ISE In-Depth
Tutorial

S XILINX®

2 XILINX®

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

Copyright © 1995-2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks
of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners.

ISE 9.1 In-Depth Tutorial www.xilinx.com

http://www.xilinx.com

$7 XILINX®

Preface

About This Tutorial

About the In-Depth Tutorial

This tutorial gives a description of the features and additions to Xilinx® ISE™ 9.1i. The
primary focus of this tutorial is to show the relationship among the design entry tools,
Xilinx and third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE
software or those wanting to refresh their skills and knowledge.

You may choose to follow one of the three tutorial flows available in this document. For
information about the tutorial flows, see “Tutorial Flows.”

Tutorial Contents

This guide covers the following topics.

Chapter 1, “Overview of ISE and Synthesis Tools,” introduces you to the ISE primary
user interface, Project Navigator, and the synthesis tools available for your design.

Chapter 2, “HDL-Based Design,” guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch.

Chapter 3, “Schematic-Based Design,” explains many different facets of a schematic-
based ISE design flow using a design of a runner’s stopwatch. This chapter also
shows how to use ISE accessories such as StateCAD, CORE Generator™, and ISE Text
Editor.

Chapter 4, “Behavioral Simulation,” explains how to simulate a design before design
implementation to verify that the logic that you have created is correct.

Chapter 5, “Design Implementation,” describes how to Translate, Map, Place, Route
(Fit for CPLDs), and generate a Bit file for designs.

Chapter 6, “Timing Simulation,” explains how to perform a timing simulation using
the block and routing delay information from the routed design to give an accurate
assessment of the behavior of the circuit under worst-case conditions.

Chapter 7, “iMPACT Tutorial” explains how to program a device with a newly
created design using the IMPACT configuration tool.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 3

http://www.xilinx.com

SUXILINX®

Preface: About This Tutorial

Tutorial Flows

This document contains three tutorial flows. In this section, the three tutorial flows are
outlined and briefly described, in order to help you determine which sequence of chapters
applies to your needs. The tutorial flows include:

HDL Design Flow
Schematic Design Flow

Implementation-only Flow

HDL Design Flow
The HDL Design flow is as follows:

Chapter 2, “HDL-Based Design”

Chapter 4, “Behavioral Simulation”
Note that although behavioral simulation is optional, it is strongly recommended in
this tutorial flow.

Chapter 5, “Design Implementation”

Chapter 6, “Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended in this
tutorial flow.

Chapter 7, “iMPACT Tutorial”

Schematic Design Flow

The Schematic Design flow is as follows:

Chapter 3, “Schematic-Based Design”

Chapter 4, “Behavioral Simulation”
Note that although behavioral simulation is optional, it is strongly recommended in
this tutorial flow.

Chapter 5, “Design Implementation”

Chapter 6,“Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended.

Chapter 7, “iMPACT Tutorial”

Implementation-only Flow

The Implementation-only flow is as follows:

Chapter 5, “Design Implementation”

Chapter 6, “Timing Simulation”
Note that although timing simulation is optional, it is strongly recommended in this
tutorial flow.

Chapter 7, “iMPACT Tutorial”

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Additional Resources S XILINX®

Additional Resources

To find additional documentation, see the Xilinx website at:

http:/ /www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com/support.

ISE 9.1 In-Depth Tutorial www.xilinx.com 5

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

SXILINX® Preface: About This Tutorial

6 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Table of Contents

Preface: About This Tutorial

About the In-Depth Tutorial 3
Tutorial Contents 3
Tutorial Flows 3
HDL Design Flow i 4
Schematic Design Flow 4
Implementation-only Flow 4
Additional Resources 5

Chapter 1: Overview of ISE and Synthesis Tools

Overview of ISE 13
Project Navigator Interface............l 13
Sources Window 14

Sources Tab.ot 14
Snapshots Tab. i 15
Libraries Tab.o 15
Processes WIndow i 15
Processes Tabot 15
Transcript Window 16
Error NavigationtoSource. ... 16
Error Navigation to Answer Record i, 16
Workspace. 17
DeSign SUMMATY oottt e e e 17
Text EdItOro 17
ISE Simulator / Waveform Editor et 17
Schematic EQItor. i 17

Using Revision Control Features .. 17

Using Snapshots 17
Creating a Snapshot 17
Restoring a Snapshoto 17
ViewingaSnapshot i 18

Using Project Archives i 18
Creating an Archive i 18
Restoring an Archivettt 18

Using Export/Import Source Control. it 18
Exporting a Projectot 18
Importing a Project oot 19

Overview of Synthesis Tools 19
Precision Synthesis......... 19

Process Properties.t 19

Synplify /Synplify Pro....... 20
Process Properties.t 20

Xilinx Synthesis Technology (XST) 20
Process Properties.t 20

ISE 9.1 In-Depth Tutorial www.xilinx.com

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Chapter 2: HDL-Based Design

Overview of HDL-Based Design. .. 23
Getting Started. 24
Required Software 24
Optional Software Requirements 24
VHDL or Verilog? 24
Installing the Tutorial Project Files 24
Starting the ISE Software 25
Creatinga New Project i 25
Creating a New Project: Using the New Project Wizard. 25

Creating a New Project: Usinga Tcl Script. ..o 27

Stopping the Tutorial. 27
Design Description 28
Inputs........o 28
Outputs ... 28
Functional Blocks 28
Design Entry......... ... 29
Adding Source Files. 30
Checking the Syntax 30
Correcting HDL Errorso e 31
Creating an HDL-Based Module, 32
Using the New Source Wizard and ISE Text Editor 32

Using the Language Templates.t 34

Adding a Language Template to Your File.o i, 35

Creating a CORE Generator Module 36
Creating a CORE Generator Module 36
Instantiating the CORE Generator Module inthe HDL Code. 38
Creatinga DCM Module. 39
Using the Clocking Wizard. i i 39
Instantiating the dem1 Macro- VHDL Designo o ooviii it 41
Instantiating the dem1 Macro-Verilogo i 42
Synthesizing the Designl 43
Synthesizing the Designusing XST................. 44
Entering Constraints. 44

Entering Synthesis Options. i i 45
Synthesizing the Design o 45

The RTL / Technology Viewer. i, 45
Synthesizing the Design using Synplify/Synplify Pro 47
Examining Synthesis Results i 47
Synthesizing the Design Using Precision Synthesis 48
Entering Synthesis Options throughISE., 49

The RTL/Technology Viewer.o, 49

Chapter 3: Schematic-Based Design

Overview of Schematic-Based Design 51
Getting Started. 51
Required Software 51

Installing the Tutorial Project Files 52

Starting the ISE Software 52

Creatinga New Project i 52

Creating a New Project: Using New Project Wizard. 53

8 www.xilinx.com ISE 9.1 In-Depth Tutorial

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Creating a New Project: Usinga Tcl Seript.ooooviiii i 54
Stopping the Tutorial.......... o 54
Design Description 54
Inputs. ... 55
Outputs ... 56
Functional Blocks 56
Design Entry. 57
Opening the Schematic File in the Xilinx Schematic Editor...................... 57
Manipulating the Window View 58
Creating a Schematic-Based Macro.................... 58
Defining the time_cnt Schematic..................o 59
Adding I/OMarkerst 60
Adding Schematic Components it 60
Correcting Mistakes o i 63
Drawing WIres 63
Adding Buseso 63
Adding Bus Tapso 64
Adding Net Names.ot 65
Checking the Schematic i i 66
Saving the Schematic i 67
Creating and Placing the time_cnt Symbol, 67
Creating the time_cntsymbol.o i 67
Placing the time_cnt Symbol. 67
Creating a CORE Generator Module .. 68
Creating a CORE Generator Module 68
Creating a State MachineModule 70
Adding New States.t 71
AddingaTransition 72
Adding aState Action. 73
Adding a State Machine Reset Condition............... 75
Creating the State Machine HDL outputfile. 75
Creating the State Machine Symbol 76
Creatinga DCM Module. 76
Using the Clocking Wizard. i 76
Creating thedem1 Symbol 78
Creating an HDL-Based Module 79
Using the New Source Wizard and ISE Text Editor 79
Using the Language Templates. i 81
Adding a Language Templateto Your File. 82
Creating the debounce Symboll 83
Placing the statmach, timer_preset, dem1 and debounce Symbols 83
Changing Instance Names 84
Hierarchy Push/Pop o i 85
Specifying Device Inputs/Outputs............o oo 85
AddingInputPins oo 85
Adding I/O Markersand Net Names. 86
Assigning PinLocationso o oo 87
Completing the Schematicol 87

Chapter 4: Behavioral Simulation

Overview of Behavioral Simulation Flow.................................... 91
ModelSim Setup 91
ISE 9.1 In-Depth Tutorial www.xilinx.com 9

1-800-255-7778

http://www.xilinx.com

SUXILINX®

ModelSIm PE and SE e 91
ModelSim Xilinx Edition.t e i e 92

ISE Simulator Setup. ... 92
Getting Started. 92
Required Files.......... ... 92
Design Files (VHDL, Verilog, or Schematic).o, 92
TestBench Filet e e e et e et 92

Xilinx Simulation Libraries.ottt e e e 92

Xilinx Simulation Libraries. i e 93
Updating the Xilinx Simulation Libraries. o i, 93

Mapping Simulation Libraries in the Modelsim.iniFile................. 93
Addingan HDLTest Bench 94
Adding Tutorial Test Bench File o .. 94
VHDL Simulationottt ettt et e e et e 94

Verilog Simulation 95
Behavioral Simulation Using ModelSim.................................. ... 95
Locating the Simulation Processes 95
Specifying Simulation Propertiesl 96
Performing Simulation o 97
Adding Signals......... ... 97
Adding Dividers. 99
Rerunning Simulation. 99
Analyzing theSignals. 100

Saving the Simulationo 101
Behavioral Simulation Using ISE Simulator 101
Locating the Simulation Processes 101
Specifying Simulation Propertieso oo oL 102
Performing Simulation o o i i 103
AddingSignals......... ... 103
Rerunning Simulation i 104
Analyzing the Signals. i 105

Creating a Test Bench Waveform Using the Waveform Editor 105
Creating a Test Bench Waveform Source, 105

Applying SHMUIUSot 107

Chapter 5: Design Implementation

Overview of Design Implementation....................................... 109
Getting Started. 110

Continuing from Design Entryl 110

Starting from Design Implementation 110
Specifying Options 111
Creating Partitions 113
Creating Timing Constraints 114
Translating the Design 115
Using the Constraints Editor 116
Using the Floorplan Editor 120
Mapping the Design 123
Using Timing Analysis to Evaluate Block Delays After Mapping............ 126

Estimating Timing Goals with the 50/50Rule 126

10 www.xilinx.com ISE 9.1 In-Depth Tutorial

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Report Paths in Timing Constraints Option 126
Placing and Routing the Design 127
Using FPGA Editor to Verify the Placeand Route........................... 129
Evaluating Post-Layout Timing. 131
Changing HDL with Partition 132
Creating Configuration Data, 134
Creating a PROM File withiMPACT 135
Command Line Implementation., 138

