An incomplex algorithm for fast suffix array construction

Klaus-Bernd Schürmann and Jens Stoye*, \dagger

Universität Bielefeld, Technische Fakultät, AG Genominformatik, Germany

Abstract

SUMMARY The suffix array of a string is a permutation of all starting positions of the string's suffixes that are lexicographically sorted. We present a practical algorithm for suffix array construction that consists of two easy-to-implement components. First it sorts the suffixes with respect to a fixed length prefix; then it refines each bucket of suffixes sharing the same prefix using the order of already sorted suffixes. Other suffix array construction algorithms follow more complex strategies. Moreover, we achieve a very fast construction for common strings as well as for worst case strings by enhancing our algorithm with further techniques. Copyright (C) 2006 John Wiley \& Sons, Ltd.

Received 17 October 2005; Revised 15 May 2006; Accepted 21 May 2006
KEY WORDS: strings; indexing; suffix arrays; permutations

1. INTRODUCTION

Full text indices are used to process different kinds of sequences for diverse applications. The suffix tree is the best known full text index. It has been studied for decades and is used in many algorithmic applications. Nevertheless, in practice the suffix tree is used less than one would expect. We believe that this lack of practical usage is due to the high space requirements of the data structure. Moreover, while conceptually simple, the efficient implementation of suffix trees is difficult. Presently the construction of suffix trees in linear time is non-trivial.

Research on suffix arrays has increased since Manber and Myers [1] introduced this data structure as an alternative to suffix trees in the early 1990s. They presented an $O(n \log n)$ time algorithm to directly construct the suffix array of a text of length n. The algorithm is based on the doubling technique introduced by Karp et al. [2]. The theoretically best algorithms to construct suffix arrays run in $\Theta(n)$ time. However, although Farach et al. [3] correlated suffix sorting and linear-time suffix tree

[^0]construction in 2000, up until 2003 all known algorithms reaching this bound took a detour over suffix tree construction and afterwards obtained the ordered suffixes by traversing the suffix tree instead of directly constructing suffix arrays. The drawback of this approach is the space demand of linear-time suffix tree construction algorithms. The most space efficient implementation by Kurtz [4] uses between $8 n$ and $14 n$ bytes of space in total. Moreover, the linear-time suffix tree construction algorithms do not explicitly consider the memory hierarchy, which leads to unfavourable effects on current computer architectures. When the suffix tree grows over a certain size, the ratio of cache misses rises.

In 2003, the problem of direct linear-time construction of suffix arrays was solved independently by Kärkkäinen and Sanders [5], Kim et al. [6], and Ko and Aluru [7]. Shortly after, Hon et al. [8] gave a linear-time algorithm that needs $O(n)$ bits of working space.

Apart from these more theoretical results, there has also been much progress in practical suffix array construction. Larsson and Sadakane [9] presented a fast algorithm, called qsufsort, running in $O(n \log n)$ worst-case time using $8 n$ bytes. In common with Manber and Myers [1] they utilize the doubling technique of Karp et al. [2]. Recently, Kim et al. [10] introduced a divide and conquer algorithm based on [6] with $O(n \log \log n)$ worst-case time complexity, but with faster practical running times than the previously mentioned linear-time algorithms. Both algorithms use the odd-even scheme introduced by Farach [11] for suffix tree construction.

Other viable algorithms mainly consider space requirements. They are called lightweight algorithms due to their small space requirements. Itoh and Tanaka [12] as well as Seward [13] proposed algorithms using only $5 n$ bytes. In theory their worst-case time complexity is $\Omega\left(n^{2}\right)$. However, in practice they are very fast if the average Longest Common Prefix (LCP) is small. (By LCP we refer to the length of the LCP of two consecutive suffixes in the suffix array.) More recently, Manzini and Ferragina [14] engineered an algorithm called deep shallow suffix sorting. They combine different methods to sort suffixes depending on the LCP lengths and did in-depth work on finding suitable settings to achieve fast construction. The algorithm's space demands are small, and it is applicable for strings with high average LCP.

The most recent lightweight algorithm was developed by Burkhardt and Kärkkäinen [15]. It is called the difference-cover algorithm. Its worst-case running time is $O(n \log n)$ and it uses $O(n / \sqrt{\log n})$ extra space. For common real-life data, though, the algorithm is on average slower than deep shallow suffix sorting.

The above mentioned suffix array construction algorithms meet some of the following requirements for practical suffix array construction:

- fast construction for common real-life strings (small average LCP)—Larsson and Sadakane [9], Itoh and Tanaka [12], Seward [13], Manzini and Ferragina [14], Kim et al. [10];
- fast construction for degenerate strings (high average LCP)—Larsson and Sadakane [9], Manzini and Ferragina [14], Kim et al. [10], Burkhardt and Kärkkäinen [15], and others [1,5-7];
- small space demands-Itoh and Tanaka [12], Seward [13], Manzini and Ferragina [14], Burkhardt and Kärkkäinen [15].

Based on our experience with biological sequence data, we believe that further properties are required. There are many applications where very long sequences with mainly small LCPs, interrupted by occasional very large LCPs, are investigated. In genome comparison, for example, concatenations of similar sequences are indexed to find common subsequences, repeats, and unique regions.

Thus, to compare genomes of closely related species, one has to build suffix arrays for strings with highly variable LCPs.

We believe that the characteristics as observed in a bioinformatics context can be found in other application areas as well. Also, in Burrows-Wheeler text compression, the problem of computing the Burrows-Wheeler Transform [16] by block-sorting the input string is equivalent to suffix array construction. These facts stress the importance of efficient ubiquitous suffix array construction algorithms.

In Section 2 we give the basic definitions and notations concerning suffix arrays and suffix sorting. Section 3 is devoted to our approach, the bucket-pointer refinement (bpr) algorithm. Experimental results are presented in Section 4. Section 5 concludes and discusses open questions.

2. SUFFIX ARRAYS AND SORTING-DEFINITIONS AND TERMINOLOGY

Let Σ be a finite ordered alphabet of size $|\Sigma|$ and $t=t_{1} t_{2} \ldots t_{n} \in \Sigma^{n}$ a text over Σ of length n. Let $\$$ be a character not contained in Σ, and assume $\$<c$ for all $c \in \Sigma$. For illustration purposes, we will often consider a $\$$-padded extension of string t, denoted $t^{+}=t \n. For $1 \leq i \leq n$, let $s_{i}(t)=t_{i} \ldots t_{n}$ indicate the i th (non-empty) suffix of string t. The starting position i is called its suffix number.

The suffix array sa(t) of t is a permutation of the suffix numbers $\{1 \ldots n\}$, according to the lexicographic ordering of the n suffixes of t. More precisely, for all pairs of indices $(k, l), 1 \leq k<$ $l \leq n$, the suffix $s_{s a[k]}(t)$ at position k in the suffix array is lexicographically smaller than the suffix $s_{\text {sall }]}(t)$ at position l in the suffix array.

