the name is placed at any point of the net other than the endpoint.

Repeat steps 1-3 for ce and clr.

Adding I/O Markers

I/O markers are used to determine the ports on a macro or the top level schematic.The
name of each pin on the symbol must have a corresponding connector in the underlying
schematic. Add I/O markers to the CNT60 schematic to determine the macro ports.

To add the I/O markers:

1. Select Add → I/O Marker or click the I/O Marker icon from the Tools toolbar.

The Add I/O Marker Options window opens to the left of the schematic.

2. Select Add an input marker.

3. Click and drag a box around the following nets: clk, ce, and clr.

4. Select Add an output marker in the Options window and add a marker to the
msbsec(3:0) and lsbsec(3:0) nets.

When you save a macro, the ECS schematic editor checks the I/O markers against the
corresponding symbol. If there is a discrepancy, you can let the software update the symbol
automatically, or you can modify the symbol manually. You should use I/O markers to
connect signals between levels of hierarchy and also to specify the ports on top-level
schematic sheets.

Saving the Schematic
The CNT60 schematic is now complete.

1. Save the schematic by selecting File → Save or by clicking the Save icon in the toolbar.

2. Close ECS.

Figure 3-13: Save Icon

62 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Creating the CNT60 symbol
You will now create the symbol representing the CNT60 schematic in Project Navigator.

1. In the Sources in Project window, select cnt60.sch.

2. In the Processes for Current Source window, click the + beside Design Entry Utilities to
expand the hierarchy.

3. Double-click Create Schematic Symbol.

Placing the CNT60 Macro
So far, you have created the CNT60 macro. The next step is to place this macro on the top-
level Watch schematic sheet, where it will then be connected to other components in the
design.

1. Open the Watch schematic sheet by double-clicking stopwatch.sch in the Sources in
Project window.

2. Select the Add Symbol icon to open the Symbol Browser dialog box.

3. Select the Local Symbols library (c:/xilinx/ISEexamples/wtut_sc), and locate
and select the newly created CNT60 macro from this list.

4. Place the CNT60 macro in the schematic as shown below.

Note: The Symbol Browser window remains open to enable you to quickly place additional symbols
without having to click the Add Symbol icon again. To close the Symbols window, click the X in the
upper right corner of the window or redock it to the right of the application.

Note: Do not worry about connecting nets to the pins of the CNT60 symbol. You will do this after
adding other components to the Watch schematic.

5. Close ECS.

Figure 3-14: Add Symbol Icon

Figure 3-15: Placing the CNT60 Macro

ISE 5 In-Depth Tutorial www.xilinx.com 63
1-800-255-7778

Design Entry
R

Creating a CORE Generator Module
CORE Generator is a graphical interactive design tool you use to create high-level modules
such as counters, shift registers, RAM and multiplexers. You can customize and pre-
optimize the modules to take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called Tenths. Tenths is a 4-bit
binary encoded counter. The 4-bit number is then decoded to count the tenths digit of the
stopwatch’s time value.

Creating the CORE Generator Module

Select the type of module you want and the specific features of the module in the CORE
dialog box. To create the CORE Generator module using this dialog box:

1. In Project Navigator, select Project → New Source.

2. Select Coregen IP, enter ‘tenths’ in the File Name field.

3. Click Next and click Finish.

The Xilinx CORE Generator opens and displays a list of available COREs.

4. Double-click Basic Elements - Counters.

5. Double-click Binary Counter to open the Binary Counter dialog box. This dialog box
enables you to customize the counter to the design specifications.

6. Fill in the Binary Counter dialog box with the following settings:

♦ Component Name: tenths

Defines the name of the module.

♦ Output Width: 4

Defines the width of the output bus.

♦ Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

♦ Count Style: Count by Constant

Allows counting by a constant or a user supplied variable.

♦ Count Restrictions:

- Count by value: 1

- Select restricted count

- Count to value: A

This dictates the maximum count value.

7. Select Next.

♦ Threshold Options: Enable Threshold 0 and set to A

Signal goes high when the value specified has been reached.

♦ Select Registered

64 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

8. Click the Register Options button to open the Register Options dialog box.

9. Enter the following settings.

♦ Clock Enable: Selected

♦ Asynchronous Settings: Init with a value of 1

♦ Synchronous Settings: None

10. Check that only the following pins are used (used pins will be highlighted on the
model symbol to the left side of the Coregen window):

♦ AINIT

♦ CE

♦ Q

♦ Q_Thresh0

♦ CLK

11. Click Generate.

The module is created and automatically added to the project library.

Figure 3-16: CORE Generator Module Selector

ISE 5 In-Depth Tutorial www.xilinx.com 65
1-800-255-7778

Design Entry
R

Note: A number of files are added to the project directory. These files are:

♦ tenths.sym

This is a schematic symbol file.

♦ tenths.edn

This file is the netlist that is used during the Translate phase of implementation.

♦ tenths.vhd or tenths.v

This is the instantiation template that is used to incorporate the CORE Generator
module into your source HDL.

♦ tenths.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

♦ coregen.prj

This file stores the Coregen configuration for the project.

12. Select Dismiss and close CORE Generator.

Creating a State Machine Module
With Xilinx StateCAD, you can graphically create finite state machines—states,
inputs/outputs, and state transition conditions. Transition conditions and state actions are
typed into the diagram using language independent syntax. The State Editor then exports
the diagram to either VHDL, Verilog, or ABEL code. The resulting HDL file is finally
synthesized to create a netlist and/or macro for you to place on a schematic sheet.

For this tutorial, a partially complete state machine diagram is provided. In the next
section, you will complete the diagram and synthesize the module into a macro to place on
the Watch schematic. A completed VHDL State Machine diagram has been provided for
you in the watch_sc directory.

66 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Opening the State Editor

You can invoke StateCAD from Project Navigator. The tutorial utilizes an existing diagram
which you will complete.

To open the diagram, double-click stmach_v.dia in the Sources in Project window. The state
machine file is launched in StateCAD.

In the incomplete state machine diagram above:

• The circles represent the various states.

• The black expressions are the transition conditions, defining how you move between
states.

• The output expressions for each state are contained in the circle representing the state.

In the state machine diagrams, the transition conditions and the state actions are written in
language independent syntax and then exported to Verilog, VHDL, or ABEL.

In the following section, add the remaining states, transitions, actions, and a reset
condition to complete the state machine.

Figure 3-17: Incomplete State Machine Diagram

ISE 5 In-Depth Tutorial www.xilinx.com 67
1-800-255-7778

Design Entry
R

Adding New States

Complete the state machine by adding a new state called clear.To do so:

1. Click the Add State icon in the vertical toolbar.

The state bubble is now attached to the cursor.

2. Place the new state on the left-hand side of the diagram as shown in Figure 3-19. Click
the mouse to place the state bubble.

3. The state is given a default name, in this case STATE0. Double-click STATE0 in the
state bubble, and change the name of the state to clear.

Note: The name of the state is for your use only and does not affect synthesis. Any name is
fine.

4. Click OK.

To change the shape of the state bubble, click the bubble and drag it in the direction you
wish to “stretch” the bubble.

Figure 3-18: Add State Icon

Figure 3-19: Adding the CLEAR State

68 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Adding a Transition

A transition defines the movement between states of the state machine. Transitions are
represented by arrows in the editor. You will be adding a transition from the clear state to
the zero state in the following steps. Because this transition is unconditional, there is no
transition condition associated with it.

1. Click the Add Transitions icon in the vertical toolbar.

2. Double-click the clear state (once to select it, and once to start the transition.)

3. Click the zero state to complete the transition arrow.

4. To manipulate the arrow’s shape, click and drag it in any directory.

5. Click the Select Objects icon in the vertical toolbar to exit the Add Transition mode.

Adding a State Action

A State Action dictates how the outputs should behave in a given state. You will add two
state actions to the clear state, one to drive the clkout output to 0, and one to drive the RST
output to 1.

Figure 3-20: Add Transitions Icon

Figure 3-21: Adding State Transition

ISE 5 In-Depth Tutorial www.xilinx.com 69
1-800-255-7778

Design Entry
R

To add a State Action:

1. Double-click the clear state.

The Edit State dialog box opens and you can begin to create the desired outputs.

2. Select the Output Wizard button.

3. In the Output Wizard, select the following values:

DOUT = clkout, CONSTANT = ‘0’;

DOUT = rst, CONSTANT = ‘1’;

4. Click OK to enter each individual value.

5. Click OK to exit the Edit State dialog box. The outputs are now added to the state.

Figure 3-22: Edit State Dialog Box

70 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Adding a State Machine Reset Condition

Using the State Machine Reset, specify a reset condition for the state machine. The state
machine initializes to this specified state and enters the specified state whenever the reset
condition is met. In this design, add a Reset condition which sends the state machine to the
clear state whenever the reset signal is asserted.

1. Click the Add Reset icon in the vertical toolbar.

2. Click the diagram near the clear state, as shown in the diagram below.

3. The cursor is automatically attached to the transition arrow for this reset. Move the
cursor to the clear state, and click the state bubble.

Figure 3-23: Adding State Outputs

Figure 3-24: Add Reset Icon

ISE 5 In-Depth Tutorial www.xilinx.com 71
1-800-255-7778

Design Entry
R

4. A question is then asked, “Should this reset be asynchronous(Yes) or
synchronous(No)?” Answer Yes.

5. Save your changes by selecting File → Save.

Creating the State Machine Macro

In this section, you will create the HDL code used to create a macro symbol that you can
place on the Watch schematic. The macro symbol is added to the project library. When you
create the macro, StateCAD creates HDL code representing the macro from the state
machine diagram.