Chapter 6: Timing Simulation

Overview of Timing Simulation Flow 139
Getting Started. 139
Required Software 139
Required Files. 140
Specifying a Simulator i i 140
Timing Simulation Using ModelSim 140
Specifying Simulation Process Properties 141
Performing Simulation o 143
Adding Signals 143

Adding Dividers. oo 145
Rerunning Simulation. i 146
Analyzing the Signals. i i 146

Saving the Simulation. 147

Timing Simulation Using Xilinx ISE Simulator............................. 148
Specifying Simulation Process Properties 148
Performing Simulation i 149
Adding Signals. 149

Viewing Full Signal Names.ot i i i 150
Rerunning Simulation. 150
Analyzing theSignals. 151

Chapter 7: iMPACT Tutorial

Device Support 153
Download Cable Support 154
Parallel Cable IV. ... 154
Platform Cable USB......... 154
MultiPRO Cable 154
Configuration Mode Support. 154
Getting Started. 154
Generating the Configuration Files............... 154
ConnectingtheCable i 155
Starting the Software 155
Opening iMPACT from Project Navigator 155

Opening iMPACT stand-aloneo i 155
Creating a iMPACT New ProjectFile............... 156
Using Boundary Scan ConfigurationMode 156
Specifying Boundary Scan ConfigurationMode. 156
Assigning Configuration Files oL 158

ISE 9.1 In-Depth Tutorial www.xilinx.com 11

1-800-255-7778

http://www.xilinx.com

SUXILINX®

Saving the ProjectFile o o i i 159
Editing Preferences i 159
Performing Boundary Scan Operations 159
Troubleshooting Boundary Scan Configuration............................. 162
Verifying Cable Connection, 162
Verifying ChainSetup o i i i i 163
Creatingan SVF File 164
Setting up Boundary Scan Chain..................... oL 164
JTAG chain setup for SVF generation. 164

Manual JTAG chain setup for SVF generation 164
Writingtothe SVEFile 165
Stop Writingtothe SVE. 166
Playing back the SVFor XSVFfile.................... 166
Other Configuration Modes, 166
Slave Serial ConfigurationMode.............. o oL 166
SelectMAP ConfigurationMode oL 167

12 www.xilinx.com ISE 9.1 In-Depth Tutorial

1-800-255-7778

http://www.xilinx.com

$7 XILINX®
Chapter 1

Overview of ISE and Synthesis Tools

This chapter includes the following sections:

e “Overview of ISE”
e “Using Revision Control Features”

e “Overview of Synthesis Tools”

Overview of ISE

ISE controls all aspects of the design flow. Through the Project Navigator interface, you can
access all of the design entry and design implementation tools. You can also access the files
and documents associated with your project.

Project Navigator Interface

The Project Navigator Interface is divided into four main subwindows, as seen in

Figure 1-1. On the top left is the Sources window which hierarchically displays the
elements included in the project. Beneath the Sources window is the Processes window,
which displays available processes for the currently selected source. The third window at
the bottom of the Project Navigator is the Transcript window which displays status
messages, errors, and warnings and also contains interactive tabs for Tcl scripting and the
Find in Files function. The fourth window to the right is a multi-document interface (MDI)
window refered to as the Workspace. It enables you to view html reports, ASCII text files,
schematics, and simulation waveforms. Each window may be resized, undocked from
Project Navigator or moved to a new location within the main Project Navigator window.
The default layout can always be restored by selecting View > Restore Default Layout.
These windows are discussed in more detail in the following sections.

ISE 9.1 In-Depth Tutorial www.xilinx.com 13

http://www.xilinx.com

SUXILINX®

Chapter 1: Overview of ISE and Synthesis Tools

Exilim: - 1SE - C:ATemp\tutorial\wtut_ver\wtut_ver_completediwtut_ver.ise - [Design Summary] = |8 %
E File Edit View Project Souce Process ‘Window Help = =
¥ [m = T = Ty =
[£ 23 B B[A% B 0 [%2]]08 oo - HD3HE] XBEX[@e QYT SXXLE GO
x|
L 2 FPGA Design Summary | WTUT_YER Project Status 2
S?WCES ol I Synihesis/Amplementalion j - Desian Overview Project File: witut_ver.ise Current State: Placed and Routed
i ["1 wihut_ver -] Summany . .
i . Module Name: stopwatch * Enors:
- 73 5c3:700a-4fg484 - [4] DB Froperties - -
& @ﬁ%stnpwalch (stopwatch v @ Timing Constraints Target Device: #c3:700a-4f0484 * Warnings:
L q _prese! - limei_presst [limer_presel.sca) - /] Firout Report Product Version: I1SE9.1.02 + Updated: Thu Mar 8 03:44:22 2007
% der_inst - dem? [deml waw) "« [Clock Report
2 -\cd_cntll_inst - led_control [led_cantiol.¥] [Enmors and Wamings Device Ulilization Summary
- [sitstop_debounce - debounce (debounce.v] <[] Syrithesis bessages Logic Utiization Used Available Utilization Note(s)
-~ [+]len_load_debounce - debounce [debounce.v) ;’::i'l‘::::a;d:;sages Humber of Sice Flip Flops 180 7% 1%
ode_debounce - debounce (debounce.v] 5 =
Wurmber of 4 input LUTs 391 1,776 3%
-+ 4] timer_inat - time_cnt [time_cnt.y] [Place and Route Messages — g =
- timer_gtate - statmach [etatmach.v] [7] Timing Messages Logic Distribution
[el _divider - clk_div_262k ch_div_252k v] D Bitgen Messages Mumber of occupied Slices 27 5,888 1z
@ stopwatch.ucf [stopwatch.ucf] - [4] 40 Cunent Messages Number of Slices containing only related logic 277 27 100%
& Detailed Reports Mumber of Slices containing unrelated logic i} 277 0%
-~ || Synthesis Report
. Total Number of 4 input LUTs 437 11.776 3%
B s . st lE Liteai @ Translation Repart
Durces |) anapshats (eI - [ZM Number used as logic 391
ap Report
£l [+f] Place and Route Report Humber used as a route-thiy 46
- [] Gtatic Timing Feport Humber of bonded 0B s 16 w2 4%
Processes for. stopwatch | .
M AddExisting Source D Bigen Repor 0B Fiip Flops g
- Create Mew Source Mumber of GCLEs 3 24 12%
- % Wiew Design Summary Murber of DCMs 1 8 12%
. Ml[Project Propert
D"? Design Utilties Eo|a|c] éopill Ieé hanced Desian 5 Total equivalent gate count for design 1,413
B8 User Constais H nable Enhanced Design Summary i
i [Enable Message Filtering Additional JTAG gate count for [0Bs 768
- B2 A\ Syrthesize - ST H
[Display Incremental Messsages
& {:}Olmplemenl Design 1 Ephanced Design s.ummaly Corntents e T a—
--CQGTranslate - Show Partition Data
'!}@MGD i O Show Enars Final Timing Score: a Pinout Data: Pinout Beport
!}OP\aca % Route [Show Warings Routing Results: &l Signal: Completely Routed Clock Data: Clack Heport
[]--C}Oﬁenelata Programming File E Show Failing Constraints Timing Constraints: 4l Constrairts Met
== L] Show Clock Report
Detailed Reports
Report Name Status Generated Errors ‘Warnings Infos -
Surthesis Report Current Thu Mar 8 03:36:53 2007
Translation Report Current Thu Mar 8 09:37.07 2007
Map Report Current Thu Mar 8 09:37:16 2007 J
-
Processes = S — = St
M & Design Summary
] N

Nunber of warnings: O
Total time: 4 secs

Process "Generate Post-FPlace & Route 3tatie Timing™ completed successfully

4 |
Conzale I 9 Emoars !: Warnings ﬂ TelShell | pg Find in Files

Figure 1-1:

Sources Window

Project Navigator

This window consists of three tabs which provide project and file information for the user.
Each tab is discussed in further detail below.

Sources Tab

The Sources tab displays the project name, the specified device, and user documents and
design source files associated with the selected Design View. The Design View (“Sources
for”) drop-down list at the top of the Sources tab allows you to view only those source files
associated with the selected Design View, such as Synthesis/Implementation. In the
“Number of” drop-down list, a Resources column and a Preserve Column are available for
Designs that use Partitions. The use of partitions is covered in Chapter 5, “Design
Implementation”.

14

www.xilinx.com

ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Overview of ISE S XILINX®

Each file in a Design View has an associated icon. The icon indicates the file type (HDL file,
schematic, core, or text file, for example). For a complete list of possible source types and
their associated icons, see the ISE™ Help. Select Help > ISE Help Contents, select the
Index tab and search for “Source file types.”

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. HDL files
have this + to show the entities (VHDL) or modules (Verilog) within the file. You can
expand the hierarchy by clicking the +. You can open a file for editing by double-clicking
on the filename.

Snapshots Tab

The Snapshots tab displays all snapshots associated with the project currently open in
Project Navigator. A snapshot is a copy of the project including all files in the working
directory, and synthesis and simulation sub-directories. A snapshot is stored with the
project for which it was taken, and the snapshot can be viewed in the Snapshots tab. You
can view the reports, user documents, and source files for all snapshots. All information
displayed in the Snapshots tab is read-only. Using snapshots provides an excellent version
control system, enabling subteams to do simultaneous development on the same design.

Libraries Tab

The Libraries tab displays all libraries associated with the project open in Project
Navigator.

Processes Window

This window contains one default tab called the Processes tab.

Processes Tab

The Processes tab is context sensitive and it changes based upon the source type selected in
the Sources tab and the Top-Level Source in your project. From the Processes tab, you can
run the functions necessary to define, run and view your design. The Processes tab
provides access to the following functions:

¢ Add an Existing Source
e Create New Source

¢ View Design Summary
e Design Utilities

Provides access to symbol generation, instantiation templates, viewing command line
history, and simulation library compilation.

e User Constraints
Provides access to editing location and timing constraints.
¢ Synthesis

Provides access to Check Syntax, Synthesis, View RTL or Technology Schematic, and
synthesis reports. Available processes vary depending on the synthesis tools you use.

ISE 9.1 In-Depth Tutorial www.xilinx.com 15

http://www.xilinx.com

SUXILINX®

Chapter 1: Overview of ISE and Synthesis Tools

e Implement Design

Provides access to implementation tools, design flow reports, and point tools.

¢ Generate Programming File

Provides access to configuration tools and bitstream generation.

The Processes tab incorporates automake technology. This enables the user to select any
process in the flow and the software automatically runs the processes necessary to get to
the desired step. For example, when you run the Implement Design process, Project
Navigator also runs the Synthesis process because implementation is dependent on up-to-
date synthesis results.

Note: To view a running log of command line arguments used on the current project, expand Design
Utilities and select View Command Line Log File. See the Command Line Implementation section
of Chapter 5, “Design Implementation” for further details.

