ISE 5 In-Depth
Tutorial

S XILINX®

ISE 5 In-Depth Tutorial www.xilinx.com
1-800-255-7778

& XILINX®

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PClI, Rocket I/O, Selectl/O, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-1l Pro, Virtex-Il EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fithness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2002 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

ISE 5 In-Depth Tutorial www.xilinx.com
1-800-255-7778

SXILINX®

Preface

About This Tutorial

About the In-Depth Tutorial

This tutorial gives a description of the features and additions to Xilinx ISE 5. The primary
focus of this tutorial is to show the relationship among the design entry tools, Xilinx and
third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE
software or those wanting to refresh their skills and knowledge.

You may choose to follow one of three tutorial flows available in this document. For
information about the tutorial flows, see “Tutorial Flows.”

Additional Resources

For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this page. You can also directly access some of
these resources using the provided URLs.

Resource

Description/URL

Tutorial

Tutorials covering Xilinx design flows, from design entry to verification
and debugging

http:/ /support.xilinx.com/support/techsup /tutorials /index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at

http:/ /support.xilinx.com /support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches

http:/ /support.xilinx.com/apps/appsweb.htm

Forums

Discussion groups and chat rooms for Xilinx software users

http:/ /toolbox.xilinx.com/cgi-bin /forum

Data Book

Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging

http:/ /support.xilinx.com/partinfo/databook.htm

ISE 5 In-Depth Tutorial

www.Xilinx.com 5
1-800-255-7778

http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://toolbox.xilinx.com/cgi-bin/forum
http://support.xilinx.com/partinfo/databook.htm

$7 XILINX°

Preface: About This Tutorial

Resource Description/URL

Xcell Journals | Quarterly journals for Xilinx programmable logic users

http:/ /support.xilinx.com /xcell /xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design

environment

http:/ /support.xilinx.com/xInx/xil_tt_home.jsp

Tutorial Contents

This guide covers the following topics.

Tutorial Flows

Chapter 1, “Overview of ISE and Synthesis Tools,” introduces you to the ISE primary
user interface, Project Navigator, and the synthesis tools available for your design.

Chapter 2, “HDL-Based Design,” guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch.

Chapter 3, “Schematic-Based Design,” explains many different facets of a schematic-
based ISE design flow using a design of a runner’s stopwatch. This chapter also
shows how to use ISE accessories such as StateCad, Project Navigator, CoreGen, and
HDL Editor.

Chapter 4, “Behavioral Simulation,” explains how to use the ModelSim Simulator to
simulate a design before design implementation to verify that the logic that you have
created is correct.

Chapter 5, “Design Implementation,” describes how to Translate, Map, Place, Route
(Fit for CPLDs), and generate a Bit file for designs.

Chapter 6, “Timing Simulation,” explains how to perform a timing simulation using
the block and routing delay information from the routed design to give an accurate
assessment of the behavior of the circuit under worst-case conditions.

This document contains three tutorial flows. In this section, the three tutorial flows are
outlined and briefly described, in order to help you determine which sequence of chapters
applies to your needs. The tutorial flows include:

HDL Design Flow
Schematic Design Flow

Implementation-only Flow

HDL Design Flow
The HDL Design flow is as follows:

Chapter 2, “HDL-Based Design”

Chapter 4, “Behavioral Simulation”
Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

Chapter 5, “Design Implementation”

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/xlnx/xil_tt_home.jsp

Tutorial Flows ST XILINX®

¢ Chapter 6, “Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

Schematic Design Flow
The Schematic Design flow is as follows:

¢ Chapter 3, “Schematic-Based Design”

¢ Chapter 4, “Behavioral Simulation”
Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

e Chapter 5, “Design Implementation”

¢ Chapter 6,”Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

Implementation-only Flow
The Implementation-only flow is as follows:

e Chapter 5, “Design Implementation”

e Chapter 6, “Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

ISE 5 In-Depth Tutorial www.Xxilinx.com 7
1-800-255-7778

S XILINX® Preface: About This Tutorial

8 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Table of Contents

Preface: About This Tutorial

About the In-Depth Tutorial 5
Additional ResSourceso it 5
Tutorial Contents 6
Tutorial FIOWS 6
HDL Design Flow 6
Schematic Design Flow 7
Implementation-only Flow 7

Chapter 1: Overview of ISE and Synthesis Tools

Overview of ISE 13
Project Navigator Interface.......... 13
Sources in Project Windowo i i i 14

Module View 14
Snapshot VIEW . ..ot 15
Library VIewW. . ..ottt 15
Processes for Current Source Window oo 15
Process VIEW . .. oo ot 15
Console Window 16
Error Navigation to Source.t i i 16
Error Navigation to SolutionRecord i 16
Using Snapshots. 16
CreatingaSnapshot i 16
Restoring a Snapshot i i 16
ViewingaSnapshot 17
Using Project Archives 17
Creatingan Archive 17
Restoring an Archivet 17

Overview of Synthesis Tools 17

Xilinx Synthesis Technology (XST), 17
Supported Deviceso 17
Process Properties.t 18

Synplify /Synplify Pro....... 18
Supported Deviceso 18
Process Properties.t 18

LeonardoSpectrum 18
Supported Deviceso 18
Process Properties. 18

Chapter 2: HDL-Based Design

Overview of HDL-Based Design... 19
Getting Started. 20
Required Software 20
Optional Software Requirements 20
VHDL or Verilog? 20
ISE 5 In-Depth Tutorial www.xilinx.com

1-800-255-7778

$7 XILINX°

Installing the Tutorial Project Files 20
Copying the Tutorial Files (Optional)................... 21
Starting the ISE Software i 21
Stopping the Tutorial........ 22
Design Description 22
Inputs. ... 23
Outputs ... 23
Functional Blocks 23
Design Entry. 24
Adding Source Files. 24
Analyzing the Source Files 25
Correcting HDL e11ors 25
Creating an HDL-Based Module, 25
Using the New Source Wizard and HDL Editor. 26
Using the Language Templates.ooviuiiiiii i 27
Adding the Language Template to Your File oot 28
Creating a CORE GeneratorModule 29
Creating the CORE Generator Module.o i ... 29
Instantiating the CoreGen Moduleinthe HDL Code 31
Creatinga DCM Module. 34
Using DCM Wizardoiinii i i i 34
Instantiating the DCM1 Macro- VHDL Design, 35
Instantiating the DCM1 Macro- Verilog. 36
Synthesizing the Designl 36
Synthesizing the Designusing XST................., 37
Entering Constraints.t 37
Entering Synthesis Options. i i 38
Synthesizingthe Design i 39

The RTL VIEWET . .. ittt e e et 39
Synthesizing the Design using Synplify /Synplify Pro 40
Examining Synthesis Results i 41
Synthesizing the Design using LeonardoSpectrum 43
Modifying Constraintst 43
Entering Synthesis Options throughISE. 45

The RTL/Technology Viewer.t 46

Chapter 3: Schematic-Based Design

Overview of Schematic-based Design 49
Getting Started. 49
Required Software 49
Installing the Tutorial Project Files 50
WHUE_SC PIOJECE . . oottt 50
watch_scsolution project i 50

Copying the Tutorial Files (Optional).................. 50
Starting the ISE Software 50
Stopping the Tutorial........ 51
Design Description 51
Inputs. ... 52
Outputs ... 53
Functional Blocks 53

10 www.Xxilinx.com ISE 5 In-Depth Tutorial

1-800-255-7778

$XILINX®

Design Entry. 54
Opening the Project File in the ECS Schematic Editor Tool 54
Manipulating the Window Viewl 54
Creating a Schematic-Based Macro.................l 55
Defining the CNT60 Schematic 55

Adding Components to CNT60 56
Placing the Remaining Components., 57
Correcting Mistakes i 58
Drawing Wirest 58
Adding Busesot 58
Adding Bus Tapsot 60
Adding Net Names.ooi i 61
Adding I/OMarkerst 61
Saving the Schematic............ oo 61
Creating the CNT60symbol 62
Placing the CNT60 Macro............... i i i i, 62
Creating a CORE GeneratorModule 63
Creating the CORE Generator Module.o i ... 63
Creating a State MachineModule o 65
Opening the State Editor.o i 66
Adding New States.ot 67
Adding a Transitionot 68
Adding aState ACHON.ottt 68
Adding a State Machine Reset Condition............... oo, 70
Creating the State Machine Macro, 71
Creatinga DCM Module............... . 72
Using DCM Wizardoiinii i i i 72
Creating the DCMI mMacroouiunii it 73
Placing the STMACH, Tenths, DCM1, outs3, and decode symbols 73
Creating an HDL-Based Module 74
Using the New Source Wizard and HDL Editor. 74
Using the Language Templates.ooviuiiiii i 76
Adding the Language Template to Your File oot 77
Creating the HEX2LED Symbol oot 78
Adding the HEX2LED Component to the Schematic 78
Specifying Device Inputs/Outputs L 79
Hierarchy Push/Pop. i i 79
Adding Input Pinso. o 80
Adding I/O Markers and Net Names, 81
Assigning Pin Locations i i 82
Completing the Schematic 83

Chapter 4: Behavioral Simulation

Overview of Behavioral Simulation Flow............... 87
Getting Started. 88
Required Files. 88

Xilinx Simulation Libraries........... i i 88

Unisims Library 88

XilinxCoreLib Library.ot 89

Viewing the Modelsim.ini File o i i 89

Setting the Environment Variable. i i i 89

ISE 5 In-Depth Tutorial www.Xxilinx.com 1

1-800-255-7778

$7 XILINX°

Addingan HDL Testbench.............. 89
VHDLDesign 90
Verilog Design 90

Creating a Testbench Waveform Using HDL Bencher........................ 90
Creating a Testbench Waveform Source 90
Initializing Inputs. 92

Behavioral Simulation Using ModelSim..................................... 93
Selecting Simulation Processes 93
Specifying Simulation Properties oL 93
Performing Simulation oo 95
Adding Signals......... ... 95
Saving the Simulation 96

Chapter 5: Design Implementation

Overview of Design Implementation .. 97
Getting Started. 98

Tutorial Option 1 98

Tutorial Option 2 98
Creating an Implementation Project ... 98
Specifying Options 100
Translating the Design 103
Using the Constraints Editor 103
Using the Pin-out Area Constraints Editor (PACE) 106
Mappingthe Design 109
Using Timing Analysis to Evaluate Block Delays After Mapping............ 111

Estimating Timing Goals with the 50/50Rule 111

Report Paths in Timing Constraints Option 111
Placing and Routing the Design 112
Using FPGA Editor to Verify the Placeand Route........................... 113
Evaluating Post-Layout Timing. 115
Creating ConfigurationData 116
Creating a PROM File withiMPACT 118

Chapter 6: Timing Simulation

Overview of Timing Simulation Flow 123
Getting Started. 123
Required Software 123
Required Files...... 123
Xilinx Simulation Libraries........... o o oo il 124
Starting ModelSim....... 124
Specifying Simulation Process Properties 124
Simulation Properties o 125

Display Propertiesttt e 126
Simulation Model Properties i 126
Performing Simulation i i 127
Adding Signals 128
Saving the Simulation. 129

12 www.Xxilinx.com ISE 5 In-Depth Tutorial

1-800-255-7778

SXILINX®

Chapter 1

Overview of ISE and Synthesis Tools

This chapter includes the following sections:

e “Qverview of ISE”

e “Overview of Synthesis Tools”

Overview of ISE

ISE controls all aspects of the design flow. Through the Project Navigator interface, you can
access all of the various design entry and design implementation tools. You can also access
the files and documents associated with your project. Project Navigator maintains a flat
directory structure; therefore, the user must maintain revision control through the use of
snapshots.

Project Navigator Interface

The Project Navigator Interface is divided into four main subwindows, as seen in

Figure 1-1. On the top left is the Sources in Project window which hierarchically displays
the elements included in the project. Beneath the Sources in Project window is the
Processes for Current Source window, which displays available processes. The third
window at the bottom of the Project Navigator is the Console window which displays
status messages, errors, and warnings and is updated during all project actions. The fourth
window to the right is the HDL Editor window. HDL Editor enables you to edit source files
and to access the Language Templates, which is a catalog of ABEL, Verilog and VHDL
language templates that you can use and modify for your own design. These windows are
discussed in more detail in the following sections.

ISE 5 In-Depth Tutorial

www.Xilinx.com 13
1-800-255-7778

$7 XILINX°

Chapter 1: Overview of ISE and Synthesis Tools

xilinx - Project Navigator - C:\Xilinx', ISEexamples'wtut_vhd'\wtut_vhd.npl - [stopwatch.xhd]
|)® File Edit Yiew Project Source Process Window Help

=10l x|
2| 18] x|

oo mwE DD @R 2|t we|o (@ Fll4R%A|Q

=
Sources in Project: |
B watut_whd
£ xc2v40-5g256 - X5 T WHDL
B- @ stopwatch [stopwatch. vhd]
- cnit60 [cnts0.vhd)
- [2] smallchtr
@ decode [decode. vhd)
hex2led
statmach [statmach. vhd]

] B Wadule .. l X Shapshat... I @ Library ... I

2|

Processes for Curent Source: |

Dresign Entry Utilities
Uszer Constraints
Synthesize

1 |ibrary IEEE:

2 use IEEE.std logic_ll64.all;

3 --3ynopsys translate_off

4 library UNISIM:

5 use unisim.wvcowponents.all;

5 --synopsys translate_on

-

8 entity stopwatch is

a port { CLE : in 3TD_LOGIC;

10 BESET : in 3TD_LOGIC;

11 STRTSTOP : in 3TD_LOGIC:

12 TENTH30UT : out 5TD_LOGIC_VECTOR(9 dowmto 0);
12 ONESO0UT : out 3TD_LOGIC_VECTOR(6 dowmtao 0);
14 TENS0UT : out 5TD_LOGIC_VECTOR(6 dowmto 0)):

15 end stopwatch;
17 architecture inside of stopwatch is

18 cowponent DCM

-

Implemnent Design 20 --synopsys translate_off
T3 Tranglate ! generic |
y Map 22 TimingChecksOn : boolean := FALSE:
Flace & Foute 23 DLL_FEEQUENCY_MODE : string := "LOU™:
Generate Programming File =24 DUTY CYCLE CORRECTION : boolean := TEUE; _ILI
4 I I 3
B Process View I [stopwatch.vhdl
= =
|
-
4 3
[A » M, Console £ Findin Files f
Far Help, press F1 [EFT==F =

Figure 1-1: Project Navigator

Sources in Project Window

This window consists of three tabs which provide information for the user. Each tab is
discussed in further detail below.

Module View

The Module View tab displays the project name, any user documents, the specified part
type and design flow /synthesis tool, and design source files. Each file in the Module View
has an associated icon. The icon indicates the file type (HDL file, schematic, core, or text
file, for example). For more information about the file icons, see the Project Navigator
online help. Select Help — Project Navigator, expand the About Projects and Sources
section, and click Source File Types.

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. HDL files
have this + to show the entities (VHDL) or modules (Verilog) within the file. You can

expand the hierarchy by clicking the +. You can open a file for editing by double-clicking
on the filename.

14

www.Xilinx.com
1-800-255-7778

ISE 5 In-Depth Tutorial

Overview of ISE i:X"JNX®

Snapshot View

The Snapshot View tab displays all snapshots associated with the project currently open in
Project Navigator. A snapshot is a copy of the project including all files in the working
directory, and synthesis and simulation sub-directories. A snapshot is stored with the
project for which is was taken, and can be viewed in the Snapshot View. You can view the
reports, user documents, and source files for all snapshots. All information displayed in
the Snapshot View is read-only. Using snapshots provides an excellent version control
system, enabling subteams to do simultaneous development on the same design.

Note: Remote sources are not copied with the snapshot. A reference is maintained in the snapshot.

Library View

The Library View tab displays all libraries associated with the project open in Project
Navigator.

Processes for Current Source Window

This window contains the Process View tab.

Process View

The Process View tab is context sensitive and changes based upon the source type selected
in the Sources for Project window. From the Process View tab, you can run the functions
necessary to define, run and view your design. The Process Window provides access to the
following functions:

¢ Design Entry Utilities

Provides access to symbol generation and instantiation templates.
e User Constraints

Provides access to editing location and timing and constraints.
¢ Synthesis

Provides access to check syntax, synthesis, and synthesis reports. This varies
depending on the synthesis tools you use.

¢ Implement Design

Provides access to implementation tools, design flow reports, and point tools.

¢ Generate Programming File

Provides access to the configuration tools and bitstream generation.

The Processes for Current Source window incorporates automake technology. This enables
the user to select any process in the flow and the software automatically runs the processes
necessary to get to the desired step. For example, when you run the Implementation
process, Project Navigator also runs the synthesis process because implementation is
dependent on up-to-date synthesis results.

Note: To view a running log of command line arguments in the Console window, expand Design
Entry Utilities and select View Command Line Log File.

ISE 5 In-Depth Tutorial www.Xxilinx.com 15
1-800-255-7778

S XILINX® Chapter 1: Overview of ISE and Synthesis Tools

Console Window

The Console window displays errors, warnings, and informational messages. Errors and
warnings are signified by a red box next to the message, while warnings have a yellow box.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Console window to the
location of the error in a source HDL file. To do so, select the error or warning message,
right-click the mouse, and from the menu select Goto Source. The HDL source file opens
and the cursor moves to the line with the error.

Error Navigation to Solution Record

You can navigate from an error or warning message in the Console window to the relevant
solution records on the support.xilinx.com website. These type of errors or warnings can
be identified by the web icon to the left of the error. To navigate to the solution record,
select the error or warning message, right-click the mouse, and from the menu select Goto
Solution Record. The default web browser opens and displays all solution records
applicable to this message.

Using Snapshots

Snapshots enable you to maintain revision control over the design. A snapshot contains a
copy all of the files in the project directory. See also “Snapshot View.”

Creating a Snapshot

To create a snapshot:

1. Select Project — Take Snapshot.

2. In the Take a Snapshot of the Project dialog box, enter the snapshot name and any
comments associated with the snapshot.

In the Snapshot View, the snapshot containing all of the files in the project directory along
with project settings displays.

Restoring a Snapshot

Since snapshots are read-only, a snapshot must be restored in order to continue work.
When you restore a snapshot, it replaces the project in your current session. To restore a
snapshot:

1. In the Snapshot View, select the snapshot.

2. Select Project — Make Snapshot Current.

Before the snapshot replaces the current project, you must place the current project in a
snapshot so that your work is not lost.

16 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Overview of Synthesis Tools ST XILINX®

Viewing a Snapshot

The Snapshot View contains a list of all the snapshots available in the current project. To
open a snapshot to review a report or verify process status:

1. Select the snapshot.
2. Right-click the mouse.
3. From the menu, select Open.

Using Project Archives

You can also archive the entire project into a single compressed file. This allows for easier
transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:

1. Select Project — Archive.

2. In the Create Zip Archive dialog box, enter the archive name and location.

The archive contains all of the files in the project directory along with project settings.
Remote sources are not zipped up into the archive.

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can
be extracted with any ZIP utility and you can then open the extracted file in Project
Navigator.

Overview of Synthesis Tools

You can synthesize your design using three synthesis tools. The following section lists the
devices supported by each synthesis tool and includes some process properties
information.

Xilinx Synthesis Technology (XST)

This synthesis tool is part of the ISE package and is available for both an HDL- or
Schematic-based design flow.

Supported Devices

e Virtexm/-E /-II /-II Pro
e Spartan™-II /-1IE
e XC9500™ /XL /XV

e Coolrunner™ /-II

ISE 5 In-Depth Tutorial www.Xxilinx.com 17
1-800-255-7778

S XILINX® Chapter 1: Overview of ISE and Synthesis Tools

Process Properties

Process properties enable you to control the synthesis results of XST. Two commonly used
properties are Optimization Goal and Optimization Effort. Through these properties you
can control the synthesis results for area or speed, and the amount of time the synthesizer
runs.

More detailed information is available in the XST User Guide, available in the collection of
software manuals on the web, at
http:/ /support.xilinx.com/support/sw_manuals/xilinx5/.

Synplify/Synplify Pro

This synthesis tool is not part of the ISE package and is not available unless purchased
separately. This synthesis tool is not available for a schematic-based design.

Supported Devices
e VirtexM/-E /-II /-II Pro
e Spartan™ -1I/-1IE
e XC9500™ /XL /XV

e Coolrunner™ /-II

Process Properties

Process properties enable you to control the synthesis results of Synplify/Synplify Pro.
Most of the commonly used synthesis options available in the Synplify /Synplify Pro
stand-alone version are available for Synplify/Synplify PRO synthesis through ISE.

More detailed information about the specific synthesis options is available in the
Synplify /Synplify Pro online help.

LeonardoSpectrum

This synthesis tool is not part of the ISE package and is not available unless purchased
separately. Two commonly used properties are Optimization Goal and Optimization
Effort. Through these properties you can control the synthesis results for area or speed and
the amount of time the synthesizer runs.This synthesis tool is available for both an HDL-
and Schematic-based design flow.

Supported Devices

e Virtex™/-E /-II /-IIPro
e Spartan™ -1I/-1IE
e X(C9500m™ /XL /XV

e Coolrunner™ /-II

Process Properties

Process properties enable you to control the synthesis results of LeonardoSpectrum. Most
of the commonly used synthesis options available for the LeonardoSpectrum stand-alone
version are available for LeonardoSpectrum synthesis through ISE.

For more information, see the LeonardoSpectrum online help.

18 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/sw_manuals/xilinx5/

S XILINX®
Chapter 2

HDL-Based Design

This chapter includes the following sections:

e “Overview of HDL-Based Design”
e “Getting Started”

e “Design Description”

e “Design Entry”

e “Synthesizing the Design”

Overview of HDL-Based Design

This chapter guides you through a typical HDL-based design procedure using a design of
arunner’s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design.
This design targets a Virtex-II device; however, all of the principles and flows taught are
applicable to any Xilinx device family, unless otherwise noted.

The design is composed of HDL elements and a CORE Generator macro; you can
synthesize the design using Xilinx Synthesis Technology (XST), LeonardoSpectrum, or
Synplify.

This chapter is the first in the “HDL Design Flow.” It is followed by Chapter 4, “Behavioral
Simulation”, in which you simulate the HDL code using the ModelSim Simulator. In
Chapter 5, “Design Implementation”, you will implement the design using the Xilinx
Implementation Tools. The simulation, implementation, and bitstream generation are
described in subsequent chapters.

For an example of how to design with CPLDs, see the ISE Software Interactive Tutorial for
Xilinx CPLDs http:/ /support.xilinx.com /support/techsup/tutorials /index.htm.

