
1

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Chapter 2 – Combinational
Logic Circuits

Part 3 – Additional Gates and Circuits

Logic and Computer Design Fundamentals

Chapter 2 - Part 3 2

Overview
Part 1 – Gate Circuits and Boolean Equations
• Binary Logic and Gates
• Boolean Algebra
• Standard Forms

Part 2 – Circuit Optimization
• Two-Level Optimization
• Map Manipulation
• Practical Optimization (Espresso)
• Multi-Level Circuit Optimization

Part 3 – Additional Gates and Circuits
• Other Gate Types
• Exclusive-OR Operator and Gates
• High-Impedance Outputs

2

Chapter 2 - Part 3 3

Other Gate Types

Why?
• Implementation feasibility and low cost
• Power in implementing Boolean functions
• Convenient conceptual representation

Gate classifications
• Primitive gate - a gate that can be described using a

single primitive operation type (AND or OR) plus an
optional inversion(s).

• Complex gate - a gate that requires more than one
primitive operation type for its description

Primitive gates will be covered first

Chapter 2 - Part 3 4

Buffer

A buffer is a gate with the function F =
X:

In terms of Boolean function, a buffer is
the same as a connection!
So why use it?
• A buffer is an electronic amplifier used to

improve circuit voltage levels and increase
the speed of circuit operation.

X F

3

Chapter 2 - Part 3 5

NAND Gate

The basic NAND gate has the following symbol,
illustrated for three inputs:
• AND-Invert (NAND)

NAND represents NOT AND, i. e., the AND
function with a NOT applied. The symbol
shown is an AND-Invert. The small circle
(“bubble”) represents the invert function.

X
Y
Z

ZYX)Z,Y,X(F ⋅⋅=

Chapter 2 - Part 3 6

NAND Gates (continued)

Applying DeMorgan's Law gives Invert-OR (NAND)

This NAND symbol is called Invert-OR, since inputs
are inverted and then ORed together.
AND-Invert and Invert-OR both represent the
NAND gate. Having both makes visualization of
circuit function easier.
A NAND gate with one input degenerates to an
inverter.

X
Y
Z

ZYX)Z,Y,X(F ++=

4

Chapter 2 - Part 3 7

NAND Gates (continued)

The NAND gate is the natural implementation for
CMOS technology in terms of chip area and speed.
Universal gate - a gate type that can implement any
Boolean function.
The NAND gate is a universal gate as shown in
Figure 2-24 of the text.
NAND usually does not have a operation symbol
defined since
• the NAND operation is not associative, and
• we have difficulty dealing with non-associative

mathematics!

Chapter 2 - Part 3 8

NOR Gate

The basic NOR gate has the following symbol,
illustrated for three inputs:
• OR-Invert (NOR)

NOR represents NOT - OR, i. e., the OR
function with a NOT applied. The symbol
shown is an OR-Invert. The small circle
(“bubble”) represents the invert function.

X
Y
Z

ZYX)Z,Y,X(F ++=

5

Chapter 2 - Part 3 9

NOR Gate (continued)

Applying DeMorgan's Law gives Invert-AND
(NOR)

This NOR symbol is called Invert-AND, since
inputs are inverted and then ANDed together.
OR-Invert and Invert-AND both represent the
NOR gate. Having both makes visualization of
circuit function easier.
A NOR gate with one input degenerates to an
inverter.

X
Y
Z

Chapter 2 - Part 3 10

NOR Gate (continued)

The NOR gate is a natural implementation for
some technologies other than CMOS in terms of
chip area and speed.
The NOR gate is a universal gate
NOR usually does not have a defined operation
symbol since
• the NOR operation is not associative, and
• we have difficulty dealing with non-associative

mathematics!

6

Chapter 2 - Part 3 11

Exclusive OR/ Exclusive NOR

The eXclusive OR (XOR) function is an important
Boolean function used extensively in logic circuits.
The XOR function may be;
• implemented directly as an electronic circuit (truly a

gate) or
• implemented by interconnecting other gate types (used

as a convenient representation)

The eXclusive NOR function is the complement of
the XOR function
By our definition, XOR and XNOR gates are
complex gates.

Chapter 2 - Part 3 12

Exclusive OR/ Exclusive NOR

Uses for the XOR and XNORs gate include:
• Adders/subtractors/multipliers
• Counters/incrementers/decrementers
• Parity generators/checkers

Definitions
• The XOR function is:
• The eXclusive NOR (XNOR) function, otherwise

known as equivalence is:

Strictly speaking, XOR and XNOR gates do no
exist for more that two inputs. Instead, they are
replaced by odd and even functions.

YXYXYX +=⊕

YXYXYX +=⊕

7

Chapter 2 - Part 3 13

Truth Tables for XOR/XNOR

Operator Rules: XOR XNOR

The XOR function means:
X OR Y, but NOT BOTH

Why is the XNOR function also known as the
equivalence function, denoted by the operator
≡?

