

ActionScript 3.0 Cookbook

By Joey Lott, Darron Schall, Keith Peters

...

Publisher: O'Reilly

Pub Date: October 01, 2006

ISBN: 0-596-52695-4

Pages: 592

Table of Contents | Index

Well before Ajax and Microsoft's Windows Presentation Foundation hit the scene, Macromedia
offered the first method for building web pages with the responsiveness and functionality of desktop
programs with its Flash-based "Rich Internet Applications". Now, new owner Adobe is taking Flash
and its powerful capabilities beyond the Web and making it a full-fledged development environment.

Rather than focus on theory, the ActionScript 3.0 Cookbook concentrates on the practical
application of ActionScript, with more than 300 solutions you can use to solve a wide range of
common coding dilemmas. You'll find recipes that show you how to:

Detect the user's Flash Player version or their operating system

Build custom classes

Format dates and currency types

Work with strings

Build user interface components

Work with audio and video

Make remote procedure calls using Flash Remoting and web services

Load, send, and search XML data

And much, much more ...

Each code recipe presents the Problem, Solution, and Discussion of how you can use it in other
ways or personalize it for your own needs, and why it works. You can quickly locate the recipe that
most closely matches your situation and get the solution without reading the whole book to
understand the underlying code. Solutions progress from short recipes for small problems to more
complex scripts for thornier riddles, and the discussions offer a deeper analysis for resolving similar
issues in the future, along with possible design choices and ramifications. You'll even learn how to
link modular ActionScript pieces together to create rock-solid solutions for Flex 2 and Flash
applications.

ActionScript 3.0 Cookbook

By Joey Lott, Darron Schall, Keith Peters

...

Publisher: O'Reilly

Pub Date: October 01, 2006

ISBN: 0-596-52695-4

Pages: 592

Table of Contents | Index

Well before Ajax and Microsoft's Windows Presentation Foundation hit the scene, Macromedia
offered the first method for building web pages with the responsiveness and functionality of desktop
programs with its Flash-based "Rich Internet Applications". Now, new owner Adobe is taking Flash
and its powerful capabilities beyond the Web and making it a full-fledged development environment.

Rather than focus on theory, the ActionScript 3.0 Cookbook concentrates on the practical
application of ActionScript, with more than 300 solutions you can use to solve a wide range of
common coding dilemmas. You'll find recipes that show you how to:

Detect the user's Flash Player version or their operating system

Build custom classes

Format dates and currency types

Work with strings

Build user interface components

Work with audio and video

Make remote procedure calls using Flash Remoting and web services

Load, send, and search XML data

And much, much more ...

Each code recipe presents the Problem, Solution, and Discussion of how you can use it in other
ways or personalize it for your own needs, and why it works. You can quickly locate the recipe that
most closely matches your situation and get the solution without reading the whole book to
understand the underlying code. Solutions progress from short recipes for small problems to more
complex scripts for thornier riddles, and the discussions offer a deeper analysis for resolving similar
issues in the future, along with possible design choices and ramifications. You'll even learn how to
link modular ActionScript pieces together to create rock-solid solutions for Flex 2 and Flash
applications.

When you're not sure how ActionScript 3.0 works or how to approach a specific programming
dilemma, you can simply pick up the book, flip to the relevant recipe(s), and quickly find the
solution you're looking for.

ActionScript 3.0 Cookbook

By Joey Lott, Darron Schall, Keith Peters

...

Publisher: O'Reilly

Pub Date: October 01, 2006

ISBN: 0-596-52695-4

Pages: 592

Table of Contents | Index

 Preface

 Chapter 1. ActionScript Basics

 Section 1.0. Introduction

 Recipe 1.1. Creating an ActionScript Project

 Recipe 1.2. Customizing the Properties of an Application

 Recipe 1.3. Where to Place ActionScript Code

 Recipe 1.4. How to Trace a Message

 Recipe 1.5. Handling Events

 Recipe 1.6. Responding to Mouse and Key Events

 Recipe 1.7. Using Mathematical Operators

 Recipe 1.8. Checking Equality or Comparing Values

 Recipe 1.9. Performing Actions Conditionally

 Recipe 1.10. Performing Complex Conditional Testing

 Recipe 1.11. Repeating an Operation Many Times

 Recipe 1.12. Repeating a Task over Time

 Recipe 1.13. Creating Reusable Code

 Recipe 1.14. Generalizing a Method to Enhance Reusability

 Recipe 1.15. Exiting a Method

 Recipe 1.16. Obtaining the Result of a Method

 Recipe 1.17. Handling Errors

 Chapter 2. Custom Classes

 Section 2.0. Introduction

 Recipe 2.1. Creating a Custom Class

 Recipe 2.2. Determining Where to Save a Class

 Recipe 2.3. Creating Properties That Behave As Methods

 Recipe 2.4. Creating Static Methods and Properties

 Recipe 2.5. Creating Subclasses

 Recipe 2.6. Implementing Subclass Versions of Superclass Methods

 Recipe 2.7. Creating Constants

 Recipe 2.8. Dispatching Events

 Chapter 3. Runtime Environment

 Section 3.0. Introduction

 Recipe 3.1. Detecting the Player Version

 Recipe 3.2. Detecting the Operating System

 Recipe 3.3. Checking the Player Type

 Recipe 3.4. Checking the System Language

 Recipe 3.5. Detecting Display Settings

 Recipe 3.6. Scaling the Movie

 Recipe 3.7. Changing the Alignment

 Recipe 3.8. Hiding the Flash Player's Menu Items

 Recipe 3.9. Detecting the Device's Audio Capabilities

 Recipe 3.10. Detecting the Device's Video Capabilities

 Recipe 3.11. Prompting the User to Change Player Settings

 Recipe 3.12. Dealing with System Security

 Chapter 4. Numbers and Math

 Section 4.0. Introduction

 Recipe 4.1. Representing Numbers in Different Bases

 Recipe 4.2. Converting Between Different Number Systems

 Recipe 4.3. Rounding Numbers

 Recipe 4.4. Inserting Leading or Trailing Zeros or Spaces

 Recipe 4.5. Formatting Numbers for Display Without a Mask

 Recipe 4.6. Formatting Currency Amounts

 Recipe 4.7. Generating a Random Number

 Recipe 4.8. Simulating a Coin Toss

 Recipe 4.9. Simulating Dice

 Recipe 4.10. Simulating Playing Cards

 Recipe 4.11. Generating a Unique Number

 Recipe 4.12. Converting Angle Measurements

 Recipe 4.13. Calculating the Distance Between Two Points

 Recipe 4.14. Determining Points Along a Circle

 Recipe 4.15. Converting Between Units of Measurement

 Chapter 5. Arrays

 Section 5.0. Introduction

 Recipe 5.1. Adding Elements to the Start or End of an Array

 Recipe 5.2. Looping Through an Array

 Recipe 5.3. Searching for Matching Elements in an Array

 Recipe 5.4. Removing Elements

 Recipe 5.5. Inserting Elements in the Middle of an Array

 Recipe 5.6. Converting a String to an Array

 Recipe 5.7. Converting an Array to a String

 Recipe 5.8. Creating a Separate Copy of an Array

 Recipe 5.9. Storing Complex or Multidimensional Data

 Recipe 5.10. Sorting or Reversing an Array

 Recipe 5.11. Implementing a Custom Sort

 Recipe 5.12. Randomizing the Elements of an Array

 Recipe 5.13. Getting the Minimum or Maximum Element

 Recipe 5.14. Comparing Arrays

 Recipe 5.15. Creating an Associative Array

 Recipe 5.16. Reading Elements of an Associative Array

 Chapter 6. Display List

 Section 6.0. Introduction

 Recipe 6.1. Adding an Item to the Display List

 Recipe 6.2. Removing an Item from the Display List

 Recipe 6.3. Moving Objects Forward and Backward

 Recipe 6.4. Creating Custom Visual Classes

 Recipe 6.5. Creating Simple Buttons

 Recipe 6.6. Loading External Images at Runtime

 Recipe 6.7. Loading and Interacting with External Movies

 Recipe 6.8. Creating Mouse Interactions

 Recipe 6.9. Dragging and Dropping Objects with the Mouse

 Chapter 7. Drawing and Masking

 Section 7.0. Introduction

 Recipe 7.1. Setting a Line Style

 Recipe 7.2. Setting Gradient Line Styles

 Recipe 7.3. Drawing a Line

 Recipe 7.4. Drawing a Curve

 Recipe 7.5. Drawing an Arc

 Recipe 7.6. Drawing a Rectangle

 Recipe 7.7. Drawing a Circle

 Recipe 7.8. Drawing an Ellipse

 Recipe 7.9. Drawing a Triangle

 Recipe 7.10. Drawing Regular Polygons

 Recipe 7.11. Drawing a Star

 Recipe 7.12. Filling a Shape with a Solid or Translucent Color

 Recipe 7.13. Filling a Shape with a Gradient

 Recipe 7.14. Filling a Shape with a Bitmap

 Recipe 7.15. Scripting Masks

 Chapter 8. Bitmaps

 Section 8.0. Introduction

 Recipe 8.1. Creating a BitmapData Object

 Recipe 8.2. Adding a Bitmap to the Display List

 Recipe 8.3. Drawing a Display Object to a Bitmap

 Recipe 8.4. Loading an External Image into a Bitmap

 Recipe 8.5. Manipulating Pixels

 Recipe 8.6. Creating Rectangular Fills

 Recipe 8.7. Creating a Flood Fill

 Recipe 8.8. Copying Pixels

 Recipe 8.9. Copying Channels

 Recipe 8.10. Creating Noise

 Recipe 8.11. Creating Perlin Noise

 Recipe 8.12. Using Threshold

 Recipe 8.13. Applying a Filter to a Bitmap

 Recipe 8.14. Dissolving Between Two Bitmaps

 Recipe 8.15. Scrolling a Bitmap

 Chapter 9. Text

 Section 9.0. Introduction

 Recipe 9.1. Creating an Outline Around a Text Field

 Recipe 9.2. Creating a Background for a Text Field

 Recipe 9.3. Making a User Input Field

 Recipe 9.4. Making a Password Input Field

 Recipe 9.5. Filtering Text Input

 Recipe 9.6. Setting a Field's Maximum Length

 Recipe 9.7. Displaying Text

 Recipe 9.8. Displaying HTML-Formatted Text

 Recipe 9.9. Condensing Whitespace

 Recipe 9.10. Sizing Text Fields to Fit Contents

 Recipe 9.11. Scrolling Text Programmatically

 Recipe 9.12. Responding to Scroll Events

 Recipe 9.13. Formatting Text

 Recipe 9.14. Formatting User-Input Text

 Recipe 9.15. Formatting a Portion of Existing Text

 Recipe 9.16. Setting a Text Field's Font

 Recipe 9.17. Embedding Fonts

 Recipe 9.18. Creating Text that Can Be Rotated

 Recipe 9.19. Displaying Unicode Text

 Recipe 9.20. Assigning Focus to a Text Field

 Recipe 9.21. Selecting Text with ActionScript

 Recipe 9.22. Setting the Insertion Point in a Text Field

 Recipe 9.23. Responding When Text Is Selected or Deselected

 Recipe 9.24. Responding to User Text Entry

 Recipe 9.25. Adding a Hyperlink to Text

 Recipe 9.26. Calling ActionScript from Hyperlinks

 Recipe 9.27. Working with Advanced Text Layout

 Recipe 9.28. Applying Advanced Anti-Aliasing

 Recipe 9.29. Replacing Text

 Recipe 9.30. Retrieving a List of System Fonts

 Chapter 10. Filters and Transforms

 Section 10.0. Introduction

 Recipe 10.1. Applying Color Changes

 Recipe 10.2. Applying Color Tints

 Recipe 10.3. Resetting Color

 Recipe 10.4. Shearing

 Recipe 10.5. Applying Basic Filters

 Recipe 10.6. Applying Advanced Filter Effects (Emboss, etc.)

 Recipe 10.7. Embossing

 Recipe 10.8. Detecting Edges

 Recipe 10.9. Sharpening

 Recipe 10.10. Making a Digital Negative

 Recipe 10.11. Applying Grayscale

 Recipe 10.12. Changing Saturation

 Recipe 10.13. Changing Brightness

 Recipe 10.14. Changing Contrast

 Chapter 11. Programmatic Animation

 Section 11.0. Introduction

 Recipe 11.1. Moving an Object

 Recipe 11.2. Moving an Object in a Specific Direction

 Recipe 11.3. Easing

 Recipe 11.4. Acceleration

 Recipe 11.5. Springs

 Recipe 11.6. Using Trigonometry

 Recipe 11.7. Applying Animation Techniques to Other Properties

 Chapter 12. Strings

 Section 12.0. Introduction

 Recipe 12.1. Joining Strings

 Recipe 12.2. Using Quotes and Apostrophes in Strings

 Recipe 12.3. Inserting Special Whitespace Characters

 Recipe 12.4. Searching for a Substring

 Recipe 12.5. Extracting a Substring

 Recipe 12.6. Parsing a String into Words

 Recipe 12.7. Removing and Replacing Characters and Words

 Recipe 12.8. Retrieving One Character at a Time

 Recipe 12.9. Converting Case

 Recipe 12.10. Trimming Whitespace

 Recipe 12.11. Reversing a String by Word or by Character

 Recipe 12.12. Converting Between Strings and Unicode or ASCII

 Chapter 13. Regular Expressions

 Section 13.0. Introduction

 Recipe 13.1. Understanding Regular Expression Patterns

 Recipe 13.2. Testing Regular Expressions

 Recipe 13.3. Looking for Pattern Matches

 Recipe 13.4. Removing and Replacing Characters and Words Using Patterns

 Recipe 13.5. Creating a Nongreedy Pattern

 Recipe 13.6. Validating User Input with Common Patterns

 Chapter 14. Dates and Times

 Section 14.0. Introduction

 Recipe 14.1. Finding the Current Date and Time

 Recipe 14.2. Retrieving the Date Values

 Recipe 14.3. Retrieving the Day or Month Name

 Recipe 14.4. Formatting the Date and Time

 Recipe 14.5. Formatting Seconds or Milliseconds as Minutes and Seconds

 Recipe 14.6. Converting Between DMYHMSM and Epoch Milliseconds

 Recipe 14.7. Using Timers

 Recipe 14.8. Calculating Elapsed Time or Intervals Between Dates

 Recipe 14.9. Parsing a Date from a String

 Chapter 15. Programming Sound

 Section 15.0. Introduction

 Recipe 15.1. Creating a Sound Object and Loading a Sound

 Recipe 15.2. Starting and Stopping a Sound

 Recipe 15.3. Setting the Buffer for a Sound

 Recipe 15.4. Offsetting the Start of a Sound

 Recipe 15.5. Playing a Sound Multiple Times (Looping)

 Recipe 15.6. Getting the Size of a Sound File

 Recipe 15.7. Reading the ID3 Tag of a Sound File

 Recipe 15.8. Find Out When a Sound Finishes Playing

 Recipe 15.9. Tracking the Progress of a Playing Sound

 Recipe 15.10. Pausing and Restarting a Sound

 Recipe 15.11. Reading the Level of a Sound

 Recipe 15.12. Stopping All Sounds

 Recipe 15.13. Reading the Sound Spectrum

 Recipe 15.14. Changing the Volume or Pan of a Sound

 Recipe 15.15. Creating a Sound Application

 Chapter 16. Video

 Section 16.0. Introduction

 Recipe 16.1. Loading and Playing Back Video

 Recipe 16.2. Controlling Video Sound

 Recipe 16.3. Reading Playback Time

 Recipe 16.4. Reading Video Duration

 Recipe 16.5. Controlling Playback Time

 Recipe 16.6. Scaling Video

 Recipe 16.7. Managing and Monitoring Buffering and Loading

 Recipe 16.8. Listening for Cue Points

 Recipe 16.9. Applying Filters to Video

 Recipe 16.10. Pausing and Resuming Video

 Recipe 16.11. Stopping Video

 Recipe 16.12. Scrubbing Video

 Recipe 16.13. Clearing the Video Display

 Recipe 16.14. Determining User Bandwidth

 Chapter 17. Storing Persistent Data

 Section 17.0. Introduction

 Recipe 17.1. Creating and Opening a Local Shared Object

 Recipe 17.2. Writing Data to a Shared Object

 Recipe 17.3. Saving a Local Shared Object

 Recipe 17.4. Reading Data from a Shared Object

 Recipe 17.5. Removing Data from a Shared Object

 Recipe 17.6. Serializing Custom Classes

 Recipe 17.7. Sharing Data Between Flash Applications

 Recipe 17.8. Controlling the Size of Local Shared Objects

 Chapter 18. Communicating with Other Movies

 Section 18.0. Introduction

 Recipe 18.1. Creating Local Connections

 Recipe 18.2. Sending Data

 Recipe 18.3. Validating Receipt of Communication over Local Connections

 Recipe 18.4. Accepting Local Communications from Other Domains

 Chapter 19. Sending and Loading Data

 Section 19.0. Introduction

 Recipe 19.1. Loading Variables from a Text File

 Recipe 19.2. Loading Variables from a Server-Side Script

 Recipe 19.3. Loading a Block of Text (Including HTML and XML)

 Recipe 19.4. Checking Load Progress

 Recipe 19.5. Accessing Data Being Downloaded

 Recipe 19.6. Sending Data to a Server-Side Script

 Recipe 19.7. Sending Variables and Handling a Returned Result

 Chapter 20. XML

 Section 20.0. Introduction

 Recipe 20.1. Understanding XML Structure (Reading and Writing XML)

 Recipe 20.2. Creating an XML Object

 Recipe 20.3. Adding Elements to an XML Object

 Recipe 20.4. Adding Text Nodes to an XML Object

 Recipe 20.5. Adding Attributes to an XML Element

 Recipe 20.6. Reading Elements in an XML Tree

 Recipe 20.7. Finding Elements by Name

 Recipe 20.8. Reading Text Nodes and Their Values

 Recipe 20.9. Reading an Element's Attributes

 Recipe 20.10. Removing Elements, Text Nodes, and Attributes

 Recipe 20.11. Loading XML

 Recipe 20.12. Loading XML from Different Domains

 Recipe 20.13. Sending XML

 Recipe 20.14. Searching XML

 Recipe 20.15. Using HTML and Special Characters in XML

 Chapter 21. Web Services and Flash Remoting

 Section 21.0. Introduction

 Recipe 21.1. Calling Web Services Methods

 Recipe 21.2. Handling Web Services Responses

 Recipe 21.3. Handling Web Services Errors

 Recipe 21.4. Calling Flash Remoting Methods

 Recipe 21.5. Handling Flash Remoting Responses

 Chapter 22. Building Integrated Applications

 Section 22.0. Introduction

 Recipe 22.1. Calling JavaScript Functions

 Recipe 22.2. Calling ActionScript Functions

 Recipe 22.3. Passing Parameters from HTML

 Chapter 23. File Management

 Section 23.0. Introduction

 Recipe 23.1. Downloading Files

 Recipe 23.2. Detecting When a User Selects a File to Upload

 Recipe 23.3. Monitoring Download Progress

 Recipe 23.4. Browsing for Files

 Recipe 23.5. Filtering Files That Display in the Browser Window

 Recipe 23.6. Detecting When the User Has Selected a File to Upload

 Recipe 23.7. Uploading Files

 Recipe 23.8. Monitoring File Upload Progress

 Chapter 24. Socket Programming

 Section 24.0. Introduction

 Recipe 24.1. Connecting to a Socket Server

 Recipe 24.2. Sending Data

 Recipe 24.3. Receiving Data

 Recipe 24.4. Handshaking with a Socket Server

 Recipe 24.5. Disconnecting from a Socket Server

 Recipe 24.6. Handling Socket Errors

 Appendix A. Unicode Escape Sequences for Latin 1 Characters

 Index

Preface
The ActionScript 3.0 Cookbook is written with all levels of ActionScript developers in mindpeople like
you who want practical solutions to common problems. Keep this book next to your computer to
tackle programming challenges. It is filled with exciting yet accessible and practical examples,
solutions, and insights into the situations that Flash and ActionScript developers are sure to
encounter.

The book is in the style of the classic O'Reilly Cookbook series format, in which each recipe presents
the problem, the solution, and a discussion of the solution. You can quickly locate the recipe that
most closely matches your situation and get the solution without having to read the whole book to
understand the underlying code. The Discussion sections of each recipe offer a deeper analysis of how
the solution works and possible design choices and ramifications. So you get the best of both
worldsquick and easy access to the answers you want and deeper insights into the nature of both the
problem and the solution. The ActionScript 3.0 Cookbook helps you develop your understanding of
concepts by applying them in real situations.

What's Not in This Book

This book contains a lot of information on a wide range of topics. It covers the gamut of client-side
ActionScript. Every recipe is presented in the context of an applied solution or example. Although the
book discusses some minimal theory, it is not intended as an introduction to any of these subjects.
There are many good books, references, and documents that discuss ActionScript in a comprehensive
fashion. The ActionScript 3.0 Cookbook is not designed to be that sort of book. It is intentionally
designed in a particular format to help you with solutions to specific problems.

Compatibility

As the title of the book says, this is the ActionScript 3.0 Cookbook. As such, all of the code examples
in this book are based on ActionScript 3.0 and only compatible work with products that support
ActionScript 3.0. Flex 2.0 and Flash 9 allow you to author ActionScript 3.0 content. Flash Player 9
supports ActionScript 3.0. If you are using a product that does not support ActionScript 3.0, then the
code in this book is not likely to work.

Flash Platform Naming Conventions

ActionScript 3.0 is an important part of the Flash Platform. The Flash Platform is inclusive of many
related technologies centering on the Flash Player. There are so many Flash Platform technologies
these days that it can be difficult to keep track of all of them. To further complicate matters, many of
the terminology are used very informally, generically, and even incorrectly by many developers.

Although we don't take a harsh view of such informal use of terminology, we do want to be as clear
and precise as possible when discussing these technologies throughout this book; therefore, we use
terminology in very specific ways. Table P-1 lists the terms we use and their meanings.

Table P-1. Flash naming conventions used in this book

Name Meaning

Flex
framework

The library of ActionScript classes that ship as part of the Flex SDK
and Flex Builder.

Flex Builder The Adobe IDE for authoring Flex applications.

Flex SDK
The compiler and Flex framework used to author Flex applications
without Flex Builder.

Flex
A technology used to author SWF files from MXML documents and
ActionScript files. Unless a version number follows, all mentions of
Flex in this book refer to Flex 2.0.

Flash Player
The deployment platform for SWF files published from Flash or
Flex. Unless a version number follows, all mentions of Flash Player
in this book refer to Flash Player 9.

Flash
The authoring tool used to author SWF files. Unless a version
number follows, all mentions of Flash in this book refer to Flash 9.

The Code

This book contains a lot of ActionScript 3.0 (or more colloquially, code). Many recipes offer suggested
custom classes that we have found to be invaluable. We trust you will find them useful as well.

You can download the complete ActionScript 3.0 libraries from
http://www.rightactionscript.com/ascb. Once you've downloaded the library files, you'll need to add
them to the classpath for your projects. Directions for setting your ActionScript 3.0 classpath are also
found on that web site.

Audience for This Book

Is this book for you? We surely hope it is. But to be sure, let's review the prerequisites and summary
of the goals of this book.

What You'll Need to Know

http://www.rightactionscript.com/ascb

We assume you are already familiar with the product or products you are using to author Flash Player
content. This book won't discuss Flex SDK, Flex Builder, or Flash basics. If you don't yet know how to
compile a basic project or how to deploy a project, then you'll probably get the most from this book if
you first learn the basics of working with the product or products you're using.

You'll also want to learn programming basics before reading this book. Although we talk about a lot of
basic programming concepts in the context of how to solve specific problems (e.g., how to loop
through the elements of an array) you won't find a step-by-step tutorial in this book with regard to
basic programming skills.

Who This Book Is For

This book is for all ActionScript 3.0 developers. We hope there's something in this book for everyone:
from novice to expert. If you want to quickly find a solution, this is the perfect book for you.

Who This Book Isn't For

This book discusses ActionScript 3.0, which is a language that runs within Flash Player. For the most
part, this book does not discuss server-side solutions or other client-side languages in detail. For
example, although this book does discuss the ActionScript code for working with Flash Remoting (a
technology for making remote procedure calls) complete with examples, it does not explain how to
write the corresponding server-side code (e.g., a ColdFusion component). Likewise, this book
discusses how to use ActionScript to call JavaScript functions, yet we don't explain how to write
JavaScript. If you are looking for an ActionScript 3.0 book, then this is it; but if you're looking for a
book that discusses non-ActionScript topics in detail, this isn't the book you're looking for.

How This Book Is Organized

This book consists of the following chapters and appendix.

Chapter 1, ActionScript Basics

Basic programming tasks such as looping statements, timers, etc.

Chapter 2, Custom Classes

Writing custom classes for use with ActionScript 3.0.

Chapter 3, Runtime Environment

Getting information about the system, device, and player version in use, as well as security
functions.

Chapter 4, Numbers and Math

Working with numbers in ActionScript, including parsing numbers from strings, converting
numbers to formatted strings, and using different bases for numbers.

Chapter 5, Arrays

Working with indexed collections of data called arrays: from adding and removing elements to
sorting.

Chapter 6, Display List

Using display objects to display visual data on the screen.

Chapter 7, Drawing and Masking

Programmatic drawing and masking using ActionScript.

Chapter 8, Bitmaps

Working with low-level bitmap data.

Chapter 9, Text

Everything text, from displaying text to loading text to formatting text.

Chapter 10, Filters and Transforms

Applying effects to display objects by using transforms (color and geometric) and filters such as
drop shadows, bevels, and even emboss and edge detection effects.

Chapter 11, Programmatic Animation

Animating display objects using ActionScript.

Chapter 12, Strings

Working with string data: from finding substrings to working with Unicode.

Chapter 13, Regular Expressions

Using native regular expressions to match patterns in strings.

Chapter 14, Dates and Times

Working with dates and times, including converting between timezones, using timers, and
formatting dates.

Chapter 15, Programming Sound

Working with audio, including loading MP3s, reading ID3 tags, and displaying sound waves.

Chapter 16, Video

Programming for Flash video.

Chapter 17, Storing Persistent Data

Using shared objects to store data on the client computer.

Chapter 18, Communicating with Other Movies

Using local connections to communicate between content running in Flash Player instance on
the same computer.

Chapter 19, Sending and Loading Data

Enabling two-way communication with a web server and the Flash Player.

Chapter 20, XML

Working with XML using the E4X support in Flash Player.

Chapter 21, Web Services and Flash Remoting

Working with remote procedure calls using web services and Flash Remoting technologies.

Chapter 22, Building Integrated Applications

Using the native Flash Player programming interface for integrating Flash Player content with
the host application, such as calling JavaScript functions from ActionScript or calling
ActionScript functions from JavaScript.

Chapter 23, File Management

Uploading and downloading files.

Chapter 24, Socket Programming

Working with XML and binary sockets for low-latency applications.

Appendix, Unicode Escape Sequences for Latin 1 Characters

This appendix lists the characters in the Latin 1 character repertoire, with Unicode equivalents
in the range of U+0000 to U+00FF (that is, C0 Controls, Basic Latin, C1 Controls, and Latin 1
Supplemental).

How to Use This Book

Think of this book like a friend and a counselor. Don't put it on a shelf. Keep it on your desk where
you can consult it often. When you are uncertain as to how something works or how to approach a
specific programming issue pick up the book and flip to the relevant recipe(s). We have written this
book in a format so that you can get answers to specific questions quickly. And since it's a book you
don't ever have to worry that it will laugh at you for asking questions. No question is too big or too
small.

Although you can read the book from cover to cover, we encourage you to use this book when you
need an answer. Rather than teaching you a bunch of theory, this book intends to help you solve
problems and accomplish tasks. This book is meant for field work, not the research lab.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

When referring to properties and methods of objects and classes, the following conventions are used:

Class-level constants are shown with the both the class name and property in constant width
because they should both be entered verbatim. For example, Event.COMPLETE.

Instance-level properties are shown with the class or object instance in constant width italic

because they should be replaced by a specific instance. The property itself is shown in constant
width and should be entered as shown. For example, Button .enabled.

Method and function names, and the class or object to which they pertain, are always shown in
italics and followed by parentheses, as in BitmapData.clone(). Refer to the online help to know
whether to include the class name literally (i.e., if it is a so-called static method), as in
String.fromCharCode(), or replace it with an instance name, such as exampleBitmap.clone().

For brevity, we often omit the class name when discussing a property or method of a class. For
example, if discussing the htmlText property of the TextField class, when we say "set the
htmlText property," you should infer from context that we mean, "set the exampleTextField
.htmlText property, where exampleTextField is the identifier for your particular text field."

In addition, the following formats are used to grab your attention and relieve the tedium of what
could otherwise be monotonous reading:

This icon signifies a tip, suggestion, or general advice.

This icon indicates a warning or caution.

Using Code Examples

ActionScript 3.0 Cookbook is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "ActionScript 3.0 Cookbook, by Joey Lott, Darron Schall, and Keith
Peters. Copyright 2007 O'Reilly Media, Inc., 978-0-596-52695-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

O'Reilly Cookbooks

Looking for the right ingredients to solve a programming problem? Look no further than O'Reilly
Cookbooks. Each cookbook contains hundreds of programming recipes, and includes hundreds of
scripts, programs, and command sequences you can use to solve specific problems.

The recipes you'll find in an O'Reilly Cookbook follow a simple formula:

Problem

Each Problem addressed in an O'Reilly Cookbook is clearly stated, specific, and practical.

Solution

The Solution is easy to understand and implement.

Discussion

The Discussion clarifies and explains the context of the Problem and the Solution. It also
contains sample code to show you how to get the job done. Best of all, all of the sample code
you see in an O'Reilly Cookbook can be downloaded from the book's web site, at
http://www.oreilly.com/catalog/actscpt3ckbk.

See Also

The See Also section directs you to additional information related to the topic covered in the
recipe. You'll find pointers to other recipes in the book, to other books (including non-O'Reilly
titles), web sites, and more.

To learn more about the O'Reilly Cookbook series, or to find other Cookbooks that are up your alley,
visit their web site at http://cookbooks.oreilly.com.

Safari® Enabled

http://www.oreilly.com/catalog/actscpt3ckbk
http://cookbooks.oreilly.com

When you see a Safari®-enabled icon on the cover of your favorite technology book,
that means it's available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/actscpt3ckbk

The authors maintain a site for the book, located at:

http://www.rightactionscript.com/ascb

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

About the Tech Reviewers

Stacey Mulcahy is a Flex and Flash developer who once had a torrid love affair with Macromedia
Director. When she's not building Rich Internet Applications that even designers like, she can be
found showing others how to do the same thing as a Flash instructor. She rants more than raves on
her Flash-centric blog: http://www.bitchwhocodes.com.

Sam Robbins has been working with Flash and ActionScript for more than six years and has been
experimenting with Flex for almost two. During that time, most of his efforts have been in developing
Rich Internet Applications. Sam also started a sub-group of the Boston Flash Platform User Group

http://safari.oreilly.com
http://www.oreilly.com/catalog/actscpt3ckbk
http://www.rightactionscript.com/ascb
http://www.oreilly.com
http://www.bitchwhocodes.com

(BFPUG), which examines design patterns on a monthly basis. In his spare time he tries to update his
blog (http://pixelconsumption.com), plays Xbox, and cuts his lawn. He lives in Massachusetts with his
fiancée Andrea.

Steven Schelter is a software developer currently employed at Schematic. He's fluent in various
front- and backend scripting languages and applications, but his primary concentration is ActionScript
development. Steven was pulled into interactive media industry from Flash's appeal as a tool to
merge his eye for design with his background in math and logistics. Other interests include 3D
modeling, artificial intelligence, and user interactivity.

Roger Braunstein is a developer and designer living in Brooklyn. He is obsessed with beautiful code,
motion design, graphics programming, and video games. He also cultivates an interest in cooking,
photography, biking, and 8-bit music. One day he hopes to have a real web site at
http://www.partlyhuman.com.

Muon Thi Van is a software developer at Schematic, a full-service interactive agency with offices in
Los Angeles and New York City. She has served as architect, developer, and designer on numerous
web and mobile-based Flash applications and games and has spoken at industry conferences such as
Flashbelt and Flashforward. Muon holds a BS in computer science from Northwestern University.

Daniel Williams is a software developer at Schematic in New York, where he lives and breathes
ActionScript. During those really late nights he dreams it as well. On the side, he has an avid interest
in physics, fast two-wheeled vehicles, and the human brain. Occasionally, he'll ramble about his
thoughts and experiences on his personal web site, the inappropriately named
http://www.danieldoesdallas.com.

Acknowledgments

This book is the work of three authorsJoey Lott, Darron Schall, and Keith Peterswhose names are on
the cover. However, this book certainly would not be possible without the help of many people whose
names don't go on the cover. We'd like to extend our collective thanks and gratitude to the following
people.

Thank you Chuck Toporek for your dedication, patience, and fantastic editing.

Likewise, thanks to Steve Weiss for believing in this book and its authors. We thank you for always
advocating for what is best for us and the book.

We'd also like to thank Tim O'Reilly for raising the bar in technical publishing and for making this
book possible in this format. We are honored to work with such a progressive and forward-thinking
company.

Without the many efforts of the entire editorial and support staff at O'Reilly this book would not be
where it is today. Thank you to everyone who's time and energy went into this book.

We'd like to thank our agent, Margot Hutchinson at Waterside Productions, for helping coordinate all
the necessary details.

The entire Flex, Flash, and Flash Player teams at Adobe are always invaluable and incredibly helpful.
They answer our questions so we can answer yours. Thank you to everyone at Adobe.

http://pixelconsumption.com
http://www.partlyhuman.com
http://www.danieldoesdallas.com

And we'd also like to thank all the technical reviewers for their assistance in making this book the
best it can be.

Joey Lott

Thank you, Keith and Darron, for your help with this book. I am honored to work with two of the
foremost experts in this industry.

I'd also like to thank my friends and family for all support and encouragement. And I'd like to thank
life for all the support it provides in both expected and unexpected ways.

Darron Schall

Thank you, Joey, for allowing me to help fill in these pages. Keith, thanks for sharing the work as
well. You both have been great to write with, and I'm proud to be your co-author. Chuck and Steve,
your support was incalculable, and I definitely couldn't have done this without your help.

To my beautiful wife Jen, thank you for your understanding and tireless patience. I love you.

To all of my familyespecially my grandfather Edwinthanks for your encouragement and thanks for
believing in me.

Keith Peters

Thank you, Joey, for the opportunity to be part of this project. Thanks also to Steve, Chuck, and
Darron for help along the way, and as usual Kazumi and Kristine for putting up with me glued to the
monitor all too often.

