
1

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Chapter 3 – Combinational
Logic Design

Part 1 – Implementation Technology and Logic
Design

Logic and Computer Design Fundamentals

Chapter 3 - Part 1 2

Overview

Part 1 – Design Procedure
• Steps

Specification
Formulation
Optimization
Technology Mapping

• Beginning Hierarchical Design
• Technology Mapping - AND, OR, and NOT to NAND

or NOR
• Verification

Manual
Simulation

2

Chapter 3 - Part 1 3

Overview (continued)

Part 2 – Combinational Logic
• Functions and functional blocks
• Rudimentary logic functions
• Decoding using Decoders

Implementing Combinational Functions with
Decoders

• Encoding using Encoders
• Selecting using Multiplexers

Implementing Combinational Functions with
Multiplexers

Chapter 3 - Part 1 4

Combinational Circuits

A combinational logic circuit has:
• A set of m Boolean inputs,
• A set of n Boolean outputs, and
• n switching functions, each mapping the 2m input

combinations to an output such that the current output
depends only on the current input values

A block diagram:

m Boolean Inputs n Boolean Outputs

Combinatorial
Logic
Circuit

3

Chapter 3 - Part 1 5

Design Procedure

1. Specification
• Write a specification for the circuit if one is not

already available
2. Formulation

• Derive a truth table or initial Boolean equations
that define the required relationships between the
inputs and outputs, if not in the specification

• Apply hierarchical design if appropriate
3. Optimization

• Apply 2-level and multiple-level optimization
• Draw a logic diagram or provide a netlist for the

resulting circuit using ANDs, ORs, and inverters

Chapter 3 - Part 1 6

Design Procedure

4. Technology Mapping
• Map the logic diagram or netlist to the

implementation technology selected
5. Verification

• Verify the correctness of the final design
manually or using simulation

4

Chapter 3 - Part 1 7

Design Example

1. Specification
• BCD to Excess-3 code converter
• Transforms BCD code for the decimal digits to

Excess-3 code for the decimal digits
• BCD code words for digits 0 through 9: 4-bit

patterns 0000 to 1001, respectively
• Excess-3 code words for digits 0 through 9: 4-

bit patterns consisting of 3 (binary 0011) added
to each BCD code word

• Implementation:
multiple-level circuit
NAND gates (including inverters)

Chapter 3 - Part 1 8

Design Example (continued)

2. Formulation
• Conversion of 4-bit codes can be most easily

formulated by a truth table
• Variables

- BCD:
A,B,C,D

• Variables
- Excess-3
W,X,Y,Z

• Don’t Cares
- BCD 1010

to 1111

Input BCD
A B C D

Output Excess-3
WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 1

5

Chapter 3 - Part 1 9

Design Example (continued)

3. Optimization
a. 2-level using

K-maps
W = A + BC + BD
X = C + D + B
Y = CD +
Z =

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1

11

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

1

X X X

X X

X

1

B

C

D

A

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

1 1

1

X X X

X X

X

1

1

w

z y

x

B CDB
CD

D

Chapter 3 - Part 1 10

Design Example (continued)

3. Optimization (continued)
b. Multiple-level using transformations

W = A + BC + BD
X = C + D + B
Y = CD +
Z = G = 7 + 10 + 6 + 0 = 23

• Perform extraction, finding factor:
T1 = C + D
W = A + BT1
X = T1 + B
Y = CD +
Z = G = 2 + 1 + 4 + 7 + 6 + 0 = 19

B CDB
CD

D

B CD
CD

D

6

Chapter 3 - Part 1 11

Design Example (continued)

3. Optimization (continued)
b. Multiple-level using transformations

T1 = C + D
W = A + BT1
X = T1 + B
Y = CD +
Z = G = 19

• An additional extraction not shown in the text since it
uses a Boolean transformation: (= C + D =):
W = A + BT1
X = T1 + B
Y = CD +
Z = G = 2 +1 + 4 + 6 + 4 + 0 = 16!