A bucket $b=[l, r]$ is an interval of the suffix array $s a$, determined by its left and right end in sa. A bucket $b_{p}=[l, r]$ is called a level- m bucket, if all contained suffixes $s_{\text {sall] }}(t), s_{\text {sa }[l+1]}(t), \ldots, s_{\text {sa }[r]}(t)$ share a common prefix p of length m.

A radix step denotes the part of an algorithm in which strings are sorted according to the characters at a certain offset in the string. The offset is called radix level. A radix step is like a single iteration of radix sort.

Range reduction performs a monotone, bijective function, rank: $\Sigma \rightarrow\{0, \ldots,|\Sigma|-1\}$, of the alphabet to the first $|\Sigma|$ natural numbers. More precisely, for two characters $c_{1}<c_{2}$ of alphabet Σ, $\operatorname{rank}\left(c_{1}\right)$ is smaller than $\operatorname{rank}\left(c_{2}\right)$. Applied to a string t, range reduction maps each character c of t to its $\operatorname{rank}, \operatorname{rank}(c)$. Note that the suffix array of a range reduced string equals the suffix array of the original string.

A multiple character encoding for strings of length d is a monotone bijective function code ${ }_{d}: \Sigma^{d} \rightarrow$ $\left\{0, \ldots,|\Sigma|^{d}-1\right\}$ such that for strings u, v of length $d, \operatorname{code}_{d}(u)<\operatorname{code}_{d}(v)$ if and only if u is lexicographically smaller than v. For a given rank function, such an encoding can easily be defined as $\operatorname{code}_{d}(u)=\sum_{k=1}^{d}|\Sigma|^{d-k} \operatorname{rank}(u[i+k-1])$. The encoding can be generalized to strings of length greater than d, by just encoding the first d characters. Given the encoding $\operatorname{code}_{d}(i)$ for suffix $s_{i}(t)$, $1 \leq i<n$, the encoding for suffix $s_{i+1}(t)$ can be derived by shifting away the first character of $s_{i}(t)$ and adding the rank of character $t^{+}[i+d]$:

$$
\begin{equation*}
\operatorname{code}_{d}(i+1)=|\Sigma|\left(\operatorname{code}_{d}(i) \bmod |\Sigma|^{d-1}\right)+\operatorname{rank}\left(t^{+}[i+d]\right) \tag{1}
\end{equation*}
$$

3. THE BUCKET-POINTER REFINEMENT ALGORITHM

Most of the previously mentioned practical algorithms order suffixes with respect to their leading characters into buckets, which are then recursively refined. Before describing our new algorithm that uses a similar though somewhat enhanced technique, we classify the specific techniques used.

3.1. Classification of techniques

The first type of bucket refinement techniques found in the literature is formed by string sorting methods without using the dependencies among suffixes. Most representatives of this class sort the suffixes with respect to their leading characters and then refine the groups of suffixes with equal prefixes by recursively performing radix steps until unique prefixes are obtained [17-19].

The second type of algorithms use the order of previously computed suffixes in the refinement phase. If suffixes $s_{i}(t)$ and $s_{j}(t)$ share a common prefix of length offset, the order of $s_{i}(t)$ and $s_{j}(t)$ can be derived from the ordering of suffixes $s_{i+o f s e t}(t)$ and $s_{j+o f f s e t}(t)$. Many practical algorithms that use this technique, also apply methods of the first type to fall back upon if the order of suffixes at offset is not yet available [12-14].

We further divide the second type into two subgroups: the push method, and the pull method. The push method uses the ordering of previously determined groups that share a leading character and pass this ordering on to undetermined buckets. Some representatives that use this technique are: Itoh and Tanaka's two-stage algorithm [12], Seward's copy algorithm [13], and the deep shallow algorithm of Manzini and Ferragina [14].

Pull methods look up the order of suffixes $s_{i+o f f s e t}(t)$ and $s_{j+o f f s e t}(t)$ to determine the order of $s_{i}(t)$ and $s_{j}(t)$. This technique is used in many algorithms. Larsson and Sadakane's qsufsort [9], Seward's cache algorithm [13], and the deep shallow sorting of Manzini and Ferragina [14] are examples of practical algorithms that use this method. The difference-cover algorithm by Burkhardt and Kärkkäinen [15] first sorts a certain subset of suffixes to ensure the existence of a bounded offset to this subset of previously sorted suffixes.

The linear-time algorithms of Kärkkäinen and Sanders [5], Kim et al. [6], and Ko and Aluru [7], as well as the $O(n \log \log n)$ time algorithm of Kim et al. [10] follow different divide and conquer schemes, but share the basic framework. They divide the suffixes into two groups, recursively sort one of the groups, use the ordering of suffixes in the sorted group to determine the ordering of suffixes in the other group, and finally merge the two sorted groups to receive the total ordering of all suffixes, namely the suffix array. These are not bucket refinement algorithms. Nevertheless, since they all pass the sorted order of suffixes of one group on to determine the ordering of the other group, they could be classified as push algorithms (although their overall strategy is more advanced).

3.2. The new algorithm

The new bpr algorithm that we present in this paper combines the approaches of refining groups with equal prefix by recursively performing radix steps and the pull technique. It mainly consists of two simple phases. Given a parameter d (usually less than $\log n$), the suffixes are lexicographically sorted in the first phase, so that suffixes with the same d-length prefix are grouped together. Before entering the second phase, a pointer to its bucket $\operatorname{bptr}[i]$ is computed for each suffix with suffix number i,

String to build suffix array for: $\quad t=\begin{array}{llllllll}\text { e } & \text { f } & \text { e } & \mathrm{f} & \text { e } & \mathrm{f} & \text { a } & \text { a }\end{array}$

			3	5		8		
$s a$ after initial sorting ($d=2$):	a\$	aa		ef		fa	fe	
	8	7	1	3	5	6	2	4
	1	2	3	4	5	6	7	8
bptr after initial sorting:	5	8	5	8	5	6	2	1
$s a$ after sorting bucket [3, 5]:	8	7	5	1	3	6	2	4
	1	2	3	4	5	6	7	8
bptr after updating positions $1,3,5$:	5	8	5	8	3	6	2	1

Figure 1. Example of the refinement procedure after the initial sorting of suffixes regarding prefixes of length $d=2$. The suffix array sa and the table of bucket pointers bptr is shown before and after applying the refinement steps to the bucket $[3,5]$ containing suffixes $1,3,5$ with respect to offset $=2$. The sort keys (drawn in bold face) are $\operatorname{sortkey}(1)=\operatorname{bptr}[1+2]=5$, $\operatorname{sortkey}(3)=\operatorname{bptr}[3+2]=5$, and $\operatorname{sortkey}(3)=\operatorname{bptr}[5+2]=2$. After the sorting, the bucket pointers for the suffixes $1,3,5$ in bucket [3,5] are updated to $\operatorname{bptr}[1]=5, \operatorname{bptr}[3]=5$, and $\operatorname{bptr}[5]=3$.
such that suffixes with the same d-length prefix share the same bucket pointer. Lexicographically smaller suffixes have smaller bucket pointers. In our descriptions and implementation we use the position of the rightmost suffix in each bucket as bucket pointer.