Chapter 1. ActionScript Basics

Section 1.0. Introduction

Recipe 1.1. Creating an ActionScript Project

Recipe 1.2. Customizing the Properties of an Application

Recipe 1.3. Where to Place ActionScript Code

Recipe 1.4. How to Trace a Message

Recipe 1.5. Handling Events

Recipe 1.6. Responding to Mouse and Key Events

Recipe 1.7. Using Mathematical Operators

Recipe 1.8. Checking Equality or Comparing Values

Recipe 1.9. Performing Actions Conditionally

Recipe 1.10. Performing Complex Conditional Testing

Recipe 1.11. Repeating an Operation Many Times

Recipe 1.12. Repeating a Task over Time

Recipe 1.13. Creating Reusable Code

Recipe 1.14. Generalizing a Method to Enhance Reusability

Recipe 1.15. Exiting a Method

Recipe 1.16. Obtaining the Result of a Method

Recipe 1.17. Handling Errors

1.0. Introduction

Using ActionScript, you can create Flash applications that do just about anything you can imagine.
But before launching into the vast possibilities, let's start with the basic foundation. The good news is
that ActionScript commands follow a well-defined pattern, sharing similar syntax, structure, and
concepts. Mastering the fundamental grammar puts you well on the way to mastering ActionScript.

This chapter addresses the frequent tasks and problems that relate to core ActionScript knowledge.
Whether you are a beginner or masteror somewhere in betweenthese recipes help you handle
situations that arise in every ActionScript project.

This book assumes that you have obtained a copy of Flex Builder 2 and have successfully installed it
on your computer. It's also helpful if you have some experience using a previous version of
ActionScript as well.

When you launch Flex Builder 2, the Eclipse IDE should start up and present you with a welcome
screen. You are presented with various options to get started and more information about Flex and
ActionScript 3, such as links to documentation, tutorials, and more. You can close that screen by
clicking on the small "x" on its tab. Now you are in the Eclipse IDE itself, ready to start coding; but
where do you go from here?

Flex Builder 2 allows you to create three kinds of projects: a Flex project, Flex Library project, and an
ActionScript project. The difference is that Flex projects have access to the entire Flex Framework,
which includes all of the Flex components, layout management, transitions, styles, themes, data
binding, and all the other stuff that goes into making a Flex Rich Internet Application. Flex
applications are written in MXML (a form of XML), which describes the layout and relationship
between components. They use ActionScript for their business logic. Although you can use the
ActionScript knowledge you learn from here in Flex applications you write, this book concentrates on
ActionScript projects exclusively.

Now, if you are familiar with Flash 8 or earlier versions of the Flash IDE, you may be a bit baffled the
first time you open up Flex Builder 2. There is no timeline, no library, no drawing tools or color
pickers. You'll be doing pretty much everything by code alone, which is why it is called an
ActionScript project, rather than a Flash project. So we'll first cover how to create a project and then
to get you started with entering your first ActionScript statements.

Recipe 1.1. Creating an ActionScript Project

Problem

You've launched Flex Builder 2 and want to create an ActionScript project.

Solution

Use the New ActionScript Project Wizard to set up your project.

Discussion

An ActionScript project usually consists of at least one class file and a folder named bin that contains
the SWF and HTML files output by the compiler. It also consists of a lot of internal settings to let the
compiler know where everything is and how to compile it all. Flex Builder 2 takes care of most of this
for you when you use the New ActionScript Project Wizard. There are a few ways to start this wizard.
You can use the menu File New ActionScript Project, or you can click on the New button in the
top-right corner and select ActionScript Project from the list of available projects there. You can also
click the small arrow next to the New button, which gives you the same list.

Whichever route you take to get there, you should wind up with the New ActionScript Project Wizard.
Here you'll be prompted to type in a name for your project, such as ExampleApplication. Once you've
created the project, you'll notice that the main application file is automatically set to the same name
as the project name, with a .as extension.

Clicking the Next button gives you the opportunity to set custom class paths, additional libraries, and
specify your output folder to something than the default bin. For now, you don't need to do anything
here, so just press Finish to exit the wizard.

Flex Builder 2 now creates the necessary folders and files and applies all the default compiler settings
for your project. In the Navigator view, you should now see a ExampleApplication project, which
contains an empty bin folder and a ExampleApplication.as class file. Note that is has created this
main class file for you automatically and has opened it up for editing in the code view. Also, in the
Outline view, you can see a tree representation of the class, including its methods, properties, and
any import statements.

To run your new application, you can press one of two buttons in the toolbar. One has a bug-like
icon, which when pressed debugs the application, meaning it includes some extra information for
debugging purposes and allows the use of trace statements. The button next to ita circle with an
arrowruns the application. Both actions will create a .swf file and an HTML file, and then launch the
HTML file in your default browser.

Of course, at this point, you haven't added anything to the application, so it is the equivalent of
testing a blank .fla file in the Flash IDE. But go ahead and do so just to verify that everything is set
up properly. You should get an empty web page with a blue background.

Recipe 1.2. Customizing the Properties of an Application

Problem

You want to change the dimensions of the output .swf, or its background color, frame rate, etc.

Solution

Specify properties as ActionScript Compiler arguments or metadata in the class file.

Discussion

Unlike earlier versions of Flash, the ActionScript 3.0 compiler is actually a command-line compiler.
Technically, you could create all your classes and directories and run the compiler from the command
line with a long chain of parameters. However, it's much easier to let Eclipse keep track of all those
parameters, add all of them, and run the compiler when you tell it to run.

When you create a new ActionScript project, it sets up default parameters that result in an 500x375
pixel .swf, with a frame rate of 24 f rames per second (fps) and that blue background color you've
seen. You can change any of these settings and many more. As you might expect, there are a few
different ways to do this.

The first way to change compiler settings is to set the ActionScript compiler arguments. You do this
by right-clicking on the project in the Navigator view and choosing Properties from the menu. Next,
choose ActionScript Compiler from the list on the left. This allows you to change several aspects of
how the compiler does its job. Look for the text field labeled "Additional compiler arguments."
Anything you type in this text field is passed directly to the command-line compiler as an argument.

Here are the most common arguments you will probably be using:

-default-size width height

-default-background-color color

-default-frame-rate fps

You enter them exactly as presented, with numbers for arguments, like so:

-default-size 800 600

-default-background-color 0xffffff

-default-frame-rate 31

The first example sets the resulting size of the resulting .swf to 800x600 pixels. The second sets its
background to white, and the last s4ets its frame rate to 31 fps. Multiple arguments would just be
placed one after the other on the same line, like so:

-default-size 800 600 -default-frame-rate 31

Check the Flex Builder 2 help files for mxmlc options to see the full list of
command-line arguments you can enter here.

The second way to change these properties is through metadata in your main class file. Metadata
consists of any statements that are not directly interpreted as ActionScript, but which the compiler
uses to determine how to compile the final output files. The metadata statement that is equivalent to
the previous example looks like this:

[SWF(width="800", height="600", backgroundColor="#ffffff", frameRate="31")]

This line is placed inside the main package block, but outside any class definitions (usually just before
or after any import statements).

Recipe 1.3. Where to Place ActionScript Code

Problem

You have a new ActionScript project and need to know where to put the code for it to execute
properly.

Solution

Place ActionScript code in the constructor and additional methods of the class.

Discussion

In ActionScript 1.0 and 2.0, you had many choices as to where to place your code: on the timeline,
on buttons and movie clips, on the timeline of movie clips, in external .as files referenced with
#include, or as external class files. ActionScript 3.0 is completely class-based, so all code must be
placed in methods of your project's classes.

When you create a new ActionScript project, the main class is automatically created, and opened in
the Code view. It should look something like this:

package {
 import flash.display.Sprite;

 public class ExampleApplication extends Sprite
 {
 public function ExampleApplication()
 {

 }
 }
}

Even if you are familiar with classes in ActionScript 2.0, there are some new things here. There is a
lot more information on this subject in Chapter 2, but let's go through the basics here.

The first thing you'll notice is the word package at the top of the code listing. Packages are used to
group classes of associated functionality together. In ActionScript 2.0, packages were inferred
through the directory structure used to hold the class files. In ActionScript 3.0, however, you must
explicitly specify packages. For example, you could have a package of utility classes. This would be
declared like so:

package com.as3cb.utils {

}

If you don't specify a package name, your class is created in the default, top-level package. You
should still include the package keyword and braces.

Next, place any import statements. Importing a class makes that class available to the code in the
file and sets up a shortcut so you don't have to type the full package name every time you want to
refer to that class. For example, you can use the following import statement:

import com.as3cb.utils.StringUtils;

Thereafter you can refer to the StringUtils class directly without typing the rest of the path. As shown
in the earlier example, you will need to import the Sprite class from the flash.display package, as the
default class extends the Sprite class.

Next up is the main class, ExampleApplication. You might notice the keyword public in front of the
class definition. Although you can't have private classes within a package, you should label the class
public. Note that the main class extends Sprite. Also, a .swf itself is a type of sprite or movie clip,
which is why you can load a .swf into another .swf and largely treat it as if it were just another
nested sprite or movie clip. This main class represents the .swf as a whole, so it should extend the
Sprite class or any class that extends the Sprite class (such as MovieClip).

Finally, there is a public function (or method, in class terminology) with the same name as the class
itself. This makes it a constructor. A class's constructor is automatically run as soon as an instance of
the class is created. In this case, it is executed as soon as the .swf is loaded into the Flash player. So
where do you put your code to get it to execute? Generally, you start out by putting some code in the
constructor method. Here's a very simple example that just draws a bunch of random lines to the
screen:

package {
 import flash.display.Sprite;
 public class ExampleApplication extends Sprite {
 public function ExampleApplication() {
 graphics.lineStyle(1, 0, 1);
 for(var i:int=0;i<100;i++) {
 graphics.lineTo(Math.random() * 400, Math.random() * 400);
 }
 }
 }
}

Save and run the application. Your browser should open the resulting HTML file and display the .swf
with 100 random lines in it. As you can see, the constructor was executed as soon as the file was
loaded into the player.

In practice, you usually want to keep code in the constructor to a bare minimum. Ideally the
constructor would just contain a call to another method that initializes the application. See Recipes

1.13 and 1.14 for more on methods.

For beginners, now that you know where to enter code, here is quick primer on terminology. These
definitions are briefly stated and intended to orient people who have never programmed before. For
more complete definitions, refer to the Flash help files.

Variables

Variables are convenient placeholders for data in your code, and you can name them anything
you'd like, provided the name isn't already reserved by ActionScript and the name starts with a
letter, underscore, or dollar sign (but not a number). The help files installed with Flex Builder 2
contain a list of reserved words. Variables are convenient for holding interim information, such
as a sum of numbers, or to refer to something, such as a text field or sprite. Variables are
declared with the var keyword the first time they are used in a script. You can assign a value
to a variable using an equal sign (=), which is also known as the assignment operator. If a
variable is declared outside a class method, it is a class variable. Class variables, or properties,
can have access modifiers, public, private, protected, or internal. A private variable can only
be accessed from within the class itself, whereas public variables can be accessed by objects of
another class. Protected variables can be accessed from an instance of the class or an instance
of any subclass, and internal variables can be accessed by any class within the same package.
If no access modifier is specified, it defaults to internal.

Functions

Functions are blocks of code that do something. You can call or invoke a function (that is,
execute it) by using its name. When a function is part of a class, it is referred to as a method of
the class. Methods can use all the same modifiers as properties.

Scope

A variable's scope describes when and where the variable can be manipulated by the code in a
movie. Scope defines a variable's life span and its accessibility to other blocks of code in a
script. Scope determines how long a variable exists and from where in the code you can set or
retrieve the variable's value. A function's scope determines where and when the function is
accessible to other blocks of code. Recipe 1.13 deals with issues of scope.

Event handler

A handler is a function or method that is executed in response to some event such as a
mouseclick, a keystroke, or the movement of the playhead in the timeline.

Objects and classes

An object is something you can manipulate programmatically in ActionScript, such as a sprite.
There are other types of objects, such as those used to manipulate colors, dates, and text
fields. Objects are instances of classes, which means that a class is a template for creating
objects and an object is a particular instance of that class. If you get confused, think of it in

biological terms: you can consider yourself an object (instance) that belongs to the general
class known as humans.

Methods

A method is a function associated with an object that operates on the object. For example, a
text field object's replaceSelectedText() method can be used to replace the selected text in the
field.

Properties

A property is an attribute of an object, which can be read and/or set. For example, a sprite's
horizontal location is specified by its x property, which can be both tested and set. On the other
hand, a text field's length property, which indicates the number of characters in the field, can
be tested but cannot be set directly (it can be affected indirectly, however, by adding or
removing text from the field).

Statements

ActionScript commands are entered as a series of one or more statements. A statement might
tell the playhead to jump to a particular frame, or it might change the size of a sprite. Most
ActionScript statements are terminated with a semicolon (;). This book uses the terms
statement and action interchangeably.

Comments

Comments are notes within code that are intended for other humans and ignored by Flash. In
ActionScript, single-line comments begin with // and terminate automatically at the end of the
current line. Multiline comments begin with /* and are terminated with */.

Interpreter

The ActionScript interpreter is that portion of the Flash Player that examines your code and
attempts to understand and execute it. Following ActionScript's strict rules of grammar ensures
that the interpreter can easily understand your code. If the interpreter encounters an error, it
often fails silently, simply refusing to execute the code rather than generating a specific error
message.

Don't worry if you don't understand all the specifics. You can use each recipe's solution without
understanding the technical details, and this primer should help you understand the terminology.

See Also

Recipes 1.13 and 1.14

Recipe 1.4. How to Trace a Message

Problem

You need to trace out a message or the value of some data at runtime.

Solution

Use the trace function, pass the data to it, run your application, and look for a message in the
Console in Eclipse.

Discussion

You can trace out a message, the value of a variable, or just about any other data using trace, just
as you would in earlier versions of ActionScript. Some examples:

trace("Hello, world");

trace(userName);

trace("My name is " + userName + ".");

Since the .swf is now launched in an external browser, it might seem that there is no way to capture
the output of these trace statements. Fortunately, it is possible, and this functionality has been built
in to Flex Builder 2 via the Console view. The Console view is the equivalent of the Output panel in
the Flash IDE. Although it is not open when you first start Eclipse, it appears when needed.

The only requirement to using trace and the Console view is that you use Debug to test your
application. Doing so includes extra features in the .swf that allows it to communicate back to the
Console behind the scenes and pass any messages you trace. The following class creates a variable,
assigns a value to it, and then traces it, along with some other string data:

package {
 import flash.display.Sprite;

 public class ExampleApplication extends Sprite {
 public function ExampleApplication() {
 var userName:String = "Bill Smith";
 trace("My name is " + userName + ".");
 }
 }

}

Now when you debug your application, it launches as usual in your default browser. Close the
browser and switch back to Eclipse. You will see that the Console view is now open and has displayed
the data you traced out.

When you launch the debug version of an application, you must have the debug version of Flash
Player installed. If you don't have the debug version of Flash Player, you'll see an error message
notifying you, and you'll have to download and install it from
http://www.adobe.com/support/flashplayer/downloads.html.

Additionally, the debug version of Flash Player can write trace content to a file. The file that Flash
Player uses is determined by mm.cfg, a file that is stored in the following locations:

Operating system Location

Windows XP C:\Documents and Settings\[user name]\mm.cfg

Windows 2000 C:\mm.cfg

Mac OS X MacHD:Library:Application Support:macromedia:mm.cfg

The mm.cfg file allows you to set the following variables:

TraceOutputFileEnable

The value can be 0 (don't write trace content to a file) or 1 (write to a file).

TraceOutputFileName

The path to the file to which to write. If a value isn't specified, then the content is written to
flashlog.txt in the same directory as mm.cfg.

ErrorReportingEnable

The value can be 0 (don't write errors to the logfile) or 1 (write errors to the logfile). The
default value is 0.

MaxWarnings

The maximum number of errors to write to the logfile. If this value is set to 0, there is no limit.
If a larger value is specified, that limit is imposed and any errors beyond the limit are not
written to the log.

At a minimum mm.cfg must contain the following enable writing to a file.

http://www.adobe.com/support/flashplayer/downloads.html

TraceOutputFileEnable=1

If you want to specify more than one variable, you should place each on a new line, as follows

TraceOutputFileEnable=1
TraceOutputFileName=C:\flex.log

Recipe 1.5. Handling Events

Problem

You want to have some code repeatedly execute.

Solution

Add a listener to the enterFrame event and assign a method as a handler.

Discussion

In ActionScript 2.0 handling the enterFrame event was quite simple. You just had to create a timeline
function called onEnterFrame and it was automatically called each time a new frame began. In
ActionScript 3.0, you have much more control over the various events in a .swf, but a little more
work is required to access them.

If you are familiar with the EventDispatcher class from ActionScript 2.0, you should be right at home
with ActionScript 3.0's method of handling events. In fact, EventDispatcher has graduated from being
an externally defined class to being the base class for all interactive objects, such as sprites.

To respond to the enterFrame event, you have to tell your application to listen for that event and
specify which method you want to be called when the event occurs. This is done with the
addEventListener method, which is defined as follows:

addEventListener(type:String, listener:Function)

There are additional parameters you can look up in the help files, but this is the
minimum implementation.

The type parameter is the type of event you want to listen to. In this case, it would be the string,
"enterFrame". However, using string literals like that opens your code to errors that the compiler
cannot catch. If you accidentally typed "enterFrane", for example, your application would simply
listen for an "enterFrane" event. To guard against this, it is recommended that you use the static
properties of the Event class. You should already have the Event class imported, so you can call the
addEventListener method as follows:

addEventListener(Event.ENTER_FRAME, onEnterFrame);

Now if you accidentally typed Event.ENTER_FRANE, the compiler would complain that such a property
did not exist.

The second parameter, onEnterFrame, refers to another method in the class. Note, that in
ActionScript 3.0, there is no requirement that this method be named onEnterFrame. However, naming
event handling methods on plus the event name is a common convention. This method gets passed
an instance of the Event class when it is called. Therefore, you'll need to import that class and define
the method so it accepts an event object:

import flash.events.Event;

private function onEnterFrame(event:Event) {

}

The event object contains information regarding the event that may be useful in handling it. Even if
you don't use it, you should still set your handler up to accept it. If you are familiar with the
ActionScript 2.0 version of EventDispatcher, you'll see a difference in implementation here. In the
earlier version, there was an issue with the scope of the function used to handle the event, which
often required the use of the Delegate class to correct. In ActionScript 3.0, the scope of the handling
method remains the class of which it is a method, so there is no necessity to use Delegate to correct
scope issues.

Here is a simple application that draws successive random lines, using all the concepts discussed in
this recipe:

package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class ExampleApplication extends Sprite {

 public function ExampleApplication() {
 graphics.lineStyle(1, 0, 1);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 private function onEnterFrame(event:Event):void {
 graphics.lineTo(Math.random() * 400, Math.random() * 400);
 }
 }
}

Recipe 1.6. Responding to Mouse and Key Events

Problem

You want to do something in response to a mouse or keyboard action.

Solution

Listen for and handle mouse or key events.

Discussion

Handling mouse and key events is very similar to handling the enterFrame event, as discussed in the
Recipe 1.5, but does require a little work. For mouse events, the main application class will not
receive these directly, so it must listen for them on another object in the display list. (For a complete
discussion of the display list, see Chapter 5.) The following example creates a sprite, adds it to the
display list, and draws a rectangle in it:

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class ExampleApplication extends Sprite {
 private var _sprite:Sprite;

 public function ExampleApplication() {
 _sprite = new Sprite();
 addChild(_sprite);
 _sprite.graphics.beginFill(0xffffff);
 _sprite.graphics.drawRect(0, 0, 400, 400);
 _sprite.graphics.endFill();

Note that the mouse event names are defined in the MouseEvent class, and the handler methods get
passed an instance of the MouseEvent class, so you'll need to import that class. Then you can add
mouse listeners to this sprite:

 _sprite.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
 _sprite.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
 }

Next, define the two handler methods, onMouseDown and onMouseUp:

 private function onMouseDown(event:MouseEvent):void {
 _sprite.graphics.lineStyle(1, 0, 1);
 _sprite.graphics.moveTo(mouseX, mouseY);
 _sprite.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
 }

 private function onMouseUp(event:MouseEvent):void
 {
 _sprite.removeEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);
 }

The onMouseDown methods sets a drawing line style on the new sprite and moves the drawing cursor
to the mouse position. It then adds yet a third mouse listener for the MouseMove event.

The onMouseUp methods removes that listener via the removeEventListener method. This has the
same syntax as addEventListener, but tells the class to stop listening to the specified event.

Finally, define onMouseMove and close up the class and package:

 private function onMouseMove(event:MouseEvent):void {
 _sprite.graphics.lineTo(mouseX, mouseY);
 }
 }
}

This creates a simple event-driven drawing program.

Keyboard events are a little easier to handle. The only requirement for listening and responding to
keyboard events is that the object that receives the events must have focus. You do this for the main
application by adding the line:

stage.focus = this;

The following example shows a simple class that listens for the keyDown event and traces out the
character code for that key. This also demonstrates how to use some of the data contained in the
event object passed to the handler method. Note that keyboard events use the class KeyboardEvent.

package {
 import flash.display.Sprite;
 import flash.events.KeyboardEvent;

 public class ExampleApplication extends Sprite {
 public function ExampleApplication() {
 stage.focus = this;
 addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown);
 }

 private function onKeyDown(event:KeyboardEvent):void {

 trace("key down: " + event.charCode);
 }
 }
}

See Also

Recipe 1.5

Recipe 1.7. Using Mathematical Operators

Problem

You want to modify something over time, such as the rotation or position of a sprite.

Solution

Use the compound assignment operators to change a variable or property in increments; or, if
incrementing or decrementing by one, use the prefix or postfix increment or decrement operators.

Discussion

Often you'll want the new value of a variable or property to depend on the previous value. For
example, you might want to move a sprite to a new position that is 10 pixels to the right of its
current position.

In an assignment statementany statement using the assignment operator (an equals sign)the
expression to the right of the equals sign is evaluated and the result is stored in the variable or
property on the left side. Therefore, you can modify the value of a variable in an expression on the
right side of the equation and assign that new value to the very same variable on the left side of the
equation.

Although the following may look strange to those who remember basic algebra, it is very common for
a variable to be set equal to itself plus some number:

// Add 6 to the current value of quantity, and assign that new

// value back to quantity. For example, if quantity was 4, this
// statement sets it to 10.
quantity = quantity + 6;

However, when performing mathematical operations, it is often more convenient to use one of the
compound assignment operators, which combine a mathematical operator with the assignment
operator. The +=, -=, *=, and /= operators are the most prevalent compound assignment operators.
When you use one of these compound assignment operators, the value on the right side of the
assignment operator is added to, subtracted from, multiplied by, or divided into the value of the
variable on the left, and the new value is assigned to the same variable. The following are a few
examples of equivalent statements.

These statements both add 6 to the existing value of quantity:

quantity = quantity + 6;
quantity += 6;

These statements both subtract 6 from the existing value of quantity:

quantity = quantity - 6;
quantity -= 6;

These statements both multiple quantity by factor:

quantity = quantity * factor;
quantity *= factor;

These statements both divide quantity by factor:

quantity = quantity / factor;
quantity /= factor;

There should be no space between the two symbols that make up a compound assignment operator.
Additionally, if you are incrementing or decrementing a variable by 1, you can use the increment or
decrement operators.

This statement adds 1 to quantity:

quantity++;

and has the same effect as either of these statements:

quantity = quantity + 1;
quantity += 1;

This statement subtracts 1 from quantity:

quantity --;

and has the same effect as either of these statements:

quantity = quantity 1;
quantity -= 1;

You can use the increment and decrement operators (-- and ++) either before or after the variable or
property they operate upon. If used before the operand, they are called prefix operators. If used
after the operand, they are called postfix operators. The prefix and postfix operators modify the
operand in the same way but at different times. In some circumstances, there is no net difference in

their operation, but the distinction is still important in many cases. When using prefix operators, the
value is modified before the remainder of the statement or expression is evaluated. And if you're
using postfix operators, the value is modified after the remainder of the statement has executed.
Note how the first example increments quantity after displaying its value, whereas the second
example increments quantity before displaying its value:

var quantity:Number = 5;
trace(quantity++); // Displays: 5
trace(quantity); // Displays: 6

var quantity:Number = 5;
trace(++quantity); // Displays: 6
trace(quantity); // Displays: 6

Getting back to the original problem, you can use these operators to modify a property over time.
This example causes the specified sprite to rotate by five degrees each time the method is called:

private function onEnterFrame(event:Event) {
 _sprite.rotation += 5;
}

Note that in ActionScript 3.0, you would have to add an event listener to the enterFrame event and
set this method as the event handler for this to work properly. See Recipe 1.5 for information on how
to handle the enterFrame event.

See Also

Recipe 1.5

Recipe 1.8. Checking Equality or Comparing Values

Problem

You want to check if two values are equal.

Solution

Use the equality (or inequality) or strict equality (or strict inequality) operator to compare two
values. To check whether a value is a valid number, use isNaN().

Discussion

Equality expressions always return a Boolean value indicating whether the two values are equal. The
equality (and inequality) operators come in both regular and strict flavors. The regular equality and
inequality operators check whether the two expressions being compared can be resolved to the same
value after converting them to the same datatype. For example, note that the string "6" and the
number 6 are considered equal because the string "6" is converted to the number 6 before
comparison:

trace(5 == 6); // Displays: false
trace(6 == 6); // Displays: true
trace(6 == "6"); // Displays: true
trace(5 == "6"); // Displays: false

Note that in a project with default settings, the previous code example won't even compile. That's
because it is compiled with a strict flag, causing the compiler to be more exact in checking
datatypes at compile time. It complains that it is being asked to compare an int with a String. To turn
off the strict flag, go to the ActionScript Compiler section of the project's properties, and uncheck
the box next to "Enable compile-time type checking (-strict)". It is suggested, however, that you
leave this option on for most projects, as it gives you better protection against inadvertent errors.

The logical inequality operator (!=) returns false if two values are equal and true if they aren't. If
necessary, the operands are converted to the same datatype before the comparison:

trace(5 != 6); // Displays: true
trace(6 != 6); // Displays: false
trace(6 != "6"); // Displays: false
trace(5 != "6"); // Displays: true

Again, this example only compiles if strict type checking is disabled.

On the other hand, if you have turned off the strict flag, but you want to perform a strict
comparison in one section of code, you can use the strict equality and inequality operators, === and
!==. These first check whether the values being compared are of the same datatype before
performing the comparison. Differences in datatypes causes the strict equality operator to return
false and the strict inequality operator to return true:

trace(6 === 6); // Displays: true
trace(6 === "6"); // Displays: false
trace(6 !== 6); // Displays: false
trace(6 !== "6"); // Displays: true

There is a big difference between the assignment operator (=) and the equality
operator (==). If you use the assignment operator instead of the equality
operator, the variable's value will change rather than testing its current value.

Using the wrong operator leads to unexpected results. In the following example, quantity equals 5 at
first, so you might expect the subsequent if statement to always evaluate to false, preventing the
trace() from being executed:

var quantity:int = 5;

// The following code is wrong. It should be if (quantity == 6) instead
if (quantity = 6) {
 trace("Rabbits are bunnies.");
}
trace("quantity is " + quantity); // Displays: quantity is 6

However, the example mistakenly uses the assignment operator (=) instead of the equality operator
(==). That is, the expression quantity = 6 sets quantity to 6 instead of testing whether quantity is 6.
When used in an if clause, the expression quantity = 6 is treated as the number 6. Because, any
nonzero number used in a test expression converts to the Boolean TRue, the trace() action is called.
Replace the test expression with quantity == 6 instead. Fortunately, the ActionScript 3.0 compiler is
smart enough to recognize this common error and although the code still compiles, you aren't given a
warning.

You can check an item's datatype using the is operator, as follows:

var quantity:int = 5;
if (quantity is int) {
 trace("Yippee. It's an integer.");
}

Note that the new ActionScript 3.0 types int and uint will also test positive as
Numbers.

However, some numeric values are invalid. The following example results in quantity being set equal
to NaN (a constant representing invalid numbers, short for not a number) because the calculation
cannot be performed in a meaningful way:

var quantity:Number = 15 - "rabbits";

Despite its name, NaN is a recognized value of the Number datatype:

trace(typeof quantity); // Displays: "number"

Therefore, to test if something is not just any number, but a valid number, try this:

var quantity:Number = 15 - "rabbits";
if (quantity is Number) {

 // Nice try, but this won't work
 if (quantity != NaN) {
 trace("Yippee. It's a number.");
 }
}

However, you can't simply compare a value to the constant NaN to check
whether it is a valid number. The ActionScript 3.0 compiler even gives you a
warning to this effect. Instead, you must use the special isNaN() function to
perform the test.

To determine if a number is invalid, use the special isNaN() function, as follows:

var quantity:Number = 15 - "rabbits";
if (isNaN(quantity)) {
 trace("Sorry, that is not a valid number.");
}

To test the opposite of a condition (i.e., whether a condition is not true) use the logical NOT operator
(!). For example, to check whether a variable contains a valid number, use !isNAN(), as follows:

var quantity:Number = 15 - "rabbits";
if (!isNaN(quantity)) {

 // The number is not invalid, so it must be a valid number
 trace ("That is a valid number.");
}

Of course, you can perform comparisons using the well-known comparison operators. For example,
you can use the < and > operators to check if one value is less than or greater than another value:

trace(5 < 6); // Displays: true
trace(5 > 5); // Displays: false

Similarly, you can use the <= and >= operators to check if one value is less than or equal to, or
greater than or equal to, another value:

trace(5 <= 6); // Displays: true
trace(5 >= 5); // Displays: true

You should also be aware that ActionScript compares datatypes differently. ActionScript datatypes
can be categorized either as primitive (string, number, and Boolean) or composite (object, sprite,
and array). When you compare primitive datatypes, ActionScript compares them "by value." In this
example, quantity and total are considered equal because they both contain the value 6:

var quantity:Number = 6;
var total:Number = 6;
trace (quantity == total); // Displays: true

However, when you compare composite datatypes, ActionScript compares them "by reference."
Comparing items by reference means that the two items are considered equal only if both point to
exactly the same object, not merely objects with matching contents. For example, two arrays
containing exactly the same values are not considered equal:

// Create two arrays with the same elements.
var arrayOne:Array = new Array("a", "b", "c");
var arrayTwo:Array = new Array("a", "b", "c");
trace(arrayOne == arrayTwo); // Displays: false

Two composite items are equal only if they both refer to the identical object, array, or sprite. For
example:

// Create a single array
var arrayOne:Array = new Array("a", "b", "c");
// Create another variable that references the same array.
var arrayTwo:Array = arrayOne;
trace(arrayOne == arrayTwo); // Displays: true

See Also

Recipe 5.8

Recipe 1.9. Performing Actions Conditionally

Problem

You want to perform some action only when a condition is true.

Solution

Use an if or a switch statement.

Discussion

You often need your ActionScript code to make decisions, such as whether to execute a particular
action or group of actions. To execute some action under certain circumstances, use one of
ActionScript's conditional statements: if, switch, or the ternary conditional operator (? :).

Conditional statements allow you to make logical decisions, and you'll learn from experience which is
more appropriate for a given situation. For example, the if statement is most appropriate when you
want to tell a Flash movie to do something only when a certain condition is met (e.g., when the
condition is true). When you have several possible conditions to test, you can use the switch
statement instead. And you can use Flash's ternary conditional operator to perform conditional
checking and assignment on a single line.

First let's look at the if statement. Of the conditional statements in ActionScript, the if statement is
the most important to understand. In its most basic form, an if statement includes the keyword if
followed by the test expression whose truthfulness you want to evaluate to determine which action or
actions to execute. The test expression must be in parentheses and the statement(s) to be executed
should be within curly braces (the latter is mandatory if there is more than one statement in the
statement block).

Here we check whether animalName contains the word "turtle." This might be used to check whether
the user answered a quiz question correctly (here, animalName is a variable assumed to contain the
user's answer). Note that the double equals sign (==) is used to test whether two items are equal. It
should not be confused with the single equals sign (=), which is used to assign a value to an item.

if (animalName == "turtle") {

 // This trace() statement executes only when animalName is equal
 // to "turtle".
 trace("Yay! 'Turtle' is the correct answer.");
}

Additionally, you can add an else clause to an if statement to perform alternative actions if the
condition is false. Note that for the trace() command to have any effect, the .swf must be compiled
using Debug, and not Run, mode. Make a call to a method named showMessage() that displays an
appropriate message depending on whether the user got the answer right or wrong:

if (animalName == "turtle") {

 // These statements execute only when animalName is equal
 // to "turtle".
 showMessage("Yay! 'Turtle' is the correct answer.");
}
else {

 // These statements execute only when animalName is not equal
 // to "turtle".
 showMessage("Sorry, you got the question wrong.");
}

For testing purposes, you can create a showMessage() method that traces out
the string sent to it. In a real-world example, you might want to display this
message in a text field, or display it to the user some other way, such as in a
dialog box.

You can add an else if clause to an if statement. If the if condition is true, the else if clause is
skipped. If the if condition is false, the ActionScript interpreter checks to see if the else if condition is
true:

if (animalName == "turtle") {

 // This trace() statement executes only when animalName is equal
 // to "turtle".
 showMessage ("Yay! 'Turtle' is the correct answer.");
}
else if (animalName == "dove") {

 // This trace() statement executes only when animalName is not
 // "turtle", but is "dove".
 showMessage ("Sorry, a dove is a bird, not a reptile.");
}

What if the preceding example was written as two separate if statements (one to check if animalName
is "turtle" and another to check if it is "dove")? The example would work as intended, but it would be
less efficient. Using the else if statement guarantees that if animalName is "turtle"; we don't bother
checking if it is also equal to "dove."

If your two conditions are mutually exclusive, use an else if clause to check the
second condition. If your two conditions are not mutually exclusive, and you
want to perform both statement blocks when both conditions are met, use two
separate if statements.

When you use an if statement with both else if and else clauses, the else clause must be the last
clause in the statement. The final else clause is convenient as a catchall; it's where you can put
statements that take the appropriate action if none of the other conditions are met.

if (animalName == "turtle") {

 // This trace() statement executes only when animalName is equal
 // to "turtle".
 showMessage ("Yay! 'Turtle' is the correct answer.");
}
else if (animalName == "dove") {

 // This statement executes only when animalName is not
 // "turtle", but is "dove".
 showMessage ("Sorry, a dove is a bird, not a reptile.");
}
else {

 // This statement executes only when animalName is neither
 // "turtle" nor "dove".
 showMessage ("Sorry, try again.");
}

You can also include more than one else if clause in an if statement. However, in that case, you
should most likely use a switch statement instead; generally, switch statements are more legible and
succinct than the comparable if statement. Where performance is critical, some ActionScripters prefer
to use if statements, which allow somewhat greater control for optimization purposes.

A switch statement is composed of three parts:

The switch keyword

Every switch statement must begin with the switch keyword.

Test expression

An expression, enclosed in parentheses, whose value you want to test to determine which
action or actions to execute.

