
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2007; 37:309–329
Published online 26 September 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.768

An incomplex algorithm for fast
suffix array construction

Klaus-Bernd Schürmann and Jens Stoye∗,†

Universität Bielefeld, Technische Fakultät, AG Genominformatik, Germany

SUMMARY

The suffix array of a string is a permutation of all starting positions of the string’s suffixes that are
lexicographically sorted. We present a practical algorithm for suffix array construction that consists of
two easy-to-implement components. First it sorts the suffixes with respect to a fixed length prefix; then
it refines each bucket of suffixes sharing the same prefix using the order of already sorted suffixes.
Other suffix array construction algorithms follow more complex strategies. Moreover, we achieve a very
fast construction for common strings as well as for worst case strings by enhancing our algorithm with
further techniques. Copyright c© 2006 John Wiley & Sons, Ltd.

Received 17 October 2005; Revised 15 May 2006; Accepted 21 May 2006

KEY WORDS: strings; indexing; suffix arrays; permutations

1. INTRODUCTION

Full text indices are used to process different kinds of sequences for diverse applications. The suffix
tree is the best known full text index. It has been studied for decades and is used in many algorithmic
applications. Nevertheless, in practice the suffix tree is used less than one would expect. We believe that
this lack of practical usage is due to the high space requirements of the data structure. Moreover, while
conceptually simple, the efficient implementation of suffix trees is difficult. Presently the construction
of suffix trees in linear time is non-trivial.

Research on suffix arrays has increased since Manber and Myers [1] introduced this data structure
as an alternative to suffix trees in the early 1990s. They presented an O(n log n) time algorithm
to directly construct the suffix array of a text of length n. The algorithm is based on the doubling
technique introduced by Karp et al. [2]. The theoretically best algorithms to construct suffix arrays run
in �(n) time. However, although Farach et al. [3] correlated suffix sorting and linear-time suffix tree

∗Correspondence to: Jens Stoye, Universität Bielefeld, Technische Fakultät, AG Genominformatik, Postfach 10 01 31, 33501
Bielefeld, Germany.
†E-mail: stoye@techfak.uni-bielefeld.de

Copyright c© 2006 John Wiley & Sons, Ltd.

310 K.-B. SCHÜRMANN AND J. STOYE

construction in 2000, up until 2003 all known algorithms reaching this bound took a detour over suffix
tree construction and afterwards obtained the ordered suffixes by traversing the suffix tree instead of
directly constructing suffix arrays. The drawback of this approach is the space demand of linear-time
suffix tree construction algorithms. The most space efficient implementation by Kurtz [4] uses between
8n and 14n bytes of space in total. Moreover, the linear-time suffix tree construction algorithms do not
explicitly consider the memory hierarchy, which leads to unfavourable effects on current computer
architectures. When the suffix tree grows over a certain size, the ratio of cache misses rises.

In 2003, the problem of direct linear-time construction of suffix arrays was solved independently by
Kärkkäinen and Sanders [5], Kim et al. [6], and Ko and Aluru [7]. Shortly after, Hon et al. [8] gave a
linear-time algorithm that needs O(n) bits of working space.

Apart from these more theoretical results, there has also been much progress in practical suffix
array construction. Larsson and Sadakane [9] presented a fast algorithm, called qsufsort, running in
O(n log n) worst-case time using 8n bytes. In common with Manber and Myers [1] they utilize the
doubling technique of Karp et al. [2]. Recently, Kim et al. [10] introduced a divide and conquer
algorithm based on [6] with O(n log log n) worst-case time complexity, but with faster practical
running times than the previously mentioned linear-time algorithms. Both algorithms use the odd–even
scheme introduced by Farach [11] for suffix tree construction.

Other viable algorithms mainly consider space requirements. They are called lightweight algorithms
due to their small space requirements. Itoh and Tanaka [12] as well as Seward [13] proposed algorithms
using only 5n bytes. In theory their worst-case time complexity is �(n2). However, in practice they
are very fast if the average Longest Common Prefix (LCP) is small. (By LCP we refer to the length
of the LCP of two consecutive suffixes in the suffix array.) More recently, Manzini and Ferragina [14]
engineered an algorithm called deep shallow suffix sorting. They combine different methods to sort
suffixes depending on the LCP lengths and did in-depth work on finding suitable settings to achieve
fast construction. The algorithm’s space demands are small, and it is applicable for strings with high
average LCP.

The most recent lightweight algorithm was developed by Burkhardt and Kärkkäinen [15]. It is called
the difference-cover algorithm. Its worst-case running time is O(n log n) and it uses O(n/

√
log n) extra

space. For common real-life data, though, the algorithm is on average slower than deep shallow suffix
sorting.

The above mentioned suffix array construction algorithms meet some of the following requirements
for practical suffix array construction:

• fast construction for common real-life strings (small average LCP)—Larsson and Sadakane [9],
Itoh and Tanaka [12], Seward [13], Manzini and Ferragina [14], Kim et al. [10];

• fast construction for degenerate strings (high average LCP)—Larsson and Sadakane [9], Manzini
and Ferragina [14], Kim et al. [10], Burkhardt and Kärkkäinen [15], and others [1,5–7];

• small space demands—Itoh and Tanaka [12], Seward [13], Manzini and Ferragina [14],
Burkhardt and Kärkkäinen [15].

Based on our experience with biological sequence data, we believe that further properties are
required. There are many applications where very long sequences with mainly small LCPs, interrupted
by occasional very large LCPs, are investigated. In genome comparison, for example, concatenations
of similar sequences are indexed to find common subsequences, repeats, and unique regions.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 311

Thus, to compare genomes of closely related species, one has to build suffix arrays for strings with
highly variable LCPs.

We believe that the characteristics as observed in a bioinformatics context can be found in other
application areas as well. Also, in Burrows–Wheeler text compression, the problem of computing
the Burrows–Wheeler Transform [16] by block-sorting the input string is equivalent to suffix array
construction. These facts stress the importance of efficient ubiquitous suffix array construction
algorithms.

In Section 2 we give the basic definitions and notations concerning suffix arrays and suffix sorting.
Section 3 is devoted to our approach, the bucket-pointer refinement (bpr) algorithm. Experimental
results are presented in Section 4. Section 5 concludes and discusses open questions.

2. SUFFIX ARRAYS AND SORTING—DEFINITIONS AND TERMINOLOGY

Let � be a finite ordered alphabet of size |�| and t = t1t2 . . . tn ∈ �n a text over � of length n. Let $
be a character not contained in �, and assume $ < c for all c ∈ �. For illustration purposes, we will
often consider a $-padded extension of string t , denoted t+ = t$n. For 1 ≤ i ≤ n, let si(t) = ti . . . tn
indicate the ith (non-empty) suffix of string t . The starting position i is called its suffix number.

The suffix array sa(t) of t is a permutation of the suffix numbers {1 . . . n}, according to the
lexicographic ordering of the n suffixes of t . More precisely, for all pairs of indices (k, l), 1 ≤ k <

l ≤ n, the suffix ssa[k](t) at position k in the suffix array is lexicographically smaller than the suffix
ssa[l](t) at position l in the suffix array.

A bucket b = [l, r] is an interval of the suffix array sa, determined by its left and
right end in sa. A bucket bp = [l, r] is called a level-m bucket, if all contained suffixes
ssa[l](t), ssa[l+1](t), . . . , ssa[r](t) share a common prefix p of length m.

A radix step denotes the part of an algorithm in which strings are sorted according to the characters
at a certain offset in the string. The offset is called radix level. A radix step is like a single iteration of
radix sort.

Range reduction performs a monotone, bijective function, rank : � → {0, . . . , |�| − 1}, of the
alphabet to the first |�| natural numbers. More precisely, for two characters c1 < c2 of alphabet �,
rank(c1) is smaller than rank(c2). Applied to a string t , range reduction maps each character c of t

to its rank, rank(c). Note that the suffix array of a range reduced string equals the suffix array of the
original string.

A multiple character encoding for strings of length d is a monotone bijective function coded : �d →
{0, . . . , |�|d − 1} such that for strings u, v of length d , coded (u) < coded(v) if and only if u is
lexicographically smaller than v. For a given rank function, such an encoding can easily be defined
as coded (u) = ∑d

k=1 |�|d−krank(u[i + k − 1]). The encoding can be generalized to strings of length
greater than d , by just encoding the first d characters. Given the encoding coded(i) for suffix si(t),
1 ≤ i < n, the encoding for suffix si+1(t) can be derived by shifting away the first character of si(t)

and adding the rank of character t+[i + d]:
coded(i + 1) = |�|(coded(i) mod |�|d−1) + rank(t+[i + d]) (1)

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

312 K.-B. SCHÜRMANN AND J. STOYE

3. THE BUCKET-POINTER REFINEMENT ALGORITHM

Most of the previously mentioned practical algorithms order suffixes with respect to their leading
characters into buckets, which are then recursively refined. Before describing our new algorithm that
uses a similar though somewhat enhanced technique, we classify the specific techniques used.