In the second phase, the buckets containing suffixes with equal prefix are recursively refined. Let $[l, r]$ be the segment in the suffix array sa forming a bucket B of suffixes sa[l], sa[l+1], $\ldots, s a[r]$ with equal prefix of length offset. Then, the refinement procedure works in the following way. The suffixes in B are sorted according to the bucket pointer at offset offset. That is, for each suffix $s a[k]$ in $B, l \leq k \leq r, b p t r[s a[k]+o f f s e t]$ is used as the sort key.

After sorting the suffixes of B, the sub-buckets are determined that contain suffixes sharing the same sort key. Then, for each suffix sa[k], $l \leq k \leq r$, its bucket pointer $b p t r[s a[k]]$ is updated to point to the new sub-bucket containing sa[k]. Finally, all sub-buckets are refined recursively by calling the refinement procedure with increased offset, offse $t_{\text {new }}=o f f s e t_{\text {old }}+d$. After termination of the algorithm, $s a$ is the suffix array and the array bptr reflects the inverse suffix array. An example of the refinement procedure is given in Figure 1.

Properties. The main improvement of our algorithm, compared to earlier algorithms performing bucket refinements, is that it benefits from the immediate use of subdivided bucket pointers after each refinement step. With increasing number of subdivided buckets, it becomes more and more likely that different bucket pointers can be used as sort keys during a refinement step, such that the expected recursion depth decreases for the buckets refined later. The final position of a suffix i in the current bucket is reached at the latest when $\operatorname{bptr}[i+o f f s e t]$ is unique for the current offset. That is, when the suffix $i+o f f s e t$ has reached its final position.

Another improvement of our algorithm is that in each recursion step offset can be increased by d. Hence, the recursion depth decreases by a factor of d, compared to algorithms performing characterwise radix steps.

Note that the algorithm can be applied to arbitrary ordered alphabets, since it just uses comparisons to perform suffix sorting.

Analysis. So far we were not able to determine tight time bounds for our algorithm. The problem is that the algorithm quite arbitrarily uses the dependence among suffixes. Hence, we can only state a straight forward quadratic time complexity for the general worst case, while a subquadratic upper time bound can be found for certain periodic strings.

The simple $O\left(n^{2}\right)$ upper time bound can be seen as follows. The first phase of the algorithm can simply be performed in linear time (see Section 3.3 for more details). For the second phase, we assume that an $O(n \log n)$ time sorting procedure is applied. In each recursion level there are at most n suffixes to be sorted in $O(n \log n)$ time. The maximal offset when the end of the string is reached is n, and offset is incremented by d in each recursive call. Hence, the maximal recursion depth is n / d. Therefore, the worst-case time complexity of the algorithm is limited by $O\left(n^{2} \log n / d\right)$. By setting $d=\log n$, we obtain the upper bound of $O\left(n^{2}\right)$ without taking into account the dependencies among suffixes.

Now, we focus on especially bad instances for our algorithm; in particular, strings maximizing the recursion depth. Since the recursion depth is limited by the LCPs of suffixes to be sorted, periodic strings maximizing the average LCP are especially hard strings for our algorithm.

A string a^{n} consisting of one repeated character maximizes the average LCP and is therefore analysed as a particularly difficult input string. In the first phase of our algorithm the last $d-1$ suffixes $s_{n+2-d}\left(\mathrm{a}^{n}\right), s_{n+3-d}\left(\mathrm{a}^{n}\right), \ldots, s_{n}\left(\mathrm{a}^{n}\right)$ are mapped to singleton buckets. One large bucket containing all the other suffixes with leading prefix a^{d} remains to be refined. In each recursive refinement step, the remaining large bucket is again subdivided into offset singleton buckets and one larger bucket, while offset is incremented by d, starting with offset $=d$ in step 1 . Hence, in the i th refinement step, $d \cdot i$ suffixes are subdivided into singleton buckets. The recursion proceeds until all buckets are singleton, that is, until a recursion depth recdepth is reached, such that $n \leq d-1+\sum_{i=1}^{\text {recdepth }} d \cdot i=$ $d-1+d($ recdepth $($ recdepth +1$) / 2)$. Therefore, for the string a^{n} the recursion depth recdepth of our algorithm is in $\Theta(\sqrt{n / d})$. Less than n suffixes have to be sorted in each recursive step. Hence, we multiply sorting complexity and recursion depth recdepth to get the time bound $O(n \log n \sqrt{n / d})$ of our algorithm for the string a^{n}. By setting $d=\log n$ we achieve a running time of $O(n \log n \sqrt{n / \log n})=$ $O\left(n^{3 / 2} \sqrt{\log n}\right)$. By taking into account the decreasing number of suffixes to be sorted with increasing recursion depth, a more sophisticated analysis shows the same time bound. Therefore, this worst-case time bound seems to be tight for this string.

3.3. Engineering and implementation

In this section, we present more detailed descriptions of the two phases of the algorithm and briefly explain enhancements to achieve faster construction times in practice.

Phase 1

We perform the initial sorting regarding the d-length prefixes of the suffixes by bucket sort, using $\operatorname{code}_{d}(i)$ as the sort key for suffix $i, 1 \leq i \leq n$.

The bucket sorting is performed using two scans of the sequence, thereby successively computing code $_{d}(i)$ for each suffix using Equation (1). There are $|\Sigma|^{d}$ buckets, one for each possible code ${ }_{d}$.

In the first scan, the size of each bucket is determined by counting the number of suffixes for each possible code_{d}. The outcome of this is used to compute the starting position for each bucket. These positions are stored in the table $b k t$, which is of size $|\Sigma|^{d}$. During the second scan, the suffix numbers are mapped to the buckets, where suffix number i is mapped to bucket number $\operatorname{code}_{d}(i)$.

After the bucket sort, the computation of the bucket pointer table bptr can be performed by another scan of the sequence. For suffix i, the bucket pointer $\operatorname{bptr}[i]$ is simply the rightmost position of the bucket containing $i, \operatorname{bptr}[i]=b k t\left[\operatorname{code}_{d}(i)+1\right]-1$.

Phase 2

We now give a more in-depth description of the three steps of the refinement procedure and present improvements to the basic approach.

Sorting. In the refinement procedure, the suffixes are first sorted with respect to a certain offset using the bucket pointer $b p t r[i+o f f s e t]$ as the sort key for suffix i. The sorting algorithms used to perform this are well known. Insertion Sort is used for buckets of size up to 15 . For the larger buckets, we apply Quicksort with Lomuto's partitioning scheme [20, Problem 8-2]. The pivot is chosen to be the median of three elements due to Singleton [21]. In addition, we apply a heuristic for the case that we have many equal bucket pointers. After a partitioning step, we just extend the partitioning position as long as the sort key equals the pivot, such that there is an already sorted region around this position and the size of the remaining unsorted partitions decreases. This heuristic works especially well for periodic strings.