1. Select Options → Compile (Generate HDL).

StateCAD verifies the state machine and displays the results.

2. Review the results and close the dialog box.

StateCAD will then create the HDL code and open a browser displaying the code.

3. Close the browser when you have finished examining the code.

4. Close StateCAD.

5. In Project Navigator, select Project → Add Source.

6. Select stmach_v.vhd, which is the VHDL file generated by StateCAD.

7. Click Open.

8. Select VHDL module as the source type.

9. Click OK.

The file stmach_v.vhd is added to the project.

Figure 3-25: Adding Reset

72 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

10. Select stmach_v.vhd.

11. In the Processes for Current Source window, double-click Create Schematic Symbol
from the Design Entry Utilities hierarchy.

Creating a DCM Module
The DCM Wizard, one part of the Xilinx Architecture Wizard, enables you to graphically
select Digital Clock Manager (DCM) features that you wish to use. In this section, you will
create a basic DCM module with CLK0 feedback and duty-cycle correction.

Using DCM Wizard

Create the DCM1 module.

1. Select Project → New Source.

2. In the New Source dialog box, select the Architecture Wizard source type, and enter
the filename ‘DCM1’.

3. Click Next and click Finish.

4. In the Xilinx Architecture Wizard Selection Box select DCM Wizard.

5. Click OK.

6. Deselect RST and Locked.

7. Type 50 for the Input Clock Frequency.

8. Verify the following settings:

♦ Clkin Source: External

♦ Feedback Source: Internal

♦ Feedback Value: 1X

♦ Phase Shift: None

♦ Duty Cycle Correction: Yes

ISE 5 In-Depth Tutorial www.xilinx.com 73
1-800-255-7778

Design Entry
R

9. Select the Advanced button.

10. Change Wait for DCM Lock before DONE Signal goes high to Yes.

11. Select OK and click Next.

An informational message about the Locked signal and the STARTUP_WAIT option
appears.

12. Select OK and then Finish.

DCM1.xaw is added to your project sources.

Creating the DCM1 macro

1. In Project Navigator, in the Sources in Project window, select DCM1.xaw.

2. In the Processes for Current Source window, double-click Create Schematic Symbol
from the Design Entry Utilities hierarchy.

Note: The newly created DCM1_arwz.ucf file does not need to be added to the project, as all of the
constraints are passed into the relevant source file(s).

Placing the STMACH, Tenths, DCM1, outs3, and decode symbols

You can now place the STMACH, Tenths, DCM1, outs3, and decode symbols on the Watch
schematic.

1. In Project Navigator, double-click watch.sch. The schematic file opens in the ECS
schematic editor. If the file is already open in ECS, ignore this step.

2. View the list of available library components in the Symbol Browser window.

Figure 3-26: Xilinx DCM Wizard

74 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

3. Locate the macros in the Local Symbols library.

4. Select the appropriate symbol, and add it to the Watch schematic as shown in
Figure 3-27.

Note: Do not worry about drawing the wires to connect this symbol. You will connect components in
the schematic later in the tutorial.

5. Save the schematic.

Creating an HDL-Based Module
With ISE, you can easily create modules from HDL code. The HDL code is connected to
your top-level HDL design through instantiation and compiled with the rest of the design.

Next you will create a new HDL module. This macro serves to convert the two 4-bit
outputs of the CNT60 module into a 7-segment LED display format.

Using the New Source Wizard and HDL Editor

Enter the name and ports of the component in the New Source wizard, and the wizard
creates a “skeleton” HDL file which you can complete with the remainder of your code.

1. In Project Navigator, select Project → New Source.

The New Source dialog box opens.

2. Select the source type VHDL Module or Verilog Module, depending on your coding
preference.

3. In the File Name field, type ‘hex2led’.

4. Click Next.

The hex2led component has a 4-bit input port named HEX and a 7-bit output port
named LED. First enter the port named HEX as follows:

5. Click in the Port Name field and type HEX.

6. Click in the Direction field and set the direction to in.

7. In the MSB field, enter 3, and in the LSB field, enter 0.

8. Repeat the previous steps for the LED(6:0) output bus. Be sure that the direction is set
to out.

The dialog box entries are displayed in Figure 3-28.

Figure 3-27: Placing Design Macros

ISE 5 In-Depth Tutorial www.xilinx.com 75
1-800-255-7778

Design Entry
R

9. Select Next to complete the Wizard session.

A description of the module displays.

10. Select Finish. The “skeleton” HDL file opens in the HDL Editor.

Figure 3-28: New Source Wizard

76 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

.

In the HDL file, the ports are already declared and some of the basic file structure is already
in place. Keywords are printed in blue, data types in red, comments in green, and values
are black. This color-coding enhances readability and recognition of typographical errors.

Using the Language Templates

The ISE Language Templates are HDL constructs and synthesis templates that represent
commonly used logic components, such as counters, D flip-flops, multiplexers, and
primitives. You can add your own templates to the Language Templates for components or
constructs you use often.

Figure 3-29: Skeleton VHDL File

Figure 3-30: Skeleton Verilog File

ISE 5 In-Depth Tutorial www.xilinx.com 77
1-800-255-7778

Design Entry
R

To invoke the Language Templates window and select a template for this tutorial:

1. In Project Navigator, select Edit → Language Templates.

Each HDL language in the Language Template is divided into four sections:
Component Instantiations, Language Templates, Synthesis Templates, and User
Templates. To expand the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template contents in the right-hand pane.

2. Locate the template called HEX2LED Converter for VHDL or Verilog located under
the Synthesis Templates heading. Use the appropriate template for the language you
are using.

3. To preview the HEX2LED Converter template, click the template in the hierarchy. The
contents display in the right-hand pane.

This template provides source code to convert a 4-bit value to 7-segment LED display
format.

Adding the Language Template to Your File

Next you will use the drag and drop method for adding templates to your HDL file. A
copy and paste function is also available from the Language Template Edit Menu and the
right-click menu.

Figure 3-31: Language Templates

78 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

To add the HEX2LED language template to your file:

1. In the Language Template, click and drag the HEX2LED Converter name into

♦ hex2led.vhd under the architecture begin statement

or

♦ hex2led.v file under the module declaration.

2. Close the Language Template window.

3. (Verilog only) After the input and output statements and before the HEX2LED
converter that you just added, add the following line of code to the HDL file to allow
an assignment.

reg LED;

You now have complete and functional HDL code.

4. Save the file by selecting File → Save.

5. In Project Navigator, select hex2led.vhd or hex2led.v in the Sources in Project window.

6. Double-click Check Syntax located in the Synthesize hierarchy in the Processes for
Current Source window.

7. Close HDL Editor.

Creating the HEX2LED Symbol

Next, create the schematic symbol representing the HEX2LED HDL in Project Navigator.

1. In the Sources in Project window, select hex2led.vhd or hex2led.v.

2. In the Processes for Current Source window, click the + beside Design Entry Utilities to
expand the hierarchy.

3. Double-click Create Schematic Symbol.

Adding the HEX2LED Component to the Schematic

You are now ready to place the HEX2LED macro (or symbol) on the Watch schematic.

1. In the Sources in Project window, double-click watch.sch. The schematic file opens in
the ECS schematic editor.

2. Open the Symbols Libraries dialog box (refer to “Adding Components to CNT60”)
to view the list of available library components.

Locate the HEX2LED macro in this list.

ISE 5 In-Depth Tutorial www.xilinx.com 79
1-800-255-7778

Design Entry
R

3. Select HEX2LED, and add two instances of this symbol to the Watch schematic, as
shown in Figure 3-32. You will connect the entire schematic later in the tutorial.

Specifying Device Inputs/Outputs
Use the I/O marker to specify device I/O on a schematic sheet. All ECS schematics are
netlisted to VHDL or Verilog and then synthesized by the synthesis tool of choice. When
the synthesis tool synthesizes the top-level HDL, the I/O markers are replaced with the
appropriate pads and buffers.

Hierarchy Push/Pop

First, perform a hierarchy “push down” which enables you to focus in on a lower-level of
the schematic hierarchy to view the underlying file. Push down into the OUTS3 macro,
which is a schematic-based user-created macro, and examine its components.

To push down into OUTS3:

1. Click the OUTS3 symbol in the schematic and select the Hierarchy Push/Pop icon.
You can also right-click the macro and select Push into Symbol.

In the OUTS3 schematic, you see a series of inverters (INV) and output buffers
(OBUF). This macro illustrates that you can place I/O buffers in a lower level macro.

Figure 3-32: Placing the HEX2LED Component

Figure 3-33: Hierarchy Push/Pop Icon

80 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

The output buffers are not required because the synthesis tool inserts a buffer when
one is not found.

2. After examining the macro, “pop out” of the OUTS3 component by clicking the
Hierarchy Push/Pop icon.

Adding Input Pins

Next, add three more input pins to the Watch schematic: CLK, RESET and STRTSTOP. Add
an IBUF component for two of the new input pins: RESET and STRTSTOP.