The switch statement body

The statement body, enclosed in curly braces, is composed of cases. Each case is made up of
the following parts:

The case or default keyword

A case must begin with a case keyword. The exception is the default case (analogous to
an else clause in an if statement), which uses the default keyword.

Case expression

An expression, whose value is to be compared to the switch statement's test expression.
If the two values are equal, the code in the case body is executed. The default case (the
case that uses the default keyword) does not need a case expression.

Case body

One or more statements, usually ending in a break statement, to be performed if that
case is TRue.

The switch keyword is always followed by the test expression in parentheses. Then the switch
statement body is enclosed in curly braces. There can be one or more case statements within the
switch statement body. Each case (other than the default case) starts with the case keyword followed
by the case expression and a colon. The default case (if one is included) starts with the default
keyword followed by a colon. Therefore, the general form of a switch statement is:

switch (testExpression) {

 case caseExpression:
 // case body

 case caseExpression:
 // case body
 default:
 // case body
}

Note that once a case tests TRue, all the remaining actions in all subsequent
cases within the switch statement body also execute. This example is most
likely not what the programmer intended.

Here is an example:

var animalName:String = "dove";

/* In the following switch statement, the first trace() statement

 does not execute because animalName is not equal to "turtle".

 But both the second and third trace() statements execute,
 because once the "dove" case tests true, all subsequent code
 is executed.
*/
switch (animalName) {
 case "turtle":
 trace("Yay! 'Turtle' is the correct answer.");
 case "dove":
 trace("Sorry, a dove is a bird, not a reptile.");
 default:
 trace("Sorry, try again.");
}

Normally, you should use break statements at the end of each case body to exit the switch statement
after executing the actions under the matching case.

The break statement terminates the current switch statement, preventing
statements in subsequent case bodies from being erroneously executed.

You don't need to add a break statement to the end of the last case or default clause, since it is the
end of the switch statement anyway.

var animalName:String = "dove";

// Now, only the second trace() statement executes.
switch (animalName) {
 case "turtle":
 trace("Yay! 'Turtle' is the correct answer.");
 break;
 case "dove":
 trace("Sorry, a dove is a bird, not a reptile.");
 break;
 default:
 trace("Sorry, try again.");
}

The switch statement is especially useful when you want to perform the same action for one of
several matching possibilities. Simply list multiple case expressions one after the other. For example:

switch (animalName) {
 case "turtle":
 case "alligator":
 case "iguana":
 trace("Yay! You named a reptile.");
 break;
 case "dove":
 case "pigeon":
 case "cardinal":
 trace("Sorry, you specified a bird, not a reptile.");
 break;
 default:
 trace("Sorry, try again.");
}

ActionScript also supports the ternary conditional operator (? :), which allows you to perform a
conditional test and an assignment statement on a single line. A ternary operator requires three
operands, as opposed to the one or two operands required by unary and binary operators. The first
operand of the conditional operator is a conditional expression that evaluates to either true or false.

The second operand is the value to assign to the variable if the condition is true, and the third
operand is the value to assign if the condition is false.

 varName = (conditional expression) ? valueIfTrue : valueIfFalse;

Recipe 1.10. Performing Complex Conditional Testing

Problem

You want to make a decision based on multiple conditions.

Solution

Use the logical AND (&&), OR (||), and NOT (!) operators to create compound conditional statements.

Discussion

Many statements in ActionScript can involve conditional expressions, including if, while, and for
statements, and statements using the ternary conditional operator. To test whether two conditions
are both true, use the logical AND operator, &&, as follows (see Chapter 14 for details on working with
dates):

// Check if today is April 17th.
var current:Date = new Date();
if (current.getDate() == 17 && current.getMonth() == 3) {
 trace ("Happy Birthday, Bruce!");
}

You can add extra parentheses to make the logic more apparent:

// Check if today is April 17th.
if ((current.getDate() == 17) && (current.getMonth() == 3)) {
 trace ("Happy Birthday, Bruce!");
}

Here we use the logical OR operator, ||, to test whether either condition is true:

// Check if it is a weekend.
if ((current.getDay() == 0) || (current.getDay() == 6)) {
 trace ("Why are you working on a weekend?");
}

You can also use a logical NOT operator, !, to check if a condition is not true:

// Check to see if the name is not Bruce.
if (!(userName == "Bruce")) {
 trace ("This application knows only Bruce's birthday.");
}

The preceding example could be rewritten using the inequality operator, !=:

if (userName != "Bruce") {
 trace ("This application knows only Bruce's birthday.");
}

Any Boolean value, or an expression that converts to a Boolean, can be used as the test condition:

// Check to see if a sprite is visible. If so, display a

// message. This condition is shorthand for _sprite.visible == true
if (_sprite.visible) {
 trace("The sprite is visible.");
}

The logical NOT operator is often used to check if something is false instead of true:

// Check to see if a sprite is invisible (not visible). If so,
// display a message. This condition is shorthand for

// _sprite.visible != true or _sprite.visible == false.
if (!_sprite.visible) {
 trace("The sprite is invisible. Set it to visible before trying this action.");
}

The logical NOT operator is often used in compound conditions along with the logical OR operator:

// Check to see if the name is neither Bruce nor Joey. (This could
// also be rewritten using two inequality operators and a logical
// AND.)
if (!((userName == "Bruce") || (userName == "Joey"))) {
 trace ("Sorry, but only Bruce and Joey have access to this application.");
}

ActionScript doesn't bother to evaluate the second half of a logical AND statement unless the first half
of the expression is true. If the first half is false, the overall expression is always false, so it would
be inefficient to bother evaluating the second half. Likewise, ActionScript does not bother to evaluate
the second half of a logical OR statement unless the first half of the expression is false. If the first
half is TRue, the overall expression is always true.

Recipe 1.11. Repeating an Operation Many Times

Problem

You want to perform some task multiple times within a single frame.

Solution

Use a looping statement to perform the same task multiple times within a single frame. For example,
you can use a for statement:

for (var i:int = 0; i < 10; i++) {

 // Display the value of i.
 TRace(i);
}

Discussion

When you want to execute the same action (or slight variations thereof) multiple times within a
single frame, use a looping statement to make your code more succinct, easier to read, and easier to
update. You can use either a while or a for statement for this purpose, but generally a for statement
is a better choice. Both statements achieve the same result, but the for statement is more compact
and more familiar to most programmers.

The syntax of a for statement consists of five basic parts:

The for keyword

Every for statement must begin with a for keyword.

Initialization expression

Loop typically employs an index variable (a loop counter) that is initialized when the statement
is first encountered. The initialization is performed only once regardless of how many times the
loop is repeated.

Test expression

The loop should include a test expression that returns either true or false. The test expression
is evaluated once each time through the loop. Generally, the test expression compares the
index variable to another value, such as a maximum number of loop iterations. The overall
expression must evaluate to TRue for the for statement's body to execute (contrast this with a
do...while loop, which executes at least once, even if the test expression is false). On the
other hand, if the test expression never becomes false, you'll create an infinite loop, resulting
in a warning that the Flash Player is running slowly.

Update expression

The update expression usually updates the value of the variable used in the test expression so
that, at some point, the conditional test becomes false and the loop ends. The update
expression is executed once each time through the loop. An infinite loop is often caused by
failing to update the appropriate variable in the update expression (usually the same variable
used in the test expression).

Statement body

The statement body is a block of substatements enclosed within curly braces that is executed
each time through the loop. If the test expression is never true, the for statement's body isn't
executed.

The for keyword should come first, and it should be followed by the initialization, test, and update
expressions enclosed within parentheses. Semicolons must separate the three expressions from one
another (although the initialization, test, and update statements are optional, the semicolons are
mandatory). The remainder of the for loop is made up of the statement body enclosed in curly
braces:

for (initialization; test; update) {

 statement body
}

Here is an example of a for statement that outputs the numbers from 0 to 999:

for (var i:int = 0; i < 1000; i++) {
 trace(i);
}
trace ("That's the end.");

To understand the for statement, you can follow along with the process the ActionScript interpreter
uses to process the command. In the preceding example, the for keyword tells the interpreter to
perform the statements within the for loop as long as the conditional expression is true. The process
is as follows:

The initialization expression is executed only once, and it sets the variable i to 0.1.

Next, the interpreter checks the test expression (i < 1000). Because i is 0, which is less than2.

1.

1,000, the expression evaluates to true and the trace() action within the for statement body is
executed.

2.

The ActionScript interpreter then executes the update statement, in this case i++, which
increments i by 1.

3.

The interpreter then repeats the process from the top of the loop (but skipping the initialization
step). So the interpreter again checks whether the test expression is TRue and, if so, executes
the statement body again. It then executes the update statement again.

4.

This process repeats until the test expression is no longer true. The last value displayed in the
Output window is 999 because once i is incremented to 1,000, the test expression no longer
evaluates to true and the loop comes to an end. Once the loop terminates, execution continues with
whatever commands follow the loop.

Both the initialization and update expressions can include multiple actions separated by commas. You
should not, however, use the var keyword more than once in the initialization expression. The
following example simultaneously increments i, decrements j, and displays their values in the
Output window:

for (var i:int = 0, j:int = 10; i < 10; i++, j--) {
 trace("i is " + i);
 trace("j is " + j);
}

The preceding example is not the same as two nested for statements (which is
shown in the next code block.)

It is also common to use nested for statements. When you use a nested for statement, use a
different index variable than that used in the outer for loop. By convention, the outermost for loop
uses the variable i, and the nested for loop uses the variable j. For example:

for (var i:int = 1; i <= 3; i++) {
 for (var j:int = 1; j <= 2; j++) {
 trace(i + " X " + j + " = " + (i * j));
 }
}

The preceding example displays the following multiplication table in the Output window:

1 X 1 = 1
1 X 2 = 2
2 X 1 = 2
2 X 2 = 4
3 X 1 = 3
3 X 2 = 6

It is possible to nest multiple levels of for statements. By convention, each additional level of nesting
uses the next alphabetical character as the index variable. Therefore, the third level of nested for
statements typically use k as the index variable:

for (var i:int = 1; i <= 3; i++) {
 for (var j:int = 1; j <= 3; j++) {
 for (var k:int = 1; k <= 3; k++) {
 trace(i + " X " + j + " X " + k + " = " + (i * j * k));
 }
 }
}

Additionally, you can use for statements to loop backward or to update the variable in ways other
than by simply adding or subtracting one:

// Count backward from 10 to 1.
for (var i:int = 10; i > 0; i--) {
 trace(i);
}

// Display a sequence of square roots.
for (var i:Number = 50000; i > 2; i = Math.sqrt(i)) {
 trace(i);
}

In this case, the variable i winds up holding values other than integers, so it is best to declare it as a
Number rather than an int.

You should not use a for statement to perform tasks over time.

Many programmers make the mistake of trying to use for statements to animate sprites; for
example:

for (var i:int = 0; i < 20; i++) {
 _sprite.x += 10;
}

Whereas the preceding code moves the sprite 200 pixels to the right of its starting point, all the
updates take place within the same frame. There are two problems with this. First, the Stage updates
only once per frame, so only the last update is shown on the Stage (causing the sprite to jump 200
pixels suddenly rather than moving smoothly in 20 steps). Second, even if the Stage updates often,
each iteration through the for loop takes only a few milliseconds, so the animation would happen too
quickly. For actions that you want to take place over time, use the enterFrame event (see Recipe
1.5) or a timer (see Recipe 1.12).

Moreover, tight repeating loops should not be used to perform lengthy processes (anything that takes

more than a fraction of a second). The Flash Player displays a warning whenever a single loop
executes for more than 15 seconds. Using the other methods (just mentioned) avoids the warning
message and allows Flash to perform other actions in addition to the repeated actions that are part of
the loop.

See Also

Recipes 1.5 and 1.12. The for statement is used in many practical situations, and you can see
examples in a great many of the recipes throughout this book. See Recipe 5.2 and Recipe 12.8 for
some practical examples. Recipe 5.16 discusses for...in loops, which are used to enumerate the
properties of an object or array.

Recipe 1.12. Repeating a Task over Time

Problem

You want to perform some action or actions over time.

Solution

Use the Timer class. Alternatively, listen for the enterFrame event of a sprite.

Discussion

The Timer class is new to ActionScript 3.0, and is recommended over the earlier setInterval() and
setTimeout() functions. When you create an instance of the Timer class, it fires timer events at
regular intervals. You can specify the delay between events and how many times you want the
events to fire in the Timer constructor:

var timer:Timer = new Timer(delay, repeatCount);

You use addEventListener to set up a method to handle these events. After you create the timer and
set up a listener, use its start() method to start it and stop() to stop it.

The Timer class is part of the flash.utils package, and there is also a TimerEvent class in the
flash.events package, so those need to be imported:

package {
 import flash.display.Sprite;
 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class ExampleApplication extends Sprite {
 // Declare and initialize a variable to store the value
 // of the previous timer reading.
 private var _PreviousTime:Number = 0;

 public function ExampleApplication() {
 var tTimer:Timer = new Timer(500, 10);
 tTimer.addEventListener(TimerEvent.TIMER, onTimer);
 tTimer.start();
 }

 private function onTimer(event:TimerEvent):void {
 // Output the difference between the current timer value and
 // its value from the last time the function was called.
 trace(flash.utils.getTimer() - _PreviousTime);
 _PreviousTime = flash.utils.getTimer();
 }
 }
}

The getTimer() function (previously a top-level function), has been moved to the flash.utils package
as well. This simply returns the number of milliseconds since the application started.

In the preceding example, even though the interval is theoretically 500 milliseconds in practice its
accuracy and granularity depend on computer playback performance in relation to other tasks
demanded of the processor. There are two implications to this:

Don't rely on timers to be extremely precise.

Don't rely on timer intervals to be smaller than approximately 10 milliseconds.

If you want to emulate the functionality of the setInterval() function, set the repeat count to zero.
This causes the timer event to fire indefinitely. In this case, the stop() method is analogous to the
clearInterval() function, and stops the timer from firing further events.

Similarly, if you want to duplicate the setTimeout() function, set the repeat count to one. The timer
waits the specified amount of time, fires one event, and ends.

One of the neat things you can do with the Timer class is create animations that are independent of
the movie's frame rate. With a timer you can call a method at any interval you want. Here is an
example in which two timers are setone for a square sprite (every 50 milliseconds)and one for a
circle sprite (every 100 milliseconds):

package {
 import flash.display.Sprite;
 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class ExampleApplication extends Sprite {
 private var _square:Sprite;
 private var _circle:Sprite;

 public function ExampleApplication() {
 // Create the two sprites and draw their shapes
 _square = new Sprite();
 _square.graphics.beginFill(0xff0000);
 _square.graphics.drawRect(0, 0, 100, 100);
 _square.graphics.endFill();
 addChild(_square);
 _square.x = 100;
 _square.y = 50;

 _circle = new Sprite();
 _circle.graphics.beginFill(0x0000ff);
 _circle.graphics.drawCircle(50, 50, 50);
 _circle.graphics.endFill();
 addChild(_circle);
 _circle.x = 100;
 _circle.y = 200;

 // Create the two timers and start them
 var squareTimer:Timer = new Timer(50, 0);
 squareTimer.addEventListener(TimerEvent.TIMER, onSquareTimer);
 squareTimer.start();

 var circleTimer:Timer = new Timer(100, 0);
 circleTimer.addEventListener(TimerEvent.TIMER, onCircleTimer);
 circleTimer.start();
 }

 // Define the two handler methods
 private function onSquareTimer(event:TimerEvent):void {
 _square.x++;
 }

 private function onCircleTimer(event:TimerEvent):void {
 _circle.x++;
 }
 }
}

It is also possible to use the enterFrame event of a sprite to have some action (or actions) repeat
over time. The Timer technique offers some advantages over the enterFrame event method, most
notably that it allows you to create intervals that differ from the frame rate of the .swf. With
enterFrame, the handling method is called at the frame rate.

With that said, there are still times when using enterFrame is appropriate. For example, you may
want something to occur at the frame rate of the .swf. One such scenario is when you want to
reverse the playback of the frames in a movie clip.

Recipe 1.13. Creating Reusable Code

Problem

You want to perform a series of actions at various times without duplicating code unnecessarily
throughout your movie.

Solution

Create a method and then call (i.e., invoke) it by name whenever you need to execute those actions.
When a function is a member of a class, it is often called a method.

Here is how to create a method of a class:

 accessModifier function functionName ():ReturnDataType {
 // Statements go here.
}

To call (i.e., execute) the named method, refer to it by name, such as:

 functionName();

Discussion

Grouping statements into a method allows you to define the method once but execute it as many
times as you'd like. This is useful when you need to perform similar actions at various times without
duplicating the same code in multiple places. Keeping your code centralized in methods makes it
easier to understand (because you can write the method once and then ignore the details when using
it) and easier to maintain (because you can make changes in one place rather than in multiple
places).

Like class variables, methods can be declared with access modifiers. These determine which other
classes are able to call the methods. The available access modifiers are:

private

Can only be accessed from within the class itself.

protected

Can be accessed by the class or any subclass. This is instance-based. In other words, an
instance of a class can access its own protected members or those of its superclasses. It
cannot access protected members on other instances of the same class.

internal

Can be accessed by the class or any class within the same package.

public

Can be accessed by any class.

The definition of private has changed since ActionScript 2.0, where it allowed access by subclasses.
If you do not specify an access modifier explicitly, the method takes on the default internal access.

The following class defines a drawLine method and calls it 10 times, rather than repeating the three
lines of drawing code for each line:

package {
 import flash.display.Sprite;

 public class ExampleApplication extends Sprite
 {
 public function ExampleApplication() {
 for(var i:int=0;i<10;i++) {
 drawLine();
 }
 }

 private function drawLine():void {
 graphics.lineStyle(1, Math.random() * 0xffffff, 1);
 graphics.moveTo(Math.random() * 400, Math.random() * 400);
 graphics.lineTo(Math.random() * 400, Math.random() * 400);
 }
 }
}

Another important method type is a static method. Static methods aren't available as a member of
an instance of that class, but instead are called directly from the class itself. For example, in a class
named ExampleApplication, you could define a static method as follows:

public static function showMessage():void {
 trace("Hello world");
}

You could then call that method like so:

ExampleApplication.showMessage();

Some classes contain nothing but static methods. The Math class is an example. Note that you don't
have to create a new Math object to use its methods; you simply call the methods as properties of
the class itself, such as Math.random(), Math.round(), and so on.

Recipe 1.14. Generalizing a Method to Enhance
Reusability

Problem

You want to perform slight variations of an action without having to duplicate multiple lines of code to
accommodate minor differences.

Solution

Add parameters to your method to make it flexible enough to perform slightly different actions when
invoked rather than performing exactly the same action or producing the same result each time.

Define the parameters that account for the variability in what you want the method to do:

private function average (a:Number, b:Number, c:Number):void {
 trace("The average is " + (c + b + c)/3);
}

If you don't know the exact number of parameters the method will receive, use the built-in arguments
array to handle a variable number of parameters.

Discussion

A method that doesn't accept parameters generally does exactly the same result each time it is
invoked. However, you will often need to perform almost exactly the same actions as an existing
method, but with minor variations. Duplicating the entire method and then making minor changes to
the second version is a bad idea in most cases. Usually, it makes your code harder to maintain and
understand. More importantly, you'll usually find that you need not only two variations but many
variations of the method. It can be unnecessarily difficult to maintain five or six variations of what
should ideally be wrapped into a single method. The trick is to create a single method that can accept
different values to operate on.

For example, let's say you have an average() method for averaging a set of numbers. Instead of
having it always average the same two numbers, you want to specify arbitrary values to be averaged
each time it is invoked. This can be accomplished with parameters.

The most common way to work with parameters is to list them within the parentheses in the method
declaration. The parameter names should be separated by commas, and when you invoke the
method you should pass it a comma-delimited list of arguments that corresponds to the parameters

it expects.

The terms "parameters" and "arguments" are often used interchangeably to
refer to the variables defined in the method declaration or the values that are
passed to a method when it is invoked.

The following is a simple example of a method declaration using parameters:

// Define the function such that it expects two parameters: a and b.
private function average(a:Number, b:Number):Number {
 return (a + b)/2;
}

Now here's a method invocation in which arguments are passed during the method call:

// When you invoke the function, pass it two arguments, such as

// 5 and 11, which correspond to the a and b parameters.
var averageValue:Number = average(5, 11);

In most situations it is best to declare the parameters that the method should expect. However,
there are some scenarios in which the number of parameters is unknown. For example, if you want
the average() method to average any number of values, you can use the built-in arguments array
that is available within any function's body. All the parameters that are passed to a function are
automatically placed into that function's arguments array.

// There is no need to specify the parameters to accept when using the

// arguments array.
private function average():Number {
 var sum:Number = 0;

 // Loop through each of the elements of the arguments array, and

 // add that value to sum.
 for (var i:int = 0; i < arguments.length; i++) {
 sum += arguments[i];
 }
 // Then divide by the total number of arguments
 return sum/arguments.length;
}

// You can invoke average() with any number of parameters.
var average:Number = average (1, 2, 5, 10, 8, 20);

Technically, arguments is an object with additional properties beyond that of a
basic array. However, while arguments is a special kind of array, you can still
work with it in the same ways that you would a regular array.

Recipe 1.15. Exiting a Method

Problem

You want to exit a method.

Solution

Methods terminate automatically after the last statement within the method executes. Use a return
statement to exit a method before reaching its end.

Discussion

The return statement exits the current method and the ActionScript interpreter continues execution
of the code that initially invoked the method. Any statements within the method body that follow a
return statement are ignored.

private function sampleFunction ():void {
 return;
 trace("Never called");
}

// Called from within another method:
sampleFunction();

// Execution continues here after returning from the sampleFuction() invocation

In the preceding example, the return statement causes the method to terminate before performing
any actions, so it isn't a very useful method. More commonly, you will use a return statement to exit
a method under certain conditions. This example exits the method if the password is wrong:

private function checkPassword (password:String):void {

 // If password is not "SimonSays", exit the function.
 if (password != "SimonSays") {
 return;
 }

 // Otherwise, perform the rest of the actions.
 showForm ("TreasureMap");
}

// This method call uses the wrong password, so the
// function exits.
checkPassword("MotherMayI");

// This method call uses the correct password, so the function

// shows the TreasureMap form.
checkPassword("SimonSays");

In the preceding example, you may notice that the method is declared as void, yet it is possible to
use a return statement within the method without getting a compiler error. When a return statement
is used simply to exit from a method, it is valid within a method declared as void.

In ActionScript 2.0, the function was Void. In ActionScript 3.0, it is lowercase
void.

However, if you attempt to actually return a value in such a method, the compiler generates an error.

private function sampleMethod ():void {
 return "some value"; // This causes the compiler to generate an error.
}

Recipe 1.16. Obtaining the Result of a Method

Problem

You want to perform some method and return the results to the statement that invoked the function.

Solution

Use a return statement that specifies the value to return.

Discussion

When used without any parameters, the return statement simply terminates a method. However, any
value specified after the return keyword is returned to statement that invoked the method. Usually,
the returned value is stored in a variable for later use. The datatype of the return value must match
the return type of the method:

private function average (a:Number, b:Number):Number {
 return (a + b)/2;
}

Now we can call the average() method and store the result in a variable and use the result in some

way.

var playerScore:Number = average(6, 10);
trace("The player's average score is " + playerScore);

You can use the return value of a method, without storing it in a variable, by passing it as a
parameter to another function, such as:

trace("The player's average score is " + average(6, 10));

Note, however, that if you do nothing with the return value of the function, the result is effectively
lost. For example, this statement has no detectable benefit because the result is never displayed or
used in any way:

average(6, 10);

Recipe 1.17. Handling Errors

Problem

You want to programmatically detect when certain errors occur and handle them using code.

Solution

Use a throw statement to throw an error when it is detected. Place any potentially error-generating
code within a try block, and then have one or more corresponding catch blocks to handle possible
errors.

Description

Flash Player 8.5 supports a try /catch methodology for handling errors in ActionScript. That means
you can write code that can intelligently deal with certain error types should they occur. While you
cannot handle syntax errors (the .swf won't even compile in that case), you can handle most other
error types, such as missing or invalid data. The benefit is that you can attempt to resolve the
situation programmatically.

An example may help to illustrate when and how you might use try /catch methodology: Consider an
application that draws a rectangle based on user-input dimensions. To draw a rectangle within the
application, you want to have certain range limitations on the dimensions the user can input. For
example, you may want to make sure the values are defined, valid numeric values greater than 1
and less than 200. While there are certainly ways you can work to ensure the quality and validity of
the data before even attempting to draw the rectangle, you can also use try /catch methodology as a
fail-safe. You can have Flash attempt to draw the rectangle, but if the dimension values are detected
to be invalid or out of range, you can throw an error that can be handled programmatically. At that
point you can do many things, from simply skipping the action, to substituting default data, to
alerting the user to enter valid data.

There are two basic parts involved in working with errors in ActionScript: throwing the error and
catching the error. There are several errors, which are thrown automatically by the player, such as
IllegalOperationError , MemoryError , and ScriptTimeoutError . These are in the flash.errors package.
But you can also detect when an error has occurred and throw your own custom error. You can throw
an error using the throw statement. The throw statement uses the throw keyword followed by a
value or reference that should be thrown. Most frequently you should throw an Error object or an
instance of an Error subclass. For example:

throw new Error("A general error occurred.");

As you can see, the Error constructor accepts one parameter, a message to associate with the error.

The parameter is optional, and depending on how you are handling the errors, you may or may not
choose to use it. However, in most cases it makes sense to specify an error message. It is possible,
then, to log the error messages for debugging purposes.

Once an error has been thrown, Flash halts the current process and looks for a catch block to handle
the error. This is where the try and catch blocks come into play. Any code that could potentially
throw an error should be enclosed in a try block. Then, if an error is thrown, only the code in the try
block is halted, and the associated catch block is called. The following is the simplest scenario:

try {
 trace("This code is about to throw an error.");
 throw new Error("A general error occurred.");
 trace("This line won't run");
}
catch (errObject:Error) {
 trace("The catch block has been called.");
 trace("The message is: " + errObject.message);
}

The preceding code produces the following in the Output panel:

This code is about to throw an error.
The catch block has been called.
The message is: A general error occurred.

Of course, the preceding example is overly simplistic, and you wouldn't realistically use code in an
actual application, but it does illustrate the basic process. You can see that as soon as the error is
thrown, the try block is exited, and the catch block is run and passed a reference to the Error object
that was thrown.

Much more frequently, the error is thrown from within a function or method. Then Flash looks to see
if the throw statement within the function is contained within a try block. If so, it calls the associated
catch block as you've seen already. However, if the throw statement in the function is not within a try
block, Flash exits the function and next looks to see if the function call was made within a try block. If
so, it halts the code in the try block and runs the associated catch block. Again, a very simple
example:

private function displayMessage(message:String):void {
 if(message == undefined) {
 throw new Error("No message was defined.");
 }
 trace(message);
}

try {
 trace("This code is about to throw an error.");
 displayMessage();
 trace("This line won't run");
}
catch (errObject:Error) {

 trace("The catch block has been called.");
 trace("The message is: " + errObject.message);
}

In the preceding example the Output panel would display the following:

This code is about to throw an error.
The catch block has been called.
The message is: No message was defined.

As you can see from the output, the code works very similarly to the way in which the previous
example worked, except the throw statement is hidden within a function instead of being called
directly within the try block. The advantage is that you can start to then create functions and
methods that are intelligent enough to know if and when to throw errors. You can then simply use
those functions and methods within try blocks, and you can handle any errors should they occur.

The following code illustrates a more realistic example:

// Define a function that draws a rectangle within a specified sprite
private function drawRectangle(sprite:Sprite, newWidth:Number, newHeight:Number):void {

 // Check to see if either of the specified dimensions are not
 // a number. If so, then thrown an error.
 if(isNaN(newWidth) || isNaN(newHeight)) {
 throw new Error("Invalid dimensions specified.");
 }

 // If no error was thrown, then draw the rectangle.
 sprite.graphics.lineStyle(1, 0, 1);
 sprite.graphics.lineTo(nWidth, 0);
 sprite.graphics.lineTo(nWidth, nHeight);
 sprite.graphics.lineTo(0, nHeight);
 sprite.graphics.lineTo(0, 0);
}

Now we can call the drawRectangle() method using a try /catch statement.

try {

 // Attempt to draw two rectangles within the current sprite.
 // In this example it is assumed that the variables for the dimensions
 // are retreiving values from user input, a database, an XML file,
 // or some other datasource.
 drawRectangle(this, widthA, heightA);
 drawRectangle(this, widthB, heightB);
}
catch(errObject:Error) {

 // If an error occurs, clear any rectangles that were drawn from

 // the sprite. Then display a message to the user.
 this.graphics.clear();
 tOutput.text = "An error occurred: " + errObject.message;
}

In addition to the try and catch blocks, you can also specify a finally block. The finally block contains
code that is called regardless of whether an error was thrown. In many cases the finally block may
not be necessary. For example, the following two examples do the same thing:

//Without using finally:
private function displayMessage(message:String):void {
 try {
 if(message == undefined) {
 throw new Error("The message is undefined.");
 }
 trace(message);
 }
 catch (errObject:Error) {
 trace(errObject.message);
 }
 trace("This is the last line displayed.");
}
//With finally:
private function displayMessage(message:String):void {
 try {
 if(message == undefined) {
 throw new Error("The message is undefined.");
 }
 trace(message);
 }
 catch (errObject:Error) {
 trace(errObject.message);
 }
 finally {
 trace("This is the last line displayed.");
 }
}

However, the finally block runs no matter what occurs within the try and catch blocks, including a
return statement. So the following two functions are not the equivalent:

//Without using finally:
private function displayMessage(message:String):void {
 try {
 if(message == undefined) {
 throw new Error("The message is undefined.");
 }
 trace(message);
 }
 catch (errObject:Error) {

 trace(errObject.message);
 return;
 }
 // This line won't run if an error is caught.
 trace("This is the last line displayed.");
}
//With finally:
private function displayMessage(message:String):void {
 try {
 if(message == undefined) {
 throw new Error("The message is undefined.");
 }
 trace(message);
 }
 catch (errObject:Error) {
 trace(errObject.message);
 return;
 }
 finally {
 // This runs, even if an error is caught.
 trace("This is the last line displayed.");
 }
}

You can create much more complex error handling systems than what is shown in this recipe.
Throughout this book you will find examples of more complex error handling in appropriate contexts .

Chapter 2. Custom Classes
Section 2.0. Introduction

Recipe 2.1. Creating a Custom Class

Recipe 2.2. Determining Where to Save a Class

Recipe 2.3. Creating Properties That Behave As Methods

Recipe 2.4. Creating Static Methods and Properties

Recipe 2.5. Creating Subclasses

Recipe 2.6. Implementing Subclass Versions of Superclass Methods

Recipe 2.7. Creating Constants

Recipe 2.8. Dispatching Events

2.0. Introduction

Classes are absolutely essential to ActionScript 3.0. This is truer in ActionScript 3.0 than in any earlier
release of the language. ActionScript 1.0 was essentially a procedural language with modest object-
oriented features. ActionScript 2.0 formalized the object-oriented features and took a big step in the
direction of a truly object-oriented language. However, ActionScript 3.0 shifts the core focus of
ActionScript so that the basic building block is that of the class. If you are using ActionScript 3.0 with
Flex, and the introduction of the minor exception of code being placed within <mx:Script> tags, all
ActionScript code must appear within a class. This chapter discusses the fundamentals of writing
custom classes in ActionScript 3.0.

Recipe 2.1. Creating a Custom Class

Problem

You want to write a custom class.

Solution

Save a new file with the .as file extension and the filename matching the name of the class. Then add
the class definition to the file with the following structure:

package package {

 public class Class {

 }
}

Discussion

As noted earlier, the class is the basic building block of all ActionScript 3.0-based applications, so it's
essential that you master the basics of writing a class. For starters, all classes must be placed in .as
files, which are plain text files saved with an .as file extension. There can be only one public class
definition per .as file, and the name of the file must be the same as the name of the class. For
example, if you name a class Example then the definition must be saved in a file called Example.as.

In ActionScript 3.0 all classes must be placed in packages. A package is a way of organizing classes
into groups, and in ActionScript 3.0 a package is synonymous with a directory on the filesystem.
Packages are relative to the classpath (which is discussed in detail in Recipe 2.2), but for this initial
discussion the classpath is defined as a path relative to the project (the .fla file, in the case of Flash
or the main class or MXML document in the case of Flex). Therefore, the top-level package is
synonymous with the project's root. The package declaration is always the first thing that appears in
a class file; an example syntax follows:

package name {

}

When the class is defined as part of the top-level package, the package name doesn't need to be
specified. In those cases, the package declaration is as follows:

package {

}

When the class file is saved within a subdirectory, the package name corresponds to the relative path
of the subdirectory using dots (.) between each directory. For example, if a file is saved in a
subdirectory (relative to the project root) called example, then the package declaration is as follows:

package example {

}

If the class file is saved in a subdirectory of example called subpackage, the package declaration is as
follows:

package example.subpackage {

}

Packages are an important part of working with classes because they allow you to ensure that your
classes won't conflict with any other classes. For example, it's entirely possible that two developers
might write two different classes and name them MessageManager. The two classes could have the
same name but be responsible for very different tasks. One might manage emails while the other
manages binary socket messages. You cannot have two classes with the same name in the same
scope. If you did, the compiler wouldn't know which one to use. One option is to always use unique
class names.

In this example, you could name the classes EmailManager and BinarySocket- MessageManager, but
there are good reasons why that isn't always possible or preferable. Since a project could use
potentially hundreds of classes, it would be very difficult to ensure all the classes have unique names.
Furthermore, many projects may rely on preexisting libraries of code, and you may not have written
many of the classes. Because many classes in a library might have dependencies on other classes, it
would be very difficult to change the names of classes. This is where packages make things much
simpler. Even though you cannot have two classes with the same name within the same directory,
you can have as many classes with the same name as you want, so long as they are within different
directories. Packages allow you to place one MessageManager in the net.messaging.email package
and one in the net.messaging.binarysocket package.

Although the preceding package names may initially seem like good choices, it's possible to use
better package names to ensure a higher probability of uniqueness. It's generally better to use
package names that correspond to the owner and/or relevant project. By convention, package names
start with reverse order domain names. For example, if Example Corp (examplecorp.com) writes
ActionScript 3.0 classes, they would place all classes in the com.examplecorp package (or a
subpackage of com.examplecorp). That way, if another Example Corp from the U.K.
(examplecorp.co.uk) also writes ActionScript 3.0 classes, they can ensure uniqueness by using the
package uk.co.examplecorp.

The exception to this guideline is when the classes are part of a product or
library that transcends company/organization boundaries. For example, all the
native Flash Player classes are in the Flash package (for example,
flash.net.URLRequest) and all the classes in the ActionScript 3.0 Cookbook
library are in the ascb package (see http://www.rightactionscript.com/ascb).