Transcript Window

The Transcript window contains five default tabs: Console, Errors, Warnings, Tcl Shell,
Find in Files.

e Console

Displays errors, warnings, and information messages. Errors are signified by a red (X)
next to the message, while warnings have a yellow exclamation mark (!).

e Warnings

Displays only warning messages. Other console messages are filtered out.
e Errors

Displays only error messages. Other console messages are filtered out.
e Tcl Shell

Is a user interactive console. In addition to displaying errors, warnings and
informational messages, the Tcl Shell allows a user to enter Project Navigator specific
Tcl commands. For more information on Tcl commands, see the ISE Help.

e Find in Files

Displays the results of the Edit > Find in Files function.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Transcript window to
the location of the error in a source HDL file. To do so, select the error or warning message,
right-click the mouse, and select Go to Source from the right-click menu.The HDL source
file opens and the cursor moves to the line with the error.

Error Navigation to Answer Record

You can navigate from an error or warning message in the Transcript window to relevant
Answer Records on the www.xilinx.com/support website. To navigate to the Answer
Record(s), select the error or warning message, right-click the mouse, and select Go to
Answer Record from the right-click menu. The default web browser opens and displays
all Answer Records applicable to this message.

16

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Using Revision Control Features S XILINX®

Workspace

Design Summary

The Design Summary lists high-level information about your project, including overview
information, a device utilization summary, performance data gathered from the Place &
Route (PAR) report, constraints information, and summary information from all reports
with links to the individual reports.

Text Editor

Source files and other text documents can be opened in a user designated editor. The editor
is determined by the setting found by selecting Edit > Preferences, expand ISE General
and click Editors. The default editor is the ISE Text Editor. ISE Text Editor enables you to
edit source files and user documents. You can access the Language Templates, which is a
catalog of ABEL, Verilog, VHDL, Tcl and User Constraints File templates that you can use
and modify in your own design.

ISE Simulator / Waveform Editor

ISE Simulator / Waveform Editor can be used to create and simulate test bench and test
fixture within the Project Navigator framework. Waveform Editor can be used to
graphically enter stimuli and the expected response, then generate a VHDL test bench or
Verilog test fixture. For details, refer to”“Creating a Test Bench Waveform Using the
Waveform Editor” in Chapter 4.

Schematic Editor

The Schematic Editor is integrated in the Project Navigator framework. The Schematic
Editor can be used to graphically create and view logical designs.

Using Revision Control Features

Using Snapshots

Snapshots enable you to maintain revision control over the design. A snapshot contains a
copy of all of the files in the project directory. See also “Snapshots Tab.”

Creating a Snapshot

To create a snapshot:

1. Select Project > Take Snapshot.

2. In the Take a Snapshot of the Project dialog box, enter the snapshot name and any
comments associated with the snapshot.

The snapshot containing all of the files in the project directory along with project settings is
displayed in the Snapshots tab.
Restoring a Snapshot

Since snapshots are read-only, a snapshot must be restored in order to continue work.
When you restore a snapshot, it replaces the project in your current session.

ISE 9.1 In-Depth Tutorial www.xilinx.com 17

http://www.xilinx.com

ST XILINX® Chapter 1: Overview of ISE and Synthesis Tools

To restore a snapshot:
1. In the Snapshots tab, select the snapshot from the drop-down list.
2. Select Project > Make Snapshot Current.

Before the snapshot replaces the current project, you are given the option to place the
current project in a snapshot so that your work is not lost.

Note: Remote sources are copied with the snapshot and placed in a subdirectory named
remote_sources. These files will need to be manually copied to the original location or added to the
project again in a new directory

Viewing a Snapshot

The Snapshots tab contains a list of all the snapshots available in the current project. To
review a process report or verify process status within a snapshot:

1. Expand the snapshot source tree and select the desired source file.
2. Right-click the mouse over the desired process report.

3. From the menu, select Open Without Updating.

Using Project Archives

You can also archive the entire project into a single compressed file. This allows for easier
transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:

1. Select Project > Archive.
2. In the Create Zip Archive dialog box, enter the archive name and location.

Note: The archive contains all of the files in the project directory along with project settings. Remote
sources are included in the archive under a folder named remote_sources . For more information, see
the ISE Help.

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can
be extracted with any ZIP utility and you can then open the extracted file in Project
Navigator.

Using Export/Import Source Control

You can use this feature to export to and retrieve project files and sources from a “staging
area.” The Export/Import processes are typically used in conjunction with a 3rd party
source control system but can be used independently as a valid means of backing up a
design.

Exporting a Project
To export a project

1. Select Project > Source Contorl > Export

18 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

SUXILINX®

Overview of Synthesis Tools

2. Follow the Export Project Wizard to dertermine which files to export, where to export
the files to, and optionally create a Tcl script that can be used to regenerate the ISE

project.

Importing a Project
To import a project
1. Select Project > Source Contorl > Import

2. Select the Project File (.ise or Tcl import script) and directory location to import the
project file and sources.

Overview of Synthesis Tools

You can synthesize your design using various synthesis tools. The following section lists
the supported synthesis tools and includes some process properties information.

Precision Synthesis

This synthesis tool is not part of the ISE package and is not available unless purchased
separately. Two commonly used properties are Optimization Goal and Optimization
Effort. With these properties you can control the synthesis results for area or speed and the
amount of time the synthesizer runs.This synthesis tool is available for both an HDL- and

Schematic-based design flow.

Process Properties

Process properties enable you to control the synthesis results of Precision. Most of the
commonly used synthesis options available for the Precision stand-alone version are
available for Precision synthesis through ISE.

For more information, see the Precision online help.

E Process Properties X|
Categary
- Optimization Options

- Timing Options

= (utput Options
Property Name Yalue
Input SDC File -
Resource Shaing ¥
Advanced F5M Optimization ¥
Use Safe FSM r
FSM Encoding Auta j
WHOL Properties
YHDL Syntax WHDL 93 |
“Wenlog Properties
Full Caze r
Paiallel Case r
Array Bounds Check r

Property display level lm [1efault |

Figure 1-2: Precision Synthesis Process Properties

ISE 9.1 In-Depth Tutorial www.xilinx.com 19

http://www.xilinx.com

ST XILINX® Chapter 1: Overview of ISE and Synthesis Tools

Synplify/Synplify Pro

This synthesis tool is not part of the ISE package and is not available unless purchased
separately. This synthesis tool is available for HDL-based designs, but it is not available for
a schematic-based design.

Process Properties

Process properties enable you to control the synthesis results of Synplify /Synplify Pro.
Most of the commonly used synthesis options available in the Synplify/Synplify Pro
stand-alone version are available for Synplify /Synplify Pro synthesis through ISE.

For more information, see the Synplify /Synplify Pro online help.

= Process Properties x|

Category

Synthesiz Options
HDL Options
i~ Device Options

i Constraint File O ptions

Property Hame WValue
Svmbolic F5M Compiler I~
Reszource Sharing W~
Auto Constrain =

Frequency u]
Mumber of Critic.al Paths u]
Murnber of Start/End Points |0
“write Mapped Verlog Metlist [~
write Mapped VHDL Metlist [~
“wirite Wendor Constraint File W

Property dizplay level: I Advanced vl [refault |
Ok I Cancel | Apply | Help |

2

[l el

Figure 1-3: Synplify/Synplify Pro Synthesis Process Properties

Xilinx Synthesis Technology (XST)

This synthesis tool is part of the ISE package and is available for both an HDL- and
Schematic-based design flow.

Process Properties

Process properties enable you to control the synthesis results of XST. Two commonly used
properties are Optimization Goal and Optimization Effort. With these properties you can
control the synthesis results for area or speed, and the amount of time the synthesizer runs.

More detailed information is available in the XST User Guide, available in the collection of
software manuals. From ISE, select Help > Software Manuals, or go on the web at
http:/ /www.xilinx.com /support/sw_manuals/xilinx9/.

20 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com
http://support.xilinx.com/support/sw_manuals/xilinx8/

Overview of Synthesis Tools

SUXILINX®

Category

‘- Synthesiz O ptions
-HDL Options
-Hiling Specific Optiohs

Process Properties

Property Name Walue

Optimization Goal Speed =

Optimization E ffart Marmal =

Uze Synthesis Constraints File [

Synthesis Constraints File _I
Library Search Order _|
K.eep Hierarchy Mo =

Global Optirnization Goal AllClockMets =

Generate RTL Schematic es |
Fead Cores I~

Cores Search Directories _I
wirite Timing Constraints =

Crogs Clock Analysiz [

Hierarchy Separator _ LI
Bus Delimiter L ;_I‘
Slice Utilization R atio 100 =

Case 14 airitain =

whork, Directory st _I
HDL INI File l
Werilog 2001 |

Werilog Include Directaories L
Custorn Compile File List [
Other ¥5T Command Line Options

Froperty dizplay level: I Advanced VI Default |
oK I

Cancel

Apply

Help

Figure 1-4: XST Synthesis Process Properties

ISE 9.1 In-Depth Tutorial

www.xilinx.com

21

http://www.xilinx.com

ST XILINX® Chapter 1: Overview of ISE and Synthesis Tools

22 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

$7 XILINX®
Chapter 2

HDL-Based Design

This chapter includes the following sections:

e “Overview of HDL-Based Design”
e “Getting Started”

e “Design Description”

o “Design Entry”

e “Synthesizing the Design”

Overview of HDL-Based Design

This chapter guides you through a typical HDL-based design procedure using a design of
arunner’s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design.
This design targets a Spartan™-3A device; however, all of the principles and flows taught
are applicable to any Xilinx® device family, unless otherwise noted.

The design is composed of HDL elements and two cores. You can synthesize the design
using Xilinx Synthesis Technology (XST), Synplify/Synplify Pro, or Precision.

This chapter is the first chapter in the “HDL Design Flow.” After the design is successfully
defined, you will perform behavioral simulation (Chapter 4, “Behavioral Simulation”), run
implementation with the Xilinx Implementation Tools (Chapter 5, “Design
Implementation”), perform timing simulation (Chapter 6, “Timing Simulation”), and
configure and download to the Spartan-3A demo board (Chapter 7, “iMPACT Tutorial”).

ISE 9.1 In-Depth Tutorial www.xilinx.com 23

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

To perform this tutorial, you must have the following software and software components
installed:

o Xilinx Series ISE™ 9.1i
e Spartan-3A libraries and device files

Note: For detailed software installation instructions, refer to the ISE Release Notes and Installation
Guide.

This tutorial assumes that the software is installed in the default location c:\xilinx91i. If
you have installed the software in a different location, substitute your installation path for
c:\xilinx91i in the procedures that follow.

Optional Software Requirements

The following third-party synthesis tools are incorporated into this tutorial, and may be
used in place of the Xilinx Synthesis Tool (XST):

e Synplicity Synplify /Synplify PRO 8.8.02 (or above)
e Mentor Precision Synthesis 2006a2.7 (or above)

The following third-party simulation tool is optional for this tutorial, and may be used in
place of the ISE Simulator:

e ModelSim

VHDL or Verilog?

This tutorial supports both VHDL and Verilog designs, and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial, and download the appropriate
files for that language. XST can synthesize a mixed-language design. However, this tutorial
does not go over the mixed language feature.

Installing the Tutorial Project Files

The Stopwatch tutorial projects can be downloaded from
http:/ /www.xilinx.com/support/techsup /tutorials/tutorials9.htm. Download either the
VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the Web, unzip the tutorial
projects into the ¢ : \xilinx\ISEexamples directory, replacing any existing files in that
directory.

