
Chapter 2. Chapter 2.
Combinational Logic CircuitsCombinational Logic Circuits

Apr., 2008

2CopyRight ® 2007 by hwany., All right reserved.

6. Pragmatic 2-Level Optimization

7. Multi-level Circuit Optimization

4. 2-level Circuit Optimization

5. Map Manipulation

3CopyRight ® 2007 by hwany., All right reserved.

Logic Minimization
Reduces complexity of the gate level implementation

Reduce number of literals (gate inputs)
Reduce number of gates
Reduce number of levels of gates

Two-Level Logic Minimization
1. Apply the laws and theorems to simplify Boolean equations
2. Karnaugh Map (K-Map) Method
3. Quine-McCluskey Method

Tabular method to systematically find all prime implicants
컴퓨터논리회로(이상범저), “테이블 방법의 간소화” 참조 (127페이지)

4. CAD Tools for Simplification
Petrick’s Method
Espresso Method
…

4CopyRight ® 2007 by hwany., All right reserved.

Practical Optimization

Problem: Automated optimization algorithms:
require minterms as starting point,
require determination of all prime implicants, and/or
require a selection process with a potentially very large number of
candidate solutions to be found.

Solution: Suboptimum algorithms not requiring any of the
above in the general case

5CopyRight ® 2007 by hwany., All right reserved.

XX XX 11 11

Example Algorithm: Espresso

Illustration on a K-map:

11 1

B

D

A

C

1

1

1 1

1 1

1

Original F & EXPAND

B

D

A

C

1

1 1

1 1

1

ESSENTIAL & IRREDUNDANT COVER

6CopyRight ® 2007 by hwany., All right reserved.

XX XX

Example Algorithm: Espresso

Continued:

B

D

A

C

REDUCE

B

D

A

C

1

1 1

1 1

1

XX XX

1

1 1

1 1

1

EXPAND

7CopyRight ® 2007 by hwany., All right reserved.

Example Algorithm: Espresso

Continued:

B

D

A

C

XX XX

1

1 1

1 1

1

IRREDUNDANT COVER

B

D

A

C

1

1 1

1 1

1

After REDUCE, EXPAND,
IRREDUNDANT COVER,

LAST GASP, QUIT

11 11

8CopyRight ® 2007 by hwany., All right reserved.

This solution costs 2 + 2 + 3 + 3 + 4 = 14
Finding the optimum solution and comparing:

There are two optimum solutions one of which is the one obtained by Espresso.

Example Algorithm: Espresso

Minterms covered by essential prime implicants

11 1

B

D

A

C

1

1

1 1

1 1

1

Essential

Selected

9CopyRight ® 2007 by hwany., All right reserved.

Espresso;
Two-Level Logic Minimization Tool made by the CAD group at UC Berkeley

Takes as input a two-level representation of a two-valued Boolean function
Produces a minimal equivalent representation
With options, user can specify exact optimization algorithm

Input Format
Command line should start with dot(.)
.i # input
.o # output
.ilb input_node0, {input_node1, …, }
.ob output_node0, {output_node1, … , }
.p number of non-zero truth table entry
.e end of input

10CopyRight ® 2007 by hwany., All right reserved.

Input logic is given as follows : [input_value] [output_value]
e.g. 0001 [1개이상의공백] 1

4개의입력변수가 0001로주어지면출력은 1(logic-high)로나타난다

Example of Input,
.i 4 : number of input variables = 4
.o 1 : number of output variables = 1
.ilb a b c d : input variable names e.g. a b c d
.ob f : output function name e.g. f
.p 4 : number of non-zero truth table entry
0110 1
0101 1
1010 1
1110 - : Don’t care condition
.e : end of input

11CopyRight ® 2007 by hwany., All right reserved.

실행예 Interpret the output
.p 2; indicates that there are two terms in
the output expression
100- 1; this term is AB’C’ (Note, B’ is B
inverse), so this is read as A and not B and
not C.
011- 1; this term is A’BC

The logic expression is thus
F = AB’C’ + A’BC.

In the output lines, 1 is the variable, o is
the inverse and – means the variable is
not involved.
Tip; specifying the truth table entries only
where the functions 1 is sufficient to define
the entire truth table.

12CopyRight ® 2007 by hwany., All right reserved.