When classes are part of a common library used by many projects within a company/organization
then they can be placed in subpackages directly within the main package. For example, if the
aforementioned MessageManager classes are part of a common library used by many Example Corp
applications then they could be placed in the com.examplecorp.net.messaging.email and
com.examplecorp.net.messaging.binary- socket packages. When a class is part of a specific
application, it should be placed within a subpackage specific to that application. For example,
Example Corp might have an application called WidgetStore. If the WidgetStore application uses a
class called ApplicationManager, then it ought to be placed within com.examplecorp.widgetstore or a
subpackage of that package.

By convention, package names start with lowercase characters.

The next step is to declare the class itself, as follows:

public class Name {

}

The name of a class starts with a capital letter by convention. The name of a class must follow the
same naming rules as variables and functions (consists of letters, numbers, and underscores, and
cannot start with a number). The class declaration appears within the package declaration. The
following code defines a class called Example within the top-level package:

package {
 public class Example {

 }
}

The class body appears within the class declaration's curly braces, and it consists of properties and
methods. Properties are variables associated with the class, and you declare them much as you
would declare variables by using the var keyword. However, properties also must be modified by
attributes, which determine the scope of the property. The following is a list of the attributes you can
use with properties:

private

http://www.rightactionscript.com/ascb

Properties are private when they're accessible only within the class.

public

Properties are public when they're accessible within the class as well as from instances of the
class (or directly from the class reference when declared as static).

protected

Properties are protected when they're accessible only within the class and to subclasses.

internal

Properties are internal when they're accessible within the package.

The default state of a property is internal unless you specify a different attribute. In most cases,
properties should be declared as either private or protected. By convention, it's helpful to start
private and protected property names with an underscore (_). The following declares a new private
property called _id within the Example class:

package {
 public class Example {
 private var _id:String;
 }
}

Methods are essentially functions associated with a class, and you can declare a method much like
you would declare a function using the function keyword. However, as with properties, all methods
must belong to a namespace defined by one of the attributes from the previous list. The public,
private, protected, and internal attributes work identically for methods and properties. Methods
should be declared public only when they need to be called from instances of the class (or from the
class itself when declared as static). If the method is designed to be called only from within the class,
then it should be declared as private or protected. A method should be protected only when you
want to be able to reference it from a subclass. The following declares a method called getId():

package {
 public class Example {
 private var _id:String;
 public function getId():String {
 return _id;
 }
 }
}

Method names are subject to the same rules as variables and properties. That means that method
names must contain only numbers, letters, underscores, and dollar signs. Additionally, while method
names can contain numbers, they cannot begin with numbers. By convention, method names start

with lowercase characters. There is one exception to that guideline, however. Every class can have a
special method with the same name as the class itself. This special method is called the constructor,
and as the name implies, you can use the function to construct new instances of the class. In
ActionScript 3.0, all constructors must be public (this is a change from ActionScript 2.0). Unlike
standard methods, constructors cannot return values, and they must not declare a return type. The
following declares a constructor method for the Example class:

package {
 public class Example {
 private var _id:String;
 public function Example() {
 _id = "Example Class";
 }
 public function getId():String {
 return _id;
 }
 }
}

The following illustrates how to construct an instance of the Example class:

var example:Example = new Example();
trace(example.getId()); // Displays: Example Class

See Also

Recipe 2.2

Recipe 2.2. Determining Where to Save a Class

Problem

You want to determine where to save a class file.

Solution

Save the file in a directory path corresponding to the package. Then, if necessary, add the top-level
directory to the classpath.

Discussion

Class files must always be saved in a directory path that corresponds to the class package. For
example, com.examplecorp.net.messaging.email.MessageManager must be saved in
com/examplecorp/net/messaging/email/MessageManager.as. The compiler knows to look for classes
where the path corresponds to the package. However, the compiler also must know where to look for
the top-level directory containing the subdirectories. In the example, the compiler needs to know
where the com directory is on the system. The compiler knows where to look because of something
called the classpath. The default classpath for any Flex or Flash project includes the project directory.
For example, if the com directory is saved in the same directory as the .fla file (Flash) or the main
MXML or ActionScript file (Flex), then the compiler will find the classes. However, you may want to
save files in a different directory. For example, if you have a common library used by many projects,
you may want to save that library in one location rather than making copies for each project. You can
add to and edit the classpath so the compiler knows where to look for all your custom classes.

For Flash, you can edit the classpath either at the project level or globally. At the project level, select
File Publish Settings, and select the ActionScript Settings button in the Flash tab. For the global
classpath, select Edit Preferences, and click the ActionScript Settings button. Both open a similar
dialog that allows you to edit the classpath. You can click the + button to add a new directory to the
classpath. For example, if the com directory for a common library is stored in C:\libraries, then you
would add C:\libraries to the classpath.

For Flex, you can only set the classpath for a project. Using Flex Builder, right-click a project in the
project navigator, select Properties, and then select Flex/ActionScript Build Path from the left menu.
In the Source Path tab, you can add to and edit the classpath. If you're using the SDK rather than
Flex Builder, you have to set the classpath when you're compiling your project. Using mxmlc (the
command-line compiler included in the Flex SDK), you can add a -source-path option, followed by a
list of classpath directories, as shown here:

mxmlc -source-path . C:\libraries ExampleApplication.as

See Also

Recipe 2.1

Recipe 2.3. Creating Properties That Behave As Methods

Problem

You want to use public properties that behave like methods so you don't break encapsulation.

Solution

Use implicit getters and setters.

Discussion

As mentioned in Recipe 2.1, all properties should be declared as private or protected. public
properties are not a good idea because of a principal called encapsulation. Good encapsulation is
something to strive for. It means that a class doesn't expose its internals in a way that it can be
easily broken; public properties can enable developers to easily break a class or an instance of a
class. Consider the following simple example that uses a public property:

package {
 public class Counter {
 public var count:uint;
 public function Counter() {
 count = 0;
 }
 }
}

You can then construct an instance of Counter, and you can change the count property value, as
shown here:

var counter:Counter = new Counter();
counter.count++;

However, what if the business rules of the application state that a Counter should never exceed 100?
You can see that the Counter class with a public count property makes it quite easy to break that
rule.

One option is to use explicit getters and setters, as in the following example:

package {

 public class Counter {
 private var _count:uint;
 public function Counter() {
 _count = 0;
 }
 public function getCount():uint {
 return _count;
 }
 public function setCount(value:uint):void {
 if(value < 100) {
 _count = value;
 }
 else {
 throw Error();
 }
 }
 }
}

Another option is to use implicit getters and setters. Implicit getters and setters are declared as
methods, but they look like properties. The syntax for a getter is as follows:

public function get name():Datatype {

}

The syntax for a setter is as follows:

public function set name(value:Datatype):void {

}

The following defines count with implicit getter and setter methods:

package {
 public class Counter {
 private var _count:uint;
 public function Counter() {
 _count = 0;
 }
 public function get count():uint {
 return _count;
 }
 public function set count(value:uint):void {
 if(value < 100) {
 _count = value;
 }
 else {
 throw Error();

 }
 }
 }
}

You can then treat count as though it were a public property:

counter.count = 5;
trace(counter.count);

See Also

Recipe 2.1

Recipe 2.4. Creating Static Methods and Properties

Problem

You want to create methods and properties that are directly accessible from the class rather than
from instances of the class.

Solution

Use the static attribute when declaring the property or method.

Discussion

By default, properties and methods are instance properties and methods, which means they are
defined for each instance of the class. If the Example class defines a _id property and a getId()
method then, by default, each instance of Example has its own _id property and getId() method.
However, there are cases in which you want the property or method to be associated with the class
itself rather than with instances of the class. That means that no matter how many instances of the
class there may be, there is just one property or method. Such properties and methods are called
static properties and methods.

There are examples of static properties and methods in several of the intrinsic Flash Player classes.
For example, the Math class defines a round() method. The round() method is static and is,
therefore, accessible directly from the class:

trace(Math.round(1.2345));

The Math class consists entirely of static methods and constants. However, a class can have both
static and instance methods and/or properties. For example, the String class consists primarily of
instance properties and methods. However, the fromCharCode() method is declared as static. The
fromCharCode() method returns a string based on the character codes passed to the method. Since
the method isn't associated with any one String instance, it does not make sense to make the
method an instance method. However, it does make sense to declare the method as a static method.

You can declare a property or method as static using the static attribute. The static attribute is
always used in combination with the public, private, protected, or internal attribute.

For example, the following declares a private static property called _example:

static private var _example:String;

The order in which the attributes appear doesn't matter. For example, static private is the
equivalent to private static.

One common and important use of static properties and methods is the Singleton design pattern,
whereby a class has a single managed instance. Singleton classes have a private static property
that stores the one instance of the class as well as a public static method that allows access to the
one instance.

See Also

Recipe 2.1

Recipe 2.5. Creating Subclasses

Problem

You want to create a class that inherits from an existing class.

Solution

Write a subclass using the extends keyword.

Discussion

There are cases when a new class is a more specific version of an existing class. The new class may
feature much of the same behavior as the existing class. Rather than rewriting all the common
functionality you can define the new class so it inherits all the functionality of the existing class. In
relation to one another, the new class is then called a subclass and the existing class is called a
superclass.

You can define inheritance between classes in the subclass declaration using the extends keyword, as
follows:

public class Subclass extends Superclass

A subclass can reference any public or protected properties and methods of the superclass. private
properties and methods are not accessible outside the class, not even to a subclass.

Inheritance is a powerful technique; however, as with anything else, it is important that you use
inheritance correctly. Before writing a subclass you need to determine whether or not the new class
actually has a subclass relationship with the existing class. There are two basic types of relationships
that classes can have: inheritance and composition. You can usually quickly determine the correct
relationship between classes by asking whether it's an "is a" relationship or a "has a" relationship:

"Is a" relationships are often inheritance relationships. As an example, consider an application
that manages a library's collection.

"Has a" relationships are composition relationships in which a class declares a property. Most
classes use composition. Oftentimes composition can be implemented in such a way that it
achieves the same results as inheritance with greater flexibility (yet generally requiring more
code). For example, a book is not an author, but it has an author (or authors).

The library has different types of items in the collection including books and DVDs. Obviously books
and DVDs have different types of data associated with them. Books have page counts and authors,
while DVDs might have running times, actors, directors, etc. However, you also want to associate
certain common types of data with both books and DVDs. For example, all library items might have
Dewey decimal classifications as well as unique identification numbers assigned by the library. And
every sort of library item has a title or name. In such a case, it can be advantageous to define a class
that generalizes the commonality of all library items:

package org.examplelibrary.collection {
 public class LibraryItem {
 protected var _ddc:String;
 protected var _id:String;
 protected var _name:String;

 public function LibraryItem() {}

 public function setDdc(value:String):void {
 _ddc = value;
 }
 public function getDdc():String {
 return _ddc;
 }

 public function setId(value:String):void {
 _id = value;
 }
 public function getId():String {
 return _id;
 }

 public function setName(value:String):void {
 _name = value;
 }
 public function getName():String {
 return _name;
 }
 }
}

Then you can say that books and DVDs are both types of LibraryItem. It would then be appropriate
to define a Book class and a DVD class that are subclasses of LibraryItem. The Book class might look
like the following:

package org.examplelibrary.collection {
 import org.examplelibrary.collection.LibraryItem;
 public class Book extends LibraryItem {
 private var _authors:Array;
 private var _pageCount:uint;

 public function Book() {}

 public function setAuthors(value:Array):void {
 _authors = value;
 }
 public function getAuthors():Array {
 return _authors;
 }

 public function setPageCount(value:uint):void {
 _pageCount = value;
 }
 public function getPageCount():uint {
 return _pageCount;
 }
 }
}

The "Is a" and "Has a" test is helpful, but not always definitive in determining the relationship
between classes. Often composition can be used even when inheritance would be acceptable and
appropriate. In such cases the developer might opt for composition because it offers an advantage or
flexibility not provided by inheritance. Furthermore, there are times when a class may appear to pass
the "Is a" test yet inheritance would not be the correct relationship. For example, the library
application might allow users to have accounts, and to represent the user, you would define a User
class. The application might differentiate between types of users; for example, administrator and
standard users. You could define Administrator and StandardUser classes. In such a case, the classes
would appear to pass the "Is a" test in relation to User. It would seem to make sense that an
Administrator is a User. However, if you consider the context an Administrator isn't actually a User,
but more appropriately an Administrator is a role for a User. If possible, it would be better to define
User so it has a role of type Administrator or StandardUser.

By default it's possible to extend any class. However you may want to ensure that certain classes are
never subclassed. For this reason you can add the final attribute to the class declaration, as follows:

final public class Example

Recipe 2.6. Implementing Subclass Versions of
Superclass Methods

Problem

You want to implement a method in a subclass differently than how it was implemented in the
superclass.

Solution

The superclass method must be declared as public or protected. Use the override attribute when
declaring the subclass implementation.

Discussion

Often a subclass inherits all superclass methods directly without making any changes to the
implementations. In those cases, the method is not redeclared in the subclass. However, there are
cases in which a subclass implements a method differently than the superclass. When that occurs,
you must override the method. To do that, the method must be declared as public or protected in
the superclass. You can then declare the method in the subclass using the override attribute. As an
example, you'll first define a class, Superclass:

package {
 public class Superclass {
 public function Superclass() {}
 public function toString():String {
 return "Superclass.toString()";
 }
 }
}

Next, define Subclass so it inherits from Superclass:

package {
 public class Subclass extends Superclass {
 public function Subclass() {}
 }
}

By default, Subclass inherits the toString() method as it's implemented in Superclass:

var example:Subclass = new Subclass();
trace(example.toString()); // Displays: Superclass.toString()

If you want the toString() method of Subclass to return a different value, you'll need to override it in
the subclass, as follows:

package {
 public class Subclass extends Superclass {
 public function Subclass() {}
 override public function toString():String {
 return "Subclass.toString()";
 }
 }
}

When overriding a method, it must have exactly the same signature as the superclass. That means
the number and type of parameters and the return type of the subclass override must be exactly the
same as the superclass. If they aren't identical, the compiler throws an error.

Sometimes when you override a method you want the subclass implementation to be entirely
different from the superclass implementation. However, sometimes you simply want to add to the
superclass implementation. In such cases, you can call the superclass implementation from the
subclass implementation using the super keyword to reference the superclass:

super.methodName();

See Also

Recipe 2.5

Recipe 2.7. Creating Constants

Problem

You want to declare a constant.

Solution

Declare it just like you would declare a property, except use the const keyword in place of var.

Discussion

As the name constant implies, constant values do not change. Constants are useful when you have
complex values that you want to be able to reference by a simple identifier or when you want to be
able to use compile-time error checking for values. Math.PI is an example of a constant that contains
a complex value (which is the value of pi, or 3.14159). MouseEvent.MOUSE_UP, which contains the
value mouseUp, is an example of a constant that allows you to use error-checking. When you add an
event listener for the mouse up event, you can use the string value mouseUp. However, if you
accidentally have a typo, you won't be notified of an error, and your code won't work as expected:

// This is valid code, but because of the typo (mousUp instead of mouseUp) the
// code won't work as expected.
addEventListener("mousUp", onMouseUp);

Using a constant helps. If you accidentally misspell the constant, you will receive a compile error that
helps you track down the error:

// This causes a compile error.
addEventListener(MouseEvent.MOUS_UP, onMouseUp);

The syntax for declaring a constant is very similar to that for declaring a standard property. However,
rather than using the var keyword you use the const keyword. Although not required, the majority of
constants also happen to be public and static. If you want a constant to be public and static, you
must use the correct attributes. Additionally, you must assign a value for a constant when declaring
it:

static public const EXAMPLE:String = "example";

By convention, constant names are all in uppercase. This convention makes it easy to identify and

differentiate constants from properties.

See Also

Recipe 2.4

Recipe 2.8. Dispatching Events

Problem

You want to dispatch events.

Solution

Extend flash.events.EventDispatcher and call the dispatchEvent() method.

Discussion

Events are an important way for objects to communicate. They are essential for creating flexible
systems. Flash Player 9, for example, has a built-in event dispatching mechanism in the
flash.events.EventDispatcher class. All classes that dispatch events inherit from EventDispatcher
(e.g., NetStream and Sprite). If you want to define a class that dispatches events, you can extend
EventDispatcher, as follows:

package {
 import flash.events.EventDispatcher;
 public class Example extends EventDispatcher {

 }
}

The EventDispatcher class has public methods called addEventListener() and removeEventListener()
that you can call from any instance of an EventDispatcher subclass to register event listeners.
EventDispatcher also defines a protected method called dispatchEvent(), which you can call from
within a subclass to dispatch an event. The dispatchEvent() method requires at least one parameter
as a flash.events.Event object or a subclass of Event.

Chapter 3. Runtime Environment

Section 3.0. Introduction

Recipe 3.1. Detecting the Player Version

Recipe 3.2. Detecting the Operating System

Recipe 3.3. Checking the Player Type

Recipe 3.4. Checking the System Language

Recipe 3.5. Detecting Display Settings

Recipe 3.6. Scaling the Movie

Recipe 3.7. Changing the Alignment

Recipe 3.8. Hiding the Flash Player's Menu Items

Recipe 3.9. Detecting the Device's Audio Capabilities

Recipe 3.10. Detecting the Device's Video Capabilities

Recipe 3.11. Prompting the User to Change Player Settings

Recipe 3.12. Dealing with System Security

3.0. Introduction

Flash Player 9 offers a relatively large amount of information about and control over the runtime
environment. The flash.system.Capabilities class has many static methods that return information
about the player and the computer on which it is running, such as the operating system, language,
audio, and video capabilities. There are other classes such as flash.display.Stage and
flash.system.Security that allow you to control other elements of the Player such as the right-click
menu under Windows (Control-click on the Macintosh) and the Settings dialog box. The
flash.display.Stage class also controls the scaling and alignment of the movie within the Player.

Perhaps one of the most significant updates to Flash Player 7 within this chapter's subject matter is
the ability to work with the context menu with more detail and precision than was allowed in previous
versions of the player. In Flash Player 7, using the ContextMenu class, you can programmatically
remove items from the context menu, and perhaps more importantly, you can add items to the
menu. And as the name suggests, you can make the context menu so it is actually contextual, so
that items in the menu are based on the object on which the menu is being displayed.

Recipe 3.1. Detecting the Player Version

Problem

You want to ensure that the user has the correct version of the Flash Player.

Solution

Use the Flash Player Detection Kit, available on Adobe's web site to check the version of player and, if
necessary, initiate a player upgrade
(http://www.adobe.com/software/flashplayer/download/detection_kit).

Discussion

Detecting the currently installed version of the Flash Player in the user's browser has been a problem
for years, and there have been many solutions used by various developers. They generally fall into
three categories:

Browser-based script detection

Server-side detection

ActionScript detection

The first method uses JavaScript or VBScript to detect the version of the Flash Player the user has
installed. Many of these scripts were prone to errors due to differences in platforms and browser
types.

Server-side detection can be difficult if you don't have the ability to create server-side scripts.

Most ActionScript-based player detection techniques won't work directly in an ActionScript 3.0-based
.swf. While ActionScript 1.0 and 2.0 had various object methods, variables, and functions that would
return the player version, none of those are now valid in an ActionScript 3.0 class. ActionScript 3.0
has its own way of detecting the player versionthe flash.system.Capabilities.version property. This, of
course, won't work at all with any version of the Flash Player prior to 8.5, so it is rather useless for
Flash detection.

Adobe has researched all of these issues thoroughly, and came out with a Flash Player Detection Kit
that guides you through the recommended procedures for best detecting the player version.

The kit includes documentation on the various issues and potential solutions, including sample
VBScript and JavaScript for browser-based detection; .flas, .as, and .swf files for ActionScript

http://www.adobe.com/software/flashplayer/download/detection_kit

detection; as well as ColdFusion and PHP scripts for server-side detection.

ActionScript-based detection works successfully as long as the user has any version of the Flash
Player from Version 4 on up. Basically, it is a Flash 4 .swf that executes a script to detect the current
player version; all you need to do is set your minimum content version as a variable in the script. If
the player version is at least as high as the content version, it loads the specified content. If not, it
redirects the browser to an alternate content page. This page can contain a lower version .swf, a
non-Flash version of the content, or a notice instructing the user to upgrade his Flash Player, with a
link to the player install page on Adobe's site.

Furthermore, the kit contains a .swf and HTML template that initializes an Express Install of the latest
version of the Flash Player. If the user's player is not adequate, the browser is redirected to this .swf,
which downloads the latest version of the Flash Player from Adobe's site, automatically installs it, and
finally redirects the user back to the specified Flash content, all without the user ever leaving your
site. This option requires that the user already have Version 6.0.65.0 of the Flash Player installed.

Using a combination of the techniques included in the Flash Player Detection Kit gives you very
precise control over the Flash Player version and the content you deliver to your viewers.

For testing purposes, older versions of the Flash Player can be obtained from Macromedia's site
(http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_14266).

http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=tn_14266

Recipe 3.2. Detecting the Operating System

Problem

You want to know the operating system under which the Flash movie is being played, perhaps to
indicate which operating systems are not supported or to implement a platform-specific feature.

Solution

Use the flash.system.Capabilities.os property.

Discussion

In ActionScript 3.0, you can use the flash.system.Capabilities.os property, which returns a string
indicating the operating system and version name. Possible values include Windows XP, Windows
2000, Windows NT, Windows 98/Me, Windows 95, and Windows CE. On the Macintosh, the string
includes the version number, such as Mac OS 9.2.1 or Mac OS X 10.4.4.

You can make design choices based on the operating system. For example, your movie might load
different assets depending on the user's operating system. Or, you may simply want to record the
operating systems of the users who view your movies for statistical analysis.

If all you care about is the general platform type, instead of the specific version, you can check just
the first three letters of the string as follows:

var os:String = System.capabilities.os.substr(0, 3);
if (os == "Win") {
 // Windows-specific code goes here
} else if (os == "Mac") {
 // Mac-specific code goes here
} else {
 // Must be Unix or Linux
}

Recipe 3.3. Checking the Player Type

Problem

You want to know what type of Flash Player the .swf is being run from.

Solution

Use the flash.system.Capabilities.playerType property.

Discussion

The different types of Flash Player include:

Browser plug-in that runs in web browsers such as Mozilla or Firefox

ActiveX Control used by Internet Explorer

Standalone player, which plays .swfs outside of the browser

External player, which is the player integrated in the Flash IDE

There are instances when you need to know which player the .swf is currently being run in. For
example, if you are doing any type of integration with browser scripts (e.g., JavaScript, VBScript), it
may be important to know whether the application is being run in Internet Explorer or some other
type of browser, as these browsers can have different behaviors when running scripts. Indeed, it
would be vital to know that the .swf was being run in a standalone player, since JavaScript, etc.,
would not be available at all in such a case.

To check the player type, look at the value of flash.system.Capabilities.playerType. Possible
values are PlugIn, ActiveX, StandAlone, and External. You could use this in an if statement:

if(flash.system.Capabilities.playerType == "Plugin") {
 // do actions for Mozilla, etc. browsers
}
else if(flash.system.Capabilities.playerType == "ActiveX") {
 // do actions for IE
}
else {
 // do actions for no browser
}

Recipe 3.4. Checking the System Language

Problem

You want to know what language is used on the computer viewing the movie and how the user will
input text.

Solution

Use the flash.system.Capabilities.language property and the flash.system.IME class.

Discussion

You can use the flash.system.Capabilities.language property to determine the language that is
used on the computer on which the movie is being played. The property returns a two-letter ISO-
639-1 language code (e.g., "fr" for French). Where applicable, a two-letter country code is appended,
separated from the country code with a hyphen (e.g., "zh-CN" for Simplified Chinese and "zh-TW" for
Traditional Chinese).

For a summary of language codes, see http://lcweb.loc.gov/standards/iso639-
2/englangn.html and http://www.iso.org/iso/en/prods-
services/iso3166ma/02iso-3166-code-lists/list-en1.html.

Here is an example of how to use the language property:

// Example output: en-US
trace(flash.system.Capabilities.language);

You can use this property to dynamically load content in the appropriate language:

// Create an associative array with language codes for the keys
// and greetings for the values.
var greetings:Array = new Array();
greetings["en"] = "Hello";
greetings["es"] = "Hola";
greetings["fr"] = "Bonjour";

// Extract the first two characters from the language code.

http://lcweb.loc.gov/standards/iso639-

var lang:String = flash.system.Capabilities.language.substr(0, 2);

// Use a default language if the language is not in the list
if (greetings[lang] == undefined) {
 lang = "en";
}

// Display the greeting in the appropriate language.
trace(greetings[lang]);

When you want to offer multiple language capabilities in your movies, you can choose from several
different approaches. One, as shown in the preceding code, is to create associative arrays for all the
text that appears in the movie. Another approach is to create static content in multiple movies (one
for each language) and to load those movies based on the language code. With this technique, each
.swf filename should include the language code, such as myMovie_en.swf, myMovie_es.swf,
myMovie_fr.swf, etc.

// Get the language from the capabilities object.
var lang:String = System.capabilities.language.substr(0, 2);

// Create an array of the languages you are supporting (i.e.,
// the languages for which you have created movies).
var supportedLanguages:Array = ["en", "es", "fr"];

// Set a default language in case you don't support the user's
// language.
var useLang:String = "en";

// Loop through the supported languages to find a match to the

// user's language. If you find one, set useLang to that value

// and then exit the for statement.
for (var i:int = 0; i < supportedLanguages.length; i++) {
 if (supportedLanguages[i] == lang) {
 useLang = lang;
 break;
 }
}

// Load the corresponding movie.
var movieURL:String = "myMovie_" + useLang + ".swf");

It is also often important to know how a user will be entering text on her system. Languages, such as
Chinese, Japanese, and Korean, can have thousands of possible characters. To enter these
characters via the keyboard, a special program called an Input Method Editor (IME) is required. This
is usually part of the operating system of the particular language.

To detect if the user's system has an IME, check the value of flash.system.Capabilities.hasIME,
which will return true or false. Then use the flash.system.IME class to get more information about
and interact with the IME. The flash.system.IME.enabled property tells you whether the user is using
the IME or entering text straight from the keyboard. This property is actually writable, so you can use

it to turn on the IME. On some platforms and OS versions, you can send a string to the IME to be
converted into the correct characters, and accept the output of the IME back into a selected text
field. Since this does not work on all systems, it is best to check the OS first (see Recipe 3.2).

See Also

Recipe 3.2

Recipe 3.5. Detecting Display Settings

Problem

You want to know the display settings for the device on which the movie is being played.

Solution

Use the screenResolutionX and screenResolutionY properties of the system.capabilities object.

Discussion

You should use the flash.system.Capabilities object to determine the display settings of the device
that is playing the movie. The screenResolutionX and screenResolutionY properties return the
display resolution in pixels.

// Example output:
// 1024
// 768
trace(flash.system.Capabilities.screenResolutionX);
trace(flash.system.Capabilities.screenResolutionY);

You can use these values to determine how to display a movie, or even which movie to load. These
decisions are increasingly important as more handheld devices support the Flash Player. For example,
the dimensions of a cellphone screen and a typical desktop computer display are different, so you
should load different content based on the playback device.

var resX:int = flash.system.Capabilities.screenResolutionX;
var resY:int = flash.system.Capabilities.screenResolutionY;

// If the resolution is 240 x 320 or less, then load the PocketPC
// movie version. Otherwise, assume the device is a desktop computer
// and load the regular content.
if ((resX <= 240) && (resY <= 320)) {
 var url:String = "main_pocketPC.swf";
}
else {
 var url:String = "main_desktop.swf";
}
loader.load(new URLRequest(url));

You can also use the screen resolution values to center a pop-up browser window:

var resX:int = flash.system.Capabilities.screenResolutionX;
var resY:int = flash.system.Capabilities.screenResolutionY;

// Set variables for the width and height of the new browser window.
var winW:int = 200;
var winH:int = 200;

// Determine the X and Y values to center the window.
var winX:int = (resX / 2) - (winW / 2);
var winY:int = (resY / 2) - (winH / 2);

// Create the code that, when passed to URLLoader.load()
// opens the new browser window.
var jsCode:String = "javascript:void(
 newWin=window.open('http://www.person13.com/'," +
 "'newWindow', 'width=" + winW +
 ", height=" + winH + "," +
 "left=" + winX + ",top=" + winY + "'));";

// Call the JavaScript function using a URLLoader object
urlLoader.load(new URLRequest(jsCode));

Additionally, it is worth considering using the screen resolution values to determine whether or not to
scale a movie. For example, when users have their resolution set to a high value, such as
1600x1200, some fonts may appear too small to read.

Recipe 3.6. Scaling the Movie

Problem

You want to control the way in which a movie fits in the Player, including the scaling.

Solution

Use the stage.scaleMode property.

Discussion

There are several different scale modes that control how a movie is scaled when the player changes
size. The modes are defined as the following strings: exactFit, noBorder, noScale, and showAll.
However, to avoid typographical errors, these strings have also been defined in the
flash.display.StageScaleMode class as the static properties: EXACT_FIT, NO_BORDER, NO_SCALE, and
SHOW_ALL.

The Flash Player defaults to a scale mode of showAll. In this mode, the Flash movie scales to fit the
player's size while maintaining the movie's original aspect ratio. The result is that the movie can
potentially have borders on the sides if the Player's aspect ratio does not match the movie's aspect
ratio. You can set a movie to showAll mode from your main application class as follows (don't forget
to import the flash.display.StageScaleMode class):

stage.scaleMode = StageScaleMode.SHOW_ALL;

Note that stage is not a global object, but a property of any display object, so this statement only
works in a sprite or other class that extends the DisplayObject class.

The noBorder mode scales a movie to fit the Player while maintaining the original aspect ratio;
however, it forces the Player to display no borders around the Stage. If the aspect ratio of the Player
does not match that of the movie, some of the movie will be cut off on the sides. You can set a movie
to noBorder mode as follows:

stage.scaleMode = StageScaleMode.NO_BORDER;

The exactFit mode scales a movie to fit the Player, and it alters the movie's aspect ratio, if necessary,
to match that of the Player. The result is that the movie always fills the Player exactly, but the
elements of the movie may be distorted. For example:

stage.scaleMode = StageScaleMode.EXACT_FIT;

In noScale mode, the movie is not scaled, and it maintains its original size and aspect ratio regardless
of the Stage's size. When you use the noScale mode, don't forget to set the movie's alignment (see
Recipe 3.7, which includes example code that demonstrates the available alignment options). For
example:

stage.scaleMode = StageScaleMode.NO_SCALE;

The scaleMode property's value does not prevent the user from being able to scale the movie using
the right-click/Control-click menu. However, you can disable those options in the menu, as shown in
Recipe 3.8.

See Also

Recipes 3.7 and 3.8

Recipe 3.7. Changing the Alignment

Problem

You want to change the alignment of the movie within the Player.

Solution

Use the stage.align property.

Discussion

Flash movies appear in the center of the Player by default. You can control the alignment of a movie
within the Player by setting the stage.align property of any class that extends DisplayObject. The
various alignment modes are implemented as strings, such as "T" for "top," "L" for "left," etc.
However, to avoid errors in typing, these have also been made properties of the
flash.display.StageAlign class, listed in Table 3-1.

Table 3-1. Alignment as controlled by stage.align

Value Vertical alignment Horizontal

StageAlign.TOP
Top Center

StageAlign.BOTTOM
Bottom Center

StageAlign.LEFT
Center Left

StageAlign.RIGHT
Center Right

StageAlign.TOP_LEFT
Top Left

StageAlign.TOP_RIGHT
Top Right

Value Vertical alignment Horizontal

StageAlign.BOTTOM_LEFT
Bottom Left

StageAlign.BOTTOM_RIGHT
Bottom Right

There is no "official" value to center the Stage both vertically and horizontally in
the Player. Of course, if this is what you want, you don't have to do anything
since that is the default mode. But if you have changed to one of the other
modes and want to go back to centered alignment, any string that doesn't
match one of the other modes will center the Stage. The easiest and safest
would be an empty string, "".

The following class demonstrates the effects of both the scale mode and alignment of a movie within
the player. Experiment by changing the stage.scaleMode and stage.align properties to their different
values and scaling the browser to various sizes.

package {
 import flash.display.Sprite;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class ExampleApplication extends Sprite {
 public function ExampleApplication() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_RIGHT;

 graphics.beginFill(0xff0000);
 graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
 graphics.endFill();
 }
 }
}

StageAlign.BOTTOM_LEFT
Bottom Left

StageAlign.BOTTOM_RIGHT
Bottom Right

There is no "official" value to center the Stage both vertically and horizontally in
the Player. Of course, if this is what you want, you don't have to do anything
since that is the default mode. But if you have changed to one of the other
modes and want to go back to centered alignment, any string that doesn't
match one of the other modes will center the Stage. The easiest and safest
would be an empty string, "".

The following class demonstrates the effects of both the scale mode and alignment of a movie within
the player. Experiment by changing the stage.scaleMode and stage.align properties to their different
values and scaling the browser to various sizes.

package {
 import flash.display.Sprite;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;

 public class ExampleApplication extends Sprite {
 public function ExampleApplication() {

 stage.scaleMode = StageScaleMode.NO_SCALE;
 stage.align = StageAlign.TOP_RIGHT;

 graphics.beginFill(0xff0000);
 graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
 graphics.endFill();
 }
 }
}

Recipe 3.8. Hiding the Flash Player's Menu Items

Problem

You want to hide the right-click menu under Windows (Control-click on the Mac).

Solution

You can't disable the Flash Player's pop-up menu entirely, but you can minimize the options shown in
the menu by setting the stage.showDefaultContextMenu property to false.

Discussion

By default, the following options appear in the Flash Player's pop-up menu when the user right-clicks
in Windows (or Control-clicks on the Mac):

Zoom In

Zoom Out

Show All

Quality (Low, Medium, or High)

Settings

Print

Show Redraw Regions (if using a debug player)

Debugger (if using a debug player)

About Adobe Flash Player 9

You can remove many of the options with the following line of ActionScript code, although the
Settings and About and debug player options remain in place:

stage.showDefaultContextMenu = false;

Unfortunately, Flash does not provide any way to disable the menu entirely. Furthermore, Windows
users are accustomed to using right-click to display a pop-up browser menu that allows them to open

a link in a new window, for example. Such options are not available due to the Flash pop-up menu's
presence.

See Also

See Recipe 3.11 for a way to display Flash's Settings dialog box without requiring the user to right-
click (in Windows) or Control-click (on Mac).

Recipe 3.9. Detecting the Device's Audio Capabilities

Problem

You want to determine the audio capabilities of the device on which the Flash Player is running.

Solution

Use the hasAudio and hasMP3 properties of the flash.system.Capabilities class.

Discussion

The flash.system.Capabilities.hasAudio property returns TRue if the user's system has audio
capabilities and false otherwise. This is extremely important for playing movies on multiple devices.
If a device has no audio support, you want to avoid forcing users to download something they cannot
hear (especially because audio can be quite large).

