
Noise Reduction in a Statistical Approach to Text Categorization

Yiming Yang
Section of Medical Information Resources

Mayo Clinic/Foundation
Rochester, Minnesota 55905 USA

���������	��
��
This paper studies noise reduction for computational efficiency im-
provements in a statistical learning method for text categorization,
the Linear Least Squares Fit (LLSF) mapping. Multiple noise re-
duction strategies are proposedand evaluated, including: an aggres-
sive removal of “non-informative words” from texts before train-
ing; the use of a truncated singular value decomposition to cut off
noisy “latent semantic structures” during training; the elimination of
non-influential components in the LLSF solution (a word-concept
association matrix) after training. Text collections in different do-
mains were used for evaluation. Significant improvements in com-
putational efficiency without losing categorization accuracy were
evident in the testing results.
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The task of text categorization is to assign predefined categories to
texts. It has wide application since a controlled vocabulary (subject
categories) is often used to index real-world databases for retrieval
purposes. While text categorization is highly related to text re-
trieval, and many techniques developed for the latter are applicable
to the former, there is a particular problem which is more serious
in categorization than in retrieval. That is, the vocabulary gap be-
tween free texts and the controlled indexing language of a particular
database is usually large. Consequently, search methods based on
shared words between free text and category names typically ex-
hibit poor performance [1] [2] [3]. The importance of using human
knowledge to solve the vocabulary gap problem has been recog-
nized, and statistical learning of text-to-categories mapping based
on human assignments has been a major focus in recent research
in text categorization [3] [4] [5] [6] [7]. The LLSF mapping is
a successful learner relying on past human relevance judgments,
and can be used for both text retrieval [2] and text categorization.
Significant improvements of LLSF mapping have been observed in
previous evaluations, compared to alternatives such as word-based
matching methods which do not use any human knowledge, and
thesaurus-based methods which are heavily dependent on manually
coded human knowledge [3].

LLSF uses a corpus of manually categorized texts for training.
The training data are represented using two matrices, � and � ,

where � is a text-word matrix and � is a text-category matrix. An
element of matrix � is the weight of a word in a corresponding
text, and an element of matrix � is the weight of a category in a
corresponding text. The LLSF problem is defined as to find a matrix�

which minimizes the squared error of � ��� � . More precisely,
the problem is to find a matrix

�
which minimizes the Frobenius

norm of the residual matrix  "!#� �$� � where  is %'&)( , and
the Frobenius matrix norm is
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(see [3] for a more detailed presentation of LLSF). The intuitive
interpretation is to find

�
which minimizes the squared error in

the mapping from training texts to their categories. The solution�
is a word-category association matrix whose elements are the

weights of these associations. It is used to transform an arbitrary
text represented using a word vector, 78 , to a category vector, 79 , by
computing 78 & � ! 79 . The elements of vector 79 are interpreted
as the relevance scores of categories with respect to the text. By
sorting these scores, a ranked list of categories is obtained, which
is the output of the LLSF mapping.

A practical and crucial question about LLSF is the computa-
tional complexity when applying LLSF to very large text collec-
tions. A conventional method for solving a LLSF problem employs
a singular value decomposition (SVD) [8] of the input matrix � (the
text-word matrix) as a part of the computation. The standard SVD
algorithm, as implemented in LINPACK [9], has a time complexity:<;>= 2 %@? , where

=
is the number of texts in the training corpus and% is the number of distinct words in these texts (assuming

=$A % ).
If
=

and % are large, this cubic complexity can become a compu-
tational bottleneck. Alternate algorithms were developed for very
large and sparse matrices. The Lanczos methods [8] [10] [11], for
example, are particularly efficient in situations where relatively few
singular values are desired and relatively few orthogonalizations are
needed. To take full advantage of Lanczos, however, the validity of
using a truncated SVD instead of a complete SVD in LLSF needs
to be established.