3.1. Classification of techniques

The first type of bucket refinement techniques found in the literature is formed by string sorting
methods without using the dependencies among suffixes. Most representatives of this class sort the
suffixes with respect to their leading characters and then refine the groups of suffixes with equal prefixes
by recursively performing radix steps until unique prefixes are obtained [17–19].

The second type of algorithms use the order of previously computed suffixes in the refinement phase.
If suffixes si(t) and sj (t) share a common prefix of length offset, the order of si(t) and sj (t) can be
derived from the ordering of suffixes si+offset(t) and sj+offset(t). Many practical algorithms that use this
technique, also apply methods of the first type to fall back upon if the order of suffixes at offset is not
yet available [12–14].

We further divide the second type into two subgroups: the push method, and the pull method.
The push method uses the ordering of previously determined groups that share a leading character and
pass this ordering on to undetermined buckets. Some representatives that use this technique are: Itoh
and Tanaka’s two-stage algorithm [12], Seward’s copy algorithm [13], and the deep shallow algorithm
of Manzini and Ferragina [14].

Pull methods look up the order of suffixes si+offset(t) and sj+offset(t) to determine the order of
si (t) and sj (t). This technique is used in many algorithms. Larsson and Sadakane’s qsufsort [9],
Seward’s cache algorithm [13], and the deep shallow sorting of Manzini and Ferragina [14] are
examples of practical algorithms that use this method. The difference-cover algorithm by Burkhardt
and Kärkkäinen [15] first sorts a certain subset of suffixes to ensure the existence of a bounded offset
to this subset of previously sorted suffixes.

The linear-time algorithms of Kärkkäinen and Sanders [5], Kim et al. [6], and Ko and Aluru [7],
as well as the O(n log log n) time algorithm of Kim et al. [10] follow different divide and conquer
schemes, but share the basic framework. They divide the suffixes into two groups, recursively sort one
of the groups, use the ordering of suffixes in the sorted group to determine the ordering of suffixes in
the other group, and finally merge the two sorted groups to receive the total ordering of all suffixes,
namely the suffix array. These are not bucket refinement algorithms. Nevertheless, since they all pass
the sorted order of suffixes of one group on to determine the ordering of the other group, they could be
classified as push algorithms (although their overall strategy is more advanced).

3.2. The new algorithm

The new bpr algorithm that we present in this paper combines the approaches of refining groups with
equal prefix by recursively performing radix steps and the pull technique. It mainly consists of two
simple phases. Given a parameter d (usually less than log n), the suffixes are lexicographically sorted
in the first phase, so that suffixes with the same d-length prefix are grouped together. Before entering
the second phase, a pointer to its bucket bptr[i] is computed for each suffix with suffix number i,

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 313

String to build suffix array for: t = e f e f e f a a
1 2 3 4 5 6 7 8

a$ aa ef fa fe
sa after initial sorting (d = 2): 8 7 1 3 5 6 2 4

1 2 3 4 5 6 7 8

bptr after initial sorting: 5 8 5 8 5 6 2 1

sa after sorting bucket [3, 5]: 8 7 5 1 3 6 2 4
1 2 3 4 5 6 7 8

bptr after updating positions 1, 3, 5: 5 8 5 8 3 6 2 1

Figure 1. Example of the refinement procedure after the initial sorting of suffixes regarding prefixes
of length d = 2. The suffix array sa and the table of bucket pointers bptr is shown before and after
applying the refinement steps to the bucket [3, 5] containing suffixes 1, 3, 5 with respect to offset = 2.
The sort keys (drawn in bold face) are sortkey(1) = bptr[1 + 2] = 5, sortkey(3) = bptr[3 + 2] = 5,
and sortkey(3) = bptr[5 + 2] = 2. After the sorting, the bucket pointers for the suffixes 1, 3, 5 in

bucket [3, 5] are updated to bptr[1] = 5, bptr[3] = 5, and bptr[5] = 3.

such that suffixes with the same d-length prefix share the same bucket pointer. Lexicographically
smaller suffixes have smaller bucket pointers. In our descriptions and implementation we use the
position of the rightmost suffix in each bucket as bucket pointer.

In the second phase, the buckets containing suffixes with equal prefix are recursively refined.
Let [l, r] be the segment in the suffix array sa forming a bucket B of suffixes sa[l], sa[l + 1], . . . , sa[r]
with equal prefix of length offset. Then, the refinement procedure works in the following way.
The suffixes in B are sorted according to the bucket pointer at offset offset. That is, for each suffix
sa[k] in B, l ≤ k ≤ r , bptr[sa[k] + offset] is used as the sort key.

After sorting the suffixes of B, the sub-buckets are determined that contain suffixes sharing the
same sort key. Then, for each suffix sa[k], l ≤ k ≤ r , its bucket pointer bptr[sa[k]] is updated to point
to the new sub-bucket containing sa[k]. Finally, all sub-buckets are refined recursively by calling
the refinement procedure with increased offset, offsetnew = offsetold + d . After termination of the
algorithm, sa is the suffix array and the array bptr reflects the inverse suffix array. An example of
the refinement procedure is given in Figure 1.

Properties. The main improvement of our algorithm, compared to earlier algorithms performing
bucket refinements, is that it benefits from the immediate use of subdivided bucket pointers after each
refinement step. With increasing number of subdivided buckets, it becomes more and more likely that
different bucket pointers can be used as sort keys during a refinement step, such that the expected
recursion depth decreases for the buckets refined later. The final position of a suffix i in the current
bucket is reached at the latest when bptr[i + offset] is unique for the current offset. That is, when the
suffix i + offset has reached its final position.

Another improvement of our algorithm is that in each recursion step offset can be increased
by d . Hence, the recursion depth decreases by a factor of d , compared to algorithms performing
characterwise radix steps.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

314 K.-B. SCHÜRMANN AND J. STOYE

Note that the algorithm can be applied to arbitrary ordered alphabets, since it just uses comparisons
to perform suffix sorting.

Analysis. So far we were not able to determine tight time bounds for our algorithm. The problem is
that the algorithm quite arbitrarily uses the dependence among suffixes. Hence, we can only state a
straight forward quadratic time complexity for the general worst case, while a subquadratic upper time
bound can be found for certain periodic strings.

The simple O(n2) upper time bound can be seen as follows. The first phase of the algorithm can
simply be performed in linear time (see Section 3.3 for more details). For the second phase, we assume
that an O(n log n) time sorting procedure is applied. In each recursion level there are at most n suffixes
to be sorted in O(n log n) time. The maximal offset when the end of the string is reached is n, and offset
is incremented by d in each recursive call. Hence, the maximal recursion depth is n/d . Therefore,
the worst-case time complexity of the algorithm is limited by O(n2 log n/d). By setting d = log n,
we obtain the upper bound of O(n2) without taking into account the dependencies among suffixes.

Now, we focus on especially bad instances for our algorithm; in particular, strings maximizing the
recursion depth. Since the recursion depth is limited by the LCPs of suffixes to be sorted, periodic
strings maximizing the average LCP are especially hard strings for our algorithm.

A string an consisting of one repeated character maximizes the average LCP and is therefore
analysed as a particularly difficult input string. In the first phase of our algorithm the last d − 1 suffixes
sn+2−d (an), sn+3−d (an), . . . , sn(an) are mapped to singleton buckets. One large bucket containing
all the other suffixes with leading prefix ad remains to be refined. In each recursive refinement step,
the remaining large bucket is again subdivided into offset singleton buckets and one larger bucket,
while offset is incremented by d , starting with offset = d in step 1. Hence, in the ith refinement
step, d · i suffixes are subdivided into singleton buckets. The recursion proceeds until all buckets are
singleton, that is, until a recursion depth recdepth is reached, such that n ≤ d − 1 + ∑recdepth

i=1 d · i =
d − 1 + d(recdepth(recdepth + 1)/2). Therefore, for the string an the recursion depth recdepth of
our algorithm is in �(

√
n/d). Less than n suffixes have to be sorted in each recursive step. Hence, we

multiply sorting complexity and recursion depth recdepth to get the time bound O(n log n
√

n/d) of our
algorithm for the string an. By setting d = log n we achieve a running time of O(n log n

√
n/ log n) =

O(n3/2
√

log n). By taking into account the decreasing number of suffixes to be sorted with increasing
recursion depth, a more sophisticated analysis shows the same time bound. Therefore, this worst-case
time bound seems to be tight for this string.