When you unzip the tutorial project files into ¢: \xilinx\ISEexamples, the directory
wtut_vhd (for a VHDL design flow) or wtut_ver (for a Verilog design flow) is created
within ¢:\xilinx\ISEexamples, and the tutorial files are copied into the newly-
created directory.

24 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com
http://www.xilinx.com/support/techsup/tutorials/tutorials9.htm

Getting Started S XILINX®

The following table lists the locations of tutorial source files.

Table 2-1: Tutorial Directories

Directory Description
wtut_vhd Incomplete VHDL Source Files
wtut_ ver Incomplete Verilog Source Files

wtut_vhd\wtut_vhd comple | Completed VHDL Source Files
ted

wtut_ver\wtut_ver comple | Completed Verilog Source Files
ted

Note: Do not overwrite any files in the solution directories.
The completed directories contain the finished HDL source files.

This tutorial assumes that the files are unzipped under c: \xilinx\ISEexamples, but
you can unzip the source files into any directory with read-write permissions. If you unzip
the files into a different location, substitute your project path for
c:\xilinx\ISEexamples in the procedures that follow.

Starting the ISE Software
To start ISE:

Double-click the ISE Project Navigator icon on your desktop or select Start > All
Programs > Xilinx ISE 9.1i > Project Navigator.

4

Figure 2-1: Project Navigator Desktop Icon

Creating a New Project

Note: Two methods are provided for creating a new project: Using the New Project Wizard and
Using a Tcl Script. Use either method provided below.

Creating a New Project: Using the New Project Wizard

1. From Project Navigator, select File > New Project.
The New Project Wizard appears.

ISE 9.1 In-Depth Tutorial www.xilinx.com 25

http://www.xilinx.com

SUXILINX®

Chapter 2: HDL-Based Design

E New Project Wizard - Create New Project = k3

Project Mame;

—Enter a Mame and Location for the Project

Project Location

whit_vhd

[:linl 5 Eemampleshwtut_vhd

N

TopLevel Source Type:

—Select the Type of Top-Level Source for the Project

HOL

Mo Info |

4

Hack | Mest » |

Cancel |

Figure 2-2: New Project Wizard - Create New Project

In the Project Location field, browse to ¢: \x1linx\ISEexamples or to the directory

in which you installe

d the project.

Type wtut_vhd or wtut_ver in the Project Name field.

Verify that HDL is selected as the Top-Level Source Type and click Next.

The New Project Wizard - Device Properties window appears.

E New Project Wizard - Device Properties M= 3
—Select the Device and Design Flow for the Project

Property Name Walle
Product Categony Al hd
Family Spartan3d and Spartan3aM hd
Device XCI57004 hd
Package FG434 hd
Speed -4 hd
Top-Level Source Type HOL ;l
T 5T (VHDLVerilog] =]
Simulator |1SE Simulator [WHDLA erilog) ;I
Freferred Language WHDL ;l
Enable Enkanced Desian Summary [V
Enable Message Filtering —
Dizplay Incremental Meszages I
tare Info | < Back | Mext » I Cancel |

Figure 2-3: New Project Wizard - Device Properties

26

www.xilinx.com

ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Getting Started

SUXILINX®

9.

10.

Select the following values in the New Project Wizard - Device Properties window:
¢ Product Category: All

+ Family: Spartan3A and Spartan3AN

¢ Device: XC3S700A

¢ Package: FG484

¢ Speed: -4

¢ Synthesis Tool: XST (VHDL/Verilog)

¢ Simulator: ISE Simulator (VHDL/Verilog)

¢ Preferred Language: VHDL or Verilog depending on preference. This will
determine the default language for all processes that generate HDL files.

Click Next, then Next, and then click Add Source in the New Project Wizard - Add
Existing Sources window.

Browse to c: \xilinx\ISEexamples\wtut_ vhd or
c:\xilinx\ISEexamples\wtut_ ver.

Select the following files (. vhd files for VHDL design entry or .o files for Verilog
design entry) and click Open.

¢ clk div 262k
¢ Icd control

¢ statmach

¢ stopwatch

Click Next, then Finish to complete the New Project Wizard.

In the Adding Source Files dialog box, verify that all added HDL files are associated
with Synthesis/Imp + Simulation, then click OK.

Creating a New Project: Using a Tcl Script

1.
2.

With Project Navigator open, select the Tcl Shell tab.

Change the current working directory to the directory where the tutorial source files
were unzipped by typing cd c:/xilinx/ISEexamples/wtut vhd (VHDL design
entry) or cd c:/xilinx/ISEexamples/wtut ver (Verilog design entry).

Run the project creation Tcl script by typing source create_wtut_vhd.tcl
(VHDL design entry) or source create wtut_ver.tcl (Verilog design entry).

(VHDL only) Once the project is created and opened, right-click on the device line and
select Properties... Change the Preferred Language: to VHDL. This will determine the
default language for all processes that generate HDL files.

Stopping the Tutorial

You may stop the tutorial at any time and save your work by selecting File > Save All.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 27

http://www.xilinx.com

SUXILINX®

Chapter 2: HDL-Based Design

Design Description

Inputs

Outputs

The design used in this tutorial is a hierarchical, HDL-based design, which means that the
top-level design file is an HDL file that references several other lower-level macros. The
lower-level macros are either HDL modules or IP modules.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by generating some of the modules from scratch and by completing others from
existing files. When the design is complete, you will simulate it to verify the design’s
functionality.

In the runner’s stopwatch design, there are five external inputs and four external output
buses. The system clock is an externally generated signal. The following list summarizes
the input and output signals of the design.

The following are input signals for the tutorial stopwatch design.

e strtstop

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

e reset

Puts the stopwatch in clocking mode and resets the time to 0:00:00.
o dk

Externally generated system clock.
e mode

Toggles between clocking and timer modes. This input is only functional while the
clock or timer is not counting.

e lap_load

This is a dual function signal. In clocking mode it displays the current clock value in
the ‘Lap’ display area. In timer mode it loads the pre assigned values from the ROM to
the timer display when the timer is not counting.

The following are outputs signals for the design.
e lcd_e, led_rs, led_rw

These outputs are the control signals for the LCD display of the Spartan-3A demo
board used to display the stopwatch times.

o sf_d[7:0]
Provides the data values for the LCD display.

Functional Blocks

The completed design consists of the following functional blocks.

e clk div_262k

28

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

Design Entry

Macro which divides a clock frequency by 262,144. Converts 26.2144 MHz clock into
100 Hz 50% duty cycle clock.

e dcml

Clocking Wizard macro with internal feedback, frequency controlled output, and
duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the
Spartan-3A demo board to 26.2144 MHz.

e debounce
Schematic module implementing a simplistic debounce circuit for the strtstop, mode,
and lap_load input signals.

e lcd_control

Module controlling the initialization of and output to the LCD display.

e statmach

State Machine module defined and implemented in State Diagram Editor. Controls the
state of the stopwatch.

e timer_preset

CORE Generator™ 64x20 ROM. This macro contains 64 preset times from 0:00:00 to
9:59:99 which can be loaded into the timer.

e time_cnt

Up/down counter module which counts between 0:00:00 to 9:59:99 decimal. This
macro has five 4-bit outputs, which represent the digits of the stopwatch time.

For this hierarchical design, you will examine HDL files, correct syntax errors, create an
HDL macro, and add a CORE Generator and a Clocking module. You will create and use
each type of design macro. All procedures used in the tutorial can be used later for your
own designs.

With the wtut_vhd.ise or wtut_ver.ise project open in Project Navigator, the
Sources tab displays all of the source files currently added to the project, with the
associated entity or module names (see Figure 2-4). In the current project, time_cnt is
instantiated, but the associated entity or module is not defined in the project.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 29

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

Instantiated components with no entity or module declaration are displayed with a red
question mark.

=
Sources far: I Senthesizdmplementatian ;I
'Lé'_'] wihut_ver
- £15 #e3s700a-4fg454
=- ;;?;; stopwatch [stopwatch. v
- |8 led_chbrlinzt - lod_contral [led_contral. v
D zhritztop_debounce - debounce

D lap_load_debounce - debounce

D mode_debounce - debounce

D timer_inst - time_cnt

- | % | timer_state - statmach [statmach.w)

[el _divider - clk_div_ 262k [clk_div_262k.w)

EfE Sources | [P Shapshats I |E Libraries I

Figure 2-4: Sources Tab Showing Completed Design

Adding Source Files

HDL files must be added to the project before they can be synthesized. Three HDL files
have already been added to this project. An additional file must be added.

1. Select Project > Add Source.
2. Select time_cnt.vhdor time_cnt.v from the project directory and click Open.

3. Inthe Adding Source Files dialog box, verify that time_cnt is associated with
Synthesis/Imp + Simulation and click OK.

Note: Alternatively, the time_cnt.vhd file could be added to the project by entering the following
command in the Tcl Shell tab.

xfile add time cnt.vhd

The red question-mark (?) for time_cnt should change to show the VHD file icon.

timer_ingt - ime_chit - ime_cnt_arch [lime_cnt vhd)
Figure 2-5: time_cnt.vhd File in Sources Tab

Each source Design unit is represented under the sources tab using the following syntax:
<instance name> - <entity name> - <architecture name> - (<file name>).

Checking the Syntax

To check the syntax of source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources tab.

When you select the HDL file, the Processes tab displays all processes available for this
file.

2. In the Processes tab, click the + next to Synthesize to expand the process hierarchy.

30 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

3. Double-click Check Syntax in the Synthesize hierarchy.
Note: Check Syntax is not available when Synplify is selected as the synthesis tool.

Correcting HDL Errors

The time_cnt module contains a syntax error that must be corrected. The red “x” beside the
Check Syntax process indicates an error was found during the analysis. In the Console tab
of the Transcript window, Project Navigator reports errors with a red (X) and warnings
with a yellow (!).

To display the error in the source file:

1. Click the file name in the error message in the Console or Errors tab. The source code
comes up in the main display tab.

2. Correct any errors in the HDL source file. The comments next to the error explain this
simple fix.

3. Select File > Save to save the file.
Re-analyze the file by selecting the HDL file and double-clicking Check Syntax.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 31

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

Creating an HDL-Based Module

Next you will create a module from HDL code. With ISE, you can easily create modules
from HDL code using the ISE Text Editor. The HDL code is then connected to your top-
level HDL design through instantiation and is compiled with the rest of the design.

You will author a new HDL module. This macro will be used to debounce the strtstop,
mode and lap_load inputs.

Using the New Source Wizard and ISE Text Editor

In this section, you create a file using the New Source wizard, specifying the name and
ports of the component. The resulting HDL file is then modified in the ISE Text Editor.

To create the source file:

1. Select Project > New Source.

The dialog box New Source Wizard opens in which you specify the type of source you
want to create.

Select VHDL Module or Verilog Module.
In the File Name field, type debounce.
Click Next.

Enter two input ports named sig_in and clk and an output port named sig_out for the
debounce component in this way:

ATl

a. In the first three Port Name fields type sig_in, clk and sig_out.
b. Set the Direction field to input for sig_in and clk and to output for sig_out.

c. Leave the Bus designation boxes unchecked.