ISE 5 In-Depth Tutorial www.Xxilinx.com 19
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/index.htm

S XILINX® Chapter 2: HDL-Based Design

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

To perform this tutorial, you must have the following software and software components
installed:

e Xilinx Series ISE 5.x
e ModelSim (necessary for Behavioral and Timing Simulation)
e Virtex-II libraries and device files

Note: For detailed software installation instructions, refer to the ISE Installation Guide and Release
Notftes.

This tutorial assumes that the software is installed in the default location c:\xilinx. If you
have installed the software in a different location, substitute c:\xilinx for your installation
path.

Optional Software Requirements

The following third-party synthesis tools are incorporated into this tutorial, and may be
used in place of ISE’s XST synthesis tool:

e Synplify/Synplify PRO 7.x
¢ LeonardoSpectrum 2002.1b (or above)

VHDL or Verilog?

This tutorial supports both VHDL and Verilog designs and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial, and download the appropriate
files accordingly.

Installing the Tutorial Project Files

The Stopwatch tutorial projects can be downloaded from
http:/ /support.xilinx.com/support/techsup /tutorials/tutorials5.htm. Download either
the VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the web, unzip the tutorial
projects in the c:\xilinx directory, and replace any existing files. The files downloaded from
the web have the most recent updates.

After you unzip the tutorial project files in c:\xilinx, the directory wtut_vhd (for a VHDL
design flow) or wtut_ver (for a Verilog design flow) is created within c:\xilinx\ISExamples,
and the tutorial files are copied into the directories.

These directories contain complete and incomplete versions of the design, done in VHDL
and Verilog, respectively. The incomplete projects are used in this tutorial to step through
the ISE flow. The completed projects are provided for reference.

20 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/tutorials5.htm

Getting Started ST XILINX®

The following table lists the locations of both the complete and incomplete projects.

Table 2-1: Tutorial Project Directories

Directory Description
wtut_vhd Incomplete Watch Tutorial - VHDL
wtut_ver Incomplete Watch Tutorial - Verilog
watchvhd_u Solution for Watch - VHDL (UNIX)
watchver_u Solution for Watch - Verilog (UNIX)
watchvhd Solution for Watch - VHDL
watchver Solution for Watch - Verilog

Note: Do not overwrite any files in the solutions directories.

The watchvhd(_u) and watchver(_u) solution projects contain the design files for the
completed tutorials, including HDL files and the bitstream file. To conserve disk space,
some intermediate files are not provided.

Copying the Tutorial Files (Optional)

You can either work within the project directory as it has been downloaded, or you can
make a copy to work on. To make a working copy of the tutorial files, use Windows
Explorer to copy the wtut_ver or wtut_vhd directory to another location. The project
directory contains all of the necessary project files to follow the tutorial.

Starting the ISE Software

To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop or select Start —
Programs — Xilinx ISE — Project Navigator.

Froject
M awvigator

Figure 2-1: Project Navigator Desktop Icon

ISE 5 In-Depth Tutorial www.Xxilinx.com 21
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

2. From Project Navigator, select File — Open Project. The Open Project dialog box
appears.

Open Project

Laak ir: I:_ﬂ vatut_vhid j gl

File name: I".npl Open I
Files of lpe: IF'n:.iec:t Files [*.rpl) j Cancel |

Figure 2-2: Getting Started Dialog Box

3. In the Directories list, browse to c:\xilinx\ISEexamples\wtut_vhd or
c:\xilinx\ISEexamples\wtut_ver.

4. Double-click wtut_vhd.npl (VHDL design entry) or wtut_ver.npl (Verilog design entry).

Stopping the Tutorial

You may stop the tutorial at any time and save your work by selecting File — Save All.

Design Description

The design used in this tutorial is a hierarchical, HDL-based design, which means that the
top-level design file is an HDL file that references several other lower-level macros. The
lower-level macros are either HDL modules or CORE Generator modules.

The design begins as an unfinished design. Throughout the tutorial, you complete the
design by generating some of the modules from scratch and by completing others from
existing files. When the design is complete, simulate it to verify the design’s functionality.

The Watch design is a simple runner’s stopwatch. Throughout this tutorial, the design
you’ll work with is referred to as Watch. There are three external inputs and three external
output buses in the completed design. The system clock is an externally generated signal.
The following list summarizes the input lines and output buses.

22 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Description

$XILINX®

Inputs

Outputs

The following are input signals for the tutorial stopwatch design.

STRTSTOP

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

RESET
Resets the stopwatch to 00.0 after it has been stopped.

CLK

Externally generated system clock.

The following are outputs signals for the design.

TENSOUTI6:0]

7-bit bus which represents the tens digit of the stopwatch value. This bus is in 7-
segment display format viewable on the 7-segment LED display.

ONESOUTI6:0]
Similar to TENSOUT bus above, but represents the ones digit of the stopwatch value.

TENTHSOUTI[9:0]

10-bit bus which represents the tenths digit of the stopwatch value. This bus is one-hot
encoded.

Functional Blocks

The completed design consists of the following functional blocks.

STATMACH
State Machine module defined and implemented in StateCAD.

CNT60

HDL-based module which counts from 0 to 59, decimal. This macro has 2 4-bit
outputs, which represent the ones and tens digits of the decimal values, respectively.

TENTHS

CORE Generator 4-bit, binary encoded counter. This macro outputs a 4-bit code which
is decoded to represent the tenths digit of the watch value as a 10-bit one-hot encoded
value.

HEX2LED

HDL-based macro. This macro decodes the ones and tens digit values from
hexadecimal to 7-segment display format.

SMALLCNTR

A simple Counter.

ISE 5 In-Depth Tutorial

www.Xilinx.com 23
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

Design Entry

e DECODE
Decodes the CORE Generator output from 4-bit binary to a 10-bit one-hot output.

e DCM1

DCM Wizard macro with internal feedback and duty-cycle correction.

For this hierarchical design, you will examine HDL files, correct syntax errors, create an
HDL macro, and add a CORE Generator module, and you will create and use each type of
design macro. All procedures used in the tutorial can be used later for your own designs.

With the wtut_vhd.npl or wtut_ver.npl project open in Project Navigator, the Sources in
Project window displays all of the source files currently added to the project, with the
associated entity or module names (see Figure 2-3). In the current project, smallcntr and
hex2led are instantiated, but the associated entity or module is not defined in the project.
Instantiated components with no entity or module declaration are displayed with a red
question-mark.

Sources in Project: I;

o [B watut_whd

E-£3 #c2va0-5g256%5 T YHDL
E| @ stopwatch [stopwatch,
-] testbench.vhd
E-[# et [cntB0.vhd)

: @ smallcntr [zmallentr. vhd)]

@ decode [decode. vhd)]

- @ hexZled [hexZled. vhd)

hd)

i @ statmach [statmach. vhd] [
=5 @ tenths [tenths.vhd] ﬂ

| B Module View l DN Snapshot iliew I @ Library Wiew I

Figure 2-3: Sources in Project Window

Adding Source Files

HDL files must be added to the project before they can be synthesized. Four HDL files have
already been added to this project. One file must still be added.

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the process window displays all processes available for
this file.

Next, add the remaining HDL file to the project.
Select Project — Add Source.
Select smallcntr.vhd or smallentr.v from the project directory.

In the Choose Source Type dialog box, select HDL Module.
Click OK.

Al S

24

www.Xilinx.com
1-800-255-7778

ISE 5 In-Depth Tutorial

Design Entry i:X"JNX®

The red question-mark (?) for smallentr should change toa V.

|E| zmallchtr [zrmallcntr. whd)

Figure 2-4: smallcntr.vhd file in Source in Project window

Analyzing the Source Files

After adding the file to the project, the file is not automatically analyzed. To analyze the
source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the Processes for Current Sources in Project window
displays all processes available for this file.

2. Double-click Analyze Hierarchy in the Synthesize hierarchy to update the files.

Correcting HDL errors

The SMALLCNTR design contains a syntax error that must be corrected. The red “x”
beside the Analyze Hierarchy process indicates an error was found during analysis. The
Project Navigator reports errors in red and warnings in yellow in the console.

To display the error in the source file:

1. Double-click on the error message in the console window.

2. Correct any errors in the HDL source file. The comments next to the error explain this
simple fix.

3. Select File — Save to save the file.

Re-analyze the file by selecting the HDL file and double-clicking Analyze Hierarchy
in the Synthesize hierarchy.

Creating an HDL-Based Module

Next, create a module from HDL code. With ISE, you can easily create modules from HDL
code using the HDL Editor tool. The HDL code is then connected to your top-level HDL
design through instantiation and is compiled with the rest of the design.

Now, you will author a new HDL module. This macro serves to convert the two 4-bit
outputs of the CNT60 module into a 7-segment LED display format.

ISE 5 In-Depth Tutorial www.Xxilinx.com 25
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

Using the New Source Wizard and HDL Editor

In order to create the module, first create a file using the New Source Wizard specifying the
name and ports of the component. The resulting “skeleton” HDL file is then modified
further in the HDL Editor.

To create the source file:
1. Select Project — New Source.
A dialog box opens in which you specify the type of source you want to create.
2. Select VHDL Module or Verilog Module.
3. In the File Name field, type ‘hex2led’.
4. Click Next.

The hex2led component has a 4-bit input port named hex and a 7-bit output port named led.
To enter these ports:

1. Click in the Port Name field and type HEX.
2. Click in the Direction field and set the direction to in.
3. Inthe MSB field enter 3, and in the LSB field enter 0. Refer to Figure 2-5.

Define YHDL Source E3

Entity Mame IhE:-:2|El:|

Architecture Mame Il:uehavicural

Port Hame Direction MSEB LSB ﬂ
HEX in 3 0
LED out 5 0

Cancel | Help |

Figure 2-5: New Source Wizard
Repeat the previous steps for the LED[6:0] output bus. Be sure that the direction is set
to out.

4. Click Next to complete the Wizard session.
A description of the module displays.

5. Click Finish to open the empty HDL file in HDL Editor.

26

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

The VHDL file is found in Figure 2-6. The Verilog HDL file is found in Figure 2-7.

0~ @t koW k=

I M = = = = 4o = = w
o= O Do~ ®mth kW= D00

Bibrary IEEE:

use IEEE.STD LOGIC 1164.ALL:
use IEEE.STD LOGIC ARITH.ALL:
use IEEE.STD LOGIC UNSIGNED.ALL:

-- Tmnmcomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM:
--use UNIZIM.VComponents.all:
entity hexzled iz

Fort [HEX : in std logic_wector(3 downmtao 0);

LED : in std logic wector (6 dowmto 0));

end hexzZled;

architecture Behawioral of hexZled iz

begin
end EBehawvioral:

Figure 2-6: Skeleton VHDL File in HDL Editor

wodule HEXZLED (HEX,LED) ;
input [3:0] HEX:
input [6:0] LED;

endmodinle

oS B (B) [O O

Figure 2-7: Skeleton Verilog File in HDL Editor

In the HDL Editor, the ports are already declared in the HDL file, and some of the basic file
structure is already in place. Keywords are printed in blue, data types in red, comments in
green, and values are black. This color-coding enhances readability and recognition of
typographical errors.

Using the Language Templates

The ISE language templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will used the HEX2LED Converter template for this exercise. This
template provides source code to convert a 4-bit value to 7-segment LED display format.

Note: You can add your own templates to the language template for components or constructs you

use often.

ISE 5 In-Depth Tutorial

www.Xilinx.com 27
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

To invoke the Language Templates and select the template for this tutorial:

1. Select Edit — Language Templates.

Each HDL language in the Language Template is divided into four sections:
Component Instantiations, Language Templates, Synthesis Templates, and User
Templates. To expand the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template in the right-hand pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Templates
hierarchy and select the template called HEX2LED Converter. Use the appropriate
template for the language you are using.

3. To preview the HEX2LED Converter template, click the template in the hierarchy. The
contents display in the right-hand pane.

l:l Component Instantiation
l:l Language Templates
EII:l Synthesiz Templates

----- Barrel Shifter

----- Comparator

----- Counter

----- Debounce circuit
----- Decoder

----- Encoder

[+ Flip Flops

----- HE=ZLED Corwerter
-2 Latches

-2 Multiplexers

----- Fulldown

..... Pullup

-] RaM

-2 Shift Registers
-2 State Machines
-2 Tristate Buffers

----- (23 User Templates

W | Bn | e

Templates:

l:l ABEL

l:l UCF --HEXx-to-zeven-segqunent decoder

l:l Verlog - HEX: in STD_LOGIC_WECTOR (3 dowmto
: - LED: o STD _LOGIC WECTOER (6 d ol
- VHDL ou _ _ [oumto

-- seguent encoding

with HEX 3ELect

LED<= "1111001"™ when 00017, --1
01001007 when "00107, --Z
01100007 when "O0O0117, --3
00110017 when 01007, --d4
00100107 when "01017, --5
T0000010" when 01107, --f
711110007 when "01117, --7
TO0o0000" when 10007, --i
0010000 when 10017, --39
00010007 when 10107, --4

L T L T L LA gy T I BT NG 1 1-

IR

Q Language T...
—

Figure 2-8: Language Templates

Adding the Language Template to Your File

You will now use the drag and drop method for adding templates to your HDL file. A copy
and paste function is also available from the Language Template Edit Menu and the right-

click menu.

28 www.Xilinx.com

ISE 5 In-Depth Tutorial

1-800-255-7778

Design Entry

$XILINX®

To add the template to your HDL file using the drag and drop method:

1. Inthe Language Template, click and drag the HEX2LED Converter name into the
hex2led.vhd file under the architecture statement, or the hex2led.v file under the module
declaration.

Close the Language Templates window.

(Verilog only) After the input and output statements and before the HEX2LED
converter that you just added, add the following line of code to the HDL file to allow
an assignment:

reg LED;
You now have complete and functional HDL code.
Save the file by selecting File — Save.

Select hex2led in the Sources in Project window and double-click Check Syntax under
Synthesize in the Processes for Current Source window.

6. Exit the HDL Editor.

Creating a CORE Generator Module

CORE Generator is a graphical interactive design tool used to create high-level modules
such as counters, shift registers, RAM and multiplexers. You can customize and pre-
optimize the modules to take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called Tenths. Tenths is a 4-bit
binary encoded counter. The 4-bit number is decoded to count the tenths digit of the
stopwatch’s time value.

Creating the CORE Generator Module

Create the CORE Generator module using the New Source Wizard in Project Navigator.
This invokes CORE Generator in which you can select and define the type of module you
want.

To create the module:

1. In Project Navigator, select Project — New Source.
2. Select Coregen IP as the source type.
3. Enter ‘tenths’ in the File Name field.
4. Click Next and then Finish.
The Xilinx CORE Generator opens and displays a list of possible COREs available.

Double-click on Basic Elements - Counters.

o o

Double-click on Binary Counter to open the Binary Counter dialog box.

This dialog box enables you to customize the counter to the design specifications.

ISE 5 In-Depth Tutorial

www.Xilinx.com 29
1-800-255-7778

& XILINX®

Chapter 2: HDL-Based Design

7. Fillin the Binary Counter dialog with the following settings:
¢+ Component Name: tenths
Defines the name of the module.
¢ Output Width: 4
Defines the width of the output bus.
¢ Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

¢ Count Style: Count by Constant
Allows counting by a constant or a user supplied variable.

¢ Count Restrictions: Enable and Count To Value A (HEX)

This dictates the maximum count value.

x|
ﬂ Parameters | ﬂ Core Overviewl ﬂ Contactl ﬂ Yeh Linksl
LOQ"CQRE Binary Counter

Component Name: |tenths

Output Width: [+ valid Range: 2.256

— Operation
& Up " Daown " UpiDown

— Count Style
& Count by Constant Count by Variable

— Count Restrictions

Count By Value: |1 (Hex value, M5B first)
[V Restrict Count

Count To Yalue: |A ('MAR or Hex value, M5B first)

<Elack|§

Fage 1 of 2

Generate Dismiss | Data Sheet... | Wersion Info... | ™ Display Core Footprint

Figure 2-9: CoreGen Module Selector

8. Select the Next button.
9. Continue to fill in the Binary Counter dialog with the following settings:

¢ Threshold Options: Threshold 0 set to A

Signal goes high when the value specified has been reached.

¢ Threshold Options: Registered
10. Click the Register Options button to open the Register Options dialog box.
11. In the Register Options dialog box, enter the following settings:

¢ Clock Enable: Selected

¢ Asynchronous Settings: Init with a value of 1

¢ Synchronous Settings: None

30

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

12. Click OK.

13. Check that only the following pins are used (used pins will be highlighted on the
model symbol to the left side of the CORE Generator window):

L

* & o

*

AINIT

CE

Q
Q_THRESHO
CLK

14. Click Generate.

The module is created and automatically added to the project library.

A number of other files are added to the project directory. These files are:

L

tenths.sym

This is a schematic symbol file.

tenths.edn

This file is the netlist that is used during the Translate phase of implementation.
tenths.vho or tenths.veo

This is the instantiation template that is used to incorporate the CORE Generator
module in your source HDL.

tenths.vhd or tenths.v
These are simulation-only files.
tenths.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

coregen.prj

This file stores the Coregen configuration for the project.

15. Click Cancel and close Core Generator.

Instantiating the CoreGen Module in the HDL Code

Next, instantiate the Coregen Module in the HDL code using either a VHDL flow or a
Verilog flow.

VHDL Flow

To instantiate the Coregen Module using a VHDL flow:

1. In Project Navigator, double-click stopwatch.vhd to open the file in HDL Editor.

2. Place your cursor after the line that states:

“-- Insert Coregen Counter Component Declaration”

3. Select Edit — Insert File and choose Tenths.vho.

The VHDL template file for the Coregen instantiation is inserted.

ISE 5 In-Depth Tutorial

www.Xilinx.com 31
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

Note: The Component Declaration does not need to be modified.

57 component statmach

=15, port [CLE : in 3TD_LOGIC:

=1= FE3ET : in 5TD_LOGIC:

70 ATRTATOPF : in 3TD_LOGIC:

71 CLEEN : out 3TD_LOGIC;

Ta R3T : out 3TD_LOGIC)

73 end component;

74

75 -- Insert Coregen Counter Component Declaration.
T ety Eegin Cut here for COMPONENT Declaration ------ COMP_TAaG
77 component tenths

78 port |

g 0: OUT =td logic WECTOR(3 dowmto 0);

=0 CLE: IN std logic:

81 Q_THRESHO: OUT std logic:

= CE: IN std logic;

23 AINIT: IN std logic):

g4 gnd component;

85

868 - ¥&8T black box declaration

87 attribute box_type @ string:

28 attribute box_type of tenths: component is "black box™:
=3=|

890 -- FPGL Express Black Box declaration

21 attribute fpga dont_touch: string:

92 attribute fpga dont touch of tenths: component iz "true™;
a3z

94 - Fmplicity black box declaration

95 attribute syn black box : boolean;

98 attribute syn black box of tenths: cowponent is true;
a7

= -- COMP_TAG END ------ End COMFOMENT Declaration ------------
==

Figure 2-10: VHDL Component Declaration of Coregen Module

4. Highlight the inserted code from
“-- Begin Cut here for INSTANTIATION Template”
to
“AINIT=>AINIT) ;”
Select Edit — Cut.
Place the cursor after the line that states:
“--Insert Coregen Counter Instantiation”
Select Edit — Paste to place the instantiation here.
Change “your_instance_name” to XCOUNTER.

32 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

9. Edit this instantiated code to connect the signals in the Stopwatch design to the ports

of the Coregen module as shown in Figure 2-11.

164 MACHINE:statmach port map(CLE=>clk_dcwm,
165 FESET=-REZET,

166 STRTSTOP=rstrtatopinw,
167 CLEEN=>clkenahle,
168 R3T=>rstint):

169

170 —- Insert Coregen Counter Instantiation.
171 xoounter : tenths

172 port map |

173 n=x 10,

174 CLE =» CLE dcm,

175 0_THRESHOD = xtermcnt,

176 CE => clkenable,

177 ATINIT =+ rstint);

178

179

120

181 decoder: decode port map |

182 binary => Q,

183 one_hot =» xoountout) ;

Figure 2-11: VHDL Component Instantiation of Coregen Module

10. Save the design using File — Save, and close HDL Editor.

Verilog Flow

To instantiate the Coregen Module using a Verilog flow:

1.
2.
3.

In Project Navigator, double-click stopwatch.v to open the file in HDL Editor.
Select File — Open and open the tenths.veo file.
Highlight the inserted code in tenths.veo from
“Tenths YourInstanceName”
to
“AINIT= (AINIT)) ;"
Select Edit — Copy.

Place the cursor after the line in stopwtch.v that states:

“// Place the Coregen Component Instantiation for Tenths here.”
Select Edit — Paste to place the instantiation here.
Change “YourInstanceName” to XCOUNTER.

ISE 5 In-Depth Tutorial

www.Xilinx.com
1-800-255-7778

33

S XILINX® Chapter 2: HDL-Based Design

8. Edit this code to connect the signals in the Stopwatch design to the ports of the
Coregen module as shown in Figure 2-12.

31 statmach MACHINE(.CLE(clk_dem),

=22 .FEESET [RESET) ,

33 . 3TRTATOP (strtatopinw ,

=4 .CLEEN(clkenahle]),

35 LRAT(ratint)) :

35

37 F#Place the CORE Generator Componenht Instantiation for Tenths here
35 i Begin Cut here for INITANTIATION Template ---// IN3T _TAG
39 tenths Hcounter |

40 L0,

11 .CLE{clk_dcm),

4 ._THEESHOD (xtermcnt) ,

43 .CE(clkenable) ,

< LAINIT (ratint))

5

45 ;7 INST TAG END ------ End INSTANTIATION Template -—-----—---
47

=42 decode one_decode (JBINARY(Q), .0ONE_HOT (xcountout)):

0

50 cnte0 sixty(.CE(cntélenable),

51 .CLE{clk_dcm),

52 L.CLE(ratint),

53 .L3ESEC{lshent),

54 .M3ESEC (msbont)) ;

Figure 2-12: Verilog Component Instantiation of the CoreGen Module

9. Save the design using File — Save and close stopwatch.v in HDL Editor.

Creating a DCM Module

The DCM Wizard, one part of the Xilinx Architecture Wizard, enables a user to graphically
select Digital Clock Manager (DCM) features that you wish to use. In this section, create a
basic DCM module with CLKO feedback and duty-cycle correction.