This study seeks methods to improve the computational effi-
ciency of LLSF without sacrificing effectiveness, so larger training
corpora can be used. The claim is that this is achievable because
of a “noise” or “redundancy” property of natural language texts:
not every word or word combination is equally informative. This
means that many words and word combinations can be ignored in
the training of LLSF, if they can be automatically identified. In other
words, a mathematically complete LLSF model basedon very noisy
training data may not be the most desirable, and a “relaxation” of
this model may significantly improve the computational efficiency



and possibly improve the categorization accuracy. In the following
sections, three methods of noise reduction are proposed and evalu-
ated, including an aggressive removal of “non-informative” words
from texts before training, the truncation of “noisy latent semantic
structures” during training, and the elimination of non-influential
elements in the LLSF solution matrix after training.

� ��� ��� � ������� ����� � ���	� �����
Before describing each of the noise reduction methods, let us
overview the methodology,measurements and data collections which
are shared in studies of these methods. For each method, different
truncation thresholds are used to test the trade-off between improve-
ments in categorization accuracy and computational efficiency. The
categorization accuracy of LLSF is judged using a collection of
testing documents whose categories were assigned by humans. The
conventional recall and precision measures are used:

recall ! categories found and correct
total categories correct

;

precision ! categories found and correct
total categories found 


Given a document, for recall thresholds of 10%, 20%, ... 100%,
the system assigns in decreasing score order as many categories
as needed until a recall threshold is achieved, and computes the
precision value at that point; the resulting 10 point precision values
then are averaged for a global measure of the system performance
with respect to the document. For a set of documents, the 10-
point average precision values of individual documents are further
averaged to obtain the global measure of the system over the entire
set. We refer to the 10-point average precision as categorization
accuracy. Average precision is the most commonly used measure
in evaluations of categorization systems, because many systems
provide a ranked list of categories for a given text instead of binary
decisions over categories [3] [4] [5] [6] [7]. A ranked list, of course,
can be used to obtain binary decisions by setting a threshold. There
are discussions about using alternative measures [12] [3]; these
issues, however, are open research questions, and are not the focus
of this paper.

To measure efficiency improvement, the time savings in SVD
is used because it is the major part of the training phase, and the
time savings in the text-to-categories mapping is also used because
it is the major part of the testing phase. The other computations
are rather insignificant in LLSF, so they are omitted in the perfor-
mance evaluation. The SVD times in the LINPACK and Lanczos
algorithms are used for comparison. A SPARCstation 10 was used
for the experiments.

Three different collections are used in the evaluation, includ-
ing patient record texts from the Mayo Clinic, documents from the
MEDLINE bibliographical database, and the CACM information
retrieval test collection in the computer science field. These collec-
tions are named SURCL, MEDCL and CACMCL, and have already
been used for evaluations of text categorization and text retrieval.
For convenience, I will use document as a generic word for either
a patient-record text, or a text derived from a record in MEDLINE
or CACM, by concatenating the title, the abstract and keywords (if
available) of an article.

(1) SURCL is a collection of patient-record texts from the Mayo
Clinic archive. The patient records at Mayo include diagnoses and
operative reports in natural language texts written by physicians.
These texts are manually categorized by experts for the purpose
of billing and research. About 1.5 million diagnoses and opera-
tive reports are manually coded each year. For this experiment,
we arbitrarily chose the cardiovascular subdomain of the canoni-
cal classification system ICD-9-CM (International Classification of

Diseases, 9th Revision, Clinical Modifications), and used the 6134
surgical procedure reports in this subdomain from the 1990 patient
records. We sorted the procedure/category pairs by category and
arbitrarily split these pairs into odd and even halves. The odd-half
was used as the training set which contained 3067 texts with dupli-
cates, or 1461 unique texts; the even-half was used as the testing set
which contained 3067 texts with duplicates, or 1492 unique texts.
About 58% of the testing texts had an identical text in the training
set; about 99% of the words and 97% of the categories in the testing
documents had occurrences in the training set. About 99.8% of the
training and testing texts had a uniquely matched category; the rest
had two or three categories. The average length of texts was about
9 words. There were totally 281 categories in the cardiovascular
subdomain of ICD-9-CM; these 281 categories were used as the
candidate space of the categorization tests. The chance of a correct
categorization of a procedure text by a random assignment was 1
in 281, or 0.36%. The categories which are not included in the
training set will be automatically assigned to a relevance score of
zero during the LLSF mapping, and their ranks among zero-valued
categories are determined arbitrarily.