Example of ESPRESSO Input/Output

.i 4

.o 1

.ilb a b c d

.ob f

.p 10
0100 1
0101 1
0110 1
1000 1
1001 1
1010 1
1101 1
0000 -
0111 -
1111 -
.e

-- # inputs
-- # outputs
-- input names
-- output name
-- number of product terms
-- A'BC'D'
-- A'BC'D
-- A'BCD'
-- AB'C'D'
-- AB'C'D
-- AB'CD'
-- ABC'D
-- A'B'C'D' don't care
-- A'BCD don't care
-- ABCD don't care
-- end of list

ƒ(A,B,C,D) = �m(4,5,6,8,9,10,13) + d(0,7,15)

Espresso Input Espresso Output

.i 4

.o 1

.ilb a b c d

.ob f

.p 3
1-01 1
10-0 1
01-- 1
.e

ƒ = AC'D + AB'D' + A'B

13CopyRight ® 2007 by hwany., All right reserved.

7. Multiple-Level
Circuit Optimization

4. 2-level Circuit Optimization

5. Map Manipulation

6. Pragmatic Two-Level Optimization

14CopyRight ® 2007 by hwany., All right reserved.

Multiple-Level Circuit Optimization

Although we have found that 2-level circuit optimization can reduce the cost of
combinational logic circuits, often additional cost savings are available by using
circuits with more than two levels.

Page 94~05, Figure 2-20 에서 (a), (b), (c) 와 (d) 의 gate input cost 는?

G = ABC + ABD + E + ACF + ADF

15CopyRight ® 2007 by hwany., All right reserved.

Multiple-Level Circuit Optimization

Multiple-level circuits are defined as circuits that are not two-level
(with or without input and/or output inverters)
Multiple-level circuits can have reduced gate input cost compared to
two-level (SOP and POS) circuits
Multiple-level optimization is performed by applying transformations to
circuits represented by equations while evaluating cost

16CopyRight ® 2007 by hwany., All right reserved.

Transformations

1. Factoring(인수분해) - finding a factored form (인수분해된형태) from SOP or
POS expression

Algebraic - No use of axioms specific to Boolean algebra such as complements
or idempotence
Boolean - Uses axioms unique to Boolean algebra

2. Decomposition(분해) - expression of a function as a set of new functions
3. Substitution(대체) of G into F - expression function F as a function of G and

some or all of its original variables
4. Elimination(제거) - Inverse of substitution
5. Extraction(추출) – expression of multiple function as a set of new functions

- decomposition applied to multiple functions simultaneously

17CopyRight ® 2007 by hwany., All right reserved.

Transformation Examples (1)

(1) Algebraic Factoring
F = ACD + ABC + ABC + ACD G=16

Factoring:

F = A (CD + BC) + A (BC + CD) G=16

Factoring again:

F = AC (B + D) + AC (B + D) G=12

Factoring again:

F = (AC + AC)(B + D) G=10

18CopyRight ® 2007 by hwany., All right reserved.

Transformation Examples (2)

(2) Decomposition
The terms (B + D) and (AC + AC) can be defined as new functions E and H
respectively, decomposing F:

F = E H, where E = B + D, and H = AC + AC G=10

This series of transformations has reduced G from 16 to 10, a substantial
savings. The resulting circuit has three levels plus input inverters.

19CopyRight ® 2007 by hwany., All right reserved.

Transformation Examples (3)

(3) Substitution of E into F
Returning to F just before the final factoring step:

F = AC(B + D) + AC(B + D) G=12
Defining E = B + D, and substituting in F :

F = ACE + ACE G=10

This substitution has resulted in the same cost as the decomposition

20CopyRight ® 2007 by hwany., All right reserved.

Transformation Examples (4)

(4) Elimination
Beginning with a new set of functions:

X = B + C
Y = A + B
Z = AX + CY G=10

Eliminating X and Y from Z:
Z = A(B + C) + C(A + B) G=10

“Flattening (평탄화)” (Converting to SOP expression):
Z = AB + AC + AC + BC G=12

This has increased the cost, but has provided an new SOP expression
for two-level optimization.

21CopyRight ® 2007 by hwany., All right reserved.