E Mew Source Wizard - Define Module M=

Module Hame Idel:n:uunce

Port Name Direction | Buz | MSE L5B -
gig_in input

clk input

sig_nud output

input

inpLt

input

inpuit

input

inpLt

input

inpLt

A

Mare Info | < Back Mext » Cancel |

Figure 2-6: New Source Wizard for Verilog

32

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

6. Click Next to complete the Wizard session.
A description of the module displays.

7. Click Finish to open the empty HDL file in the ISE Text Editor.
The VHDL file is displayed in Figure 2-7. The Verilog HDL file is displayed in Figure 2-8.

7 —— Module Name: debounce — Behawvioral
=] —— Project Name:

9 —— Target Devices:

10 —— Tool wversions:

11 —— Description:

1z -

13 —— Dependencies:

14 -=

15 —— Revision:

186 —— Rewiszsion 0.01 - File Created

17 —— Additional Comments:

1is -

19

20 library IEEE;

21 use IEEE.STD_LOGIC _1164.ALL:

22 use IEEE.STD_LOGIC ARITH.ALL;

23 use IEEE.STD _LOGIC UNIIGHNED.ALL:

24

25 ———= Uncomment the following library declaration if instantiating

26 ———— any Eilin¥ primitives in this code.

27 ——library UNISIN;
28 ——use UNISIM.VComponents.all;
29
30 entity debounce i=
31 Port | sig in : in STD LOGIC;
3z clk : in STD_LOGIC:
33 =ig_out : out STD LOGIC);
34 end debounce; - -
35
36 architecture Behawvioral of debounce is
37
35 begin
39
a0
41 end Behavioral;
4z
Figure 2-7: VHDL File in ISE Text Editor
i ‘timescale 1ns / 1ps
z FELESEES TSRS SRS S S AR E
3 S Company:
4 /4 Engineer:
5 I
5 /4 Create Date: 14:12:53 03/15/2007
7 ff Design INagoe:
=) fF Module Name: dehounce
=] /4 Project MName:
10 /4 Target Devices:
11 S Tool wersions:
1z /f Descriprtion:
13 A
14 ff Dependencies:
15 I
16 /f Rewvision:
17 /4 Rewision 0.01 - File Created
15 S Additional Comrnents:
19 I
= N NN RN RN
21 module debounce (sig in, clk, =sig out):;
22 input sig in;
23 input olk:
24 output sig out;
25
26
27 encdmocdule
28

Figure 2-8: Verilog File in ISE Text Editor

ISE 9.1 In-Depth Tutorial

www.xilinx.com

33

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic
file structure is already in place. Keywords are displayed in blue, comments in green, and
values are black. The file is color-coded to enhance readability and help you recognize
typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will use the Debounce Circuit template for this exercise.

Note: You can add your own templates to the Language Templates for components or constructs
that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select Edit > Language Templates.

Each HDL language in the Language Templates is divided into five sections: Common
Constructs, Device Primitive Instantiation, Simulation Constructs, Synthesis
Constructs and User Templates. To expand the view of any of these sections, click the
+ next to the section. Click any of the listed templates to view the template contents in
the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs
hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and
select the template called [One-shot,] Debounce Circuit. Use the appropriate template
for the language you are using.

Upon selection, the HDL code for a debounce circuit is displayed in the right pane.

34 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

& (CTABEL
- (21 Ted
[CIucF
-- [¥erilog
E-E3WHDL

E
E
-9 Sy

£

B
B
B
B
E
B
B
£

B
B
£
B
B

[l [Comman Constructs
+]- [7] Diewicee: Primitive Instaritiation
+]- [Simulation Corstructs

[[T Assertions & Functions

B [Attibutes
-3 Coding Examples

=

hthesis Constructs

- [0 Accumulators

- [Arithmetic

- [Basic Gates

- (7] Comparators

- [Courters

i- [Decoders

- [T Eneoders

- (1 Flip Flops

H- [Logical Shifters

-3 Mise:

T-Segment Digplay Hex Conversion
Aszpnchronous Input Synchronization [FRed
Barrel Shifter

Debounce circuit

Open Drain Dutput [bused reg)
Open Drain Dutput [zingle signal)
(27 Output Clack Fonwarding L sing DDR
- [Multiplexers

- [CTRAM

- [CIROM

- [Shift Registers

- [State-Machines

£

rn I e B

+- [Tristate Bufers —

+- [Conditional
H- [Generate
- [Loops

H
7
bl

[sg] debounce.vhd | Language Templates I

[

—- Provides a one-shot pulse from a non-clock input, with reset

——**Inzert the following hetween the 'architecture' and
———'begin' keywords*¥*
signal Q1, Q2, Q3 : std logic:

——**Inzert the following after the 'begin' keyword*¥
process (<clocks>)
begin
if [<clock>'ewvent and <clock> = '1') then
if [<reset> = '1') then

Q1 <= '0';

Gz <= '0';

Q3 <= '0';

21 <= D_IN;

Qz <= Q1;

Q3 <= Q2;
end process;

Q OUT <= Q1 and Q2 and (not Q3);

TR

Figure 2-9: Language Templates

Adding a Language Template to Your File

You will now use the drag and drop method for adding templates to your HDL file. Refer
to “Working with Language Templates” in the ISE Help for additional usability options.

To add the template to your HDL file using the drag and drop method:

1. Select Window > Tile Vertically to show both the HDL file and the Language
Templates window.

2. Click and drag the Debounce Circuit name from the Language Template topology
into the debounce.vhd file under the architecture begin statement, or into the
debounce. v file under the module and pin declarations.

3. Close the Language Templates window.

(Verilog only) Complete the Verilog module by doing the following;:

a. Remove the reset logic (not used in this design) by deleting the three lines
beginning with if and ending with else.

b. Change <reg_name> to q in all six locations.

ISE 9.1 In-Depth Tutorial

www.xilinx.com

35

http://www.xilinx.com

SUXILINX®

Chapter 2: HDL-Based Design

C.

Change <clock> to clk; <input> to sig_in; and <output> to sig_out.

5. (VHDL only) Complete the VHDL module by doing the following;:

a.

b.

Move the line beginning with the word signal so that it is between the architecture
and begin keywords.

Remove the reset logic (not used in this design) by deleting the five lines beginning
with if (<reset>... and ending with else and delete one of the end if; lines.

Use Edit > Replace to change <clock> to clk; D_IN to sig_in; and Q_OUT to
sig_out.

You now have complete and functional HDL code.

L *® N

Save the file by selecting File > Save.

Select one of the debounce instances in the Sources tab.
In the Processes tab, double-click Check Syntax.

Close the ISE Text Editor.

Creating a CORE Generator Module

CORE Generator is a graphical interactive design tool that enables you to create high-level
modules such as memory elements, math functions and communications and IO interface
cores. You can customize and pre-optimize the modules to take advantage of the inherent
architectural features of the Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s,

and distributed and block RAM.

In this section, you will create a CORE Generator module called timer_preset. The module
will be used to store a set of 64 values to load into the timer.

Creating a CORE Generator Module

To create a CORE Generator module:

AL e

In Project Navigator, select Project > New Source.

Select IP (Coregen & Architecture Wizard).

Type timer preset in the File name field.

Click Next.

Double-click Memories & Storage Elements, then double-click RAMs & ROMs.
Select Distributed Memory Generator, then click Next and click Finish to open the

Distributed Memory Generator customization GUL This customization GUI enables
you to customize the memory to the design specifications.

7. Fill in the Distributed Memory Generator customization GUI with the following
settings:

*

¢

L

Component Name: timer_preset - Defines the name of the module.
Depth: 64 - Defines the number of values to be stored

Data Width: 20 - Defines the width of the output bus.

Memory Type: ROM

Click Next.

Leave Input and output options as Non Registered; Click Next.

36

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

¢ Coefficients File: Click the Browse button and select definition1_times.coe.

Il Distributed Memory Generator v3.3

logiC ! Distributed Memory Generator v3.3

Component Mame Itimer_preset

—Optionz

Depth |S4 Fange: 16..E5536
D ata 'width |2E| Range: 1..1024
—Memory Tup

f+ ROM = Single Port Ré
= Dual Part Rt = 5RL16-based Memary

0] m— fomm- = P [19:01]

IP Syrnbol I
Wiews Data Sheetl Page 1 of 3 < Back | Mest » I Finizh | Cancel |

Figure 2-10: CORE Generator - Distributed Memory Generator Customization GUI

8. Check that only the following pins are used (used pins are highlighted on the symbol
on the left side of the customization GUI):

¢ a[5:0]
¢ spo[19:0]
9. Click Finish.
The module is created and automatically added to the project library.
Note: A number of files are added to the project directory. Some of these files are:
¢ timer_preset.vho or timer_preset.veo

These are the instantiation templates used to incorporate the CORE Generator
module into your source HDL.

¢ timer_preset.vhd or timer_preset.v

These are HDL wrapper files for the core and are used only for simulation.
¢ timer_preset.edn

This file is the netlist that is used during the Translate phase of implementation.
¢ timer_preset.xco

This file stores the configuration information for the timer_preset module and is
used as a project source.

¢ timer_preset.mif

This file provides the initialization values of the ROM for simulation.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 37

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

Instantiating the CORE Generator Module in the HDL Code

Next, instantiate the CORE Generator module in the HDL code using either a VHDL flow
or a Verilog flow.

VHDL Flow
To instantiate the CORE Generator module using a VHDL flow:
1. In Project Navigator, double-click stopwatch.vhd to open the file in ISE Text Editor.
2. Place your cursor after the line that states:
-- Insert CORE Generator ROM component declaration here

3. Select Edit > Insert File, then select timer preset.vho and click Open.
The VHDL template file for the CORE Generator instantiation is inserted.

PTEI - — e e Eegin Cut here for COMPONENT Declaration —--—-——-—-— COMP_TAG
122 Component timer preset

123 port |

124 a: IN std logic VECTOR(S downto 0);

125 spo: OOT std logic WECTOR ({19 downto 0)):

126 end component;

127

128 —— Svnplicity black kbox declaration

1z9 attribute syn black box : boolean;

130 attribute syn black box of timer preset: component is true;
131

132 -- COMF TAG END ——-—-—- End COMPONENT Declaration —-——-—————————

Figure 2-11: VHDL Component Declaration for CORE Generator Module

4. Highlight the inserted code from
-- Begin Cut here for INSTANTIATION Template ----
to
--INST TAG END ------ END INSTANTIATION Template -----
Select Edit > Cut.
Place the cursor after the line that states:
--Insert CORE Generator ROM Instantiation here
Select Edit > Paste to place the core instantiation.
Change the instance name from your instance name tot_ preset.

Edit this instantiated code to connect the signals in the Stopwatch design to the ports
of the CORE Generator module as shown in Figure 2-12.

169 -———-—- Inzert CORE Generator ROM instantiastion here

170 Begin Cut here for INITANTIATICN Template —-——- INET TAG
171 t _preset : timer preset

172 port map |

173 a =r address,

174 2po = preset_time);

175 -- IN3T TAG END ------ End IN3TANTIATICN Template --—---———-—-—-

Figure 2-12: VHDL Component Instantiation of CORE Generator Module

38 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

10. The inserted code of timer preset.vho contains several lines of commented text

for instruction and legal documentation. Delete these commented lines if desired.

