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Overview

= Part 1- Gate Circuitsand Boolean Equations
e Binary Logic and Gates
e Boolean Algebra
e Standard Forms
= Part 2 - Circuit Optimization
e Two-Level Optimization
e Map Manipulation
* Practical Optimization (Espresso)
e Multi-Leve Circuit Optimization
= Part 3—Additional Gatesand Circuits
* Other Gate Types
» Exclusive-OR Operator and Gates
* High-Impedance Outputs
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Circuit Optimization

= Goal: To obtain the simplest
implementation for a given function

= Optimization isa moreformal approach
to ssimplification that is performed using
a specific procedure or algorithm

= Optimization requiresa cost criterion to
measur e the simplicity of a circuit

= Distinct cost criteria we will use:
 Literal cost (L)
* Gateinput cost (G)
* Gateinput cost with NOTs (GN)
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Literal Cost

= Literal —avariableor it complement

= Literal cost —the number of literal
appear ancesin a Boolean expression
corresponding to thelogic circuit

diagram

= Examples:
« F=BD+ABC+ACD L=8
- F=BD+ABC+ABD+ABC L =

*F=(A+B)A+D)B+C+D@B+C+D)L =
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Gate I nput Cost

= Gateinput costs - thenumber of inputsto the gatesin the
implementation corresponding exactly to the given equation
or equations. (G - invertersnot counted, GN - inverters counted)

= For SOP and POS equations, it can be found from the
equation(s) by finding the sum of:
 all literal appearances
* thenumber of termsexcluding singleliteral terms,(G) and
 optionally, thenumber of distinct complemented singleliterals (GN).

= Example:
« F=BD+ABC+ACD G=8 GN=11
- F=BD+ABC+ABD+ABC G= ,GN=

c F=(A+B)(A+D)B+C+D)(B+C+D)G=,GN=
* Which solution isbest?

Logic and Computer Design Fundamentals, 42
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Cost Criteria (continued)

L (literal count) countsthe AND inputsand thesingle
literal OR input.
G (gateinput count) addstheremaining OR gate inputs

= GN(gate input count with NOTs) addsthe inverter inputs

Logic and Gomputer Design Fundamentals, 4e
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Cost Criteria (continued)

= Example 2; é

* F=ABC+ABC— (T

- L=6G=8GN=11 N —F
+ F=(A+ OB+ ONA+BN T T

= L=6 G=9GN =12

= Same function and same

literal cost
= But first circuit has better

gate input count and better _D—D_F

gateinput count with NOTs 'D‘" D’,_
o=
-

Ow>
IL
|

= Select it!
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Boolean Function Optimization

= Minimizing the gateinput (or literal) cost of a (a
set of) Boolean equation(s) reduces circuit cost.

= We choose gate input cost.

= Boolean Algebra and graphical techniquesare
toolsto minimize cost criteria values.

= Someimportant questions:
* When do we stop trying to reduce the cost?
* Do we know when we have a minimum cost?

= Treat optimum or near-optimum cost functions
for two-level (SOP and POS) circuitsfirst.

= Introduce a graphical technique using Karnaugh
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Karnaugh Maps (K-map)

= A K-map isa collection of squares
* Each squarerepresentsa minterm

* The collection of squaresisa graphical representation
of a Boolean function

* Adjacent squaresdiffer in the value of onevariable
* Alternative algebraic expressions for the same function
arederived by recognizing patterns of squares
= The K-map can beviewed as
» A reorganized version of thetruth table

A topologically-warped Venn diagram asused to
visualize setsin algebra of sets

Logic and Computer Design Fundamentals, da
Powarart®idse o Chapter 2 - Part 2 9

102008 Pearson Education, Inc.

Some Uses of K-Maps

= Provide ameansfor:
* Finding optimum or near optimum
= SOP and POS standard forms, and
= two-level AND/OR and OR/AND circuit
implementations
for functionswith small number s of
variables

 Visualizing conceptsrelated to manipulating
Boolean expressions, and

» Demonstrating concepts used by computer -
aided design programsto simplify large
circuits
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Two Variable Maps

= A 2-variable Karnaugh Map:

* Notethat minterm mO and y=0]y=1
minterm mlare“adjacent” | _ | mMy=[m, =
and differ in thevalue of the Xy | xy
variabley x=1 Mm,= [m;=

* Similarly, minterm mO and xy | XY
minterm m2 differ in the x variable.

* Also, m1 and m3 differ inthex variable as
well.