Transformation Examples (4)

Two-level Optimization
The result of 2-level optimization (using K-Map) is:

Z = AB + C G=4

This example illustrates that:
Optimization can begin with any set of equations, not just with
minterms or a truth table
Increasing gate input count G temporarily during a series of
transformations can result in a final solution with a smaller G

22CopyRight ® 2007 by hwany., All right reserved.

Transformation Examples (5)

(5) Extraction
Beginning with two functions:

E = ABD + ABD
H = BCD + BCD G=16

Finding a common factor and defining it as a function:
F = BD + BD

We perform extraction by expressing E and H as the three functions:
F = BD + BD, E = AF, H = CF G=10

The reduced cost G results from the sharing of logic between the two
output functions

23CopyRight ® 2007 by hwany., All right reserved.

Transformation example on text book
Page 96~97, Example 2-16

G = ACD + ACF + ADE + ADF + BCDEF

H = ABCD + ABE + ABF + BCD + BCF

1. Algebraic Factoring (P.96)

2. Decomposition (P.96)

3. Substitution (P.96~97)

4. Extraction (P.97)

24CopyRight ® 2007 by hwany., All right reserved.

Terms of Use

All (or portions) of this material © 2008 by Pearson Education, Inc.
Permission is given to incorporate this material or adaptations thereof into
classroom presentations and handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals as the course textbook.
These materials or adaptations thereof are not to be sold or otherwise offered for
consideration.
This Terms of Use slide or page is to be included within the original materials or
any adaptations thereof.

25CopyRight ® 2007 by hwany., All right reserved.

8. Other Gate Types

9. Exclusive-OR Operator and Gates

10. High-Impedance Outputs

26CopyRight ® 2007 by hwany., All right reserved.

Overview

Part 1 – Gate Circuits and Boolean Equations
Binary Logic and Gates
Boolean Algebra
Standard Forms

Part 2 – Circuit Optimization
Two-Level Optimization
Map Manipulation
Practical Optimization (Espresso)
Multi-Level Circuit Optimization

Part 3 – Additional Gates and Circuits
Other Gate Types
Exclusive-OR Operator and Gates
High-Impedance Outputs

27CopyRight ® 2007 by hwany., All right reserved.

Other Gate Types

Why?
Implementation feasibility and low cost
Power in implementing Boolean functions
Convenient conceptual representation

Gate classifications
Primitive (단순) gate - a gate that can be described using a single primitive
operation type (AND or OR) plus an optional inversion(s).
Complex (복합) gate - a gate that requires more than one primitive operation
type for its description

Primitive gates will be covered first

28CopyRight ® 2007 by hwany., All right reserved.

Primitive Gate (Fig
2-22, Page 101)

29CopyRight ® 2007 by hwany., All right reserved.

Buffer

A buffer is a gate with the function F = X:

In terms of Boolean function, a buffer is the same as a connection!
So why use it?

A buffer is an electronic amplifier used to (1) improve circuit voltage levels
and (2) increase the speed of circuit operation.

X F

30CopyRight ® 2007 by hwany., All right reserved.

NAND Gate

The basic NAND gate has the following symbol, illustrated for three
inputs:

AND-Invert (NAND)

NAND represents NOT AND, i. e., the AND function with a NOT
applied. The symbol shown is an AND-Invert. The small circle
(“bubble”) represents the invert function.

X
Y
Z

F(X,Y,Z) = X×Y×Z

31CopyRight ® 2007 by hwany., All right reserved.

NAND Gates (continued)

Applying DeMorgan's Law gives Invert-OR (NAND)

This NAND symbol is called Invert-OR, since inputs are inverted and
then ORed together.
AND-Invert and Invert-OR both represent the NAND gate. Having both
makes visualization of circuit function easier.

A NAND gate with one input degenerates to an inverter.

X
Y
Z

ZYX)Z,Y,X(F ++=

32CopyRight ® 2007 by hwany., All right reserved.

NAND Gates (continued)

The NAND gate is the natural implementation for CMOS technology in
terms of chip area and speed.

NAND gates are basic logic gates, and as such they are recognized in TTL
and CMOS ICs. The standard, 4000 series, CMOS IC is the 4011, which
includes four independent, two-input, NAND gates.
The schematic diagram shows the arrangement of NAND gates within a
standard 4011 CMOS integrated circuit

33CopyRight ® 2007 by hwany., All right reserved.