3.3. Engineering and implementation

In this section, we present more detailed descriptions of the two phases of the algorithm and briefly
explain enhancements to achieve faster construction times in practice.

Phase 1

We perform the initial sorting regarding the d-length prefixes of the suffixes by bucket sort, using
coded (i) as the sort key for suffix i, 1 ≤ i ≤ n.

The bucket sorting is performed using two scans of the sequence, thereby successively computing
coded (i) for each suffix using Equation (1). There are |�|d buckets, one for each possible coded .

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 315

In the first scan, the size of each bucket is determined by counting the number of suffixes for
each possible coded . The outcome of this is used to compute the starting position for each bucket.
These positions are stored in the table bkt, which is of size |�|d . During the second scan, the suffix
numbers are mapped to the buckets, where suffix number i is mapped to bucket number coded(i).

After the bucket sort, the computation of the bucket pointer table bptr can be performed by another
scan of the sequence. For suffix i, the bucket pointer bptr[i] is simply the rightmost position of the
bucket containing i, bptr[i] = bkt[coded (i) + 1] − 1.

Phase 2

We now give a more in-depth description of the three steps of the refinement procedure and present
improvements to the basic approach.

Sorting. In the refinement procedure, the suffixes are first sorted with respect to a certain offset using
the bucket pointer bptr[i + offset] as the sort key for suffix i. The sorting algorithms used to perform
this are well known. Insertion Sort is used for buckets of size up to 15. For the larger buckets, we apply
Quicksort with Lomuto’s partitioning scheme [20, Problem 8-2]. The pivot is chosen to be the median
of three elements due to Singleton [21]. In addition, we apply a heuristic for the case that we have
many equal bucket pointers. After a partitioning step, we just extend the partitioning position as long
as the sort key equals the pivot, such that there is an already sorted region around this position and the
size of the remaining unsorted partitions decreases. This heuristic works especially well for periodic
strings.

Updating bucket pointers. The update of bucket pointers can simply be performed by a right-to-left
scan of the current bucket. As long as the sort keys of consecutive suffixes are equal, they are located
in the same refined bucket, and the bucket pointer is set to the rightmost position of the refined bucket.
Note that the refined bucket positions are implicitly contained in the bucket pointer table bptr. The left
pointer l of a bucket is the right pointer of the bucket directly to the left increased by one, and the right
pointer r is simply the bucket pointer for the suffix sa[l] at position l, r = bptr[sa[l]], since for each
suffix i its bucket pointer bptr[i] points to the rightmost position of its bucket.

Recursive Refinement. The recursive refinement procedure is usually called with an incremented
offset, offset + d . Note that for a sub-bucket bsub of b containing each suffix si (t), for which the suffix
si+offset(t) with respect to offset is also contained in b, the offset can be doubled. This is so because all
suffixes contained in b share a common prefix of length offset, and for each suffix si (t) in bsub, there is
also the suffix si+offset(t) with respect to offset in b. Hence, all suffixes contained in bsub share a prefix
of length 2offset.

Further on, we add an additional heuristic to avoid the unnecessary repeated sorting of buckets. For a
bucket consisting only of suffixes that all share a common prefix much larger than the current offset,
many refinement steps may be performed without actually refining the bucket. This may continue until
offset reaches the length of the common prefix. Therefore, if a bucket is not refined during a recursion
step, we search for the lowest offset dividing the bucket. This is performed by just iteratively scanning
the bucket pointers of the contained suffixes with respect to offset and incrementing offset by d after
each run. As soon as a bucket pointer different from the others is met, the current offset is used to call
the refinement procedure.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

316 K.-B. SCHÜRMANN AND J. STOYE

Table I. Worst-case time complexities of the investigated suffix array construction algorithms.

deep difference divide &
bpr shallow cache copy qsufsort cover conquer skew

O(n2) O(n2 log n) O(n2 log n) O(n2 log n) O(n log n) O(n log n) O(n log log n) �(n)

Further improvements. We enhanced our algorithm by the copy method of Seward [13] that was
earlier mentioned by Burrows and Wheeler [16]. If the buckets consisting of suffixes with the leading
character p are determined, they form a level-1 (L1) bucket Bp. Let bc1p, bc2p, . . . , bc|�|p, ci ∈ �, be
level-2 (L2) buckets with the second character p. The ordering of suffixes in Bp can be used to forward
the ordering to the specified L2 buckets by performing a single pass over Bp. If i is the current suffix
number in Bp and c = t[i − 1] is the previous character, then the suffix number i − 1 is assigned to the
first non-determined position of bucket bcp. Seward also showed how to derive the positions of suffixes
in bpp using the buckets bcip, p �= ci ∈ �. Hence, the usage of Seward’s copy technique avoids the
comparison-based sorting of more than half of the buckets.

Our program sorts the suffixes in L1 buckets Bc, c ∈ �, comparison-based in ascending order with
respect to the number of suffixes, |Bc| − |bcc|.

4. EXPERIMENTAL RESULTS

In this section we investigate the practical construction times of our algorithm for DNA sequences,
common texts, and artificially generated strings with a high average LCP.

We compared our bpr implementation [22] to seven other practical implementations: deep shallow
by Manzini and Ferragina [14], cache and copy by Seward [13], qsufsort by Larsson and Sadakane [9],
difference-cover by Burkhardt and Kärkkäinen [15], divide and conquer by Kim et al. [10], and skew by
Kärkkäinen and Sanders [5]. The worst-case time complexities of the algorithms are shown in Table I.
Since the original skew implementation is limited to integer alphabets, in all instances we mapped the
character string to an integer array.

The experiments were performed on a computer with 1.3 GHz Intel PentiumTMM (Klamath)
processor, running the Linux operating system. The memory hierarchy is composed of separate L1
instruction and data cache, each of size 32 Kbyte and 3 cycles latency, a 1024 Kbyte L2 cache with
10 cycles latency, and 512 Mbytes of main memory. Each cache is 8-way associative with 64 byte line
size. All programs were compiled with the gcc compiler, respectively g++ compiler, with optimization
options ‘-O3 -fomit-frame-pointer -funroll-loops’.

The investigated data files are listed in Table II and are ordered by average LCP. For the DNA
sequences, we selected genomic DNA from different species: the whole genome of the bacteria
Escherichia coli (E. coli), the fourth chromosome of the flowering plant Arabidopsis thaliana
(A. thaliana), the first chromosome of the nematode Caenorhabditis elegans (C. elegans), and the
human (H. sapiens) chromosome 22. Moreover, we investigated the construction times for different

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 317

Table II. Description of the data set.

LCP String Alphabet
Data set average maximum length size Description

E. coli genome 17 2815 4 638 690 4 Escherichia coli genome
A. thaliana chr. 4 58 30 319 12 061 490 7 A. thaliana chromosome 4
H. sapiens chr. 22 1979 199 999 34 553 758 5 H. sapiens chromosome 22
C. elegans chr. 1 3181 110 283 14 188 020 5 C. elegans chromosome 1

6 Streptococci 131 8091 11 635 882 5 6 Streptococcus genomes
4 Chlamydophila 1555 23 625 4 856 123 6 4 Chlamydophila genomes
3 E. coli 68 061 1 316 097 14 776 363 5 3 E. coli genomes

bible 13 551 4 047 392 63 King James bible
world192 23 559 2 473 400 94 CIA world fact book
rfc 87 3445 50 000 000 110 Texts from the RFC project
sprot34 91 2665 50 000 000 66 SwissProt database
howto 267 70 720 39 422 105 197 Linux Howto files
reuters 280 24 449 50 000 000 91 Reuters news in XML
w3c 478 29 752 50 000 000 255 html files of w3c homepage
jdk13 654 34 557 50 000 000 110 JDK 1.3 doc files
linux 766 136 035 50 000 000 256 linux kernel source files
etext99 1845 286 352 50 000 000 120 Project Gutenberg texts
gcc 14 745 856 970 50 000 000 121 gcc 3.0 source files

random 4 9 20 000 000 26 Bernoulli string
period 500 000 9 506 251 19 500 000 20 000 000 26 Repeated Bernoulli string
period 1 000 9 999 001 19 999 000 20 000 000 26 Repeated Bernoulli string
period 20 9 999 981 19 999 980 20 000 000 17 Repeated Bernoulli string
Fibonacci 5 029 840 10 772 535 20 000 000 2 Fibonacci string

concatenated DNA sequences of certain families. For this we used six Streptococcus genomes, four
genomes of the Chlamydophila family, and three different E. coli genomes.