Using DCM Wizard
To create the DCM1 module:

1. In Project Navigator, select Project — New Source.

2. In the New Source dialog box, select Architecture Wizard and type ‘DCML1’ for the
File Name.

3. Click Next, then Finish.
The Xilinx Architecture Wizard is launched.
4. In the Xilinx Architecture Wizard selection box, select DCM Wizard and click OK.
The DCM Wizard is launched.
Deselect RST and LOCKED.
Type 50 for the Input Clock Frequency.

34 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

SUXILINX®

7. Verify the following settings:

¢ CLKIN Source: External
¢ Feedback Source: Internal
¢ Feedback Value: 1X
¢ Phase Shift: None
¢ Duty Cycle Correction: Yes
Select the Advanced button.
. Change Wait for DCM lock before DONE signal goes high to Yes.

10. Select OK and Next.

An informational message displays the locked signal and the STARTUP_WAIT option.

11. Select OK and Finish.
DCM1.xaw is added to the list of project source files in the Sources in Project window.

Note: The newly created DCM1_arwz.ucf does not need to be added to the projects as all of the
constraints are passed into the relevant source file(s).

Instantiating the DCM1 Macro - VHDL Design

Next, instantiate the DCM1 macro for your VHDL or Verilog design. To instantiate the
DCM1 macro for the VHDL design:
1. In Project Navigator, in the Sources in the Project window, select DCM1.xaw.

2. Double-click on View HDL Instantiation Template under the Design Entry Utilities in
the Processes for Current Source window.

3. From the newly opened HDL Instantiation Template copy the component declaration
template:

COMPONENT DCM1

PORT (

clkin in : IN std logic;
clk0_out : OUT std_logic
)i

END COMPONENT;

4. Paste the component declaration into the section in stopwatch.vhd labeled
-- Insert DCM1 component declaration here.

5. From the newly opened HDL Instantiation Template copy the instantiation template:
Inst_DCM1: DCM1 PORT MAP (
clkin in => ,
clk0 out =»>
)i

6. DPaste the instantiation template into the section in stopwatch.vhd labeled
-- Insert DCM1l instantiation here.

Connect the DCM1 port clkin_in to signal clk.
8. Connect the DCM1 port clkO_out to signal clk_dcm.

ISE 5 In-Depth Tutorial

www.Xilinx.com 35
1-800-255-7778

& XILINX®

Chapter 2: HDL-Based Design

9. If you encounter an error when trying to view the HDL instantiation template, the
design will not synthesize properly. To resolve the potential synthesis problem:

a. Select File — Open, and select DCM1.vhd.

b. In HDL Editor, scroll down to the port map of the DCM.
c. Add DSSEN => GND, after CLKFB => CLKFB_IN,

d. Select File — Save.

Instantiating the DCM1 Macro - Verilog

To instantiate the DCM1 macro for your Verilog design:

1. In Project Navigator, in the Sources in the Project window, select DCM1.xaw.

2. Double-click on View HDL Instantiation Template under the Design Entry Utilities in
the Processes for Current Source window.

3. From the newly opened HDL Instantiation Template, copy the instantiation template:
DCM1 instance name (
.CLKIN_IN (CLKIN_IN),
.CLKO_OUT (CLKO_OUT)
)i

4. Paste the instantiation template into the section in stopwatch.v labeled
//Insert DCM1 instantiation here.

Synthesizing the Design

So far, the design in the tutorial has been using XST for syntax checking and analysis. The
next portion of the design is the synthesis of the HDL code that you entered into the
project. The job of a synthesis tool is to take HDL code and generate a supported netlist
type (EDIF or NGC for the Xilinx implementation tools). The synthesis tools perform three
general steps (although all synthesis tools further break down these general steps) to create
the netlist:

¢ Analyze
Checks the syntax of the source code.

e Compile
Translates and optimizes the HDL code into a set of components that the synthesis tool
can recognize.

e Map
The components from the compile stage are translated into the target technology’s
primitive components.

The synthesis tool can be changed at any time during the design flow. Changing the design
flow results in the deletion of implementation data. You have not yet created any
implementation data.

For projects that contain implementation data, Xilinx recommends that you take a
snapshot of the project before changing the synthesis tool to preserve this data. For more
information about taking a snapshot, see “Creating a Snapshot.”

A summary of available synthesis tools is available in “Overview of Synthesis Tools.”

36

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design

$XILINX®

To change the synthesis tool:

1.
2.
3.

Select the targeted part in the Sources in Project window.
Select Source — Properties.

In the Project Properties dialog box, click the Design Flow column and use the
pulldown arrow to select the desired synthesis tool from the list.

Project Properties El

Praoject Properties

Property Hame Value
Device Family Wirtex2
Device w24l
Package fg2ab
Zpeed Grade
Design Floswy

k. Cancel [efault Help

Figure 2-13: Specifying Synthesis Tool

Next, perform design synthesis using one of the following tools:

“Synthesizing the Design using XST”
“Synthesizing the Design using Synplify /Synplify Pro”

“Synthesizing the Design using LeonardoSpectrum”

Synthesizing the Design using XST

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available for synthesis using XST:

View Synthesis Report gives a mapping and timing summary as well as synthesis
optimizations that took place.

View RTL Schematic, accessible from the Launch Tools hierarchy, generates a
schematic of your HDL code.

Analyze Hierarchy will set up the HDL in its hierarchical order.
Check Syntax verifies that the HDL code is entered properly.

Entering Constraints

Starting in the 5.1i release, XST supports a new User Constraint File (UCF) style syntax to
define synthesis and timing constraints. Xilinx strongly suggests that you use this syntax
style for your new designs.

ISE 5 In-Depth Tutorial

www.Xilinx.com
1-800-255-7778

37

$7 XILINX°

Chapter 2: HDL-Based Design

Note: Xilinx supports the old constraint syntax without any further enhancements for this release of
XST, but eventually support will be dropped.

This new syntax style format is called the Xilinx Constraint File (XCF). The XCF must have
an extension of .xcf. XST uses this extension to determine if the syntax is related to the new
or old style. Please note that if the extension is not .xcf, XST will interpret it as the old
constraint style.

To create a new Xilinx Constraint File:

1.
2.

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor

Select Project — New Source.

In the New Source dialog box, select User Document as the source type, and enter the
file name ‘stopwatch.xcf’.

Select Next, and Finish.
The new XCEF file launches in HDL Editor.

In the new XCF document, type in the following;:
NET “CLK” TNM NET = “CLK_GROUP”;
TIMESPEC “TS_01”=PERIOD “CLK_GROUP” 50 MHz;
BEGIN MODEL stopwatch

NET RESET LOC = AS5;
END;
Select File — Save.

NET "CLE"™ THNM_NET = "CLE_GROTP™:
TIMESPEC "T&_01"=FERIOD "CLE_GROUP™ 50 MH=z;

BEGIN MODEL stopwatch
NET REZET LOC=45:
END:

Sl m ot koW M=

Figure 2-14: Contents of stopwatch.xcf

L]

and “Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used option is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a signal from a flip-flop or setting the desired
frequency of the design.

38

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design

SUXILINX®

To enter synthesis options:

1. Highlight stopwatch.vhd (or stopwatch.v) in the Sources in Project window.
2. Right-click on the Synthesize process and select Properties.

3. Under the Synthesis Options tab click in the Synthesis Constraints File field and

select stopwatch.xcf.
Check the Write Timing Constraints box.
Select the OK button.

Synthesizing the Design

Now, you are ready to synthesize your design. To take the HDL code and generate a
compatible netlist:

1. Select stopwatch.vhd (or stopwatch.v).
2. Double-click the Synthesize process in the Processes for Current Source window.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Current Source window, and selecting Process — Run.

The RTL Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code is helpful for analyzing your design to see a graphical
connection between the various components that XST has inferred. To view a schematic
representation of your RTL code:

1. In Project Navigator, expand the Synthesize process.
2. Double-click on the View RTL Schematic.

ISE 5 In-Depth Tutorial

www.Xilinx.com
1-800-255-7778

39

S XILINX® Chapter 2: HDL-Based Design

The RTL Viewer (part of E Capture Schematic (ECS) tool) displays the schematic. Right-
click on the schematic to view various options for the schematic viewer.

= xilink ECS - [stopwatch.nar] Ol x|
B File Edit Wiew Window Help 1= x|
[pzagar| |[r2ec«|dE| [aaxEaE IE=E= =
BT Ty
| x|
Dptions' Symbaols Design |
| RTL Dezign Hierarchy
[l stopwatch
"""" chtblenable_imp
"""" decader =
"""" inst_dcm1 e B L | -1 Fox_sefm
------- Isbled e I L. '—,| ’_ o}tz
[+ machine ey e e ———
"""" T - % T
[#- Si:-:t_l,l — TG
"""" shrtstopiny_imp e . S =
"""" tenthsouts 0> _imp
------- terthsaute > _imp r':@i B
"""" tenthzout< 2> _imp e] S
"""" tenthzoute 3> _imp [}S Zoom y B—=——— .
"""" tenthgzoutsd>_imp Select Objectis)
"""" tenthsout< 5 _imp Refresh FS —
"""" tenthgouts B> _imp Find S] E—
"""" tenthzouts 7> _imp
....... terthsout<S>_imp Regenerate Schematic]
....... tenthsout<9>:imp Synchronize Windows fo]
....... HeoUnter Pop ta the Calling Schematic
Push Inta the Selected Instance
Instance Contents Wiew Source of Selected Instance
_____ 5 Shiow Sheets of Selected Mets,
: Nz
""" Mets Back a Schematic
""" Instances - Forward a Schematic
_St List of Schematics. .,
Ready [108,1017] .+
Figure 2-15: XST’s RTL Viewer
You have completed XST synthesis. At this point, an NGC file exists for the Stopwatch
design. Go to:
e Chapter 4, “Behavioral Simulation” to perform a pre-synthesis simulation of this
design.
e Chapter 5, “Design Implementation” to place and route the design.
e Chapter 6, “Timing Simulation” for post-place and route simulation.
Note: For more information about XST constraints, options, reports, or running XST from the
command line, see the XST User Guide, available in the collection of software manuals on the web,
at http://support.xilinx.com/support/sw_manuals/xilinx5/.
Synthesizing the Design using Synplify/Synplify Pro
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify
outside of ISE.
40 www.Xxilinx.com ISE 5 In-Depth Tutorial

1-800-255-7778

Synthesizing the Design XX"JNX@

To synthesize the design, set the global synthesis options:

Select stopwatch.vhd (or stopwatch.v).

Right-click Synthesis in the Processes for Current Source window.

From the menu, select Properties.

Set the Default Frequency to 50MHz, and check the Write Vendor Constraint File box.
Click OK to accept these values.

AL e

Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process to run
synthesis.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Current Source window, and selecting Process — Run.

Examining Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the
Synthesize process. The report consists of the following three sections:

e “Compiler Summary”
e “Timing Report”

e “Mapping Report”

Compiler Summary

The compiler summary gives a brief report on the analysis, compile and mapping stages
that Synplify does to the HDL design. Each of the summaries report on the files in the
project, giving the errors and warnings that are associated with each file.

Note: Black boxes (modules not read into Synplify’s design environment) are always noted as
Unbound in the Synplify reports. As long as the underlying netlist (.xnf, .ngo, .ngc or .edn) for a black
box exists in the project directory, the Implementation tools merge the netlist into the design during
the Translate phase. Since the Tenths module was built using CORE Generator called from the
project, the tenths EDN file is found.

ISE 5 In-Depth Tutorial

www.Xilinx.com 41
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

115 |kg##s START TINING REPORT ##### -]
118 # Tining Report written on Mon Jul 08 12:43:47 2002

117 g

11

118

120 Top wiew: stopwatch

121 3lew propagation mode: worst

122 Patha requested: 5

123 Constraint File(a): C:yxilinxbiseexamplesywtut vhdlstopwatch. sdo

124 C:yvxilinx\iseexamplesiwtut_vhd\stopwatch_fsm.sdc
128

128 [N| This tining report estimates place and route data. Please lock at the place and route timing
127 [@N| Clock constraints cover all FF-to-FF, FF-to-output, input-to-FF and input-to-output paths as
128

129

120

131 Performance Sumwary

132 EEEERERERERRFERELRS

132

134

135 Worst zlack in design: 14.200

136

137 Requeated Estimated Requeated Estimated Clock

138 Starting Clock Frequency Frequency Period Period 3lack Type

1389
140 [CLE 50.0 MHz 340.3 MHz z0, 000 z.939 17,081 inferred
141 3ysten 50.0 MH=z 172.4 MH=z 20,000 5,800 14.z00 aysten
142
1432
144
145
145 Clock Relationships
147 EEEERERERERRFERELRS

142

149 Clocks | rise to rise | fall to fall | rize to fall | fall
150

151 Starting Ending | constraint slack | constraint slack | constraint slack | constrai
152

183 CLE CLE | Z0.000 17.061 | HNo paths - | Mo paths - | Mo paths
154

1585 Note: 'No paths' indicates there are no paths in the design for that pair of clock edges.

1566 'Diff grp' indicatez that paths exist but the starting clock and ending clock are in diff

187
158 -
4' I 3

@ stopwatch.sr...l

Figure 2-16: Synplify’s Estimated Timing Data
Timing Report

The timing report section details information on the constraints that you entered along
with delays on portions of the design that had no constraints. The delay values are based
on wireload models, and therefore, are considered preliminary. Consult the post place and
route timing reports discussed in Chapter 5, “Design Implementation,” for the most
accurate delay information.

Mapping Report

The mapping report lists all of the components used for the design, such as LUTs, flip-
flops, and block RAMs.

You have now completed Synplify synthesis. At this point, an netlist EDN file exists for the
Stopwatch design.

e To perform a pre-synthesis simulation of this design, see Chapter 4, “Behavioral
Simulation”.

¢ To place and route the design, see Chapter 5, “Design Implementation”.

o To perform post-place and route simulation, see Chapter 6, “Timing Simulation”.

42

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design i:X"JNX®

Synthesizing the Design using LeonardoSpectrum

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available in LeonardoSpectrum synthesis include:

¢ Check Syntax
Checks the syntax of the HDL code.

¢ Modify Constraints

Launches the LeonardoSpectrum tool to enable you to enter constraints.

¢ View Synthesis Report
Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

¢ View Synthesis Summary

Gives a detailed map and timing report with no information on the synthesis
optimizations.

e View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of your HDL code

¢ View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of your HDL code mapped to the primitives associated
with the target technology.

e View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic-like view of the critical path of your HDL code mapped to the
primitives associated with the target technology.

Modifying Constraints

LeonardoSpectrum enables you to enter constraints to control optimization options and
pass timing specifications to the implementation tools. All timing specifications are stored
in the netlist constraints file (NCF) which is used by the implementation tools. Some of the
timing constraints are used by the synthesis engine to produce better synthesis results for
the place and route tools.

To modify constraints:
1. Expand the Synthesize process.
2. Double-click on the Modify Constraints process.

LeonardoSpectrum displays. First time users of the LeonardoSpectrum tool launch
LeonardoSpectrum in ‘Quick Setup” mode.

ISE 5 In-Depth Tutorial www.Xxilinx.com 43
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

3. Click on the Advanced Flow icon as shown below.

el

)

Figure 2-17: LeonardoSpectrum Advanced Flow Icon

4. Click the Constraints tab.

o Ilnputl Co traintsl Opti
s or FPGA to EHtEEd device tr
Figure 2-18: LeonardoSpectrum Constraints Tab

The constraints sub-tabs are as follows.

Global

Enables you to enter constraints that affect all of your design: PERIOD, OFFSETs and pad-
to-pad type constraints. The constraints entered here modify LeonardoSpectrum’s run
script only. A constraints file is not generated.

Clock

Enables you to enter a more detailed clock constraint accounting for pulse width and duty
cycle as well as the period. The constraints entered here modify LeonardoSpectrum’s run
script only. A constraints file is not generated.

Input

Constraints that affect the input ports such as arrival time, fanout, pin location, and pad
type.

Output
Constraints that affect the output ports such as required time, pin location, and pad type.
Signal

Individual signal constraints such as preserve signal, a low skew constraint and a max
fanout constraint.

Module
Tell the synthesiS tool to synthesize a module differently then the rest of the design.

Path

Create false and multicycle paths.

Report

A current report of constraints that have been entered.

44 www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design i:X"JNX®

In the Constraints tab, enter the following constraints:

Select the Input sub-tab.

Select the Reset input pad.

In the Pin Location field, enter A5.

Click Apply.

Select the Report sub-tab, and check that the constraints were applied.

AL e

In order to get LeonardoSpectrum to write out a constraints file (.ctr), select any tab
(the Technology tab for example).

TechnE?ng_l,l l Input Cons

Figure 2-19: LeonardoSpectrum Technology Tab

7. Save the constraints file to the default name stopwatch.ctr.
8. Exit LeonardoSpectrum.

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor
and “Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used options is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a signal from a flip-flop or setting the desired
frequency of the design.

Set the global synthesis options:

Select stopwatch.vhd (or stopwatch.v).

Right-click the Synthesis process.

From the menu, select Properties.

Click the Synthesis Options tab, and set the Default Frequency to 50MHz.

Click the Netlist Options tab, and ensure that the Do Not Write NCF box is unchecked.

Click the Constraint File Options tab, and select the stopwatch.ctr file created in
LeonardoSpectrum, in the “Modifying Constraints” section above.

AL

7. Click OK to accept these values.

ISE 5 In-Depth Tutorial www.Xxilinx.com 45
1-800-255-7778

S XILINX® Chapter 2: HDL-Based Design

8. Select stopwatch.vhd (or stopwatch.v) and double-click on the Synthesize process in the
Process Window.

=] x|
Proceszes for Current Source:; |

----- W Drezign Entry Utilities
----- &F UserConstraints

Check Syntax

b odify Constraintz

Wiew Sunthesiz Report

Wiew Sunthesiz Summary

Launch Toolz

Wiew ATL Schematic

Yiew Technology Schematic
Wiew Critical Path Schematic
[G Implement Dezsigh

[G Generate Programming File

B Process View I

Figure 2-20: LeonardoSpectrum Synthesis/Implementation Window

The RTL/Technology Viewer

LeonardoSpectrum can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code is helpful for analyzing your design to see a
graphical connection between the various components that LeonardoSpectrum has
inferred. To launch the design in LeonardoSpectrum’s RTL viewer, double-click View RTL
Schematic.

46 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Synthesizing the Design XX"JNX@

RESET -

CLEkf—
CLEFE |~

LKL CLExE—

=1 o

1

—

Filh

Farle CLESne,

FaCORC CLEie,

CLE BUFS
Cli —{_: TENTHZO UTERL]
—ConEouTED
CLEiTe
LOCHTD iy [E--21
FaliChE |

Lk Hmamey forial |t TENZO UTIS]
ATETLETZ

TTTTTTTT
i "
g

(=) il

TRTETOR >

I Lk char ANDZ

- R 1

I

=hpinz oo }
IWw ETATIRGH Lk l—[[decode

x|
=

F

=
=

F

=
=

F

x|
=

F

=
=

F

=
=

F

x|
=

F

Figure 2-21: RTL View of Stopwatch Design

LeonardoSpectrum also has the capability of generating a technology-specific view of the
design after synthesis called the Technology Viewer. This schematic representation is
useful for verifying that the inferred elements are what were intended to be for the design.

To launch the design in LeonardoSpectrum’s Technology Schematic viewer, double-click
View Technology Schematic.

Note: Viewing the technology schematic will most likely result in a multi-page schematic. To view a
different page, right-click inside the schematic and select the appropriate option from the menu.

To view the path with the worst timing delay (the critical path) of the design, launch
LeonardoSpectrum’s Technology Viewer with LeonardoSpectrum’s timing engine by
double-clicking View Critical Path Schematic. Click the View Trace button in
LeonardoSpectrum to display the critical path of the design.

Wiew Trace

Figure 2-22: LeonardoSpectrum View Trace Button

ISE 5 In-Depth Tutorial

www.Xilinx.com 47
1-800-255-7778

$7 XILINX°

Chapter 2: HDL-Based Design

—n
—I 0 | o—— > TENSOUT(0)

e —Iz OBUF

—CE] I3

—CLR LLIT4

—D

FDCE

Figure 2-23: LeonardoSpectrum Critical Path Schematic

Double-click View Synthesis Report and View Synthesis Summary to see the details of
the synthesis.

The Synthesis Report summarizes the compilation, mapping and timing of the design. The
Synthesis Summary goes into more detail on the mapping and timing of the design.

48

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

SXILINX®

Chapter 3

Schematic-Based Design

This chapter includes the following sections.
e “Overview of Schematic-based Design”
e “Getting Started”

e “Design Description”

e “Design Entry”

Overview of Schematic-based Design

This chapter guides you through a typical FPGA schematic-based design procedure using
a design of a runner’s stopwatch. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices that you can apply to
your own designs. The Watch design targets a Virtex-II device; however, all of the
principles and flows taught are applicable to any Xilinx device family, unless otherwise
noted.

For an example of how to design with CPLDs, see the ISE Software Interactive Tutorial for
Xilinx CPLDs http:/ /support.xilinx.com /support/techsup /tutorials/index.htm.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you
will use the ISE design entry tools to complete the design. The design is composed of
schematic elements, a state machine, a CORE Generator component, and an HDL macro.
After the design is successfully entered in the Schematic Editor, you will perform a
behavioral simulation with ModelSim (Chapter 4, “Behavioral Simulation”),
implementation with the Xilinx Implementation Tools (Chapter 5, “Design
Implementation”), and timing simulation with ModelSim (Chapter 6, “Timing
Simulation”).

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

You must have Xilinx ISE 5.x to perform this tutorial. For this design you must install the
Virtex-II libraries and device files.

This tutorial assumes that the software is installed in the default location, c:\xilinx. If you
have installed the software in a different location, substitute c:\xilinx for your installation
path.

ISE 5 In-Depth Tutorial

www.Xilinx.com 49
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/index.htm

S XILINX® Chapter 3: Schematic-Based Design

Note: For detailed instructions about installing the software, refer to the ISE 5. 1i Installation Guide
and Release Notes.

Installing the Tutorial Project Files

The tutorial project files can be downloaded to your local machine from
http:/ /support.xilinx.com/support/techsup /tutorials/ tutorials5.htm.

You can download and install the following schematic project directories with the tutorial.

e c:\xilinx\ISEexamples\wtut_ sc
(incomplete schematic tutorial)

e c:\xilinx\ISEexamples\watch sc
(complete schematic tutorial)

Unzip the tutorial projects in the c:\xilinx directory, and replace any existing files. The files
downloaded from the web have the most recent updates. The schematic tutorial files are
copied into the directories when you unzip the project files.

wtut_sc project

The wtut_sc project contains an incomplete copy of the tutorial design. You will create the
remaining files when you perform the tutorial. As described in a later step, you can copy
this project to another area and perform the tutorial in this new area if desired.

watch_sc solution project

The watch_sc solution project contains the design files for the completed tutorial including
schematics and the bitstream file. To conserve disk space, some intermediate files are not
provided. Do not overwrite any files in the solutions directories.