To add these components:

1. Click the Add Symbol icon in the toolbar to open the Symbol Browser dialog box.

2. Browse to locate the IBUF and INV components in the library.

3. Drag and drop these two components onto the schematic, as shown below.

4. Draw a hanging wire to the input of the IBUFs and DCM1. Refer to the “Drawing
Wires” for detailed instructions.

Figure 3-34: OUTS3 Schematic Macro

ISE 5 In-Depth Tutorial www.xilinx.com 81
1-800-255-7778

Design Entry
R

5. Draw a net between the output of the IBUF and input of the INV. Refer to “Drawing
Wires” for detailed instructions.

Adding I/O Markers and Net Names
It is important to label nets and buses for several reasons:

• It aids in debugging and simulation, as you can more easily trace nets back to your
original design.

• Any nets that remain unnamed in the design will be given generated names, which
will mean nothing to you later in the implementation process.

• Naming nets also enhances readability and aids in documenting your design.

Label the three input nets you just drew. Refer to the completed schematic below. To label
the RESET net:

1. Select Add → Net Name.

2. Type ‘reset’ into the Name box.

The net name is now attached to the cursor.

3. Place the name on the leftmost end of the net as illustrated in Figure 3-36.

4. Repeat Steps 1 through 3 for the STRTSTOP and CLK pins.

Once all of the nets have been labeled, add the I/O marker.

5. Select Add → I/O Marker.

6. In the Add I/O marker Options window, select Add an input for an input signal
direction.

7. Click and drag a box around the three labeled nets to place an input signal around each
net name.

Figure 3-35: Placing CLK, RESET and STRTSTOP I/O Components

Figure 3-36: Labeled Nets with I/O Markers

82 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Assigning Pin Locations
Xilinx recommends that you let the automatic placement and routing program, PAR,
define the pinout of your design. Pre-assigning locations to the pins can sometimes
degrade the performance of the place-and-route tools. However, it is usually necessary, at
some point, to lock the pinout of a design so that it can be integrated into a Printed Circuit
Board (PCB).

Define the initial pinout by running the place-and-route tools without pin assignments,
then locking down the pin placement so that it reflects the locations chosen by the tools.
Because the tutorial Watch design is simple and timing is not critical, the example pin
assignments will not adversely affect the ability of PAR to place and route the design.

Specify pin locations by attaching a LOC parameter to a buffer component. Assign a LOC
parameter to the RESET net on the Watch schematic as follows:

1. Right-click on the IBUF component connected to the RESET I/O marker, and from the
menu, select Object Properties.

2. Click the New button under Instance Attributes to add a new property.

3. Enter ‘loc’ for the Attribute Name and A5 for the Attribute Value.

4. Click OK to return to the Object Properties dialog box.

To view the location constraint on the net, add a net attribute window.

5. Check to make sure the visible box is selected.

This will display the LOC attribute on the schematic.

6. With the loc attribute selected, click Edit Traits.

Figure 3-37: Assigning Pin Locations

ISE 5 In-Depth Tutorial www.xilinx.com 83
1-800-255-7778

Design Entry
R

7. Select VHDL and select Write this attribute as well as options 2 and 3 as shown below.

8. Click OK twice to return to schematic.

Note: For details on adding Pin LOCs and other constraints, see “Using the Constraints Editor” and
“Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Completing the Schematic
Complete the schematic by wiring the components you have created and placed, adding
any additional necessary logic, and labeling nets appropriately. The following steps guide
you through the process of completing the schematic, or you may want to use the
completed schematic shown below for guidance. Each of the actions in this section has
been discussed in detail in earlier sections of the tutorial. If you need to review these
sections, you may return to them.

Figure 3-38: Writing attribute to HDL file

84 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

The finished schematic is shown in the following figure as a guide.

To complete the schematic diagram:

1. Draw a wire between the output of DCM1 and the CLK pin of the STMACH state
machine macro (see “Drawing Wires”).

2. Label this net CLK_INT.

3. Draw a wire between the IBUF of the RESET input and the RESET pin of the STMACH
state machine macro (see “Drawing Wires”).

4. Place an INV (inverter) component from the Virtex library between the IBUF of the
STRTSTOP input and the STRTSTOP pin of the STMACH state machine macro (see
“Adding Components to CNT60”).

5. Draw wires to connect the INV to both the IBUF and the STMACH state machine
macro (see “Drawing Wires”).

6. Place an AND2 component to the left of the CNT60 macro (see “Adding Components
to CNT60”).

7. Draw a wire to connect the output of the AND2 with the CE pin of the CNT60 macro
(see “Drawing Wires”).

8. Draw a wire to connect the Q_THRES0 pin of the TENTHS macro to one of the inputs
to the AND2 (see “Drawing Wires”).

9. Draw a hanging net from the CLKOUT pin of the STMACH macro. To terminate a
hanging wire, double-click it (see “Drawing Wires”).

10. Name the new added net CLKEN_INT.

Figure 3-39: Completed Watch Schematic

ISE 5 In-Depth Tutorial www.xilinx.com 85
1-800-255-7778

Design Entry
R

11. Draw a hanging net at the CLK_EN input pin of the TENTHS macro. Label this net
CLKEN_INT (see “Adding I/O Markers and Net Names”).

12. Draw a hanging wire (see “Drawing Wires”) at the other input of the AND2
component. Label this net CLKEN_INT again (see “Adding I/O Markers and Net
Names”).

Note: Remember that nets are logically connected if their names are the same, even if the net
is not physically drawn as a connection in the schematic. This method is used to make the logical
connection of the RST_INT, CLKEN_INT and CLK_INT signals.

13. Draw a hanging wire from the RST output pin of the STMACH macro (see “Drawing
Wires”).

14. Label this net RST_INT.

15. Draw two more hanging wires, also named RST_INT, from the AINIT pin of the
TENTHS macro and from the CLR pin of the CNT60 macro (see “Drawing Wires.”)

16. Draw two hanging wires, each named CLK_INT, from the CLOCK pin of the TENTHS
macro and from the CLK pin of the CNT60 macro (see “Drawing Wires.”)

17. Draw buses to complete the schematic. Label them as shown on the preceding
schematic diagram (see “Adding Buses”).

The schematic is now complete.

Save the design by selecting File → Save.

86 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

ISE 5 In-Depth Tutorial www.xilinx.com 87
1-800-255-7778

R

Chapter 4

Behavioral Simulation

This chapter contains the following sections.

• “Overview of Behavioral Simulation Flow”

• “Getting Started”

• “Adding an HDL Testbench”

• “Creating a Testbench Waveform Using HDL Bencher”

• “Behavioral Simulation Using ModelSim”

Overview of Behavioral Simulation Flow
You can perform behavioral simulation before design implementation to verify that the
logic you have created is correct. Behavioral simulation is also called functional
simulation.

Xilinx ISE provides integration with any ModelSim Simulator. ISE produces generic HDL
netlists that work with most HDL simulators. However, the integrated flow is only
available with MTI ModelSim.

You can perform behavioral simulation on a schematic-based or HDL-based design. In a
later section, you can perform timing simulation, which takes place after the design is
implemented (placed and routed) with the Xilinx implementation tools.

Behavioral simulation is an integral part of any HDL design flow. It enables a logical
(functional) check of the design before any additional time is invested in synthesis and
implementation. Xilinx ISE 5 provides a tightly integrated functional simulation flow with
any version of ModelSim (release 5.4 and newer). ModelSim 5.6a XE is used for the
examples in this tutorial.

Using ISE, behavioral simulation can be conducted using either a hand-written HDL
testbench (PC and Unix), or one generated automatically by Xilinx HDL Bencher (PC
only).

This chapter assumes that the ModelSim CD has been installed on your computer. Since
Xilinx HDL Bencher is only available on the PC platform, Unix machine users should skip
the automated testbench generation section which uses HDL Bencher. PC users can choose
either flow.

88 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

Getting Started
The following sections outline the requirements to perform this part of the tutorial flow.

Required Files
The functional simulation flow requires the following files:

• Design Files (VHDL, Verilog, or Schematic)

These files are produced by the designer, or from an HDL generation tool such as
Xilinx StateCAD.

• Stimulus File

The stimulus files are known as the testbench (VHDL, Verilog). A testbench can be
hand-written or produced using Xilinx HDL Bencher. To produce a testbench using
HDL Bencher, see “Adding an HDL Testbench”. The HDL Bencher flow is only
available on Windows platforms.

• ModelSim Script File

Use this file to run the simulation (optional). Alternatively, you can enter the
commands one-by-one into the simulator. Xilinx ISE creates the script file needed to
run simulation in ModelSim.

• Xilinx Simulation Libraries

Xilinx Simulation Libraries are required if any Xilinx primitive is instantiated in the
design. More details on the libraries and how to compile them is provided in the next
section, “Xilinx Simulation Libraries”.

Xilinx Simulation Libraries
To simulate designs containing Xilinx primitives with ModelSim in VHDL or Verilog, you
need the simulation libraries listed below, which you must compile. If you are using
ModelSim Xilinx Edition, the models are already precompiled. To get the latest models for
ModelSim XE go to http://support.xilinx.com/support/mxelibs/index.htm

Unisims Library

The Unisims library is used for behavioral (RTL) simulation with instantiated components
in the netlist, and for post-synthesis simulation.

• The recommended mapping name for the VHDL Unisims library is UNISIM.

• The recommended mapping name for the Verilog Unisims library is UNISIMS_VER.