B CD
CD

D

B T1

D
T1

CD T1

Chapter 3 - Part 1 12

Design Example (continued)
4. Technology Mapping

• Mapping with a library containing inverters and 2-input
NAND, 2-input NOR, and 2-2 AOI gates

A

B

C

D

W

X

Y

Z

A

B

C
D

W

X

Y

Z

7

Chapter 3 - Part 1 13

Beginning Hierarchical Design
To control the complexity of the function mapping inputs to
outputs:
• Decompose the function into smaller pieces called blocks
• Decompose each block’s function into smaller blocks, repeating as

necessary until all blocks are small enough
• Any block not decomposed is called a primitive block
• The collection of all blocks including the decomposed ones is a

hierarchy

Example: 9-input parity tree (see next slide)
• Top Level: 9 inputs, one output
• 2nd Level: Four 3-bit odd parity trees in two levels
• 3rd Level: Two 2-bit exclusive-OR functions
• Primitives: Four 2-input NAND gates
• Design requires 4 X 2 X 4 = 32 2-input NAND gates

Chapter 3 - Part 1 14

Hierarchy for Parity Tree Example

BO

X0
X1
X2
X3
X4
X5
X6
X7
X8

ZO

9-Input
odd

function

(a) Symbol for circuit

3-Input
odd

function

A0

A1

A2

BO

3-Input
odd

function

A0

A1

A2

BO

3-Input
odd

function

A0

A1

A2

BO

3-Input
odd

function

A0

A1

A2

X0

X1

X2

X3

X4

X5

X6

X7

X8

ZO

(b) Circuit as interconnected 3-input odd
function blocks

BO

A0

A1

A2

(c) 3-input odd function circuit as
interconnected exclusive-OR
blocks

(d) Exclusive-OR block as interconnected
NANDs

8

Chapter 3 - Part 1 15

Reusable Functions

Whenever possible, we try to decompose
a complex design into common, reusable
function blocks
These blocks are
• verified and well-documented
• placed in libraries for future use

Chapter 3 - Part 1 16

Top-Down versus Bottom-Up

A top-down design proceeds from an abstract, high-
level specification to a more and more detailed design
by decomposition and successive refinement
A bottom-up design starts with detailed primitive blocks
and combines them into larger and more complex
functional blocks
Design usually proceeds top-down to known building
blocks ranging from complete CPUs to primitive logic
gates or electronic components.
Much of the material in this chapter is devoted to
learning about combinational blocks used in top-down
design.

9

Chapter 3 - Part 1 17

Technology Mapping

Mapping Procedures
• To NAND gates
• To NOR gates
• Mapping to multiple types of logic blocks in

covered in the reading supplement:
Advanced Technology Mapping.

Chapter 3 - Part 1 18

Mapping to NAND gates

Assumptions:
• Gate loading and delay are ignored
• Cell library contains an inverter and n-input NAND

gates, n = 2, 3, …
• An AND, OR, inverter schematic for the circuit is

available

The mapping is accomplished by:
• Replacing AND and OR symbols,
• Pushing inverters through circuit fan-out points,

and
• Canceling inverter pairs

10

Chapter 3 - Part 1 19

NAND Mapping Algorithm
1. Replace ANDs and ORs:

2. Repeat the following pair of actions until there
is at most one inverter between :

a. A circuit input or driving NAND gate output, and
b. The attached NAND gate inputs.

...
...

...
...

...
...

Chapter 3 - Part 1 20

NAND Mapping Example
A

B

C

D

F

E

(a)

A
B

C
7

5

1

6

2

4

9

X

Y

38D
E

F

(b)

A
B

C

D

E

F

(d)

X

5

5

7

6
Y

(c)

OI

11

Chapter 3 - Part 1 21

Mapping to NOR gates

Assumptions:
• Gate loading and delay are ignored
• Cell library contains an inverter and n-input NOR

gates, n = 2, 3, …
• An AND, OR, inverter schematic for the circuit is

available

The mapping is accomplished by:
• Replacing AND and OR symbols,
• Pushing inverters through circuit fan-out points,

and
• Canceling inverter pairs

Chapter 3 - Part 1 22

NOR Mapping Algorithm
1. Replace ANDs and ORs:

2. Repeat the following pair of actions until there
is at most one inverter between :

a. A circuit input or driving NAND gate output, and
b. The attached NAND gate inputs.