(2) MEDCL is a collection of MEDLINE documents. This
data set was originally designed for an evaluation of the Boolean
search of MEDLINE retrieval (Haynes et al. 1990), and has been
used for evaluations of other retrieval and categorization systems
(Hersh et al. 1992) (Yang & Chute, 1993 July, 1993 November,
1994). We take the words in the title and abstract of each record
without distinction, and call these words together a document; we
did not use the records where the abstracts were missing. The
resulting collection contains 2344 documents, and each document
has categories assigned by MEDLINE indexers. We arbitrarily
chose a quarter (586 documents) of these documents for training,
and the remaining ones (1758 documents) for testing. There were
no duplicate documents in the entire collection, and consequently,
none of the testing documents was identical to a training document.
There were about 168 words and 17 categories per document on
average. The training set contained 7813 unique words and 1832
unique categories. The testing set contained 14,339 unique words
and 3430 unique categories; about 42% of the words and 46%
of the categories in the testing documents had occurrences in the
training set. There were 4020 unique categories in total, including
the training set and the testing set; these 4020 categories were used
as the candidate space of the categorization tests. The chance of a
random assignment being correct was 17 in 4020, or 0.42%.

(3) CACMCL is a subset of documentsderived from the CACM
collection which is one of the standard information retrieval test col-
lections [13]. The CACM collection consists of 3703 records each
of which contains fields of “title”, “abstract”, “keys” (keywords),
“categories”, “author”, etc. We take the words in the fields of “title”,
“abstract” and “keys” without distinction, and call these words to-
gether a document. The categories are defined in the Classification
System for Computing Reviews (CSCR) and were assigned by hu-
mans to documents [14]. We used a subset of the 3703 documents in
our experiments. We eliminated documents with an empty category
field as obviously unsuitable for the study. We also eliminated doc-
uments with empty abstract fields because our primary interest is in
documents with the potential for significant word removal. Another
consideration in document selection was the type of category codes.
Two versions of CSCR category codes had been used in CACM:
the original version and an updated replacement version. To avoid
potential inconsistencies in the data, we only chose the documents
from the larger set that were classified by the original codes. The
resulting collection consists of 1121 documents; we refer to it as
CACMCL. We further arbitrarily split CACMCL into two halves,
and used the first half (561 documents) for training, and the second
half (560 documents) for testing. None of the testing documents
was identical to a training document; about 60% of the words and



87% of the categories in the testing documents had occurrences
in the training set. There were about 120 words and 3 categories
per document on average in the CACMCL collection. There was a
total of 204 categories in CSCR, and we used the entire set as the
candidate space of the categorization tests. The chance of a random
assignment being correct was 3 in 204, or 1.5%.
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Removal of non-informative words is a commonly used technique
in document indexing and retrieval to improve the accuracy of the
results and to reduce the redundancy of the computation. Non-
informative words are often defined by a “stop-word list” which
typically consists of about 300 or 400 words, including articles,
prepositions, conjunctions and some high-frequency words. Most
systems apply the same generic stop-word list to all document col-
lections without change. While the generic stop words are relatively
“safe” to remove in the sense that their removal rarely causes a sig-
nificant accuracy loss, the chance of significant accuracy improve-
ment is also small [3] [15]. Since a generic stop-word list is often
much smaller than the vocabularies of real-world document collec-
tions, only a limited number of words can be removed from texts,
and the improvement in computational efficiency is therefore very
limited. Experiments in adding collection-specific high-frequency
words to a generic stop-word list have shown no reliable improve-
ments [15].