• Additionally, there is a separate Unisims library in Verilog for simulating CPLD
designs. This library is called UNI9000. The recommended mapping name for this
library is UNI9000.

http://support.xilinx.com/support/mxelibs/index.htm

ISE 5 In-Depth Tutorial www.xilinx.com 89
1-800-255-7778

Adding an HDL Testbench
R

XilinxCoreLib Library

The XilinxCoreLib library must be used if a CoreGEN component is instantiated in the
design.

• The recommended mapping name for the VHDL library is XILINXCORELIB.

• The recommended mapping name for Verilog is XILINXCORELIB_VER.

• All VHDL simulation libraries are provided at $XILINX/vhdl/src.

• All Verilog simulation libraries are provided at $XILINX/verilog/src.

For detailed instructions on compiling these libraries, see Xilinx Solution # 2561:

1. Go to http://support.xilinx.com.

2. Enter 2561 in the search box.

3. Check to see that the search engine is pointing to Answer Records.

4. Click OK.

Solution 2561 displays on the next page.

5. Click Solution 2561 on the next page.

Viewing the Modelsim.ini File

Before compiling the libraries, view the modelsim.ini file in the ModelSim install directory.
The upper portion of the file defines the locations of the compiled libraries. When doing a
simulation, the modelsim.ini file must be provided either by:

• Copying the file directly to the directory where the HDL files are to be compiled and
the simulation is to be run, or

• Setting the MODELSIM environment variable to the location of your master.ini file. You
must set this variable since the ModelSim installation does not initially declare the
path for you. (See below.)

Setting the Environment Variable

For UNIX, type the following environment variable:

setenv MODELSIM /path/to/the/modelsim.ini

For PCs, set the MODELSIM environment variable to the path where the modelsim.ini file is
located. To set the environment variable, go to Start → Settings → Control Panel →
System → Environment.

Adding an HDL Testbench
This section demonstrates how to add pre-existing testbench files to the project. This
design flow is for users of UNIX machines who cannot generate testbenches using HDL
Bencher. PC machine users can use hand-written testbenches for their design. The
testbench must be associated with the top-level design file in order to successfully simulate
the design.

http://support.xilinx.com

90 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

VHDL Design
To add your testbench for a VHDL design:

1. Select Project → Add Source.

2. Select the testbench file stopwatch_tb.vhd.

3. Click Open.

The Choose Source Type dialog box opens.

4. Select VHDL Testbench.

5. Click OK.

ISE recognizes the top-level design file associated with the testbench, and adds the
testbench in the correct order.

Verilog Design
To add your testbench for a Verilog design:

1. Ensure that the extension of the testbench file is .tf rather than .v.

2. Select Project → Add Source.

3. Select the testbench file stopwatch_tb.tf.

4. Click Open.

ISE recognizes the top-level design file associated with the testbench and adds the
testbench in the correct order.

Creating a Testbench Waveform Using HDL Bencher
HDL Bencher is a PC-based testbench and test fixture creation tool that is part of ISE 5. Use
HDL Bencher to graphically enter stimuli and the expected response, then generate a
VHDL testbench or Verilog test fixture.

Creating a Testbench Waveform Source
To create a testbench or test fixture with HDL Bencher:

1. Select stopwatch in the Sources in Project window.

2. Select Project → New Source from the Project Navigator menu.

3. In the New dialog box, select Test Bench Waveform as the source type.

4. Type the name ‘stopwatch_tb’.

5. Click Next.

Note: In the Select dialog box, the stopwatch file is the default source file because it is selected in
the Sources in Project window (step 1).

6. Click Next.

7. Click Finish.

ISE 5 In-Depth Tutorial www.xilinx.com 91
1-800-255-7778

Creating a Testbench Waveform Using HDL Bencher
R

HDL Bencher launches and you are prompted to specify the timing parameters used
during simulation. The clock high time and clock low time together define the clock period
for which the design must operate. The Input setup time defines when inputs must be
valid. The Output valid delay defines the time after active clock edge when the outputs
must be valid.

For this tutorial, use the settings in (Figure 4-1).

Note: Click OK. If the Verilog project is being used, make sure that GSR is selected before clicking
OK.

Figure 4-1: HDL Bencher Initialization

92 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

HDL Bencher now opens with two main windows. The top window is the Waveform
window. In this window, enter graphical depictions of the stimuli and expected response.
The bottom window is the currently loaded HDL file.

Initializing Inputs
Enter the following input stimuli:

1. Click the RESET cell at time 0 to set it high.

2. Click the RESET cell under CLK cycle 5 to set it low.

3. Click the STRTSTOP cell under CLK cycle 50 to set it high.

4. Click the STRTSTOP cell under CLK cycle 55 to set it low.

5. Click the STRTSTOP cell under CLK cycle 65 to set it high.

6. Click the STRTSTOP cell under CLK cycle 70 to set it low.

7. Grab the blue line (end of testbench) and drag it to CLK cycle 80.

8. Click the Save Waveform icon in the toolbar.

9. Exit HDL Bencher.

Note: STRTSTOP is set to high only at CLK cycle 50 to give the DCM time to lock, and to be able
to give out a valid clock output.

The new testbench waveform source (stopwatch_tb.tbw) is automatically added to the
project. In the future, you can open HDL Bencher from Project Navigator by double-
clicking this file.

Figure 4-2: HDL Bencher Windows

ISE 5 In-Depth Tutorial www.xilinx.com 93
1-800-255-7778

Behavioral Simulation Using ModelSim
R

Behavioral Simulation Using ModelSim
ISE has full integration with any version of the ModelSim Simulator. ISE provides work
directory creation, source file compilation, simulation initialization, and control over
simulation properties.

Selecting Simulation Processes
To display the ModelSim Simulator Processes:

1. In the Sources in Project window, select stopwatch_tb.tbw.

2. Click the + beside ModelSim Simulator to expand the process hierarchy.

The following simulation processes are available:

• Simulate Behavioral VHDL (or Verilog) Model

This process will start the design simulation.

• Generate Expected Simulation Results

This option is available only if you have a TBW file from HDL Bencher. If you double-
click on this, ModelSim will run in the background to generate expected results and
display them in HDL Bencher.

• Simulate Post-Translate VHDL (or Verilog) Model

Simulates the netlist after the NGDBUILD implementation stage.

• Simulate Post-Map VHDL (or Verilog) Model

Simulates the netlist after the Map implementation stage.

• Simulate Post-Place & Route VHDL (or Verilog) Model

Simulates the back-annotated netlist after Place & Route, which contains the detailed
timing information as well.

In this chapter, you will perform a behavioral simulation on the stopwatch design. You
must first specify the process properties for simulation as shown in the following section.

Specifying Simulation Properties
ISE allows you to set several ModelSim Simulator properties in addition to the simulation
netlist properties. To see which properties are available for RTL simulation:

1. In the Sources in Project window, select stopwatch_tb.tbw.

2. Click the + sign next to ModelSim Simulator in the Processes For Current Source
window.

3. Right-click Simulate Behavioral VHDL (or Verilog) Model.

4. Select Properties.

94 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

The Process Properties dialog box (Figure 4-3) contains the following simulation
properties which can be specified or changed as indicated below:

♦ Custom Do File

Enables users to select a user-created .do file.

♦ Use Automatic Do File

When unchecked, this option will bring up ModelSim but not automatically run
the processes required to simulate the design. You will have to manually run the
.do file from ModelSim or enter the commands one-by-one to run simulation.

♦ Simulation Run Time

Specifies default time for which simulation is run. The “-all” setting tells
ModelSim to run the simulation until it encounters a break specified in the test
bench. Alternatively, you can enter a setting of “1000ns” so that the simulation
only runs for 1000ns.

♦ Simulation Resolution

This is set to 1 ps by default. All Xilinx simulations should be run with the
resolution set to 1ps.

♦ Design Unit Name

Enables you to specify the top-level model to be loaded in ModelSim. This
property must be changed if the testbench, module, or entity is named something
different than testbench.

The Second tab in this GUI is for selecting Display Properties. Using this tab, you can
select which ModelSim Simulation windows will automatically be invoked. By
default, the Signals, Structure and Wave windows are invoked. For more details on
MTI ModelSim Simulator windows, refer to the ModelSim User Manual.

5. For the purpose of this tutorial, none of the defaults need to be changed. Click OK to
continue.

Figure 4-3: Process Properties Dialog Box

ISE 5 In-Depth Tutorial www.xilinx.com 95
1-800-255-7778

Behavioral Simulation Using ModelSim
R

Performing Simulation
Once the process properties have been set, you are ready to run ModelSim. To start the
behavioral simulation, double-click Simulate Behavioral VHDL (or Verilog) Model.
ModelSim creates the work directory, compiles the source files, loads the design, and
performs simulation for the time specified.

Adding Signals
To view signals during the simulation, you must add them to the Wave window. ISE
automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based upon the selected structure in the Structure
window.

There are two basic methods for adding signals to the Simulator Wave window.

• Drag and drop from the Signal window.

• Highlight signals in the wave window and then select Add → Wave → Selected
Signals from the Signal window.

The following procedure explains how to add additional signals in the design hierarchy.
For the purpose of this example, add the lsbsec and msbsec signals in the cnt60 macro.

1. In the Structure window, click the + next to uut:stopwatch.

2. Select sixty:cnt60(inside) in the Structure window.

Notice that the signals listed in the Signal window are updated.

3. Click and drag lsbsec from the Signal window to the Wave window.

4. Select msbsec in the Signal window and select Add → Wave → Selected Signals to
add the signal to the Wave window.

Figure 4-4: Structure Window - Verilog flow
(In schematic / VHDL flow this may be different.)