Copying the Tutorial Files (Optional)

You can either work within the project directory as it has been downloaded, or you can
make a copy to work on. To make a working copy of the tutorial files, use Windows
Explorer to copy the wtut_sc directory to another location. The wtut_sc project directory
contains all of the necessary project files.

Starting the ISE Software

To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop or select Start —
Programs — Xilinx ISE — Project Navigator.

Froject
M awvigator

Figure 3-1: Project Navigator Desktop Icon

50 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/tutorials5.htm

Design Description XX"JNX@

2. From Project Navigator, select File — Open Project.

Laak jn: |El witut_sc j ﬂl

File name: thut_su:.npl Open I
Filez of type: IF'n:uieu:t Filez [*.npl] j Cancel |

Figure 3-2: Open Project Dialog Box

3. Browse to the directory c:\xilinx\1SEexamples\wtut_sc.

4. Double-click wtut_sc.npl. If you cannot see this file, first change the file type to Project
Files (*.npl).

Stopping the Tutorial

If you need to stop the tutorial at any time, first save your work by selecting File — Save.

Design Description

The design used in this tutorial is a hierarchical, schematic-based design, which means that
the top-level design file is a schematic sheet that refers to several other lower-level macros.
The lower-level macros are a variety of different types of modules, including a schematic-
based module, CORE Generator module, state machine module, DCM Wizard Module,
and HDL module.

Throughout this tutorial, the runner’s stopwatch design you’ll work with is referred to as
Watch.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by creating some of the modules and by completing some others from existing files.
After the design is complete, you will simulate the design to verify its functionality. For

more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

ISE 5 In-Depth Tutorial www.Xxilinx.com 51
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

Watch is a simple runner’s stopwatch. The completed schematic is shown in the following
figure.

decmi stmach_v
dk_Inl

OKR_M CLE0Our o T e A1]
TSl

f—

"z .
E —{aiiaiop 1l Linl

[srkp

. decode . . . outsd

3o

F—rialim oua2m —]

diznnl
dinl

AMIT

=_inl

chtB0 hiesx2led

ores310
k_Inl — - bioed2 =T . ——] (511

il —= ExZlEl

dken_nl

Figure 3-3: Completed Watch Schematic

There are three external inputs and three external outputs in the completed design. The
following list summarizes the inputs and outputs, and their respective functions.

Inputs
The following are input signals for the runner’s stopwatch design:

e STRTSTOP

Starts and stops the stopwatch. This is an active-low signal that acts like the start/stop
button on a runner’s stopwatch.

e RESET

Resets the stopwatch to 00.0 after it has stopped.
e CLK

System clock for the Watch design.

52 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Description

$XILINX®

Outputs

The following are output signals for the design:

TENSOUT(6:0)

7-bit bus that represents the tens digit of the stopwatch value. This bus is in 7-segment
display format to be viewable on the 7-segment LED display.

ONESOUT(6:0)

Similar to the TENSOUT bus above, but represents the ones digit of the stopwatch
value.

TENTHSOUT!(9:0)

10-bit bus which represents the tenths digit of the stopwatch value. This bus is one-hot
encoded.

Functional Blocks

The completed design consists of the following functional blocks. Most of these blocks do
not appear on the schematic sheet in the tutorial project until after you create and add them
to the schematic in this tutorial.

STMACH_V
State Machine macro defined and implemented in StateCAD.
CNT60

Schematic-based module which counts from 0 to 59 decimal. This macro has two 4-bit
outputs, which represent the ones and tens digits of the decimal values, respectively.

TENTHS

CORE Generator 4-bit, binary encoded counter. This macro outputs a 4-bit code that is
decoded to represent the tenths digit of the watch value as a 10-bit one-hot encoded
value.

HEX2LED

HDL-based macro. This macro decodes the ones and tens digit values from
hexadecimal to 7-segment display format.

OuUTS3

Schematic-based macro containing inverters.

DECODE
Decodes the CORE Generator output from 4-bit binary to a 10-bit one-hot output.

DCM1
DCM Wizard Macro with internal feedback and duty-cycle correction.

ISE 5 In-Depth Tutorial

www.Xilinx.com 53
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

Design Entry

In this hierarchical design, you will create various types of macros, including schematic-
based macros, HDL-based macros, state machine macros, and CORE Generator macros.
You will learn the process for creating each of these types of macros, and connect them
together to create the completed Watch design. All procedures used in the tutorial can be
used later for your own designs.

Opening the Project File in the ECS Schematic Editor Tool

To open the stopwatch.sch file in the Engineering Capture System (ECS) schematic editor
tool, double-click the file name stopwatch.sch in the Sources in Project window.

The Watch schematic diagram opens in ECS. The Watch schematic is incomplete at this
point. The unfinished design is shown in the figure below.

E.m Xilinx ECS - [stopwatch.sch] =S
ﬁﬁlem View Add Tools Window Help ;Iilll
DEEHFER [t 2Ro-|F||@aaxxap|85228m

X [vw =280 \NOA[DC 4 n|/]

2=l
Tt | Symbolsl ﬂ

[Select Options

‘when pou click on a branch
% Select the entire branch
" Select the line segment

terthsout(9.0.

‘when you move an object

% Keep the connections to other
objects

" Break the connections to other
objects

When vou uze the area select tool,
select the objects that

% Are enclosed by the area

€ Intersect the area

when you use the area select tool,
select

% Objects excluding attibute
windows

€ Attribute windaws only o tenzout(E 0

! o

stopwatch.sch I

Ready [742,1149]

Figure 3-4: Incomplete Watch Schematic in Engineering Capture System (ECS)

Manipulating the Window View

The View menu commands enable you to manipulate how the schematic is displayed.
Select View — Zoom — In until you can comfortably view the schematic.

54 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

Creating a Schematic-Based Macro

A schematic-based macro consists of a symbol and an underlying schematic. You can
create either the underlying schematic or the symbol first. ECS then generates the
corresponding symbol or schematic file.

In the following steps, you will create a schematic-based macro by using the New Source
Wizard in Project Navigator. An empty schematic file is then created by ISE that you can
define in ECS with the appropriate logic. The created macro is then automatically added to
the project’s library.

The macro you will create is called CNT60. CNT60 is a binary counter with two 4-bit
outputs, which represent the Ones and Tens values of the stopwatch. The counter counts
from 0 to 59, decimal.

To create a schematic-based macro:

1. In Project Navigator, select Project — New Source. The New Source dialog opens.

Hew

Uszer Document
WHDL Module

Eoreien IF
File M arne:

WHOL Library
YHOL Package ;CNTED
WHOL Test Bench

Test Berch W avetarm

Bt File Lacation:
MEM File ~
Implementation Constraints File ic:\Hlllm:'\lSEe:-:ampIes\wtut_sc

i

State Diagram

v add to project

Al ' M et » I Cancel i Help

Figure 3-5: New Source Dialog Box

The New Source dialog provides a list of all available source types.

2. Select Schematic as the source type.
3. Enter ‘CNT60’ as the file name.
4. Click Next and click Finish.

This creates a new schematic named CNT60 and adds the schematic file to the project.

Defining the CNT60 Schematic

You have now created an empty schematic for CNT60. The next step is to add the
components make up the CNT60 macro. You can then reference this macro symbol by
placing it on a schematic sheet.

ISE 5 In-Depth Tutorial

www.Xilinx.com 55
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

Adding Components to CNT60

Components from the device and project libraries for the given project are available from
the Symbol Libraries toolbox to place on the schematic. The available components listed in
this toolbox are arranged alphabetically within each library.

1. From the menu bar, select Add — Symbol or click the Add Symbol icon from the Tools
toolbar.

Figure 3-6: Add Symbol Icon

This opens the Symbol Browser window to the left of the schematic editor, which
displays the libraries and their corresponding components.

i |

Options Symbals I

%ate ories

<o Arilinedizeszamples Awatch_sc»
Arithrnetic

Buffer

Clock Divider

Cormparator

Courter

Decoder

Flip_Flop
General

1a

Latch

Logic

L
Shift_Register
S hifter

TTL

4| I =l

Swmbols

_
acclB

accd
accds2
acch
accEHZ
addl
add16
addlEx1
addl Ex2
addl=1
addl =2

add4 =l

Symbol Mame Filter

Orientation

I Fotate O LI

Figure 3-7: Symbol Browser Dialog Box

The first component you will place is an AND?2, a 2-input AND gate.

2. Select this component one of two ways:

¢ Highlight the Logic category from the Symbol Browser and select the component
AND2 from the symbols list.

or

¢ Select All Symbols and type "AND2’ in the Symbol Name Filter at the bottom of
the Symbol Browser window.

56

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

SUXILINX®

Move the mouse back into the schematic window.

You will notice that the cursor has changed to represent the AND2 symbol.

Move the symbol outline to the location shown in Figure 3-8 and click the left mouse
button to place the object.

Note: You can rotate new components being added to a schematic by selecting CTRL+R. You
can rotate existing components by selecting the move mode, selecting the component, and then
selecting CTRL+R.

Place the second AND2 symbol on the schematic by moving the cursor with attached
symbol outline to the desired location and click the left mouse button. See Figure 3-8.

CD4CE

Loz | g
|
b
\:D -
CBACE
mibiecin
i |"!|J|9Cl.|l
mrbrec
:| | —,

Figure 3-8: Completed CNT60 Schematic

Placing the Remaining Components

Follow the steps above in “Adding Components to CNT60” to place the CD4CE, OR2,
CB4CE, INV, and AND4 components on the schematic sheet. Refer to Figure 3-8 for
placement of all components.

To exit the Symbols Mode, press the Esc key on the keyboard.

For a detailed description of the functionality of each of these components, refer to the
Libraries Guide, available in the collection of software manuals on the web, at
http:/ /support.xilinx.com/support/sw_manuals/xilinx5/.

ISE 5 In-Depth Tutorial

www.Xilinx.com
1-800-255-7778

57

http://support.xilinx.com/support/sw_manuals/xilinx5/

S XILINX® Chapter 3: Schematic-Based Design

Correcting Mistakes

If you make a mistake when placing a component, you can easily move or delete the
component.

To move the component, click the component and drag the mouse around the window.
Delete a placed component in one of two ways:

e Click the component and press the Delete key on your keyboard.

or

¢ Right-click the component and click Delete.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called nets) to connect the
components placed in the schematic.

Signals can be logically connected by naming multiple segments identically. In this case,
the nets do not need to be physically connected on the schematic to make the logical
connection. In the CNT60 schematic, draw wires to connect the components together. The
nets for the LSBSEC and MSBSEC buses are drawn in the next section.

Perform the following steps to draw a net between the AND2 and the CB4CE components
on the CNT60 schematic.

1. Select Add — Wire or click the Add Wires icon in the Tools toolbar.

(W= = |

Figure 3-9: Add Wires Icon

2. Click the output pin of the AND2 and then click the destination pin, CE on the CB4CE
component. ECS draws a net between the two pins.

Draw the nets to connect the remaining components as shown in the Figure 3-8. To specify
the shape of the net:

1. Move the mouse in the direction you want to draw the net.

2. Click the mouse to create a 90-degree bend in the wire.

To draw a net between an already existing net and a pin, click once on the component pin
and once on the existing net. A junction point is drawn on the existing net.

You should now have all the nets drawn except those connected to the LSBSEC and
MSBSEC buses. You will draw these in the next section. Net names will be added in a later
section.

Adding Buses

In ECS, a bus is simply a wire which has been given a multi-bit name. In order to add a bus
follow the same methodology for adding wires and then add the proper name. Once a bus
has been created, you have the option of “tapping” this bus off to use each signal
individually.

58 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

In this CNT60 schematic, create two buses called LSBSEC(3:0) and MSBSEC(3:0), each
consisting of the 4 output bits of each counter. Then connect an I/O marker to each bus in
order to connect them to the CNT60 symbol. The results can be found in the completed
schematic.

To add the buses LSBSEC(3:0) and MSBSEC(3:0) to the schematic, perform the following
steps:

1. Select Add — Wire or click the Add Wires icon in the Tools toolbar.
2. Click to the right of the CB4CE and draw a wire down and to the right of the symbol.

3. Terminate the wire with a double-click on the left mouse button.
To change the wire into a bus, the wire must be named. To name a wire:

4. Select Add — Net Name or click the Add Net Name icon in the Tools toolbar.

f e g - = |

Figure 3-10: Add Net Name Icon

5. With the keyboard enter ‘msbsec(3:0)” and press Enter.

This will attach the bus name to the cursor.

6. Click the mouse cursor, which now displays the bus name, at the end of the bus to
apply the name.

The wire changes to a bus.

7. To verify this, zoom in. The bus is represented visually by a thicker wire.

sheac(3:0) -

Figure 3-11: Creating a Bus by Name

8. Repeat Steps 1 through 7 for the LSBSEC(3:0) bus, referring to Figure 3-8 for placement
of the wire and the bus name.

9. After adding the two buses, press Esc or right-click to exit the Draw Buses mode.

ISE 5 In-Depth Tutorial

www.Xilinx.com 59
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

Adding Bus Taps

Next, add nets to attach the appropriate pins from the CB4CE and CD4CE counters to the
buses. Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic will enable greater precision when drawing the nets.
To tap off a single bit of each bus:
1. Select Add — Bus Tap or click the Add Bus Tap icon in the Tools toolbar.

EEED

Figure 3-12: Add Bus Tap Icon

The cursor changes, indicating that you are now in Draw Bus Taps mode.

2. From the options window to the left of the schematic, choose the correct orientation for
the bus.

3. Place the tap on the bus so that the wire side of the bus tap is pointing to an
unconnected pin.

Repeat steps 1 to 3 to tap off the other three bits of the bus.
To connect each of the tap off bits:
1. Select Add — Wire or click the Add Wire icon in the Tools toolbar.
2. Draw a wire from the other end of the bus taps to the corresponding pins.
3. Select Add — Net Name or click the Add Net Name icon in the Tools toolbar.
4. Type in ‘msbsec(0)" in the blank area of the options toolbar.

The net name is now at the end of your cursor.

S

Select Increment the Name in the Add Net names options window.

With the Increment Name option selected, start at the top net and continue clicking
down until you have named the fourth and final net msbsec(3).

Note: ECS names the bus taps incrementally as they are drawn. Alternatively, name the first net
msbsec(3) and decrement as nets are named from the bottom up.

Repeat Steps 1 through 6 for the Isbsec(3:0) bus.

Press Esc to exit the Add Net Name mode.

Draw the nets to connect the msbsec bus taps to the INV and AND4 components. If
necessary, refer to “Drawing Wires” for guidance.

9. Compare your CNT60 schematic again with Figure 3-8 to ensure that all connections
are made properly.

Note: If the nets appear disconnected, select View — Refresh to refresh the screen.

60 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

Adding Net Names

Next, add net names to the clk, clr, and ce nets (wires).

1. Select Add — Net Name or click the Add Net Name icon in the Tools toolbar.

2. Type ‘clk’ in the Name box of the Add Net Name Options window.

Note: The Options window changes depending on which tool you have selected in the Tools toolbar.
The net name clk is now attached to the cursor.

3. Click the end of the clk net.

The name is then attached to the end of the net. The net name will appear above the net
if the name is placed at any point of the net other than the endpoint.

Repeat steps 1-3 for ce and clr.

Adding I/0O Markers

I/0 markers are used to determine the ports on a macro or the top level schematic.The
name of each pin on the symbol must have a corresponding connector in the underlying
schematic. Add I/O markers to the CNT60 schematic to determine the macro ports.

To add the I/O markers:

1. Select Add — I/0O Marker or click the I/O Marker icon from the Tools toolbar.
The Add I/O Marker Options window opens to the left of the schematic.
Select Add an input marker.

Click and drag a box around the following nets: clk, ce, and clr.

Select Add an output marker in the Options window and add a marker to the
msbsec(3:0) and Isbsec(3:0) nets.

When you save a macro, the ECS schematic editor checks the I/O markers against the
corresponding symbol. If there is a discrepancy, you can let the software update the symbol
automatically, or you can modify the symbol manually. You should use I/O markers to
connect signals between levels of hierarchy and also to specify the ports on top-level
schematic sheets.

Saving the Schematic
The CNT60 schematic is now complete.

1. Save the schematic by selecting File — Save or by clicking the Save icon in the toolbar.

=]

Figure 3-13: Save Icon

2. Close ECS.

ISE 5 In-Depth Tutorial www.Xxilinx.com 61
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

Creating the CNT60 symbol

You will now create the symbol representing the CNT60 schematic in Project Navigator.

1.
2.

In the Sources in Project window, select cnt60.sch.

In the Processes for Current Source window, click the + beside Design Entry Ultilities to
expand the hierarchy.

Double-click Create Schematic Symbol.

Placing the CNT60 Macro

So far, you have created the CNT60 macro. The next step is to place this macro on the top-
level Watch schematic sheet, where it will then be connected to other components in the
design.

1.

Open the Watch schematic sheet by double-clicking stopwatch.sch in the Sources in
Project window.

Select the Add Symbol icon to open the Symbol Browser dialog box.

—

Figure 3-14: Add Symbol Icon

Select the Local Symbols library (c: /xilinx/ISEexamples/wtut_sc), and locate
and select the newly created CNT60 macro from this list.

Place the CNT60 macro in the schematic as shown below.

. '—_ : : : _-)ténthSD.Ut QZU.
ent60. . T
e Isbse o300 —
el :
msbsec(3:0) —3
i . B = 3 = E i 1 2 z A i

3 - —_tensout(B:o

Figure 3-15: Placing the CNT60 Macro

Note: The Symbol Browser window remains open to enable you to quickly place additional symbols
without having to click the Add Symbol icon again. To close the Symbols window, click the X in the
upper right corner of the window or redock it to the right of the application.

Note: Do not worry about connecting nets to the pins of the CNT60 symbol. You will do this after
adding other components to the Watch schematic.

5.

Close ECS.

62

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

Creating a CORE Generator Module

CORE Generator is a graphical interactive design tool you use to create high-level modules
such as counters, shift registers, RAM and multiplexers. You can customize and pre-
optimize the modules to take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called Tenths. Tenths is a 4-bit
binary encoded counter. The 4-bit number is then decoded to count the tenths digit of the
stopwatch’s time value.

Creating the CORE Generator Module

Select the type of module you want and the specific features of the module in the CORE
dialog box. To create the CORE Generator module using this dialog box:

1.
2.
3.

In Project Navigator, select Project — New Source.

Select Coregen IP, enter ‘tenths’ in the File Name field.
Click Next and click Finish.
The Xilinx CORE Generator opens and displays a list of available COREs.

Double-click Basic Elements - Counters.

Double-click Binary Counter to open the Binary Counter dialog box. This dialog box
enables you to customize the counter to the design specifications.

Fill in the Binary Counter dialog box with the following settings:

L

Component Name: tenths

Defines the name of the module.
Output Width: 4

Defines the width of the output bus.
Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

Count Style: Count by Constant

Allows counting by a constant or a user supplied variable.

Count Restrictions:

- Count by value: 1

- Select restricted count
- Count to value: A

This dictates the maximum count value.

Select Next.

L

¢

Threshold Options: Enable Threshold 0 and set to A

Signal goes high when the value specified has been reached.

Select Registered

ISE 5 In-Depth Tutorial

www.Xilinx.com 63
1-800-255-7778

& XILINX®

Chapter 3: Schematic-Based Design

X
Parameters | &l core Ovenriewl i Contactl &d wep Linksl
WC@RE Binary Counter
Companent Marme: |tenths
Output Width: |4 Valid Range: 2. 256
— Operation
* Up " Down " UpDown
— Count Style
{* Caunt by Constant {" Count by variable
— Count Restrictions
Count By Valug: |1 (Hexvalug, MSB first
¥ Restrict Count
Count To Value: |A (MAX' or Hexvalue, MSB first)
2 Backl N Page 1 of 2
Generate Dismmissg Data Sheet.. Yersion Info... | [Display Core Footprint
Figure 3-16: CORE Generator Module Selector
Click the Register Options button to open the Register Options dialog box.
Enter the following settings.
¢ Clock Enable: Selected
¢ Asynchronous Settings: Init with a value of 1
¢ Synchronous Settings: None
10. Check that only the following pins are used (used pins will be highlighted on the
model symbol to the left side of the Coregen window):
¢ AINIT
+ CE
¢+ Q
¢+ Q_ThreshO
¢ CLK
11. Click Generate.
The module is created and automatically added to the project library.
64 www.xilinx.com ISE 5 In-Depth Tutorial

1-800-255-7778

Design Entry

$XILINX®

Note: A number of files are added to the project directory. These files are:
¢ tenths.sym
This is a schematic symbol file.
¢ tenths.edn

This file is the netlist that is used during the Translate phase of implementation.

¢ tenths.vhd or tenths.v

This is the instantiation template that is used to incorporate the CORE Generator
module into your source HDL.

¢ tenths.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

¢ coregen.prj
This file stores the Coregen configuration for the project.

12. Select Dismiss and close CORE Generator.

Creating a State Machine Module

With Xilinx StateCAD, you can graphically create finite state machines—states,
inputs/outputs, and state transition conditions. Transition conditions and state actions are
typed into the diagram using language independent syntax. The State Editor then exports
the diagram to either VHDL, Verilog, or ABEL code. The resulting HDL file is finally
synthesized to create a netlist and/or macro for you to place on a schematic sheet.

For this tutorial, a partially complete state machine diagram is provided. In the next
section, you will complete the diagram and synthesize the module into a macro to place on
the Watch schematic. A completed VHDL State Machine diagram has been provided for
you in the watch_sc directory.

ISE 5 In-Depth Tutorial

www.Xilinx.com 65
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

Opening the State Editor

You can invoke StateCAD from Project Navigator. The tutorial utilizes an existing diagram
which you will complete.

To open the diagram, double-click stmach_v.dia in the Sources in Project window. The state
machine file is launched in StateCAD.

strtstop =0

ETMACH_

strtstop ="1"

strtstop = '0°

strtstop ='1* o

strtstop =1
strtstop = 0

Figure 3-17: Incomplete State Machine Diagram

In the incomplete state machine diagram above:

e The circles represent the various states.

e The black expressions are the transition conditions, defining how you move between
states.

¢ The output expressions for each state are contained in the circle representing the state.