// Load a .swf containing sound only if the Player can play audio
if (flash.system.Capabilities.hasAudio) {
 content = "sound.swf";
} else {
 content = "silent.swf";
}
// code to load the .swf referenced in content

Just because a system has audio capabilities, however, does not necessarily mean that it can play
back MP3 sounds. Therefore, if publishing MP3 content, you should test for MP3 capabilities using the
flash.system.Capabilities.hasMP3 property. MP3 sounds are preferable, if supported, because they
offer better sound quality to file size ratios than ADCP sounds.

// If the Player can play MP3s, load an MP3 using a Sound object.

// Otherwise, load a .swf containing ADCP sound into a nested
// sprite.
if (flash.system.Capabilities.hasMP3) {
 var url:URLRequest = new URLRequest("sound.mp3");
 sound = new Sound(url);
 sound.play();
} else {
 // code to load an external .swf containing a ADCP sound
}

It is important to understand that the hasAudio and hasMP3 property settings are based on the
capabilities of the Player and not of the system on which the Player is running. The desktop system
players (for Windows, Mac OS, and Linux) always return TRue for both properties regardless of
whether or not the system actually has the hardware (i.e., soundcard and speakers) to play back
sounds. However, players for other devices may return false if the device does not support the audio
or MP3 features.

Recipe 3.10. Detecting the Device's Video Capabilities

Problem

You want to determine the video capabilities of the device on which the Flash Player is running.

Solution

Use the hasEmbeddedVideo, hasStreamingVideo, and hasVideoEncoder properties of the
flash.system.Capabilities class.

Discussion

Before you attempt to deliver video content to a user, it is important to check whether his system is
capable of playing video, and how it should be delivered. The most efficient way to deliver Flash video
is to stream it to the player. This allows the user to view the video as it is coming in, rather than
waiting until the entire (often quite large) file has downloaded. However, the user's system may not
be capable of receiving streaming video. To check this, use the
flash.system.Capabilities.hasStreamingVideo property. If this returns false, one option is to have
the player load another .swf that contains an embedded video. However, before doing this, you
should check the property flash.system.Capabilities.hasEbeddedVideo to ensure that the user can
view this content before initiating this download. Your code would look something like this:

if(flash.system.Capabilities.hasStreamingVideo) {
 // Code to set up a video stream and start streaming a
 // specific video
}
else if(flash.system.Capabilities.hasEmbeddedVideo) {
 // Code to load an external .swf containing an embedded video
}
else {
 // Alternate content without any video
}

Similarly, if your application requires video stream encoding, such as the use of a web cam to
transmit live video from the user's system, you want to ensure that the system is capable of doing
such encoding. You can test this with the flash.system.Capabilities.hasVideoEncoder property. Like
the earlier example, you would probably test this property in an if statement and set up the video
streaming only if it tested TRue. Otherwise, you could display a message to the user explaining the
situation or redirect him to another page.

Recipe 3.11. Prompting the User to Change Player
Settings

Problem

You want to open the user's Flash Player Settings dialog box to prompt her to allow greater access to
her local system.

Solution

Use the flash.system.Security.showSettings() method.

Discussion

The flash.system.Security.showSettings() method opens the Flash Player Settings dialog box, which
includes several tabs. You'll pass a string as a parameter to indicate which tab you want it to open.
These strings have been made static properties of the flash.system.SecurityPanel class, to avoid
typographical errors. The possible values are:

SecurityPanel.CAMERA

Allows the user to select a camera to use.

SecurityPanel.DEFAULT

Shows whichever tab was opened the last time the Security Panel was open.

SecurityPanel.LOCAL_STORAGE

Allows the user to specify how local shared objects are stored, including the maximum
allowable disk usage.

SecurityPanel.MICROPHONE

Allows the user to select a microphone and adjust the volume.

SecurityPanel.PRIVACY

Allows the user to specify whether to allow Flash access to her camera and microphone.

SecurityPanel.SETTINGS_MANAGER

Opens a new browser window and loads the Settings Manager page, which gives the user
several more detailed options and the ability to make global changes, rather than just to the
domain of the specific movie that is active.

If you don't pass any parameters to the showSettings() method, it uses SecurityPanel.DEFAULT.
Here, we open the Settings dialog box to the Local Storage tab by explicitly specifying a value of 1.

// Open the Settings dialog box to the Local Storage tab.
flash.system.Security.showSettings(SecurityPanel.LOCAL_STORAGE);

Out of courtesy, you should prompt the user to open the Settings dialog with a
button rather than simply opening it without warning. Also, you should alert the
user beforehand as to which settings she should change.

Recipe 3.12. Dealing with System Security

Problem

You want to load a .swf from another domain into your application and allow it to have access to the
ActionScript in the application.

Solution

Use one of the following: flash.system.Security.allowDomain(),
flash.system.Security.allowInsecureDomain(), or a policy file.

Discussion

In many cases, all of the .swfs in a multi-.swf application would live on the same server (thus the
same domain). There may be cases, however, when your application needs to load in an external
.swf from another domain. In such a case, neither the .swf nor the loading application would be able
to access the other's code. You can allow such access by using flash.system.Security.allowDomain(),
flash.system.Security.allowInsecureDomain(), or a policy file.

The .swf that is going to be accessed must explicitly allow access by .swfs in the other domain. It
does not matter which .swf is loading or being loaded. To clarify, call the .swf being accessed,
accessed.swf, and the .swf doing the access, accessing.swf. Say accessing.swf lives on
mydomain.com and loads in accessed.swf from otherdomain.com, into an object named content (see
Figure 3-1).

Now, accessing.swf tries to access a variable called authorName from the loaded accessed.swf. At this
point, accessed.swf complains and won't allow access by a .swf from another domain.

To overcome this, accessed.swf needs the following line:

flash.system.Security.allowDomain("http://mydomain.com");

This lets it know that it is alright to allow access by any .swf from that domain.

You should note that the permission is one-way. If the loaded .swf now needs
access to some code in the .swf that loaded it, it would not be able to get at
that code. In this case, the loading .swf would explicitly need to allow access to
otherdomain.com.

Figure 3-1. Using Security.allowDomain

The domain can be text-based as in the previous examples, or can be a numeric IP address. It also
supports wildcards. If, for some reason, you want to grant access to any .swf, anywhere, to access it,
you can pass in the string "*". However, this effectively cuts out all cross-domain security that has
been built into the player, and is not recommended.

If the accessed .swf file happens to be on a secure server accessed with https://, then by default it
won't allow access to any .swf being loaded from a non-secure domain (http://), even if you have
allowed access with flash.system.Security.allowDomain(). In this case, use
flash.system.Security.allowInsecureDomain() to allow access to a non-secure domain.

The method mentioned here requires you to hardcode the domain name or names into your .swf.
This works fine if you know exactly which domains you will be allowing access from and that these
are unlikely to change. However, if you later want to add or change the allowed domains, you have to
change the code and recompile and redeploy the .swf. In a situation where this is likely to happen
often, it is more efficient to create and use a policy file.

A policy file is an XML file that lists any domains that are allowed access to the code in the .swf. The
format of the file can be seen here:

<?xml version="1.0"?>
<!-- http://www.mydomain.com/crossdomain.xml -->
<cross-domain-policy>
 <allow-access-from domain="www.otherdomain.com" />
 <allow-access-from domain="*.adobe.com" />
 <allow-access-from domain="123.45.67.89" />
</cross-domain-policy>

As you can see, it just lists each domain to which you want to allow access. The file should be named
crossdomain.xml. Prior to Flash 8, the file was required to live in the root directory of the domain of
the .swf to which it applied. Now you can specify and load a policy file from any other location using
flash.system.Security.loadPolicyFile(). This takes a string defining the URL of the crossdomain.xml
file you wish to load. This file should be loaded as an early action in your application, before you
attempt to load any content from another domain. With this method, you can add, remove, or
change allowed domains by simply rewriting the XML file.

As you can see, this method also supports wildcards. For example, if you wanted to allow access to
any and all domains, you could use the following line:

<allow-access-from domain="*" />

And if you wanted to explicitly deny access to any domain except the current one, you can create an
empty policy file:

http://

<cross-domain-policy>
</cross-domain-policy>

Chapter 4. Numbers and Math
Section 4.0. Introduction

Recipe 4.1. Representing Numbers in Different Bases

Recipe 4.2. Converting Between Different Number Systems

Recipe 4.3. Rounding Numbers

Recipe 4.4. Inserting Leading or Trailing Zeros or Spaces

Recipe 4.5. Formatting Numbers for Display Without a Mask

Recipe 4.6. Formatting Currency Amounts

Recipe 4.7. Generating a Random Number

Recipe 4.8. Simulating a Coin Toss

Recipe 4.9. Simulating Dice

Recipe 4.10. Simulating Playing Cards

Recipe 4.11. Generating a Unique Number

Recipe 4.12. Converting Angle Measurements

Recipe 4.13. Calculating the Distance Between Two Points

Recipe 4.14. Determining Points Along a Circle

Recipe 4.15. Converting Between Units of Measurement

4.0. Introduction

Although numbers aren't always in the spotlight, don't overlook their power and importance in your
code. Numbers come in all shapes and sizesfrom binary to decimal to hexadecimal. Each type of
representation has its own particular niche in which it is most valuable. For example, hexadecimal
numbers are often used to represent RGB color values because they make it easy to discern each of
the three color components. (See Recipe 4.2 to learn how to convert between different number
bases.)

Closely related to numbers is the subject of mathematics. Without mathematical operations, your
Flash movies would be rather dull. Simple operations such as addition and subtraction are essential to
even the most basic ActionScript applications, and more advanced math, such as random number
generation and trigonometric calculations, is equally essential to advanced applications.

ActionScript 3.0 has three basic numeric types: number, int, and uint. number is for any floating-
point numbers, whereas int and uint are for integers (whole numbers). The distinction between int
and uint is that int is the set of negative and non-negative integers, while uint is the set of non-
negative integers (unsigned integers).

Recipe 4.1. Representing Numbers in Different Bases

Problem

You want to specify a value in binary, octal, or hexadecimal.

Solution

Hexadecimal literals start with 0x (where the first character is a zero, not an "oh"), and octal literals
start with 0 (again, zero, not "oh"). Binary numbers can't be represented directly, but you can either
specify their octal or hexadecimal equivalent or use the parseInt() function to convert a string to a
number.

Discussion

You can represent numbers in ActionScript using whichever format is most convenient, such as
decimal or hexadecimal notation. For example, if you set the value of the Sprite.rotation property,
it is most convenient to use a decimal number:

rectangleSprite.rotation = 180;

On the other hand, hexadecimal numbers are useful for specifying RGB colors. For example, you can
set the rgb value for a ColorTransform object in hexadecimal notation (in this example, 0xF612AB is a
hex number representing a shade of pink):

var pink:ColorTransform = new ColorTransform();
pink.rgb = 0xF612AB;

Any numeric literal starting with 0X or 0x (where the first character is a zero, not an "oh") is
presumed to be a hexadecimal number (i.e., hex or base-16). Allowable digits in a hexadecimal
number are 0 through 9 and A through F (upper- and lowercase letters are equivalent, meaning 0xFF
is the same as 0xff).

Any numeric literal starting with 0 (again, zero not "oh"), but not 0x or 0X, is presumed to be an octal
number (i.e., base-8). Allowable digits in an octal number are 0 through 7; for example, 0777 is an
octal number. Most developers don't ever use octal numbers in ActionScript. For most developers it's
simply far more convenient to represent most numbers as decimal numbers (base-10), except color
values for which it is generally more convenient to use hexadecimal representation. There aren't
many common examples for which octal representation is more convenient than decimal or
hexadecimal.

The only digits allowed in binary numbers (i.e., base-2) are 0 and 1. Although you can't specify a
binary number directly, you can specify its hexadecimal equivalent. Four binary digits (bits) are
equivalent to a single hex digit. For example, 1111 in binary is equivalent to F in hex (15 in decimal).
The number 11111111 in binary is equivalent to FF in hex (255 in decimal). Binary numbers (or rather
their hexadecimal equivalents) are most commonly used with ActionScript's bitwise operators (&, |, ^,
>>, <<, and >>>).

See Also

Recipe 4.2

Recipe 4.2. Converting Between Different Number
Systems

Problem

You want to convert a number between different bases (such as decimal, binary, hexadecimal, etc.).

Solution

Use the parseInt() function with the radix parameter (the radix is the number's base) to convert a
string to a decimal representation. Use the toString() method of a Number, uint, or int object with
the radix parameter to convert a decimal number to a string representation of the value in another
base.

Discussion

No matter how you set a number value in ActionScript, the result is always retrieved as a decimal
(base-10) number:

// Create a Color object
var pink:ColorTransform = new ColorTransform();

// Set the RGB value as a hexadecimal
pink.rgb = 0xF612AB;

// This displays the value as decimal: 16126635
trace(pink.rgb);

However, if you want to output a value in a different base, you can use toString(radix) for a

Number, uint, or int object to convert any number value to a string representing that number in the
specified base.

These two examples convert numeric literals to uint objects and output the string representations in
base-2 (binary) and base-16 (hexadecimal) format.

// The radix is 2, so output as binary
trace(new uint(51).toString(2)); // Displays: 110011

// The radix is 16, so output as hex
trace(new uint(25).toString(16)); // Displays: 19

When using the toString() method with a variable that contains a numeric literal value, Flash
automatically creates a new Number, uint, or int object before calling the toString() method.
Although it's not typically the best practice, it is not technically wrong, and in most applications the
differences are negligible. This example assigns a primitive number to a variable and calls the
toString() method to output the value in hexadecimal:

var quantity:Number = 164;
trace(quantity.toString(16)); // Displays: a4

The results from these examples are not numeric literals, but rather strings,
such as 110011, 19, and A4.

The following example sets the RGB value of a ColorTransform object, calls toString() on the result
to display the value as a hexadecimal (as it had been input, although the alpha digits are converted
to lowercase, and the result is a string, not a number):

// Create a Color object
var pink:Color = new ColorTransform();

// Set the RGB value as a hexadecimal
pink.rgb = 0xF612AB;

trace(pink.rgb.toString(16)); // Displays: f612ab

The valid range for the radix parameter of the toString() method is from 2 to 36. If you call
toString() with no radix parameter or an invalid value, decimal format (base-10) is assumed.

You can achieve the inverse of the toString() process using the parseInt() function with the radix

parameter. The parseInt() function takes a string value and returns a number. This is useful if you
want to work with base inputs other than 10.

These examples parse the numbers from the string in base-2 (binary), base-16 (hexadecimal), and
base-10, respectively (note that the result is always a decimal):

trace(parseInt("110011", 2)); // Displays: 51
trace(parseInt("19", 16)); // Displays: 25
trace(parseInt("17", 10)); // Displays: 17

If omitted, the radix is assumed to be 10, unless the string starts with 0x, 0X, or 0, in which case

hexadecimal or octal is assumed:

trace(parseInt("0x12")); // The radix is implicitly 16. Displays: 18

trace(parseInt("017")); // The radix is implicitly 8. Displays: 15

An explicit radix overrides an implicit one. In the next example, the result is 0, not 12. When the

number is treated base-10, conversion stops when a non-numeric characterthe xis encountered:

// The number is treated as a decimal, not a hexadecimal number
trace(parseInt("0x12", 10)); // Displays: 0 (not 12 or 18)

Here, although the leading zero doesn't prevent the remainder digits from being interpreted, it is
treated as a decimal number, not an octal number:

// The number is treated as a decimal, not an octal number
trace(parseInt("017", 10)); // Displays: 17 (not 15)

Don't forget to include 0, 0x, or an explicit radix. The following interprets the string as a decimal and
returns NaN (not a number) because "A" can't be converted to an integer:

trace(parseInt("A9FC9C")); // NaN

Recipe 4.3. Rounding Numbers

Problem

You want to round a number to the nearest integer, decimal place, or interval (such as to the nearest
multiple of five).

Solution

Use Math.round() to round a number to the nearest integer. Use Math.floor() and Math.ceil() to
round a number down or up. Use a custom NumberUtilities.round() method to round a number to a
specified number of decimal places or to a specified multiple.

Discussion

There are numerous reasons to round numbers. For example, when displaying the results of a
calculation, you might display only the intended precision. Because all arithmetic in ActionScript is
performed with floating-point numbers, some calculations result in unexpected floating-point
numbers that must be rounded. For example, the result of a calculation may be 3.9999999 in
practice, even though it should be 4.0 in theory.

The Math.round() method returns the nearest integer value of any parameter passed to it:

trace(Math.round(204.499)); // Displays: 204
trace(Math.round(401.5)); // Displays: 402

The Math.floor() method rounds down, and the Math.ceil() method rounds up:

trace(Math.floor(204.99)); // Displays: 204
trace(Math.ceil(401.01)); // Displays: 402

To round a number to the nearest decimal place:

Decide the number of decimal places to which you want the number rounded. For example, if
you want to round 90.337 to 90.34, then you want to round to two decimal places, which
means you want to round to the nearest .01.

1.

Divide the input value by the number chosen in Step 1 (in this case, .01).2.

3.

4.

2.

Use Math.round() to round the calculated value from Step 2 to the nearest integer.3.

Multiple the result of Step 3 by the same value that you used to divide in Step 2.4.

For example, to round 90.337 to two decimal places, you could use:

trace (Math.round(90.337 / .01) * .01); // Displays: 9.34

You can use the identical math to round a number to the nearest multiple of an integer.

For example, this rounds 92.5 to the nearest multiple of 5:

trace (Math.round(92.5 / 5) * 5); // Displays: 95

As another example, this rounds 92.5 to the nearest multiple of 10:

trace (Math.round(92.5 / 10) * 10); // Displays: 90

In practice you are likely to find it is much simpler to use a custom NumberUtilities.round() method
that encapsulates this functionality. The custom method takes two parameters:

number

The number to round.

roundToInterval

The interval to which to round the number. For example, if you want to round to the nearest

tenth, use 0.1 as the interval. Or, to round to the nearest multiple of six, use 6.

The NumberUtilities class is in the ascb.util package, so the first thing you'll want to add to any file
that uses the class is an import statement. Here is an example of how to use the
NumberUtilities.round() method (the following code assumes that you've imported
ascb.util.NumberUtilities):

trace(NumberUtilities.round(Math.PI)); // Displays: 3
trace(NumberUtilities.round(Math.PI, .01)); // Displays: 3.14
trace(NumberUtilities.round(Math.PI, .0001)); // Displays: 3.1416
trace(NumberUtilities.round(123.456, 1)); // Displays: 123
trace(NumberUtilities.round(123.456, 6)); // Displays: 126
trace(NumberUtilities.round(123.456, .01)); // Displays: 123.46

Recipe 4.4. Inserting Leading or Trailing Zeros or Spaces

Problem

You want to add leading or trailing zeros or spaces to a number to display it as a string.

Solution

Use the custom NumberFormat class, apply a mask, and then call the format() method.

Discussion

You might need to format numbers with leading or trailing zeros or spaces for display purposes, such
as when displaying times or dates. For example, you would want to format 6 hours and 3 minutes as
6:03 or 06:03, not 6:3. Additionally, sometimes you'll want to apply leading and/or trailing spaces to
align the columns of several numbers; for example:

123456789
 1234567
 12345

Although you can certainly work out the algorithms on your own to add leading or trailing characters,
you'll likely find working with a NumberFormat object much faster, simpler, and more flexible. The
NumberFormat class is a custom class included with the downloads for this book at
http://www.rightactionscript.com/ascb. That class is part of the ascb.util package, so the first thing
you'll want to do is make sure you have an import statement:

import ascb.util.NumberFormat;

Next you need to determine the mask that you'll use to format the number. The mask can consist of
zeros (0), pound signs (#), dots (.), and commas (,); any other characters are disregarded.

Zeros (0)

Placeholders that are either filled with the corresponding digit or a zero.

Pound signs (#)

http://www.rightactionscript.com/ascb

Placeholders that are either filled with the corresponding digit or a space.

Dots (.)

Decimal point placeholders; they can be replaced by the localized decimal point symbol.

Commas (,)

Placeholders for grouping symbols; they are replaced by the localized grouping symbol.

To better understand this, it can be helpful to take a look at some examples; consider the following
mask:

##,###.0000

When the preceding mask is used with the numbers 1.2345, 12.345, 123.45, 1234.5, and 12345, the
results are as follows (assuming that the localized settings apply commas as grouping symbols and
dots as decimal points):

 1.2345
 12.3450
 123.4500
 1,234.5000
12,345.0000

You can set the mask for a NumberFormat object in several ways. You can specify the mask as a
parameter when you construct the object, as follows:

var styler:NumberFormat = new NumberFormat("##,###.0000");

Additionally, you can use the mask property of the object to change the mask at any point:

styler.mask = "##.00";

The mask property is a read-write property, so you can also retrieve the
current mask string by reading the value from the property.

Once a mask has been applied to a NumberFormat object, you can format any number value by
calling the format() method and passing the number as a parameter:

trace(styler.format(12345);

The following code is a complete, working example that illustrates the features of the NumberFormat
class that have been discussed so far:

var styler:NumberFormat = new NumberFormat("#,###,###,###");

trace(styler.format(1));
trace(styler.format(12));
trace(styler.format(123));
trace(styler.format(1234));

styler.mask = "#,###,###,###.0000";

trace(styler.format(12345));
trace(styler.format(123456));
trace(styler.format(1234567));
trace(styler.format(12345678));
trace(styler.format(123456789));

The output from the preceding example is as follows (assuming U.S.-style localization settings):

 1
 12
 123
 1,234
 12,345.0000
 123,456.0000
 1,234,567.0000
 12,345,678.0000
 123,456,789.0000

By default, NumberFormat objects attempt to automatically localize the return values. If the Flash
Player is running on a U.S. English operating system, the NumberFormat class uses commas as
grouping symbols and dots as decimal points. On the other hand, if the computer is running a French
operating system, the symbols are reversed; dots for grouping symbols and commas for decimal
points. There are several reasons why you may opt to override the automatic localization, including:

You want the numbers to be formatted in a standard way regardless of the operating system on
which the Flash application is run.

Automatic localization doesn't work properly. This may occur in some situations for at least two
reasons:

The Locale class (the class used by NumberFormat to determine the correct localization
settings) may not include some languages/countries.

The Flash Player does not report very specific settings. It only reports the language code.
Because of that, it may be difficultto nearly impossibleto correctly calculate the locale to
use.

There are a variety of ways you can override the automatic localization settings:

Pass a Locale object to the format() method as a second parameter. The format() method
then uses the settings from that Locale object instead of the automatic settings. This option
works well when you want to apply different custom localization settings each time you call the
format() method. You can create a Locale object by using the constructor. With no parameters,
the Locale object uses automatic localization detection, so you'll want to pass it one or two
parameters. The first parameter is the language code (e.g., en). The second parameter is the
country code (e.g., US), also called the variant. You should only specify the variant if there are
different regions that use the same language, but use different formatting. For example, the
language code es (Spanish) could potentially apply to many countries, including Mexico (MX)
and Spain (ES)both of which use different symbols to format numbers.

Set the Locale.slanguage and/or Locale.svariant properties to set the localization properties
globally. You don't need to specify any additional parameters when calling format() with this
option. Simply assign values to the static properties, Locale.slanguage and/or Locale.svariant;
those settings affect any subsequent calls to format().

Use a symbols object as the second parameter when calling format(). The symbols object
should have two properties: group and decimal. The values for those properties allow you to
define the symbols to use when formatting the number. This option is best when the Locale
object does not have settings for the locale that you want and/or when you want to use custom
formatting symbols.

The Locale class is in the ascb.util package, so be sure to import that class if
you want to use it.

The following example illustrates some of the ways you can override the automatic localization
settings:

var styler:NumberFormat = new NumberFormat("#,###,###,###.00");

Locale.slanguage = "fr";
trace(styler.format(1234));
trace(styler.format(12345, {group: ",", decimal: "."}));
trace(styler.format(123456));
Locale.slanguage = "en";
trace(styler.format(1234567));
trace(styler.format(12345678, new Locale("es", "ES")));
trace(styler.format(123456789, {group: "|", decimal: ","}));

The preceding code displays the following:

 1.234,00
 12,345.00
 123.456,00
 1,234,567.00
 12.345.678,00
 123|456|789,00

See Also

Recipes 4.2 and 4.6

Recipe 4.5. Formatting Numbers for Display Without a
Mask

Problem

You want to format a number for display without using a mask.

Solution

Create a NumberFormat object with no mask setting, then call the format() method.

Discussion

Recipe 4.4 discusses complex ways to format numbers as strings, including using masks and applying
leading and trailing zeros and spaces. Sometimes, however, you just want to format a number
without those complexities. The NumberFormat class provides that simplicity as well. If no mask is
applied to a NumberFormat object, then the format() method applies basic, localized formatting to a
number, as shown in the following example:

var styler:NumberFormat = new NumberFormat();

trace(styler.format(12.3));
trace(styler.format(123.4));
trace(styler.format(1234.5));
trace(styler.format(12345.6));

Notice that a mask wasn't applied to the NumberFormat object at any point. Assuming U.S.-style
formatting, the preceding code outputs the following:

12.3
123.4
1,234.5
12,345.6

As with the other use of the format() method (discussed in Recipe 4.4), this usage attempts to use
automatic localization detection. However, the same issues may be applicable. You may prefer to
override the automatic localization settings, and you can accomplish that by using the same
techniques discussed in Recipe 4.4, as illustrated with the following example:

var styler:NumberFormat = new NumberFormat();

Locale.slanguage = "fr";
trace(styler.format(1234, new Locale("en")));
trace(styler.format(12345, {group: ":", decimal: "|"}));
trace(styler.format(123456));

The output from the preceding code is as follows:

1,234
12:345
123.456

See Also

Recipes 4.3 and 4.4 can be used to ensure a certain number of digits are displayed past the decimal
point. Then aligning numbers is simply a matter of setting the text field's format to right justification
using the TextFormat .align property. Also refer to Recipe 4.6.

Recipe 4.6. Formatting Currency Amounts

Problem

You want to format a number as currency, such as dollars.

Solution

Use the NumberFormat.currencyFormat() method.

Discussion

Unlike some other languages, such as ColdFusion, ActionScript does not have a built-in function for
formatting numbers as currency amounts. However, the custom NumberFormat class includes a
currencyFormat() method that takes care of basic currency formatting for you.

The currencyFormat() method requires at least one parameter; the number you want to format as
currency. The following example illustrates the simplest use of currencyFormat() :

var styler:NumberFormat = new NumberFormat();

trace(styler.currencyFormat(123456));

Assuming that the preceding code is run on a U.S. English computer, the output is as follows:

$123,456.00

As with the format() method of the NumberFormat class discussed in Recipes 4.4 and 4.5 , the
currencyFormat() method uses automatic localization detection settings. Therefore, if the preceding
code is run on a computer in Spain running a Spanish operating system, the output is as follows:

123.456,00

However, the Locale class (which is responsible for determining the locale from where the application
is being run) may not be able to correctly detect the locale. Furthermore, you may simply want to
override automatic localization so you get a consistent value regardless of where the application is
run. There are several ways you can override the automatic localization detection; the same ways
that you can override the localization settings when using the format() method:

Use a Locale object as the second parameter when calling currencyFormat() .

Assign global values to the Locale.slanguage and/or Locale.svariant properties.

Use a symbols object as the second parameter when calling currencyFormat() .

The symbols object for currencyFormat() is slightly more complex than the symbols object for the
format() object. If you use a symbols object with currencyFormat() , you should include the
following four properties: group , decimal , currency , and before . The group and decimal properties
act just as with the format() method. The currency property should have a value of the currency
symbol you want to use. The before property is a Boolean value in which true means the currency
symbol should appear before the numbers, and false means the symbol should appear after the
numbers.

The following is an example of different ways of overriding the localization settings with
currencyFormat() :

var styler:NumberFormat = new NumberFormat();

trace(styler.currencyFormat(123456));
Locale.slanguage = "nl";
trace(styler.currencyFormat(123456));
trace(styler.currencyFormat(123456, new Locale("sv")));
trace(styler.currencyFormat(123456, {group: ",", decimal: ".", currency: "@", before: false}));

The preceding code outputs the following results:

$123,456.00
123.456,00
123,456.00kr
123,456.00@

See Also

Recipes 4.3 , 4.5 , and Appendix A for creating special characters, including the Euro (), Yen (¥), and
British pound (£) symbols. To align currency amounts in text fields, set the field's format to right
justification using the TextFormat .align property.

Recipe 4.7. Generating a Random Number

Problem

You want to use ActionScript to generate a random number.

Solution

Use Math.random() to generate a random number between 0 and .999999. Optionally, use the
NumberUtilities.random() method to generate a random number within a specific range.

Discussion

You can use the Math.random() method to generate a random floating-point number from 0 to
0.999999999. In most cases, however, programs call for a random integer, not a random floating-
point number. Furthermore, you may want a random value within a specific range. If you do want a
random floating-point number, you'll need to specify its precision (the number of decimal places).

The simplest way to generate random numbers within a range and to a specified precision is to use
the custom NumberUtilities.random() method. This method accepts up to three parameters,
described as follows:

minimum

The smallest value in the range specified as a Number.

maximum

The largest value in the range specified as a Number.

roundToInterval

The optional interval to use for rounding. If omitted, numbers are rounded to the nearest
integer. You can specify integer intervals to round to integer multiples. You can also specify
numbers smaller than 1 to round to numbers with decimal places.

The NumberUtilities class is in the ascb.util package, so be sure to include an
import statement.

The following example illustrates some uses of the round() method:

// Generate a random integer from 0 to 100.
trace(NumberUtilities.random(0, 100));

// Generate a random multiple of 5 from 0 to 100.
trace(NumberUtilities.random(0, 100, 5));

// Generate a random number from -10 to 10, rounded to the
// nearest tenth.
trace(NumberUtilities.random(-10, 10, .1));

// Generate a random number from -1 to 1, rounded to the
// nearest five-hundredth.
trace(NumberUtilities.random(-1, 1, .05));

To test that the random numbers generated by the NumberUtilities.random() method are evenly
distributed, you can use a script such as the following:

package {

 import flash.display.Sprite;
 import ascb.util.NumberUtilities;
 import flash.utils.Timer;
 import flash.events.TimerEvent;

 public class RandomNumberTest extends Sprite {

 private var _total:uint;
 private var _numbers:Object

 public function RandomNumberTest() {
 var timer:Timer = new Timer(10);
 timer.addEventListener(TimerEvent.TIMER, randomizer);
 timer.start();
 _total = 0;
 _numbers = new Object();
 }

 private function randomizer(event:TimerEvent):void {
 var randomNumber:Number = NumberUtilities.random(1, 10, 1);
 _total++;
 if(_numbers[randomNumber] == undefined) {
 _numbers[randomNumber] = 0;
 }

 _numbers[randomNumber]++;
 trace("random number: " + randomNumber);
 var item:String;
 for(item in _numbers) {
 trace("\t" + item + ": " + Math.round(100 * _numbers[item]/_total));
 }
 }

 }
}

See Also

Recipes 4.3 and 4.11

Recipe 4.8. Simulating a Coin Toss

Problem

You want to simulate tossing a coin or some other Boolean (TRue/false) event in which you expect a
50 percent chance of either outcome.

Solution

Use the NumberUtilities.random() method to generate an integer that is either 0 or 1, and then
correlate each possible answer with one of the desired results.

Discussion

You can use the random() method from Recipe 4.7 to generate a random integer in the specified
range. To relate this result to an event that has two possible states, such as a coin toss (heads or
tails) or a Boolean condition (true or false), TReat each random integer as representing one of the
possible states. By convention, programmers use 0 to represent one state (such as "off") and 1 to
represent the opposite state (such as "on"), although you can use 1 and 2 if you prefer. For example,
here's how you could simulate a coin toss:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.MouseEvent;
 import ascb.util.NumberUtilities;

 public class CoinExample extends Sprite {

 private var _field:TextField;

 public function CoinExample() {
 _field = new TextField();
 _field.autoSize = "left";
 addChild(_field);
 var circle:Sprite = new Sprite();
 circle.graphics.beginFill(0, 100);
 circle.graphics.drawCircle(100, 100, 100);
 circle.graphics.endFill();
 circle.addEventListener(MouseEvent.CLICK, onClick);
 addChild(circle);

 }

 private function onClick(event:MouseEvent):void {
 var randomNumber:Number = NumberUtilities.random(0, 1);
 _field.text = (randomNumber == 0) ? "heads" : "tails";
 }

 }
}

In the following example, a function is used to test the coinFlip() routine to see if it is reasonably
evenhanded. Do you expect a perfect 50/50 distribution regardless of the number of coin tosses?
Test it and see.

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import ascb.util.NumberUtilities;

 public class CoinTest extends Sprite {

 private var _field:TextField;

 public function CoinTest() {
 _field = new TextField();
 _field.autoSize = "left";
 addChild(_field);
 var heads:Number = 0;
 var tails:Number = 0;
 var randomNumber:Number;
 for(var i:Number = 0; i < 10000; i++) {
 randomNumber = NumberUtilities.random(0, 1);
 if(randomNumber == 0) {
 heads++;
 }
 else {
 tails++;
 }
 }
 _field.text = "heads: " + heads + ", tails: " + tails;
 }

 }
}

If you are testing the value of your random number, be sure to save the result in a variable (and test
that!) rather than generate a new random number each time you perform the test.

The following example is wrong because it generates independent random numbers in the dependent

else if clauses. In some cases, none of the conditions are true and the method returns an empty
string:

package {

 import flash.display.Sprite;
 import ascb.util.NumberUtilities;

 public class RandomLetter extends Sprite {

 public function RandomLetter() {
 for(var i:Number = 0; i < 10000; i++) {
 trace(getRandomLetter());
 }
 }

 private function getRandomLetter():String {
 if(NumberUtilities.random(0, 2) == 0) {
 return "A";
 }
 else if(NumberUtilities.random(0, 2) == 1) {
 return "B";
 }
 else if(NumberUtilities.random(0, 2) == 2) {
 return "C";
 }
 // It's possible that none of the preceding will evaluate to true,
 // and the method will reach this point without returning a valid
 // string.
 return "";
 }
 }
}

This is the correct way to accomplish the goal:

package {

 import flash.display.Sprite;
 import ascb.util.NumberUtilities;

 public class RandomLetter extends Sprite {

 public function RandomLetter() {
 for(var i:uint = 0; i < 10000; i++) {
 trace(getRandomLetter());
 }
 }

 private function getRandomLetter():String {
 // Assign the return value from random() to a variable

 // before testing the value.
 var randomInteger:uint = NumberUtilities.random(0, 2);
 if(randomInteger == 0) {
 return "A";
 }
 else if(randomInteger == 1) {
 return "B";
 }
 else if(randomInteger == 2) {
 return "C";
 }
 return "";
 }
 }
}

See Also

Recipe 4.7

Recipe 4.9. Simulating Dice

Problem

You want to mimic rolling dice.