Updating bucket pointers. The update of bucket pointers can simply be performed by a right-to-left scan of the current bucket. As long as the sort keys of consecutive suffixes are equal, they are located in the same refined bucket, and the bucket pointer is set to the rightmost position of the refined bucket. Note that the refined bucket positions are implicitly contained in the bucket pointer table $b p t r$. The left pointer l of a bucket is the right pointer of the bucket directly to the left increased by one, and the right pointer r is simply the bucket pointer for the suffix sa[l] at position $l, r=b p t r[s a[l]]$, since for each suffix i its bucket pointer $b p t r[i]$ points to the rightmost position of its bucket.

Recursive Refinement. The recursive refinement procedure is usually called with an incremented offset, offset $+d$. Note that for a sub-bucket $b_{\text {sub }}$ of b containing each suffix $s_{i}(t)$, for which the suffix $s_{i+o f f s e t}(t)$ with respect to offset is also contained in b, the offset can be doubled. This is so because all suffixes contained in b share a common prefix of length offset, and for each suffix $s_{i}(t)$ in $b_{\text {sub }}$, there is also the suffix $s_{i+o f f s e t}(t)$ with respect to offset in b. Hence, all suffixes contained in $b_{\text {sub }}$ share a prefix of length 2offset.

Further on, we add an additional heuristic to avoid the unnecessary repeated sorting of buckets. For a bucket consisting only of suffixes that all share a common prefix much larger than the current offset, many refinement steps may be performed without actually refining the bucket. This may continue until offset reaches the length of the common prefix. Therefore, if a bucket is not refined during a recursion step, we search for the lowest offset dividing the bucket. This is performed by just iteratively scanning the bucket pointers of the contained suffixes with respect to offset and incrementing offset by d after each run. As soon as a bucket pointer different from the others is met, the current offset is used to call the refinement procedure.

Table I. Worst-case time complexities of the investigated suffix array construction algorithms.

	deep				difference		
bpr	shallow	cache	copy	qsufsort	cover	conquer	skew
$O\left(n^{2}\right)$	$O\left(n^{2} \log n\right)$	$O\left(n^{2} \log n\right)$	$O\left(n^{2} \log n\right)$	$O(n \log n)$	$O(n \log n)$	$O(n \log \log n)$	$\Theta(n)$

Further improvements. We enhanced our algorithm by the copy method of Seward [13] that was earlier mentioned by Burrows and Wheeler [16]. If the buckets consisting of suffixes with the leading character p are determined, they form a level-1 (L1) bucket B_{p}. Let $b_{c_{1} p}, b_{c_{2} p}, \ldots, b_{c_{|\Sigma|} p}, c_{i} \in \Sigma$, be level-2 (L2) buckets with the second character p. The ordering of suffixes in B_{p} can be used to forward the ordering to the specified L 2 buckets by performing a single pass over B_{p}. If i is the current suffix number in B_{p} and $c=t[i-1]$ is the previous character, then the suffix number $i-1$ is assigned to the first non-determined position of bucket $b_{c p}$. Seward also showed how to derive the positions of suffixes in $b_{p p}$ using the buckets $b_{c_{i} p}, p \neq c_{i} \in \Sigma$. Hence, the usage of Seward's copy technique avoids the comparison-based sorting of more than half of the buckets.

Our program sorts the suffixes in L1 buckets $B_{c}, c \in \Sigma$, comparison-based in ascending order with respect to the number of suffixes, $\left|B_{c}\right|-\left|b_{c c}\right|$.

4. EXPERIMENTAL RESULTS

In this section we investigate the practical construction times of our algorithm for DNA sequences, common texts, and artificially generated strings with a high average LCP.

We compared our bpr implementation [22] to seven other practical implementations: deep shallow by Manzini and Ferragina [14], cache and copy by Seward [13], qsufsort by Larsson and Sadakane [9], difference-cover by Burkhardt and Kärkkäinen [15], divide and conquer by Kim et al. [10], and skew by Kärkkäinen and Sanders [5]. The worst-case time complexities of the algorithms are shown in Table I. Since the original skew implementation is limited to integer alphabets, in all instances we mapped the character string to an integer array.

The experiments were performed on a computer with 1.3 GHz Intel Pentium ${ }^{\mathrm{TM}} \mathrm{M}^{(K l a m a t h)}$ processor, running the Linux operating system. The memory hierarchy is composed of separate L1 instruction and data cache, each of size 32 Kbyte and 3 cycles latency, a 1024 Kbyte L2 cache with 10 cycles latency, and 512 Mbytes of main memory. Each cache is 8 -way associative with 64 byte line size. All programs were compiled with the $g c c$ compiler, respectively $g++$ compiler, with optimization options '-O3 -fomit-frame-pointer -funroll-loops'.

The investigated data files are listed in Table II and are ordered by average LCP. For the DNA sequences, we selected genomic DNA from different species: the whole genome of the bacteria Escherichia coli (E. coli), the fourth chromosome of the flowering plant Arabidopsis thaliana (A. thaliana), the first chromosome of the nematode Caenorhabditis elegans (C. elegans), and the human (H. sapiens) chromosome 22. Moreover, we investigated the construction times for different

Table II. Description of the data set.

Data set	LCP		String length	Alphabet size	Description
	average	maximum			
E. coli genome	17	2815	4638690	4	Escherichia coli genome
A. thaliana chr. 4	58	30319	12061490	7	A. thaliana chromosome 4
H. sapiens chr. 22	1979	199999	34553758	5	H. sapiens chromosome 22
C. elegans chr. 1	3181	110283	14188020	5	C. elegans chromosome 1
6 Streptococci	131	8091	11635882	5	6 Streptococcus genomes
4 Chlamydophila	1555	23625	4856123	6	4 Chlamydophila genomes
3 E. coli	68061	1316097	14776363	5	3 E. coli genomes
bible	13	551	4047392	63	King James bible
world192	23	559	2473400	94	CIA world fact book
$r f c$	87	3445	50000000	110	Texts from the RFC project
sprot34	91	2665	50000000	66	SwissProt database
howto	267	70720	39422105	197	Linux Howto files
reuters	280	24449	50000000	91	Reuters news in XML
w3c	478	29752	50000000	255	html files of w3c homepage
$j d k 13$	654	34557	50000000	110	JDK 1.3 doc files
linux	766	136035	50000000	256	linux kernel source files
etext99	1845	286352	50000000	120	Project Gutenberg texts
gcc	14745	856970	50000000	121	gcc 3.0 source files
random	4	9	20000000	26	Bernoulli string
period 500000	9506251	19500000	20000000	26	Repeated Bernoulli string
period 1000	9999001	19999000	20000000	26	Repeated Bernoulli string
period 20	9999981	19999980	20000000	17	Repeated Bernoulli string
Fibonacci	5029840	10772535	20000000	2	Fibonacci string

concatenated DNA sequences of certain families. For this we used six Streptococcus genomes, four genomes of the Chlamydophila family, and three different E. coli genomes.

For the evaluation of common real-world strings, we used the suite of test files given by Manzini and Ferragina in [14]. The strings are usually concatenations of text files, or alternatively, tar archives. Due to the memory constraints of our test computer, we just took the last 50 million characters of those text files that exceeded the 50 million character limit.