NAND Gates (continued)

Universal gate - a gate type that can implement any Boolean function.
The NAND gate is a universal gate as shown in Figure 2-24 of the text.

NAND usually does not have a operation symbol defined since
the NAND operation is not associative, and
we have difficulty dealing with non-associative mathematics!

34CopyRight ® 2007 by hwany., All right reserved.

NOR Gate

The basic NOR gate has the following symbol, illustrated for three
inputs:

OR-Invert (NOR)

NOR represents NOT OR, i. e., the OR function with a NOT applied.
The symbol shown is an OR-Invert. The small circle (“bubble”)
represents the invert function.

X
Y
Z

ZYX)Z,Y,X(F ++=

35CopyRight ® 2007 by hwany., All right reserved.

NOR Gate (continued)

Applying DeMorgan's Law gives Invert-AND (NOR)

This NOR symbol is called Invert-AND, since inputs are inverted and
then ANDed together.
OR-Invert and Invert-AND both represent the NOR gate. Having both
makes visualization of circuit function easier.
A NOR gate with one input degenerates to an inverter.

X
Y
Z

36CopyRight ® 2007 by hwany., All right reserved.

NOR Gate (continued)

The NOR gate is a natural implementation for some
technologies other than CMOS in terms of chip area
and speed.

NOR Gates are basic logic gates, and as such they are
recognized in TTL and CMOS ICs. The standard, 4000
series, CMOS IC is the 4001, which includes four
independent, two-input, NOR gates.
Diagram of a 4001 Quad NOT DIL (Dual-In-Line)
format IC

The NOR gate is a universal gate
NOR usually does not have a defined operation symbol
since

the NOR operation is not associative, and
we have difficulty dealing with non-associative
mathematics!

37CopyRight ® 2007 by hwany., All right reserved.

More Complex Gates

The remaining complex gates are SOP or POS structures with and without
an output inverter.
The names are derived using:

A - AND
O - OR
I - Inverter
Numbers of inputs on first-level “gates” or directly to second-level
“gates”

38CopyRight ® 2007 by hwany., All right reserved.

More Complex Gates (continued)

Example: AOI - AND-OR-Invert consists of a single gate with AND
functions driving an OR function which is inverted.

Example: 2-2-1 AO has two 2-input ANDS driving an OR with one
additional OR input.

These gate types are used because:
the number of transistors needed is fewer than required by connecting
together primitive gates
potentially, the circuit delay is smaller, increasing the circuit operating speed

39CopyRight ® 2007 by hwany., All right reserved.

9. Exclusive OR Operator
and Gates

10. High-Impedance Outputs

8. Other Gate Types

40CopyRight ® 2007 by hwany., All right reserved.

Exclusive OR/ Exclusive NOR

The eXclusive OR (XOR) function is an important Boolean function used
extensively in logic circuits.
The XOR function may be;

implemented directly as an electronic circuit (truly a gate) or
implemented by interconnecting other gate types (used as a convenient
representation)

The eXclusive NOR function is the complement of the XOR function
By our definition, XOR and XNOR gates are complex gates.

41CopyRight ® 2007 by hwany., All right reserved.

Exclusive OR/ Exclusive NOR

Uses for the XOR and XNORs gate include:
Adders / subtractors / multipliers
Counters / incrementers / decrementers
Parity generators/checkers

Definitions
The XOR function is:
The eXclusive NOR (XNOR) function, otherwise
known as equivalence is:

Strictly speaking, XOR and XNOR gates do no exist for more that two
inputs. Instead, they are replaced by odd and even functions.

YXYXYX +=⊕

YXYXYX +=⊕

42CopyRight ® 2007 by hwany., All right reserved.

Truth Tables for XOR/XNOR

Operator Rules: XOR XNOR

The XOR function means:
X OR Y, but NOT BOTH

Why is the XNOR function also known as the equivalence function,
denoted by the operator ≡?

X Y X⊕Y

0 0 0
0 1 1
1 0 1
1 1 0

X Y

0 0 1
0 1 0
1 0 0
1 1 1

or X ≡Y
(X⊕Y)

43CopyRight ® 2007 by hwany., All right reserved.

