
UNIX To Linux Migration :
Tips & Tricks

Seung-Do Yang, RHCA
syang@redhat.com

Sales Engineer
Red Hat Korea

Agenda

 Introduction

 Why migrate to RHEL 4?

 RHEL 4 migration
● Migration targets
● Best practices around core builds
● Application porting

 Development Issues

 Next steps

Survey: no longer why, rather when?

 “ Recommendation: Don’t hesitate to bring in Linux or open source
software if it meets your needs”

 Survey results comparing 2005 to 2004 show:
● 10% more customers using open source software
● 13% fewer customer with “ no plans” to use open source software

Source: “O pen Source Usage Up, But Concerns Linger”, Forrester Research, Inc, June 2005

 Business case
● Price / Performance
● Choice & flexibility
● Security
● Rate of innovation

 Technical case
● Ease of migration
● Unix skills transfer
● Ease of sys. management
● Breadth of ecosystem

“ Proprietary Unix capabilities at commodity prices”

Why Migrate to Linux?

Linux has many advantages, neither Unix nor Windows has them
all:
 Wide ranging support for commodity hardware
 Same OS supported from PDAs to super computers
 Support for seven architectures in RHEL:

● Different architectures provide
● the same API
● Optimizations for different tasks

● No hardware vendor lock-in
 Completely open APIs with no disadvantages for any ISV

Best practices methodology for creating,
deploying & managing a core RHEL build

 Clearly identify the goal: a one-size fits all foundation or a very-
highly tuned, application-specific configuration

 Have a detailed understanding of the environment and
framework into which the systems using the build must be
incorporated. This includes:
● Authentication/security configuration
● Network configuration
● Existing monitoring and management solutions
● Storage and backup tools and processes

Core build best practices... continued

 Gather the software requirements for this environment. This
includes required RPMs, 3rd party dependencies, and in-
house developed software

 Package in RPM Package Manager (RPM) format as many
applications and utilities as possible

 Gather operating system and application tuning and
optimization parameters

Typical migration 'targets'

 Third party applications

 Infrastructure, Messaging

 3 tiers – Web, Application & Database

 Custom development e.g. C, C++, COBOL, FORTRAN

Targets: Infrastructure, Messaging,
Web, Java, Database

 File Server
 NFS, Samba, LDAP,

eDirectory, Veritas
 Print Server
 Samba, lpd
 DNS Server
 Bind
 Iptables, Kerberos, ssl, vpn
 Build Server
 Gcc, make, CVS
 Custom Utility Server

 Custom Messaging

Systems
 Tibco RV
 Financial/Market Data

Feeds
 Reuters RMDS
 Mail Routing
 Lotus, Sendmail,

Ximian, Binari
 Instant Messaging
 Jabber

 HTTP Servers
 Apache, Iplanet, Zeus
 Web Caching
 Squid
 Content Engine
 Server-side Applications
 CGI, PHP, Perl, Shells

 JSP Servlet Engines
 Tomcat
 J2EE Application Servers
 WebSphere, WebLogic, OAS,

JBoss
 JDKs/SDKs
 IBM, Sun, BEA, Blackdown

 RDBMS
 Oracle, DB2, Sybase, Informix, PostgreSQL, MySQL
 DB Application Servers
 Oracle

http://www.redhat.com/apps/isv_catalog/

Targets: C/C++ Apps

 C Development Environment
 Gcc, gdb, make, gprof, CVS, Rational
 C Runtime Environment
 glibc
 3rd Party APIs and Libraries
 Analysis
 Core/Kernel Dump facilities
 High Availability
 Red Hat Cluster Manager

Questions to ask

 What application packages do you currently run on Solaris that will need
to run on Linux?

 Do you use middleware? If so, what is the satisfaction rate of the product
on Linux?

 Are there any specific development tools that will need to run on Linux?
Are they available?

 What hardware dependencies will need to be supported with Linux? For
example, is there tight integration in your code with Sun's SPARC
processor?

 Are there any hooks to the Solaris kernel in your code?
 Are there issues with the network that will need to be addressed?
 What will you do about your direct access storage devices (DASD)?
 With Solaris you can assign processes to a particular processor. Is this

being done on your current box?

Keys to Portability

 Standards, standards and more standards
● If you start from a source code base that uses proprietary

standards, fix that first!
 What standards are important?

● ANSI (C & C++), POSIX/The Open Group & Free
Standards Group (LSB now includes The Open Group
Single UNIX specifications)

 Other considerations
● Languages designed for portability.