The artificial files were generated as described by Burkhardt and Kärkkäinen [15]: a random string made out of Bernoulli distributed characters and periodic strings composed of an initial random string that is repeated until a length of 20 million characters is reached. We used initial random strings of length 20,1000 and 500000 to generate the periodic strings. Also, we investigated a Fibonacci string of length 20 million characters.

The suffix array construction times of the different algorithms are given in Tables III-V. Table III contains the construction times for the DNA sequences. Our $b p r$ algorithm is the fastest suffix array construction algorithm for most DNA sequences. Only deep shallow is about 5\% faster for the fourth

Table III. Suffix array construction times for different DNA sequences and generalized DNA sequences by different algorithms, with $d=7$ for $b p r$.

DNA sequences	Construction time (s)							
	bpr	deep shallow	cache	copy	qsufsort	difference cover	divide \& conquer	skew
E. coli genome	1.46	1.71	3.69	2.89	2.87	4.32	5.81	13.48
A. thaliana chr. 4	5.24	5.01	12.24	9.94	8.42	13.29	16.94	38.30
H. sapiens chr. 22	15.92	16.64	40.08	30.04	26.52	44.93	51.31	112.38
C. elegans chr. 1	5.70	6.03	20.79	17.48	13.09	16.94	18.64	41.28
6 Streptococci	5.27	5.97	14.43	10.38	13.16	14.50	16.40	36.24
4 Chlamydophila	2.31	3.43	17.46	14.45	7.49	5.59	6.13	14.13
3 E. coli	8.01	13.75	437.18	1294.30	32.72	20.57	21.58	47.32

Table IV. Suffix array construction times for various texts by different algorithms, with $d=3$ for $b p r$.

Text	Construction time (s)							
	bpr	deep shallow	cache	copy	qsufsort	difference cover	divide \& conquer	skew
bible	1.90	1.41	2.91	2.24	3.17	3.74	6.39	11.59
world192	1.05	0.73	1.47	1.24	1.91	2.28	3.57	6.45
$r f c$	31.16	26.37	57.97	55.21	58.10	71.10	101.57	169.03
sprot34	35.75	29.77	71.95	71.96	60.24	81.76	104.71	169.16
howto	22.10	19.63	39.92	47.27	41.14	48.45	83.32	141.50
reuters	47.32	52.74	111.80	157.63	73.19	108.85	108.84	169.18
w3c2	41.04	61.37	82.46	167.76	69.40	96.02	105.89	163.15
jdk13	40.35	47.23	101.58	263.86	73.75	97.12	98.13	162.39
linux	23.72	23.95	50.93	99.47	61.01	65.66	98.06	173.05
etext99	32.60	33.25	68.84	267.48	61.19	65.31	110.95	190.33
gcc	33.19	76.23	2894.81	21836.56	59.44	73.54	83.96	162.06

chromosome of A. thaliana. However, for sequences with higher average LCP, bpr outperforms all other existing algorithms. For the concatenated sequence of three E. coli genomes with average LCP 68061 , deep shallow, the closest competitor of $b p r$, is 1.72 times slower.

For the real-world strings the running times of the investigated algorithms are shown in Table IV. For the texts with small average LCP, deep shallow is the fastest suffix array construction algorithm. $B p r$ shows the second best running times. However, when the average LCP exceeds a limit of about 300, our algorithm is the fastest among all investigated algorithms. For $g c c$ with an average LCP of 14745 , it is clearly faster than the others.

Table V. Suffix array construction times for artificial strings by different algorithms, with $d=3$ for $b p r$.

Artificial strings	Construction time (s)							
	bpr	deep shallow	cache	copy	qsufsort	difference cover	divide \& conquer	skew
random	8.95	8.31	15.17	10.83	14.83	20.19	37.52	47.25
period 500000	12.33	710.52	-	-	89.52	47.28	31.21	61.04
period 1000	16.76	1040.45	-	-	86.45	78.87	21.96	52.34
period 20	41.61	-	-	-	74.74	59.38	10.33	43.24
Fibonacci string	28.00	680.43	-	-	82.62	69.63	22.21	38.17

For degenerated strings the construction times are given in Table V . Wherever an algorithm used more than 12 h of computation time, we stopped the computation. This is indicated by a dash in the table. Here, bpr is much quicker than deep shallow, cache, and copy, which are very fast algorithms for strings with lower average LCP. Even compared to the algorithms qsufsort, difference-cover, divide \& conquer, and skew with good worst-case time complexities, our algorithm performs very well. For strings with period 1000 and 500000 it is by far the fastest algorithm. For strings with period 20 and for the Fibonacci string, just the divide \& conquer algorithm with its $O(n \log \log n)$ worst-case time complexity is faster.

In summary, one can say that $b p r$ is always among the two fastest of the investigated algorithms. In most cases, and specifically for all but one DNA sequences, it is the fastest algorithm. For strings with very small average LCP its running time is comparable to deep shallow, cache, and copy. With an increasing average LCP, it is clearly the fastest algorithm. Even for worst-case strings with very high average LCP, bpr performs well compared to the algorithms qsufsort, difference-cover, and divide \& conquer with good worst-case time complexity, whereas the construction times for deep shallow, cache, and copy escalate.

4.1. Performance on very large scale data sets

In a separate experiment, we took the construction times for the human and mouse genome on a Sun Fire V1280 server running twelve 900 MHz UltraSparc-III processors. Its memory hierarchy is composed of 32 Kbyte level-1 instruction and 64 Kbyte level-1 data cache, 8 Mbyte level-2 cache, and 96 Gbyte main memory. The genomes are concatenated DNA sequences of all their chromosomes where the human genome consists of about 3.08 billion nucleotides and the mouse genome of about 2.62 billion, in total. We compiled the implementations of suffix array construction algorithms with further 64-bit options '-m64-mptr64'.

Bpr with $d=9$ needs 7 h 9 min for the human genome and 5 h 37 min for the mouse genome. The other algorithms abort unexpectedly. It seems that their particular implementations are limited to 32 bit address space. Note that, at the time we were performing the experiments, the server ran multiple concurrent processes, such that the times may vary in different runs.

Table VI. Average virtual memory space consumption per input character for the different suffix array construction algorithms.

Bytes per input character								
bpr	deep shallow	cache	copy	qsufsort	difference cover	 conquer	skew	
9.22	5.08	6.06	5.06	8.05	5.96	15.88	31.45	

4.2. Space consumption

Besides the running times, we measured the space consumptions of the different suffix array construction algorithms over all data files. We used memtime [23] to get the peak virtual memory consumption traced by the linux operating system. Table VI shows the results in average number of bytes per character of the used input sequences.

With $5.06 n$ to $6.06 n$ bytes, the lightweight algorithms copy, deep shallow, difference-cover, and cache use slightly more space than the theoretical minimum of $5 n$ bytes, consisting of $4 n$ bytes for the suffix array and n bytes for the input string. qsufsort's $8.05 n$ and bpr's $9.22 n$ bytes are still under the limit of $10 n$ bytes, while divide \& conquer and skew using $15.88 n$ and $31.45 n$ bytes, respectively, consume significantly more space.