In contrast to using generic stop words, Wilbur and Sirotkin
developed a novel stop-word identification method which allows
a far more aggressive removal of words from documents with-
out losing retrieval accuracy [16]. This method uses a collection
of training documents to estimate word importance using a score,
namely “word strength”. Clearly, word strengths are domain spe-
cific or application specific. An important difference between word
strength and other corpus-dependent word weighting schemes such
as the Inverse Document Frequency [17] is that word strength is not
computed based on word occurrencies in documents, but based on
word co-occurrencies in pairs of related documents. Word strength
measures how informative a word is in identifying two related doc-
uments. The strength of a word, 	 , is defined as the probability of
finding 	 in a document which is related to any document in which
	 occurs,


 ; 	 ? def!���
 ; 	 is in document ����	 is in document �@?
where � and � denote an arbitrary pair of distinct but related docu-
ments. For computing word strength, one needs a training corpus
where relevance judgments between documents are available. It
would be ideal to use human judgments as the gold standard. Such
relevance judgments, however, are often not available in real-world
applications. Wilbur and Sirotkin have shown that one can relax the
relevance criterion by assuming two documents are related to each
other if they have many words in common. That is, one can use
the conventional cosine-coefficiency of two vectorized documents
to measure their similarity, and identify a pair of documents as re-
lated if their cosine-similarity value is above a threshold. Using the
pairs of related documents, one can approximately compute word
strength as


 ; 	>?�� # of pairs in which 	 co-occurs in both documents
# of pairs in which 	 occurs in the first document

where the “first document” can be any training document. That is,
there are no constraints on the first document of a pair; if

; ������?
is a pair of related documents, then

; �����@? is also a pair of related
documents.

The procedure of word strength computation consists of the
following steps:

(1) use a standard stop-word list to eliminate non-informative
words from training documents;

(2) compute the similarity values of all pairs of training docu-
ments;

(3) select the document pairs whose similarity values are above a
threshold (chosen experimentally) as related document pairs;

(4) compute the strength for each word using the related docu-
ment pairs.

To identify stop words in the Wilbur-Sirotkin method, a word
strength is compared with the expected strength of a word which
is distributed randomly in training documents with the same fre-
quency. If the word strength is not at least two standard deviations
above the strength of such a randomly distributed word, it is des-
ignated a stop word (refer to [16] for details). This method was
tested using a training set of 71,311 documents from the MEDLINE
database in the area of molecular biology/genetics. According to
the published results, applying the aggressive stop-word list reduced
the 203,040 unique words in the 71,311 documents to 50,508 words
(a 75% word removal), and the retrieval results on these 71,311 doc-
uments were more favorable (by human judgments) than applying a
generic stop-word list of 310 words. In this particular test, queries
were randomly selected documents from the database and the task
was to find closely related documents in the database. As docu-
ments, the queries were longer than most queries a searcher might
produce and this may explain why such a high proportion of words
could be removed with improved retrieval. In general the proportion
of removable words may be less but still vary significant.

Yang and Wilbur have applied the aggressive word removal
method to document categorization to remove non-informative words
from documents before applying a categorization method to these
documents [18]. The effects on several categorization methods
on different document collections have been studied and the effec-
tiveness has been evident in the experiments. For all the methods
tested, including two statistical learning methods based on manual
category assignments and a baseline text matching method based
on shared words in documents and category names, no accuracy
loss or only insignificant accuracy loss was observed with an ag-
gressive word removal, compared to using a standard stop-word
list. In the test of a statistical learning method, Expert Network, for
example, a 85% word removal on the CACMCL collection led to
a better accuracy (a 2% improvement) than using a standard stop-
word list which yielded only 7% word removal. The 85% word
removal had a time savings significantly larger than the 7% word
removal because the computation in ExpNet was proportional to the
number of word occurrences in documents. As another example,
the baseline text matching (the SMART system without relevance
feedback was used for this experiment) on the CACMCL collection
with 71% word removal had the same accuracy as using the stan-
dard stop-word list, while the time savings were significant because
the match computation is proportional to the number of term occur-
rences in documents. The focus here is on how LLSF responds to
aggressive word removal, particularly, how much time savings can
be obtained in the SVD which is the major bottleneck in the LLSF
computation.