● • Java, Perl, C#, etc.
 Middleware that helps with portability

Possible Issues

 Shell script behavior
● use perl

 Init scripts/chkconfig
● #comment: chkconfig: 2345 55 10

 Possible API incompatibility
● Red Hat has backported NPTL support for RHEL3 (which is

based on the Linux 2.4 kernel). RHEL 3 supports both NPTL
and Linux threads.

 Endianness (big-endian & little-endian)
● Linux: /usr/include/endian.h
● The 80-90% case is going to be networking code. Use

messaging middleware. Use a text based approach
 32-bit versus 64-bit platforms.

● Not make assumptions about the size of data types
 Availability of Commercial-off-the-Shelf Applications

and Middleware

Possible Issues(cont.)

Methods Of Porting

 Method 1: Switch to GNU compilers on Solaris first
 Method 2: copying the code to Linux and compiling

there

 Method 1 recommended. First compiling the code on Solaris
and your SPARC server will make the port that much easier.
If the application can be recompiled and regenerated on
Solaris using the GNU tools, it can later be moved over to
Linux. Only API issues can impede progress

RHEL 4 Tools (GNU vs Solaris)

 GNU CC (GCC)
 Tiny Cobol
 GNU Cobol2C
 GNU Fortran
 J2EE

 Test with GCC on Solaris
 Test with Solaris make
 Once-debugged, move to RHEL
 Few flag differences, nothing major

Problems when Migrating

A developer faces a number of problems:
 Different tools (compiler, linker)

● Different options
● Differences in the accepted language

 Differences in the programming environment
● Difference standards (or lack thereof)
● Noncompliance to standards
● Closed-source libraries not available

 Different runtime characteristics
● Same code might run faster or slower
● If code runs slower, code needs rewrite

Differing Options

GCC Sparc cc Description

-static -Bstatic

-O -fast

-shared -G

-save-temps -keeptmp

-M -H

Statically link the
application
maximize speed of
compiled app
The linker creates a
shared object with this
flag
Compiler not to remove
temp files
Prints path name of
files being compiled

...more

GNU Solaris Description

-shared -G

-static -a

-R path

...more

Generates a shared
object

Enables default
behavior in static
mode and prevents
linking with shared
libraries

-rpath
path

Specifies search
direction to run-time
linker

Compiler Differences Linker Differences

Preparation of Migration

A number of preparation steps can ease porting:

 The GNU tools (compiler, linker, etc) are available on other OSes
as well
● Compile project on the other OS with the tools to be used on RHEL

● Eliminate dependencies on language extensions of old compiler
● Use correct options for tools

● Enable all warnings and eliminate them
● Add -Wall -Wextra to compiler command line

 Identify platform-specific interfaces used
● Solaris threads vs POSIX threads
● Rewrite code without these interfaces

Compile on Linux

After the preparation getting compilation started is easy

Possible remaining problems:

 Remaining platform-specific code (e.g., #ifdef __solaris__)

 Remaining architecture-specific code
● Assembler code for different architecture (SPARC or PA RISC vs

x86-64)
● Different assembler syntax (Intel vs AT&T on x86)
● Endianess problems (big vs little)
● 32-bit vs 64-bit issues

 Closed-source libraries not available on Linux
● Persuade 3rd party ISV to port libraries
● Find replacement among plethora of libraries available on Linux

Aside from Compilation

The compilation process is not the only step which needs adjustment:
 Debugging: gdb is available on other platforms as well

● Limited GUI capabilities outside Eclipse
 Memory handling debugging:

● Purify available for Linux
● Non-proprietary solutions:

● Purify-like: valgrind
● Special compile mode: mudflap

 Profiling:
● gprof: old-Unix style, coarse granularity, exact call tree
● Oprofile: system-wide profiling; kernel, applications, or DSOs
● SystemTap: detailed kernel performance analysis
● Frysk and Dogtail

Standard Compliance

Goal of standard compliance is easier migration:
 Linux complies to POSIX wherever possible

● Minor differences exist
● No formal POSIX testing (nobody volunteered recently to pay $$$)

 Linux supports more POSIX options than any Unix OS
● http://people.redhat.com/drepper/posix-option-groups.html

 A program using POSIX interfaces correctly should need almost no
porting
● API specified in standard (names of headers, data types interfaces)
● Semantic specified to a great extend

● Programs must not use unspecified behavior
● Difficult to test this does not happen

Standard Compliance(cont.)

 gcc with glibc, libstdc++, and libgcj implement
● Almost all of ISO C99 (only some minor features missing)
● Most of ISO C++