96 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

Notice that the waveforms have not been drawn for lsbsec or msbsec.

When new signals are added to the waveform window, the simulation needs to be re-run.
To restart and re-run the simulation:

1. Click Restart Simulation.

The Restart dialog box opens.

2. Click Restart.

3. Click Run-all or Run to re-run the simulation.

Saving the Simulation
The ModelSim Simulator provides the capability of saving the signals list in the Wave
window. This can be important when additional signals or stimuli have been added and
the simulation must be restarted. The saved signals list can easily be loaded each time the
simulation is started.

1. In the Wave window, select File → Save Format.

2. In the Save Format dialog box, change the default filename wave.do to sec_signal.do.

3. Click Save.

Figure 4-5: Restart Simulation Icon

Figure 4-6: Run-All Icon

Figure 4-7: Save Format Dialog Box

ISE 5 In-Depth Tutorial www.xilinx.com 97
1-800-255-7778

R

Chapter 5

Design Implementation

This chapter contains the following sections.

• “Overview of Design Implementation”

• “Getting Started”

• “Creating an Implementation Project”

• “Specifying Options”

• “Translating the Design”

• “Using the Constraints Editor”

• “Using the Pin-out Area Constraints Editor (PACE)”

• “Mapping the Design”

• “Using Timing Analysis to Evaluate Block Delays After Mapping”

• “Placing and Routing the Design”

• “Using FPGA Editor to Verify the Place and Route”

• “Evaluating Post-Layout Timing”

• “Creating Configuration Data”

• “Creating a PROM File with iMPACT”

Overview of Design Implementation
Design Implementation is the process of translating, mapping, placing, routing, and
generating a BIT file for your design. The Design Implementation tools are embedded into
ISE for easy access and project management.

This chapter is the first in the “Implementation-only Flow” and is an important chapter for
the “HDL Design Flow” and the “Schematic Design Flow”.

This chapter demonstrates the ISE Implementation flow. The front-end design has already
been compiled in an EDA interface tool. For details about compiling the design, see
Chapter 2, “HDL-Based Design” and Chapter 3, “Schematic-Based Design.” In this
chapter, you will be passing an input netlist (EDN, NGC) from the front-end tool to the
back-end Design Implementation tools, and incorporating placement constraints through
a User Constraints File (UCF). You will add timing constraints later through the
Constraints Editor and Pin-out Area Constraints Editor (PACE).

98 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

Getting Started
The tutorial design (Watch) emulates a track coach’s stopwatch. There are two inputs to the
system: RESET and SRTSTP. The configuration clock on the device is used as a ten-hertz
clock signal. This system generates three seven-bit outputs for output to three seven-
segment LED displays. There are two options in this tutorial for design implementation.

Tutorial Option 1
Go through the previous chapters and synthesize the design to create the EDIF Netlist File.
If you don’t have a stopwatch.ucf file, you will need to create one.

To add a UCF file to the design:

1. Select xc2v40-5fg256.

2. Select Project → New Source.

3. Select Implementation Constraints File.

4. Type stopwatch.ucf as the file name.

5. Click Next twice.

6. Click Finish.

7. Go to the “Specifying Options” section.

Tutorial Option 2
Use the EDIF Netlist Files that are provided. If you choose this option, create a working
directory with the tutorial files as follows.

1. Create an empty working directory named Watch.

2. Copy the Required Tutorial Files listed in the following table from the
http://support.xilinx.com/support/techsup/tutorials/tutorial5 directory into your
newly created working directory.

Creating an Implementation Project
This section describes how to create a project with ISE. The process is the same for either
Schematic or HDL designs.

To create a project:

1. Open ISE.

a. On a workstation, enter ise &

b. On a PC, select Start → Programs → Xilinx ISE 5 → Project Navigator.

Table 5-1: Required Tutorial Files

File Name Description

stopwatch.edn, stopwatch.edf, or
stopwatch.ngc

Input netlist file (EDIF)

tenths.edn Counter netlist file (EDIF)

stopwatch.ucf User Constraints File

http://support.xilinx.com/support/techsup/tutorials/tutorial5

ISE 5 In-Depth Tutorial www.xilinx.com 99
1-800-255-7778

Creating an Implementation Project
R

2. If you are continuing this project from the previous chapters, go to “Specifying
Options.”

3. If you are using the pre-synthesized design, create a new project and add the
(stopwatch) EDIF netlist as follows:

a. Select File → New Project.

b. Type EDIF Flow for the Project Name.

c. Select the following:

- Virtex2 for the Device Family

- xc2v40 for the Device

- -5 for the Speed Grad, fg256 for the Package

- EDIF for the Design Flow.

d. Click OK.

After the project is created:

1. Right-click xc2v40-5fg256.

2. Select Add → Sources.

3. Select stopwatch.edf or stopwatch.edn, and stopwatch.ucf.

4. Click Open.

When you create a new project, you specify a design to open and a directory for the project.
You can create as many projects as you want, but you can only work with one at a time.

Figure 5-1: New Project Dialog Box

100 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

In the Sources in Project window, select the top-level module, stopwatch.edf or
stopwatch.edn. This enables the design to be implemented.

Specifying Options
This section describes how to set some options for implementation. The implementation
options control how the software maps, places, routes, and optimizes a design.

The implementation options for ISE are divided into two groups, Standard and Advanced

• The default setting is Standard, which enables access to the most commonly used
options.

• The Advanced settings provide access to all implementation options.

To enable the Advanced Options:

1. Select Edit → Preferences.

2. In the Preferences dialog box, click the Processes tab.

3. Change the Property Display Level from Standard to Advanced.

4. Click OK.

Figure 5-2: Selecting File in Sources in Project Window

ISE 5 In-Depth Tutorial www.xilinx.com 101
1-800-255-7778

Specifying Options
R

.

To set more implementation options:

1. Right-click Implement Design.

2. Select Properties.

The Process Properties dialog box provides access to the Translate, Map, Place and Route,
Simulation, and Timing Report options.

Figure 5-3: Preferences Dialog Box

Figure 5-4: Post-Place & Route Static Timing Report Properties

102 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

3. In the Post-Place & Route Static Timing Report Properties tab, change Report type to
Verbose Report.

This option changes the type of report from an error report to a verbose report. This
report is created after Place and Route is completed.

4. In the Place & Route Properties tab, change the Place & Route effort level (overall) to
Highest. This option increases the overall effort level of Place and Route during
implementation.

5. Click OK to exit the Process Properties dialog box.

The User Constraints File (UCF) provides a mechanism for constraining a logical design
without returning to the design entry tools. However, without the design entry tools, you
must understand the exact syntax needed to define constraints. In the Xilinx Development
System, the Constraints Editor and Pinout Area Constraints Editor are graphical tools that
enables you to enter timing and pin location constraints.

To launch the Constraints Editor:

1. Expand the User Constraints hierarchy.

2. Double-click Create Timing Constraints.

This automatically runs the Translate step, which is discussed in the following section.

Figure 5-5: Place & Route Properties

ISE 5 In-Depth Tutorial www.xilinx.com 103
1-800-255-7778

Translating the Design
R

Translating the Design
ISE manages the files created during implementation. The ISE tools use the settings you
supply in the Options dialog box. This gives you complete control over how a design is
processed. Typically, you set your options first. You then run through the entire flow by
clicking Implement Design, and selecting Run. This tutorial illustrates the implementation
one step at a time.

During translation, the program NGDBuild executes and performs the following
functions:

• Converts input design netlists and writes results to a single merged NGD netlist. The
merged netlist describes the logic in the design as well as any location and timing
constraints.

• Performs timing specification and logical design rule checks.

• Adds the User Constraints File (UCF) to the merged netlist.

Once these processes are complete, ISE launches the Constraints Editor.

Using the Constraints Editor
The Constraints Editor enables you to:

• Edit constraints previously defined in a UCF file.

• Add new constraints to your design.

Input files to the Constraints Editor are:

• NGD (Native Generic Database) File

The NGD file serves as input to the mapper, which then outputs the physical design
database, an NCD (Native Circuit Description) file.

• Corresponding UCF (User Constraint File)

By default, when the NGD file is opened, an existing UCF file with the same base name
as the NGD file is used. Alternatively, you can specify the name of the UCF file.

The Constraints Editor generates a valid UCF file. The Translate step (NGDBuild) uses the
UCF file, along with design source netlists, to produce a newer NGD file which

Figure 5-6: Edit Implementation Constraints

104 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

incorporates the changes made. The MAP program (the next section in the design flow)
then reads the NGD. In this design, the stopwatch.ngd file and stopwatch.ucf files are
automatically read into the Constraints Editor.

The Global tab appears in the foreground of the Constraints Editor window. This window
automatically displays all the clock nets in your design, and enables you to define the
associated period, pad to setup, and clock to pad values.

The Constraints Editor, edit the constraints as follows:

1. Select the Period cell on the row associated with the clock net CLK.

2. Double-click the left mouse button. This opens the Clock Period dialog box.

3. Within the Clock Signal Definition, keep the default (Specific Time) selected to define
an explicit period for the clock rather than designate a period which is relative to
another timing specification.

4. Enter a value of 18.5 in the Time text box.

5. Verify that ns is selected from the Units pull-down list.

6. Click OK.

The period cell is updated with the global clock period constraint that you just defined
(with a default 50% duty cycle).