Figure 1 shows the precision curve of LLSF in response to word
cut ratios. The data points at the lowest word cut ratio correspond
to applying a standard stop-word list. The data points at the higher
word cut ratios correspond to the removal of words with a strength
value less than or equal to 0, 0.1, 0.2, ..., 0.9. The word strengths
are collection-dependent, i.e. they were computed for the SURCL,
MEDCL and CACMCL respectively, using the corresponding doc-
ument collection as the training corpus. Figure 1 shows a relatively
flat precision curve with up to 77% word cuts on SURCL and
MEDCL, and up to 54% word cuts on CACMCL, indicating that
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Figure 1: Word cuts and precision curves.

the LLSF mapping is only sensitive to a relatively small portion
of words in the documents, and that word strengths are useful for
identifying these words. While these aggressive word cuts did not
lead to impressive changes in precision, their impact on compu-
tation time was significant. Figure 2 shows the SVD time with a
77% word cut on SURCL and MEDCL and with a 54% word cut
on CACMCL, in comparison with not using word removal. With
77% word cuts on SURCL, for example, the SVD time is reduced
from 71 CPU minutes to 5 minutes, that is, a 91% time savings.
The time savings on MEDCL and CACMCL were 63% and 53%,
respectively. The SVD time was measured using the CPU minutes
of the LINPACK algorithm.
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The idea of using truncated SVD to reduce the noise level in train-
ing documents is inspired by the Latent Structure Analysis theory, a
well-known statistical method for analyzing causal factors or hidden
reasons behind observed events [19]. A latent structure is defined as
a linear combination of the independent variables, and can be com-
puted using the SVD of a matrix which represents correspondences
between independent and dependent variables. The SVD produces
a set of singular values (SV) which are non-negative real numbers,
and two sets of singular vectors each of which is an orthogonal
basis of the vector space of the given matrix. One set of the singular
vectors has independent variables as the dimensions, and the other
set of singular vectors has dependent variables as the dimensions.
These singular vectors are interpreted as the “orthogonal factors”,
“artificial concepts”or “latent semantic structures” (LSS) [20]. The
word “latent” is used because it is often difficult to give an intu-
itive interpretation about the meanings of these structures. It would
be helpful, however, to have some understanding of the LSS. In
general, the orthogonal basis of a given matrix consists of linear
combinations of the row or column vectors of the matrix. In our
problem, the rows are words, the columns are documents, and an
LSS is a linear combination of documents [20]. Since each docu-
ment is a vector of word weights, a linear combination of documents
is again a vector of word weights. Therefore, we can say that an LSS
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Figure 2: Word cuts and time savings in LINPACK.

is “a word combination” which does not mean a phrase, a sentence,
or any continuous piece of text. It is a combination of weighted
words from different documents. and the weights of these words
are determined by the SVD algorithm. An important property of
the LSS’s is that they are orthogonal dimensions for representing or
distinguishing documents. There is a one-to-one correspondence
between a singular value and a latent structure, and the magnitude
of a singular value reflects how influential the corresponding la-
tent structure is in representing the information in the given matrix.
One can select the most influential factors or the principle structures
by truncating the singular values and their corresponding singular
vectors using a threshold.

While LLSF uses SVD as a part of its computation, truncated
SVD is not a formal part of a complete LLSF model. Mathemati-
cally, LLSF guarantees a least squared error for a given training set,
and any modification of the computation, including the truncation
of singular values, can only increase the error. From a real-world
application point of view, a complete LLSF computation may not
be the best choice given the natural language vagaries in training
documents. Assuming that not all the word combinations are mean-
ingful or equally informative from a categorization point of view, it
is interesting to see whether a truncated SVD can identify meaning-
less word combinations and reduce their effects in categorization.
Note that when using truncated SVD instead of complete SVD,
the solution is no longer a LLSF but a only a “pseudo-LLSF”. For
convenience, I do not distinguish between a complete LLSF and a
pseudo-LLSF, unless specified.