* Finally, m2 and m3 differ in the value of the
variabley

RO — " Chopter 2Ptz 11

K-Map and Truth Tables

= TheK-Map isjust adifferent form of thetruth table.
= Example—Two variable function:
* Wechoose a,b,c and d from the set {0,1} to
implement a particular function, F(x,y).

Function Table K-Map
Input | Function
Values | Value y=0 y=1
(x,y) F(X.y) —
50 ~ x=0 a b
01 b x=1 ¢C d
10 C
11 d
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K-Map Function Representation

= Example: F(X,y) =x  F=x[y=0y=1
0|0 |0
1)1

X

1

X

" For function F(x,y), the two adjacent cells
containing 1's can be combined using the
Minimization Theorem:

F(X,y)=Xxy+Xxy=x

Pw;erﬂ:mr"sliaes i ' Chapter 2-Pat2 13

K-Map Function Representation

= Example: G(X,y) =x+y G=x+yly=0[y=1
x=010 |1
x=1 |1 |1

= For G(x,y), two pairs of adjacent cells containing
1'scan be combined using the Minimization
Theorem:

G(x,y) = ky+xy)H (y +xy)=x+y
Duplicate xy

Pouguerﬂmnr"slmfs ) ' Chapter 2-Pat2 14



ThreeVariable Maps

= A threevariable K-map:
yz=00 | yz=01 | yz=11 | yz=10

x=0 m, m, ms m,

x=1] m, ms m, Mg

= Whereeach minterm correspondsto the product
terms. yz=00 | yz=01 | yz=11 | yz=10

x=0| Xyz | Xyz | xyz | xyz

x=1| XYz | xyz | Xyz | xyz
= Notethat if the binary valuefor an index differsin one
bit position, the minterms are adjacent on the K-Map

PowsrPoint® Slides. Chapter 2-Part2 15
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Alternative Map L abeling

= Map uselargely involves:
* Entering valuesinto the map, and
* Reading off product termsfrom the

map.
= Alternate labelings ar e useful:
y y {0 mﬁ
Ylo 1 |3 |2 olo |1 |3 |2
X4 |5 [7 |6 X[14 5 |7 |6
mememememe 2z |z -

PowerPaint® Slides. Chapter 2-Part2 16
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Example Functions

= By convention, we represent the mintermsof Fby a" 1"
in the map and leave the mintermsof F blank

= Example: Yy
F(Xl yl Z) = Zm(2131415) 0 1 31 21

X41 517 6

= Example: 7
G(a" b7C) =Zm(314’617) y
= Learnthelocationsof the 8 0 |1 |37 |2

indices based on the variable x[41 |5 |71 [61
order shown (X, most significant

and z, least significant) on the Y4
map boundaries

Logic and Computer Design Fundamentals, 42
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Combining Squares

® By combining squares, we reduce number of
literalsin a product term, reducing theliteral cost,
thereby reducing the other two cost criteria

" Ona3-variableK-Map:

* Onesguarerepresentsa minterm with three
variables

* Two adjacent squaresrepresent a product term
with two variables

* Four “adjacent” termsrepresent a product term
with onevariable

» Eight “adjacent” termsisthefunction of all ones(no
variables) = 1.

Logic and Gomputer Design Fundamentals, 4e
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Example: Combining Squares

= Example: Let F=Xm(2,3,6,7) y
0 1 31 21
X |4 5 71 61

Z
= Applying the Minimization Theorem three
times:
F(X,y,2)=Xyz+Xxyz+Xyz+Xxyz
=yz+yz

. Thusthefour_te)r/msthat forma2 X 2square
correspond totheterm "y".

Chapter 2 - Part 2 19

Three-Variable Maps

= Reduced literal product termsfor SOP standard
forms correspond to rectangles on K-maps
containing cell countsthat are powersof 2.

= Rectanglesof 2 cellsrepresent 2 adjacent
minterms; of 4 cellsrepresent 4 mintermsthat
form a* pairwise adjacent” ring.

= Rectangles can contain non-adjacent cellsas
illustrated by the “ pairwise adjacent” ring
above.
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Three-Variable Maps

= Topological war ps of 3-variable K-maps
that show all adjacencies:

= Venn Diagram = Cylinder

o\

g
2
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Three-Variable Maps

= Example Shapes of 2-cell Rectangles:

y
T
w| 4 SU 6

= Read off the product termsfor the
rectangles shown
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Three-Variable Maps

= Example Shapes of 4-cell Rectangles:

BRIl ﬁyﬁ“‘
UL e

= Read off the product termsfor the
rectangles shown

£
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ThreeVariable Maps

= K-Mapscan be used to ssmplify Boolean functions by
systematic methods. Termsare selected to cover the
“1s’in the map.