4.3. Detailed runtime analysis

For a more detailed performance analysis of the suffix array construction algorithms, we used the profiler and cache simulator valgrind [24] to count the number of executed instructions and to simulate the caching behaviour.

The number of executed instructions of the different algorithms is shown in Table VII, the L1 data references in Table VIII, the L1 misses, or alternatively, L2 references in Table IX, and the number of L2 misses in Table X. We stopped the computation whenever a simulation used more than 24 h , which is indicated by a dash in the tables. In addition, Figures 2 and 3 exemplarily show bar charts for H. sapiens chromosome 22 and the linux source code. Note that besides the instructions and cache references of the pure suffix array construction algorithms, valgrind also counts those of the different IO routines for reading the input strings from the disk.

It is impressive that the instruction counts for $b p r$ clearly outperform all other algorithms for all but one string, the artificial string with period length 20 for which divide \& conquer and skew take fewer instructions. For real-world strings, the second best algorithm, deep shallow, executes on average more than twice as many instructions, and it is more sensitive with respect to higher average LCP. For periodic strings, deep shallow takes an escalating number of instructions. In contrast, $b p r$ is stable with respect to high average LCP. Even for periodic strings, the average instruction count of $b p r$ is comparable with the linear-time algorithm skew and the quasi-linear divide \& conquer algorithm.

The caching behaviour of $b p r$ is not as optimal as we expected. Although it takes the smallest number of L1 cache references for all but the bible and period 20 strings, its inferior miss ratio often leads to
Table VII. Number of executed instructions.

		Executed instructions (thousand)							
Sequence type	Sequence	bpr	deep shallow	cache	copy	qsufsort	difference cover	divide \& conquer	skew
DNA sequence	E. coli genome	590968	1116001	3048715	2924944	1447669	4169253	2007812	1793770
	A. thaliana chr. 4	1577214	2975394	10840397	10391687	4076698	11488842	5224565	4764062
	H. sapiens chr. 22	5054919	9077493	28489800	26490978	11816047	37186250	15266866	13760985
	C. elegans chr. 1	1766219	4082728	28938600	22816333	5746697	16212057	6327318	5615001
	6 Streptococci	1605429	4264965	14712656	10621542	4905627	12411770	5067023	4543454
	4 Chlamydophila	840548	3678525	34218426	22160559	2585444	5344131	2113043	1911102
	3 E. coli	2484036	14478491	1016365699	2191651989	9904217	16992486	6469187	5876152
Text	bible	774557	1018210	2520999	2477103	1481335	4056576	1868161	1491339
	world192	444263	622208	1524604	1582120	874543	2815562	1138542	910405
	$r f c$	11349518	18651462	50950884	66425234	22048783	63936958	24977285	19291184
	sprot 34	11332660	23514808	76297396	92711305	21206686	70779027	23969935	19247803
	howto	7941501	13166719	29340824	59265649	16517644	43743216	18918419	15758944
	reuters	14099318	48711948	146182468	229252426	23136951	79088119	25489119	19593772
	w3c2	13472295	82101938	99424334	258178856	23430229	85262620	25681277	19533352
	jdk13	14038110	49319246	134990795	423915692	23558497	85567980	25675083	19500321
	linux	10162913	18854491	50234557	149806756	23903435	64257123	24439748	19906506
	etext99	11063320	22007979	47465418	416485942	22307806	53537497	23962778	20053024
	gcc	15993418	126675467	7095650010	-	23090215	72258976	24885116	19939060
Artificial	random	2975030	5495448	10497086	10333982	5270092	16373218	7594978	5693778
	period 500000	4893746	1307962759	-	-	15000996	41807848	7649106	7781054
	period 1000	3803035	2064251713	-	-	15206346	44399867	7888927	7872762
	period 20	11395604	-	-	-	16802830	49033908	9212229	7618039
	Fibonacci string	7091709	1083038179	-	-	15706027	48193424	11590507	7657301

Table VIII. Number of L1 cache references.

Sequence type	Sequence	L1 data cache references (thousand)							
		bpr	deep shallow	cache	copy	qsufsort	difference cover	divide \& conquer	skew
DNA sequence	E. coli genome	315960	390145	1417732	1514313	722751	2161443	1200158	1061180
	A. thaliana chr. 4	811668	1037317	5385296	5977490	2005570	5955907	3107695	2818054
	H. sapiens chr. 22	2621604	3110712	13401675	14173009	5830116	19541493	8945029	8141712
	C. elegans chr. 1	914101	1583436	16289055	15172626	2834950	8576998	3684766	3323156
	6 Streptococci	831339	1684693	7799907	6256366	2422510	6218415	3012958	2689070
	4 Chlamydophila	421644	1646859	20210568	15802123	1282902	2613074	1256153	1130888
	3 E. coli	1308183	7114216	611666511	1627469385	4915532	8341563	3840080	3475480
Text	bible	406461	376163	1163298	1268490	731942	2027115	1038776	882752
	world192	232912	236954	731716	873982	437246	1434013	635910	538872
	$r f c$	6055629	7290350	26000246	42206854	10734274	32815923	13250700	11420932
	sprot34	6031435	8798704	41016605	61492481	10423755	37730780	13053571	11398901
	howto	4185612	5048757	13893174	37915444	8048669	21770064	10297684	9314364
	reuters	7593193	19954465	81970742	161985424	11378689	42758079	13351247	11608824
	w3c2	7252083	41998735	54302218	184293769	11598038	45809587	13379028	11577033
	jdk13	7555931	20207358	75418755	307107639	11701574	46736290	13378402	11562449
	linux	5521524	7471093	25663673	103994819	11621838	32517373	13155616	11773550
	etext99	5853319	8447063	22866943	300615222	10819095	26899839	13045597	11853018
	gcc	8909280	64505787	4275774325	-	11351015	38131061	13234281	11801330
Artificial	random	1530409	1909155	4696771	4618954	2733712	8358796	4659477	3385913
	period 500000	2549647	778806712	-	-	7753145	23845004	4747209	4624488
	period 1000	1997493	1058027759	-	-	7678600	25638336	4816024	4706577
	period 20	5824351	-	-	-	8239241	28628901	5508884	4515564
	Fibonacci string	3804577	644630685	-	-	8032388	28346724	6501889	4544172

Table IX. Number of L1 cache misses, or alternatively, L2 cache references.