I want to point out the similarities of the pseudo-LLSF and the
Latent Semantic Indexing (LSI) in document retrieval [20], and
the fundamental difference between my hypothesis about truncated
SVD and the claim in LSI. These two approaches are similar in
the sense that both compute the SVD of a word-document matrix,
and both intend to use an aggressive truncation of singular values
(“SV cut”) to obtain the most important dimensions or “the Latent
Semantic Structures” in the vector space of documents. The dif-
ference is that LSI uses the selected structures to reconstruct docu-
ment vectors, and hypothesizesthat the truncation of non-influential
structures would result in improved representations of synonyms in
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Figure 3: SV curves of different training sets.

the reconstructed document vectors. Consequently, the retrieval of
documents which contain the synonyms of the words in a given
query should be improved. This is the basic claim in LSI about how
to use truncated SVD and why it would work. It is important for
LSI to have significant improvement in retrieval effectiveness over
baseline text matching, since there would be no reason to use LSI
otherwise, given that the additional cost of the SVD computation is
far more expensive than baseline text matching. Evaluation results,
however, have shown no reliable improvement of LSI over baseline
text matching [20] [21] [22].

My hypothesis about truncated SVD is different from the hy-
pothesis in LSI. I do not claim an improvement of synonym repre-
sentation in a document matrix by using such an approach. Whether
such a hypothesis is true or false is not crucial for LLSF because
the document-to-categories mapping is based on human relevance
judgments, not based on how synonyms are represented in docu-
ments. My hypothesis about truncated SVD is the effective removal
of “noisy” and redundant semantic structures or word combinations
in documents without lossing categorization accuracy. By “noisy”,
I mean some word combinations are not meaningful from a cate-
gorization point of view. This kind of noise could cause overfitting
and wasteful computation, and its removal could improve the cat-
egorization accuracy, and significantly reduce the computation if
a large number of word combinations can be truncated. This hy-
pothesis is verifiable by observing the effects of SV cutting through
experiments.

Figure 3 shows the SV curves of the training documents in the
SURCL, MEDCL and CACMCL collections, where the SVs are
normalized using the maximum SV of the corresponding collection;
only the non-zero SVs are plotted. All these curves have a sharp
decline among the top-ranking SVs and a relatively flat curve at the
region of lower ranking SVs, meaning that only a small number of
word combinations are important or informative for distinguishing
the differences between training documents, and that the SVs at
the flat tails of these curves are relatively “safe” to be truncated.
Figure 4 confirms such an assertion, which shows the accuracy
curve of each collection in response to SV cuts at thresholds of
0%, 10%, 20%, ..., 90%, 95% and 99% of the number of non-
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Figure 4: SV cuts and precision curves.

zero SV values in that collection. On the MEDCL and CACMCL
collections, there is an improvement in accuracy with up to 80% SV
cuts, compared to not using SV cutting. On the SURCL collection,
the accuracy curve remains flat with up to 40% SV cuts, and starts
to decline with more aggressive SV cuts. The relatively different
response in accuracy of LLSF on SURCL is probably due to the
small vocabulary of the SURCL training documents. That is, we
applied a 77% word cut on SURCL and MEDCL, and a 54% word
cut on CACMCL before the SVD tests. The number of unique
words in training documents after word removal was only 265 in
SURCL, while there were 3072 unique words in MEDCL and 2657
unique words in CACMCL. The larger vocabularies of MEDCL
and CACMCL possibly offer a higher level of noise which can be
reduced by SV cutting. Nevertheless, all these curves show a wide
range of SV cutting without penalty or with an improvement in
accuracy, supporting the validity of using truncated SVD in LLSF
for a modification of the original model.