For the evaluation of common real-world strings, we used the suite of test files given by Manzini
and Ferragina in [14]. The strings are usually concatenations of text files, or alternatively, tar archives.
Due to the memory constraints of our test computer, we just took the last 50 million characters of those
text files that exceeded the 50 million character limit.

The artificial files were generated as described by Burkhardt and Kärkkäinen [15]: a random string
made out of Bernoulli distributed characters and periodic strings composed of an initial random string
that is repeated until a length of 20 million characters is reached. We used initial random strings of
length 20, 1000 and 500 000 to generate the periodic strings. Also, we investigated a Fibonacci string
of length 20 million characters.

The suffix array construction times of the different algorithms are given in Tables III–V. Table III
contains the construction times for the DNA sequences. Our bpr algorithm is the fastest suffix array
construction algorithm for most DNA sequences. Only deep shallow is about 5% faster for the fourth

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

318 K.-B. SCHÜRMANN AND J. STOYE

Table III. Suffix array construction times for different DNA sequences and generalized DNA sequences by different
algorithms, with d = 7 for bpr.

Construction time (s)

deep difference divide &
DNA sequences bpr shallow cache copy qsufsort cover conquer skew

E. coli genome 1.46 1.71 3.69 2.89 2.87 4.32 5.81 13.48
A. thaliana chr. 4 5.24 5.01 12.24 9.94 8.42 13.29 16.94 38.30
H. sapiens chr. 22 15.92 16.64 40.08 30.04 26.52 44.93 51.31 112.38
C. elegans chr. 1 5.70 6.03 20.79 17.48 13.09 16.94 18.64 41.28

6 Streptococci 5.27 5.97 14.43 10.38 13.16 14.50 16.40 36.24
4 Chlamydophila 2.31 3.43 17.46 14.45 7.49 5.59 6.13 14.13
3 E. coli 8.01 13.75 437.18 1294.30 32.72 20.57 21.58 47.32

Table IV. Suffix array construction times for various texts by different algorithms, with d = 3 for bpr.

Construction time (s)

deep difference divide &
Text bpr shallow cache copy qsufsort cover conquer skew

bible 1.90 1.41 2.91 2.24 3.17 3.74 6.39 11.59
world192 1.05 0.73 1.47 1.24 1.91 2.28 3.57 6.45
rfc 31.16 26.37 57.97 55.21 58.10 71.10 101.57 169.03
sprot34 35.75 29.77 71.95 71.96 60.24 81.76 104.71 169.16
howto 22.10 19.63 39.92 47.27 41.14 48.45 83.32 141.50
reuters 47.32 52.74 111.80 157.63 73.19 108.85 108.84 169.18
w3c2 41.04 61.37 82.46 167.76 69.40 96.02 105.89 163.15
jdk13 40.35 47.23 101.58 263.86 73.75 97.12 98.13 162.39
linux 23.72 23.95 50.93 99.47 61.01 65.66 98.06 173.05
etext99 32.60 33.25 68.84 267.48 61.19 65.31 110.95 190.33
gcc 33.19 76.23 2894.81 21 836.56 59.44 73.54 83.96 162.06

chromosome of A. thaliana. However, for sequences with higher average LCP, bpr outperforms all
other existing algorithms. For the concatenated sequence of three E. coli genomes with average
LCP 68 061, deep shallow, the closest competitor of bpr, is 1.72 times slower.

For the real-world strings the running times of the investigated algorithms are shown in Table IV.
For the texts with small average LCP, deep shallow is the fastest suffix array construction algorithm.
Bpr shows the second best running times. However, when the average LCP exceeds a limit of about
300, our algorithm is the fastest among all investigated algorithms. For gcc with an average LCP of
14 745, it is clearly faster than the others.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 319

Table V. Suffix array construction times for artificial strings by different algorithms, with d = 3 for bpr.

Construction time (s)

deep difference divide &
Artificial strings bpr shallow cache copy qsufsort cover conquer skew

random 8.95 8.31 15.17 10.83 14.83 20.19 37.52 47.25
period 500 000 12.33 710.52 — — 89.52 47.28 31.21 61.04
period 1000 16.76 1040.45 — — 86.45 78.87 21.96 52.34
period 20 41.61 — — — 74.74 59.38 10.33 43.24
Fibonacci string 28.00 680.43 — — 82.62 69.63 22.21 38.17

For degenerated strings the construction times are given in Table V. Wherever an algorithm used
more than 12 h of computation time, we stopped the computation. This is indicated by a dash in the
table. Here, bpr is much quicker than deep shallow, cache, and copy, which are very fast algorithms
for strings with lower average LCP. Even compared to the algorithms qsufsort, difference-cover, divide
& conquer, and skew with good worst-case time complexities, our algorithm performs very well.
For strings with period 1000 and 500 000 it is by far the fastest algorithm. For strings with period 20
and for the Fibonacci string, just the divide & conquer algorithm with its O(n log log n) worst-case
time complexity is faster.

In summary, one can say that bpr is always among the two fastest of the investigated algorithms.
In most cases, and specifically for all but one DNA sequences, it is the fastest algorithm. For strings
with very small average LCP its running time is comparable to deep shallow, cache, and copy. With an
increasing average LCP, it is clearly the fastest algorithm. Even for worst-case strings with very high
average LCP, bpr performs well compared to the algorithms qsufsort, difference-cover, and divide
& conquer with good worst-case time complexity, whereas the construction times for deep shallow,
cache, and copy escalate.

4.1. Performance on very large scale data sets

In a separate experiment, we took the construction times for the human and mouse genome on a
Sun Fire V1280 server running twelve 900 MHz UltraSparc-III processors. Its memory hierarchy is
composed of 32 Kbyte level-1 instruction and 64 Kbyte level-1 data cache, 8 Mbyte level-2 cache,
and 96 Gbyte main memory. The genomes are concatenated DNA sequences of all their chromosomes
where the human genome consists of about 3.08 billion nucleotides and the mouse genome of about
2.62 billion, in total. We compiled the implementations of suffix array construction algorithms with
further 64-bit options ‘-m64 -mptr64’.

Bpr with d = 9 needs 7 h 9 min for the human genome and 5 h 37 min for the mouse genome.
The other algorithms abort unexpectedly. It seems that their particular implementations are limited to
32 bit address space. Note that, at the time we were performing the experiments, the server ran multiple
concurrent processes, such that the times may vary in different runs.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

320 K.-B. SCHÜRMANN AND J. STOYE

Table VI. Average virtual memory space consumption per input character for the
different suffix array construction algorithms.

Bytes per input character

deep difference divide &
bpr shallow cache copy qsufsort cover conquer skew

9.22 5.08 6.06 5.06 8.05 5.96 15.88 31.45

4.2. Space consumption

Besides the running times, we measured the space consumptions of the different suffix array
construction algorithms over all data files. We used memtime [23] to get the peak virtual memory
consumption traced by the linux operating system. Table VI shows the results in average number of
bytes per character of the used input sequences.

With 5.06n to 6.06n bytes, the lightweight algorithms copy, deep shallow, difference-cover, and
cache use slightly more space than the theoretical minimum of 5n bytes, consisting of 4n bytes for
the suffix array and n bytes for the input string. qsufsort’s 8.05n and bpr’s 9.22n bytes are still under
the limit of 10n bytes, while divide & conquer and skew using 15.88n and 31.45n bytes, respectively,
consume significantly more space.

4.3. Detailed runtime analysis

For a more detailed performance analysis of the suffix array construction algorithms, we used the
profiler and cache simulator valgrind [24] to count the number of executed instructions and to simulate
the caching behaviour.

The number of executed instructions of the different algorithms is shown in Table VII, the L1 data
references in Table VIII, the L1 misses, or alternatively, L2 references in Table IX, and the number
of L2 misses in Table X. We stopped the computation whenever a simulation used more than 24 h,
which is indicated by a dash in the tables. In addition, Figures 2 and 3 exemplarily show bar charts
for H. sapiens chromosome 22 and the linux source code. Note that besides the instructions and cache
references of the pure suffix array construction algorithms, valgrind also counts those of the different
IO routines for reading the input strings from the disk.

It is impressive that the instruction counts for bpr clearly outperform all other algorithms for all
but one string, the artificial string with period length 20 for which divide & conquer and skew take
fewer instructions. For real-world strings, the second best algorithm, deep shallow, executes on average
more than twice as many instructions, and it is more sensitive with respect to higher average LCP.
For periodic strings, deep shallow takes an escalating number of instructions. In contrast, bpr is stable
with respect to high average LCP. Even for periodic strings, the average instruction count of bpr is
comparable with the linear-time algorithm skew and the quasi-linear divide & conquer algorithm.