Note: For the purpose of this tutorial, you open a secondary dialog box by double-clicking a cell to
specify your constraint values. Another feature is to do direct entry of constraints into cells by simply
clicking once.

7. Select the Ports tab from the Constraints Editor main window.

The left hand side displays a listing of all the current ports as defined by the user.

8. Select OnesOut<0> in the Port Name Column.

9. Hold the Shift Key and select OnesOut<6>.

This selects the elements for creating a grouped offset.

10. In the Group Name text box, type OnesOut_grp and click Create Group.

This creates the group.

Figure 5-7: Constraints Editor

ISE 5 In-Depth Tutorial www.xilinx.com 105
1-800-255-7778

Using the Constraints Editor
R

11. In the Select Group pulldown list, select the group you just created.

12. Click Clock to Pad.

The Clock to Pad dialog box opens.

13. Enter 11.5 ns for the Timing Requirement.

14. Click OK.

Figure 5-8: Selected Elements of a Grouped OFFSET

Figure 5-9: Selecting the Group that was created to use in an OFFSET

106 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

15. Select File → Save.

The changes made by Constraints Editor are now saved in the stopwatch.ucf file in your
current revision directory.

16. Select File → Exit.

Using the Pin-out Area Constraints Editor (PACE)
Use the Pin-out Area Constraints Editor (PACE) to add and edit the pin locations and area
group constraints defined in the NGD file. PACE generates a valid UCF file. The Translate
step uses this UCF file, along with the design source netlists, to produce a newer NGD file.
The NGD file incorporates the changes made in the design and the UCF file from the
previous section. PACE also places Global Logic at the Slice level with Block Ram, DCMs,
GTs, and BUFGs.

Figure 5-10: Clock to Pad Dialog

ISE 5 In-Depth Tutorial www.xilinx.com 107
1-800-255-7778

Using the Pin-out Area Constraints Editor (PACE)
R

This section describes the creation of IOB assignments for several signals. PACE edits the
UCF file by adding the newly created placement constraints.

1. To launch PACE, select Assign Package Pins under the User Constraints hierarchy.

2. Select the Package Pin window. This window shows the graphical representation of
the device package.

3. Select the Design Object List window. This window displays all the IOs in the Design.

4. In the Design Object List window, scroll down until you find the Onesout nets.

5. To enter the pin locations, select the Pin Location text box associated with each of the
following signals:

♦ onesout<0> → H4

♦ onesout<1> → E3

♦ onesout<2> → E4

♦ onesout<3> → D2

♦ onesout<4> → D3

♦ onesout<5> → D1

♦ onesout<6> → C1

Figure 5-11: Pin Out Area Constraints Editor tool when launched

108 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

To place some IOs in the Package Pin Window with the Drag and Drop functionality:

1. In the Design Object List window, drag and drop the following signals to the specific
location:

♦ Tenthsout<9> → A7

♦ Tenthsout<8> → B7

♦ Tenthsout<7> → A8

♦ Tenthsout<6> → B8

♦ Tenthsout<5> → C8

♦ Tenthsout<4> → D8

♦ Tenthsout<3> → D9

♦ Tenthsout<2> → C9

♦ Tenthsout<1> → B9

♦ Tenthsout<0> → A9

Figure 5-12: Pin Locations Typed in PACE

ISE 5 In-Depth Tutorial www.xilinx.com 109
1-800-255-7778

Mapping the Design
R

2. Once the pins are locked down, select File → Save. The changes made in PACE are
now saved in the stopwatch.ucf file in your current working directory.

3. Select File → Exit.

Mapping the Design
Now that all implementation strategies have been defined (options and constraints),
continue with the implementation of the design.

1. Right-click Map.

2. Select Run from the menu.

3. Expand the Implement Design hierarchy to see the progress through implementation.

Figure 5-13: Drag and Drop IOs in the Package Pins Window

Figure 5-14: Mapping the Design

110 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

The design is being mapped into CLBs and IOBs. After mapping, the design is placed and
routed. The final step in the design flow is Configure. In Configure, a configuration
bitstream is created for downloading to a target device, or for formatting into a PROM
programming file.

Map performs the following functions:

• Allocates CLB and IOB resources for all basic logic elements in the design.

• Processes all location and timing constraints, performs target device optimizations,
and runs a design rule check on the resulting mapped netlist.

Each step generates its own report as shown in the following table.

To view a report:

1. Expand the Translate or Map hierarchy.

2. Double-click a report.

3. Review the report for Warnings, Errors, and Information (INFO).

Table 5-2: Reports Generated Through MAP

Translation Report
Includes warning and error messages from
the translation process.

Map Report

Includes information on how the target
device resources are allocated, references to
trimmed logic, and device utilization. For
detailed information on the Map report, refer
to the Development System Reference Guide.

Figure 5-15: Translation Report and Map Report

ISE 5 In-Depth Tutorial www.xilinx.com 111
1-800-255-7778

Using Timing Analysis to Evaluate Block Delays After Mapping
R

Using Timing Analysis to Evaluate Block Delays After Mapping
After the design is mapped, use the Logic Level Timing Report to evaluate the logical paths
in the design. Because the design is not yet placed and routed, actual routing delay
information is not available. The timing report describes the logical block delays and
estimated routing delays. The net delays that are provided are based on an optimal
distance between blocks (also referred to as unplaced floors).

Estimating Timing Goals with the 50/50 Rule
For a preliminary indication of how realistic your timing goals are, evaluate the design
after the map stage. A rough guideline (known as the 50/50 rule) specifies that the block
delays in any single path make up approximately 50% of the total path delay after the
design is routed. For example, a path with 10ns of block delay should meet a 20ns timing
constraint after it is placed and routed.

If your design is extremely dense, the Logic Level Timing Report provides a summary
analysis of your timing constraints based on block delays and estimates of route delays
that can help to determine if your timing constraints are going to be met. This report is
produced after Map and prior to PAR (Place And Route).

Report Paths in Timing Constraints Option
Because timing constraints were defined for the design illustrated in this tutorial, the
Report Paths in Timing Constraints option is selected. This option forces the Logic Level
Timing Report to provide a period and path analysis on the constraints specified. The
period timing constraint is listed on top, as is the minimum period obtained by the tools
after mapping.

Because the report was limited to one path per timing constraint, you see a breakdown of
a single path that contains 4 levels of logic. Notice the percentage of block (logic) delay
versus routing delay for this calculation. The unplaced floors listed are estimates
(indicated by the letter “e” next to the net delay) based on optimal placement of blocks.

If you do not generate a Logical Level Timing Report, PAR still processes a design based on
the relationship between the block delays, floors, and timing specifications for the design.
For example, if a PERIOD constraint of 8 ns is specified for a path, and there are block
delays of 7 ns and unplaced floor net delays of 3 ns, PAR stops and generates an error
message. In this example, PAR fails because it determines that the total delay (10 ns) is
greater than the constraint placed on the design (8 ns). Use the Logic Level Timing Report
to determine timing violations that may occur prior to running PAR.

To open the Logic Level Timing Report and review the PERIOD Constraints that were
entered earlier:

1. Expand the Map hierarchy.

2. Double-click Generate Post-Map Static Timing Report.

112 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

3. To open the Post-Map Static Timing Report, double-click Post-Map Static Timing
Report. Timing Analyzer automatically launches and shows the report.

4. To exit Timing Analyzer, select File → Exit.

Placing and Routing the Design
The design can be placed and routed after the mapped design is evaluated. Evaluation
verifies that block delays are reasonable given the design specifications.

The Flow Engine performs the following place and route algorithms:

• Timing Driven

Run PAR with timing constraints specified from within the input netlist or from a
constraints file.

• Non-Timing Driven

Run PAR and ignore all timing constraints.

Because timing constraints were specified for the design illustrated in this tutorial, PAR
automatically performs timing driven placement and timing driven routing.

To run Place and Route in the Design Implement hierarchy, double-click Place & Route.

To review the reports generated to ensure that the place and route process finished as
expected:

1. Expand the Place & Route hierarchy.

2. Double-click the Place & Route Report.

Figure 5-16: Post-Map Static Timing Report

ISE 5 In-Depth Tutorial www.xilinx.com 113
1-800-255-7778

Using FPGA Editor to Verify the Place and Route
R

Using FPGA Editor to Verify the Place and Route
Use the FPGA Editor to display and configure Field Programmable Gate Arrays (FPGAs).

The FPGA Editor reads and writes:

• Native Circuit Description (NCD) files

• Macro files (NMC)

• Physical Constraints Files (PCF)

Use FPGA Editor to:

• Place and route critical components before running the automatic place-and-route
tools.

• Finish placement and routing if the routing program does not completely route your
design.

• Add probes to your design to examine the signal states of the targeted device. Probes
are used to route the value of internal nets to an IOB (Input/Output Block) for
analysis during debugging of a device.

• Run the BitGen program and download the resulting bitstream file to the targeted
device.

• View and change the nets connected to the capture units of an Integrated Logic
Analyzer (ILA) core in your design.

Table 5-3: Reports Generated by PAR

Report Description

Place & Route Report
Provides a device utilization and delay summary.
Use this report to verify that the design successfully
routed and that all timing constraints were met.

Pad Report
Contains a report of the location of the device pins.
Use this report to verify that pins locked down
were placed in the correct location.