Symbols For XOR and XNOR

XOR symbol:

XNOR symbol:

Shaped symbols exist only for two inputs

44CopyRight ® 2007 by hwany., All right reserved.

XOR Implementations

Two-input XOR function may be constructed with conventional gate.
Two NOT gates, two AND gates and an OR gate are used
The simple SOP implementation uses the following structure:

A NAND only implementation is:

X Y

X

Y

X

Y

X Y

45CopyRight ® 2007 by hwany., All right reserved.

XOR/XNOR (Continued)

The XOR function can be extended to 3 or more variables. For more than 2
variables, it is called an odd function or modulo 2 sum (Mod 2 sum), not an
XOR:

X Y Z = (X Y) Z + (X Y) Z
= (XY + XY) Z + (XY + XY) Z
= XYZ + XYZ + XYZ + XYZ
= XYZ + XYZ + XYZ + XYZ

The complement of the odd function is the even function.
The XOR identities:

X 0 = X X 1 = X
X X = 0 X X = 1
X Y = X Y X Y = X Y

+ + + +

+ +

+ +

+ ++ +

46CopyRight ® 2007 by hwany., All right reserved.

X Y Z = XYZ + XYZ + XYZ + XYZ

Three exclusive OR is equal to 1, if only one variable is equal to 1 or if all
three variables are equal to 1

The multiple-variable exclusive OR operation is defined as the odd
function.

+ +

47CopyRight ® 2007 by hwany., All right reserved.

Odd and Even Functions

The odd and even functions on a K-map form “checkerboard” patterns.
The 1s of an odd function correspond to minterms having an index with
an odd number of 1s.
The 1s of an even function correspond to minterms having an index with
an even number of 1s.
Implementation of odd and even functions for greater than four variables
as a two-level circuit is difficult, so we use “trees” made up of :

2-input XOR or XNORs
3- or 4-input odd or even functions

48CopyRight ® 2007 by hwany., All right reserved.

In mathematics, even functions and odd functions are functions which
satisfy particular symmetry relations, with respect to taking additive
inverses. They are important in many areas of mathematical analysis,
especially the theory of power series and Fourier series

Let f(x) be a real-valued function of a real variable. Then f is even if the
following equation holds for all x in the domain of f: f(x) = f(-x)
Geometrically, an even function is symmetric with respect to the y-axis,
meaning that its graph remains unchanged after reflection about the y-axis.
Examples of even functions are |x|, x2, x4, cos(x), and cosh(x).

A checkerboard (or chequerboard) is a board on which American checkers
is played. It is an 8×8 board and the 64 squares are of alternating dark and
light color, often red and black.

49CopyRight ® 2007 by hwany., All right reserved.

Example: Odd Function Implementation

Design a 3-input odd function F = X Y Z
with 2-input XOR gates
Factoring, F = (X Y) Z
The circuit:

+ +

+ +

X
Y

Z
F

50CopyRight ® 2007 by hwany., All right reserved.

Example: Even Function Implementation

Design a 4-input odd function F = W X Y Z
with 2-input XOR and XNOR gates
Factoring, F = (W X) (Y Z)
The circuit:

+ + +

+ + +

W
X

Y
F

Z

51CopyRight ® 2007 by hwany., All right reserved.

Parity Generators and Checkers

In Chapter 1, a parity bit added to n-bit code to produce an n + 1 bit code:
Add odd parity bit to generate code words with even parity
Add even parity bit to generate code words with odd parity
Use odd parity circuit to check code words with even parity
Use even parity circuit to check code words with odd parity

Example: n = 3. Generate even
parity code words of length four
with odd parity generator:
Check even parity code words of
length four with odd parity checker:
Operation: (X,Y,Z) = (0,0,1) gives
(X,Y,Z,P) = (0,0,1,1) and E = 0.
If Y changes from 0 to 1 between
generator and checker,
then E = 1 indicates an error.

X
Y
Z P

X
Y

Z
E

P

52CopyRight ® 2007 by hwany., All right reserved.

10. High-Impedance Outputs

8. Other Gate Types

9. Exclusive OR Operator and Gates

53CopyRight ® 2007 by hwany., All right reserved.