The caching behaviour of bpr is not as optimal as we expected. Although it takes the smallest number
of L1 cache references for all but the bible and period 20 strings, its inferior miss ratio often leads to

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 321

Ta
bl

e
V

II
.N

um
be

r
of

ex
ec

ut
ed

in
st

ru
ct

io
ns

.

E
xe

cu
te

d
in

st
ru

ct
io

ns
(t

ho
us

an
d)

de
ep

di
ffe

re
nc

e
di

vi
de

&
S

eq
ue

nc
e

ty
pe

S
eq

ue
nc

e
bp

r
sh

al
lo

w
ca

ch
e

co
py

qs
uf

so
rt

co
ve

r
co

nq
ue

r
sk

ew

D
N

A
se

qu
en

ce
E

.c
ol

ig
en

om
e

59
0

96
8

1
11

6
00

1
3

04
8

71
5

2
92

4
94

4
1

44
7

66
9

4
16

9
25

3
2

00
7

81
2

1
79

3
77

0
A

.t
ha

li
an

a
ch

r.
4

1
57

7
21

4
2

97
5

39
4

10
84

0
39

7
10

39
1

68
7

4
07

6
69

8
11

48
8

84
2

5
22

4
56

5
4

76
4

06
2

H
.s

ap
ie

ns
ch

r.
22

5
05

4
91

9
9

07
7

49
3

28
48

9
80

0
26

49
0

97
8

11
81

6
04

7
37

18
6

25
0

15
26

6
86

6
13

76
0

98
5

C
.e

le
ga

ns
ch

r.
1

1
76

6
21

9
4

08
2

72
8

28
93

8
60

0
22

81
6

33
3

5
74

6
69

7
16

21
2

05
7

6
32

7
31

8
5

61
5

00
1

6
St

re
pt

oc
oc

ci
1

60
5

42
9

4
26

4
96

5
14

71
2

65
6

10
62

1
54

2
4

90
5

62
7

12
41

1
77

0
5

06
7

02
3

4
54

3
45

4
4

C
hl

am
yd

op
hi

la
84

0
54

8
3

67
8

52
5

34
21

8
42

6
22

16
0

55
9

2
58

5
44

4
5

34
4

13
1

2
11

3
04

3
1

91
1

10
2

3
E

.c
ol

i
2

48
4

03
6

14
47

8
49

1
1

01
6

36
5

69
9

2
19

1
65

1
98

9
9

90
4

21
7

16
99

2
48

6
6

46
9

18
7

5
87

6
15

2

Te
xt

bi
bl

e
77

4
55

7
1

01
8

21
0

2
52

0
99

9
2

47
7

10
3

1
48

1
33

5
4

05
6

57
6

1
86

8
16

1
1

49
1

33
9

w
or

ld
19

2
44

4
26

3
62

2
20

8
1

52
4

60
4

1
58

2
12

0
87

4
54

3
2

81
5

56
2

1
13

8
54

2
91

0
40

5
rf

c
11

34
9

51
8

18
65

1
46

2
50

95
0

88
4

66
42

5
23

4
22

04
8

78
3

63
93

6
95

8
24

97
7

28
5

19
29

1
18

4
sp

ro
t3

4
11

33
2

66
0

23
51

4
80

8
76

29
7

39
6

92
71

1
30

5
21

20
6

68
6

70
77

9
02

7
23

96
9

93
5

19
24

7
80

3
ho

w
to

7
94

1
50

1
13

16
6

71
9

29
34

0
82

4
59

26
5

64
9

16
51

7
64

4
43

74
3

21
6

18
91

8
41

9
15

75
8

94
4

re
ut

er
s

14
09

9
31

8
48

71
1

94
8

14
6

18
2

46
8

22
9

25
2

42
6

23
13

6
95

1
79

08
8

11
9

25
48

9
11

9
19

59
3

77
2

w
3c

2
13

47
2

29
5

82
10

1
93

8
99

42
4

33
4

25
8

17
8

85
6

23
43

0
22

9
85

26
2

62
0

25
68

1
27

7
19

53
3

35
2

jd
k1

3
14

03
8

11
0

49
31

9
24

6
13

4
99

0
79

5
42

3
91

5
69

2
23

55
8

49
7

85
56

7
98

0
25

67
5

08
3

19
50

0
32

1
li

nu
x

10
16

2
91

3
18

85
4

49
1

50
23

4
55

7
14

9
80

6
75

6
23

90
3

43
5

64
25

7
12

3
24

43
9

74
8

19
90

6
50

6
et

ex
t9

9
11

06
3

32
0

22
00

7
97

9
47

46
5

41
8

41
6

48
5

94
2

22
30

7
80

6
53

53
7

49
7

23
96

2
77

8
20

05
3

02
4

gc
c

15
99

3
41

8
12

6
67

5
46

7
7

09
5

65
0

01
0

—
23

09
0

21
5

72
25

8
97

6
24

88
5

11
6

19
93

9
06

0

A
rt

ifi
ci

al
ra

nd
om

2
97

5
03

0
5

49
5

44
8

10
49

7
08

6
10

33
3

98
2

5
27

0
09

2
16

37
3

21
8

7
59

4
97

8
5

69
3

77
8

pe
ri

od
50

0
00

0
4

89
3

74
6

1
30

7
96

2
75

9
—

—
15

00
0

99
6

41
80

7
84

8
7

64
9

10
6

7
78

1
05

4
pe

ri
od

1
00

0
3

80
3

03
5

2
06

4
25

1
71

3
—

—
15

20
6

34
6

44
39

9
86

7
7

88
8

92
7

7
87

2
76

2
pe

ri
od

20
11

39
5

60
4

—
—

—
16

80
2

83
0

49
03

3
90

8
9

21
2

22
9

7
61

8
03

9
F

ib
on

ac
ci

st
ri

ng
7

09
1

70
9

1
08

3
03

8
17

9
—

—
15

70
6

02
7

48
19

3
42

4
11

59
0

50
7

7
65

7
30

1

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

322 K.-B. SCHÜRMANN AND J. STOYE

Ta
bl

e
V

II
I.

N
um

be
r

of
L

1
ca

ch
e

re
fe

re
nc

es
.

L
1

da
ta

ca
ch

e
re

fe
re

nc
es

(t
ho

us
an

d)

de
ep

di
ffe

re
nc

e
di

vi
de

&
S

eq
ue

nc
e

ty
pe

S
eq

ue
nc

e
bp

r
sh

al
lo

w
ca

ch
e

co
py

qs
uf

so
rt

co
ve

r
co

nq
ue

r
sk

ew

D
N

A
se

qu
en

ce
E

.c
ol

ig
en

om
e

31
5

96
0

39
0

14
5

1
41

7
73

2
1

51
4

31
3

72
2

75
1

2
16

1
44

3
1

20
0

15
8

1
06

1
18

0
A

.t
ha

li
an

a
ch

r.
4

81
1

66
8

1
03

7
31

7
5

38
5

29
6

5
97

7
49

0
2

00
5

57
0

5
95

5
90

7
3

10
7

69
5

2
81

8
05

4
H

.s
ap

ie
ns

ch
r.

22
2

62
1

60
4

3
11

0
71

2
13

40
1

67
5

14
17

3
00

9
5

83
0

11
6

19
54

1
49

3
8

94
5

02
9

8
14

1
71

2
C

.e
le

ga
ns

ch
r.