As for the effects of SV cutting on computational efficiency, the
degree of improvement is dependent on which SVD algorithm to
use, and how many SVs to cut off. For the LINPACK algorithm,
which is the most commonly used algorithm to compute the SVD of
dense matrices, an efficiency improvement is not possible because
this algorithm computes the full set of SVs simultaneously. On
the other hand, for the Lanczos algorithms, any subset of SV’s can
be computed separately, and substantial efficiency improvement is
possible if the truncation is sufficiently aggressive. Figure 5 shows
the observed time savings in the SVD computation on the three
document collections using a Lanczosalgorithm, namely the Sparse
Singular Value Decomposition or SSVD algorithm [11]. While no
time savings were observed with up to 50% SV cuts, around 70%
time savings were obtained at the 80% SV truncation threshold.

Table 1 summarizes the effects of combined use of word cutting
and SV cutting in solving the LLSF on SURCL, MEDCL and
CACMCL. For each of these document collections, precisions and
SVD times are compared under the conditions of

(1) no word cutting and no SV cutting;

(2) with a selected word cut but no SV cutting;



Table 1. Results summary of word cutting and SV cutting in LLSF
DATA SET Word Cut Average LINPACK SSVD

/SV Cut Precision CPU min CPU sec
0%/0% 0.8719 71 Infinite

SURCL 77%/0% 0.8813 (+1.1%) 5.4 (-92%) 38.6
77%/20% 0.8853 (+1.5%) 5.4 (-92%) 38.3

0%/0% 0.3466 82 369
MEDCL 77%/0% 0.3139 (-9.4%) 30 (-63%) 292 (-20%)

77%/80% 0.3575 (+3.1%) 30 (-63%) 93 (-74%)
0%/0% 0.3265 55 300

CACMCL 54%/0% 0.3180 (-2.6%) 26 (-53%) 258 (-14%)
54%/80% 0.3321 (+1.7%) 26 (-53%) 74 (-75%)
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Figure 5: SV cuts and SVD time in Lanczos.

(3) with a selected word cut and a selected SV cut.

The results when not using word cutting and SV cutting were used as
the baseline of the comparison on each collection. The word cutting
and SV cutting amounts were chosen empirically, with an attempt
to “optimize” the trade-off between improvements in accuracy and
training time. Since particular applications of LLSF are not the
focus of this paper, we do not have particular weights on the two
sides of the trade-off. We selected suitable cutting ratios for a
generic observation. On the MEDCL collection, for example, with
a 77% word cut and a 80% SV cut, the precision improved by 3.1%;
the time savings in SVD was 74% when using the SSVD algorithm,
and 63% when using the LINPACK algorithm. On the CACMCL
collection, as another example, with a 54% word cut and a 80%
SV cut, the precision improved by 1.7%; the time savings in SVD
was 75% when using the SSVD algorithm, and 53% when using
the LINPACK algorithm. On the SURCL collection, there was
a convergence problem with the SSVD algorithm when not using
word cutting (indicated by “Infinite” in Table 1); nevertheless, the
very fast computation with SSVD and the significant time savings
with LINPACK were evident, when using an 77% word cut and a
20% SV cut; the accuracy also improved by 1.5%.

To summarize this section, singular value analysis can be used
to distinguish meaningful word combinations in training documents
from relatively meaningless ones, to reduce the noise at a seman-

tic structure level, and to avoid unnecessary computation in the
learning phase of LLSF. The observed accuracy improvements sup-
ports the validity of using truncated SVD instead of complete SVD,
or using the pseudo-LLSF instead of the complete LLSF model.
The significant improvement in computational efficiency shows the
practical advantageof this approach. The cross-collection tests give
evidence about the generality of this approach, and demonstrate a
way to experimentally determine the suitable range of SV cuts for
a specific domain, application or data collection. Finally, SV cut-
ting can be used in combination with aggressive word cutting, to
achieve a global improvement in both categorization accuracy and
computational efficiency.