Solution

Use the NumberUtilities.random() method to generate random numbers in the desired range.

Discussion

You can use the random() method from Recipe 4.7 to generate random integer values to simulate
rolling a die or dice in your Flash movies. Mimicking the rolling of dice is an important feature in many
games you might create using ActionScript, and the random() method makes your job easy.

NumberUtilities.random(1, 12) does not correctly simulate a pair of six-sided
dice because the results must be between 2 and 12, not 1 and 12. Does
NumberUtilities.random(2, 12) give the correct result? No, it does not.
NumberUtilities.random(2, 12) results in a smooth distribution of numbers from
2 to 12, whereas in games played with two dice, 7 is much more common than
2 or 12. Therefore, you must simulate each die separately and then add the
result together. Furthermore, in many games, such as backgammon, game
play depends on the individual value of each die, not simply the total of both
dice, so you'll want to keep them separate.

It is not uncommon to want to generate a random number and then store it for later use. If you want
to reuse an existing random number, be sure to save the result rather than generating a new
random number. Note the difference in these two scenarios. In the first scenario, dice always is the
sum of die1 plus die2:

var die1:uint = NumberUtilities.random(1, 6);
var die2:uint = NumberUtilities.random(1, 6);
var dice:uint = die1 + die2;

In the following scenario, there is no relation between the value of dice and the earlier random
values stored in die1 and die2. In other words, even if die1 and die2 add up to 7, dice stores a
completely different value between 2 and 12:

var die1:uint = NumberUtilities.random(1, 6);
var die2:uint = NumberUtilities.random(1, 6);
var dice:uint = NumberUtilities.random(1, 6) + NumberUtilities.random(1, 6);

You can call NumberUtilities.random() with any range to simulate a multisided die. Here it has a
range from 1 to 15 and generates a random number as though the user is rolling a 15-sided die, as
might be found in a role-playing game:

var die1:uint = NumberUtilities.random(1, 15);

The following code uses the NumberUtilities.random() method in conjunction with programmatic
drawing to create a visual representation of a single die:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.MouseEvent;
 import ascb.util.NumberUtilities;

 public class NumbersAndMath extends Sprite {

 var _die:Sprite;
 var _value:uint;

 public function NumbersAndMath() {
 _die = new Sprite();
 addChild(_die);
 _die.addEventListener(MouseEvent.CLICK, rollDie);
 rollDie(null);
 }

 private function rollDie(event:MouseEvent):void {
 _value = NumberUtilities.random(1, 6);
 _die.graphics.clear();
 _die.graphics.lineStyle();
 _die.graphics.beginFill(0xFFFFFF);
 _die.graphics.drawRect(0, 0, 50, 50);
 _die.graphics.endFill();
 _die.graphics.beginFill(0x000000);
 if(_value == 1 || _value == 3 || _value == 5) {
 _die.graphics.drawCircle(25, 25, 4);
 }
 if(_value == 2 || _value == 3 || _value == 4 ||
 _value == 5 || _value == 6)
 {
 _die.graphics.drawCircle(11, 11, 4);
 _die.graphics.drawCircle(39, 39, 4);
 }
 if(_value == 4 || _value == 5 || _value == 6) {

 _die.graphics.drawCircle(11, 39, 4);
 _die.graphics.drawCircle(39, 11, 4);
 }
 if(_value == 6) {
 _die.graphics.drawCircle(11, 25, 4);
 _die.graphics.drawCircle(39, 25, 4);
 }
 }

 }
}

Running the preceding code results in a single, clickable die drawn on the stage. Each time the user
clicks the die, the value changes.

See Also

Recipe 4.7

Recipe 4.10. Simulating Playing Cards

Problem

You want to use ActionScript to deal cards for a card game using a standard 52-card deck (without
Jokers).

Solution

Use the custom Cards class.

Discussion

Playing cards requires a greater degree of sophistication than, say, rolling a couple dice. Therefore, to
work with playing cards within your Flash applications, you should use a custom Cards class.

The Cards class is in the ascb.play package, and therefore you should be sure
to import the class before you try to use it in your code.

import ascb.play.Cards;

You can create a new Cards object using the constructor as follows:

var cards:Cards = new Cards();

By default, a Cards object creates a standard deck of 52 playing cards. Next you need to deal the
cards by using the deal() method. The deal() method returns an array of CardHand objects. You
should specify at least one parameter when calling the deal() method; the number of hands to deal.

// Deal four hands.
var hands:Array = cards.deal(4);

By default, the deal() method deals every card in the deck (except when 52 is not evenly divisible by
the number of hands). Some card games, such as Euchre, require fewer cards in each hand with
some cards remaining in the deck. You can, therefore, specify a second, optional parameter that
determines the number of cards per hand:

// Deal four hands with five cards each.
var hands:Array = cards.deal(4, 5);

Each CardHand object is an array of Card objects. The CardHand class also provides an interface to
draw and discard cards from the deck from which the hand was originally dealt. You can use the
discard() method by specifying a list of card indices as parameters. The cards then are removed
from the hand and added back to the bottom of the deck:

// Discard the cards with indices 0 and 4 from the CardHand object
// stored in the first element of the aHands array.
hands[0].discard(0, 4);

Conversely, you can use the draw() method to draw cards from the top of the original deck. The
draw() method draws one card by default if no parameters are specified. If you want to draw more
than one card at a time, you can specify the number of cards as a parameter:

// Draw one card from the top of the deck, and add it to the
// hand stored in the first element of the hands array.
hands[0].draw();

// Draw four cards from the top of the deck, and add them to
// the hand stored in the fourth element of the aHands array.
hands[3].draw(4);

You can use the length property of a CardHand object to retrieve the number of cards in a hand, and
you can use the getCardAt() method to retrieve a card at a specified index.

As mentioned, each CardHand is composed of Card objects. Card objects, in turn, have four
properties: value, name, suit, and display. The value property returns a numeric value from 0 to 12,
where 0 is a two card and 12 is an Ace. The name property returns the name of the card, such as 2,
10, Q, or A. The suit property returns clubs, diamonds, hearts, or spades. The display property
returns the name and suit values joined with a space. The following example code illustrates use of
the Cards class:

package {

 import flash.display.Sprite;
 import ascb.play.Cards;
 import flash.util.trace;

 public class CardExample extends Sprite {

 public function CardExample() {
 var cards:Cards = new Cards();
 var hands:Array = cards.deal(4, 10);
 var i:uint;
 var j:uint;
 for(i = 0; i < hands.length; i++) {

 trace("hand " + i);
 for(j = 0; j < hands[i].length; j++) {
 trace(hands[i].getCardAt(j));
 }
 }
 }

 }
}

Recipe 4.11. Generating a Unique Number

Problem

You want to generate a unique number, such as a number to append to a URL to prevent caching of
the URL.

Solution

Use the NumberUtilities.getUnique() method.

Discussion

Unique numbers are most commonly used to generate a unique URL (to prevent it from being
cached). That is, by appending a unique number to the end of a URL, it is unlike any previous URL;
therefore, the browser obtains the data from the remote server instead of the local cache.

The NumberUtilities.getUnique() method returns a number based on the current epoch milliseconds.
(The following example assumes you've imported ascb.util.NumberUtilities.)

// Display a unique number.
trace(NumberUtilities.getUnique());

In most circumstances the preceding code returns the current epoch in milliseconds. However, it is
possible that you may want to generate a set of unique numbers in less than a millisecond of
processing time. In that case, you'll find that the getUnique() method adds a random number to the
epoch milliseconds to ensure a unique number. The following example generates more than one
number within the same millisecond:

for(var i:Number = 0; i < 100; i++) {
 trace(NumberUtilities.getUnique());
}

Recipe 4.12. Converting Angle Measurements

Problem

You want to work with angle values in ActionScript, but you must convert to the proper units.

Solution

Use the Unit and Converter classes.

Discussion

The _rotation property of a movie clip object is measured in degrees. Every other angle
measurement in ActionScript, however, uses radians, not degrees. This can be a problem in two
ways. First, if you want to set the _rotation property based on the output of one of ActionScript's
trigonometric methods, you must convert the value from radians to degrees. Second, humans
generally prefer to work in degrees, which we must convert to radians before feeding to any of the
trigonometric methods. Fortunately, the conversion between radians and degrees is simple. To
convert from radians to degrees, you need only to multiply by 180/Math.PI. Likewise, to convert from
degrees to radians you need only to multiply by the inverse: Math.PI/180. However, you may find it
more convenient to simply use the custom Unit and Converter classes.

The Unit and Converter classes are two custom classes found in the ascb.unit package that facilitate
conversions between various units of measurement, including degrees, radians, and gradians (there
are 400 gradians in a complete circle). The first step is to create a Unit instance that describes the
type of unit from which you want to convert. The Unit class provides a large group of constants that
make it very convenient. The Unit.DEGREE, Unit.RADIAN, and Unit.GRADIAN constants return new Unit
objects that represent degrees, radians, and gradians, respectively. Unit objects have a handful of
properties, including name, category, label, and labelPlural:

var degree:Unit = Unit.DEGREE;
trace(degree.name); // Displays: degree
trace(degree.category); // Displays: angle
trace(degree.label); // Displays: degree
trace(degree.labelPlural); // Displays: degrees

Once you've gotten a Unit instance that represents the unit from which you want to convert, you can
then retrieve a Converter instance that can convert to a specific type of unit. Use the
getConverterTo() method, and pass it a reference to a Unit object that represents the type of unit to
which you want to convert. For example, the following code creates a Converter object that can
convert from degrees to radians:

var converter:Converter = Unit.DEGREE.getConverterTo(Unit.RADIAN);

Once you've created a Converter instance, you can run the convert() method, specifying a value you
want to convert; for example:

trace(converter.convert(90));

The convertWithLabel() method converts the value to a string that includes the appropriate label in
the event that you want to display the value:

var converterToRadians:Converter = Unit.DEGREE.getConverterTo(Unit.RADIAN);
var converterToDegrees:Converter = Unit.RADIAN.getConverterTo(Unit.DEGREE);
trace(converterToRadians.convertWithLabel(1));
trace(converterToRadians.convertWithLabel(57.2957795130823));
trace(converterToDegrees.convertWithLabel(1));
trace(converterToDegrees.convertWithLabel(0.0174532925199433));

/*
 Displays:
 0.0174532925199433 radians
 1 radian
 57.2957795130823 degrees
 1 degree
*/

In the event that you find it more convenient to convert in the opposite direction, you can also use
the getConverterFrom() method to create a Converter instance that converts one unit to another, for
example:

var converter:Converter = Unit.DEGREE.getConverterFrom(Unit.GRADIAN);
trace(converter.convert(100));
trace(converter.convert(23));

Recipe 4.13. Calculating the Distance Between Two
Points

Problem

You want to calculate the distance between two points.

Solution

Use Math.pow() and Math.sqrt() in conjunction with the Pythagorean theorem.

Discussion

You can calculate the distance (in a straight line) from any two points by using the Pythagorean
Theorem. The Pythagorean Theorem states that in any right triangle (a triangle in which one of the
angles is 90 degrees) the length of the hypotenuse (the long side) is equal to the square root of the
sum of the squares of the two other sides (referred to as the legs of the triangle). The Pythagorean
theorem is written as:

 a2 + b2 = c2

You can use this formula to calculate the distance between any two points, where a is the difference
between the points' X coordinates, b is the difference between their Y coordinates, and c (the
distance to be determined) equals the square root of (a 2 + b 2). In ActionScript, this is written as:

var c:Number = Math.sqrt(Math.pow(a, 2) + Math.pow(b, 2));

How do you calculate the distance between two points using a right triangle? Although it might not
seem immediately obvious, you can form an imaginary right triangle using any two points in the
Flash coordinate system, as shown in Figure 4-1.

Figure 4-1. The hypotenuse of a right triangle is drawn between two
points to calculate the distance between the points

The hypotenuse of the imaginary triangle is formed by the line connecting the two points. The legs of
the triangle are formed by lines extending horizontally and vertically from the two points. You can
find the lengths of the legs by finding the differences between the X and Y coordinates. The length of
leg a is determined by the difference in the points' X coordinates, and the length of leg b is
determined by the difference in the points' Y coordinates. Once you know the lengths of legs a and b,
you can use the Pythagorean Theorem to calculate the length of the hypotenuse, c, which represents
the distance between the points (our original query).

Recipe 4.14. Determining Points Along a Circle

Problem

You want to calculate the coordinates of a point along a circle, given the circle's radius and the sweep
angle.

Solution

Use the Math.sin() and Math.cos() methods to calculate the coordinates using basic trigonometric
ratios.

Discussion

Finding the coordinates of a point along a circle is easy with some trigonometry. So let's look at the
formulas you can use within your ActionScript code and the theory behind them.

Given any point on the Stagea point we'll call p0, with coordinates (x0, y0)plus a distance and the
angle from the horizontal, you can find the coordinates of another pointwhich we'll call p1, with
coordinates (x1, y1)using some basic trigonometric ratios. The angle is formed between a conceptual
line from p0 to p1 and a line parallel to the X axis, as shown in Figure 4-2. The opposite side is the
side furthest away from the angle. The adjacent side is the side that forms the angle with the help of
the hypotenuse.

Figure 4-2. The angle, adjacent side, opposite side, and hypotenuse of a
right triangle

If you know the distance between two points and the angle to the horizontal, as shown in Figure 4-2,
you can calculate the X and Y coordinates of the destination point using trigonometric functions. The
trigonometric sine of the angle is equal to the ratio of the opposite side over the hypotenuse, like so:

sine(angle) = opposite/hypotenuse

Solving for the opposite side's length, this can be written as:

opposite = sine(angle) * hypotenuse

As you can see in Figure 4-2, the opposite side represents the change in the Y direction.

The trigonometric cosine of the angle is equal to the ratio of the adjacent side over the hypotenuse,
like so:

cosine(angle) = adjacent/hypotenuse

Solving for the adjacent side's length, this can be written as:

adjacent = cosine(angle) * hypotenuse

You can see from Figure 4-2 that the adjacent side represents the change in the X direction.

Because the lengths of the opposite and adjacent sides yield the changes in the X and Y directions, by
adding the original X and Y coordinates to these values, you can calculate the coordinates of the new
point.

So how does this help in determining a point along a circle's perimeter? Figure 4-3, which shows the
triangle inscribed within a circle emphasizes the equivalency. The triangle's hypotenuse equates to
the circle's radius, and the triangle's angle equates to the sweep angle to the point of interest along
the circle's perimeter.

Figure 4-3. Using trigonometry to determine a point along a circle's
perimeter

Therefore, the X coordinate of a point along the circle's perimeter is determined by the radius times
the cosine of the angle. The Y coordinate is determined by the radius times the sine of the angle.
Here is the ActionScript code for finding the coordinates of p1 when the circle's radius and center
point (p0) are known:

x1 = x0 + (Math.cos(angle) * radius);
y1 = y0 + (Math.sin(angle) * radius);

Therefore, these formulas can be used to determine any point along a circle's perimeter, given the
circle's center point and radius. By changing the angle over time, you can trace the path of a circle.

The following example uses these trigonometric equations to move a sprite around in a circle:

package {

 import flash.display.Sprite;

 import ascb.units.Converter;
 import ascb.units.Unit;
 import flash.events.Event;

 public class NumbersAndMath extends Sprite {

 private var _square:Sprite;
 private var _angle:uint;

 public function NumbersAndMath() {
 _square = new Sprite();
 _square.graphics.lineStyle(0);
 _square.graphics.drawCircle(0, 0, 20);
 addChild(_square);
 _angle = 0;
 addEventListener(Event.ENTER_FRAME, move);
 }

 private function move(event:Event):void {
 var converter:Converter = Unit.DEGREE.getConverterTo(Unit.RADIAN);
 var angleRadians:Number = converter.convert(_angle);
 _square.x = Math.cos(angleRadians) * 100 + 200;
 _square.y = Math.sin(angleRadians) * 100 + 200;
 _angle++;
 }

 }
}

See Also

Recipes 7.7 and 7.8

Recipe 4.15. Converting Between Units of Measurement

Problem

You want to convert between Fahrenheit and Celsius, pounds and kilograms, or other units of
measure.

Solution

Use the Unit and Converter classes.

Discussion

There are various systems of measurement used throughout the world. For example, temperature is
commonly measured in both Fahrenheit and Celsius. Weight is sometimes measured in pounds, but
quite frequently, a metric system that uses kilograms is employed instead. And distances are likely to
be measured in miles instead of kilometers, or inches instead of centimeters. For these reasons, you
may need to convert from one unit of measure to another.

Technically, pounds are a measurement of weight, while kilograms are a
measurement of mass. Weight is a force that changes as the acceleration due
to gravitational changes, whereas mass is constant regardless of the effects of
gravity. The effect is that an object's weight on the moon and Earth differ since
there are different effects, thanks to gravity, but the mass of an object remains
the same. However, on the surface of the Earth, mass and weight often are
used interchangeably.

Each of these conversions has its own algorithm. For example, to convert from Centigrade to
Fahrenheit, you should multiply by 9, divide by 5, and then add 32 (to convert from Fahrenheit to
Centigrade, subtract 32, multiply by 5, and then divide by 9). Likewise, you can multiply by 2.2 to
convert pounds to kilograms, and you can divide by 2.2 to convert kilograms to pounds. (We also
saw in Recipe 4.12 how to convert angles from degrees to radians and vice versa.)

As with converting between different units of measure with angles, you can use the Unit and
Converter classes to convert between other types of units. The Unit class has support for quite a
range of categories of measurement (angles, temperature, volume, etc.). You can retrieve an array
of supported categories using the static Unit.getCategories() method:

// Display the categories that are supported.
trace(Unit.getCategories());

For each category, there are a variety units are supported. For example, in the angle category
degrees, radians, and gradians are supported. You can retrieve a list of supported units for a given
category using the static Unit.getUnits() method. Pass the method a category name to retrieve an
array of units supported for that group. If you omit the parameter, then the entire list of supported
units is returned:

// Display the units supported in the temperature category.
trace(Unit.getUnits("temperature"));

You can use the built-in Unit constants for any supported unit of measurement, just as in Recipe
4.12. Then you can retrieve a Converter object by using the getConverterTo() or getConverterFrom(
) methods. The following example creates a Converter to calculate the Fahrenheit equivalents of
Celcius measurements:

var converter:Converter = Unit.CELCIUS.getConverterTo(Unit.FAHRENHEIT);

Then, of course, you can use the convert() (and/or the convertWithLabel()) method to convert
values:

trace(converter.convert(0)); // Displays: 32

See Also

For an example of using a hardcoded function to perform a single type of unit conversion, refer to
Recipe 4.12, which includes a function to convert angles from degrees to radians and another
function that does the opposite.

Chapter 5. Arrays
Section 5.0. Introduction

Recipe 5.1. Adding Elements to the Start or End of an Array

Recipe 5.2. Looping Through an Array

Recipe 5.3. Searching for Matching Elements in an Array

Recipe 5.4. Removing Elements

Recipe 5.5. Inserting Elements in the Middle of an Array

Recipe 5.6. Converting a String to an Array

Recipe 5.7. Converting an Array to a String

Recipe 5.8. Creating a Separate Copy of an Array

Recipe 5.9. Storing Complex or Multidimensional Data

Recipe 5.10. Sorting or Reversing an Array

Recipe 5.11. Implementing a Custom Sort

Recipe 5.12. Randomizing the Elements of an Array

Recipe 5.13. Getting the Minimum or Maximum Element

Recipe 5.14. Comparing Arrays

Recipe 5.15. Creating an Associative Array

Recipe 5.16. Reading Elements of an Associative Array

5.0. Introduction

Arrays are essential to successful ActionScript programming.

An array provides a way of grouping related data together, and then organizing and processing that
data. The concept of an array should not be foreign to you. In fact, the concept is used all the time in
everyday life. You can view a simple grocery list or to-do list as an array. Your address book is an
array containing people's names, addresses, birthdates, and so on. Libraries keep track of books
using an indexing system whereby each book becomes, conceptually, an element in a library's array.

In ActionScript, there are two kinds of arrays: integer-indexed and associative. Both array types
group related data, but they use different means of accessing the data.

Integer-indexed array

Uses integers (numbers) as unique identifiers for each element in the array. Such arrays are
ordered by index (i.e., element number), starting from 0. Each element occupies a numbered
slot in the array. Integer-indexed arrays are ideal for sets of data that you want to work with in
sequential order.

Associative array

Uses string keys to access each value. You can read more about associative arrays in Recipe
5.15.

Integer-indexed arrays are the focus of the majority of the recipes in this
chapter, and unless otherwise specified, the term "array" refers to an integer-
indexed array.

Of course, before you can use an array, you first need to know how to create one. There are two
ways to construct a new array in ActionScript: with the constructor function or as an array literal. All
arrays are members of the Array class. You can use the Array() constructor function to instantiate
new array objects in one of three ways:

// Create an empty array.
var array:Array = new Array();

// Create an array with elements undefined elements.

var array:Array = new Array(elements);

// Create an array with specified elements.

var array:Array = new Array(element0,...elementN);

The array literal notation also creates a new array, but without using the constructor function. Literal
notation is convenient for specifying elements at the time of creation, such as:

var letters:Array = ["a", "b", "c"];

Some methods of the Array class modify the existing array on which the method is called, and others
return a new array (offering an indirect way to create arrays).

You retrieve and set array elements using the array-access operator (square brackets) and the index
of the element you wish to get or set, for example:

// Set the fifth element of the array called items to "apples"
// (array indexes start at 0).
items[4] = "apples";

// Display the fifth element in the Output window.
trace(items[4]); // Displays: apples

ActionScript doesn't care what kind of values you store in an array. You can store strings, numbers,
Booleans, or references to any kind of objects. And, unlike stricter programming languages, you can
even store different datatypes in a single array. For example, this array stores a string, an integer, a
Boolean, and an object:

var data:Array = ["a", 2, true, new Object()];

Unlike many languages, ActionScript doesn't force you to specify the number of elements in an array
when it is declared.

Recipe 5.1. Adding Elements to the Start or End of an
Array

Problem

You want to add elements to an existing array.

Solution

Use the push() method to append elements to the end of an array; use the unshift() method to
insert elements at the beginning of an array.

Discussion

You append elements to the end of an existing array using the Array.push() method, passing it one
or more values to be appended:

var array:Array = new Array();
array.push("val 1", "val 2");

You can also append a single element by using the array's length property as the index. Because
ActionScript array indexes are zero-indexed (meaning that the first index is 0, not 1), the last
element is at an index of Array .length - 1. Therefore, putting an element at index Array .length

creates a new element right after the current last element; for example:

array[array.length] = "val 3";

If you set an element with an index that doesn't exist, the array extends itself to include the
necessary number of elements automatically. If there are any intervening elements, they are
initialized to undefined. For example, letters will contain the elements ["a", "b", "c", undefined,
undefined, "f"] after you execute the following statements:

var letters:Array = ["a", "b", "c"];
letters[5] = "f";

Appending elements onto an array is common when you want to build an array incrementally or
when you want to store the history of a user's actions for the purpose of implementing a back button
or history feature.

To add elements to the beginning of an array, use the unshift() method. This shifts the existing
elements up by one index position, and inserts the new element at index 0:

// Create an array with four elements:
// "a", "b", "c", and "d".
var letters:Array = new Array();
letters.push("a", "b", "c", "d");

// Add "z" to the beginning of the array. This shifts all
// the other elements so the value of "a" moves from
// index 0 to index 1, etc.
letters.unshift("z");

// Display the results by looping through the elements.
// See Recipe 5.2.
for (var i:int = 0; i < letters.length; i++) {
 trace(letters[i]);
}

Should you add elements to the beginning or the end of an array? That generally depends on how
you intend to access or remove the elements at a later time. For example, if you want to access
items in last in, first out (LIFO) order, you might use Array.push() to add elements to an array and
Array.pop() to remove the elements in reverse order.

See Also

Recipe 5.2

Recipe 5.2. Looping Through an Array

Problem

You want to access each element of an array in sequential order.

Solution

Use a for loop that increments an index variable from 0 until it reaches Array. length. Use the index

to access each element in turn.

Discussion

To access the values stored in the elements of an array, loop through the array's elements using a
for loop. Because the first index of an array is 0, the index variable in the for statement should start
at 0. The last index of an array is always 1 less than the length property of that array. Within the for
statement, use the loop index variable within square brackets to access array elements. For
example:

var letters:Array = ["a", "b", "c"];
for (var i:int = 0; i < letters.length; i++) {
 // Display the elements in the Output panel.
 trace("Element " + i + ": " + letters[i]);
}

The looping index variable (i in the example code) should range from 0 to one less than the value of
the length property. Remember that the last index of an array is always one less than its length.

Alternatively, you can use a for statement that loops backward from Array. length -1 to 0,

decrementing by one each time. Looping backward is useful when you want to find the last matching
element rather than the first (see Recipe 5.3), for example:

var letters:Array = ["a", "b", "c"];
for (var i:int = letters.length - 1; i >= 0; i--){
 // Display the elements in reverse order.
 trace("Element " + i + ": " + letters[i]);
}

There are many instances when you might want to loop through all the elements of an array. For
example, by looping through an array containing references to sprites, you can perform a particular

action on each of the sprites:

for (var i:int = 0; i < sprites.length; i++){
 // Move each sprite one pixel to the right.
 sprites[i].x++;
}

You can store the array's length in a variable rather than computing it during each loop iteration. For
example:

var length:int = sprites.length;
for (var i:int = 0; i < length; i++){
 // Move each sprite one pixel to the right.
 sprites[i].x++;
}

The effect is that there is a very marginal performance improvement because Flash doesn't have to
calculate the length during each iteration. However, it assumes that you are not adding or removing
elements during the loop. Adding or removing elements changes the length property. In such a case,
it is better to calculate the length of the array with each iteration.

See Also

Recipe 12.8 for ways to loop through characters in a string. Recipe 5.16 for details on enumerating
elements of an associative array. See also Recipe 5.3.

Recipe 5.3. Searching for Matching Elements in an Array

Problem

You want to find the first element in an array that matches a specified value.

Solution

Use a for statement to loop through an array and a break statement once a match has been found.
Optionally, use the ArrayUtilities.findMatchIndex(), ArrayUtilities.findLastMatchIndex(), and/or
ArrayUtilities.findMatchIndices() methods.

Discussion

When you search for the first element in an array that matches a specified value, you should use a
for statement, as shown in Recipe 5.2, and add a break statement to exit the loop once the match
has been found.

Using a break statement within a for statement causes the loop to exit once it is encountered. You
should place the break statement within an if statement so it is executed only when a certain
condition is met.

When searching for the first matching element, the importance of the break statement is twofold.
First, you don't need to loop through the remaining elements of an array once the match has been
found; that would waste processing time. In the following example, the break statement exits the
loop after the second iteration, saving six more needless iterations. (Imagine the savings if there
were a thousand more elements!)

Furthermore, the break statement is vital when searching for the first match because it ensures that
only the first element is matched and that subsequent matches are ignored. If the break statement is
omitted in the following exampleall matching elements are displayed, as opposed to the first one
only.

// Create an array with eight elements.
var letters:Array = ["a", "b", "c", "d", "a", "b", "c", "d"];

// Specify what we want to search for.
var match:String = "b";

// Use a for statement to loop through, potentially,
// all the elements of the array.
for (var i:int = 0; i < letters.length; i++) {

 // Check whether the current element matches
 // the search value.
 if (letters[i] == match) {

 // Do something with the matching element.
 // In this example, display a message
 // for testing purposes.
 trace("Element with index " + i +
 " found to match " + match);

 // Include a break statement to exit the for loop
 // once a match has been found.
 break;
 }
}

You can also search for the last matching element of an array by reversing the order in which the for
statement loops through the array. Initialize the index variable to Array .length -1 and loop until it

reaches 0 by decrementing the index variable, as follows.

var letters:Array = ["a", "b", "c", "d", "a", "b", "c", "d"];

var match:String = "b";

// Loop backward through the array. In this example,
// the "b" is at index 5.
for (var i:int = letters.length - 1; i >= 0; i--) {
 if (letters[i] == match) {
 trace("Element with index " + i +
 " found to match " + match);
 break;
 }
}

To simplify the process of searching for matching elements, you can use some of the static methods
of the custom ArrayUtilities class. The class is in the ascb.util package, so the first step is to import
the class:

import ascb.util.ArrayUtilities;

The ArrayUtilities class has three methods for finding matching elements findMatchIndex(),
findLastMatchIndex(), and findMatchIndices(). The findMatchIndex() method requires at least two
parameters: a reference to the array you are searching, and the value you want to match. The
method then returns either the index of the first matching element or -1 if no matches are found; for
example:

var letters:Array = ["a", "b", "c", "d"];

trace(ArrayUtilities.findMatchIndex(letters, "b"));
// Displays: 1

trace(ArrayUtilities.findMatchIndex(letters, "r"));
// Displays: -1

You can also specify the starting index from which the search begins. That way, you can find matches
subsequent to the first match. Specify the starting index as the third parameter; for example:

var letters:Array = ["a", "b", "c", "d", "a", "b", "c", "d"];

trace(ArrayUtilities.findMatchIndex(letters, "a", 1));
// Displays: 4

You can tell the method to find elements that are partial matches as well. By default, only exact
matches are found. However, if you specify a value of TRue for the third parameter, the method finds
any element containing the substring:

var words:Array = ["bicycle", "baseball", "mat", "board"];

trace(ArrayUtilities.findMatchIndex(words, "s", true));
// Displays: 1

If you want to run a partial match and still specify a starting index, simply pass the starting index as
the fourth parameter.

The findLastMatchIndex() method works identically to findMatchIndex() except that it starts looking
from the end of the array.

The findMatchIndices() method returns an array of indices for all elements that match the value
passed in. The method requires at least two parametersthe array and the element you want to
match. For example:

var letters:Array = ["a", "b", "c", "d", "a", "b", "c", "d"];

trace(ArrayUtilities.findMatchIndices(letters, "b"));
// Displays: 1,5

You can also run partial matches using findMatchIndices(). Simply specify a Boolean value of true as
the third parameter:

var words:Array = ["bicycle", "baseball", "mat", "board"];

trace(ArrayUtilities.findMatchIndices(words, "b", true));
// Displays: 0,1,3

Each of the ArrayUtilities methods described use the same basic techniques with a for statement.

Let's take a look at the code for the methods. The findMatchIndex() method is fairly straightforward,
and you can see the comments inline. One thing to note, however, is that the method doesn't use
any break statements within the for loop. That's because it uses return statements if a match is
found. In the context of a function or method, a return statement exits the for statement, so the
break statement is not necessary:

public static function findMatchIndex(array:Array, element:Object):int {
 // Use a variable to determine the index
 // from which to start. Use a default value of 0.
 var startingIndex:int = 0;

 // By default don't allow a partial match.
 var partialMatch:Boolean = false;

 // If the third parameter is a number,
 // assign it to nStartingIndex.
 // Otherwise, if the fourth parameter is a number,
 // assign it to nStartingIndex instead.
 if(typeof arguments[2] == "number") {
 startingIndex = arguments[2];
 }
 else if(typeof arguments[3] == "number") {
 startingIndex = arguments[3];
 }

 // If the third parameter is a Boolean value,
 // assign it to partialMatch.
 if(typeof arguments[2] == "boolean") {
 partialMatch = arguments[2];
 }

 // Assume no match is found.
 var match:Boolean = false;

 // Loop through each of the elements of the array
 // starting at the specified starting index.
 for(var i:int = startingIndex;
 i < array.length; i++) {

 // Check to see if the element either matches
 // or partially matches.
 if(partialMatch) {
 match = (array[i].indexOf(element) != -1);
 }
 else {
 match = (array[i] == element);
 }

 // If the element matches, return the index.
 if(match) {
 return i;
 }

 }

 // The following return statement is only reached
 // if no match was found. In that case, return -1.
 return -1;
}

The findLastMatchIndex() method is almost identical to the findMatchIndex() method, except that it
loops in reverse. The findMatchedIndices() method loops through the array to find every matching
index. It appends each matching index to an array, and then it returns that array. It uses the
findMatchIndex() method, as shown here:

public static function findMatchIndices(array:Array,
element:Object, partialMatch:Boolean = false):Array {
 var indices:Array = new Array();
 var index:int = findMatchIndex(array,
 element,
 partialMatch);
 while(index != -1) {
 indices.push(index);
 index = findMatchIndex(array,
 element,
 partialMatch,
 index + 1);
 }
 return indices;
}

See Also

Recipes 5.2 and 5.10

Recipe 5.4. Removing Elements

Problem

You want to remove one or more elements from an array and shift any remaining elements to fill the
vacant indexes.

Solution

Use the splice() method to remove elements from the middle of the array. Use pop() to remove the
last element or shift() to remove the first element.

Discussion

Remove elements from an array by starting at a specified index using the splice() method. When
using splice() to delete elements, you should pass it two parameters:

start

The index of the array from which to start deleting elements.

deleteCount

The number of elements to delete. If this value is undefined, all the elements from start to the

end of the array are deleted:
var letters:Array = ["a", "b", "c", "d"];

// Remove one element from letters starting at index 1.
letters.splice(1, 1);

// Display the results. The array now contains three elements:
// "a", "c", and "d".
for (var i:int = 0; i < letters.length; i++) {
 trace(letters [i]);
}

The splice() method also returns a new array containing the deleted elements; for example:

var letters:Array = ["a", "b", "c", "d"];

// Remove two elements from letters starting at index 0.
var deleted:Array = letters.splice(0, 2);

// Display the deleted elements: "a" and "b".
for (var i:int = 0; i < deleted.length; i++) {
 trace(deleted[i]);
}

To delete a single element from the beginning or end of the array, you can use the shift() and pop()
methods. The shift() method removes the first element of the array and returns its value. The pop()
method removes the last element of the array and returns its value:

var letters:Array = ["a", "b", "c", "d"];

// Remove the first element and display its value.
trace(letters.shift());

// Remove the last element and display its value.
trace(letters.pop());

// Display the remaining elements.
// The array has two elements left: "b" and "c".
for (var i = 0; i < letters.length; i++) {
 trace(letters[i]);
}

When you remove elements from an array in a for statement, you need to change the value of the
index variable accordingly. The following example illustrates what can happen if you don't update the
value of the index variable:

var numbers:Array = new Array(4, 10);
numbers[4] = 1;
trace(numbers); // Displays: 4,10,undefined,undefined,1
for(var i:int = 0; i < numbers.length; i++) {
 if(numbers[i] == undefined) {
 numbers.splice(i, 1);
 }
}
trace(numbers); // Displays: 4,10,undefined,1

In the preceding code, you might have expected it to remove both of the undefined elements from
the array. However, as shown in the final trace, it removed only one. If you go through the for
statement step-by-step, you can see why:

The first two iterations do nothing because the elements are not undefined.1.

2.

1.