1
91

4
10

1
1

58
3

43
6

16
28

9
05

5
15

17
2

62
6

2
83

4
95

0
8

57
6

99
8

3
68

4
76

6
3

32
3

15
6

6
St

re
pt

oc
oc

ci
83

1
33

9
1

68
4

69
3

7
79

9
90

7
6

25
6

36
6

2
42

2
51

0
6

21
8

41
5

3
01

2
95

8
2

68
9

07
0

4
C

hl
am

yd
op

hi
la

42
1

64
4

1
64

6
85

9
20

21
0

56
8

15
80

2
12

3
1

28
2

90
2

2
61

3
07

4
1

25
6

15
3

1
13

0
88

8
3

E
.c

ol
i

1
30

8
18

3
7

11
4

21
6

61
1

66
6

51
1

1
62

7
46

9
38

5
4

91
5

53
2

8
34

1
56

3
3

84
0

08
0

3
47

5
48

0

Te
xt

bi
bl

e
40

6
46

1
37

6
16

3
1

16
3

29
8

1
26

8
49

0
73

1
94

2
2

02
7

11
5

1
03

8
77

6
88

2
75

2
w

or
ld

19
2

23
2

91
2

23
6

95
4

73
1

71
6

87
3

98
2

43
7

24
6

1
43

4
01

3
63

5
91

0
53

8
87

2
rf

c
6

05
5

62
9

7
29

0
35

0
26

00
0

24
6

42
20

6
85

4
10

73
4

27
4

32
81

5
92

3
13

25
0

70
0

11
42

0
93

2
sp

ro
t3

4
6

03
1

43
5

8
79

8
70

4
41

01
6

60
5

61
49

2
48

1
10

42
3

75
5

37
73

0
78

0
13

05
3

57
1

11
39

8
90

1
ho

w
to

4
18

5
61

2
5

04
8

75
7

13
89

3
17

4
37

91
5

44
4

8
04

8
66

9
21

77
0

06
4

10
29

7
68

4
9

31
4

36
4

re
ut

er
s

7
59

3
19

3
19

95
4

46
5

81
97

0
74

2
16

1
98

5
42

4
11

37
8

68
9

42
75

8
07

9
13

35
1

24
7

11
60

8
82

4
w

3c
2

7
25

2
08

3
41

99
8

73
5

54
30

2
21

8
18

4
29

3
76

9
11

59
8

03
8

45
80

9
58

7
13

37
9

02
8

11
57

7
03

3
jd

k1
3

7
55

5
93

1
20

20
7

35
8

75
41

8
75

5
30

7
10

7
63

9
11

70
1

57
4

46
73

6
29

0
13

37
8

40
2

11
56

2
44

9
li

nu
x

5
52

1
52

4
7

47
1

09
3

25
66

3
67

3
10

3
99

4
81

9
11

62
1

83
8

32
51

7
37

3
13

15
5

61
6

11
77

3
55

0
et

ex
t9

9
5

85
3

31
9

8
44

7
06

3
22

86
6

94
3

30
0

61
5

22
2

10
81

9
09

5
26

89
9

83
9

13
04

5
59

7
11

85
3

01
8

gc
c

8
90

9
28

0
64

50
5

78
7

4
27

5
77

4
32

5
—

11
35

1
01

5
38

13
1

06
1

13
23

4
28

1
11

80
1

33
0

A
rt

ifi
ci

al
ra

nd
om

1
53

0
40

9
1

90
9

15
5

4
69

6
77

1
4

61
8

95
4

2
73

3
71

2
8

35
8

79
6

4
65

9
47

7
3

38
5

91
3

pe
ri

od
50

0
00

0
2

54
9

64
7

77
8

80
6

71
2

—
—

7
75

3
14

5
23

84
5

00
4

4
74

7
20

9
4

62
4

48
8

pe
ri

od
1

00
0

1
99

7
49

3
1

05
8

02
7

75
9

—
—

7
67

8
60

0
25

63
8

33
6

4
81

6
02

4
4

70
6

57
7

pe
ri

od
20

5
82

4
35

1
—

—
—

8
23

9
24

1
28

62
8

90
1

5
50

8
88

4
4

51
5

56
4

F
ib

on
ac

ci
st

ri
ng

3
80

4
57

7
64

4
63

0
68

5
—

—
8

03
2

38
8

28
34

6
72

4
6

50
1

88
9

4
54

4
17

2

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 323

Ta
bl

e
IX

.N
um

be
r

of
L

1
ca

ch
e

m
is

se
s,

or
al

te
rn

at
iv

el
y,

L
2

ca
ch

e
re

fe
re

nc
es

.

L
1

ca
ch

e
m

is
se

s
(t

ho
us

an
d)

de
ep

di
ffe

re
nc

e
di

vi
de

&
S

eq
ue

nc
e

ty
pe

S
eq

ue
nc

e
bp

r
sh

al
lo

w
ca

ch
e

co
py

qs
uf

so
rt

co
ve

r
co

nq
ue

r
sk

ew

D
N

A
se

qu
en

ce
E

.c
ol

ig
en

om
e

25
55

2
22

75
0

34
66

9
27

00
1

32
97

4
23

1
62

8
72

44
0

14
6

96
3

A
.t

ha
li

an
a

ch
r.

4
82

81
3

64
48

7
10

2
68

5
77

56
3

10
4

64
3

23
1

62
8

19
0

84
3

39
1

90
1

H
.s

ap
ie

ns
ch

r.
22

26
3

34
8

20
8

97
4

32
4

05
4

25
2

21
1

30
2

94
9

73
6

58
4

53
6

72
3

1
10

1
25

9
C

.e
le

ga
ns

ch
r.

1
85

12
0

73
27

3
20

0
06

3
16

2
15

5
14

3
67

7
26

4
56

7
20

8
20

4
42

6
80

6

6
St

re
pt

oc
oc

ci
83

02
1

73
34

3
12

2
60

4
88

79
3

14
6

65
8

23
4

02
5

18
5

47
6

37
0

13
7

4
C

hl
am

yd
op

hi
la

37
78

9
39

42
4

15
7

36
9

11
1

06
8

87
45

7
92

23
3

76
46

4
15

4
78

8
3

E
.c

ol
i

13
3

77
4

17
1

45
7

4
93

4
36

1
12

36
4

22
2

34
3

28
1

31
6

08
1

23
7

79
7

48
1

49
8

Te
xt

bi
bl

e
30

02
3

19
35

5
29

40
0

22
46

4
39

77
8

67
38

6
79

07
9

12
4

04
4

w
or

ld
19

2
15

61
4

10
14

1
15

67
3

11
47

2
23

47
8

37
77

2
47

92
1

74
69

7
rf

c
53

0
93

7
35

4
54

0
48

2
41

4
41

1
91

2
74

6
45

8
1

19
0

12
5

1
05

7
18

3
1

57
8

64
5

sp
ro

t3
4

65
0

95
5

45
1

87
2

57
5

49
5

45
3

90
5

76
8

97
9

1
45

8
68

0
1

07
9

11
6

1
59

1
47

3
ho

w
to

35
2

31
5

25
1

72
9

35
3

58
0

44
8

17
4

53
0

64
1

80
1

62
8

86
3

32
6

1
35

3
30

5
re

ut
er

s
85

1
56

7
77

0
88

3
83

3
98

0
80

3
47

2
91

6
61

9
1

87
5

04
6

1
12

3
81

2
1

59
2

10
7

w
3c

2
78

0
44

7
60

5
45

1
68

8
27

6
1

02
4

13
5

91
5

36
6

1
74

8
60

0
1

15
1

60
3

1
55

3
72

4
jd

k1
3

81
2

87
1

80
8

25
0

78
3

49
3

1
41

9
86

9
93

8
07

6
1

85
5

85
2

1
08

9
55

4
1

53
1

61
3

li
nu

x
44

7
41

3
30

1
78

9
43

7
13

1
86

0
55

8
81

0
69

3
1

03
8

69
1

1
02

8
32

6
1

63
5

77
4

et
ex

t9
9

54
4

00
0

40
5

86
0

56
0

24
5

2
26

0
45

7
76

6
16

0
1

07
6

75
2

1
09

6
12

7
1

75
6

19
9

gc
c

96
3

11
5

1
49

9
26

6
25

88
9

83
4

—
80

3
00

7
1

20
6

89
0

94
8

60
5

1
55

5
62

7

A
rt

ifi
ci

al
ra

nd
om

14
2

86
1

12
1

01
6

15
3

13
8

13
1

81
9

13
6

93
7

36
8

13
4

40
0

90
8

49
9

38
3

pe
ri

od
50

0
00

0
19

2
04

5
12

11
0

39
9

—
—

93
1

46
7

55
4

34
7

35
3

68
0

62
3

18
9

pe
ri

od
10

00
29

6
40

5
14

42
5

65
2

—
—

1
06

0
90

7
1

34
1

29
9

29
8

06
4

53
5

73
4

pe
ri

od
20

1
20

8
57

2
—

—
—

1
14

3
28

3
74

0
14

7
10

2
59

1
48

8
12

8
F

ib
on

ac
ci

st
ri

ng
51

1
02

7
11

03
2

99
5

—
—

95
1

99
0

90
5

67
8

21
7

46
6

42
8

95
4

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

324 K.-B. SCHÜRMANN AND J. STOYE

Ta
bl

e
X

.N
um

be
r

of
L

2
ca

ch
e

m
is

se
s.