� � � ����� ����� ��� ��� � � ����������� � ���������
An additional research question is whether further noise reduction
is possible during the run-time (testing) phase of LLSF. Although
training efficiency is most crucial for scaling up LLSF, it is also
possible to perform noise reduction and efficiency enhancement
beyond the two training-time improvements just discussed. Recall
that the solution of an LLSF problem is a word-category association
matrix whose role is mapping a document to a vector of weighted
categories. The mapping requires the computation 79 ! 78 & � ,
where 78 is the vectorized document,

�
is the LLSF solution, and 79

is the vector of weighted categories. Matrix
�

is generally dense.
There are 91% non-zero elements in the solution matrix of SURCL,
93% in the solution matrix of MEDCL, and 96% in the solution
matrix of CACMCL. This means that a word has a non-zero associ-
ation to more than 90% of the categories in the training set, which is
intuitively not sensible from a semantic point of view. It is possible
that the meaning of a word matches to a few categories; however, it
is unlikely that a word would have meanings wildly spread over a
few hundreds or thousands of categories. This means that the ma-
jority of the low-valued non-zero elements in a LLSF solution may
not be meaningful, and may not be necessary in the computation
of the document-to-categories mapping. If this assertion is true,
than one can use a much less dense matrix instead of the full

�
to

achieve the same goal, and significantly reduce the mapping time
because the computation in 78 & � is proportional to the number of
non-zero elements in matrix

�
and vector 78

Figure 6 shows the testing results of element cutting from the�
-matrices of the SURCL, MEDCL and CACMCL collections.

The element cutting thresholds were set to 0.1% 0.5%, 1%, ..., 50%
of the largest absolute value in

�
; for each threshold, the non-

zero elements were replaced by zero if their absolute values are
smaller than that threshold. The 10-point average precisions were
computed at each threshold and then interpolated. On all of these
three data sets, there is almost no accuracy loss with up to 90-95%
elements zeroed out. Clearly, the accuracy of categorization in
LLSF is only sensitive to a small portion of the elements in matrix
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Figure 6: Effects of element cutting in LLSF solutions.

�
, and the majority of elements can be eliminated for an efficiency

improvement without accuracy loss. In the experiment on the 1758
MEDCL testing documents, for example, a 90.5% element cut from
matrix

�
had the same precision as using the full matrix, and a 81%

time savings in the document-to-categories mapping. The actual
mapping time was reduced from 2.2 CPU seconds per document
to 0.40 seconds. The time savings would be crucial in real-world
applications when the category space is much larger and a real-time
response of category ranking is required. The full set of categories
(17419) used in the MEDLINE database are about 10 times in size
of the set of 1832 categories in the MEDCL training documents.
The time of document-to-categories mapping will be proportionally
increased to roughly 21 seconds per document if not using element
cutting in

�
. This is rather unacceptable as a real-time response

(e.g. if we use the LLSF mapping to assist human indexing in an
interactive environment). Using a 90.5% element cut in

�
, on the

other hand, will reduce the response time to 4 seconds.

� � ����
 ����� �������
To conclude the study in this paper, noise and redundancy reduction
is proposed and evaluated in the LLSF approach to document-to-
categories mapping, at the levels of words, word combinations,
and word-category associations. It is evident that natural language
texts are highly noisy and redundant as training data for statistical
classification, and that applying a complete mathematical model
to such noisy and redundant data often results in over-fitting and
wasteful computation in LLSF. It is also evident that the noise and
redundancy can be automatically detected and reduced by aggres-
sive word cutting based on the Wilbur word strengths, by truncat-
ing noisy semantic structures based on the singular value analysis
of training documents, and by eliminating non-influential word-
category associations from the LLSF solution matrix. The effective
reduction techniques lead to a far more efficient computation in the
LLSF mapping without accuracy penalty, a significant impact to the
tractability of this method on large databases.
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