X Y X⊕Y

0 0 0
0 1 1
1 0 1
1 1 0

X Y

0 0 1
0 1 0
1 0 0
1 1 1

or X≡Y
(X⊕Y)

Chapter 2 - Part 3 14

XOR/XNOR (Continued)

The XOR function can be extended to 3 or more
variables. For more than 2 variables, it is called an odd
function or modulo 2 sum (Mod 2 sum), not an XOR:

The complement of the odd function is the even
function.
The XOR identities:

== X1XX0X ⊕⊕
1XX0XX =⊕=⊕

XYYX ⊕=⊕
ZYX)ZY(XZ)YX(⊕⊕=⊕⊕=⊕⊕

+++=⊕⊕ ZYXZYXZYXZYXZYX

8

Chapter 2 - Part 3 15

Symbols For XOR and XNOR

XOR symbol:

XNOR symbol:

Shaped symbols exist only for two inputs

Chapter 2 - Part 3 16

XOR Implementations

The simple SOP implementation uses the
following structure:

A NAND only implementation is:

X

Y

X Y

X

Y

X Y

9

Chapter 2 - Part 3 17

Odd and Even Functions

The odd and even functions on a K-map form
“checkerboard” patterns.
The 1s of an odd function correspond to minterms
having an index with an odd number of 1s.
The 1s of an even function correspond to minterms
having an index with an even number of 1s.
Implementation of odd and even functions for
greater than four variables as a two-level circuit is
difficult, so we use “trees” made up of :
• 2-input XOR or XNORs
• 3- or 4-input odd or even functions

Chapter 2 - Part 3 18

Example: Odd Function Implementation

Design a 3-input odd function F = X Y Z
with 2-input XOR gates
Factoring, F = (X Y) Z
The circuit:

+ +

+ +

X
Y

Z
F

10

Chapter 2 - Part 3 19

Example: Even Function Implementation

Design a 4-input odd function F = W X Y Z
with 2-input XOR and XNOR gates
Factoring, F = (W X) (Y Z)
The circuit:

+ + +

+ + +

W
X

Y
F

Z

Chapter 2 - Part 3 20

Parity Generators and Checkers
In Chapter 1, a parity bit added to n-bit code to produce
an n + 1 bit code:
• Add odd parity bit to generate code words with even parity
• Add even parity bit to generate code words with odd parity
• Use odd parity circuit to check code words with even parity
• Use even parity circuit to check code words with odd parity

Example: n = 3. Generate even
parity code words of length four
with odd parity generator:
Check even parity code words of
length four with odd parity checker:
Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,1) and E = 0.
If Y changes from 0 to 1 between
generator and checker, then E = 1 indicates an error.

X
Y
Z P

X
Y

Z
E

P

11

Chapter 2 - Part 3 21

Hi-Impedance Outputs
Logic gates introduced thus far
• have 1 and 0 output values,
• cannot have their outputs connected together, and
• transmit signals on connections in only one direction.

Three-state logic adds a third logic value, Hi-
Impedance (Hi-Z), giving three states: 0, 1, and
Hi-Z on the outputs.
The presence of a Hi-Z state makes a gate output
as described above behave quite differently:
• “1 and 0” become “1, 0, and Hi-Z”
• “cannot” becomes “can,” and
• “only one” becomes “two”

Chapter 2 - Part 3 22

Hi-Impedance Outputs (continued)
What is a Hi-Z value?
• The Hi-Z value behaves as an open circuit
• This means that, looking back into the circuit, the output

appears to be disconnected.
• It is as if a switch between the internal circuitry and the

output has been opened.

Hi-Z may appear on the output of any gate, but we
restrict gates to:
• a 3-state buffer, or
• Optional: a transmission gate (See Reading Supplement:

More on CMOS Circuit-Level Design),

each of which has one data input and one control
input.

12

Chapter 2 - Part 3 23

The 3-State Buffer
For the symbol and truth table,
IN is the data input, and EN,
the control input.
For EN = 0, regardless of the
value on IN (denoted by X), the
output value is Hi-Z.
For EN = 1, the output value
follows the input value.
Variations:
• Data input, IN, can be inverted
• Control input, EN, can be inverted
by addition of “bubbles” to signals.

IN

EN

OUT

EN IN OUT
0 X Hi-Z
1 0 0
1 1 1

Symbol

Truth Table

Chapter 2 - Part 3 24

Resolving 3-State Values on a Connection

Connection of two 3-state buffer
outputs, B1 and B0, to a wire, OUT
Assumption: Buffer data inputs
can take on any combination of
values 0 and 1
Resulting Rule: At least one buffer
output value must be Hi-Z. Why?
How many valid buffer output
combinations exist?
What is the rule for n 3-state
buffers connected to wire, OUT?
How many valid buffer output
combinations exist?

Resolution Table

Hi-ZHi-ZHi-Z

11Hi-Z

00Hi-Z

1Hi-Z1

0Hi-Z0

OUTB0B1

13

Chapter 2 - Part 3 25

3-State Logic Circuit
Data Selection Function: If s = 0, OL = IN0, else OL = IN1
Performing data selection with 3-state buffers:

Since EN0 = S and EN1 = S, one of the two buffer outputs
is always Hi-Z plus the last row of the table never occurs.

IN0

IN1

EN0

EN1

S
OL

0
0
0
1
1

EN1

1X11
XXX0

0X01
11X0
00X0

OLIN1IN0EN0

Chapter 2 - Part 3 26

More Complex Gates

The remaining complex gates are SOP or
POS structures with and without an
output inverter.
The names are derived using:
• A - AND
• O - OR
• I - Inverter
• Numbers of inputs on first-level “gates” or

directly to second-level “gates”

14

Chapter 2 - Part 3 27

More Complex Gates (continued)

Example: AOI - AND-OR-Invert consists of a
single gate with AND functions driving an OR
function which is inverted.
Example: 2-2-1 AO has two 2-input ANDS
driving an OR with one additional OR input
These gate types are used because:
• the number of transistors needed is fewer than

required by connecting together primitive gates
• potentially, the circuit delay is smaller, increasing

the circuit operating speed

Chapter 2 - Part 3 28

Terms of Use
All (or portions) of this material © 2008 by Pearson
Education, Inc.
Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals
as the course textbook.
These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.
This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