= Example: Simplify F(X, Y, z) = 2m(1,2,3,5,7)

y /"
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Three-Variable Map Simplification

= Usea K-map to find an optimum SOP
equation for F(X,Y,Z)=%mn(0,1,2,4,6,7)

Logic and Computer Design Fundamentals, 42
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Four Variable Maps

= Map and location of minterms:

0 13/2
4 5/7 6

Variab|eon3;2 12 13 /15 14
11

Logic and Computer Desigh Fundamentals, 4a
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Four Variable Terms

= Four variable maps can haverectangles
corresponding to:

* A single1l =4variables, (i.e. Minterm)

* Two 1s=3variables,

* Four 1s=2variables

* Eight 1s= 1variable,

» Sixteen 1s=zerovariables(i.e.

Constant " 1")
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Four-Variable Maps

= Example Shapes of Rectangles:

Y
]
_OJ
4
12 X
W =
oo Shase s i Chapter 2- Part2 28
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Four-Variable Maps

= Example Shapes of Rectangles:

Y

| |

il 5 7 6
X
12 13 15 1Jl
W
- L
C 1)
Z |
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Four-Variable Map Simplification

"F(W,X,Y,Z)=2n(0, 2,4,56,7,8,10,13,15)

ogic and Computer Design Fundamentals, 4e
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Four-Variable Map Simplification

" F(W,X,Y,Z)=2mn(3,4,5,7,9,13,14,15)

Logic and Computer Design Fundamentals, 42

PowsrPoint® Slides. Chapter 2-Pat2 31

102008 Pearson Education, Inc.

Systematic Simplification

= A Prime Implicant isa product term obtained by combining
the maximum possible number of adjacent squaresin the map
into arectanglewith the number of squaresa power of 2.

" A primeimplicant iscalled an Essential Prime Implicant if it is
the only primeimplicant that covers (includes) one or more
minterms.

® Prime Implicants and Essential Prime Implicants can be
determined by inspection of a K-Map.

" A set of primeimplicants” coversall minterms" if, for each
minterm of the function, at least one primeimplicant in the
set of primeimplicantsincludesthe minterm.

Logic and Gomputer Design Fundamentals, 4e
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Example of Prime Implicants

= Find ALL PrimelImplicants

CDC ESSENTIAL Prime Implicants
EB\N —t , ................... vB D c
_J,J ......... ml g || 1 l1
TR
BD\\? 1 : »BD\\](&_ 1 .
(1 {]1) Q 1
A 3 A
AE"& .1 1 1] 1|1 [1
| o b
AD B C ®Minterms covered by single prime implicant
oot St Chapter 2-Part2 33
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Prime Implicant Practice

= Find all primeimplicantsfor:
F(A,B,C,D)=2n(0,2,3,8,9,10,11,12,13,14,15)

Logic and Computer Desigh Fundamentals, 4a
# slic

PowerPaint® Slides. Chapter 2-Pat2 34

2008 Pearson Education, Inc.

17



Another Example

= Find all primeimplicantsfor:
G(A,B,C,D)=%2n(0,2,3,4,7,12,13,14,15)

e Hint: Thereare seven primeimplicants!
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FiveVariableor More K-Maps

= For fivevariable problems, we use two adjacent K-maps.
It becomes harder to visualize adjacent mintermsfor
selecting PIs. You can extend the problem to six
variables by using four K-Maps.
V=0 V=1
Y Y

Logic and Dcmpuk: mmmmmmmmmmmmmmm  de Chapter 2 - Part 2 36
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Don't Caresin K-Maps

Logic and Computer Design Fundamentals, 42
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Sometimes a function table or map contains entriesfor
which it isknown:

 theinput valuesfor the minterm will never occur, or

» Theoutput valuefor the minterm is not used

In these cases, the output value need not be defined

Instead, the output valueisdefined asa “don't care”

By placing “don't cares’ (an “x” entry) in the function table
or map, the cost of the logic circuit may be lowered.
Example 1. A logic function having the binary codesfor the
BCD digitsasitsinputs. Only the codesfor 0 through 9 are
used. Thesix codes, 1010 through 1111 never occur, so the
output valuesfor these codesare” x” to represent “don’t
cares.”
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102008 Pearson Education, Inc.

