
Dynamic Linux Kernel
Instrumentation with SystemTap

Eugene Teo, RHCE, RHCX
Linux Enterprise Application Porting (LEAP) Engineer

Red Hat Asia Pacific

Previous Linux Monitoring Tools

● Examples: ps, netstat, vmstat, iostat, sar, strace, top, oprofile, etc

● Drawbacks:

– Application-centric tools are narrow in scope

– Tools with system-wide scope present a static view of system
behaviour but does not let you probe further

– Many different tools and data sources but no easy way to integrate
● Many kinds of problems are not readily exposed by traditional tools:

– Interactions between applications and the operating system

– Interactions between processes and kernel subsystems

– Problems that are obscured by ordinary behaviour and require
examination of an activity trace

SystemTap

● A tool to enable a deeper look into a running system:

– Provides a high-level script language to instrument unmodified
running kernels

– Exposes a live system activity and data

– Provides performance and safety by careful translation to C

– Includes growing library of reusable instrumentation scripts
● Started January 2005

● Free/Open Source Software (GPL)

● Active contributions from Red Hat, Intel, IBM, Hitachi, and others

SystemTap Target Audience

● Kernel Developer: I wish I could add a debug statement easily without
going through the compile/build cycle.

● Technical Support: How can I get this additional data that is already
available in the kernel easily and safely?

● Application Developer: How can I improve the performance of my
application on Linux?

● System Administrator: Occasionally jobs take significantly longer than
usual to complete, or do not complete. Why?

● Researcher: How would a proposed OS/hardware change affect
system performance?

SystemTap Overall Diagram
 systemtap

 translator
parse

elaborate

translate

build

load/run

stop/unload

store output

probe.stp

 script library

 runtime,
 C tapsets

probe.ko

probe.out

probe.c

 kernel

kprobes

relayfs

profiling

 debug-info
 ELF objects

Tapsets

● A tapset defines:

– Probe points/aliases: symbolic names for useful instrumentation
points

– Useful data values that are available at each probe point
● Written in script and C by developers knowledgeable in the given area

● Tested and packaged with SystemTap

Runtime Library

● Implements some utilities:

– Associative arrays, statistics, counters

– Stack trace, register dump, symbol lookup

– Safe copy from userspace

– Output formatting and transport
● Could also be used by C programmers to simplify writing raw kprobes-

based instrumentation

Kprobes

● C API to allow dynamic kernel instrumentation

● Probe Point: An instruction address in the kernel

● Probe Handler: An instrumentation routine, as function pointer

● Replace the instruction at the probe points with a breakpoint instruction

● When the breakpoint is hit, call the probe handler

● Execute the original instruction, then resume

Kprobes Limitations

● C API

● No checking that probe point is at instruction boundary

● Kprobes-based code is hard to maintain and port due to hard coding of
addresses

● No library of probes for common tasks

● No convenient access to local variables

● Requires significant kernel knowledge

SystemTap Safety Goals

● For use in production environment – aiming to be crash-proof

● Uses existing compiler tool chain, kernel

● Safe mode: Restricted functionality for production

● Guru mode: Full feature set for development, debugging

● Static analyser:

– Protection against translator bugs and users errors

– Detects illegal instructions and external references

SystemTap Safety Features

● No dynamic memory allocation

● Types & types conversions limited

● No assembly or arbitrary C code (unless -g or Guru mode is used)

● Kernel functions known to crash system when probed are blacklisted

– default_do_nmi, __die, do_int3, do_IRQ, do_page_fault, do_trap,
do_sparc64_fault, do_debug, oops_begin, oops_end, etc

– Discovered with our dejagnu stress test suite
● Limited pointer operations

Probe Scripting Language

● Awk/C-like scripting language

● Limited number of types:

– 64-bit numbers, strings, associative arrays, statistics
● Full control structures (conditionals, oops, functions)

● Safety features:

– Full static type checking, automatic type inference

– No dynamic memory allocation

– Bounded execution space and time

– No assembly or arbitrary C code (except in guru mode)

– Protected access to “$ target” values in kernel space

Dynamic Probing

● Several underlying interfaces for inserting probes

– Probepoints provide a uniform interface for identifying events of
interest

● Synchronous probepoints

– kprobes, jprobes, kretprobes (dynamic)

– SystemTap Marks (static)
● Asynchronous events

– Timers, Performance counters

Static Probing

● Probe point: wherever hooks are compiled in

● Fixed probe handler: collect fixed pool of context data, dump it to
buffer; off-line post-processing

● Low cost dormant probes

● Dispatch cost low

Static Instrumentation Markers

● Decoupling probe point and handler

● To create: place it, name it, parametrize it. That's it:
STAP_MARK_NN(context_switch,prev->pid,next->pid);