...
...

...

...
...

...

12

Chapter 3 - Part 1 23

NOR Mapping Example

A

B

C

D
E

F

(c)

F

A

B

X

C

D
E

(b)

A
B

C

D
E

F

(a)

2

3

1

Chapter 3 - Part 1 24

Verification - show that the final circuit
designed implements the original specification
Simple specifications are:
• truth tables
• Boolean equations
• HDL code

If the above result from formulation and are
not the original specification, it is critical that
the formulation process be flawless for the
verification to be valid!

Verification

13

Chapter 3 - Part 1 25

Basic Verification Methods

Manual Logic Analysis
• Find the truth table or Boolean equations for the final circuit
• Compare the final circuit truth table with the specified truth

table, or
• Show that the Boolean equations for the final circuit are equal

to the specified Boolean equations

Simulation
• Simulate the final circuit (or its netlist, possibly written as an

HDL) and the specified truth table, equations, or HDL
description using test input values that fully validate
correctness.

• The obvious test for a combinational circuit is application of all
possible “care” input combinations from the specification

Chapter 3 - Part 1 26

Verification Example: Manual Analysis

BCD-to-Excess 3 Code Converter
• Find the SOP Boolean equations from the final

circuit.
• Find the truth table from these equations
• Compare to the formulation truth table

Finding the Boolean Equations:
T1 = C + D = C + D
W = A (T1 B) = A + B T1

X = (T1 B) (B) = T1 + B
Y = C + D = CD + D

C D
C

B C D
CD

14

Chapter 3 - Part 1 27

Input BCD
A B C D

Output Excess-3
WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 1

Verification Example: Manual Analysis
Find the circuit truth table from the equations and compare
to specification truth table:

The tables match!

Input BCD
A B C D

Output Excess-3
WXYZ

0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 1

Chapter 3 - Part 1 28

Verification Example: Simulation

Simulation procedure:
• Use a schematic editor or text editor to enter

a gate level representation of the final circuit
• Use a waveform editor or text editor to enter

a test consisting of a sequence of input
combinations to be applied to the circuit

This test should guarantee the correctness of the
circuit if the simulated responses to it are correct
Short of applying all possible “care” input
combinations, generation of such a test can be
difficult

15

Chapter 3 - Part 1 29

Verification Example: Simulation

Enter BCD-to-Excess-3 Code Converter Circuit Schematic

NAND2

NAND2

INV

NOR2
INV

NAND2

INV

NAND2

AND2

AND2

NAND3
INV

INV

NOR2

W

B

A

C

D

X

AOI

Y

Z

AOI symbol
not available

Chapter 3 - Part 1 30

Verification Example: Simulation

Enter waveform that applies all possible input combinations:

Are all BCD input combinations present? (Low is a 0 and high
is a one)

0 50 ns 100 ns

INPUTS

A

B

C

D

16

Chapter 3 - Part 1 31

Verification Example: Simulation

Run the simulation of the circuit for 120 ns

Do the simulation output combinations match the original
truth table?

0 50 ns 100 ns

 INPUTS

A

B

C

D

OUTPUTS

W

X

Y

Z

Chapter 3 - Part 1 32

Terms of Use
All (or portions) of this material © 2008 by Pearson
Education, Inc.
Permission is given to incorporate this material or
adaptations thereof into classroom presentations and
handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals
as the course textbook.
These materials or adaptations thereof are not to be
sold or otherwise offered for consideration.
This Terms of Use slide or page is to be included within
the original materials or any adaptations thereof.