L
2

ca
ch

e
m

is
se

s
(t

ho
us

an
d)

de
ep

di
ffe

re
nc

e
di

vi
de

&
S

eq
ue

nc
e

ty
pe

S
eq

ue
nc

e
bp

r
sh

al
lo

w
ca

ch
e

co
py

qs
uf

so
rt

co
ve

r
co

nq
ue

r
sk

ew

D
N

A
se

qu
en

ce
E

.c
ol

ig
en

om
e

11
45

7
11

35
5

18
57

1
12

20
5

22
65

2
38

04
1

53
94

0
12

7
92

0
A

.t
ha

li
an

a
ch

r.
4

31
65

9
36

28
5

59
16

2
41

09
3

62
49

1
12

9
41

0
15

6
69

8
35

9
36

9
H

.s
ap

ie
ns

ch
r.

22
90

29
6

12
6

74
1

20
4

39
1

15
1

00
6

21
1

12
4

44
7

96
1

46
7

78
4

1
03

8
50

1
C

.e
le

ga
ns

ch
r.

1
37

21
2

43
17

6
11

3
76

2
69

36
5

11
2

81
8

15
3

23
8

17
2

00
2

38
9

56
1

6
St

re
pt

oc
oc

ci
35

93
2

44
54

6
80

74
1

51
38

2
10

6
90

6
13

5
29

0
15

3
08

2
34

1
19

3
4

C
hl

am
yd

op
hi

la
18

90
6

22
45

3
10

0
55

2
57

95
8

72
74

9
47

10
6

56
77

8
13

2
81

3
3

E
.c

ol
i

70
30

9
12

4
04

1
4

42
5

37
9

10
70

1
12

0
31

3
47

7
19

3
98

2
20

0
68

8
44

4
15

2

Te
xt

bi
bl

e
10

99
1

7
33

4
12

57
9

7
59

5
22

95
2

30
80

0
55

00
1

10
8

37
6

w
or

ld
19

2
5

84
7

2
87

0
5

32
0

2
85

1
14

58
6

13
79

1
30

03
4

59
44

4
rf

c
22

3
54

0
17

1
03

4
26

5
91

8
19

9
12

0
47

3
10

3
68

1
69

4
82

2
04

8
1

47
9

73
6

sp
ro

t3
4

29
5

91
7

17
9

47
4

29
6

79
2

20
2

54
1

48
3

25
7

76
8

48
7

84
1

15
4

1
46

8
65

7
ho

w
to

14
8

09
6

12
9

11
1

19
3

10
6

16
4

49
1

32
0

05
6

47
6

64
6

69
1

05
5

1
26

1
78

6
re

ut
er

s
52

3
07

3
34

1
16

4
45

3
60

4
35

6
51

5
64

2
50

6
1

18
3

38
8

87
2

73
3

1
48

7
17

7
w

3c
2

36
0

86
1

25
2

13
2

33
7

47
4

29
3

35
9

62
6

18
5

87
5

11
7

81
2

43
7

1
43

8
40

7
jd

k1
3

40
0

99
6

24
7

71
3

39
8

72
3

40
1

73
0

66
5

13
1

88
5

28
1

80
1

26
1

1
43

1
64

9
li

nu
x

19
0

27
6

14
5

16
5

21
6

52
0

21
1

46
2

51
7

42
4

60
0

02
3

78
5

12
8

1
51

7
61

8
et

ex
t9

9
21

3
52

8
23

5
34

6
33

5
02

6
85

6
83

7
47

3
41

4
68

2
51

9
92

0
19

2
1

65
5

53
8

gc
c

28
9

92
3

27
2

64
5

9
75

5
58

4
—

53
5

16
8

67
6

71
5

68
1

65
1

1
44

7
40

2

A
rt

ifi
ci

al
ra

nd
om

52
41

6
45

96
0

69
70

2
49

22
4

11
4

70
0

22
5

13
7

35
1

08
8

43
3

71
2

pe
ri

od
50

0
00

0
97

27
0

6
37

5
03

9
—

—
89

5
21

4
40

4
48

6
29

6
24

1
56

8
37

8
pe

ri
od

10
00

17
9

25
7

13
88

2
91

8
—

—
90

3
42

1
99

0
14

7
22

0
09

1
49

3
42

8
pe

ri
od

20
96

2
91

4
—

—
—

1
03

4
32

3
61

4
04

3
10

1
91

8
48

2
01

9
F

ib
on

ac
ci

st
ri

ng
38

6
49

4
10

88
0

35
6

—
—

89
0

73
4

73
7

96
2

19
9

58
6

41
6

62
4

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 325

5055

9077

28490

26491

11816

37186

15267

13761

0 10000 20000 30000 40000

bpr

deep-shallow

cache

copy

qsufsort

diff.-cover

div.-conquer

skew

Executed instructions (Million)

2358

2902

13078

13921

5527

18805

8408

7040

0 4000 8000 12000 16000 20000

bpr

deep-shallow

cache

copy

qsufsort

diff.-cover

div.-conquer

skew

Data references (Million)

L2 misses

L2 hits

L1 hits

90

127

204

151

211

448

468

1039

173

82

120

101

92

289

69

63

0 200 400 600 800 1000 1200

bpr

deep-shallow

cache

copy

qsufsort

diff.-cover

div.-conquer

skew

Data references (Million)

L2 misses

L2 hits

L1 hits

Figure 2. Instruction counts and cache references for H. sapiens chr. 22, with d = 7 for bpr.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

326 K.-B. SCHÜRMANN AND J. STOYE

10163

18854

50235

149807

23903

64257

24440

19907

0 20000 40000 60000 80000 100000

bpr

deep-shallow

cache

copy

qsufsort

diff.-cover

div.-conquer

skew

Executed instructions (Million)

5074

7169

25227

10811

31479

12127

10138

103134

0 5000 10000 15000 20000 25000 30000 35000

bpr

deep-shallow

cache

copy

qsufsort

diff.-cover

div.-conquer

skew

Data references (Million)

L2 misses

L2 hits

L1 hits

190

145

217

211

517

600

785

1518

257

157

221

649

293

439

243

118

0 250 500 750 1000 1250 1500 1750

bpr

deep-shallow

cache

copy

qsufsort

diff.-cover

div.-conquer

skew

Data references (Million)

L2 misses

L2 hits

L1 hits

Figure 3. Instruction counts and cache references for the linux file, with d = 3 for bpr.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 327

more cache misses. For DNA sequences, bpr still has the fewest L2 misses, but for other real world
strings deep shallow, cache, and copy often have less L2 misses. For strings with periods of length
500 000 and 1000, bpr takes the fewest cache misses. Only for the string with a period shorter than 20
and for the Fibonacci string, divide & conquer and skew have fewer cache misses.

4.4. Discussion

We first believed that the practical speed of our algorithm was mainly due to the combination of
different techniques with good locality behaviour. However, the simulations showed that, compared
to the other suffix array construction algorithms, bpr mainly gains its fast running time from the fewer
executed instructions rather than from its good locality behaviour. Hence, with respect to the number
of executed instructions, bpr is the algorithmically best algorithm.

The few executed instructions are apparently due to the different strategies of the two phases of
the bpr algorithm. First of all, if the d-length substrings are uniformly distributed, phase 1 equally
divides all suffixes into small buckets by just scanning the input string twice. However, this does not
explain its speed for the periodic strings. Here, the suffixes are just partitioned into a few large buckets.
For such strings, our algorithm basically benefits from the employment of relations among the suffixes
in phase 2. By using the bucket pointers as sort keys, the method incorporates information about the
subdivided buckets into the bucket refinement process as soon as this information becomes available.
In the bucket-refinement process each bucket is refined recursively until it consists of singleton sub-
buckets. This technique of dividing suffixes from small to smaller buckets is similar to Quicksort for
original sorting, which is known to be fast in practice. The combination of these techniques, further
heuristics in the refinement procedure (Section 3.3), and Seward’s copy method [13] result in the final
low instruction count.

In our first assumptions that the good locality behaviour was mainly responsible for the speed of
bpr, we were misled by some elements of the algorithm that have good locality behaviour with respect
to the data structure, but this is not always the case. The data structure can be divided into four parts:
the input string, the suffix array, the bptr array, and the bucket array storing the boundaries for all
buckets. Phase 1, for example, just scans the sequence twice. It has a good locality of memory access
with respect to the input string and the bptr array, whereas the bucket array and the suffix array are
arbitrarily accessed. In contrast, phase 2 has a good locality of memory access with respect to the
bucket array and the suffix array. The bucket array is accessed from left to right and the suffix array is
divided into increasingly smaller buckets. The bptr array is again arbitrarily accessed.

Therefore, bpr’s cache miss ratio is generally worse than that of deep shallow, cache, and copy.
Even the linear-time skew and the quasi-linear divide & conquer, from which one could expect that
they trade locality of memory access against good worst-case time complexity, show comparable cache
miss ratios. Nevertheless, thanks to its fewer total cache accesses and its fewer executed instructions,
bpr is generally faster than the other algorithms.