● Accepted language very close to ISO C++ (unlike other
compilers)

● Main missing feature: export keyword
● C++ library fully supported and highly optimized

● Fortran90 support
● Not complete, but usable

● Java support
● gcj supports compilation to native code: higher speed
● gij provides interpreter
● libgcj mostly complete library support (as of Java 2)

Java

Certified Java environments available:
 Sun JVM

● Available for x86, x86-64, and IA-64
 IBM JVM

● Available on all seven architectures
 BEA JVM

● Available for x86, x86-64, and IA-64
 Soon: Apache Harmony
 J2EE stacks

● From the JVM providers
● Jonas
● JBoss

Migrating from Windows

It is a completely different story:
 The Windows API has nothing in common with the POSIX API

● No 1-to-1 mapping
● Some Windows APIs cannot be implemented in terms of POSIX

interfaces

 Use of Windows (wine) emulation libraries not real migrating
● Incomplete, always will be since MSFT is adding to it
● Incredibly inefficient
● GUI incompatible with native interface

 Possible to use POSIX interfaces on Windows
● Unix Services for Windows
● Cygwin

Adapting to Linux Environment

Last step: make the migrated application fit in
 If MOTIF widget set is used, convert to use gtk+

● Native look & feel
● Interaction with Linux applications through bonobo
● Better resource usage

 Use Linux-specific interfaces
● For performance
● To reduce risk in programming

 Add support for advanced security
● Extension to SELinux policy
● Adjust build process to take advantage of ExecShield and related

security features

Red Hat Ready Partners' Solutions

Your Solaris applications (binaries) will:
● Immediately install and run (as is) on Linux/x86 machine
● Run (through QuickTransit)
● Have the same (full) functionality as on subject platform

SUMMARY

 Planning and Assessment
● Goals (lower cost, better performance, reliability, etc.)
● Portability of in-house code
● Availability of 3rd party applications and middleware
● In-house and 3rd party resources
● Tier-by-Tier vs. App-by-App
● Key Milestones (external requirements)
● Lifecycle plan
● Standards – “ What few things must be the same so that everything

else can be different?”

 Implementation
 Deployment
 Management

Unix to Linux Migration (U2L)

 Planning and Assessment
 Implementation

● Training
● Change platform first or last?
● C, C++, Java, etc.
● IA-32, IA-64, AMD64, IA-32E
● Migrating code
● Migrating data
● Publication of standards
● Performance and Functionality testing
● Evaluation of Open Source Architecture

 Deployment
 Management

Unix to Linux Migration (U2L)

 Planning and Assessment
 Implementation
 Deployment

● Training
● RPM
● Production testing
● Certification(s)
● High availability
● Virtualization
● Red Hat Network

 Management

Unix to Linux Migration (U2L)

 Planning and Assessment
 Implementation
 Deployment
 Management

● Training
● Security errata
● Updates
● Upgrades

Unix to Linux Migration (U2L)

 Planning and Assessment (4-8 weeks)
 Implementation (1-4 weeks)
 Deployment (1-12 weeks)
 Management (2-4 weeks)

 Custom kernel code, device drivers, etc., will vary tremendously
 Of course, production databases need 3-6 months of burn-in time (no

different from upgrading from release N to release N+1 of UNIX)
 Of course, major re-engineering takes longer than straightforward

porting
 But...many migration projects were finished before they were officially

started! When in doubt, give it a try —c hances are you won't find any
new problems

Ensuring Success?
Red Hat Migration Assessment Service

What is it?
 Prepares successful migration
 Reviews technical infrastructure, applications & systems

management
● Provides specific analysis of software, performance & savings
● Delivers migration plan

Why is the assessment so critical?
 Ensures successful migration
 Speeds up implementation
 Decreases risk – right first tim e

More information

 Red Hat Migration Center
● www.redhat.com/rhel/migrate/

 How to migrate from Red Hat Linux to Red Hat Enterprise
Linux: A Technical Paper
● www.redhat.com/whitepapers/rhel/RHL_to_RHEL_Overview.pdf

 Migrating to Red Hat Enterprise Linux from Red Hat Linux -
Benefits and Guidelines
● http://www.redhat.com/whitepapers/rhel/Migrate_RHEL.pdf

http://www.redhat.com/rhel/migrate/
http://www.redhat.com/whitepapers/rhel/RHL_to_RHEL_Overview.pdf
http://www.redhat.com/whitepapers/rhel/Migrate_RHEL.pdf

Questions? Seung-Do Yang, syang@redhat.com