The third iteration sees that the third element is undefined and removes it. At that point, the
fourth and fifth elements shift down by one index, becoming the third and fourth elements.

2.

The next iteration checks the new fourth element, which is now the last. It skips right over the
other undefined element (now third). Instead, you can make sure you decrement the index
variable after removing the element. The following code shows how you might do that:

3.

var numbers:Array = new Array(4, 10);
numbers[4] = 1;
trace(numbers); // Displays: 4,10,undefined,undefined,1
for(var i:int = 0; i < numbers.length; i++) {
 if(numbers[i] == undefined) {
 numbers.splice(i, 1);
 i--;
 }
}
trace(numbers); // Displays: 4,10,1

4.

Recipe 5.5. Inserting Elements in the Middle of an Array

Problem

You want to insert elements in the middle of an array.

Solution

Use the splice() method.

Discussion

You can use the splice() method to insert elements as well as delete them. Values passed to the
splice() method after the first and second parameters are inserted into the array at the index
specified by the start parameter; all existing elements following that index are shifted up to
accommodate the inserted values. If 0 is passed to the splice() method for the deleteCount

parameter, no elements are deleted, but the new values are inserted:

var letters:Array = ["a", "b", "c", "d"];

// Insert three string values ("one", "two", and "three")
// starting at index 1.
letters.splice(1, 0, "r", "s", "t");

// letters now contains seven elements:
// "a", "r", "s", "t", "b", "c", and "d".
for (var i:int = 0; i < letters.length; i++) {
 trace(letters[i]);
}

You can also delete elements and insert new elements at the same time:

var letters:Array = ["a", "b", "c", "d"];

// Remove two elements and insert three more

// into letters starting at index 1.
letters.splice(1, 2, "r", "s", "t");

// myArray now contains five elements:
// "a", "r", "s", "t", and "d".

for (var i:int = 0; i < letters.length; i++) {
 trace(letters[i]);
}

Recipe 5.6. Converting a String to an Array

Problem

You have a list of values as a string and you want to parse it into an array of separate elements.

Solution

Use the String.split() method.

Discussion

The split() method of the String class splits a string containing a list of values into an array. The list
must be delimited by a uniform substring. For example, the list Susan,Robert,Paula is comma-
delimited.

The split() method takes up to two parameters:

delimiter

The substring that is used to delimit the elements of the list. If undefined, the entire list is
placed into the first element of the new array.

limit

The maximum number of elements to place into the new array. If undefined, all the elements
of the list are placed into the new array.

You can use a space as the delimiter to split a string into an array of words:

var list:String = "Peter Piper picked a peck of pickled peppers";
// Split the string using the space as the delimiter. This puts

// each word into an element of the new array, words.
var words:Array = list.split(" ");

The split() method can be extremely useful when values are loaded into Flash using a URLLoader
object or another similar technique for loading data. For example, you might retrieve a list of names
as a string from the server such as the following:

names=Michael,Peter,Linda,Gerome,Catherine

You can make it easier to use the names by parsing them into an array using the split() method:

// Assume _loader is the URLLoader used to load the data.
var namesData:String = _loader.data;
var names:Array = namesData.split(",");

See Also

Recipe 5.7

Recipe 5.7. Converting an Array to a String

Problem

You want to convert an array to a string.

Solution

Use the join() method.

Discussion

ActionScript provides you with a built-in way to quickly convert arrays to strings (assuming, of
course, that the array elements themselves are either strings or another datatype that ActionScript
can automatically cast to a string) using the join() method. You should pass the join() method a
string that tells Flash which delimiter to use to join the elements:

var letters:Array = ["a", "b", "c"];
trace(letters.join("|")); // Displays: a|b|c

If you don't provide a delimiter, Flash uses a comma by default:

var letters:Array = ["a", "b", "c"];
trace(letters.join()); // Displays: a,b,c

The toString() method does the same thing as the join() method either with
no parameters or with the comma as the parameter. In fact, if you try to use
an array in a situation in which a string is required, Flash automatically calls the
toString() method, as follows:

var letters:Array = ["a", "b", "c"];
trace(letters); // Displays: a,b,c

See Also

Recipe 5.6

Recipe 5.8. Creating a Separate Copy of an Array

Problem

You want to make an exact copy (a duplicate) of an arrayone that contains all of the elements found
in the original, but is not just another reference to the original.

Solution

Use the concat() method or the slice() method. Optionally, you can use the ArrayUtilities.duplicate(
) method. The duplicate() method can create recursive duplicates.

Discussion

Because arrays are a composite datatype, they are copied and compared differently from primitive
data. A variable that holds an array doesn't truly contain all of the array's data. Instead, the variable
simply points to the place in the computer's memory where the array's data resides. This makes
sense from an optimization standpoint. Primitive data tends to be small, such as a single number or a
short string. But composite data, such as an array, can be very large. It would be inefficient to copy
an entire array every time you wanted to perform an operation on it or pass it to a function.
Therefore, when you try to copy an array, ActionScript doesn't make a separate copy of the array's
data. A simple example illustrates this.

First, let's look at how primitive data is copied from the variable quantity to another variable,
newQuantity:

// Assign the number 5 to a variable.
var quantity:int = 5;

// Copy quantity's value to another variable, newQuantity.
var newQuantity:int = quantity;

// Change quantity's value.
quantity = 29;

trace(quantity); // Displays: 29
trace(newQuantity); // Displays: 5

When the copy is made, the contents of quantity are copied to newQuantity. After the copy is made,
subsequent changes to quantity have no effect on newQuantity (and vice versa) because primitive

data is copied by value.

Now let's look at a similar operation with arrays; however, note the difference from the preceding
example. The variable letters is assigned to the variable newLetters, but the two variables merely
reference the same array in memory. When the value of letters changes, the changes are reflected
in newLetters:

// Assign elements of an array.
var letters:Array = ["a", "b", "c"];

// Copy letters to another variable, newLetters.
var newLetters:Array = letters;

// Both arrays contain the same values, as expected.
trace(letters); // Displays: "a,b,c"
trace(newLetters); // Displays: "a,b,c"

// Change letters's value.
letters = ["d", "e", "f"];

// Surprise! Both arrays contain the new values.
// The old values are lost!
trace(letters); // Displays: "d,e,f"
trace(newLetters); // Displays: "d,e,f" (not "a,b,c")

Is the relationship between two copies of an array a good thing or a bad thing? The answer depends
on what you expect and what you need to accomplish. Let's first understand what is happening, and
then learn how to address it.

In the preceding example, the following line does not make a copy of letters' contents, as it would if
letters held a primitive datatype:

var newLetters:Array = letters;

Instead it says to Flash, "Make newLetters point to whatever letters points to, even if the contents
change in the future." So the two variables letters and newLetters always point to the same data in
memory. If it helps, you can think of this arrangement as being similar to a file shortcut on Windows
(known as an alias on the Macintosh). A shortcut simply points to another file located elsewhere.
Whether you open the original file directly or access it via the shortcut, there is only one physical file
that contains the content of interest. If the file's contents change, the shortcut still offers access to
the current contents of the file. If you wanted two independent files, you'd have to duplicate the
original file rather than simply create a shortcut to it.

So, is it a good thing if two variables refer to the same array? As explained earlier, in the normal
course of things, it increases efficiency to avoid copying the contents of an array unnecessarily.
However, you might want to operate on a copy of an array and not alter the original. You can create
a duplicate copy of an array that is separate from the original using concat():

// Assign elements of an array.
var letters:Array = ["a", "b", "c"];

// Create an independent copy of letters using concat(),
// which returns a new array.
var newLetters:Array = letters.concat();

// Both arrays contain the same values, as expected.
trace(letters); // Displays: "a,b,c"
trace(newLetters); // Displays: "a,b,c"

// Change letters' value.
letters = ["d", "e", "f"];

// Unlike preceding examples, the arrays are independent.
trace(letters); // Displays: "d,e,f"
trace(newLetters); // Displays: "a,b,c"

In line 6 of the preceding example, you could also use slice() instead of concat(), as follows:

var newLetters:Array = letters.slice(0);

The concat() or slice() methods work fine to duplicate a single-dimensional, integer-indexed array.
However, when you have a multidimensional array (an array containing other arrays) or an
associative array, you cannot use those techniques effectively. (See Recipes 5.9 and 5.15 for more
information regarding multidimensional and associative arrays, respectively.) With associative arrays,
you won't have a concat() or slice() method. With multidimensional arrays, however, using concat(
) or slice() to duplicate the top level of the array won't duplicate the nested array data. The following
code illustrates the effect:

var coordinates:Array = new Array();
coordinates.push([0,1,2,3]);
coordinates.push([4,5,6,7]);
coordinates.push([8,9,10,11]);
coordinates.push([12,13,14,15]);

// Make a duplicate.
var coordinatesDuplicate:Array = coordinates.concat();

// Replace one of the elements of one of the nested arrays
// in the duplicate.
coordinatesDuplicate[0][0] = 20;
trace(coordinates[0][0]); // Displays: 20

// Replace one of the top-level elements.
coordinatesDuplicate[1] = [21,22,23,24];
trace(coordinates[1]); // Displays: 4,5,6,7

In the preceding code, coordinates is an array of arrays; this is known as a two-dimensional array in
ActionScript. coordinatesDuplicate is a duplicate of coordinates. However, even though it is a
duplicate, its elements (which are also arrays) are still references to the original elements rather than
duplicates. That means that if you assign a new value to one of the elements of one of the nested

arrays in coordinatesDuplicate, coordinates is affected similarly. However, just to verify that
coordinatesDuplicate does actually duplicate the top-level elements, you can see that in the last two
lines of the code, replacing one of those elements does not affect coordinates.

To duplicate an array and ensure that every nested element is also duplicated, you need to use
recursion. The ArrayUtilities.duplicate() method does just that, making it relatively simple for you to
duplicate an array recursively. The duplicate() method requires just one parameter: a reference to
an array or associative array. The method then returns a duplicate of that object. However, by
default, duplicate() only returns a duplicate of the top-level elements, the same as concat() or slice(
). If you want to duplicate the instance recursively, you need to specify that using a second
parameter. Specify a Boolean value of TRue to recursively duplicate an instance, as shown in the
following example:

// Create a two-dimensional array.
var coordinates:Array = new Array();
for(var i:int = 0; i < 4; i++) {
 coordinates[i] = new Array();
 for(var j:int = 0; j < 4; j++) {
 coordinates[i].push(String(i) + "," + String(j));
 }
}

// Duplicate coordinates. Cast the result as an array.
var newCoordinates:Array = ArrayUtilities.duplicate(coordinates, true) as Array;

// Replace an element in the nested array.
newCoordinates[0][0] = "a";

// Use the toString() method of the ArrayUtilities class
// to quickly output the contents of the arrays.
trace(ArrayUtilities.toString(coordinates));
trace(ArrayUtilities.toString(newCoordinates));

The following example illustrates the same duplicate() method used with an associative array:

var coordinatesMap:Object = new Object();
coordinatesMap.a = [{a: 1},{b: 2}, {c: 3}, {d: 4}];
coordinatesMap.b = [{a: 1},{b: 2}, {c: 3}, {d: 4}];
coordinatesMap.c = [{a: 1},{b: 2}, {c: 3}, {d: 4}];
coordinatesMap.d = [{a: 1},{b: 2}, {c: 3}, {d: 4}];
var newCoordinatesMap:Object = ArrayUtilities.duplicate(coordinatesMap, true);
newCoordinatesMap.a[0] = {r: 5};
trace(ArrayUtilities.toString(coordinatesMap));
trace(ArrayUtilities.toString(newCoordinatesMap));

In both examples, you can see that the original array (or associative array) is not affected by
changes made to the duplicate.

See Also

Recipes 5.9 and 5.15

Recipe 5.9. Storing Complex or Multidimensional Data

Problem

You have two or more sets of related data and you want to be able to keep track of the relationships
between their elements.

Solution

Use parallel arrays, an array of arrays (a multidimensional array), or an array of objects.

Discussion

You can create two or more parallel arrays in which the elements with the same index in each array
are related. For example, the beginGradientFill() method, discussed in Chapter 7, uses three parallel
arrays for the colors, alphas, and ratios of the values used in the gradient. In each array, the
elements with the same index correspond to one another.

To create parallel arrays, populate multiple arrays such that the elements with the same index
correspond to one another. When you use parallel arrays, you can easily retrieve related data, since
the indexes are the same across the arrays; for example:

var colors:Array = ["maroon", "beige", "blue", "gray"];
var years:Array = [1997, 2000, 1985, 1983];
var makes:Array = ["Honda", "Chrysler", "Mercedes", "Fiat"];

// Loop through the arrays. Since each array is the same

// length, you can use the length property of any of them

// in the for statement. Here, we use makes.length.
for (var i:int = 0; i < makes.length; i++) {
 // Displays:
 // A maroon 1997 Honda
 // A beige 2000 Chrysler
 // A blue 1985 Mercedes
 // A gray 1983 Fiat

 // Display the elements with corresponding indexes
 // from the arrays.
 trace("A " + colors[i] + " " +
 years[i] + " " +
 makes[i]);
}

Be careful when manipulating parallel arrays. If you add or remove elements
from the arrays, you have to be certain to add or remove related data at the
same position in every array. Otherwise the arrays will be out of sync and
useless.

Another option for working with multiple sets of data is to create a multidimensional array, which is
an array of arrays (i.e., an array in which each element is another array):

// Create an array, cars, and populate it with elements that
// are arrays. Each element array represents a car and
// contains three elements (color, year, and make).
var cars:Array = new Array();
cars.push(["maroon", 1997, "Honda"]);
cars.push(["beige", 2000, "Chrysler"]);
cars.push(["blue", 1985, "Mercedes"]);
cars.push(["gray", 1983, "Fiat"]);

// Loop through the elements of the cars array.
for (var i:int = 0; i < cars.length; i++) {
 // The output is the same as in the
 // earlier parallel arrays example:
 // A maroon 1997 Honda
 // A beige 2000 Chrysler
 // A blue 1985 Mercedes
 // A gray 1983 Fiat

 // Output each element of each subarray, cars[i].
 // Note the use of two successive indexes in brackets,

 // such as cars[i][0].
 TRace("A " + cars[i][0] + " " +
 cars[i][1] + " " +
 cars[i][2]);
}

The following is another way to view the two-dimensional cars arrays' contents. This displays the
elements in a long list (the formatting isn't as nice as in the previous example, but it shows the array
structure more clearly):

// Loop through the elements of the cars array.
for (var i:int = 0; i < cars.length; i++) {

 // Loop through the elements of each subarray, cars[i].
 for (var j:int = 0; j < cars[i].length; j++) {
 // Note the use of two successive indexes in brackets,

 // cars[i][j].
 TRace("Element [" + i + "][" + j + "] contains: " +
 cars[i][j]);
 }

}

In the preceding example (the array of arrays), it is hard to discern the meaning of something like
cars[i][0] or cars[i][j]. Furthermore, if the order of elements in a subarray changes, you would
have to modify the code (or it might erroneously display "A Honda maroon 1997" instead of "A
maroon 1997 Honda").

One alternative is to work with related data using an array of objects (associative arrays). This
technique is similar to working with an array of arrays, but it offers the advantage of named
properties. When you use an array of arrays, you must reference each value by its numbered index.
However, when you use an array of objects, you can reference the data by property name instead of
its index number. You can specify the properties of the object in any order you like because you'll
refer to them later by name, not by number:

// Create an array, cars, and populate it with objects.

// Each object has a make property, a year property,

// and a color property.
var cars:Array = new Array();

// Here, object literals are used to define three properties
// for each car; the object literals are added to
// the main array.
cars.push({make: "Honda", year: 1997, color: "maroon"});
cars.push({make: "Chrysler", year: 2000, color: "beige"});
cars.push({make: "Mercedes", year: 1985, color: "blue"});
cars.push({make: "Fiat", year: 1983, color: "gray"});

// Loop through the cars array.
for (var i:int = 0; i < cars.length; i++) {
 // The output is the same as in the earlier examples,
 // but each value is referenced by its property name,
 // which is more programmer-friendly.
 trace("A " + cars[i].color + " " +
 cars[i].year + " " +
 cars[i].make);
}

See Also

Recipe 5.15 covers associative arrays, in which elements are accessed by name insteadof number.

Recipe 5.10. Sorting or Reversing an Array

Problem

You want to sort the elements of an array.

Solution

Use the sort() method. For arrays of objects, you can also use the sortOn() method.

Discussion

You can perform a simple sort on an array using the sort() method. The sort() method, without any
parameters, sorts the elements of an array in ascending order. Elements are sorted according to the
Unicode code points of the characters in the string (roughly alphabetical for Western European
languages).

var words:Array = ["tricycle", "relative", "aardvark", "jargon"];
words.sort();
trace(words); // Displays: aardvark,jargon,relative,tricycle

The sort() method, by default, is very useful if you want to sort the elements of an array in
ascending, alphabetical order. However, there are some caveats. Namely, the sort is case-sensitive,
and it sorts numbers "alphabetically" instead of numerically. Fortunately, ActionScript allows you to
pass one of several constants to the sort() method in order to sort with different guidelines.

You sort an array in descending order using the Array.DESCENDING constant:

var words:Array = ["tricycle", "relative", "aardvark", "jargon"];
words.sort(Array.DESCENDING);
trace(words); // Displays: tricycle,relative,jargon,aardvark

As mentioned, the sort() method runs a case-sensitive sort by default. It places elements starting
with uppercase characters before elements starting with lowercase characters. The following
illustrates the point:

var words:Array = ["Tricycle", "relative", "aardvark", "jargon"];
words.sort();
trace(words); // Displays: Tricycle,aardvark,jargon,relative

You can use the Array.CASEINSENSITIVE constant to run a case-insensitive sort:

var words:Array = ["Tricycle", "relative", "aardvark", "jargon"];
words.sort(Array.CASEINSENSITIVE);
trace(words); // Displays: aardvark,jargon,relative,Tricycle

When you sort an array of numbers, the values are sorted according to the ASCII equivalents of the
digits rather than in numerical order. The following code illustrates the point:

var scores:Array = [10, 2, 14, 5, 8, 20, 19, 6];
scores.sort();
trace(scores); // Displays: 10,14,19,2,20,5,6,8

You can use the Array.NUMERIC constant with the sort() method to sort an array of numbers
numerically:

var scores:Array = [10, 2, 14, 5, 8, 20, 19, 6];
scores.sort(Array.NUMERIC);
trace(scores); // Displays: 2,5,6,8,10,14,19,20

There are two other possible constants you can use with the sort() method: Array.UNIQUESORT and
Array.RETURNINDEXEDARRAY. In some situations you want to sort the array only if it contains
unique elements. In this case, use the Array.UNIQUESORT constant; Flash only sorts the array if the
elements are unique. Otherwise, the sort() method returns 0, and the array is not sorted:

var ranking:Array = [2,5,6,3,1,1,4,8,7,10,9];
var sortedRanking:Object = ranking.sort(Array.UNIQUESORT);
trace(sortedRanking); // Displays: 0
trace(ranking); // Displays: 2,5,6,3,1,1,4,8,7,10,9

Frequently, you may want to get the sorted order of an array's elements, but you don't want to
change the original array because other parts of your application may depend on the existing order.
For example, if you have parallel arrays, and you sort one array, its relationship with the other arrays
is no longer valid. In such scenarios the Array.RETURNINDEXEDARRAY constant is very helpful. It
allows you to return a new array containing the indices of the elements of the original array in sorted
order, as illustrated in the following code:

var words:Array = ["tricycle", "relative", "aardvark", "jargon"];
var indices:Array = words.sort(Array.RETURNINDEXEDARRAY);
trace(words); // Displays: tricycle,relative,aardvark,jargon
trace(indices); // Displays: 2,3,1,0
for(var i:int = 0; i < words.length; i++) {
 /* Displays:
 aardvark
 jargon
 relative
 tricycle

 */
 trace(words[indices[i]]);
}

You aren't limited to one sort modifier at a time. You can combine the combine the constants using
the bitwise OR operator (|). The following code illustrates a case-insensitive, descending sort:

var words:Array = ["Tricycle", "relative", "aardvark", "jargon"];
words.sort(Array.CASEINSENSITIVE | Array.DESCENDING);
trace(words); // Displays: Tricycle,relative,jargon,aardvark

Sometimes you want to reverse the order of the elements in an array. The sort() method allows you
to run ascending, descending, case-sensitive, case-insensitive, and numeric sorts, but it does not
allow you to simply reverse the order of the elements. Instead, you can use the reverse() method.
The reverse() method does just what its name suggests; it reverses the order of the elements:

var words:Array = ["tricycle", "relative", "aardvark", "jargon"];
words.reverse();
trace(words); // Displays: jargon,aardvark,relative,tricycle

The preceding portion of this recipe described how to sort arrays in which the elements are strings or
numbers. You can also sort arrays of objects of any type using the sortOn() method. The sortOn()
method requires a string parameter specifying the name of the property on which to sort the
elements:

var cars:Array = new Array();
cars.push({make: "Honda", year: 1997, color: "maroon"});
cars.push({make: "Chrysler", year: 2000, color: "beige"});
cars.push({make: "Mercedes", year: 1985, color: "blue"});
cars.push({make: "Fiat", year: 1983, color: "gray"});

// Sort the cars array according to the year property
// of each element.cars.sortOn("year");
for (var i:int = 0; i < cars.length; i++) {
 /* Displays:
 gray 1983 Fiat
 blue 1985 Mercedes
 maroon 1997 Honda
 beige 2000 Chrysler
 */
 trace(cars[i].color + "\t" +
 cars[i].year + "\t" +
 cars[i].make);
}

The sortOn() method also has the ability to sort on more than one field. You can do so by specifying
an array of fields on which to sort. The elements are then sorted on those fields in the specified
order. To understand how it works, take a look at the following examples:

var cars:Array = new Array();
cars.push({make: "Honda", year: 1997, color: "maroon"});
cars.push({make: "Chrysler", year: 2000, color: "beige"});
cars.push({make: "Mercedes", year: 1985, color: "blue"});
cars.push({make: "Fiat", year: 1983, color: "gray"});
cars.push({make: "Honda", year: 1992, color: "silver"});
cars.push({make: "Chrysler", year: 1968, color: "gold"});
cars.push({make: "Mercedes", year: 1975, color: "green"});
cars.push({make: "Fiat", year: 1983, color: "black"});
cars.push({make: "Honda", year: 2001, color: "blue"});
cars.push({make: "Chrysler", year: 2004, color: "orange"});
cars.push({make: "Mercedes", year: 2000, color: "white"});
cars.push({make: "Fiat", year: 1975, color: "yellow"});

// Sort the cars array according to the year property
// of each element, then by the make.
cars.sortOn(["year", "make"]);

for (var i:int = 0; i < cars.length; i++) {
 /* Displays:
 gold 1968 Chrysler
 yellow 1975 Fiat
 green 1975 Mercedes
 black 1983 Fiat
 gray 1983 Fiat
 blue 1985 Mercedes
 silver 1992 Honda
 maroon 1997 Honda
 beige 2000 Chrysler
 white 2000 Mercedes
 blue 2001 Honda
 orange 2004 Chrysler
 */
 trace(cars[i].color + "\t" +
 cars[i].year + "\t" +
 cars[i].make);
}

The next example sorts the same array first by make, then by yearnotice what the effect is:

cars.sortOn(["make", "year"]);

for (var i:int = 0; i < cars.length; i++) {
 /* Displays:
 gold 1968 Chrysler
 beige 2000 Chrysler
 orange 2004 Chrysler
 yellow 1975 Fiat
 black 1983 Fiat
 gray 1983 Fiat
 silver 1992 Honda

 maroon 1997 Honda
 blue 2001 Honda
 green 1975 Mercedes
 blue 1985 Mercedes
 white 2000 Mercedes
 */
 trace(cars[i].color + "\t" +
 cars[i].year + "\t" +
 cars[i].make);
}

As with the sort() method, the sortOn() method supports sort modifiers. You can use the Array
constants to sort in descending, case-insensitive, and numeric order. You can also, as with the sort()
method, run a unique sort and return an array of sorted indices rather than affecting the original
array. The following example sorts cars in descending order:

cars.sortOn("year", Array.DESCENDING);

for (var i:int = 0; i < cars.length; i++) {
 /* Displays:
 beige 2000 Chrysler
 maroon 1997 Honda
 blue 1985 Mercedes
 gray 1983 Fiat
 */
 trace(cars[i].color + "\t" +
 cars[i].year + "\t" +
 cars[i].make);
}

Sorted arrays can be useful in many scenarios. For example, if you want to display the elements of
an array in a UI component or a text field, you often want to list the elements in alphabetical order.

Unless you use the Array.RETURNINDEXEDARRAY constant, the sort() and
sortOn() methods make changes to the order of the original array; they do not
return a new array.

See Also

Recipe 5.8 to make aseparate copy of an array on which you can perform destructive operations.
Recipe 5.11 for details on custom sorting.

Recipe 5.11. Implementing a Custom Sort

Problem

You want to sort an array using more complex logic than an alphabetical or numeric sort.

Solution

Use the sort() method and pass it a reference to a compare function.

Discussion

If you want complete control over sorting criteria, use the sort() method with a custom compare
function (also called a sorter function). The sort() method repeatedly calls the compare function to
reorder two elements of an array at a time. It sends the compare function two parameters (let's call
them a and b). The compare function then determines which one should be ordered first by returning
a positive number, a negative number, or 0, depending on how the elements are to be sorted. If the
function returns a negative number, a is ordered before b. If the function returns 0, then the current
order is preserved. If the function returns a positive number, a is ordered after b. The sort() method
calls the compare function with every relevant combination of elements until the entire array has
been properly ordered. Using a custom compare function is easier than it sounds. You don't need to
concern yourself with the details of sorting the entire array; you simply specify the criteria for
comparing any two elements.

One example of when you would want to use a custom sorter is when you need to sort a list of
strings, but you need to process the strings somehow before sorting them. Say you are building a
music program that needs to display a list of bands. If you just sorted the bands alphabetically, all
the bands whose names began with "The" would appear together in the T section, which is probably
not what you want. You can define a compare function that strips off "The" from the beginning of the
name before comparing the bands. Here is the code to set up the array, perform a simple sort, and
display the results:

var bands:Array = ["The Clash",
 "The Who",
 "Led Zeppelin",
 "The Beatles",
 "Aerosmith",
 "Cream"];
bands.sort();
for(var i:int = 0; i < bands.length; i++) {
 trace(bands[i]);

 /* output:
 Aerosmith
 Cream
 Led Zeppelin
 The Beatles
 The Clash
 The Who
 */
}

To handle this, call the sort() method passing the bandNameSort compare function:

var bands:Array = ["The Clash",
 "The Who",
 "Led Zeppelin",
 "The Beatles",
 "Aerosmith",
 "Cream"];
bands.sort(bandNameSort);
for(var i:int = 0; i < bands.length; i++) {
 trace(bands[i]);
 /* output:
 Aerosmith
 The Beatles
 The Clash
 Cream
 Led Zeppelin
 The Who
 */
}

function bandNameSort(band1:String, band2:String):int
{
 band1 = band1.toLowerCase();
 band2 = band2.toLowerCase();
 if(band1.substr(0, 4) == "the ") {
 band1 = band1.substr(4);
 }
 if(band2.substr(0, 4) == "the ") {
 band2 = band2.substr(4);
 }
 if(band1 < band2) {
 return -1;
 }
 else {
 return 1;
 }
}

The bandNameSort() function first converts both band names to lowercase, ensuring a case-

insensitive sort. Then it checks to see if either band name begins with "The ". If so, it grabs the
portion of the string from the fourth character to the end, which is everything after the word "The"
plus the space.

Finally, it compares the two processed strings, returning -1 if the first string should go first, and 1 if
the first string should go second. As you can see, the output is more in line with what you would
expect.

There is no limit to how complex the compare function can be. If you are sorting a list of objects, you
can build in logic that reads multiple properties of each object, performs calculations on their data,
compares them, and returns the results.

Realize that the compare function may be run hundreds or even thousands of
times in a single sort of a large array, so be careful about making it too
complex.

Recipe 5.12. Randomizing the Elements of an Array

Problem

You want to randomize the elements of an array.

Solution

Use the sort() method with a compare function that randomly returns a positive or negative number.

Discussion

There are lots of scenarios in which you might plausibly want to randomize the elements of an array.
For example, you may have a game in which you want to randomize the letters of a word. Since you
already know how to split the letters into elements of an array using the split() method, you may
need to randomize those elements. Or perhaps you are making a card game where each element in
the array is a card, and you want to shuffle the deck.

There is more than one way to accomplish the task. However, one of the simplest ways is to create a
compare function that randomly returns a positive or negative number, and use it in the sort()
method. See Recipe 5.11 for more information on compare functions.

The following is probably the simplest possible compare function for the job:

function randomSort(elementA:Object, elementB:Object):Number {
 return Math.random() - .5
}

Math.random() returns a number between 0.0 and 1.0. If you subtract 0.5 from that number, you'll
get a random number between -0.5 and 0.5. Remember that in a compare function, returning a
negative number means to order the first element first, and a positive number tells the sort()
method to put the second element first. Since the odds you'll return are 50/50, the resulting order of
the array is completely random.

The following is an example of randomizing an array:

var numbers:Array = new Array();
for(var i:int=0;i<20;i++) {
 numbers[i] = i;
}
numbers.sort(randomSort);

for(var i:int=0;i<numbers.length;i++) {
 trace(numbers[i]);
}

This creates an array of 20 sequential numbers, and then randomizes and displays them. You can
verify that the order is now quite random.

See Also

Recipe 5.11 for more information on compare functions.

Recipe 5.13. Getting the Minimum or Maximum Element

Problem

You want to retrieve the minimum or maximum element from an array of numbers.

Solution

Sort the array numerically, and then retrieve the first or last element from the sorted array.

Discussion

You can quickly retrieve the minimum or maximum value from an array by sorting it. The following
example illustrates how to do just that:

var scores:Array = [10, 4, 15, 8];
scores.sort(Array.NUMERIC);
trace("Minimum: " + scores[0]);
trace("Maximum: " + scores[scores.length - 1]);

Of course, if the existing order of the array is important, you'll want to make a copy of the array
before sorting it. See Recipe 5.8.

You can optionally use the ArrayUtilities.min() and ArrayUtilities.max() methods.

See Also

Recipe 5.8

Recipe 5.14. Comparing Arrays

Problem

You want to compare two arrays to see if they are equivalent.

Solution

Loop through each element of both arrays and compare them.

Discussion

Since arrays are reference datatypes, using an equality operator with two array variables only checks
to see if they point to the same spot in memory. For example:

var letters:Array = ["a", "b", "c", "d"];
var lettersPointer:Array = letters;
trace(letters == lettersPointer); // Displays: true

However, if two arrays are equivalent yet don't point to the same spot in memory, an equality
operation returns false:

var letters1:Array = ["a", "b", "c", "d"];
var letters2:Array = ["a", "b", "c", "d"];
trace(letters1 == letters2]; // Displays: false

Instead, you can loop through each of the elements of the arrays and compare them:

var equivalent:Boolean = true;
for(var i:int = 0; i < letters1.length; i++) {
 if(letters1[i] != letters2[i]) {
 equivalent = false;
 break;
 }
}
trace(equivalent); // Displays: true

Optionally, you can use the ArrayUtilities.equals() method. This method requires two parameters:
the references to the two arrays to compare. The method returns a Boolean value that indicates

whether the arrays are equivalent or not:

var letters1:Array = ["a", "b", "c", "d"];
var letters2:Array = ["a", "b", "c", "d"];
trace(ArrayUtilities.equals(letters1, letters2));
// Displays: true

By default, the order of the elements has to match in the two arrays. If you don't care whether the
order of the elements matches, you can specify a third parameter for the equals() method; a
Boolean value indicating whether or not the order should be disregarded:

var letters1:Array = ["a", "b", "c", "d"];
var letters2:Array = ["b", "a", "d", "c"];
trace(ArrayUtilities.equals(letters1, letters2));
// Displays: false
trace(ArrayUtilities.equals(letters1, letters2, true));
// Displays: true

The equals() method is fairly simple. The code is explained in the comments in the following code
block:

public static function equals(arrayA:Array,
 arrayB:Array,
 bNotOrdered:Boolean):Boolean {

 // If the two arrays don't have the same number of elements,
 // they obviously are not equivalent.
 if(arrayA.length != arrayB.length) {
 return false;
 }

 // Create a copy of each so that anything done to the copies
 // doesn't affect the originals.
 var arrayACopy:Array = arrayA.concat();
 var arrayBCopy:Array = arrayB.concat();

 // If the order of the elements of the two arrays doesn't
 // matter, sort the two copies so the order of the copies
 // matches when comparing.
 if(bNotOrdered) {
 arrayACopy.sort();
 arrayBCopy.sort();
 }

 // Loop through each element of the arrays, and compare them.
 // If they don't match, delete the copies and return false.
 for(var i:int = 0; i < arrayACopy.length; i++) {
 if(arrayACopy[i] != arrayBCopy[i]) {
 delete arrayACopy;
 delete arrayBCopy;

 return false;
 }
 }

 // Otherwise the arrays are equivalent.
 // So delete the copies and return true.
 delete arrayACopy;
 delete arrayBCopy;
 return true;
}

Recipe 5.15. Creating an Associative Array

Problem

You want to create an array that uses named elements instead of numbered indexes.

Solution

Create an associative array.

Discussion

When working with sets of data in which each element has a specific meaning or importance, a
typical, number-indexed array doesn't always suffice.

For example, if you are working with a set of data such as the names of members of a committee, a
number-indexed array is sufficient:

var aMembers:Array = new Array("Franklin", "Gina", "Sindhu");

However, if each member of the committee plays a special role, a standard array offers no way to
indicate that. To address the issue, you can use an associative array. In some languages, this is
called a hash table. In ActionScript, it is actually just an instance of the Object class. An associative
array uses named elements rather than numeric indexes. The names used to refer to elements are
often called keys or properties. The keys can give a meaningful context to the associated element
value.

You can create an associative array in ActionScript by using object literal notation or adding elements
to an object. Despite their name, you don't use the Array class to create associative arrays. The
Array class provides methods and properties that work with number-indexed arrays onlyand not with
associative arrays. Associative arrays should be instances of the Object class. Technically, since the
Object class is the base class for all ActionScript classes, all ActionScript objects can be used as
associative arrays. However, unless you have some specific reason for using another class as an
associative array, it is best to simply use the generic Object class.