In the state machine diagrams, the transition conditions and the state actions are written in
language independent syntax and then exported to Verilog, VHDL, or ABEL.

In the following section, add the remaining states, transitions, actions, and a reset
condition to complete the state machine.

66

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry XX"JNX@

Adding New States

Complete the state machine by adding a new state called clear.To do so:

1. Click the Add State icon in the vertical toolbar.

Figure 3-18: Add State Icon

The state bubble is now attached to the cursor.

2. Place the new state on the left-hand side of the diagram as shown in Figure 3-19. Click
the mouse to place the state bubble.

ZEro

clkout<="0";
rst<="'0";

stristop ="'1"

stristop ="1'

[TE [LILI

Figure 3-19: Adding the CLEAR State

3. The state is given a default name, in this case STATEQ. Double-click STATEOQ in the
state bubble, and change the name of the state to clear.

Note: The name of the state is for your use only and does not affect synthesis. Any name is
fine.

4. Click OK.

To change the shape of the state bubble, click the bubble and drag it in the direction you
wish to “stretch” the bubble.

ISE 5 In-Depth Tutorial www.Xxilinx.com 67
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

Adding a Transition

A transition defines the movement between states of the state machine. Transitions are
represented by arrows in the editor. You will be adding a transition from the clear state to
the zero state in the following steps. Because this transition is unconditional, there is no
transition condition associated with it.

1. Click the Add Transitions icon in the vertical toolbar.

=

Figure 3-20: Add Transitions Icon

Double-click the clear state (once to select it, and once to start the transition.)
Click the zero state to complete the transition arrow.

To manipulate the arrow’s shape, click and drag it in any directory.

ZEro

clkout<="0";
rst<='0";

stristop ="1"

stristop ='1"

Figure 3-21: Adding State Transition
5. Click the Select Objects icon in the vertical toolbar to exit the Add Transition mode.

Adding a State Action

A State Action dictates how the outputs should behave in a given state. You will add two
state actions to the clear state, one to drive the clkout output to 0, and one to drive the RST
output to 1.

68 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry ST XILINX®

To add a State Action:

1. Double-click the clear state.
The Edit State dialog box opens and you can begin to create the desired outputs.

Edit State

Figure 3-22: Edit State Dialog Box

Select the Output Wizard button.
In the Output Wizard, select the following values:
DOUT = clkout, CONSTANT = ‘0’;

DOUT = rst, CONSTANT = ‘1’;
Click OK to enter each individual value.
5. Click OK to exit the Edit State dialog box. The outputs are now added to the state.

ISE 5 In-Depth Tutorial www.xilinx.com 69
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

ZEro
clkout<="0"
rst<='0;
clear

clkout ='0";

stristop = '1"
rst ='1"; P

stristop ='1"

Figure 3-23: Adding State Outputs

Adding a State Machine Reset Condition

Using the State Machine Reset, specify a reset condition for the state machine. The state
machine initializes to this specified state and enters the specified state whenever the reset
condition is met. In this design, add a Reset condition which sends the state machine to the
clear state whenever the resef signal is asserted.

1. Click the Add Reset icon in the vertical toolbar.

=
Figure 3-24: Add Reset Icon

2. Click the diagram near the clear state, as shown in the diagram below.

3. The cursor is automatically attached to the transition arrow for this reset. Move the
cursor to the clear state, and click the state bubble.

70 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

4. A question is then asked, “Should this reset be asynchronous(Yes) or
synchronous(No)?” Answer Yes.

ZEro

clkout<="0";
rst<="'0";

stristop =
reset ="1"

stristop = "1

Figure 3-25: Adding Reset

5. Save your changes by selecting File — Save.

Creating the State Machine Macro

In this section, you will create the HDL code used to create a macro symbol that you can
place on the Watch schematic. The macro symbol is added to the project library. When you
create the macro, StateCAD creates HDL code representing the macro from the state
machine diagram.

1. Select Options — Compile (Generate HDL).
StateCAD verifies the state machine and displays the results.
2. Review the results and close the dialog box.
StateCAD will then create the HDL code and open a browser displaying the code.
Close the browser when you have finished examining the code.
Close StateCAD.
In Project Navigator, select Project — Add Source.
Select stmach_v.vhd, which is the VHDL file generated by StateCAD.
Click Open.
Select VHDL module as the source type.
Click OK.
The file stmach_v.vhd is added to the project.

O *® NGk

ISE 5 In-Depth Tutorial

www.Xilinx.com 71
1-800-255-7778

& XILINX®

Chapter 3: Schematic-Based Design

10. Select stmach_v.vhd.
11. In the Processes for Current Source window, double-click Create Schematic Symbol

from the Design Entry Utilities hierarchy.

Creating a DCM Module

The DCM Wizard, one part of the Xilinx Architecture Wizard, enables you to graphically
select Digital Clock Manager (DCM) features that you wish to use. In this section, you will
create a basic DCM module with CLKO feedback and duty-cycle correction.

Using DCM Wizard
Create the DCM1 module.

1.
2.

© NS O W»

Select Project — New Source.

In the New Source dialog box, select the Architecture Wizard source type, and enter
the filename ‘DCM1".

Click Next and click Finish.

In the Xilinx Architecture Wizard Selection Box select DCM Wizard.
Click OK.

Deselect RST and Locked.

Type 50 for the Input Clock Frequency.

Verify the following settings:

¢ Clkin Source: External

¢ Feedback Source: Internal
¢ Feedback Value: 1X

¢ Phase Shift: None

¢ Duty Cycle Correction: Yes

72

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry ST XILINX®

x|
DCH Instance M arme:
Iv
r
r
r
r
r
r
r
r
r
PSEN r
PSINCDEC r
PSCLEK PSDOMNE
— Input Clock Frequency—————————— CLEIM Source Divide By Walue
i Inkemal
ISD |2 'I
® MHz " ns ’7 {* External ’7
— Feedback Diuty Cycle Correction
Source: " |nternal = External = Mone - ~
Ol M
Valuer 8 1 [alf-% = -
— Phasze Shift
= Mone = Fined i~ Wariable Advanced... |
Phase SHift Walus [0 = More Infa_|
< Back I ent = I Cancel I

Figure 3-26: Xilinx DCM Wizard

9. Select the Advanced button.
10. Change Wait for DCM Lock before DONE Signal goes high to Yes.
11. Select OK and click Next.

An informational message about the Locked signal and the STARTUP_WAIT option
appears.

12. Select OK and then Finish.

DCM1.xaw is added to your project sources.

Creating the DCM1 macro

1. In Project Navigator, in the Sources in Project window, select DCM1.xaw.

2. Inthe Processes for Current Source window, double-click Create Schematic Symbol
from the Design Entry Utilities hierarchy.

Note: The newly created DCM1_arwz.ucffile does not need to be added to the project, as all of the
constraints are passed into the relevant source file(s).

Placing the STMACH, Tenths, DCM1, outs3, and decode symbols

You can now place the STMACH, Tenths, DCM1, outs3, and decode symbols on the Watch
schematic.

1. In Project Navigator, double-click watch.sch. The schematic file opens in the ECS
schematic editor. If the file is already open in ECS, ignore this step.

2. View the list of available library components in the Symbol Browser window.

ISE 5 In-Depth Tutorial www.xilinx.com 73
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

3.
4.

Locate the macros in the Local Symbols library.

Select the appropriate symbol, and add it to the Watch schematic as shown in
Figure 3-27.

Note: Do not worry about drawing the wires to connect this symbol. You will connect components in
the schematic later in the tutorial.

5.

Save the schematic.

dcml]] stmach_w
(=N0 Oko aur L L] ol —
decode outs3

:
i
1

——|=vam om moliamfE— F—ruaam’ ocusam E—

Ojaml—

- AmIT

Figure 3-27: Placing Design Macros

Creating an HDL-Based Module

With ISE, you can easily create modules from HDL code. The HDL code is connected to
your top-level HDL design through instantiation and compiled with the rest of the design.

Next you will create a new HDL module. This macro serves to convert the two 4-bit
outputs of the CNT60 module into a 7-segment LED display format.

Using the New Source Wizard and HDL Editor

Enter the name and ports of the component in the New Source wizard, and the wizard
creates a “skeleton” HDL file which you can complete with the remainder of your code.

1.

® N o @x

In Project Navigator, select Project — New Source.

The New Source dialog box opens.

Select the source type VHDL Module or Verilog Module, depending on your coding
preference.

In the File Name field, type "hex2led".
Click Next.

The hex2led component has a 4-bit input port named HEX and a 7-bit output port
named LED. First enter the port named HEX as follows:

Click in the Port Name field and type HEX.
Click in the Direction field and set the direction to in.
In the MSB field, enter 3, and in the LSB field, enter 0.

Repeat the previous steps for the LED(6:0) output bus. Be sure that the direction is set
to out.

The dialog box entries are displayed in Figure 3-28.

74

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

Entity Mame IhE:-:2|El:|

Architecture Mame Il:uehavicural

Define YHDL Source E3

Port Hame Direction MsE LSB ﬂ
HEX in 0
LED: out 0
| in
in
in
in
in
in
in
in
in
in ;I
Cancel | Help

9. Select Next to complete the Wizard session.

Figure 3-28: New Source Wizard

A description of the module displays.
10. Select Finish. The “skeleton” HDL file opens in the HDL Editor.

ISE 5 In-Depth Tutorial

www.Xilinx.com
1-800-255-7778

75

$7 XILINX°

Chapter 3: Schematic-Based Design

0o -~ m th B ok =

1 BRI Rl = = —a —a s o A s
e Y [) B T e

Library IEEE;

uze IEEE.STD LOGIC 1164.ALL;

uze IEEE.STD LOGIC ARITH.ALL;
uze IEEE.STD LOGIC UNSIGNED.ALL;

-- Ineoomnent the following lines to use the declarations that ar
-- provided for instantiating Xilinx primitiwve components.
—-library THNISIM:

--uze UNISIM.VComponents.all:

entity hexzZled iz
Fort | HEX : in std logic wectori3 dowmto 0);
LED : in std logic wector(d dowmto O0)):
end hexzled;

architecture Behavioral of hexZled is

begin

end Behavioral;

Figure 3-29: Skeleton VHDL File

M0~ @ h B oW R =

module HEXZLED (HEX,LED) ;
input [3:0] HEX:
input [6:0] LED;

erdmodule

Figure 3-30: Skeleton Verilog File

In the HDL file, the ports are already declared and some of the basic file structure is already
in place. Keywords are printed in blue, data types in red, comments in green, and values
are black. This color-coding enhances readability and recognition of typographical errors.

Using the Language Templates

The ISE Language Templates are HDL constructs and synthesis templates that represent
commonly used logic components, such as counters, D flip-flops, multiplexers, and
primitives. You can add your own templates to the Language Templates for components or
constructs you use often.

76

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry XX"JNX@

To invoke the Language Templates window and select a template for this tutorial:

1. In Project Navigator, select Edit — Language Templates.
Each HDL language in the Language Template is divided into four sections:
Component Instantiations, Language Templates, Synthesis Templates, and User
Templates. To expand the view of any of these sections, click the + next to the topic.
Click any of the listed templates to view the template contents in the right-hand pane.

2. Locate the template called HEX2LED Converter for VHDL or Verilog located under
the Synthesis Templates heading. Use the appropriate template for the language you
are using.

3. To preview the HEX2LED Converter template, click the template in the hierarchy. The
contents display in the right-hand pane.

This template provides source code to convert a 4-bit value to 7-segment LED display
format.

W | o | e

Templates:

Cl ABEL
D UCF --HEX-to-seven-sequent decoder

Cl Veriog -- HEX: in STD_LOGIC_WECTOR (3 dowmto 0):
: -- LED: . 5TD LOGIC VECTOR (& dowmto 0):
ED VHDL o B - (& dowmto 0)

Cl Companent |ngtantiation
Cl Language Templates

| »

-- geguent encoding

27 Syrithesis Templates _ _?_

[Bamel Shifter — 5 11

Comparator - -—— £- 6

Counter - 4 | 2

-1 Debounce circui -- -

[Decoder -- 3

[Encoder

-2 Flip Flops with HEX 3ELect

WY HEXILED Converter LED<= "1111001" when "000L", -1

&1 (] Latches 01001007 when "00107, -2

[]"'D Muliplesers "0110000™ when "0OLL™, --3

B Pulldon "O0LL00L" when "01007, --4 |

Pullp 00100107 when 01017, --5

T0000010" when 01107, --B

E-CIRAM 11110007 when "01117, -7

-] Shif Regitars 0000000 when "10007, -8

-1 State Machines 00100007 when "10017, -9

(-] Tristate Buffers "000L000" when "10107, -k .
----- {23 User Templates ﬂ_l MAAAOATII A a1 . _'lJ

Q Language T...
Figure 3-31: Language Templates

Adding the Language Template to Your File

Next you will use the drag and drop method for adding templates to your HDL file. A
copy and paste function is also available from the Language Template Edit Menu and the
right-click menu.

ISE 5 In-Depth Tutorial www.Xxilinx.com 77
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

To add the HEX2LED language template to your file:

1.

7.

In the Language Template, click and drag the HEX2LED Converter name into
¢ hex2led.vhd under the architecture begin statement

or

¢ hex2led.v file under the module declaration.
Close the Language Template window.

(Verilog only) After the input and output statements and before the HEX2LED
converter that you just added, add the following line of code to the HDL file to allow
an assignment.

reg LED;
You now have complete and functional HDL code.
Save the file by selecting File — Save.
In Project Navigator, select hex2led.vhd or hex2led.v in the Sources in Project window.

Double-click Check Syntax located in the Synthesize hierarchy in the Processes for
Current Source window.

Close HDL Editor.

Creating the HEX2LED Symbol

Next, create the schematic symbol representing the HEX2LED HDL in Project Navigator.

1.
2.

3.

In the Sources in Project window, select hex2led.vhd or hex2led.v.

In the Processes for Current Source window, click the + beside Design Entry Ultilities to
expand the hierarchy.

Double-click Create Schematic Symbol.

Adding the HEX2LED Component to the Schematic

You are now ready to place the HEX2LED macro (or symbol) on the Watch schematic.

1.

In the Sources in Project window, double-click watch.sch. The schematic file opens in
the ECS schematic editor.

Open the Symbols Libraries dialog box (refer to “Adding Components to CNT60”)
to view the list of available library components.

Locate the HEX2LED macro in this list.

78

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry i:X"JNX®

3. Select HEX2LED, and add two instances of this symbol to the Watch schematic, as
shown in Figure 3-32. You will connect the entire schematic later in the tutorial.

B ‘hekx2led -

 ente0 xR
= I —

o— e Isbseo2:00 —3

ot 7 hexZled =

mzhseof3:0) ——
—r ; ’ : ’ ’ ——HEXZ0) LEDE:D —

Figure 3-32: Placing the HEX2LED Component

Specifying Device Inputs/Outputs

Use the I/O marker to specify device I/O on a schematic sheet. All ECS schematics are
netlisted to VHDL or Verilog and then synthesized by the synthesis tool of choice. When
the synthesis tool synthesizes the top-level HDL, the I/O markers are replaced with the
appropriate pads and buffers.

Hierarchy Push/Pop

First, perform a hierarchy “push down” which enables you to focus in on a lower-level of
the schematic hierarchy to view the underlying file. Push down into the OUTS3 macro,
which is a schematic-based user-created macro, and examine its components.

To push down into OUTS3:

1. Click the OUTS3 symbol in the schematic and select the Hierarchy Push/Pop icon.
You can also right-click the macro and select Push into Symbol.

@ {n)
e

Figure 3-33: Hierarchy Push/Pop Icon

In the OUTS3 schematic, you see a series of inverters (INV) and output buffers
(OBUF). This macro illustrates that you can place I/O buffers in a lower level macro.

ISE 5 In-Depth Tutorial www.Xxilinx.com 79
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

2.

The output buffers are not required because the synthesis tool inserts a buffer when
one is not found.

_
inputs0) mo I“L“%UF ki i . . .
inputs(1) mo [auts(1)
inputs2) mc PLK/:EUF outs(2)
inputs(3) mo D_;w outs(3)
inputsh mo [auts()
inputss) {20 D_;UF auts(s)
inputs) mo D_:L.F outs()
inputs(T) mo [outs)
inputs(s) I[}C FHL/H?;UF outs(E)
input3) mo N:UF outs(3)

Figure 3-34: OUTS3 Schematic Macro

After examining the macro, “pop out” of the OUTS3 component by clicking the
Hierarchy Push/Pop icon.

Adding Input Pins

Next, add three more input pins to the Watch schematic: CLK, RESET and STRTSTOP. Add
an IBUF component for two of the new input pins: RESET and STRTSTOP.

To add these components:

1.

2.
3.
4

Click the Add Symbol icon in the toolbar to open the Symbol Browser dialog box.
Browse to locate the IBUF and INV components in the library.
Drag and drop these two components onto the schematic, as shown below.

Draw a hanging wire to the input of the IBUFs and DCM1. Refer to the “Drawing
Wires” for detailed instructions.

80

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

5.

Draw a net between the output of the IBUF and input of the INV. Refer to “Drawing
Wires” for detailed instructions.

dcmi stmact
dk_Inl —
——OKM M Aknaur ok,
r— 1. |
BEF aildop

> b

Figure 3-35: Placing CLK, RESET and STRTSTOP I/O Components

Adding I/0O Markers and Net Names

It is important to label nets and buses for several reasons:

It aids in debugging and simulation, as you can more easily trace nets back to your
original design.

Any nets that remain unnamed in the design will be given generated names, which
will mean nothing to you later in the implementation process.

Naming nets also enhances readability and aids in documenting your design.

Label the three input nets you just drew. Refer to the completed schematic below. To label

the RESET net:

1. Select Add — Net Name.

2. Type ‘reset’ into the Name box.
The net name is now attached to the cursor.

3. Place the name on the leftmost end of the net as illustrated in Figure 3-36.
Repeat Steps 1 through 3 for the STRTSTOP and CLK pins.
Once all of the nets have been labeled, add the I/O marker.
Select Add — I/O Marker.
In the Add I/O marker Options window, select Add an input for an input signal
direction.

7. Click and drag a box around the three labeled nets to place an input signal around each

net name.

dem] stm:

dk_inl _
[dk> mEMN oEoOur b o
— i
[E 1 r
B Aildo

L5kt kp D;C
EF MY

Figure 3-36: Labeled Nets with I/O Markers

ISE 5 In-Depth Tutorial

www.Xilinx.com 81
1-800-255-7778

$7 XILINX°

Chapter 3: Schematic-Based Design

Assigning Pin Locations

Xilinx recommends that you let the automatic placement and routing program, PAR,
define the pinout of your design. Pre-assigning locations to the pins can sometimes
degrade the performance of the place-and-route tools. However, it is usually necessary, at
some point, to lock the pinout of a design so that it can be integrated into a Printed Circuit
Board (PCB).

Define the initial pinout by running the place-and-route tools without pin assignments,
then locking down the pin placement so that it reflects the locations chosen by the tools.
Because the tutorial Watch design is simple and timing is not critical, the example pin
assignments will not adversely affect the ability of PAR to place and route the design.

Specify pin locations by attaching a LOC parameter to a buffer component. Assign a LOC
parameter to the RESET net on the Watch schematic as follows:

1. Right-click on the IBUF component connected to the RESET I/O marker, and from the
menu, select Object Properties.

Click the New button under Instance Attributes to add a new property.
Enter ‘loc’ for the Attribute Name and A5 for the Attribute Value.
Click OK to return to the Object Properties dialog box.

i Object Properties |

Instance Attributes

Wiew and edit the attributes of the selected instances

Hame Value Visible || New |

VeriMode! | /BUF
hediModel | 1BLUF

Instiame KUK r
SymboiName| ibaf r ﬂl
IOSTANDAR | LTTE r Delete |
ie LAY r
iy 200 r
loc A3 v

r

r

I
0K I Cancel | Apply | Help

Figure 3-37: Assigning Pin Locations

To view the location constraint on the net, add a net attribute window.

5. Check to make sure the visible box is selected.
This will display the LOC attribute on the schematic.

6. With the loc attribute selected, click Edit Traits.

82

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

7. Select VHDL and select Write this attribute as well as options 2 and 3 as shown below.

+ Attribute Traits

Categary

7 Name and Type
o Permigsions
Verilng

loc : Vhdl

Contral b thiz attibute i writen ta 2 WHOL file
The YHOL retlister should
" Ignore this atirbute
{+ it this attribute:
[~ 1. Inageneric map statement
I= Wse an ifdef!"to e it Fram e syrtihesis tool
[¥ 2. I an attibute declaration statement

[¥ 3. In an attibute statement

0K | Cancel | Apply |

X

Help |

Figure 3-38: Writing attribute to HDL file

8. Click OK twice to return to schematic.

Note: For details on adding Pin LOCs and other constraints, see “Using the Constraints Editor” and
“Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Completing the Schematic

Complete the schematic by wiring the components you have created and placed, adding
any additional necessary logic, and labeling nets appropriately. The following steps guide
you through the process of completing the schematic, or you may want to use the
completed schematic shown below for guidance. Each of the actions in this section has
been discussed in detail in earlier sections of the tutorial. If you need to review these

sections, you may return to them.

ISE 5 In-Depth Tutorial

www.Xilinx.com

1-800-255-7778

83

S XILINX® Chapter 3: Schematic-Based Design

The finished schematic is shown in the following figure as a guide.

dcmi stmach_v

—|I:um_n r_aur Sl o chad —————kennl
™ | -
[——anam 1 ———————————=| Inl
Leresn Lo 20
L Cdecode , Couts3
diEnnl——* alam
dk_nl =l
ANIT
r=Lnl
g_hes
cntG0 hex2led
i (G
5 LRl —a Exslen
dier il L ."’J“U
AN

Figure 3-39: Completed Watch Schematic

To complete the schematic diagram:

1. Draw a wire between the output of DCM1 and the CLK pin of the STMACH state
machine macro (see “Drawing Wires”).

Label this net CLK_INT.

Draw a wire between the IBUF of the RESET input and the RESET pin of the STMACH
state machine macro (see “Drawing Wires”).

4. Place an INV (inverter) component from the Virtex library between the IBUF of the
STRTSTOP input and the STRTSTOP pin of the STMACH state machine macro (see
“Adding Components to CNT60”).

5. Draw wires to connect the INV to both the IBUF and the STMACH state machine
macro (see “Drawing Wires”).

6. Place an AND2 component to the left of the CNT60 macro (see “Adding Components
to CNT60”).

7. Draw a wire to connect the output of the AND2 with the CE pin of the CNT60 macro
(see “Drawing Wires”).

8. Draw a wire to connect the Q_THRESO pin of the TENTHS macro to one of the inputs
to the AND2 (see “Drawing Wires”).

9. Draw a hanging net from the CLKOUT pin of the STMACH macro. To terminate a
hanging wire, double-click it (see “Drawing Wires”).