Don't Caresin K-Maps

Logic and Gomputer Design Fundamentals, 4e
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Example 2: A circuit that represents a very common situation that
occursin computer design hastwo distinct sets of input variables:
» A, B, and C which take on all possible combinations, and
* Y which takeson valuesOor 1.
and a single output Z. The circuit that receivesthe output Z
observesit only for combinations of A, B, and C such A=1and B
=1lor C =0, otherwiseignoringit. Thus, Z is specified only for
those combinations, and for all other combinations of A, B, and C,
Zisadon't care. Specifically, Z must be specified for AB + C =1,
andisadon’tcarefor: .
AB+C=(A+B)C=AC+BC=1
Ultimately, each don’t care“x” entry may takeon either aOor 1
valuein resulting solutions
For example, an “x” may takeon value“0” in an SOP solution and
value“1” in a POS solution, or vice-versa.
Any minterm with value “x” need not be covered by a prime
implicant.

Chapter 2- Pat2 38
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Example: BCD “5or More”

= The map below givesa function F1(w,x,y,z) which
isdefined as" 5 or more" over BCD inputs. With
thedon't cares used for the 6 non-BCD
combinations:

y
sTolTolo F1(wxX\Yy,z2)=wW+Xz+Xy G=7
T = Thisismuch lower in cost than F2 where
0.1, 1), the“don'tcares’ weretreated as" 0s”
XX, J Faw,xy,z)=wxz+wxy+wxyG=12
w ll 1| x| x = For thisparticular function, cost G for the
D B R POS solution for F,(w,x,y,2) is not changed
z by using thedon't cares.
e orperz-pmz

Product of Sums Example

= Find the optimum POS solution:
F(A,B,C,D)=%2m(3,9,11,12,13,14,15) +

>d (1,4,6)
* Hint: UseF and complement it to get the
result.
i Chapter 2-Part2 40
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Optimization Algorithm

= Find all primeimplicants.

* |ncludeall essential primeimplicantsin the
solution

= Select aminimum cost set of non-essential
primeimplicantsto cover all mintermsnot yet
covered:

* Obtaining an optimum solution: See Reading
Supplement - More on Optimization

» Obtaining a good simplified solution: Usethe
Selection Rule

Pw;erﬂ:mr"sliaes ' Chapter 2-Part2

Prime Implicant Selection Rule

= Minimizethe overlap among prime
implicants as much as possible. In
particular, in thefinal solution, make
surethat each primeimplicant selected
includes at least one minterm not
included in any other prime implicant
selected.

Pouguerﬁmr"slmfs ' Chapter 2-Part2
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Selection Rule Example

= Simplify F(A, B, C, D) given on theK -

map. Selected  Essential
C C
Il — 1 —|—
1 g 1 1| 1
D) ENEUIBN
— B B
1 1
A ; A \—I
[Lll) [1]ls
! T
D D

v Minterms covered by essential prime implicants

L ind G ter Design Fund: tals, 4a
P e Chapter 2 - Part 2 43
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Selection Rule Example with Don't Cares

= Simplify F(A, B, C, D) given on the K-map.
Selected  Essential

C \ C
(1 X \ 1 xJ
T XIx | Z)) SN
— B \ B
X X
A B I\ I
1] 1) x D [[1 x]|
D D
v Minterms covered by essentia prime implicants
Povarone S et s Chapter 2-Part2 44
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Practical Optimization

= Problem: Automated optimization
algorithms:;
* require mintermsas starting point,

* requiredetermination of all prime
implicants, and/or

* requireaselection processwith a potentially
very large number of candidate solutionsto
be found.

= Solution: Suboptimum algorithms not
requiring any of the abovein the general
case

Pw;erﬂ:mr"sliaes I ' Chapter 2-Pat2 45

Example Algorithm: Espresso

= |llustration on a K-map:

TlB |ﬂ Ul
12 ]] 2 1z [z

A A
D D
Original F & EXPAND ESSENTIAL & IRREDUNDANT
MMMMMMMM . COVER
o D Chapter 2-Part2 46
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Example Algorithm: Espresso

= Continued:
C C
X | x (X X BESIRSES |X
alp 1
" "i"-L °
(i1 |1 11l 111
A A 1
D D
REDUCE EXPAND
““““““““““““““““““““““““ e Chapter 2 - Part 2 47

Example Algorithm: Espresso

= Continued:

C C
T T
!_ m&_B =.=41 mlh—B

A 1) 1] & 1] |1]