11. Save the design using File > Save, and close the ISE Text Editor.

Verilog Flow

To instantiate the CORE Generator module using a Verilog flow:

1.
2.

In Project Navigator, double-click stopwatch. v to open the file in the ISE Text Editor.
Place your cursor after the line that states:

//Place the Coregen module instantiation for timer preset here
Select Edit > Insert File, and select timer preset.veo.

The inserted code of timer preset.veo contains several lines of commented text
for instruction and legal documentation. Delete these commented lines if desired.

Change the instance name from YourInstanceName to t_preset.

Edit this code to connect the signals in the Stopwatch design to the ports of the CORE
Generator module as shown in Figure 2-13.

36 {f Place the Coregen module instantiation for timer preset here

37T S Begin Cut here for INITANTIATICH Tempzate --=// INZT TLG
38 timer preset t_preset |

39 .a{address), [/ Bus [5 : 0]

40 .spof{preset_time]): /7 Bus [15 : O]

41

42) INST TAG END ----—- End INSTANTIATION Tewplate —-———————-

Figure 2-13: Verilog Component Instantiation of the CORE Generator Module

7. Save the design using File > Save and close stopwatch. v in the ISE Text Editor.

Creating a DCM Module

The Clocking Wizard, a part of the Xilinx Architecture Wizard, enables you to graphically
select Digital Clock Manager (DCM) features that you wish to use. In this section you will
create a basic DCM module with CLKO feedback and duty-cycle correction.

Using the Clocking Wizard

To create the dem1 module:

1.
2.

In Project Navigator, select Project > New Source.

In the New Source dialog box, select IP (CoreGen & Architecture Wizard) source and
type dem1 for the file name.

Click Next.

In the Select IP dialog box, select FPGA Features and Design > Clocking > Spartan-
3E, Spartan-3A > Single DCM SP.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 39

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

E New Source Wizard - Select IP) x|

--I:I.t‘-\utumotive & Industrial
--D Bazic Elements
--I:I Communication & Metworking
--I:I Digital Signal Proceszing
|_'—_|I:| FPGA Features and Dezign
- Clocking
B3 Spartan-3E, Spartan-3,
b ¢ Board Deskew with an Internal Deskew [DCM SP) 9.7
- Cazcading in Senes with Two DCM SF +3.701
- Clock Forwarding / Board Deskew [DCM SP)+3.71
4, Elock Switching with Two DCM 5Ps v3.1i
B8 " Single DCM 5P 3.1

G- Math Furictions
17 Memories & Storage Elements
[#-{7 Standard Bus Interfaces

fare [nfo | ¢ Back | Mest > I Cancel

Figure 2-14: Selecting Single DCM IP Type

Click Next, then Finish. The Clocking Wizard is launched.
Verify that RST, CLKO and LOCKED ports are selected.
Select CLKFX port.

Type 50 and select MHz for the Input Clock Frequency.

0 *® N @

Verify the following settings:

¢ Phase Shift: NONE

¢ CLKIN Source: External, Single

¢ Feedback Source: Internal

¢ Feedback Value: 1X

¢ Use Duty Cycle Correction: Selected

10. Click the Advanced button.

11. Select Wait for DCM lock before DONE Signal goes high.
12. Click OK.

13. Click Next, and then click Next again.

14. Select Use output frequency and type 26.2144 in the box and select MHz.

(26.2144Mhz)/ 2'* = 100H:

15. Click Next, and then click Finish.

The deml . xaw file is added to the list of project source files in the Sources tab.

40 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

Instantiating the decm1 Macro - VHDL Design

Next, you will instantiate the dem1 macro for your VHDL or Verilog design. To instantiate

the dem1 macro for the VHDL design:

1. In Project Navigator, in the Sources tab, select dcml . xaw.

2. In the Processes tab, right-click View HDL Instantiation Template and select

Properties.

3. Choose VHDL for the HDL Instantiation Template Target Language value and click

OK.

In the Processes tab, double-click View HDL Instantiation Template.

5. Highlight the component declaration template in the newly opened HDL Instantiation

Template (dcml . vhi), shown below.

e —— HNotesz:

5 —— 1} This instantiation template has been au
(=} -- 5td logic and std logic vector for the por
7 —— 2] To use this template to instantiate thi
2

=] COMPONENT deoml

10 PORT

11 CLEIN IN : IN std logic:

12 RST IN : IN =td logic:

13 CLEFYX OUT : OUT =td logic:

14 CLEIN IBUFG OUT : OUT =td logic:

15 CLEO OUT : OOT std logic:

18 LOCKED OUT : OUT =td logic

17 i: = %

18 END COMPONENT;

Figure 2-15: VHDL DCM Component Declaration

Select Edit > Copy.

Place the cursor in the stopwatch.vhd file in a section labeled

-- Insert dcml component declaration here.

Select Edit > Paste to paste the component declaration.

Highlight the instantiation template in the newly opened HDL Instantiation Template,

shown below.

19
20
21
22
23
24
25
208
27
22

Inst deml: deml PORT MAP |

CLEIN IN = ,
RST_IN = ,

CLEFX OUT =» ,
CLEIN IBUFG OUT =» ,
CLEO_OUT =» ,
LOCKED OUT ==

Figure 2-16: VHDL DCM Component Instantiation

10. Select Edit > Copy.

11. Place the cursor in the stopwatch.vhd file below the line labeled

“-- Insert decml instantiation here”.

ISE 9.1 In-Depth Tutorial

www.xilinx.com

4

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

12. Select Edit > Paste to paste the instantiation template.

13. Make the necessary changes as shown in the figure below.

141 - Insert deml instantiation here
142 Inst_deml: demwml PORT MAR(

143 CLEIN IN =» clk,

144 R3T IN => reset,

145 CLEFZ OUT = clk ZeZldk,

146 CLEIN IBUFG_OUT = opemn,

147 CLED_OUT =»> open,

145 LOCEED OUT =»> locked

149 I:

Figure 2-17: VHDL Instantiation for dcm1

14. Select File > Save to save the stopwatch.vhd file.

Instantiating the decm1 Macro - Verilog

To instantiate the dem1 macro for your Verilog design:

1. In Project Navigator, in the Sources tab, select dcml . xaw.
2. In the Processes tab, double-click View HDL Instantiation Template.

3. From the newly opened HDL Instantiation Template (dcml . t£1), copy the
instantiation template, shown below.

4 // Instantiate the module

5 deml instance name |

3 .CLEIN IN(CLEIN IN),

7 .RST_IN(RST IN),

8 .CLEFX OUT(CLEFX OUT),

9 .CLEIN IBUFG OUT(CLEIN IBUFG OUT),

10 .CLEO_OUT{CLKO_OUT),
11 .LOCKED OUT {LOCKED OUT)
1z ik

Figure 2-18: dcm1 Macro and Instantiation Templates

4. Paste the instantiation template into the section in stopwatch.v labeled
//Insert dcml instantiation here.
5. Make the necessary changes as shown in the figure below.

45 //Insert deml instantiation here
46 deml instance name |

47 .CLEIN TM(clkj,

48 LRET_IN(reset),

49 .CLEFX OUT(clk 26Z14k),
50 .CLEIN IEUFG QUT(),

51 .CLED_QUT{(),

=¥ -LOCEED OUT (locked)

53 1

Figure 2-19: Verilog Instantiation for dem1

6. Select File > Save to save the stopwatch. v file.

42 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Synthesizing the Design S XILINX®

Synthesizing the Design

So far you have been using XST (the Xilinx synthesis tool) for syntax checking. Next, you
will synthesize the design using either XST, Synplify /Synplify Pro or Precision. The
synthesis tool uses the design’s HDL code and generates a supported netlist type (EDIF or
NGC) for the Xilinx implementation tools. The synthesis tool performs three general steps
(although all synthesis tools further break down these general steps) to create the netlist:

¢ Analyze / Check Syntax
Checks the syntax of the source code.
e Compile

Translates and optimizes the HDL code into a set of components that the synthesis tool
can recognize.

e Map

Translates the components from the compile stage into the target technology’s
primitive components.

The synthesis tool can be changed at any time during the design flow. To change the
synthesis tool:

1. Select the targeted part in the Sources tab.
2. Select Source > Properties.

3. In the Project Properties dialog box, click on the Synthesis Tool value and use the pull-
down arrow to select the desired synthesis tool from the list.

E= Project Properties

Property Hame Walue
Product Category 2l ha
Farnily Spartan2d and Spartan3aM hd
Device T35 7008 hd
Fackage FG484 Jhd
Speed -4 ~]
Top-Level Source Type HDL -
Synthesiz Tool =5T WHDLAYerilog) g
Simulator
Preferred Language S-"anlir-'" NHDL]

Synplify [erlog)

Synplify Pro fWHD LAY erilog)
Enable Enhanced Design Surmane | Precizion WHD LA erilog)
Enable Meszzage Filtering —
Dizplay Incremental Mezzages —

(u] I Cancel I LCrefault | Help

Figure 2-20: Specifying Synthesis Tool

Note: If you do not see your synthesis tool among the options in the list, you may not have the
software installed or may not have it configured in ISE. The Synthesis tools are configured in the
Preferences dialog box (Edit > Preferences, expand ISE General, then click Integrated Tools).

Changing the design flow results in the deletion of implementation data. You have not yet
created any implementation data in this tutorial. For projects that contain implementation
data, Xilinx recommends that you take a snapshot of the project before changing the

ISE 9.1 In-Depth Tutorial

www.xilinx.com 43

http://www.xilinx.com

SUXILINX®

Chapter 2: HDL-Based Design

synthesis tool to preserve this data. For more information about taking a snapshot, see
“Creating a Snapshot” in Chapter 1.

A summary of available synthesis tools is available in “Overview of Synthesis Tools” in
Chapter 1

Read the section for your synthesis tool:

e “Synthesizing the Design using XST”
e “Synthesizing the Design using Synplify /Synplify Pro”
e “Synthesizing the Design Using Precision Synthesis”

Synthesizing the Design using XST

Now that you have created and analyzed the design, the next step is to synthesize the
design. During synthesis, the HDL files are translated into gates and optimized for the
target architecture.

Processes available for synthesis using XST are as follows:

e View Synthesis Report

Gives a synthesis mapping and timing summary as well as a list of optimizations that
took place.

e View RTL Schematic

Generates a schematic view of your RTL netlist.
¢ View Technology Schematic

Generates a schematic view of your Technology netlist.
¢ Check Syntax

Verifies that the HDL code is entered properly.

¢ Generate Post-Synthesis Simulation Model

Creates HDL simulation models based on the synthesis netlist.

Entering Constraints

XST supports a User Constraint File (UCF) style syntax to define synthesis and timing
constraints. This format is called the Xilinx Constraint File (XCF), and the file has an .xcf
file extension. XST uses the .xcf extension to determine if the file is a constraints file.

To create a new Xilinx Constraint File:

1. Select Project > Add Source.

2. Inthe Add Existing Sources dialog box, change the Files of type: to ‘All Files (*.*) and
then select and add stopwatch.xcf.