10. Name the new added net CLKEN_INT.

84 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Design Entry

$XILINX®

11.

12.

13.

14.
15.

16.

17.

Draw a hanging net at the CLK_EN input pin of the TENTHS macro. Label this net
CLKENL_INT (see “Adding I/O Markers and Net Names”).

Draw a hanging wire (see “Drawing Wires”) at the other input of the AND2
component. Label this net CLKEN_INT again (see “Adding I/O Markers and Net
Names”).

Note: Remember that nets are logically connected if their names are the same, even if the net
is not physically drawn as a connection in the schematic. This method is used to make the logical
connection of the RST_INT, CLKEN_INT and CLK_INT signals.

Draw a hanging wire from the RST output pin of the STMACH macro (see “Drawing
Wires”).

Label this net RST_INT.

Draw two more hanging wires, also named RST_INT, from the AINIT pin of the
TENTHS macro and from the CLR pin of the CNT60 macro (see “Drawing Wires.”)

Draw two hanging wires, each named CLK_INT, from the CLOCK pin of the TENTHS
macro and from the CLK pin of the CNT60 macro (see “Drawing Wires.”)

Draw buses to complete the schematic. Label them as shown on the preceding
schematic diagram (see “Adding Buses”).

The schematic is now complete.

Save the design by selecting File — Save.

ISE 5 In-Depth Tutorial

www.Xilinx.com 85
1-800-255-7778

S XILINX® Chapter 3: Schematic-Based Design

86 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

S XILINX®
Chapter 4

Behavioral Simulation

This chapter contains the following sections.

e “Overview of Behavioral Simulation Flow”

e “Getting Started”

e “Adding an HDL Testbench”

e “Creating a Testbench Waveform Using HDL Bencher”

e “Behavioral Simulation Using ModelSim”

Overview of Behavioral Simulation Flow

You can perform behavioral simulation before design implementation to verify that the
logic you have created is correct. Behavioral simulation is also called functional
simulation.

Xilinx ISE provides integration with any ModelSim Simulator. ISE produces generic HDL
netlists that work with most HDL simulators. However, the integrated flow is only
available with MTI ModelSim.

You can perform behavioral simulation on a schematic-based or HDL-based design. In a
later section, you can perform timing simulation, which takes place after the design is
implemented (placed and routed) with the Xilinx implementation tools.

Behavioral simulation is an integral part of any HDL design flow. It enables a logical
(functional) check of the design before any additional time is invested in synthesis and
implementation. Xilinx ISE 5 provides a tightly integrated functional simulation flow with
any version of ModelSim (release 5.4 and newer). ModelSim 5.6a XE is used for the
examples in this tutorial.

Using ISE, behavioral simulation can be conducted using either a hand-written HDL
testbench (PC and Unix), or one generated automatically by Xilinx HDL Bencher (PC
only).

This chapter assumes that the ModelSim CD has been installed on your computer. Since
Xilinx HDL Bencher is only available on the PC platform, Unix machine users should skip
the automated testbench generation section which uses HDL Bencher. PC users can choose
either flow.

ISE 5 In-Depth Tutorial www.Xxilinx.com 87
1-800-255-7778

S XILINX® Chapter 4: Behavioral Simulation

Getting Started

The following sections outline the requirements to perform this part of the tutorial flow.

Required Files
The functional simulation flow requires the following files:

¢ Design Files (VHDL, Verilog, or Schematic)

These files are produced by the designer, or from an HDL generation tool such as
Xilinx StateCAD.

e Stimulus File

The stimulus files are known as the testbench (VHDL, Verilog). A testbench can be
hand-written or produced using Xilinx HDL Bencher. To produce a testbench using
HDL Bencher, see “Adding an HDL Testbench”. The HDL Bencher flow is only
available on Windows platforms.

e ModelSim Script File

Use this file to run the simulation (optional). Alternatively, you can enter the
commands one-by-one into the simulator. Xilinx ISE creates the script file needed to
run simulation in ModelSim.

e Xilinx Simulation Libraries

Xilinx Simulation Libraries are required if any Xilinx primitive is instantiated in the
design. More details on the libraries and how to compile them is provided in the next
section, “Xilinx Simulation Libraries”.

Xilinx Simulation Libraries

To simulate designs containing Xilinx primitives with ModelSim in VHDL or Verilog, you
need the simulation libraries listed below, which you must compile. If you are using
ModelSim Xilinx Edition, the models are already precompiled. To get the latest models for
ModelSim XE go to http:/ /support.xilinx.com/support/mxelibs /index.htm

Unisims Library

The Unisims library is used for behavioral (RTL) simulation with instantiated components
in the netlist, and for post-synthesis simulation.

¢ The recommended mapping name for the VHDL Unisims library is UNISIM.
e The recommended mapping name for the Verilog Unisims library is UNISIMS_VER.

e Additionally, there is a separate Unisims library in Verilog for simulating CPLD
designs. This library is called UNI9000. The recommended mapping name for this
library is UNI9000.

88

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/mxelibs/index.htm

Adding an HDL Testbench i:X"JNX®

XilinxCoreLib Library

The XilinxCoreLib library must be used if a CoreGEN component is instantiated in the
design.

e The recommended mapping name for the VHDL library is XILINXCORELIB.
¢ The recommended mapping name for Verilog is XILINXCORELIB_VER.

e All VHDL simulation libraries are provided at $XILINX/vhdl/src.

e All Verilog simulation libraries are provided at $XILINX/verilog/src.

For detailed instructions on compiling these libraries, see Xilinx Solution # 2561:

1. Go to http:/ /support.xilinx.com.

2. Enter 2561 in the search box.

3. Check to see that the search engine is pointing to Answer Records.
4. Click OK.

Solution 2561 displays on the next page.

5. Click Solution 2561 on the next page.

Viewing the Modelsim.ini File

Before compiling the libraries, view the modelsim.ini file in the ModelSim install directory.
The upper portion of the file defines the locations of the compiled libraries. When doing a
simulation, the modelsim.ini file must be provided either by:

¢ Copying the file directly to the directory where the HDL files are to be compiled and
the simulation is to be run, or

e Setting the MODELSIM environment variable to the location of your master.ini file. You
must set this variable since the ModelSim installation does not initially declare the
path for you. (See below.)

Setting the Environment Variable

For UNIX, type the following environment variable:
setenv MODELSIM /path/to/the/modelsim.ini

For PCs, set the MODELSIM environment variable to the path where the modelsim.ini file is
located. To set the environment variable, go to Start — Settings — Control Panel —
System — Environment.

Adding an HDL Testbench

This section demonstrates how to add pre-existing testbench files to the project. This
design flow is for users of UNIX machines who cannot generate testbenches using HDL
Bencher. PC machine users can use hand-written testbenches for their design. The
testbench must be associated with the top-level design file in order to successfully simulate
the design.

ISE 5 In-Depth Tutorial www.Xxilinx.com 89
1-800-255-7778

http://support.xilinx.com

$7 XILINX°

Chapter 4: Behavioral Simulation

VHDL Design
To add your testbench for a VHDL design:

1.
2.
3.

4.
5.

Select Project — Add Source.

Select the testbench file stopwatch_tb.vhd.
Click Open.

The Choose Source Type dialog box opens.

Select VHDL Testbench.
Click OK.

ISE recognizes the top-level design file associated with the testbench, and adds the
testbench in the correct order.

Verilog Design

To add your testbench for a Verilog design:

1.
2.
3.
4.

Ensure that the extension of the testbench file is .tf rather than .v.
Select Project — Add Source.

Select the testbench file stopwatch_tb.tf.

Click Open.

ISE recognizes the top-level design file associated with the testbench and adds the
testbench in the correct order.

Creating a Testbench Waveform Using HDL Bencher

HDL Bencher is a PC-based testbench and test fixture creation tool that is part of ISE 5. Use
HDL Bencher to graphically enter stimuli and the expected response, then generate a
VHDL testbench or Verilog test fixture.

Creating a Testbench Waveform Source

To create a testbench or test fixture with HDL Bencher:

Ll .

5.

Select stopwatch in the Sources in Project window.

Select Project — New Source from the Project Navigator menu.

In the New dialog box, select Test Bench Waveform as the source type.
Type the name ‘stopwatch_tb’.

Click Next.

Note: In the Select dialog box, the stopwatch file is the default source file because it is selected in
the Sources in Project window (step 1).

6.
7.

Click Next.
Click Finish.

920

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Creating a Testbench Waveform Using HDL Bencher ST XILINX®

HDL Bencher launches and you are prompted to specify the timing parameters used
during simulation. The clock high time and clock low time together define the clock period
for which the design must operate. The Input setup time defines when inputs must be
valid. The Output valid delay defines the time after active clock edge when the outputs
must be valid.

For this tutorial, use the settings in (Figure 4-1).

Freview
_ - WMinimum
Meximum | i input
- |
output delay | - setup
Clock Clock i
_ e _)
high for low for
— Clock Timing — Degzign Type
Inputs are assigned at ‘input zetup tine' and % Single Clock I[:LK LI

outputs are checked at "output walid delay'.

rl .
% Rising Edae " Falling Edge Multiple Clocks
7 Dual Edge [DDR design] ™ Combinatarial Design [or internal clock)

Clock high time |-| i) ns = Combinatarial Timing

Clock low Hme I'ID— e Inputs are assigned, autputs are decode themn

checked, & delay bebween inputs and outputs

. awoids azzignmentdchecking conflicts.
Input zetup tine |5 ng
Output walid delay |5 e Check outputs IED ne after assign inputs
Offzet IEI ns Assigr InpLks IEEI rz attern autpt

— Global Signalz MWerilog Only]————————— Time Scale Ins ;I
[T PRLD [CPLD) T GSRIFPGA)

Transition low at: |1 oo fis

I add Asynchronous Signal Support

(n] 4 I Ne:-ct>| I:ancell Help I

Figure 4-1: HDL Bencher Initialization

Note: Click OK. If the Verilog project is being used, make sure that GSR is selected before clicking
OK.

ISE 5 In-Depth Tutorial www.Xxilinx.com 91
1-800-255-7778

$7 XILINX°

Chapter 4: Behavioral Simulation

HDL Bencher now opens with two main windows. The top window is the Waveform
window. In this window, enter graphical depictions of the stimuli and expected response.
The bottom window is the currently loaded HDL file.

ILINX_51'ISEEXAMPLES', WATCHYHD', STOPWATCH_TB.TEW - HDL Bencher{tm} =0

dit Wiew Options Help

SH|Emdlsn ez &a

|RESET =
ISTRTSTOP =
ITENTHSOUTRO] <
|ONESOUT[E0] <3
ITENSOUT[50] <1

4
& stopwatch.vhd - ¥Yiew HDL Source

File Edit

1 library IEEE;
uze [EEE std logic_ 1164 . all;

: in STD_LOGIC:

RESET : in STD_LOGIC:

STRTSTOP @ in STD_LOGIC;

TENTHSOUT : out STD_LOGIC_VECTOR(Y downto 0):
2 OHESOUT : out STD_LOGIC VECTOR(6 downto 0):
10 TENSOUT : out STD_LOGIC VECTOR(6 downto 0));
11 end stopwatch:

13 architecture inside of stopwatch iz

15 component statmach

18 port { CLE : in STD_LOGIC,

17 RESET . in STD_LOGIC:

18 STRTSTOP : in STD_LOGIC:
19 CIKEN : out STO_LOGIC:

0 RST © out STO_LOGIC):

Figure 4-2: HDL Bencher Windows

Initializing Inputs

Enter the following input stimuli:

Click the RESET cell at time 0 to set it high.

Click the RESET cell under CLK cycle 5 to set it low.

Click the STRTSTOP cell under CLK cycle 50 to set it high.

Click the STRTSTOP cell under CLK cycle 55 to set it low.

Click the STRTSTOP cell under CLK cycle 65 to set it high.

Click the STRTSTOP cell under CLK cycle 70 to set it low.

Grab the blue line (end of testbench) and drag it to CLK cycle 80.
Click the Save Waveform icon in the toolbar.

Exit HDL Bencher.

Note: STRTSTOP is set to high only at CLK cycle 50 to give the DCM time to lock, and to be able
to give out a valid clock output.

Y 0 NSk

The new testbench waveform source (stopwatch_tb.tbw) is automatically added to the
project. In the future, you can open HDL Bencher from Project Navigator by double-
clicking this file.

92

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Behavioral Simulation Using ModelSim i:X"JNX®

Behavioral Simulation Using ModelSim

ISE has full integration with any version of the ModelSim Simulator. ISE provides work
directory creation, source file compilation, simulation initialization, and control over
simulation properties.

Selecting Simulation Processes

To display the ModelSim Simulator Processes:

1.
2.

In the Sources in Project window, select stopwatch_tb.tbw.

Click the + beside ModelSim Simulator to expand the process hierarchy.

The following simulation processes are available:

Simulate Behavioral VHDL (or Verilog) Model
This process will start the design simulation.

Generate Expected Simulation Results

This option is available only if you have a TBW file from HDL Bencher. If you double-
click on this, ModelSim will run in the background to generate expected results and
display them in HDL Bencher.

Simulate Post-Translate VHDL (or Verilog) Model

Simulates the netlist after the NGDBUILD implementation stage.
Simulate Post-Map VHDL (or Verilog) Model

Simulates the netlist after the Map implementation stage.

Simulate Post-Place & Route VHDL (or Verilog) Model

Simulates the back-annotated netlist after Place & Route, which contains the detailed
timing information as well.

In this chapter, you will perform a behavioral simulation on the stopwatch design. You
must first specify the process properties for simulation as shown in the following section.

Specifying Simulation Properties

ISE allows you to set several ModelSim Simulator properties in addition to the simulation
netlist properties. To see which properties are available for RTL simulation:

1.
2.

In the Sources in Project window, select stopwatch_tb.tbw.

Click the + sign next to ModelSim Simulator in the Processes For Current Source
window.

Right-click Simulate Behavioral VHDL (or Verilog) Model.
Select Properties.

ISE 5 In-Depth Tutorial

www.Xilinx.com 93
1-800-255-7778

S XILINX® Chapter 4: Behavioral Simulation

The Process Properties dialog box (Figure 4-3) contains the following simulation
properties which can be specified or changed as indicated below:
¢ Custom Do File

Enables users to select a user-created .do file.

¢ Use Automatic Do File

When unchecked, this option will bring up ModelSim but not automatically run
the processes required to simulate the design. You will have to manually run the
.do file from ModelSim or enter the commands one-by-one to run simulation.

¢ Simulation Run Time

Specifies default time for which simulation is run. The “-all” setting tells
ModelSim to run the simulation until it encounters a break specified in the test
bench. Alternatively, you can enter a setting of “1000ns” so that the simulation
only runs for 1000ns.

¢ Simulation Resolution

This is set to 1 ps by default. All Xilinx simulations should be run with the
resolution set to 1ps.

¢ Design Unit Name

Enables you to specify the top-level model to be loaded in ModelSim. This
property must be changed if the testbench, module, or entity is named something
different than testbench.

The Second tab in this GUI is for selecting Display Properties. Using this tab, you can
select which ModelSim Simulation windows will automatically be invoked. By
default, the Signals, Structure and Wave windows are invoked. For more details on
MTI ModelSim Simulator windows, refer to the ModelSim User Manual.

5. For the purpose of this tutorial, none of the defaults need to be changed. Click OK to
continue.

Process Properties ﬂ

Simulation Properties | Dizplay Properties |

Property Hame Yalue
Custom Do File |
Usze Automstic Do File v
Simulstion Run Time -all
Simulation Resolution Default (1 p=)
WHDL Syt a3
se Explicit Declarations Only ™
Design Unit Mame testhench

k. I Eancﬁl | [efault Help
la

Figure 4-3: Process Properties Dialog Box

94 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Behavioral Simulation Using ModelSim XX"JNX@

Performing Simulation

Once the process properties have been set, you are ready to run ModelSim. To start the
behavioral simulation, double-click Simulate Behavioral VHDL (or Verilog) Model.
ModelSim creates the work directory, compiles the source files, loads the design, and
performs simulation for the time specified.

Adding Signals

To view signals during the simulation, you must add them to the Wave window. ISE
automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based upon the selected structure in the Structure
window.

There are two basic methods for adding signals to the Simulator Wave window.

e Drag and drop from the Signal window.

e Highlight signals in the wave window and then select Add — Wave — Selected
Signals from the Signal window.

The following procedure explains how to add additional signals in the design hierarchy.
For the purpose of this example, add the Isbsec and msbsec signals in the cnt60 macro.

1. In the Structure window, click the + next to uut:stopwatch.

—lol

File Edit Miew window

=~ teztbench: testbench =
o Tazk CHECK_TEMTHSOUT
o Tazk CHECK_OMESOUT
o Tazk CHECK_TENSOUT
UUT: stopwatch
o instance_name: DCM1
o MACHIME: statmach
o “rourlnstancet ame: tenths
W one_decode: decods
sixty: chtB0
W lzbled: hewled
o mzhbled: hex2led

«# albl: glbl

I

4| | »

sim:ftesthench/JUT sixty

Figure 4-4: Structure Window - Verilog flow
(In schematic / VHDL flow this may be different.)

2. Select sixty:cnt60(inside) in the Structure window.

Notice that the signals listed in the Signal window are updated.

3. Click and drag Isbsec from the Signal window to the Wave window.

Select msbsec in the Signal window and select Add — Wave — Selected Signals to
add the signal to the Wave window.

ISE 5 In-Depth Tutorial

www.Xilinx.com 95
1-800-255-7778

96

& XILINX®

Chapter 4: Behavioral Simulation

Notice that the waveforms have not been drawn for Isbsec or msbsec.

When new signals are added to the waveform window, the simulation needs to be re-run
To restart and re-run the simulation:
1.

Click Restart Simulation.

[

Figure 4-5: Restart Simulation Icon
The Restart dialog box opens.
2. Click Restart.

3. Click Run-all or Run to re-run the simulation.

+

Figure 4-6: Run-All Icon

Saving the Simulation

The ModelSim Simulator provides the capability of saving the signals list in the Wave
window. This can be important when additional signals or stimuli have been added and
the simulation must be restarted. The saved signals list can easily be loaded each time the
simulation is started.
1.

In the Wave window, select File — Save Format.
2.

In the Save Format dialog box, change the default filename wave.do to sec_signal.do.

Save Format

EHE
Save in: | £ watch_sc

[work

File name:

Save az hupe: IMau:n:u Files [*.dao) L] Cancel |

Figure 4-7: Save Format Dialog Box

3. Click Save.

www.Xilinx.com

ISE 5 In-Depth Tutorial
1-800-255-7778

SXILINX®

Chapter 5

Design Implementation

This chapter contains the following sections.

e “Overview of Design Implementation”

e “Getting Started”

e “Creating an Implementation Project”

e “Specifying Options”

e “Translating the Design”

e “Using the Constraints Editor”

e “Using the Pin-out Area Constraints Editor (PACE)”
e “Mapping the Design”

e “Using Timing Analysis to Evaluate Block Delays After Mapping”
e “Placing and Routing the Design”

e “Using FPGA Editor to Verify the Place and Route”
e “Evaluating Post-Layout Timing”

e “Creating Configuration Data”

e “Creating a PROM File with iMPACT”

Overview of Design Implementation

Design Implementation is the process of translating, mapping, placing, routing, and
generating a BIT file for your design. The Design Implementation tools are embedded into
ISE for easy access and project management.

This chapter is the first in the “Implementation-only Flow” and is an important chapter for
the “HDL Design Flow” and the “Schematic Design Flow”.

This chapter demonstrates the ISE Implementation flow. The front-end design has already
been compiled in an EDA interface tool. For details about compiling the design, see
Chapter 2, “HDL-Based Design” and Chapter 3, “Schematic-Based Design.” In this
chapter, you will be passing an input netlist (EDN, NGC) from the front-end tool to the
back-end Design Implementation tools, and incorporating placement constraints through
a User Constraints File (UCF). You will add timing constraints later through the
Constraints Editor and Pin-out Area Constraints Editor (PACE).

ISE 5 In-Depth Tutorial

www.Xilinx.com 97
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

Getting Started

The tutorial design (Watch) emulates a track coach’s stopwatch. There are two inputs to the
system: RESET and SRTSTP. The configuration clock on the device is used as a ten-hertz
clock signal. This system generates three seven-bit outputs for output to three seven-
segment LED displays. There are two options in this tutorial for design implementation.

Tutorial Option 1

Go through the previous chapters and synthesize the design to create the EDIF Netlist File.
If you don’t have a stopwatch.ucf file, you will need to create one.

To add a UCF file to the design:

Select xc2v40-5fg256.

Select Project — New Source.

Select Implementation Constraints File.
Type stopwatch.ucf as the file name.

Click Next twice.

Click Finish.

Go to the “Specifying Options” section.

NSO N

Tutorial Option 2

Use the EDIF Netlist Files that are provided. If you choose this option, create a working
directory with the tutorial files as follows.

1. Create an empty working directory named Watch.

2. Copy the Required Tutorial Files listed in the following table from the
http:/ /support.xilinx.com/support/techsup /tutorials/tutorial5 directory into your
newly created working directory.

Table 5-1: Required Tutorial Files

File Name Description
stopwatch.edn, stopwatch.edf, or Input netlist file (EDIF)
stopwatch.ngc
tenths.edn Counter netlist file (EDIF)
stopwatch.ucf User Constraints File

Creating an Implementation Project

This section describes how to create a project with ISE. The process is the same for either
Schematic or HDL designs.

To create a project:

1. OpenISE.
a. On aworkstation, enter ise &

b. On aPC, select Start —» Programs — Xilinx ISE 5 — Project Navigator.

98 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com/support/techsup/tutorials/tutorial5

Creating an Implementation Project

$XILINX®

2. If you are continuing this project from the previous chapters, go to “Specifying

Options.”

3. If you are using the pre-synthesized design, create a new project and add the
(stopwatch) EDIF netlist as follows:

a. Select File — New Project.

b. Type EDIF Flow for the Project Name.

c. Select the following:

- Virtex2 for the Device Family

- xc2v40 for the Device

d. Click OK.

-5 for the Speed Grad, fg256 for the Package
- EDIF for the Design Flow.