D D
IRREDUNDANT COVER After REDUCE, EXPAND,
IRREDUNDANT COVER,

MMMMMMMMM . LAST GASP, QUIT
wwwwwwwwwwwwwwwww : Shopter2-Pat2 48
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Example Algorithm: Espresso

* Thissolution costs2+2+3+3+4=14
= Finding the optimum solution and comparing:
C

Essential\
jﬁtf‘yﬁ 3
| )]
Selected A ER ! °
A v intefs oqveredby essential prime implicants

= Therearetwo optimum solutions one of which isthe
one obtained by Espresso.
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Multiple-L evel Optimization

= Multiple-level circuits- circuitsthat are
not two-level (with or without input
and/or output inverters)

= Multiple-level circuits can have reduced
gate input cost compar ed to two-level
(SOP and POS) circuits

= Multiple-level optimization is performed
by applying transfor mationsto cir cuits
represented by equationswhile

mmmmmmmmmmmmmmmmmmmmmmmmmm
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Transfor mations

= Factoring - finding a factored form from
SOP or POS expression

» Algebraic - No use of axioms specific to
Boolean algebra such as complements or
idempotence

* Boolean - Uses axioms unique to Boolean
algebra

= Decomposition - expression of a function
asa set of new functions

;w;erﬁl:!nl‘“ﬂidés I ' Chapter 2-Part2

Transfor mations (continued)

= Substitution of G into F - expression
function F asafunction of G and some or
all of itsoriginal variables

= Elimination - Inver se of substitution

= Extraction - decomposition applied to
multiple functions ssimultaneously

gn'gweri‘l:;nl‘hslld;s et 1 ' Chapter 2-Part2
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Transfor mation Examples

= Algebraic Factoring
F=ACD+ABC+ABC+ACD G=16
* Factoring:
F=A(CD+ BC)+A(BC+CD) G=16
* Factoring again:

F=AC(B+D)+AC(B+D) G=12
* Factoring again:
F=(AC+ AC)(B+ D) G=10
o e Chapter 2- Pat2 53

Transformation Examples

= Decomposition
» ThetermsB +Dand AC + AC can be defined
as new functions E and H respectively,
decomposing F:
F=EH,E=B+D,andH=AC+AC G=10
= Thisseriesof transformations hasreduced G from

16 to 10, a substantial savings. Theresulting
circuit hasthreelevels plusinput inverters.
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Transfor mation Examples

= Substitution of E into F
* Returningto F just beforethefinal factoring step:

F=AC(B+ D)+AC (B +D) G=12
* Defining E = B + D, and substituting in F:
F=ACE +ACE G=10

e Thissubstitution hasresulted in the same cost asthe
decomposition

Pw;erﬂ:mr"sliaes i ' Chapter 2-Pat2 55

Transformation Examples

= Elimination
* Beginning with a new set of functions:

X=B+C

Y=A+B

Z=AX+CY G=10
* Eliminating X and Y from Z:
Z=A(B+C)+C(A+B) G=10
* “Flattening” (Converting to SOP expression):
Z=AB+AC+AC+BC G=12

* Thishasincreased the cost, but has provided an new
SOP expression for two-level optimization.

mmmmmmmmmmmmmmmmmmmmmmmmmm
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Transfor mation Examples

= Two-level Optimization

* Theresult of 2-level optimization is:

Z=AB+ C G=4
= Thisexampleillustratesthat:

e Optimization can begin with any set of equations,
not just with mintermsor atruth table

* |Increasing gate input count G temporarily during a
seriesof transformations can result in afinal
solution with asmaller G

Pw;erﬂ:mr"sliaes I ' Chapter 2-Pat2

Transformation Examples

= Extraction
* Beginning with two functions:

E=ABD +ABD

H=BCD +BCD G=16

* Finding a common factor and defining it asa
function:

F=BD +BD

* Weperform extraction by expressing E and H as
the threefunctions:

F=BD +BD,E=AF,H= CF G=10
* Thereduced cost G resultsfrom the sharing of logic

mmmmmmmmmmmmmmmmmmmmmmmmmm
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Termsof Use

= All (or portions) of thismaterial © 2008 by Pear son
Education, Inc.

= Permission isgiven to incorporatethismaterial or
adaptations thereof into classroom presentations and
handoutsto instructorsin courses adopting the latest
edition of Logic and Computer Design Fundamentals
as the cour se textbook.

= These materialsor adaptationsthereof are not to be
sold or otherwise offered for consider ation.

= ThisTermsof Usedideor pageisto beincluded within
the original materials or any adaptations ther eof.
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