3. Notice that stopwatch.xcf is added as a User Document.

Note: In place of the three steps above, you may add the .xcf file through the Tcl Shell, using the
following command and then selecting View > Refresh.

xfile add stopwatch.xcf
4. Double-click stopwatch.xcf to open the file in the ISE Text Editor.

5. The following constraints should exist in the stopwatch.xcf file:

44

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Synthesizing the Design

SUXILINX®

NET "CLK" TNM_NET

= "CLK_GROUP";

TIMESPEC “TS_CLK”=PERIOD "“CLK GROUP” 20 ns;

BEGIN MODEL stopwatch

NET
NET
NET
NET
NET
NET
NET
NET
END;

"sf_d<7>"
"sf_d<6>"
"sf_d<5>"
"sf_d<4>"
"sf_d<3>"
"sf_d<2>"
"sf_d<1>"
"sf_d<0>"

LOC
LOC
LOC
LOC
LOC
LOC
LOC
LOC

6. Close stopwatch.xcft.

"Y15";
"AB16";
"Yle";

"AAI2";
"AB12";
"AB17";
"AB18";
"Yy13";

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor”
and “Using the Floorplan Editor” in Chapter 5, “Design Implementation.”

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used option is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a flip-flop output or setting the desired frequency of

the design.

To enter synthesis options:

1. Select stopwatch.vhd (or stopwatch.v) in the Sources tab.

2. In the Processes tab, right-click the Synthesize process and select Properties.

3. Under the Synthesis Options tab, click in the Synthesis Constraints File property
field and enter stopwatch.xcf.

Check the Write Timing Constraints box.
5. Click OK.

Synthesizing the Design

Now you are ready to synthesize your design. To take the HDL code and generate a
compatible netlist:

1. Select stopwatch.vhd (or stopwatch.v).

2. Double-click the Synthesize process in the Processes tab.

The RTL / Technology Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code helps you analyze your design by displaying a graphical
connection between the various components that XST has inferred. There are two forms of
the schematic representation:

e RTL View - Pre-optimization of the HDL code.

¢ Technology View - Post-synthesis view of the HDL design mapped to the target
technology.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 45

http://www.xilinx.com

SUXILINX®

Chapter 2: HDL-Based Design

To view a schematic representation of your HDL code:

1. In the Processes tab, click the + next to Synthesize to expand the process hierarchy.
2. Double-click View RTL Schematic or View Technology Schematic.

The RTL Viewer displays the top level schematic symbol for the design. Double-click on
the symbol to push into the schematic and view the various design elements and
connectivity. Right-click the schematic to view the various operations that can be
performed in the schematic viewer.

clk sf_d(7:0) ——

lap_load

lcd_e |

g Searve| g Sraprebet|) Livses | B2 Desion
E |
No flow available. mo d e

led_rs
reset

led_rw |

strtstop

B Procevens | [stopwstchrgs |
M Design Dhieets of Propesties of Instance
Top Level Symhal stopwatch
[a—— [P Sigrusts Name [
shepuenich Irath ame: hiopesatch
Type thepest

5] Conucle | @ Emors | g\ Wamings | ZTclShel | g FrdinFies | B View by Calegory gUrwh,Nm.-i

Figure 2-21: RTL Viewer

You have completed XST synthesis. An NGC file now exists for the Stopwatch design.
To continue with the HDL flow:
¢ Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.
OR

¢ Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Note: For more information about XST constraints, options, reports, or running XST from the
command line, see the XST User Guide. This guide is available in the collection of software manuals
and is accessible from ISE by selecting Help > Software Manuals, or from the web at
http://www.xilinx.com/support/sw_manuals/xilinx9/.

46

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com
http://www.xilinx.com/support/sw_manuals/xilinx9/

Synthesizing the Design S XILINX®

Synthesizing the Design using Synplify/Synplify Pro

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify
outside of ISE.

To synthesize the design, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).

In the Processes tab, right-click the Synthesize process and select Properties.
Check the Write Vendor Constraint File box.

Click OK to accept these values.

Al S N

Double-click the Synthesize process to run synthesis.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes tab, and selecting Process > Run.

Processes available in Synplify and Synplify Pro synthesis include:
e View Synthesis Report

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.
¢ View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code

e View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code mapped to the primitives associated with
the target technology.

Examining Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the
Synthesize process. The report consists of the following four sections:

e “Compiler Report”
e “Mapper Report”
e “Timing Report”

e “Resource Utilization”

Compiler Report

The compiler report lists each HDL file that was compiled, names which file is the top
level, and displays the syntax checking result for each file that was compiled. The report
also lists FSM extractions, inferred memory, warnings on latches, unused ports, and
removal of redundant logic.

Note: Black boxes (modules not read into a design environment) are always noted as unbound in
the Synplify reports. As long as the underlying netlist (.ngo, .ngc or .edn) for a black box exists in the
project directory, the implementation tools merge the netlist into the design during the Translate
phase.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 47

http://www.xilinx.com

SUXILINX®

Chapter 2: HDL-Based Design

Mapper Report

The mapper report lists the constraint files used, the target technology, and attributes set in
the design. The report lists the mapping results of flattened instances, extracted counters,
optimized flip-flops, clock and buffered nets that were created, and how FSMs were coded.

Timing Report

The timing report section provides detailed information on the constraints that you
entered and on delays on parts of the design that had no constraints. The delay values are
based on wireload models and are considered preliminary. Consult the post-place and
route timing reports discussed in Chapter 5, “Design Implementation,” for the most
accurate delay information.

Perfornance Sunnary
FRERXNEREXRERNEEXNENXRE

lorst slack in design: -1.581

Requested Estimated Requested Estimated

Starting Clock Frequency Frequency Pericd Pericd Slack
stopwatch|clk_divider clk_100_inferred_clock 305.3 MHz 259.5 MHz 3.276 3.854 -0.578
stopwatch|denl_inst CIKFE_BUF derived_clock 111.6 MHz 94.9 MHz g.959 10.540 -1.581

Figure 2-22: Synplify’s Estimated Timing Data

Resource Utilization

This section of the report lists all of the resources that Synplify uses for the given target
technology.

You have now completed Synplify synthesis. At this point, a netlist EDN file exists for the
Stopwatch design.

To continue with the HDL flow:

e Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

OR

e Proceed to Chapter 5, “Design Implementation,” to place and route the design.

Synthesizing the Design Using Precision Synthesis

Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available for Precision Synthesis include:

¢ Check Syntax
Checks the syntax of the HDL code.

e View Log File

48

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Synthesizing the Design

SUXILINX®

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.
View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code

View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code mapped to the primitives associated with the
target technology.

View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of the critical path of your HDL code mapped to the primitives
associated with the target technology.

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize
according to the needs of the design. For the tutorial, the default property settings will be
used.

1.
2.

Select stopwatch.vhd (or stopwatch.v) in the Sources tab.

Double-click the Synthesize process in the Processes tab.

The RTL/Technology Viewer

Precision Synthesis can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code helps you analyze your design by seeing a graphical
connection between the various components that Precision has inferred. To launch the
design in the RTL viewer, double-click the View RTL Schematic process. The following
figure displays the design in an RTL view.

=-{F stopwatch INTERF

-1 Clocks
-0 Ports
-2 Mets
-[C3 Instances —
= =
£ T I i =

|

| r

Transcript |Pﬁ Deszign Eenterpg RTL Design I

Figure 2-23: Stopwatch Design in Precision Synthesis RTL Viewer

You have now completed the design synthesis. At this point, an EDN netlist file exists for
the Stopwatch design.

To continue with the HDL flow:

ISE 9.1 In-Depth Tutorial

www.xilinx.com 49

http://www.xilinx.com

ST XILINX® Chapter 2: HDL-Based Design

¢ Go to Chapter 4, “Behavioral Simulation,” to perform a pre-synthesis simulation of
this design.

OR

e Proceed to Chapter 5, “Design Implementation,” to place and route the design.

50 www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

$7 XILINX®
Chapter 3

Schematic-Based Design

This chapter includes the following sections:

e “Overview of Schematic-Based Design”
e “Getting Started”
e “Design Description”

o “Design Entry”

Overview of Schematic-Based Design

This chapter guides you through a typical FPGA schematic-based design procedure using
the design of a runner’s stopwatch. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices that you can apply to
your own designs. The stopwatch design targets a Spartan™-3A device; however, all of the
principles and flows taught are applicable to any Xilinx® device family, unless otherwise
noted.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you
will use the ISE™ design entry tools to complete the design. The design is composed of
schematic elements, a state machine, a CORE Generator™ component, and HDL macros.
After the design is successfully entered in the Schematic Editor, you will perform
behavioral simulation (Chapter 4, “Behavioral Simulation”), run implementation with the
Xilinx Implementation Tools (Chapter 5, “Design Implementation”), perform timing
simulation (Chapter 6, “Timing Simulation”), and configure and download to the
Spartan-3A (XC3S700A) demo board (see Chapter 7, “iMPACT Tutorial.”).

Getting Started

The following sections describe the basic requirements for running the tutorial.

Required Software

You must have Xilinx ISE 9.1i installed to follow this tutorial. For this design you must
install the Spartan-3A libraries and device files.

A schematic design flow is supported on Windows, Solaris, and Linux platforms.

ISE 9.1 In-Depth Tutorial www.xilinx.com 51

http://www.xilinx.com

SUXILINX®

Chapter 3: Schematic-Based Design

This tutorial assumes that the software is installed in the default location, at ¢ : \xilinx. If
you have installed the software in a different location, substitute c: \xilinx for your
installation path.

Note: For detailed instructions about installing the software, refer to the ISE 9.1i Installation Guide
and Release Notes.

Installing the Tutorial Project Files

The tutorial project files can be downloaded to your local machine from
http:/ /www.xilinx.com/support/techsup/tutorials/tutorials9.htm.

Download the Watch Schematic Design Files (wtut_sch. zip). The download contains
two directories:

e wtut sc\
(Contains source files for schematic tutorial. The schematic tutorial project will be
created in this directory).

e wtut sc\wtut sc_completed\
(Contains the completed design files for the schematic-based tutorial design,
including schematic, HDL, and State Machine files. Do not overwrite files under this
directory.)

Unzip the tutorial design files in any directory with read-write permissions. The schematic
tutorial files are copied into the directories when you unzip the files. This tutorial assumes
that the files are unarchived under c : \xilinx\ISEexamples. If you restore the files to a
different location, substitute ¢ : \xilinx\ISEexamples with the project path.

Starting the ISE Software

To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop, or select Start > All
Programs > Xilinx ISE 9.1i > Project Navigator.

IS

Figure 3-1: Project Navigator Desktop Icon

Creating a New Project

Two methods are provided for creating a new project: Using the New Project Wizard, and
Using a Tcl Script.

52

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com/support/techsup/tutorials/tutorials9.htm
http://www.xilinx.com

Getting Started

SUXILINX®

Creating a New Project: Using New Project Wizard

From Project Navigator, select File > New Project. The New Project Wizard appears.