The instruction counts for the different real world strings of length 50 million reveal further
interesting facts. The linear-time skew, the quasi-linear divide & conquer, and the O(n log n) time
qsufsort algorithms show little variance of instruction counts indicating little dependence on the
sequence structure. In contrast, deep shallow, cache, and copy’s instruction counts vary greatly. Deep-
shallow, for example, executes less than 19 billion instructions for the rfc and linux files, but more
than 82 billion instructions for w3c2 and gcc. For gcc, the very high average and maximum LCP

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

328 K.-B. SCHÜRMANN AND J. STOYE

values account for the high instruction count, whereas for w3c2 this is not so. The string has even
lower LCP values than linux, nevertheless deep shallow needs more than four times the number of
executed instructions. Therefore, other structural properties of the text also seem to be important for
the instruction count, and thus for the performance of these algorithms.

Moreover, for the strings of length 50 million, deep shallow’s instruction count is often related
to cache’s. The fact that deep shallow uses the method of cache as a subprocedure suggests that its
performance highly depends on the cache method.

Comparing the instruction counts for the 50 million character strings shows that deep shallow often
executes many more instructions than qsufsort, divide & conquer, or skew, even though its execution
time is always significantly faster. The higher number of L2 cache misses for qsufsort, divide &
conquer, and in particular skew reveal that the fragmented memory access slows down their suffix array
construction. Therefore, the practically fastest algorithm does not need to have the lowest instruction
count or the lowest number of cache misses, but as with bpr, it must possess the optimal combination
of both properties.

However, the space requirements of bpr are higher than the space requirements for deep shallow,
cache, and copy. In practice, bpr takes between 9n and 10n bytes, the suffix array and the bucket
pointer table each consume 4n bytes, and the input string n bytes. Additional space is used for the
bucket pointers of the initial bucket sort and for the recursion stack, even though the recursion depth
decreases by a factor of d . However, for certain applications, such as the computation of the Burrows–
Wheeler Transform [16], the construction of the suffix array is just a byproduct, and the complete suffix
array does not need to remain in memory.

Therefore, if one is concerned about space, the deep shallow algorithm might be the best choice.
If there are no major space limitations, we believe that the bpr algorithm is an attractive alternative.

5. CONCLUSION AND FURTHER WORK

We have presented a fast suffix array construction algorithm that performs very well even for worst-case
strings. Due to its simple structure, it is easy to implement. Therefore, we believe that our algorithm
can be widely used in all kinds of suffix array applications.

An open question remains. We were so far unable to prove a better worst-case time complexity
than O(n2) while at the same time we are not aware of an example showing that this bound is tight.
For certain periodic strings, we verified an O(n3/2

√
log n) time bound, but for general strings finding

a non-trivial upper bound seems to be hard since our algorithm quite arbitrarily uses the dependence
among suffixes.

Of further interest will be the parallelization of suffix array construction, since the suffix array
construction for very large DNA sequences is usually performed on servers with more than one CPU.

ACKNOWLEDGEMENTS

We wish to thank Dong Kyue Kim for providing the code of the divide & conquer algorithm, Peter Husemann for
implementing the timing for the skew algorithm, Hans-Michael Kaltenbach for advice on the analysis of the bpr
algorithm, and Sita Lange for carefully proofreading this manuscript.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

AN INCOMPLEX ALGORITHM FOR FAST SUFFIX ARRAY CONSTRUCTION 329

REFERENCES

1. Manber U, Myers EW. Suffix arrays: A new method for on-line string searches. SIAM Journal on Computing 1993;
22(5):935–948.

2. Karp RM, Miller RE, Rosenberg AL. Rapid identification of repeated patterns in strings, trees and arrays. Proceedings of
the 4th ACM Symposium on Theory of Computing (STOC 1972). ACM Press: New York, 1972; 125–136.

3. Farach-Colton M, Ferragina P, Muthukrishnan S. On the sorting-complexity of suffix tree construction. Journal of the ACM
2000; 47(6):987–1011.

4. Kurtz S. Reducing the space requirements of suffix trees. Software: Practice and Experience 1999; 29(13):1149–1171.
5. Kärkkäinen J, Sanders P. Simple linear work suffix array construction. Proceedings of the 30th International Colloquium on

Automata, Languages and Programming (ICALP 2003) (Lecture Notes in Computer Science, vol. 2719). Springer: Berlin,
2003; 943–955.

6. Kim DK, Sim JS, Park H, Park K. Constructing suffix arrays in linear time. Journal of Discrete Algorithms 2005;
3(2–4):126–142.

7. Ko P, Aluru S. Space efficient linear time construction of suffix arrays. Journal of Discrete Algorithms 2005; 3(2–4):
143–156.

8. Hon W-K, Sadakane K, Sung W-K. Breaking a time-and-space barrier in constructing full-text indices. Proceedings of the
44th Symposium on Foundations of Computer Science (FOCS 2003). IEEE Computer Society: Los Alamitos, CA, 2003;
251–260.

9. Larsson NJ, Sadakane K. Faster suffix sorting. Technical Report LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/1–
20/(1999), Department of Computer Science, Lund University, May 1999.

10. Kim DK, Jo J, Park H. A fast algorithm for constructing suffix arrays for fixed-size alphabets. Proceedings of the
3rd International Workshop on Experimental and Efficient Algorithms (Lecture Notes in Computer Science, vol. 3059),
Ribeiro CC, Martins SL (eds.). Springer: Berlin, 2004; 301–314.

11. Farach M. Optimal suffix tree construction with large alphabets. Proceedings of the 38th Annual Symposium on the
Foundations of Computer Science (FOCS 1997), October 1997; 137–143.

12. Itoh H, Tanaka H. An efficient method for in memory construction of suffix arrays. Proceedings of String Processing
and Information Retrieval Symposium and International Workshop on Groupware (SPIRE/CRIWG 1999). IEEE Computer
Society Press: Los Alamitos, CA, 1999; 81–88.

13. Seward J. On the performance of BWT sorting algorithms. Proceedings of the Data Compression Conference (DCC 2000).
IEEE Computer Society: Los Alamitos, CA, 2000; 173–182.

14. Manzini G, Ferragina P. Engineering a lightweight suffix array construction algorithm. Algorithmica 2004; 40(1):33–50.
15. Burkhardt S, Kärkkäinen J. Fast lightweight suffix array construction and checking. Proceedings of the 14th Annual

Symposium on Combinatorial Pattern Matching (CPM 2003) (Lecture Notes in Computer Science, vol. 2676). Springer:
Berlin, 2003; 55–69.

16. Burrows M, Wheeler DJ. A block-sorting lossless data compression algorithm. Technical Report Research Report 124,
Digital System Research Center, May 1994.

17. Bentley JL, McIlroy MD. Engineering a sort function. Software: Practice and Experience 1993; 23(11):1249–1265.
18. Bentley JL, Sedgewick R. Fast algorithms for sorting and searching strings. Proceedings of the 8th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 1997). Society for Industrial and Applied Mathematics: Philadelphia, PA, 1997;
360–369.

19. McIlroy PM, Bostic K, McIlroy MD. Engineering radix sort. Computing Systems 1993; 6(1):5–27.
20. Cormen TH, Leiserson CE, Rivest RL. Introduction to Algorithms (1st edn). MIT Press: Cambridge, CA, 1989.
21. Singleton RC. ACM Algorithm 347: An efficient algorithm for sorting with minimal storage. Communications of the ACM

1969; 12(3):185–187.
22. Schürmann K-B. Bpr Home. http://bibiserv.techfak.uni-bielefeld.de/bpr/ [20 June 2006].
23. Bengtsson J. Project details for memtime. http://freshmeat.net/projects/memtime [20 June 2006].
24. Seward J, Nethercote N, Fitzhardinge J et al. Valgrind Home. http://valgrind.org [20 June 2006].

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2007; 37:309–329
DOI: 10.1002/spe

	1 INTRODUCTION
	2 SUFFIX ARRAYS AND SORTING---DEFINITIONS AND TERMINOLOGY
	3 THE BUCKET-POINTER REFINEMENT ALGORITHM
	3.1 Classification of techniques
	3.2 The new algorithm
	Properties.

	Analysis.
	3.3 Engineering and implementation
	Phase 1
	Phase 2
	Sorting.
	Updating bucket pointers.
	Recursive Refinement.
	Further improvements.

	4 EXPERIMENTAL RESULTS
	4.1 Performance on very large scale data sets
	4.2 Space consumption
	4.3 Detailed runtime analysis
	4.4 Discussion

	5 CONCLUSION AND FURTHER WORK

