SN74LS393

Dual 4-Stage Binary Counter

The SN74LS393 contains a pair of high-speed 4-stage ripple counters.

Each half of the LS393 operates as a Modulo-16 binary divider, with the last three stages triggered in a ripple fashion. In the LS393, the flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs. Each half of each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state.

- Dual Versions
- Individual Asynchronous Clear for Each Counter
- Typical Max Count Frequency of 50 MHz
- Input Clamp Diodes Minimize High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High			-0.4	mA
I_{OL}	Output Current - Low			8.0	mA

ON Semiconductor
Formery a Division of Motorola http://onsemi.com

LOW

POWER
SCHOTTKY

PLASTIC N SUFFIX CASE 646

ORDERING INFORMATION

Device	Package	Shipping
SN74LS393N	14 Pin DIP	2000 Units/Box
SN74LS393D	14 Pin	2500/Tape \& Reel

CONNECTION DIAGRAM DIP (TOP VIEW)

FUNCTIONAL DESCRIPTION

Each half of the SN74LS393 operates in the Modulo 16 binary sequence, as indicated in the $\div 16$ Truth Table. The first flip-flop is triggered by HIGH-to-LOW transitions of the CP input signal. Each of the other flip-flops is triggered by a HIGH-to-LOW transition of the Q output of the preceding flip-flop. Thus state changes of the Q outputs do
not occur simultaneously. This means that logic signals derived from combinations of these outputs will be subject to decoding spikes and, therefore, should not be used as clocks for other counters, registers or flip-flops. A HIGH signal on MR forces all outputs to the LOW state and prevents counting.

SN74LS393 LOGIC DIAGRAM (one half shown)

TRUTH TABLE

count	OUTPUTS			
	Q $_{3}$	Q $_{2}$	Q $_{\mathbf{1}}$	Q $_{0}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed In All Inputs	HIGH Voltage for
VIL	Input LOW Voltage				0.8	V	Guaranteed All Inputs	LOW Voltage for
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}$	18 mA
V_{OH}	Output HIGH Voltage		2.7	3.5		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IO}_{\mathrm{O}}$ $\text { or } \text { VIL }^{\text {per Truth }}$	$\begin{aligned} & \mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { able } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.25	0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN},$
				0.35	0.5	V	l OL $=8.0 \mathrm{~mA}$	per Truth Table
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	2.7 V
					0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}$	7.0 V
$\mathrm{I}_{\text {IL }}$	Input LOW Current	MR			-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$	
		$\overline{\mathrm{CP}}, \overline{\mathrm{CP}}_{0}$			-1.6	mA		
		$\overline{C P}_{1}$			-2.4	mA		
los	Short Circuit Current (Note 1)		-20		-100	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	
I_{Cc}	Power Supply Current				26	mA	$V_{C C}=M A X$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
$f_{\text {MAX }}$	Maximum Clock Frequency CP_{0} to Q_{0}	25	35		MHz	$C_{L}=15 \mathrm{pF}$
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency CP_{1} to Q_{1}	20			MHz	
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay, $\overline{C P}$ to Q_{0}		$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	$\overline{C P}$ to Q_{3}		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	ns	
tPHL	MR to Any Output		24	39	ns	

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tw	Clock Pulse Width	20			ns	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$
t_{w}	MR Pulse Width	20			ns	
$\mathrm{t}_{\text {rec }}$	Recovery Time	25			ns	

AC WAVEFORMS

Figure 1.

Figure 2.
*The number of Clock Pulses required between $t_{P H L}$ and $t_{P L H}$ measurements can be determined from the appropriate Truth Table.