Sequence type	Sequence	L1 cache misses (thousand)							
		bpr	deep shallow	cache	copy	qsufsort	difference cover	divide \& conquer	skew
DNA sequence	E. coli genome	25552	22750	34669	27001	32974	231628	72440	146963
	A. thaliana chr. 4	82813	64487	102685	77563	104643	231628	190843	391901
	H. sapiens chr. 22	263348	208974	324054	252211	302949	736584	536723	1101259
	C. elegans chr. 1	85120	73273	200063	162155	143677	264567	208204	426806
	6 Streptococci	83021	73343	122604	88793	146658	234025	185476	370137
	4 Chlamydophila	37789	39424	157369	111068	87457	92233	76464	154788
	3 E. coli	133774	171457	4934361	12364222	343281	316081	237797	481498
Text	bible	30023	19355	29400	22464	39778	67386	79079	124044
	world192	15614	10141	15673	11472	23478	37772	47921	74697
	$r f c$	530937	354540	482414	411912	746458	1190125	1057183	1578645
	sprot 34	650955	451872	575495	453905	768979	1458680	1079116	1591473
	howto	352315	251729	353580	448174	530641	801628	863326	1353305
	reuters	851567	770883	833980	803472	916619	1875046	1123812	1592107
	$w 3 c 2$	780447	605451	688276	1024135	915366	1748600	1151603	1553724
	jdk13	812871	808250	783493	1419869	938076	1855852	1089554	1531613
	linux	447413	301789	437131	860558	810693	1038691	1028326	1635774
	etext99	544000	405860	560245	2260457	766160	1076752	1096127	1756199
	gcc	963115	1499266	25889834	-	803007	1206890	948605	1555627
Artificial	random	142861	121016	153138	131819	136937	368134	400908	499383
	period 500000	192045	12110399	-	-	931467	554347	353680	623189
	period 1000	296405	14425652	-	-	1060907	1341299	298064	535734
	period 20	1208572	-	-	-	1143283	740147	102591	488128
	Fibonacci string	511027	11032995	-	-	951990	905678	217466	428954

Table X. Number of L2 cache misses.

Sequence type	Sequence	L2 cache misses (thousand)							
		bpr	deep shallow	cache	copy	qsufsort	difference cover	divide \& conquer	skew
DNA sequence	E. coli genome	11457	11355	18571	12205	22652	38041	53940	127920
	A. thaliana chr. 4	31659	36285	59162	41093	62491	129410	156698	359369
	H. sapiens chr. 22	90296	126741	204391	151006	211124	447961	467784	1038501
	C. elegans chr. 1	37212	43176	113762	69365	112818	153238	172002	389561
	6 Streptococci	35932	44546	80741	51382	106906	135290	153082	341193
	4 Chlamydophila	18906	22453	100552	57958	72749	47106	56778	132813
	3 E. coli	70309	124041	4425379	10701120	313477	193982	200688	444152
Text	bible	10991	7334	12579	7595	22952	30800	55001	108376
	world192	5847	2870	5320	2851	14586	13791	30034	59444
	$r f c$	223540	171034	265918	199120	473103	681694	822048	1479736
	sprot34	295917	179474	296792	202541	483257	768487	841154	1468657
	howto	148096	129111	193106	164491	320056	476646	691055	1261786
	reuters	523073	341164	453604	356515	642506	1183388	872733	1487177
	w3c2	360861	252132	337474	293359	626185	875117	812437	1438407
	jdk13	400996	247713	398723	401730	665131	885281	801261	1431649
	linux	190276	145165	216520	211462	517424	600023	785128	1517618
	etext99	213528	235346	335026	856837	473414	682519	920192	1655538
	gcc	289923	272645	9755584	-	535168	676715	681651	1447402
Artificial	random	52416	45960	69702	49224	114700	225137	351088	433712
	period 500000	97270	6375039	-	-	895214	404486	296241	568378
	period 1000	179257	13882918	-	-	903421	990147	220091	493428
	period 20	962914	-	-	-	1034323	614043	101918	482019
	Fibonacci string	386494	10880356	-	-	890734	737962	199586	416624

Figure 2. Instruction counts and cache references for H. sapiens chr. 22, with $d=7$ for $b p r$.

Figure 3. Instruction counts and cache references for the linux file, with $d=3$ for $b p r$.
more cache misses. For DNA sequences, $b p r$ still has the fewest L2 misses, but for other real world strings deep shallow, cache, and copy often have less L2 misses. For strings with periods of length 500000 and 1000, bpr takes the fewest cache misses. Only for the string with a period shorter than 20 and for the Fibonacci string, divide \& conquer and skew have fewer cache misses.

4.4. Discussion

We first believed that the practical speed of our algorithm was mainly due to the combination of different techniques with good locality behaviour. However, the simulations showed that, compared to the other suffix array construction algorithms, $b p r$ mainly gains its fast running time from the fewer executed instructions rather than from its good locality behaviour. Hence, with respect to the number of executed instructions, $b p r$ is the algorithmically best algorithm.

The few executed instructions are apparently due to the different strategies of the two phases of the $b p r$ algorithm. First of all, if the d-length substrings are uniformly distributed, phase 1 equally divides all suffixes into small buckets by just scanning the input string twice. However, this does not explain its speed for the periodic strings. Here, the suffixes are just partitioned into a few large buckets. For such strings, our algorithm basically benefits from the employment of relations among the suffixes in phase 2. By using the bucket pointers as sort keys, the method incorporates information about the subdivided buckets into the bucket refinement process as soon as this information becomes available. In the bucket-refinement process each bucket is refined recursively until it consists of singleton subbuckets. This technique of dividing suffixes from small to smaller buckets is similar to Quicksort for original sorting, which is known to be fast in practice. The combination of these techniques, further heuristics in the refinement procedure (Section 3.3), and Seward's copy method [13] result in the final low instruction count.

In our first assumptions that the good locality behaviour was mainly responsible for the speed of $b p r$, we were misled by some elements of the algorithm that have good locality behaviour with respect to the data structure, but this is not always the case. The data structure can be divided into four parts: the input string, the suffix array, the bptr array, and the bucket array storing the boundaries for all buckets. Phase 1, for example, just scans the sequence twice. It has a good locality of memory access with respect to the input string and the bptr array, whereas the bucket array and the suffix array are arbitrarily accessed. In contrast, phase 2 has a good locality of memory access with respect to the bucket array and the suffix array. The bucket array is accessed from left to right and the suffix array is divided into increasingly smaller buckets. The bptr array is again arbitrarily accessed.

Therefore, bpr's cache miss ratio is generally worse than that of deep shallow, cache, and copy. Even the linear-time skew and the quasi-linear divide \& conquer, from which one could expect that they trade locality of memory access against good worst-case time complexity, show comparable cache miss ratios. Nevertheless, thanks to its fewer total cache accesses and its fewer executed instructions, $b p r$ is generally faster than the other algorithms.

The instruction counts for the different real world strings of length 50 million reveal further interesting facts. The linear-time skew, the quasi-linear divide \& conquer, and the $O(n \log n)$ time qsufsort algorithms show little variance of instruction counts indicating little dependence on the sequence structure. In contrast, deep shallow, cache, and copy's instruction counts vary greatly. Deepshallow, for example, executes less than 19 billion instructions for the $r f c$ and linux files, but more than 82 billion instructions for $w 3 c 2$ and $g c c$. For $g c c$, the very high average and maximum LCP
values account for the high instruction count, whereas for $w 3 c 2$ this is not so. The string has even lower LCP values than linux, nevertheless deep shallow needs more than four times the number of executed instructions. Therefore, other structural properties of the text also seem to be important for the instruction count, and thus for the performance of these algorithms.