Asynchronous Delay Report
Lists all nets in the design and the delays of all
loads on the net.

114 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

To view the actual design layout on the FPGA:

1. To launch FPGA Editor in the expanded Place & Route hierarchy, double-click
View/Edit Routed Design (FPGA Editor).

2. After FPGA Editor is open, change the List Window from All Components to All Nets.
This enables you to view all of the possible nets in the design.

Figure 5-17: View/Edit Routed Design (FPGA Editor) Process

Figure 5-18: List Window in FPGA Editor

ISE 5 In-Depth Tutorial www.xilinx.com 115
1-800-255-7778

Evaluating Post-Layout Timing
R

3. Select the clk_dcm (Clock) net and see the fanout of the clock net.

4. To exit FPGA Editor, select File → Exit.

Evaluating Post-Layout Timing
After the design is placed and routed, a Post Layout Timing Report is generated by default
to verify that the design meets your specified timing goals. This report evaluates the logical
block delays and the routing delays. The net delays are now reported as actual routing
delays after the place and route process (indicated by the letter “R” next to the net delay).

1. Expand the Generate Post-Place & Route Timing hierarchy.

2. Double-click Post-Place & Route Static Timing Report to open the report in Timing
Analyzer.

Following is a summary of this report.

♦ The minimum period value increased due to the actual routing delays.

♦ After the Map step, logic delay contributed to about 80% of the minimum period
attained. The post-layout report indicates that the logical delay value decreased
somewhat. The total unplaced floors estimate changed as well. Routing delay
after PAR now equals about 31% of the period; a true report of net delays after the
place and route step.

Figure 5-19: Clock Net

Figure 5-20: Post-Place & Route Static Timing Report

116 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

♦ The post-layout result does not necessarily follow the 50/50 rule previously
described because the worst case path primarily includes component delays.
After the design is mapped, block delays constitute about 80% of the period.

After place and route, the majority of the worst case path is still made up of logic delay.
Since total routing delay makes up only a small percentage of the total path delay
spread out across three nets, expecting this to be reduced any further is unrealistic. In
general, you can reduce excessive block delays and improve design performance by
decreasing the number of logic levels in the design.

3. To exit Timing Analyzer, select File → Exit.

Creating Configuration Data
After analyzing the design through timing constraints in Timing Analyzer, you need to
create configuration data. To create a bitstream for the target device, run the Configure
step:

1. Right-click Generate Programming File.

2. Select Properties.

Figure 5-21: Selecting Properties

ISE 5 In-Depth Tutorial www.xilinx.com 117
1-800-255-7778

Creating Configuration Data
R

The Process Properties dialog box opens.

3. Select the Startup Options tab.

4. Change the Startup Clock from CCLK to JTAG, since you are going to configure this
device via Boundary Scan. This can remain at CCLK, if you were doing Select Map or
Serial Slave configuration.

5. Leave the remaining options in the default setting.

6. Click OK to apply the new properties.

7. Double-click Generate Programming File to create a bitstream of this design.

The bitstream comes from the BitGen program and creates the design_name.bit and
design_name.ll files (in this tutorial, the watch.bit and watch.ll files). The design_name.bit
file is the actual configuration data. The design_name.ll file is the logical allocation file
that is used during iMPACT to determine the location of the probable points in the
design. These files are automatically copied to your working directory.

8. Verify that these files are in this directory. The design_name.11 file is used to perform
device readback with the iMPACT tool. For more information, see iMPACT online
help.

9. To review the Programming File Generation Report, double-click the report. Verify
that the specified options were used when creating the configuration data.

Figure 5-22: Process Properties’ Startup Options Tab

Figure 5-23: Programming File Generation Report

118 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

Creating a PROM File with iMPACT
To program a single device using iMPACT, all you need is a design.bit file. To program
several devices in a daisy chain configuration, or to program your devices using a PROM,
you must use iMPACT to create a PROM file. iMPACT accepts any number of bitstreams
and creates one or more PROM files containing one or more daisy chain configurations.

To start iMPACT:

1. Double-click Generate PROM, ACE, JTAG File.

2. iMPACT opens with a wizard to help you create the PROM File.

Use the wizard to:

• Add additional bitstreams to the daisy chain.

• Create additional daisy chains.

• Remove the current bitstream and start over; or immediately save the current PROM
file configuration.

To create a PROM file with iMPACT:

1. Open iMPACT.

2. In the Operation Mode Selection dialog box, select Prepare Configuration Files.

3. Click Next.

4. In the Prepare PROM Files dialog box, under “I want to create a:”, select PROM File.

5. Click Next.

Figure 5-24: Operation Mode Selection dialog box

Figure 5-25: Prepare Configuration Files Dialog

ISE 5 In-Depth Tutorial www.xilinx.com 119
1-800-255-7778

Creating a PROM File with iMPACT
R

6. In the “I want to target a:” dialog box:

a. Under PROM File Format, select MCS.

b. Under PROM File Name, type ‘stopwatch1’.

7. Click Next.

8. In the Specify Xilinx Serial PROM Device dialog box, check the box associated with
Auto Select PROM.

9. Click Next.

10. If you have more data than space available in the PROM, you must split the data into
several individual PROMs with the Split PROM option. In this case, only a single
PROM is needed.

Figure 5-26: Prepare PROM Files Dialog

Figure 5-27: Specify Xilinx Serial PROM Device Dialog Box

120 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

11. In the File Generation Summary dialog box, click Next.

12. In the Add Device File dialog box:

a. Click Add Device.

a. Select the stopwatch.bit file.

13. Select No when you are asked if you would like to add another design file to the
datastream.

14. Select Finish.

iMPACT displays the PROM associated with your bit file.

15. When asked to generate a file now, select Yes. This creates the PROM file.

Figure 5-28: File Generation Summary Dialog Box

Figure 5-29: Add Device File Dialog Box

ISE 5 In-Depth Tutorial www.xilinx.com 121
1-800-255-7778

Creating a PROM File with iMPACT
R

16. Select File → Save to save the supporting files associated with iMPACT.

17. Select File → Exit to close iMPACT.

This completes this chapter of the tutorial. For more information on this design flow and
implementation methodologies (especially some of the tools and programs that were not
covered), see the iMPACT User Guide, available in the collection of software manuals on the
web, at http://support.xilinx.com/support/sw_manuals/xilinx5/.

http://support.xilinx.com/support/sw_manuals/xilinx5/

122 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

ISE 5 In-Depth Tutorial www.xilinx.com 123
1-800-255-7778

R

Chapter 6

Timing Simulation

This chapter includes the following sections.

• “Overview of Timing Simulation Flow”

• “Getting Started”

• “Starting ModelSim”

• “Adding Signals”

• “Saving the Simulation”

Overview of Timing Simulation Flow
Timing simulation uses the block and routing delay information from a routed design to
give a more accurate assessment of the behavior of the circuit under worst-case conditions.
For this reason, timing simulation is performed after the design has been placed and
routed.

Timing (post-place and route) simulation is a recommended part of the HDL design flow
for Xilinx devices. Timing simulation, also known as back-annotated simulation, uses the
detailed timing and design layout information that is available after place and route to
create a VHDL or Verilog simulation netlist. This enables simulation of the design, which
closely matches the actual device operation.

Getting Started
The following sections outline the requirements to perform this part of the tutorial flow.

Required Software
In addition to Xilinx ISE 5.x, you must have ModelSim release 5.4 or above installed on
your machine to follow the tutorial.

Note: ModelSim 5.6a XE is used for the examples in this tutorial.

Required Files
The timing simulation flow requires the following files:

• Design Files (VHDL or Verilog)

The design file is produced by the Xilinx software.

124 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

• Stimulus File (VHDL or Verilog)

This is also known as the testbench. You can use the same testbench for functional
simulation as well as timing simulation. Also, you can create the testbench with Xilinx
HDL Bencher—See Chapter 4, “Behavioral Simulation” for information on this flow.

• ModelSim Script File (Optional)

The script file (.do) automates the simulation to a large extent, and makes it easy to re-
run the simulation. Alternatively, the commands are entered one-by-one into the
simulator. Xilinx ISE creates the script file needed to run simulation in ModelSim.

• Xilinx Simulation Libraries

For timing simulation, the SIMPRIMS HDL simulation library must be used. Details
about this library are provided in the following section.

Xilinx Simulation Libraries
To perform timing simulation of Xilinx designs in any HDL simulator, the SIMPRIM
library must be set up correctly. The timing simulation netlist created by Xilinx is
composed entirely of instantiated primitives, which are located in the SIMPRIM library.
The recommended mapping name for the VHDL SIMPRIM library is SIMPRIM, and for
the Verilog SIMPRIM library it is SIMPRIMS_VER.

Note: If using ModelSim Xilinx Edition, there is no need to compile the models. MXE (ModelSim
Xilinx Edition) comes with the models precompiled.

For detailed instructions on compiling these libraries, see Xilinx Answer Record # 2561,
which can be accessed as follows:

1. Go to http://support.xilinx.com.

2. Enter 2561 in the search box, and check to see that the search engine is pointing to
Answer Records.

3. Click OK.

4. Click the link to Answer Record # 2561.

Starting ModelSim
Xilinx ISE is fully integrated with any version of the ModelSim Simulator. ISE provides
work directory creation, source file compilation, simulation initialization, and simulation
property control.