[New Project Wizard - Create New Project -0l =1

—Enter a Name and Lacation for the Project

Froject Mame: Project Location

wikut_sc Ic:\xilinx\l SEexampleswiut_sc |

—Select the Type of Top-Level Source for the Project
Top-Level Source Type:

Schematic j

Mare Info | < Back | Mext » I Cancel

Figure 3-2: New Project Wizard - Create New Project

Type wtut_sc as the Project Name. Notice that wtut_sc is appended to the Project
Location value.

Browse to c: \xilinx\ISEexamples or enter the directory in the Project Location
field.

Select Schematic as the Top-Level Source Type, and then click Next.

E New Project Wizard - Device Properties M=l
—Select the Device and Design Flow for the Project

Property Hame Walue
Product Categom Al d
Family Spartan3h and Spartan3aM hd
Device L35 7004 hd
Package FG484 B
Speed -4]
Top-Level Source Type Schematic ;I
Synthesis Tool #5T [WHDLAVerilog) j
Simulator ISE Simulator [WHDLAYerilog] Ll
Frefered Language Yerilog ;l
Enable Enhanced Design Summary ¥
Enable Mezzage Filtering —
Digplay Incremental Messages I

Mare Info | ¢ Back | Mewt » | Cancel

Figure 3-3: New Project Wizard - Device Properties

ISE 9.1 In-Depth Tutorial

www.xilinx.com 53

http://www.xilinx.com

SUXILINX®

Chapter 3: Schematic-Based Design

9.

10.

11.

Select the following values in the New Project Wizard - Device Properties window:
¢ Product Category: All

+ Family: Spartan3A and Spartan3AN

¢ Device: XC3S700A

¢ Package: FG484

¢ Speed: -4

¢ Synthesis Tool: XST (VHDL/Verilog)

¢ Simulator: ISE Simulator (VHDL/Verilog)

¢ Preferred Language: VHDL or Verilog depending on preference. This will
determine the default language for all processes that generate HDL files.

Click Next twice, and then click Add Source in the New Project Wizard - Add Existing
Sources window.

Browse to c: \xilinx\ISEexamples\wtut_ sc.

Select the following files and click Open.

¢ cd4rled.sch

¢ ch4rled.sch

¢ clk_div 262k.vhd

¢ 1lcd control.vhd

¢ stopwatch.sch

¢ statmach.dia

Click Next, then Finish to complete the New Project Wizard.

Verify that all added schematic files are associated with Synthesis/Imp + Simulation,
and that the . dia file is associated with Synthesis/Implementation Only.

Click OK.

Creating a New Project: Using a Tcl Script

With Project Navigator open, select the Tcl Shell tab.

1.

2.

Change the current working directory to the directory where the tutorial source files
were unzipped. (e.g. Type cd c:/xilinx/ISEexamples/wtut_sc).

Type source create wtut sc.tcl.

Stopping the Tutorial

If you need to stop the tutorial at any time, save your work by selecting File > Save All.

Design Description

The design used in this tutorial is a hierarchical, schematic-based design, which means that
the top-level design file is a schematic sheet that refers to several other lower-level macros.
The lower-level macros are a variety of different types of modules, including schematic-
based modules, a CORE Generator module, a state machine module, an Architecture
Wizard module, and HDL modules.

54

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Description S XILINX®

The runner’s stopwatch design begins as an unfinished design. Throughout the tutorial,
you will complete the design by creating some of the modules and by completing others
from existing files. A schematic of the completed stopwatch design is shown in the
following figure. Through the course of this chapter, you will create these modules,
instantiate them, and then connect them.

After the design is complete, you will simulate the design to verify its functionality. For
more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

RSN o222 o clk_div_262k
ok_26214k o oa] @100
—a
LOC=E12 _—
[—— o —a
STATMACH
ok_1 = aen §_zn_int
debounce hoctes L p
lap_kad ; i = ot aip_jesd
A
——{ck made_h
- mode_coniml
debounce e . :
lcd_control
. . vi500 3 s_int
moce - o - _p——————% DTOHE) [— 15 oW, R0
ck_26214k = ok_26214k =
debounce .
B kd e
EEE ER time_cnt s ED
[R — caunti (3:0)
—
3 countz (30}
made_control R SUNBE0)
oh_en_i counid(30) C=Y15AB1E Y12.'\A1" 517 AB18.Y13
o . counts (320}
rEL_ i
CBSCE timer_preset
ara %ELEHTO: aa:re;‘__a;&-]; a51 500170 [li—
load =3 L2 —a
ck_tan g —
wo:e_-:o*'.m—l
TheStop Warch Tumns
Nametr. Tu sors
DareThu Mar 22 13°51-37 2007 Sheet1 a1

Figure 3-4: Completed Watch Schematic

There are five external inputs and four external outputs in the completed design. The
following sections summarize the inputs and outputs, and their respective functions.

Inputs

The following are input signals for the tutorial stopwatch design.

ISE 9.1 In-Depth Tutorial www.xilinx.com 55

http://www.xilinx.com

SUXILINX®

Chapter 3: Schematic-Based Design

Outputs

strtstop

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

reset

Puts the stopwatch in clocking mode and resets the time to 0:00:00.
clk

Externally generated system clock.

mode

Toggles between clocking and timer modes. This input is only functional while the
clock or timer is not counting.

lap_load

This is a dual function signal. In clocking mode it displays the current clock value in
the ‘Lap’ display area. In timer mode it will load the pre-assigned values from the
ROM to the timer display when the timer is not counting.

The following are outputs signals for the design.

led_e, led_rs, led_rw

These outputs are the control signals for the LCD display of the Spartan-3A demo
board used to display the stopwatch times.

sf_d[7:0]
Provides the data values for the LCD display.

Functional Blocks

The completed design consists of the following functional blocks. Most of these blocks do
not appear on the schematic sheet in the project until after you create and add them to the
schematic during this tutorial.

The completed design consists of the following functional blocks.

clk_div_262k

Macro which divides a clock frequency by 262,144. Converts 26.2144 MHz clock into
100 Hz 50% duty cycle clock.

dem1

Clocking Wizard macro with internal feedback, frequency controlled output, and
duty-cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the
Spartan-3A demo board to 26.2144 MHz.

debounce

Module implementing a simplistic debounce circuit for the strtstop, mode, and
lap_load input signals.

led_control

Module controlling the initialization of and output to the LCD display.

statmach

56

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry

SUXILINX®

Design Entry

State Machine module defined and implemented in State Diagram Editor. Controls the
state of the stopwatch.

e timer preset

CORE Generator™ 64X20 ROM. This macro contains 64 preset times from 0:00:00 to
9:59:99 which can be loaded into the timer.

e time _cnt

Up/down counter module which counts between 0:00:00 to 9:59:99 decimal. This
macro has five 4-bit outputs, which represent the digits of the stopwatch time.

In this hierarchical design, you will create various types of macros, including schematic-
based macros, HDL-based macros, state machine macros, and CORE Generator macros.
You will learn the process for creating each of these types of macros, and you will connect
the macros together to create the completed stopwatch design. All procedures used in the
tutorial can be used later for your own designs.

Opening the Schematic File in the Xilinx Schematic Editor

The stopwatch schematic available in the wtut_sc project is incomplete. In this tutorial,
you will update the schematic in the Schematic Editor. After you have created the projectin
ISE, you can now open the stopwatch. sch file for editing. To open the schematic file,
double-click stopwatch. sch in the Sources window.

ISE 9.1 In-Depth Tutorial

www.xilinx.com 57

http://www.xilinx.com

SUXILINX®

Chapter 3: Schematic-Based Design

The stopwatch schematic diagram opens in the Project Navigator Workspace. You will see
the unfinished design with elements in the lower right corner as shown in the figure below.

lcd_control
rst int ool 20) = td_rshod_rwlod_e
ok 26214k
—{m &3
— Mo
— B
countl (3.9 R :
— e ey .
oount?(3:0
e — e
count(3:0)
2unt0 4Ty
oount(2:9

CBSCE

ok_10l

- g: za(T0)
-
—s

CR
o:e_aornob—l

Figure 3-5: Incomplete Stopwatch Schematic

Manipulating the Window View

The View menu commands enable you to manipulate how the schematic is displayed.
Select View > Zoom > In until you can comfortably view the schematic.

The schematic window can be undocked from the Project Navigator framework by
selecting Window > Float while the schematic is selected in the workspace.

After being undocked, the schematic window can be redocked by selecting
Window > Dock.

Creating a Schematic-Based Macro

A schematic-based macro consists of a symbol and an underlying schematic. You can

create either the underlying schematic or the symbol first. The corresponding symbol or
schematic file can then be generated automatically.

58

www.xilinx.com ISE 9.1 In-Depth Tutorial

http://www.xilinx.com

Design Entry S XILINX®

In the following steps, you will create a schematic-based macro by using the New Source
Wizard in Project Navigator. An empty schematic file is then created, and you can define
the appropriate logic. The created macro is then automatically added to the project’s
library.

The macro you will create is called time_cnt. This macro is a binary counter with five, 4-
bit outputs, representing the digits of the stopwatch.

To create a schematic-based macro:

1. In Project Navigator, select Project > New Source. The New Source dialog box opens:

S — x|

EMM Fils

[Implementation Constraints File
iJ IP [CoreGen & Architecture YWizard)

MEM File File Hame:

[# Schematic Itime_cnt

(] State Diagram

Test Bench 'waveform Location:

2] User Document Iu::\:-:ilinr@\ISEe:-:ampIes\wtut 30 _I
Werilog Module -

Werlog Test Fisture
Py vHDL Library

[wHDL Module

[¥HDL Package
(4] WHOL Test Bench

v Add to project

< Back I M et = I Cancel | Help

Figure 3-6: New Source Dialog Box

The New Source dialog displays a list of all of the available source types.
2. Select Schematic as the source type.
3. Enter time_cnt as the file name.
4. Click Next and click Finish.
A new schematic called time_cnt is created, added to the project, and opened for editing.
5. Change the size of the schematic sheet by doing the following.
¢ Right-click on the schematic page and select Object Properties.
¢ Click on the down arrow next to the sheet size value and select D = 34 x 22.

¢ Click OK and then click Yes to acknowledge that changing the sheet size cannot
be undone with the Edit > Undo option.

Defining the time_cnt Schematic

You have now created an empty schematic for time_ cnt. The next step is to add the
components that make up the time_cnt macro. You can then reference this macro symbol
by placing it on a schematic sheet.

ISE 9.1 In-Depth Tutorial www.xilinx.com 59

http://www.xilinx.com

ST XILINX® Chapter 3: Schematic-Based Design

Adding I/0O Markers

I/O markers are used to determine the ports on a macro, or the top-level schematic. The
name of each pin on the symbol must have a corresponding connector in the underlying
schematic. Add I/O markers to the time_cnt schematic to determine the macro ports.

To add the I/O markers:

1. Select Tools > Create I/O Markers.
The Create I/O Markers dialog box opens.

In the Inputs box, enter q(19:0),l0ad,up,ce,clk,clr.

In the Outputs box, enter
hundredths(3:0),tenths(3:0),sec_Isb(3:0),sec_msb(3:0),minutes(3:0).

ES Create 170 Markers E

[mputs

Iq[