Mew Project

Fraject Location:

Froject Mame:

EDIF_Flow IE:&EDIF_FIDW |
Froject Device Options:
Property Hame Value
Device Family Wirtex2 -
Device wo2wdl
Package fy2a6
zpeed Grade -3
Design Flow EDIF
[k Cancel Help
Figure 5-1: New Project Dialog Box

After the project is created:

1. Right-click xc2v40-5fg256.
2. Select Add — Sources.

3. Select stopwatch.edf or stopwatch.edn, and stopwatch.ucf.

4. Click Open.

When you create a new project, you specify a design to open and a directory for the project.
You can create as many projects as you want, but you can only work with one at a time.

ISE 5 In-Depth Tutorial www.xilinx.com
1-800-255-7778

99

$7 XILINX°

Chapter 5: Design Implementation

Sources in Project:

------ [E EDIF_Flow

=€ we2vd0-5g256 - EDIF

= stopwatch [stopwatch.edr)
] stopwatch.ucf
B Module Yiew | I8 Shapshot Wiew |E Library Yiew
2] =

Proceszes for Current Source;

Dreszign Entry Utilities

Implement Design

------- | Create Timing Constraints
-~ &ssign Package Fins
------- | Create Area Constraints
- | Edit Constraints [Text)

..... G

Figure 5-2: Selecting File in Sources in Project Window

In the Sources in Project window, select the top-level module, stopwatch.edf or
stopwatch.edn. This enables the design to be implemented.

Specifying Options

This section describes how to set some options for implementation. The implementation
options control how the software maps, places, routes, and optimizes a design.

The implementation options for ISE are divided into two groups, Standard and Advanced

The default setting is Standard, which enables access to the most commonly used

options.

The Advanced settings provide access to all implementation options.

To enable the Advanced Options:

1.

2.
3.
4

Select Edit — Preferences.

In the Preferences dialog box, click the Processes tab.

Change the Property Display Level from Standard to Advanced.

Click OK.

100

www.Xilinx.com
1-800-255-7778

ISE 5 In-Depth Tutorial

Specifying Options ST XILINX®

i

Generall Editar P-TDD*?SSES._l F'artnerT-:u:uIsI

—Process Seftings

Property Display Lewel |ftafiETglets]

—Process Tree Default

" All nodes open to show all pozsible processes

% Tree starts completely compressed %

oK I Cancel | Apmly | Help

Figure 5-3: Preferences Dialog Box

To set more implementation options:

1. Right-click Implement Design.
2. Select Properties.

The Process Properties dialog box provides access to the Translate, Map, Place and Route,
Simulation, and Timing Report options.

Process Properties B ﬂ

Pozthd ap L':;.tatig: Timing Fepart Properties
Tranzlate Properties | bap Properties I Place & Boute Properties
Fost-Place & Route Static Timing Report F'ru:uperti'es | Simulation Properties

Property Hame
Report Type [:}
rumbier of temain Erroriverhoze Report (0-32000)
Tirming Report (Mumber-of tems) 3
Perfarm Advanced Analysis -

Change Device Spesd To

Report Uncovered Paths (humber of tems)
Analyze Clock Skew for Al Clocks -
Stamp Timing Model Filename

Titmirg Specification Interaction Report file

ok I Cancel Default Help

Figure 5-4: Post-Place & Route Static Timing Report Properties

ISE 5 In-Depth Tutorial www.Xxilinx.com 101
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

3. In the Post-Place & Route Static Timing Report Properties tab, change Report type to
Verbose Report.

This option changes the type of report from an error report to a verbose report. This
report is created after Place and Route is completed.

Process Properties ﬂ

Fozt-hap Static Tining Report Propertiss I
Post-Place & Foute Static Timing Feport Properties | Simulation Properties: I

Tranzlate Propertiss I b ap Froperties Flace & Route Properties.
Property Hame Value -
Place & Route effort Level (Owverall) Highest =]
Placer Effort Level [Cverrides Owverall Léﬁ‘al)_ Defautt (Mone)
Rocter Effart Level (Overrides Cwerall Level Defautt (Mone)
Exdra Effort (Highest PAR level only] OFF
Starting Placer Cost Table (1-1000 1
Do et Run Placer = =
Do Mot Run Router i
Fumber of Routing Passes (0-20007
Cost-bazed Clean-up Pazzes (0-5)]
Detay-based Clean-up Passes (0-5]
Eéy-basad Clean-up Pazses (Completely Routed Desig :J

ok I Cancel Drefault | Help |

Figure 5-5: Place & Route Properties

4. In the Place & Route Properties tab, change the Place & Route effort level (overall) to
Highest. This option increases the overall effort level of Place and Route during
implementation.

5. Click OK to exit the Process Properties dialog box.

The User Constraints File (UCF) provides a mechanism for constraining a logical design
without returning to the design entry tools. However, without the design entry tools, you
must understand the exact syntax needed to define constraints. In the Xilinx Development
System, the Constraints Editor and Pinout Area Constraints Editor are graphical tools that
enables you to enter timing and pin location constraints.

To launch the Constraints Editor:

1. Expand the User Constraints hierarchy.
2. Double-click Create Timing Constraints.

This automatically runs the Translate step, which is discussed in the following section.

102 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Translating the Design i:X"JNX®

Proceszes for Current Source:

----- w Design Entry Utilities
EW Uszer Conzstraints

Create Timing Conztraintz

] Assign Package Pins
------- =] Create Area Constraints
- . Edit Canstraintz [T est)
H--% Implement Design

Figure 5-6: Edit Implementation Constraints

Translating the Design

ISE manages the files created during implementation. The ISE tools use the settings you
supply in the Options dialog box. This gives you complete control over how a design is
processed. Typically, you set your options first. You then run through the entire flow by
clicking Implement Design, and selecting Run. This tutorial illustrates the implementation
one step at a time.

During translation, the program NGDBuild executes and performs the following
functions:

e Converts input design netlists and writes results to a single merged NGD netlist. The
merged netlist describes the logic in the design as well as any location and timing
constraints.

e Performs timing specification and logical design rule checks.
¢ Adds the User Constraints File (UCF) to the merged netlist.

Once these processes are complete, ISE launches the Constraints Editor.

Using the Constraints Editor

The Constraints Editor enables you to:

e Edit constraints previously defined in a UCF file.

¢ Add new constraints to your design.
Input files to the Constraints Editor are:

e NGD (Native Generic Database) File

The NGD file serves as input to the mapper, which then outputs the physical design
database, an NCD (Native Circuit Description) file.

e Corresponding UCF (User Constraint File)

By default, when the NGD file is opened, an existing UCF file with the same base name
as the NGD file is used. Alternatively, you can specify the name of the UCF file.

The Constraints Editor generates a valid UCF file. The Translate step (NGDBuild) uses the
UCEF file, along with design source netlists, to produce a newer NGD file which

ISE 5 In-Depth Tutorial www.Xxilinx.com 103
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

incorporates the changes made. The MAP program (the next section in the design flow)
then reads the NGD. In this design, the stopwatch.ngd file and stopwatch.ucf files are
automatically read into the Constraints Editor.

The Global tab appears in the foreground of the Constraints Editor window. This window
automatically displays all the clock nets in your design, and enables you to define the
associated period, pad to setup, and clock to pad values.

.;gﬁxﬂinx Constraints Editor - [Global - stopwatch.ngd / stopwatch.ucPt] i I E||_X_!
File Edit W¥iew Window Help

D|=|8| x| =|={=g]| 2[]|

Clock Het Hame Period Pad to Setup i Clock to Pad
CLK 18.5 s HIGH 50 % |

Pad to Pad... I |

Le

Global | Parts | Advanced Misc

#a
MET "CLE" THM_MET = "CLK";
TIMESPEC "T5_CLK" = PERIOD "CLK" 18.5 ns HIGH 50 %;

Ll b

UCF Gonstraints [read-wirite] IUCF-C'on:ﬂraims [read-only] | Source Constraints [read-only) I

Figure 5-7: Constraints Editor

The Constraints Editor, edit the constraints as follows:

1. Select the Period cell on the row associated with the clock net CLK.
2. Double-click the left mouse button. This opens the Clock Period dialog box.

3. Within the Clock Signal Definition, keep the default (Specific Time) selected to define
an explicit period for the clock rather than designate a period which is relative to
another timing specification.

Enter a value of 18.5 in the Time text box.
Verify that ns is selected from the Units pull-down list.
Click OK.

The period cell is updated with the global clock period constraint that you just defined
(with a default 50% duty cycle).

Note: For the purpose of this tutorial, you open a secondary dialog box by double-clicking a cell to
specify your constraint values. Another feature is to do direct entry of constraints into cells by simply
clicking once.

7. Select the Ports tab from the Constraints Editor main window.
The left hand side displays a listing of all the current ports as defined by the user.
Select OnesOut<0> in the Port Name Column.
Hold the Shift Key and select OnesOut<6>.
This selects the elements for creating a grouped offset.
10. In the Group Name text box, type OnesOut_grp and click Create Group.
This creates the group.

104

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Using the Constraints Editor

$XILINX®

Port Hame

Port Direction Location

Pad to Setup Clock to Pad

ONESOLT=6=

NPT

M8,

Mg,

RESET NPT Mg,
STRTSTOP NPT Mg,
Pad Groups
S . Group Mame: | Onesout Create G
[~ 14D Configuration Options ’V il I nesou ol w[\,

Figure 5-8: Selected Elements of a Grouped OFFSET

11. In the Select Group pulldown list, select the group you just created.

12. Click Clock to Pad.

— Pad Groups

Group Marne:

Select Group:

Create Group

Fad to Setup...

Clack, ta F'au:l...%
r"‘l

Figure 5-9: Selecting the Group that was created to use in an OFFSET

The Clock to Pad dialog box opens.

13. Enter 11.5 ns for the Timing Requirement.

14. Click OK.

ISE 5 In-Depth Tutorial

www.Xilinx.com
1-800-255-7778

105

& XILINX®

Chapter 5: Design Implementation

Clock to Pad

Fad Group: IDHESDut_grp j
Cancel
Time Bequirement
Help
I-I 1.5 ritz: s =~
Relative ta Clock Pad Het; IELK j

Figure 5-10: Clock to Pad Dialog

15. Select File — Save.

The changes made by Constraints Editor are now saved in the stopwatch.ucf file in your
current revision directory.

16. Select File — Exit.

Using the Pin-out Area Constraints Editor (PACE)

Use the Pin-out Area Constraints Editor (PACE) to add and edit the pin locations and area
group constraints defined in the NGD file. PACE generates a valid UCF file. The Translate
step uses this UCF file, along with the design source netlists, to produce a newer NGD file.
The NGD file incorporates the changes made in the design and the UCF file from the
previous section. PACE also places Global Logic at the Slice level with Block Ram, DCMs,
GTs, and BUFGs.

106

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Using the Pin-out Area Constraints Editor (PACE) ST XILINX®

E 140 Ping
[:l Global Logic
F-] Logic

i
)
i
oo
oOon
ui
HA
¢HEA
HEN
HA
ui

i Design Dbject List - I/0 P

1/ Hame 10 Direct
TEMTHZOUT=3= | Output
TEMTHSOUT=8= | Outpt
TEMTHSOUT == | Owtpat
TEMTHZOUT=6= | Output
TEMTHSOUT=5= | Outpt
TEMTHSOUT =4= | Ottt
TEMTHZOUT=3= | Output
TEMTHSOUT=2= | Ot
TEMTHSOUT =1 = | Owtpat
TEMTHZOUT=0= | Output

T - = o I O MmO o mF &

Figure 5-11: Pin Out Area Constraints Editor tool when launched

This section describes the creation of IOB assignments for several signals. PACE edits the
UCF file by adding the newly created placement constraints.

1. To launch PACE, select Assign Package Pins under the User Constraints hierarchy.

2. Select the Package Pin window. This window shows the graphical representation of
the device package.

3. Select the Design Object List window. This window displays all the IOs in the Design.
In the Design Object List window, scroll down until you find the Onesout nets.

5. To enter the pin locations, select the Pin Location text box associated with each of the
following signals:

¢+ onesout<0> — H4
¢+ onesout<l> — E3
¢ onesout<2> — E4
¢ onesout<3> — D2
¢ onesout<4> — D3
¢ onesout<5> — D1
¢ onesout<6> — C1
ISE 5 In-Depth Tutorial www.Xxilinx.com 107

1-800-255-7778

S XILINX® Chapter 5: Design Implementation

Design Object List - I;0 Pins O =]
100 Direction
F RESET It

COMESOUT=E= |Output oy BAMKT
QOMESOUT=5= |Output o1 BAMKT
COMESOUT=4= |Output o3 BAMKY
QOMESOUT=3= |Output o2 BAMKY
COMESOUT=Z2= |Output ed BAMKT
QOMESOUT=1= |Output e BAMKY
CMESOUT=0= |Outpt hid BAMKT
= |CLK Impt —

Figure 5-12: Pin Locations Typed in PACE

To place some IOs in the Package Pin Window with the Drag and Drop functionality:
1. In the Design Object List window, drag and drop the following signals to the specific

location:

¢ Tenthsout<9> — A7
¢ Tenthsout<8> — B7
¢ Tenthsout<7> — A8
¢ Tenthsout<6> — B8
¢ Tenthsout<5> — C8
¢ Tenthsout<4> — D8
¢ Tenthsout<3> — D9
¢ Tenthsout<2> — C9
¢ Tenthsout<1> — B9
¢ Tenthsout<0> — A9

108 www.Xxilinx.com ISE 5 In-Depth Tutorial

1-800-255-7778

Mapping the Design ST XILINX®

{i}Package Pins for XC2Y¥40-5-FG256

Top Wiew
T2 3 4 5B B 7 8 4 1011 12 13 14 15 1B

HE i
2N CHE
@ N il
B

B N 8 8 &8 N § |
Figure 5-13: Drag and Drop IOs in the Package Pins Window

I o m m 0O ¢ M

2. Once the pins are locked down, select File — Save. The changes made in PACE are
now saved in the stopwatch.ucf file in your current working directory.

3. Select File — Exit.

Mapping the Design
Now that all implementation strategies have been defined (options and constraints),
continue with the implementation of the design.
1. Right-click Map.
2. Select Run from the menu.

3. Expand the Implement Design hierarchy to see the progress through implementation.

Processes for Curent Source;
EW Deszign Entry Wtilities
=@ User Constraints

: G E dit Implementation Constraints File
v G E dit Implementation Constraints [Constraints Editar)
=3 Implernent Design

----- 3 Place & R¥te

[]G Generate Programming File

Figure 5-14: Mapping the Design

ISE 5 In-Depth Tutorial www.xilinx.com 109
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

The design is being mapped into CLBs and IOBs. After mapping, the design is placed and
routed. The final step in the design flow is Configure. In Configure, a configuration
bitstream is created for downloading to a target device, or for formatting into a PROM
programming file.

Map performs the following functions:

e Allocates CLB and IOB resources for all basic logic elements in the design.

e Processes all location and timing constraints, performs target device optimizations,
and runs a design rule check on the resulting mapped netlist.

Each step generates its own report as shown in the following table.

Table 5-2: Reports Generated Through MAP

Includes warning and error messages from

Translation R r ;
anslation Report | i anslation process.

Includes information on how the target
device resources are allocated, references to
Map Report trimmed logic, and device utilization. For
detailed information on the Map report, refer
to the Development System Reference Guide.

To view a report:

1. Expand the Translate or Map hierarchy.
2. Double-click a report.

Proceszes tor Curent Source;
B 3 Implement Design
= T Tranglate

@? Translation Report

----- Ea enerate Post-Tranzlate Simulation Maodel

5O
i [2] g Map Report
B o Generate P ap Static Timing

LT3 Floomlan Desigh

Figure 5-15: Translation Report and Map Report

3. Review the report for Warnings, Errors, and Information (INFO).

110

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Using Timing Analysis to Evaluate Block Delays After Mapping XX"JNX@

Using Timing Analysis to Evaluate Block Delays After Mapping

After the design is mapped, use the Logic Level Timing Report to evaluate the logical paths
in the design. Because the design is not yet placed and routed, actual routing delay
information is not available. The timing report describes the logical block delays and
estimated routing delays. The net delays that are provided are based on an optimal
distance between blocks (also referred to as unplaced floors).

Estimating Timing Goals with the 50/50 Rule

For a preliminary indication of how realistic your timing goals are, evaluate the design
after the map stage. A rough guideline (known as the 50/50 rule) specifies that the block
delays in any single path make up approximately 50% of the total path delay after the
design is routed. For example, a path with 10ns of block delay should meet a 20ns timing
constraint after it is placed and routed.

If your design is extremely dense, the Logic Level Timing Report provides a summary
analysis of your timing constraints based on block delays and estimates of route delays
that can help to determine if your timing constraints are going to be met. This report is
produced after Map and prior to PAR (Place And Route).

Report Paths in Timing Constraints Option

Because timing constraints were defined for the design illustrated in this tutorial, the
Report Paths in Timing Constraints option is selected. This option forces the Logic Level
Timing Report to provide a period and path analysis on the constraints specified. The
period timing constraint is listed on top, as is the minimum period obtained by the tools
after mapping.

Because the report was limited to one path per timing constraint, you see a breakdown of
a single path that contains 4 levels of logic. Notice the percentage of block (logic) delay
versus routing delay for this calculation. The unplaced floors listed are estimates
(indicated by the letter “e” next to the net delay) based on optimal placement of blocks.

If you do not generate a Logical Level Timing Report, PAR still processes a design based on
the relationship between the block delays, floors, and timing specifications for the design.
For example, if a PERIOD constraint of 8 ns is specified for a path, and there are block
delays of 7 ns and unplaced floor net delays of 3 ns, PAR stops and generates an error
message. In this example, PAR fails because it determines that the total delay (10 ns) is
greater than the constraint placed on the design (8 ns). Use the Logic Level Timing Report
to determine timing violations that may occur prior to running PAR.

To open the Logic Level Timing Report and review the PERIOD Constraints that were
entered earlier:

1. Expand the Map hierarchy.
2. Double-click Generate Post-Map Static Timing Report.

ISE 5 In-Depth Tutorial www.Xxilinx.com 111
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

3. To open the Post-Map Static Timing Report, double-click Post-Map Static Timing

Report. Timing Analyzer automatically launches and shows the report.

e

;
I

Frocesszes for Current Source;
' L] Edit Constraints [Test)

Implement D'esign

I AT Translate
SRS 4 Map

------- =) @ Map Repaort

= ﬁ’ Generate Post-Map Static Timing
: Fost-Map Static Timing Repart
------- @ Testbased Post-Map Static Timing Report
-] Analyze Post-Map Static Timing [Timing Analyzer)
------- O] Manually Place & Route [FPGA E ditar)
------- v [Generate Post-Map Simulation Model

X% Place & Route

Generate Programming File

Figure 5-16: Post-Map Static Timing Report

4. To exit Timing Analyzer, select File — Exit.

Placing and Routing the Design

The design can be placed and routed after the mapped design is evaluated. Evaluation

verifies that block delays are reasonable given the design specifications.

The Flow Engine performs the following place and route algorithms:

¢ Timing Driven

Run PAR with timing constraints specified from within the input netlist or from a
constraints file.

e Non-Timing Driven

Run PAR and ignore all timing constraints.

Because timing constraints were specified for the design illustrated in this tutorial, PAR

automatically performs timing driven placement and timing driven routing.

To run Place and Route in the Design Implement hierarchy, double-click Place & Route.

To review the reports generated to ensure that the place and route process finished as

expected:

1. Expand the Place & Route hierarchy.
2. Double-click the Place & Route Report.

12

www.xilinx.com ISE 5 In-Depth Tutorial

1-800-255-7778

Using FPGA Editor to Verify the Place and Route ST XILINX®

Table 5-3: Reports Generated by PAR

Report Description

Provides a device utilization and delay summary.
Place & Route Report Use this report to verify that the design successfully
routed and that all timing constraints were met.

Contains a report of the location of the device pins.
Pad Report Use this report to verify that pins locked down
were placed in the correct location.

Lists all nets in the design and the delays of all

Asynchronous Delay Report loads on the net.

Using FPGA Editor to Verify the Place and Route

Use the FPGA Editor to display and configure Field Programmable Gate Arrays (FPGAs).
The FPGA Editor reads and writes:

Native Circuit Description (NCD) files
Macro files (NMC)
Physical Constraints Files (PCF)

Use FPGA Editor to:

Place and route critical components before running the automatic place-and-route
tools.

Finish placement and routing if the routing program does not completely route your
design.

Add probes to your design to examine the signal states of the targeted device. Probes
are used to route the value of internal nets to an IOB (Input/Output Block) for
analysis during debugging of a device.

Run the BitGen program and download the resulting bitstream file to the targeted
device.

View and change the nets connected to the capture units of an Integrated Logic
Analyzer (ILA) core in your design.

ISE 5 In-Depth Tutorial

www.Xilinx.com 113
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

To view the actual design layout on the FPGA:

1. To launch FPGA Editor in the expanded Place & Route hierarchy, double-click
View/Edit Routed Design (FPGA Editor).

Fracezzes far Current Saource:

------- @ Place & Route Report
------- g? Azpnchronous Delay Repaort

....... g PadReport

------- Guide Results Report

- Gg? Generate Pozt-Flace % Route Static Timing
------- . Yiews/Edit Placed Dezign [FloorPlanner)
Wiew/Edit Routed Dezign [FPGA Editar)
------- . Analyze Power [*Power)

------- G Generate Pozst-Place & Route Simulation Model
-4 Generate IBIS Model

¥4 Multi Pass Place & Route

[G Back-annaotate Pin Locations

Figure 5-17: View/Edit Routed Design (FPGA Editor) Process

2. After FPGA Editor is open, change the List Window from All Components to All Nets.
This enables you to view all of the possible nets in the design.

8

i.-'-‘-.ll Components

Al Hets
FRouted Mets
Unrouted Hets
Zer-pin Mets

Al Components
Flaced Components
ldnplaced Components
All Macros

Plarad b zmras

Figure 5-18: List Window in FPGA Editor

114 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Evaluating Post-Layout Timing ST XILINX®

3. Select the clk_dem (Clock) net and see the fanout of the clock net.

Figure 5-19: Clock Net

4. To exit FPGA Editor, select File — Exit.

Evaluating Post-Layout Timing

After the design is placed and routed, a Post Layout Timing Report is generated by default
to verify that the design meets your specified timing goals. This report evaluates the logical
block delays and the routing delays. The net delays are now reported as actual routing

delays after the place and route process (indicated by the letter “R” next to the net delay).