Specifying Simulation Process Properties
To set the simulation process properties:

1. In the Sources in Project window, select stopwatch_tb.tbw.

2. Click the + to expand the ModelSim Simulator hierarchy.

3. Select and right-click Simulate Post-Place & Route VHDL (Verilog) Model.

4. Select Properties.

The following properties are available and can be edited from the pop-up GUI (as shown
in Figure 6-1 and Figure 6-2):

http://support.xilinx.com

ISE 5 In-Depth Tutorial www.xilinx.com 125
1-800-255-7778

Starting ModelSim
R

Simulation Properties

Options available in this tab are:

• Custom Do File

This option enables users to select a user-created .do file.

• Use Automatic Do File

If this option is unchecked, ModelSim will start but will not run the processes required
to simulate the design. You must manually run the .do file from ModelSim, or enter the
commands one by one to run simulation.

• Simulation Run Time

Specifies default time for which simulation is run. The “-all” setting tells ModelSim to
run the simulation until it encounters a break specified in the testbench. Alternatively,
a setting of “1000ns”can be entered so that the simulation only runs for 1000ns.

• Simulation Resolution

This is set to 1 ps by default. All Xilinx simulations should be run with the resolution
set to 1 ps.

• Simulation Mode

For most devices, Maximum delay is the only available option.

Note: Not all the devices have Minimum and Typical delays specified, so there may not be a
difference in the timing numbers, as they will be the same as maximum numbers.

• VHDL Syntax

Set this option to either 93 or 87, which tells the compiler to use either VHDL-87 or
VHDL-93 syntax.

• Use Explicit Declarations Only

If this option is unchecked, the compiler will not resolve ambiguous overloads.

• Design Unit Name

This property enables you to specify the top-level model to be loaded in ModelSim.
This property must be changed if the testbench, module, or entity is named something
different than testbench.

• Generate VCD File

This will generate the VCD file from ModelSim so that it can be loaded into XPower.

126 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

Display Properties

This tab gives you control over the MTI (ModelSim) simulation windows. By default, three
windows open when timing simulation is launched from ISE. They are the Signal window,
the Structure window, and the Wave window. For more details on ModelSim Simulator
windows, refer to the ModelSim User Manual.

Simulation Model Properties

Options available in this tab are as follows:

• Correlate Simulation Data to Input Design

By selecting this property, you instruct the Xilinx post-place and route netlist
generation tools to append the timing details to the input design (post NGDBUILD
design). The advantage of using this option is that the user-defined signal names are
preserved. The disadvantage is that the user design, rather than the physical (post-
place and route) design, is used. Therefore, if there are any errors introduced by the
place and route tools, they are not detected.

• Bring Out Global Set/Reset Net as a Port

Use this option to create an external port in the simulation netlist that will enable you
to control the power-on-reset from a port.

• Global Set/Reset Port Name

Default is GSR.

• Bring Out Global Tristate Net as a Port

• Global Tristate Port Name

Default is GTS.

• Generate Test Fixture/Testbench File

Use this option to create a testbench.

Figure 6-1: Simulation Properties

ISE 5 In-Depth Tutorial www.xilinx.com 127
1-800-255-7778

Starting ModelSim
R

The following options are available when the Advanced Process Setting is enabled in
Project Navigator (accessed under Edit → Preferences, in the Processes tab).

• Retain Hierarchy

• Change Device Speed To

This provides the option to vary the speed grade of the device for simulation purposes.

• TOC Pulse Width

Use this option to set the duration of the Global Tristate on Configuration Pulse Width.
The default is 0ns.

• Global Disable of X-Generation for Simulation

Setting this option will disable the ‘X’ that gets propagated through the simulation
when there is a timing violation.

• ROC Pulse Width

Use this option to set the duration of the Global Reset on Configuration Pulse Width.
The default is 100 ns.

• TOC Pulse Width

Use this option to set the duration of the Global Tristate on Configuration Pulse Width.
The default is 1 ns.

Performing Simulation
Once you have set the process properties, ModelSim can be invoked. To start the timing
simulation, double-click Simulate Post-Place and Route VHDL Model or Simulate
Post-Place and Route Verilog Model.

ModelSim creates the working directory, compiles the source files, loads the design, and
runs simulation for the time specified.

Figure 6-2: Simulation Model Properties

128 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

Adding Signals
To view signals during simulation, you must first add them to the Wave window. Project
Navigator automatically adds all of the top-level ports to the Wave window. Additional
signals are displayed in the Signal window based upon the selected structure in the
Structure window.

There are two basic methods for adding signals to the simulator Wave window.

• Drag and drop from the Signal window.

• Select Add → Wave → Selected Signals from the Signal Window.

The following procedure explains how to add additional signals in the design hierarchy.
For this tutorial, add the smallcntr output flip-flops.

1. In ModelSim in the Structure window, click the + next to uut:stopwatch(structure).

♦ uut is the instance in the testbench.

♦ stopwatch is the component/entity name.

♦ structure is the architecture name.

Note: Figure 6-3 shows the Structure Window for the Verilog flow. The VHDL and Schematic flows
may produce different results.

2. Select sixty_lsbcount_QOUT<0> in the signal window.

3. Click and drag sixty_lsbcount_QOUT<0> from the Signal window to the Wave
window.

4. Select sixty_lsbcount_QOUT<1>in the Signal window, and select Add → Wave →
Selected Signals to add the signal to the Wave window.

Figure 6-3: Structure Window - Verilog flow example

ISE 5 In-Depth Tutorial www.xilinx.com 129
1-800-255-7778

Saving the Simulation
R

Notice that the waveforms have not been drawn for these signals.

When new signals are added to the waveform window, the simulation needs to be re-run.

To restart and re-run the simulation in ModelSim:

1. Click the Restart Simulation icon.

The Restart dialog box opens.

2. Click Restart.

3. Click the Run-all or Run icon to re-run the simulation.

Saving the Simulation
The ModelSim Simulator gives you the ability to save the signals list in the Wave window.
The signals in this list are then opened and referenced each time the simulation is started.

To save signals to the Wave window:

1. In the Wave window, select File → Save Format.

2. In the Save Format dialog box, change wave.do to sec_signal.do.

3. Click Save to close the dialog box and close the ModelSim simulator.

Figure 6-4: Restart Simulation Icon

Figure 6-5: Run-All Icon

Figure 6-6: Save Format Dialog Box

130 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

	ISE 5 In-Depth Tutorial
	About This Tutorial
	About the In-Depth Tutorial
	Additional Resources
	Tutorial Contents
	Tutorial Flows
	HDL Design Flow
	Schematic Design Flow
	Implementation-only Flow

	Table of Contents
	Overview of ISE and Synthesis Tools
	Overview of ISE
	Project Navigator Interface
	Sources in Project Window
	Processes for Current Source Window
	Console Window
	Using Snapshots
	Using Project Archives

	Overview of Synthesis Tools
	Xilinx Synthesis Technology (XST)
	Synplify/Synplify Pro
	LeonardoSpectrum

	HDL-Based Design
	Overview of HDL-Based Design
	Getting Started
	Required Software
	Optional Software Requirements
	VHDL or Verilog?
	Installing the Tutorial Project Files
	Copying the Tutorial Files (Optional)
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Adding Source Files
	Analyzing the Source Files
	Correcting HDL errors
	Creating an HDL-Based Module
	Creating a CORE Generator Module
	Creating a DCM Module

	Synthesizing the Design
	Synthesizing the Design using XST
	Synthesizing the Design using Synplify/Synplify Pro
	Synthesizing the Design using LeonardoSpectrum

	Schematic-Based Design
	Overview of Schematic-based Design
	Getting Started
	Required Software
	Installing the Tutorial Project Files
	Copying the Tutorial Files (Optional)
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Opening the Project File in the ECS Schematic Editor Tool
	Manipulating the Window View
	Creating a Schematic-Based Macro
	Defining the CNT60 Schematic
	Saving the Schematic
	Creating the CNT60 symbol
	Placing the CNT60 Macro
	Creating a CORE Generator Module
	Creating a State Machine Module
	Creating a DCM Module
	Creating an HDL-Based Module
	Specifying Device Inputs/Outputs
	Adding I/O Markers and Net Names
	Assigning Pin Locations
	Completing the Schematic

	Behavioral Simulation
	Overview of Behavioral Simulation Flow
	Getting Started
	Required Files
	Xilinx Simulation Libraries

	Adding an HDL Testbench
	VHDL Design
	Verilog Design

	Creating a Testbench Waveform Using HDL Bencher
	Creating a Testbench Waveform Source
	Initializing Inputs

	Behavioral Simulation Using ModelSim
	Selecting Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Saving the Simulation

	Design Implementation
	Overview of Design Implementation
	Getting Started
	Tutorial Option 1
	Tutorial Option 2

	Creating an Implementation Project
	Specifying Options
	Translating the Design
	Using the Constraints Editor
	Using the Pin-out Area Constraints Editor (PACE)
	Mapping the Design
	Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals with the 50/50 Rule
	Report Paths in Timing Constraints Option

	Placing and Routing the Design
	Using FPGA Editor to Verify the Place and Route
	Evaluating Post-Layout Timing
	Creating Configuration Data
	Creating a PROM File with iMPACT

	Timing Simulation
	Overview of Timing Simulation Flow
	Getting Started
	Required Software
	Required Files
	Xilinx Simulation Libraries

	Starting ModelSim
	Specifying Simulation Process Properties
	Performing Simulation

	Adding Signals
	Saving the Simulation