In electronics, high impedance (also known as hi-Z, tri-stated, or floating) is
the state of an output terminal which is not currently driven by the circuit.
In digital circuits, it means that the signal is neither driven to a logical high
nor to a logical low level - hence "tri-stated". Such a signal can be seen as
an open circuit (or "floating" wire) because connecting it to a (low
impedance) circuit will not affect that circuit; it will instead itself be pulled
to the same voltage as the actively driven output. The combined
input/output pins found on many ICs are actually tri-state capable outputs
which have been internally connected to inputs. This is the basis for bus-
systems in computers, among many other uses.

54CopyRight ® 2007 by hwany., All right reserved.

In digital electronics, three-state, tri-state, or 3-state logic allows output
ports to have a value of 0, 1, or Z. A Z output stands for the output port
being disconnected from the rest of the circuit, putting the output in a high
impedance state. The intent of this state is to allow multiple circuits to share
the same output line or bus without affecting each other.
Three-state outputs are implemented in various families of digital integrated
circuits such as the 7400 series of TTL gates, and often in the data and
address bus lines of microprocessors.

Uses of three-state logic
Three-state buffers can be used to implement efficient multiplexers,
especially those with large numbers of inputs.

55CopyRight ® 2007 by hwany., All right reserved.

High-Impedance Outputs

Logic gates introduced thus far
have 1 and 0 output values,
cannot have their outputs connected together, and
transmit signals on connections in only one direction.

Three-state logic adds a third logic value, Hi-Impedance(Hi-Z), giving
three states: 0, 1, and Hi-Z on the outputs.
The presence of a Hi-Z state makes a gate output as described above
behave quite differently:

“1 and 0” become “1, 0, and Hi-Z”
“cannot” becomes “can,”
and “only one” becomes “two”

56CopyRight ® 2007 by hwany., All right reserved.

What is a Hi-Z value?
The Hi-Z value behaves as an open circuit
This means that, looking back into the circuit, the output appears to be
disconnected.
It is as if a switch between the internal circuitry and the output has been
opened.

Hi-Z may appear on the output of any gate, but we restrict gates to:
a 3-state buffer, or
Optional: a transmission gate (See Reading Supplement: More on CMOS
Circuit-Level Design),

each of which has one data input and one control input.

57CopyRight ® 2007 by hwany., All right reserved.

The 3-State Buffer

For the symbol and truth table, IN is the data
input, and EN, the control input.

For EN = 0, regardless of the value on IN
(denoted by X), the output value is Hi-Z.
For EN = 1, the output value follows the input
value.

Variations:
Data input, IN, can be inverted
Control input, EN, can be inverted

by addition of “bubbles” to signals.

IN

EN

OUT

EN IN OUT

0 X Hi-Z

1 0 0

1 1 1

Symbol

Truth Table

58CopyRight ® 2007 by hwany., All right reserved.

Resolving 3-State Values on a Connection

Connection of two 3-state buffer outputs, B1 and
B0, to a wire, OUT
Assumption: Buffer data inputs can take on any
combination of values 0 and 1
Resulting Rule: At least one buffer output value
must be Hi-Z. Why?
How many valid buffer output combinations
exist?
What is the rule for n 3-state buffers connected
to wire, OUT?
How many valid buffer output combinations
exist?

Resolution Table

Hi-ZHi-ZHi-Z

11Hi-Z

00Hi-Z

1Hi-Z1

0Hi-Z0

OUTB0B1

59CopyRight ® 2007 by hwany., All right reserved.

3-State Logic Circuit

Data Selection Function: If s = 0, OL = IN0, else OL = IN1
Performing data selection with 3-state buffers:

Since EN0 = S and EN1 = S, one of the two buffer outputs is always Hi-Z
plus the last row of the table never occurs.

IN0

IN1

EN0

EN1

S
OL

0

0

0

1

1

EN1

1X11

XXX0

0X01

11X0

00X0

OLIN1IN0EN0

60CopyRight ® 2007 by hwany., All right reserved.

Terms of Use

All (or portions) of this material © 2008 by Pearson Education, Inc.
Permission is given to incorporate this material or adaptations thereof into
classroom presentations and handouts to instructors in courses adopting the latest
edition of Logic and Computer Design Fundamentals as the course textbook.
These materials or adaptations thereof are not to be sold or otherwise offered for
consideration.
This Terms of Use slide or page is to be included within the original materials or
any adaptations thereof.