Moreover, for the strings of length 50 million, deep shallow's instruction count is often related to cache's. The fact that deep shallow uses the method of cache as a subprocedure suggests that its performance highly depends on the cache method.

Comparing the instruction counts for the 50 million character strings shows that deep shallow often executes many more instructions than qsufsort, divide \& conquer, or skew, even though its execution time is always significantly faster. The higher number of L2 cache misses for qsufsort, divide \& conquer, and in particular skew reveal that the fragmented memory access slows down their suffix array construction. Therefore, the practically fastest algorithm does not need to have the lowest instruction count or the lowest number of cache misses, but as with bpr , it must possess the optimal combination of both properties.

However, the space requirements of bpr are higher than the space requirements for deep shallow, cache, and copy. In practice, bpr takes between $9 n$ and $10 n$ bytes, the suffix array and the bucket pointer table each consume $4 n$ bytes, and the input string n bytes. Additional space is used for the bucket pointers of the initial bucket sort and for the recursion stack, even though the recursion depth decreases by a factor of d. However, for certain applications, such as the computation of the BurrowsWheeler Transform [16], the construction of the suffix array is just a byproduct, and the complete suffix array does not need to remain in memory.

Therefore, if one is concerned about space, the deep shallow algorithm might be the best choice. If there are no major space limitations, we believe that the $b p r$ algorithm is an attractive alternative.

5. CONCLUSION AND FURTHER WORK

We have presented a fast suffix array construction algorithm that performs very well even for worst-case strings. Due to its simple structure, it is easy to implement. Therefore, we believe that our algorithm can be widely used in all kinds of suffix array applications.

An open question remains. We were so far unable to prove a better worst-case time complexity than $O\left(n^{2}\right)$ while at the same time we are not aware of an example showing that this bound is tight. For certain periodic strings, we verified an $O\left(n^{3 / 2} \sqrt{\log n}\right)$ time bound, but for general strings finding a non-trivial upper bound seems to be hard since our algorithm quite arbitrarily uses the dependence among suffixes.

Of further interest will be the parallelization of suffix array construction, since the suffix array construction for very large DNA sequences is usually performed on servers with more than one CPU.

ACKNOWLEDGEMENTS

We wish to thank Dong Kyue Kim for providing the code of the divide \& conquer algorithm, Peter Husemann for implementing the timing for the skew algorithm, Hans-Michael Kaltenbach for advice on the analysis of the bpr algorithm, and Sita Lange for carefully proofreading this manuscript.

REFERENCES

1. Manber U, Myers EW. Suffix arrays: A new method for on-line string searches. SIAM Journal on Computing 1993; 22(5):935-948.
2. Karp RM, Miller RE, Rosenberg AL. Rapid identification of repeated patterns in strings, trees and arrays. Proceedings of the 4th ACM Symposium on Theory of Computing (STOC 1972). ACM Press: New York, 1972; 125-136.
3. Farach-Colton M, Ferragina P, Muthukrishnan S. On the sorting-complexity of suffix tree construction. Journal of the ACM 2000; 47(6):987-1011.
4. Kurtz S. Reducing the space requirements of suffix trees. Software: Practice and Experience 1999; 29(13):1149-1171.
5. Kärkkäinen J, Sanders P. Simple linear work suffix array construction. Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP 2003) (Lecture Notes in Computer Science, vol. 2719). Springer: Berlin, 2003; 943-955.
6. Kim DK, Sim JS, Park H, Park K. Constructing suffix arrays in linear time. Journal of Discrete Algorithms 2005; 3(2-4):126-142.
7. Ko P, Aluru S. Space efficient linear time construction of suffix arrays. Journal of Discrete Algorithms 2005; 3(2-4): 143-156.
8. Hon W-K, Sadakane K, Sung W-K. Breaking a time-and-space barrier in constructing full-text indices. Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS 2003). IEEE Computer Society: Los Alamitos, CA, 2003; 251-260.
9. Larsson NJ, Sadakane K. Faster suffix sorting. Technical Report LU-CS-TR:99-214, LUNDFD6/(NFCS-3140)/120/(1999), Department of Computer Science, Lund University, May 1999.
10. Kim DK, Jo J, Park H. A fast algorithm for constructing suffix arrays for fixed-size alphabets. Proceedings of the 3rd International Workshop on Experimental and Efficient Algorithms (Lecture Notes in Computer Science, vol. 3059), Ribeiro CC, Martins SL (eds.). Springer: Berlin, 2004; 301-314.
11. Farach M. Optimal suffix tree construction with large alphabets. Proceedings of the 38th Annual Symposium on the Foundations of Computer Science (FOCS 1997), October 1997; 137-143.
12. Itoh H, Tanaka H. An efficient method for in memory construction of suffix arrays. Proceedings of String Processing and Information Retrieval Symposium and International Workshop on Groupware (SPIRE/CRIWG 1999). IEEE Computer Society Press: Los Alamitos, CA, 1999; 81-88.
13. Seward J. On the performance of BWT sorting algorithms. Proceedings of the Data Compression Conference (DCC 2000). IEEE Computer Society: Los Alamitos, CA, 2000; 173-182.
14. Manzini G, Ferragina P. Engineering a lightweight suffix array construction algorithm. Algorithmica 2004; 40(1):33-50.
15. Burkhardt S, Kärkkäinen J. Fast lightweight suffix array construction and checking. Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM 2003) (Lecture Notes in Computer Science, vol. 2676). Springer: Berlin, 2003; 55-69.
16. Burrows M, Wheeler DJ. A block-sorting lossless data compression algorithm. Technical Report Research Report 124, Digital System Research Center, May 1994.
17. Bentley JL, McIlroy MD. Engineering a sort function. Software: Practice and Experience 1993; 23(11):1249-1265.
18. Bentley JL, Sedgewick R. Fast algorithms for sorting and searching strings. Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1997). Society for Industrial and Applied Mathematics: Philadelphia, PA, 1997; 360-369.
19. McIlroy PM, Bostic K, McIlroy MD. Engineering radix sort. Computing Systems 1993; 6(1):5-27.
20. Cormen TH, Leiserson CE, Rivest RL. Introduction to Algorithms (1st edn). MIT Press: Cambridge, CA, 1989.
21. Singleton RC. ACM Algorithm 347: An efficient algorithm for sorting with minimal storage. Communications of the ACM 1969; 12(3):185-187.
22. Schürmann K-B. Bpr Home. http://bibiserv.techfak.uni-bielefeld.de/bpr/ [20 June 2006].
23. Bengtsson J. Project details for memtime. http://freshmeat.net/projects/memtime [20 June 2006].
24. Seward J, Nethercote N, Fitzhardinge J et al. Valgrind Home. http://valgrind.org [20 June 2006].

[^0]: *Correspondence to: Jens Stoye, Universität Bielefeld, Technische Fakultät, AG Genominformatik, Postfach 1001 31, 33501 Bielefeld, Germany.
 ${ }^{\dagger}$ E-mail: stoye@techfak.uni-bielefeld.de