1. Expand the Generate Post-Place & Route Timing hierarchy.

2. Double-click Post-Place & Route Static Timing Report to open the report in Timing
Analyzer.

Proceszes fcan_urrent SoLnce:;

G E Place & Route

------- @ Place & Route Repart

------- @ Asynchronous Delay Report

------- @# Pad Report

------- Guide Results Report

= U(I? Generate Post-Place & Route Static Timing
Pozt-Place & Boute Static TIFIIIIIl:I FI"'I:" rk
-- Qﬂ Text-bazed Post-Place & Route Static Timing Report
dnalyze Post-Place & Route Static Timing [Timing Analyzer)

Figure 5-20: Post-Place & Route Static Timing Report

Following is a summary of this report.

¢ The minimum period value increased due to the actual routing delays.

¢ After the Map step, logic delay contributed to about 80% of the minimum period
attained. The post-layout report indicates that the logical delay value decreased
somewhat. The total unplaced floors estimate changed as well. Routing delay
after PAR now equals about 31% of the period; a true report of net delays after the
place and route step.

ISE 5 In-Depth Tutorial www.Xxilinx.com 115
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

¢ The post-layout result does not necessarily follow the 50/50 rule previously

described because the worst case path primarily includes component delays.

After the design is mapped, block delays constitute about 80% of the period.
After place and route, the majority of the worst case path is still made up of logic delay.
Since total routing delay makes up only a small percentage of the total path delay
spread out across three nets, expecting this to be reduced any further is unrealistic. In
general, you can reduce excessive block delays and improve design performance by
decreasing the number of logic levels in the design.

3. To exit Timing Analyzer, select File — EXxit.

Creating Configuration Data

After analyzing the design through timing constraints in Timing Analyzer, you need to
create configuration data. To create a bitstream for the target device, run the Configure
step:

1. Right-click Generate Programming File.

2. Select Properties.

B G R
e Programming File Ge parun
-0 Generate FROM. AL popin gl
] Coanfigure Device [ik Stop
open Withaut pdating
Figure 5-21: Selecting Properties
116 www.Xxilinx.com ISE 5 In-Depth Tutorial

1-800-255-7778

Creating Configuration Data ST XILINX®

The Process Properties dialog box opens.

x|
General Dptions I Configuration options. I
Startup optiots l Readback aptions | E ncrpption opticrs: I
Property Hame Value

Start-Up Clock |
Enable Internal Done Pipe Jooik
Done (Cutput Events) Liser Clock
Enable Outputs (Output Everts) :

Release Wiite Enable (Output Everts) EDefaurt (6]

Release DLL_(EJutput Everts) {Default (Movat)
hatch Cycle EDefaurt [Mavait)
Ok Eancel [efaul Help

Figure 5-22: Process Properties’ Startup Options Tab

3. Select the Startup Options tab.

Change the Startup Clock from CCLK to JTAG, since you are going to configure this
device via Boundary Scan. This can remain at CCLK, if you were doing Select Map or
Serial Slave configuration.

5. Leave the remaining options in the default setting.
Click OK to apply the new properties.
7. Double-click Generate Programming File to create a bitstream of this design.

The bitstream comes from the BitGen program and creates the design_name.bit and
design_name.ll files (in this tutorial, the watch.bit and watch.ll files). The design_name.bit
file is the actual configuration data. The design_name.ll file is the logical allocation file
that is used during iMPACT to determine the location of the probable points in the
design. These files are automatically copied to your working directory.

8. Verify that these files are in this directory. The design_name.11 file is used to perform
device readback with the iMPACT tool. For more information, see iMPACT online
help.

9. To review the Programming File Generation Report, double-click the report. Verify
that the specified options were used when creating the configuration data.

....... M Gernerate PROM, ACE, ar JTAG File
e Configure Device [iMPACT)

Figure 5-23: Programming File Generation Report

ISE 5 In-Depth Tutorial www.Xxilinx.com 117
1-800-255-7778

S XILINX® Chapter 5: Design Implementation

Creating a PROM File with iMPACT

To program a single device using iMPACT, all you need is a design.bit file. To program
several devices in a daisy chain configuration, or to program your devices using a PROM,
you must use iMPACT to create a PROM file. iMPACT accepts any number of bitstreams
and creates one or more PROM files containing one or more daisy chain configurations.

To start iMPACT:

1. Double-click Generate PROM, ACE, JTAG File.

2. iMPACT opens with a wizard to help you create the PROM File.
Use the wizard to:

e Add additional bitstreams to the daisy chain.
¢ Create additional daisy chains.

e Remove the current bitstream and start over; or immediately save the current PROM
file configuration.

To create a PROM file with iMPACT:

1. OpeniMPACT.
2. In the Operation Mode Selection dialog box, select Prepare Configuration Files.
3. Click Next.

DOperation Mode Selection x|

“What do pou want to do firgh'?

" Configure Devices

% Prepare Configuration Files

" Load Configuration File [.cdf, .pdr)

Figure 5-24: Operation Mode Selection dialog box

4. In the Prepare PROM Files dialog box, under “I want to create a:”, select PROM File.
5. Click Next.

Prepare Configuration Files El

| want to create a:

" System ACE file
" PROM file
" Boundany-Scan fil

Figure 5-25: Prepare Configuration Files Dialog

118 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Creating a PROM File with iMPACT ST XILINX®

6. Inthe “I want to target a:” dialog box:

a. Under PROM File Format, select MCS.

b. Under PROM File Name, type ‘stopwatchl’.
7. Click Next.

Prepare PROM Files x|

| woant to target a :

0 Hiling Serial PRORM
7 Parallel PROM

PRORM File Farmat
&+ MCs TEK
B0 HER

¥ Swap bits
bdermony fill value [2 Hew digit]: IFF—
PROM file name: | stopwatcht

Location: | C:SEDIF_Flowd! Browse... |

Figure 5-26: Prepare PROM Files Dialog

8. In the Specify Xilinx Serial PROM Device dialog box, check the box associated with
Auto Select PROM.

9. Click Next.

10. If you have more data than space available in the PROM, you must split the data into
several individual PROMs with the Split PROM option. In this case, only a single
PROM is needed.

Specify Xilink Serial PROM device |

Select a Seral PROM: [xe1? 7] Jeei7ied | Add |

Fozition Fart Idame

Delete Al |

Figure 5-27: Specify Xilinx Serial PROM Device Dialog Box

ISE 5 In-Depth Tutorial www.Xxilinx.com 119
1-800-255-7778

$7 XILINX°

Chapter 5: Design Implementation

11. In the File Generation Summary dialog box, click Next.

File Generation Summary

—'T'ou have entered following information
FROM Type: Sernial

Filz Farmat; Mcs
Fill % alue; FF
PROM Filename; stopwatch]

Murnber aof PROkMs: Auto Select

Fosition Fart Hame

Click 'Mest' to add device file.
Figure 5-28: File Generation Summary Dialog Box

12. In the Add Device File dialog box:
a. Click Add Device.
a. Select the stopwatch.bit file.

Add Device File

Drata Stream : 1]

Starting &ddress [Max 3 Hex digit] : IEI

Mow start adding device file(s] ; A,dd File.__[: |

Figure 5-29: Add Device File Dialog Box

13. Select No when you are asked if you would like to add another design file to the
datastream.

14. Select Finish.
iMPACT displays the PROM associated with your bit file.

15. When asked to generate a file now, select Yes. This creates the PROM file.

120

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Creating a PROM File with iMPACT ST XILINX®

16. Select File — Save to save the supporting files associated with iMPACT.
17. Select File — Exit to close iMPACT.

This completes this chapter of the tutorial. For more information on this design flow and
implementation methodologies (especially some of the tools and programs that were not
covered), see the iMPACT User Guide, available in the collection of software manuals on the
web, at http:/ /support.xilinx.com/support/sw_manuals/xilinx5/.

ISE 5 In-Depth Tutorial www.Xxilinx.com 121
1-800-255-7778

http://support.xilinx.com/support/sw_manuals/xilinx5/

S XILINX® Chapter 5: Design Implementation

122 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

S XILINX®
Chapter 6

Timing Simulation

This chapter includes the following sections.
e “Overview of Timing Simulation Flow”
e “Getting Started”

e “Starting ModelSim”

e “Adding Signals”

e “Saving the Simulation”

Overview of Timing Simulation Flow

Timing simulation uses the block and routing delay information from a routed design to
give a more accurate assessment of the behavior of the circuit under worst-case conditions.
For this reason, timing simulation is performed after the design has been placed and
routed.

Timing (post-place and route) simulation is a recommended part of the HDL design flow
for Xilinx devices. Timing simulation, also known as back-annotated simulation, uses the
detailed timing and design layout information that is available after place and route to
create a VHDL or Verilog simulation netlist. This enables simulation of the design, which
closely matches the actual device operation.

Getting Started

The following sections outline the requirements to perform this part of the tutorial flow.

Required Software

In addition to Xilinx ISE 5.x, you must have ModelSim release 5.4 or above installed on
your machine to follow the tutorial.

Note: ModelSim 5.6a XE is used for the examples in this tutorial.

Required Files

The timing simulation flow requires the following files:

e Design Files (VHDL or Verilog)
The design file is produced by the Xilinx software.

ISE 5 In-Depth Tutorial www.Xxilinx.com 123
1-800-255-7778

$7 XILINX°

Chapter 6: Timing Simulation

¢ Stimulus File (VHDL or Verilog)

This is also known as the testbench. You can use the same testbench for functional
simulation as well as timing simulation. Also, you can create the testbench with Xilinx
HDL Bencher—See Chapter 4, “Behavioral Simulation” for information on this flow.

¢ ModelSim Script File (Optional)

The script file (.do) automates the simulation to a large extent, and makes it easy to re-
run the simulation. Alternatively, the commands are entered one-by-one into the
simulator. Xilinx ISE creates the script file needed to run simulation in ModelSim.

e Xilinx Simulation Libraries

For timing simulation, the SIMPRIMS HDL simulation library must be used. Details
about this library are provided in the following section.

Xilinx Simulation Libraries

To perform timing simulation of Xilinx designs in any HDL simulator, the SIMPRIM
library must be set up correctly. The timing simulation netlist created by Xilinx is
composed entirely of instantiated primitives, which are located in the SIMPRIM library.
The recommended mapping name for the VHDL SIMPRIM library is SIMPRIM, and for
the Verilog SIMPRIM library it is SIMPRIMS_VER.

Note: If using ModelSim Xilinx Edition, there is no need to compile the models. MXE (ModelSim
Xilinx Edition) comes with the models precompiled.

For detailed instructions on compiling these libraries, see Xilinx Answer Record # 2561,
which can be accessed as follows:

1. Go to http:/ /support.xilinx.com.

2. Enter 2561 in the search box, and check to see that the search engine is pointing to
Answer Records.

3. Click OK.
Click the link to Answer Record # 2561.

Starting ModelSim

Xilinx ISE is fully integrated with any version of the ModelSim Simulator. ISE provides
work directory creation, source file compilation, simulation initialization, and simulation
property control.

Specifying Simulation Process Properties

To set the simulation process properties:

1. In the Sources in Project window, select stopwatch_tb.tbw.

2. Click the + to expand the ModelSim Simulator hierarchy.

3. Select and right-click Simulate Post-Place & Route VHDL (Verilog) Model.
4. Select Properties.

The following properties are available and can be edited from the pop-up GUI (as shown
in Figure 6-1 and Figure 6-2):

124

www.xilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

http://support.xilinx.com

Starting ModelSim

$XILINX®

Simulation Properties

Options available in this tab are:

Custom Do File
This option enables users to select a user-created .do file.
Use Automatic Do File

If this option is unchecked, ModelSim will start but will not run the processes required
to simulate the design. You must manually run the .do file from ModelSim, or enter the
commands one by one to run simulation.

Simulation Run Time

Specifies default time for which simulation is run. The “-all” setting tells ModelSim to
run the simulation until it encounters a break specified in the testbench. Alternatively,
a setting of “1000ns”can be entered so that the simulation only runs for 1000ns.

Simulation Resolution

This is set to 1 ps by default. All Xilinx simulations should be run with the resolution
set to 1 ps.

Simulation Mode

For most devices, Maximum delay is the only available option.

Note: Not all the devices have Minimum and Typical delays specified, so there may not be a
difference in the timing numbers, as they will be the same as maximum numbers.

VHDL Syntax

Set this option to either 93 or 87, which tells the compiler to use either VHDL-87 or
VHDL-93 syntax.

Use Explicit Declarations Only
If this option is unchecked, the compiler will not resolve ambiguous overloads.
Design Unit Name

This property enables you to specify the top-level model to be loaded in ModelSim.
This property must be changed if the testbench, module, or entity is named something
different than testbench.

Generate VCD File
This will generate the VCD file from ModelSim so that it can be loaded into XPower.

ISE 5 In-Depth Tutorial

www.Xilinx.com 125
1-800-255-7778

S XILINX® Chapter 6: Timing Simulation

Process Properties

Simulation Froperties | Display Propeties | Simulation Model Properties |

|

Property Hame Value
Custom Do File |
Use Sutomatic Do File =
Simulation Run Time -all
Simulation Resolution Default (1 p=)
Simulation hode accimum Delay
WHOL Syntac 93
U=ze Explicit Declarations Cnly |~
Design Unit MName testhench
Generate YD File -

n] % I Cancel | [refault | Help

Figure 6-1: Simulation Properties

Display Properties

This tab gives you control over the MTI (ModelSim) simulation windows. By default, three
windows open when timing simulation is launched from ISE. They are the Signal window,
the Structure window, and the Wave window. For more details on ModelSim Simulator
windows, refer to the ModelSim User Manual.

Simulation Model Properties

Options available in this tab are as follows:

¢ Correlate Simulation Data to Input Design

By selecting this property, you instruct the Xilinx post-place and route netlist
generation tools to append the timing details to the input design (post NGDBUILD
design). The advantage of using this option is that the user-defined signal names are
preserved. The disadvantage is that the user design, rather than the physical (post-
place and route) design, is used. Therefore, if there are any errors introduced by the
place and route tools, they are not detected.

¢ Bring Out Global Set/Reset Net as a Port

Use this option to create an external port in the simulation netlist that will enable you
to control the power-on-reset from a port.

e Global Set/Reset Port Name
Default is GSR.

¢ Bring Out Global Tristate Net as a Port
¢ Global Tristate Port Name
Default is GTS.

e Generate Test Fixture/Testbench File

Use this option to create a testbench.

126 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Starting ModelSim ST XILINX®

The following options are available when the Advanced Process Setting is enabled in
Project Navigator (accessed under Edit — Preferences, in the Processes tab).

¢ Retain Hierarchy
¢ Change Device Speed To

This provides the option to vary the speed grade of the device for simulation purposes.
e TOC Pulse Width

Use this option to set the duration of the Global Tristate on Configuration Pulse Width.
The default is Ons.

e Global Disable of X-Generation for Simulation

Setting this option will disable the ‘X’ that gets propagated through the simulation
when there is a timing violation.

e ROC Pulse Width

Use this option to set the duration of the Global Reset on Configuration Pulse Width.
The default is 100 ns.

e TOC Pulse Width
Use this option to set the duration of the Global Tristate on Configuration Pulse Width.

The default is 1 ns.
Process Properties il
Simulation Properties | Display Properties Simulation Model Properties |
Property Hame Value 1=
Change Device Speed To -
Cotrelate Simulstion Data to Input Design I
Retain Hierarchy I~
Bring Cut Global Tristate Met as a Port r
Glokal Tristate Part Mame (|{IELN
Tristate On Configuration Pulse Wicth 0
Bring Cut Global SetReset Met az a Port r
Global SetiReset Port Mame (IS
Reset On Configuration Pulse Wicth 100 -
Generste Testbench File r
Global Dizable of X-generation for Simulstion r LI
(] I Cancel | [refault | Help |

Figure 6-2: Simulation Model Properties

Performing Simulation

Once you have set the process properties, ModelSim can be invoked. To start the timing
simulation, double-click Simulate Post-Place and Route VHDL Model or Simulate
Post-Place and Route Verilog Model.

ModelSim creates the working directory, compiles the source files, loads the design, and
runs simulation for the time specified.

ISE 5 In-Depth Tutorial www.Xxilinx.com 127
1-800-255-7778

S XILINX® Chapter 6: Timing Simulation

Adding Signals

To view signals during simulation, you must first add them to the Wave window. Project
Navigator automatically adds all of the top-level ports to the Wave window. Additional
signals are displayed in the Signal window based upon the selected structure in the
Structure window.

There are two basic methods for adding signals to the simulator Wave window.

e Drag and drop from the Signal window.
e Select Add — Wave — Selected Signals from the Signal Window.
The following procedure explains how to add additional signals in the design hierarchy.
For this tutorial, add the smallentr output flip-flops.
1. In ModelSim in the Structure window;, click the + next to uut:stopwatch(structure).
¢ uut is the instance in the testbench.
¢ stopwatch is the component/entity name.
¢ structure is the architecture name.

Note: Figure 6-3 shows the Structure Window for the Verilog flow. The VHDL and Schematic flows
may produce different results.

RI=TEY

File Edit Wiew ‘wWwindow

teztbench: testbenchitestbench_arch] 3
uuk: stopwatchistructure]
asub_strikstop_clk: = _suh(&_=su. ..
tenthzout_4_omues: =_buf[=_bu. ..
tenthzout_4_outrmus_ 2 @ buff. .
tenthzout_4 gtz o 4 buf(=_b...
tenthzout_4_enableiny: =_inw[=.. |

tenthzout_4_aobuf_3: = tril=_tri...
zimby_mebocount_goutzig_ 3 o
zimby_msbcount_goutzig_ 3 pus. .
zimky_mebcount_goutzig_inst_| ..
zimky_rmebocount_goutzig_inst_| .
zinby_mebcount_goutzig_inst_z.
zimby_meboount_goukzio_3 =
zimby_mebocount_goukzig_ 30 = fF
tenthzout_3_ommue: =_buf[=_bu. ..
tenthzout_3_outmus_ B = bufl...
tenthsout_3_gtz_or »_buf(=_b... ;I

ol I i

sim:ftestbenchifuut P

Figure 6-3: Structure Window - Verilog flow example

Select sixty_lsbcount_QOUT<0> in the signal window.

Click and drag sixty_Isbcount_QOUT<0> from the Signal window to the Wave
window.

4. Select sixty_lsbcount_QOUT<1>in the Signal window, and select Add — Wave —
Selected Signals to add the signal to the Wave window.

128 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

Saving the Simulation

$XILINX®

Notice that the waveforms have not been drawn for these signals.

When new signals are added to the waveform window, the simulation needs to be re-run

To restart and re-run the simulation in ModelSim:

1. Click the Restart Simulation icon.

[

Figure 6-4: Restart Simulation Icon
The Restart dialog box opens.
2. Click Restart.

3. Click the Run-all or Run icon to re-run the simulation.

+

Figure 6-5: Run-All Icon

Saving the Simulation

The ModelSim Simulator gives you the ability to save the signals list in the Wave window.

The signals in this list are then opened and referenced each time the simulation is started.
To save signals to the Wave window:

1.

In the Wave window, select File — Save Format.
2.

In the Save Format dialog box, change wave.do to sec_signal.do.
Save Format

EHE
Save in: | £ watch_sc

[work

File name: WaYE, Save I
Save az hupe: IMau:n:u Files [*.dao) L] Cancel |

Figure 6-6: Save Format Dialog Box

3. Click Save to close the dialog box and close the ModelSim simulator

ISE 5 In-Depth Tutorial

www.Xilinx.com

129
1-800-255-7778

S XILINX® Chapter 6: Timing Simulation

130 www.Xxilinx.com ISE 5 In-Depth Tutorial
1-800-255-7778

	ISE 5 In-Depth Tutorial
	About This Tutorial
	About the In-Depth Tutorial
	Additional Resources
	Tutorial Contents
	Tutorial Flows
	HDL Design Flow
	Schematic Design Flow
	Implementation-only Flow

	Table of Contents
	Overview of ISE and Synthesis Tools
	Overview of ISE
	Project Navigator Interface
	Sources in Project Window
	Processes for Current Source Window
	Console Window
	Using Snapshots
	Using Project Archives

	Overview of Synthesis Tools
	Xilinx Synthesis Technology (XST)
	Synplify/Synplify Pro
	LeonardoSpectrum

	HDL-Based Design
	Overview of HDL-Based Design
	Getting Started
	Required Software
	Optional Software Requirements
	VHDL or Verilog?
	Installing the Tutorial Project Files
	Copying the Tutorial Files (Optional)
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Adding Source Files
	Analyzing the Source Files
	Correcting HDL errors
	Creating an HDL-Based Module
	Creating a CORE Generator Module
	Creating a DCM Module

	Synthesizing the Design
	Synthesizing the Design using XST
	Synthesizing the Design using Synplify/Synplify Pro
	Synthesizing the Design using LeonardoSpectrum

	Schematic-Based Design
	Overview of Schematic-based Design
	Getting Started
	Required Software
	Installing the Tutorial Project Files
	Copying the Tutorial Files (Optional)
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Opening the Project File in the ECS Schematic Editor Tool
	Manipulating the Window View
	Creating a Schematic-Based Macro
	Defining the CNT60 Schematic
	Saving the Schematic
	Creating the CNT60 symbol
	Placing the CNT60 Macro
	Creating a CORE Generator Module
	Creating a State Machine Module
	Creating a DCM Module
	Creating an HDL-Based Module
	Specifying Device Inputs/Outputs
	Adding I/O Markers and Net Names
	Assigning Pin Locations
	Completing the Schematic

	Behavioral Simulation
	Overview of Behavioral Simulation Flow
	Getting Started
	Required Files
	Xilinx Simulation Libraries

	Adding an HDL Testbench
	VHDL Design
	Verilog Design

	Creating a Testbench Waveform Using HDL Bencher
	Creating a Testbench Waveform Source
	Initializing Inputs

	Behavioral Simulation Using ModelSim
	Selecting Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Saving the Simulation

	Design Implementation
	Overview of Design Implementation
	Getting Started
	Tutorial Option 1
	Tutorial Option 2

	Creating an Implementation Project
	Specifying Options
	Translating the Design
	Using the Constraints Editor
	Using the Pin-out Area Constraints Editor (PACE)
	Mapping the Design
	Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals with the 50/50 Rule
	Report Paths in Timing Constraints Option

	Placing and Routing the Design
	Using FPGA Editor to Verify the Place and Route
	Evaluating Post-Layout Timing
	Creating Configuration Data
	Creating a PROM File with iMPACT

	Timing Simulation
	Overview of Timing Simulation Flow
	Getting Started
	Required Software
	Required Files
	Xilinx Simulation Libraries

	Starting ModelSim
	Specifying Simulation Process Properties
	Performing Simulation

	Adding Signals
	Saving the Simulation