● To use from systemtap:
probe kernel.mark(“context_switch”) { print($arg1) }

#define STAP_MARK_NN(n,a1,a2) do { \
 static void (*__stap_mark_##n##_NN)(int64_t,int64_t); \
 if (unlikely (__stap_mark_##n##_NN)) \
 (void) (__stap_mark_##n##_NN((a1),(a2))); \
} while (0)

Static Instrumentation Markers

● Marker-based top-process listing; placing a marker in a sensitive spot
(context switching)

● 1796 /*
1797 * context_switch - switch to the new MM and the new
1798 * thread's register state.
1799 */
1800 static inline struct task_struct *
1801 context_switch(struct rq *rq, struct task_struct *prev,
1802 struct task_struct *next)
1803 {
1804 struct mm_struct *mm = next->mm;
1805 struct mm_struct *oldmm = prev->active_mm;
1806
...
1829 /* Here we just switch the register state and the stack. */
1830 STAP_MARK_NN(context_switch, prev->pid, next->pid);
1831 switch_to(prev, next, prev);
1832
1833 return prev;
1834 }

Static Instrumentation Markers

● probe kernel.mark("context_switch") {
 switches ++ # count number of context switches
 now = get_cycles()
 times[$arg1] += now-lasttime # accumulate cycles spent in process
 execnames[$arg1] = execname() # remember name of pid
 lasttime = now
}
probe timer.ms(3000) { # every 3000 ms
 printf ("\n%5s %20s %10s (%d switches)\n",
 "pid", "execname", "cycles", switches);
 foreach ([pid] in times-) # sort in decreasing order of cycle-count
 printf ("%5d %20s %10d\n", pid, execnames[pid], times[pid]);
 # clear data for next report
 delete times
 switches = 0
}
...

● # stap mark-top.stp
 pid execname cycles (1813 switches)
 0 swapper 764411819
 4473 X 51465833
 4538 gnome-terminal 33217978
 4745 firefox-bin 24762308
 ...

Live Demos

● Which process in the running system uses open(2)?
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

● Which system calls are triggered when executing bash?

● What programs/scripts are executed when you run a command?

● Which are the top 10 applications that use sys_ioctl?

● Use plimits.stp to check the rlimits of any arbitrary process

● Use pfiles.stp to check the currently opened file descriptors of any
arbitrary process

● Use udpstat.stp to analyse the UDP traffic in the system

● Hook the kbd_event handler to perform something

Things that you can write

● Block I/O submissions & completions

Things that you can write

● Is CPU busy now?

SystemTap Demo Scripts

● Scripts demonstrating various SystemTap features can be found at
http://sourceware.org/systemtap/documentation.html

– top.stp - print the top twenty system calls.

– prof.stp - simple profiling.

– keyhack.stp - modifying variables in the kernel.

– kmalloc.stp - statistics example.

– kmalloc2.stp - example using arrays of statistics.

– ansi_colors.stp – example using \0?? to display ansi colours
● For example:

– $ stap top.stp

http://sourceware.org/systemtap/documentation.html

SystemTap Availability

● SystemTap is still evolving rapidly

– Latest sources available at http://sourceware.org/systemtap

– Anonymous CVS access
● Distribution & architecture support

– Red Hat Enterprise Linux 4 from U2 (technology preview)
● x86, EM64T/AMD64, Itanium2

– Fedora Core 4, 5 & 6
● x86, EM64T/AMD64, Itanium2, PPC

http://sourceware.org/systemtap

SystemTap Packages

● Main RPM is systemtap

– stap, stapd

– SystemTap Runtime

– Tapsets

– Man pages: stap(1), stapfuncs(5), stapprobes(5), stapex(5)

● SystemTap requires

– gcc

– kernel-devel

– kernel-debuginfo

SystemTap Kernel Packages

● SystemTap requires support packages for the kernels in use

● kernel-devel RPMs

– Provide headers, Makefiles and configuration information to allow
modules to be built against a packaged kernel

● kernel-debuginfo RPMs

– Provide source and debug symbols for packaged kernels

– Debug information in DWARF format
● Allows location of inlines, local variables, macros, line numbers

– Due to the volume of data kernel-debuginfo RPMs are large
● But FC6 and RHEL5 will use modular debuginfo packages

War Stories

● We are compiling a list of SystemTap stories, and interesting demos

● If you have a SystemTap success story, do share with us at
http://sourceware.org/systemtap/wiki/WarStories

http://sourceware.org/systemtap/wiki/WarStories

Further Information

● Website: http://sources.redhat.com/systemtap

● Wiki: http://sources.redhat.com/systemtap/wiki

● Mailing list: systemtap@sources.redhat.com

● IRC channel: #systemtap on irc.freenode.net

http://sources.redhat.com/systemtap
http://sources.redhat.com/systemtap/wiki
mailto:systemtap@sources.redhat.com

Thank you!

Eugene Teo, eteo@redhat.com