One way you can create an associative array is by using object literal notation. With this technique,
use curly braces ({ }) to enclose a comma-delimited list of keys and values, which are separated by
a colon (:), as shown in the following example:

var memebers:Object = {scribe: "Franklin",
 chairperson: "Gina",

 treasurer: "Sindhu"};

You can also create an associative array using the following multiline technique with the Object
constructor. Although the object literal notation is fine for creating small associative arrays in a single
step, you should use the Object constructor technique for creating larger associative arrays. It
improves readability and lets you add properties to an associative array by assigning the properties
(keys) on subsequent lines. For example:

var members:Object = new Object();
members.scribe = "Franklin";
members.chairperson = "Gina";
members.treasurer = "Sindhu";

Although using an Object constructor is more common, you can initialize the associative array object
by using an empty object literal in place of the Object constructor:

var members:Object = {};

You can retrieve the values from an associative array in two ways. The first way is to access the
elements using property notation (with the dot operator):

trace(members.scribe); // Displays: Franklin

The other option for retrieving values from an associative array is using array-access notation. To use
array-access notation, reference the associative array followed by the array-access operator ([]).
Within the array-access operator, you must use the string value of the name of the key you wish to
access:

trace(members["scribe"]); // Displays: Franklin

Array-access notation is extremely useful in situations in which there are multiple keys with names in
a sequence. This is because you can dynamically generate the key string value, whereas you cannot
do this with property notation; for example:

var members:Object = new Object();
members.councilperson1 = "Beatrice";
members.councilperson2 = "Danny";
members.councilperson3 = "Vladamir";

for (var i:int = 1; i <= 3; i++) {
 trace(members["councilperson" + i];
}

Array access notation is most frequently used when looping through every element in an associative
array, as shown in Recipe 5.16.

You can use either the property notation or array-access notation to read or write the values of an
associative array:

var members:Object = new Object();
members["councilperson"] = "Ruthie";
trace(members.councilperson); // Displays: Ruthie
members.councilperson = "Rebecca";
trace(members["councilperson"]); // Displays: Rebecca

See Also

Recipe 5.16 contains more details on accessing named elements of an associative array.

Recipe 5.16. Reading Elements of an Associative Array

Problem

You want to loop through the elements of an associative array.

Solution

Use a for . . . in statement.

Discussion

You iterate through the elements of integer-indexed arrays by using a for statement. However,
named elements in associative arrays cannot be accessed by a numeric index, and the order of
associative array elements is not guaranteed, regardless of the order in which the elements are
added to the array. For that reason, there are also no methods to sort or reverse an associative
array, or otherwise change its order.

Fortunately, you can loop through the enumerable elements of an associative array by using a for . .
. in statement. This statement iterates through all the readable properties of the specified object. The
syntax for a for . . . in statement is as follows:

for (key in object) {
 // Actions
}

The for . . . in statement doesn't require an explicit update statement because the number of loop
iterations is determined by the number of properties in the object being examined. Note that key is a

variable name that will be used to store the property name during each iteration, not the name of a
specific property or key. On the other hand, object is the specific object whose properties you want

to read. For example:

var members:Object = new Object();
members.scribe = "Franklin";
members.chairperson = "Gina";
members.treasurer = "Sindhu";

// Use a for . . . in statement to loop through all elements.
for (var sRole:String in members) {
 // Displays:
 // treasurer: Sindhu

 // chairperson: Gina
 // scribe: Franklin
 trace(sRole + ": " + members[sRole]);
}

When you use a for . . . in statement, you must use array-access notation (square brackets) with the
associative array. If you try to use property notation (with the dot operator) it won't work properly.
This is because the value that is assigned to the key iterator variable is the string name of the key,
not the key's identifier.

A for . . . in loop does not display all built-in properties of an object. For example, it displays custom
properties added at runtime, but it does not enumerate methods of built-in objects, even though they
are stored in object properties.

See Also

Recipe 5.2

Chapter 6. Display List
Section 6.0. Introduction

Recipe 6.1. Adding an Item to the Display List

Recipe 6.2. Removing an Item from the Display List

Recipe 6.3. Moving Objects Forward and Backward

Recipe 6.4. Creating Custom Visual Classes

Recipe 6.5. Creating Simple Buttons

Recipe 6.6. Loading External Images at Runtime

Recipe 6.7. Loading and Interacting with External Movies

Recipe 6.8. Creating Mouse Interactions

Recipe 6.9. Dragging and Dropping Objects with the Mouse

6.0. Introduction

The rendering model for ActionScript 3.0 and Flash Player 9 is radically different than in previous
versions. Traditionally, the MovieClip was the focal point of the renderer. Every .swf movie contained
a root MovieClip (commonly referred to as the Stage). The root MovieClip could contain child
MovieClips, which could, in turn, contain more child MovieClips. The concept of depths was used to
control the stacking order in which MovieClips were drawn (objects on higher depths appear "on
top"). Methods such as createEmptyMovieClip(), attachMovie(), or duplicateMovie- Clip() were used
to create MovieClips. Anytime a MovieClip was created, it was automatically added into the visual
hierarchy and consequently drawn by the renderer. MovieClips weren't able to move to different
places within the hierarchy; instead, they first had to be destroyed and then recreated before they
could be positioned elsewhere in the display.

The new renderer is still hierarchical, but not as rigid, and aims to simplify and optimize the rendering
process. The new rendering model centers on the display list concept and focuses on the classes
available in the flash.display package. The display list is a hierarchy that contains all visible objects in
the .swf movie. Any object not on the display list is not drawn by the renderer. Each .swf movie
contains exactly one display list, which is comprised of three types of elements:

The stage

The stage is the root of the display list hierarchy. Every movie has a single stage object that
contains the entire object hierarchy of everything displaying on the screen. The stage is a
container that typically contains only a single child, the main application class of the .swf
movie. You can access the stage by referring to the stage property on any display object in the
display list.

Display object containers

A display object container is an object that is capable of containing child display objects. The
stage is a display object container. Other display object containers include Sprite, MovieClip,
and Shape. When a display object container is removed from the display list, all its children are
removed as well.

Display objects

A display object is a visual element. Some classes function as both display objects and display
object containers, such as MovieClip, while other classes are only display objects, such a
TextField. After a display object is created, it won't appear on-screen until it is added into a
display object container.

The hierarchy tree for a display list might look like something in Figure 6-1. The stage is at the very
top of the hierarchy, with display object containers as branches and display objects as leaves. The
items at the top of the diagram are visually underneath the items at the bottom.

Figure 6-1. An example display list hierarchy

Transitioning to the display list realizes a number of benefits for programmers over working with
previous versions of the Flash Player; these include:

Increased performance

The display list contains multiple visual classes besides just MovieClip. Classes such as Sprite
can be used to reduce the memory requirements when a timeline isn't necessary. Additionally,
a Shape can be used to draw into rather than relying on a full MovieClip instance. By having
these lighter-weight classes and using them when possible, precious memory and processor
resources can be saved, resulting in improved overall performance.

Easier depth management

The hierarchy of the display functions as depth management under the new display list model.
In the previous model, methods such as getNextHighestDepth() were used to create
MovieClips on the correct depth, and swapDepths() was used to control the visual stacking
order. Depth management was cumbersome and tedious before and often required extremely
careful programming. It was a fact of life that just had to be dealt with because it was so
intertwined with the language. The new display list model handles depth almost automatically
now, making depth management almost a thing of the past.

Less rigid structure

The previous model featured a fairly inflexible and rigid hierarchy. To change the hierarchy,
MovieClips had to be destroyed and recreated at a new location. This was a time-consuming
and expensive operation, and often was painfully slow. The new display list model is much
more flexibleentire portions of the hierarchy tree can be moved via the new reparenting
functionality (discussed in Recipe 6.1), without suffering the performance penalties of creating
and destroying elements as before.

Easier creation of visual items

The display list rendering model makes creating display objects easier, especially when creating
instances of custom visual classes. The previous model required extending MovieClip, combined
with using special linkage that associated a library item with the ActionScript class. Then
attachMovie() had to be used to actually create an instance of the custom class. Under the
display list model, you extend one of the many display object classes, but you use the new
keyword to create instances of custom visual classes, which is much more intuitive, easier, and
cleaner. See Recipe 6.4 for details.

As noted earlier, the flash.display package contains the core classes for the display list model. The
old model focused on the MovieClip class, but the display list revolves around the DisplayObject class
and its various subclasses. Figure 6-2 illustrates the display list class hierarchy.

Figure 6-2. The display list class hierarchy

Each one of the core classes is designed to serve a specific purpose. By having more than just
MovieClip available, the display list offers more flexibility to programmers than the previous model.
The more commonly used display classes are listed in Table 6-1.

Table 6-1. Commonly used display classes

Display class Description

 DisplayObject

The base class of all display list
classes. DisplayObject defines
properties and methods common to all
display classes. The DisplayObject class
is not meant to be instantiated directly.

 Bitmap

The Bitmap class allows for the creation
and manipulation of images via the
BitmapData methods; it is described in
Chapter 8.

 Shape

The Shape class contains a graphics
property that allows for drawing using
lines, fills, circles, rectangles, etc.
Chapter 7 has more information.

 Sprite

Sprites are similar to shapes, but can
contain child display objects such as
text and video. A Sprite can be
thought of as a MovieClip without a
timeline.

 MovieClip

MovieClip is the familiar class with a
timeline and methods for controlling
the playhead. Because MovieClip is a
subclass of Sprite, you can draw inside
of it, and it can contain child display
objects as well.

Display class Description

 Video

The Video class lives in the flash.media
package, but is also a subclass of
DisplayObject. Video instances are
used to play video, as described in
Chapter 16.

 TextField

The TextField class, found in the
flash.text package, allows the creation
of dynamic and input text fields. See
Chapter 9 for more information.

 Loader
Loader instances are used to load in
external visual assets, such as other
.swf movies or image files.

If you've worked with Flash in the past, transitioning to the display list model is going to take some
time. Old habits are hard to break, and display list programming has a lot of depth. However, once
you get into the swing of things you'll see that the time it takes to learn the new model is well worth
it. The display list dramatically changes Flash display programming for the better.

 Video

The Video class lives in the flash.media
package, but is also a subclass of
DisplayObject. Video instances are
used to play video, as described in
Chapter 16.

 TextField

The TextField class, found in the
flash.text package, allows the creation
of dynamic and input text fields. See
Chapter 9 for more information.

 Loader
Loader instances are used to load in
external visual assets, such as other
.swf movies or image files.

If you've worked with Flash in the past, transitioning to the display list model is going to take some
time. Old habits are hard to break, and display list programming has a lot of depth. However, once
you get into the swing of things you'll see that the time it takes to learn the new model is well worth
it. The display list dramatically changes Flash display programming for the better.

Recipe 6.1. Adding an Item to the Display List

Problem

You want to add a new display object to the display list so it appears on-screen.

Solution

Use the addChild() and addChildAt() methods from the DisplayObectContainer class.

Discussion

The Flash Player is composed of two main pieces that function together to form a cohesive unit, the
ActionScript Virtual Machine (AVM) and the Rendering Engine. The AVM is responsible for executing
ActionScript code, and the Rendering Engine is what draws objects on-screen. Because the Flash
Player is composed of these two main pieces, drawing an object on the screen is a two-step process:

The display object needs to be created in the ActionScript engine.1.

The display object is then created in the rendering engine and drawn on-screen.2.

The first step is done by using the new operator to create an instance of the display object. Any object
that is going to be added to the display list must be either a direct or indirect subclass of
DisplayObject, such as Sprite, MovieClip, TextField, or a custom class you create (according to Recipe
6.4). To create a TextField instance you would use the following code:

var hello:TextField = new TextField();

The preceding line of code creates a TextField display object in the AVM, but the object is not drawn
on the screen yet because the object doesn't exist in the Rendering Engine. To create the object in
the Rendering Engine, the object needs to be added to the display list hierarchy. This can be done by
calling the addChild() or addChildAt() method from a DisplayObjectContainer instance that is itself
already on the display list hierarchy.

The addChild() method takes a single parameterthe display object that the container should add as a
child. The following code is a complete example that demonstrates how to create an object in the
AVM and then create the object in the Rendering Engine by adding it to the display list:

package {

 import flash.display.DisplayObjectContainer;
 import flash.display.Sprite;
 import flash.text.TextField;

 public class DisplayListExample extends Sprite {
 public function DisplayListExample() {
 // Create a display object in the actionscript engine
 var hello:TextField = new TextField();
 hello.text = "hello";

 // Create the display object in the rendering engine
 // by adding it to the display list so that the
 // text field is drawn on the screen
 addChild(hello);
 }
 }
}

Here the DisplayListExample class is the main application class for the .swf movie and it extends the
Sprite class. Because of the class hierarchy described in Figure 6-2, the DisplayListExample is
therefore an indirect subclass of DisplayObjectContainer and is capable of having multiple
DisplayObject instances as children. This allows for the use of the addChild() method to add a display
object as a child in the container.

A TextField display object is created in the DisplayListExample constructor, which creates the object
inside the AVM. At this point, the object won't appear on-screen because the Rendering Engine
doesn't know about it yet. It is only after the object is added to the display listvia the addChild()
method callthat the TextField is displayed.

The addChild() and addChildAt() methods only add display objects as children
of display object containers. They do not necessarily add display objects to the
display list. Children are added to the display list only if the container they are
being added to is on the display list as well.

The following code snippet demonstrates how the addChild() method doesn't guarantee that a
display object is added to the display list. A container is created with some text inside of it, but
because the container is not on the display list, the text is not visible:

// Create a text field to display some text
var hello:TextField = new TextField();
hello.text = "hello";

// Create a container to hold the TextField
var container:Sprite = new Sprite();
// Add the TextField as a child of the container
container.addChild(hello);

To make the text display on-screen, the text container needs to be added to the display list. This is

accomplished by referencing a display object container already on the display list, such as root or
stage, calling addChild(), and passing in the text container display object. Both root and stage are
properties of the DisplayObject class:

// Cast the special root reference as a container and add the
// container that holds the text so it appears on-screen
DisplayObjectContainer(root).addChild(container);

Display object containers are capable of holding multiple children. The container keeps a list of
children internally, and the order of the children in the list determines the visual stacking order on-
screen. Each child has a specific position in the list as specified by an integer index value, much like
an array. Position 0 is the very bottom of the list and is drawn underneath the child at position 1,
which is, in turn, drawn underneath the child at position 2, etc. This is similar to the depth concept
you may be familiar with if you have prior Flash experience, but it's easier to manage. There are no
gaps between position numbers. That is, there can never be children at position 0 and position 2 with
an opening at position 1.

When a new child display object is added via the addChild() method, it is drawn visually on top of all
of the other children in the container because addChild() places the child at the front of the children
list, giving it the next highest position index. To add a child and specify where it belongs in the visual
stacking order at the same time, use the addChildAt() method.

The addChildAt() method takes two parameters: the child display object to add, and the position in
the stacking order that the child should use. Specifying a position of 0 causes the child to be added to
the very bottom of the list and makes the child appear (visually) underneath all of the other children.
If there was previously a child at the position specified, all of the children at and above the position
index are shifted forward by one to allow the child to be inserted. Specifying an invalid position value,
such as a negative value or a number greater than the number of children in the container,
generates a RangeError and causes the child to not be added.

The following example creates three different colored circles. The red and blue circles are added with
the addChild() method, making the blue circle appear on top because it was added after the red
circle. After the two calls to addChild(), the red circle is at position 0 and the blue circle is at position
1. The green circle is then inserted between the two with the addChildAt() method, specifying
position 1 as the location in the list. The blue circle, previously at position 1, is shifted to position 2
and the green circle is inserted at position 1 in its place. The final result is the red circle at position 0
being drawn underneath the green circle at position 1, and the green circle being drawn underneath
blue circle at position 2.

package {
 import flash.display.*;
 public class CircleExample extends Sprite {
 public function CircleExample() {
 // Create three different colored circles and
 // change their coordinates so they are staggered
 // and aren't all located at (0,0).
 var red:Shape = createCircle(0xFF0000, 10);
 red.x = 10;
 red.y = 20;
 var green:Shape = createCircle(0x00FF00, 10);
 green.x = 15;

 green.y = 25;
 var blue:Shape = createCircle(0x0000FF, 10);
 blue.x = 20;
 blue.y = 20;

 // First add the red circle, then add the blue circle (so blue
 // is drawn on top of red)
 addChild(red);
 addChild(blue);

 // Place the green circle between the red and blue circles
 addChildAt(green, 1);
 }

 // Helper function to create a circle shape with a given color
 // and radius
 public function createCircle(color:uint, radius:Number):Shape {
 var shape:Shape = new Shape();
 shape.graphics.beginFill(color);
 shape.graphics.drawCircle(0, 0, radius);
 shape.graphics.endFill();
 return shape;
 }
 }
}

So far we've only talked about adding new items to the display list, but what happens when addChild(
) is used on a child that is already on the display list, as a child of another container? This is the
concept of reparenting. The child is removed from the container that it currently resides in and is
placed in the container that it is being added to.

When you reparent a display object, it is not necessary to remove it first. The
addChild() method takes care of that for you.

The following example shows reparenting in action. A container is created to display red, green, and
blue circles that are all added as children, and the container is added to the display list. Another
container is created and added to the display list as well, and then the red circle is moved from the
first container to the second. Because the second container is visually above the first container in the
display list, all children in the second container appear on top of the children in the first container.
This makes the red circle display ontop of the blue and green ones. The red circle was reparented
from the first container to the second simply by calling the addChild() method.

package {
 import flash.display.*;
 public class DisplayListExample extends Sprite {
 public function DisplayListExample() {
 // Create three different colored circles and
 // change their coordinates so they are staggered

 // and aren't all located at (0,0).
 var red:Shape = createCircle(0xFF0000, 10);
 red.x = 10;
 red.y = 20;
 var green:Shape = createCircle(0x00FF00, 10);
 green.x = 15;
 green.y = 25;
 var blue:Shape = createCircle(0x0000FF, 10);
 blue.x = 20;
 blue.y = 20;

 // Create a container to hold the three circles, and add the
 // circles to the container
 var container1:Sprite = new Sprite();
 container1.addChild(red);
 container1.addChild(green);
 container1.addChild(blue);

 // Add the container to the display list
 addChild(container1);

 // Create a second container and add it the display list
 var container2:Sprite = new Sprite();
 addChild(container2);

 // Reparent the red circle from container 1 to container 2,
 // which has the net effect of the red circle being drawn
 // on top of the green and blue ones.
 container2.addChild(red);
 }

 // Helper function to create a circle shape with a given color
 // and radius
 public function createCircle(color:uint, radius:Number):Shape {
 var shape:Shape = new Shape();
 shape.graphics.beginFill(color);
 shape.graphics.drawCircle(0, 0, radius);
 shape.graphics.endFill();
 return shape;
 }
 }
}

See Also

Recipes 6.2 and 6.4

Recipe 6.2. Removing an Item from the Display List

Problem

You want to remove an item from the display list and consequently remove it from the screen.

Solution

Use the removeChild() and removeChildAt() methods from the DisplayObectContainer class.

Discussion

Recipe 6.1 demonstrates how to add display objects to the display list using the addChild() and
addChildAt() methods. To achieve the opposite effect and remove a child via one of these methods,
use either the removeChild() or removeChildAt() method.

The removeChild() method takes a single parameter, which is a reference to the display object that
should be removed from the container. If an object is supposed to be removed and it isn't a child of
the container, an ArgumentError is thrown:

package {
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.MouseEvent;

 public class RemoveChildExample extends Sprite {

 // Create a local variable to store a reference
 // to the TextField so that we can remove it later
 private var _label:TextField;

 public function RemoveChildExample() {
 _label = new TextField();
 _label.text = "Some Text";

 // Add the hello TextField to the display list
 addChild(_label);

 // When the mouse is clicked anywhere on the stage,
 // remove the label
 stage.addEventListener(MouseEvent.CLICK, removeLabel);
 }

 // Removes the label from this container's display list
 public function removeLabel(event:MouseEvent):void {
 removeChild(_label);
 }
 }
}

The preceding code example creates a local variable label that stores a reference to the TextField
within the class itself. This is a necessary step because the removeChild() method must be passed a
reference to the display object to remove, so label is used to store the reference for later. If label
were not available, extra work would be required to get a reference to the TextField to remove it, or
the removeChildAt() method could be used instead.

In the case whenyou do not have a reference to the display object you want to remove, you can use
the removeChildAt() method. Similar to the addChildAt() method, the removeChildAt() method
takes a single parameterthe index in the container's list of child display objects to remove. The
possible values for the index can range from 0 to numChildren 1. If an invalid index is specified, such
as a negative value or a value greater than the number of children in the container, a RangeError is
thrown and no child7 is removed. Adopting the previous code snippet to use removeChildAt() instead
yields the following:

package {
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.MouseEvent;

 public class DisplayListExample extends Sprite {

 public function DisplayListExample() {
 var label:TextField = new TextField();
 label.text = "Some Text";

 // Add the hello TextField to the display list
 addChild(label);

 // When the mouse is clicked anywhere on the stage,
 // remove the label
 stage.addEventListener(MouseEvent.CLICK, removeLabel);
 }

 // Removes the label from this container's display list
 public function removeLabel(event:MouseEvent):void {
 // Only remove the label if it exists
 if (numChildren > 0) {
 removeChildAt(0);
 }
 }
 }
}

The biggest change by switching to removeChildAt() is that you no longer need to declare label to
store a reference to the TextField so it can be removed later. Instead, when label is added to the
RemoveChildExample container, it is added at position 0. To remove the label display object, simply
remove the child at position 0.

Removing a child display object does not delete it entirely. Instead, it just
removes it from the container and prevents the object from being drawn. To
completely delete the display object, set all references to the object to null.

If you want to remove all of a container's children, combine removeChildAt() with a for loop. Every
container has a numChildren property that indicates how many display objects are in the container's
display list. By looping one time for each child, you can remove each child based on its position in the
container's child list. This is somewhat of a tricky process because of how the position value works.

Whenever a child is removed from a certain position, all of the other children with higher positions
shift their position values down by one to eliminate the gap. For example, consider a container with
three children at positions 0, 1, and 2. When the child at position 0 is removed, the child at position 1
shifts down to position 0 and the child at position 2 shifts down to position 1. Because the position
values change every time a child is removed, there are two ways to handle the removal of all
children:

Always remove the child at position 0.1.

Remove the children backward, starting from the end.2.

In the first case, because there will always be a child at position 0 as long as the display object has
children, you can continue to remove what is at position 0 because it is a new child display object
during each loop iteration.

In the second case, removing the very last child from the container does not cause any children to
adjust their positions. Only children with a higher position value than what is removed are shifted
down by one. The last child has the highest position value within the container; therefore, no other
children need to have their positions adjusted.

The first approach is the one we recommend using, and has been implemented in the
ascb.util.DisplayObjectUtilities class:

package ascb.util {
 import flash.display.*;
 public class DisplayObjectUtilities {
 // Remove all of the children in a container
 public static function removeAllChildren(
 container:DisplayObjectContainer):void {

 // Because the numChildren value changes after every time
 // you remove a child, save the original value so you can
 // count correctly
 var count:int = container.numChildren;

 // Loop over the children in the container and remove them
 for (var i:int = 0; i < count; i++) {
 container.removeChildAt(0);
 }
 }
 }
}

Using the DisplayObjectUtilities.removeAllChildren() method is relatively straight- forward, as shown
here:

package {
 import flash.display.*;
 import ascb.util.DisplayObjectUtilities;

 public class DisplayListExample extends Sprite {

 public function DisplayListExample() {

 // Add some empty sprites
 addChild(new Sprite());
 addChild(new Sprite());

 // Remove all children from this container
 DisplayObjectUtilities.removeAllChildren(this);

 // Demonstrate that all children have been removed - displays: 0
 trace(numChildren);
 }

 }
}

See Also

Recipe 6.1

Recipe 6.3. Moving Objects Forward and Backward

Problem

You want to change the order in which objects are drawn on-screen, moving them either in front of
or behind other display objects.

Solution

Use the setChildIndex() method of the DisplayObectContainer class to change the position of a
particular item. Use the getChildIndex() and getChildAt() methods to query siblings of the item so
the item can be positioned properly relative to them.

Discussion

Recipes 6.1 and 6.2 introduced how the display list model deals with the visual stacking order
(depth). Essentially, every DisplayObjectContainer instance has a list of children, and the order of the
children in this list determines the order in which child display objects are drawn inside of the
container. The children are each given a position index, ranging from 0 to numChildren 1, much like
an array. The child at position 0 is drawn on the bottom, underneath the child at position 1, etc.
There are no empty position values in the list; if there are three children, the children will always
have index values of 0, 1, and 2 (and not, say, 0, 1, and 6).

The setChildIndex() method is provided by DisplayObjectContainer to reorder the children inside the
container. It takes two parameters: a reference to the child to be moved and the child's new position
in the container. The index position specified must be a valid value. Negative values or values too
large will generate a RangeError and the function won't execute properly.

The following example creates three colored circles, with the blue one being drawn on top. The
setChildIndex() method is used to move the blue circle underneath the two other circles, changing
its position from 2 to 0 in the container. The positions of the other children are adjusted accordingly;
red is moved to 1 and green is moved to 2:

package {
 import flash.display.*;
 public class SetChildIndexExample extends Sprite {
 public function SetChildIndexExample() {
 // Create three different colored circles and
 // change their coordinates so they are staggered
 // and aren't all located at (0,0).
 var red:Shape = createCircle(0xFF0000, 10);
 red.x = 10;

 red.y = 20;
 var green:Shape = createCircle(0x00FF00, 10);
 green.x = 15;
 green.y = 25;
 var blue:Shape = createCircle(0x0000FF, 10);
 blue.x = 20;
 blue.y = 20;

 // Add the circles, red has index 0, green 1, and blue 2
 addChild(red);
 addChild(green);
 addChild(blue);

 // Move the blue circle underneath the others by placing
 // it at the very bottom of the list, at index 0
 setChildIndex(blue, 0);
 }

 // Helper function to create a circle shape with a given color
 // and radius
 public function createCircle(color:uint, radius:Number):Shape {
 var shape:Shape = new Shape();
 shape.graphics.beginFill(color);
 shape.graphics.drawCircle(0, 0, radius);
 shape.graphics.endFill();
 return shape;
 }
 }
}

One of the requirements for setChildIndex() is that you know the index value you want to give to a
specific child. When you're sending a child to the back, you use 0 as the index. When you want to
bring a child to the very front, you specify numChildren 1 as the index. But what if you want to move
a child underneath another child?

For example, suppose you have two circlesone green and one blueand you don't know their positions
ahead of time. You want to move the blue circle behind the green one, but setChildIndex() requires
an integer value for the new position. There are no setChildAbove or setChildBelow methods, so the
solution is to use the getChildIndex() method to retrieve the index of a child, and then use that
index to change the position of the other child. The getChildIndex() method takes a display object as
a parameter and returns the index of the display object in the container. If the display object passed
in is not a child of the container, an ArgumentError is thrown.

The following example creates two circlesone green and one blueand uses getChildIndex() on the
green circle so the blue circle can be moved beneath it. By setting the blue circle to the index that the
green circle has, the blue circle takes over the position and the green circle moves to the next higher
position because blue had a higher position initially:

package {
 import flash.display.*;
 public class GetChildIndexExample extends Sprite {

 public function GetChildIndexExample() {
 // Create two different sized circles
 var green:Shape = createCircle(0x00FF00, 10);
 green.x = 25;
 green.y = 25;
 var blue:Shape = createCircle(0x0000FF, 20);
 blue.x = 25;
 blue.y = 25;

 // Add the circles to this container
 addChild(green);
 addChild(blue);

 // Move the blue circle underneath the green circle. First
 // the index of the green circle is retrieved, and then the
 // blue circle is set to that index.
 setChildIndex(blue, getChildIndex(green));
 }

 // Helper function to create a circle shape with a given color
 // and radius
 public function createCircle(color:uint, radius:Number):Shape {
 var shape:Shape = new Shape();
 shape.graphics.beginFill(color);
 shape.graphics.drawCircle(0, 0, radius);
 shape.graphics.endFill();
 return shape;
 }
 }
}

When a child is moved to an index lower than the one it currently has, all children from the target
index up to the one just before the child index will have their indexes increased by 1 and the child is
assigned to the target index. When a child is moved to a higher index, all children from the one just
above the child index up to and including the target index are moved down by 1, and the child is
assigned the target index value.

In general, if object a is above object b, the following code to moves a directly below b:

setChildIndex(a, getChildIndex(b));

Conversely, if object a is below object b, the preceding code moves a directly above b.

So far, we've always been moving around children that we've had a reference to. For example, the
blue variable referenced the display object for the blue circle, and we were able to use this variable

to change the index of the blue circle. What happens when you don't have a reference to the object
you want to move, and the blue variable doesn't exist? The setChildIndex() method requires a

reference to the object as its first parameter, so you'll need to get the reference somehow if it isn't
available with a regular variable. The solution is to use the getChildAt() method.

The getChildAt() method takes a single argument, an index in the container's children list, and
returns a reference to the display object located at that index. If the specified index isn't a valid index
in the list, a RangeError is thrown.

The following example creates several circles of various colors and sizes and places them at various
locations on the screen. Every time the mouse is pressed, the child at the very bottom is placed on
top of all of the others:

package {
 import flash.display.*;
 import flash.events.*;
 public class GetChildAtExample extends Sprite {
 public function GetChildAtExample() {
 // Define a list of colors to use
 var color:Array = [0xFF0000, 0x990000, 0x660000, 0x00FF00,
 0x009900, 0x006600, 0x0000FF, 0x000099,
 0x000066, 0xCCCCCC];
 // Create 10 circles and line them up diagonally
 for (var i:int = 0; i < 10; i++) {
 var circle:Shape = createCircle(color[i], 10);
 circle.x = i;
 circle.y = i + 10; // the + 10 adds padding from the top

 addChild(circle);
 }

 stage.addEventListener(MouseEvent.CLICK, updateDisplay);
 }

 // Move the circle at the bottom to the very top
 public function updateDisplay(event:MouseEvent):void {
 // getChildAt(0) returns the display object on the
 // very bottom, which then gets moved to the top
 // by specifying index numChildren - 1 in setChildIndex
 setChildIndex(getChildAt(0), numChildren - 1);
 }

 // Helper function to create a circle shape with a given color
 // and radius
 public function createCircle(color:uint, radius:Number):Shape {
 var shape:Shape = new Shape();
 shape.graphics.beginFill(color);
 shape.graphics.drawCircle(0, 0, radius);
 shape.graphics.endFill();
 return shape;
 }
 }
}

See Also

Recipes 6.1 and 6.2

Recipe 6.4. Creating Custom Visual Classes

Problem

You want to create a new type of DisplayObject.

Solution

Create a new class that extends DisplayObject or one of its subclasses so it can be added into a
display object container via addChild() or addChildAt().

Discussion

Among the benefits of moving toward the display list model is the ease of creating new visual classes.
In the past, it was possible to extend MovieClip to create custom visuals, but there always had to be
a MovieClip symbol in the library linked to the ActionScript class to create an on-screen instance via
attachMovie(). Creating a custom visual could never be done entirely in ActionScript. With the
display list model, the process has been simplified, allowing you to do everything in pure ActionScript
code in a much more intuitive manner.

In the display list model, as discussed in the introduction of this chapter, there are many more
display classes available besides just MovieClip. Before you create your custom visual, you need to
decide which type it is going to be. If you're just creating a custom shape, you'll want to extend the
Shape class. If you're creating a custom button, you'll probably want to extend SimpleButton. If you
want to create a container to hold other display objects, Sprite is a good choice if you don't require
the use of a timeline. If you need a timeline, you'll need to subclass MovieClip.

All of the available display object classes are tailored for specific purposes. It's best to decide what
purpose your own visual class is going to serve, and then choose the appropriate parent class based
on that. By choosing the parent class carefully you optimize size and resource overhead. For
example, a simple Circle class doesn't need to subclass MovieClip because it doesn't need the
timeline. The Shape class is the better choice in this case because it's the most lightweight option
that appropriately fits the concept of a circle.

Once the base class has been decided, all you need to do is write the code for the class. Let's follow
through with the circle example and create a new Circle class that extends the Shape display object.
In a new ActionScript file named Circle.as, enter the following code:

package {
 import flash.display.Shape;

 /* The Circle class is a custom visual class */

 public class Circle extends Shape {

 // Local variables to store the circle properties
 private var _color:uint;
 private var _radius:Number;

 /*
 * Constructor: called when a Circle is created. The default
 * color is black, and the default radius is 10.
 */
 public function Circle(color:uint = 0x000000, radius:Number = 10) {
 // Save the color and radius values
 _color = color;
 _radius = radius;

 // When the circle is created, automatically draw it
 draw();
 }

 /*
 * Draws the circle based on the color and radius values
 */
 private function draw():void {
 graphics.beginFill(_color);
 graphics.drawCircle(0, 0, _radius);
 graphics.endFill();
 }
 }
}

The preceding code defines a new Circle display object. When a Circle instance is created, you can
specify both a color and a radius in the constructor. Methods from the Drawing API (discussed in
Recipe 7.3) are used to create the body of the circle with the graphics property, which is inherited
from the superclass Shape.

It is always a good idea to separate all drawing code into a separate draw()
method. The constructor for Circle does not draw the circle directly, but it calls
the draw() method to create the visual elements.

All that is left to do is create new instances of our custom Circle class and add them to the display list
with addChild() or addChildAt() so they appear on-screen. To create new instances of the class, use
the new keyword. The following code example creates a few Circle instances and displays them on the
screen:

package {
 import flash.display.Sprite;
 public class UsingCircleExample extends Sprite {
 public function UsingCircleExample() {
 // Create some circles with the Circle class and

 // change their coordinates so they are staggered
 // and aren't all located at (0,0).
 var red:Circle = new Circle(0xFF0000, 10);
 red.x = 10;
 red.y = 20;
 var green:Circle = new Circle(0x00FF00, 10);
 green.x = 15;
 green.y = 25;
 var blue:Circle = new Circle(0x0000FF, 10);
 blue.x = 20;
 blue.y = 20;

 // Add the circles to the display list
 addChild(red);
 addChild(green);
 addChild(blue);
 }
 }
}

See Also

Recipes 6.1 and 7.3

Recipe 6.5. Creating Simple Buttons

Problem

You want to create an interactive button that enables a user to click and perform an action, such as
submitting a form or calculating a total.

Solution

Create an instance of the SimpleButton class and create display objects for upState, downState,
overState, and hitTestState. Alternatively, create a subclass of SimpleButton that describes your
desired button behavior.

Use the click event to invoke a method whenever the user presses the button.

Discussion

The display list model provides an easy way to create buttons through the SimpleButton class. The
SimpleButton class allows a user to interact with the display object using their mouse, and makes it
easy for you to define that interaction through various button states. The possible button states,
listed here, are available as properties of the SimpleButton class:

upState

A display object for the default "up" state of the button. The "up" state is shown whenever the
mouse is not over the button.

overState

A display object that determines what the button looks like when the mouse moves over the
button. When the mouse leaves the button area, the button moves back to the "up" state.

downState

A display object that's shown when the button is pressed (or clicked) "down". When the button
is in the "over" state, the "down" state displays when the user presses the left mouse button.

hitTestState

A display object that defines a button's bounds. When the mouse moves inside of the button's
hit area, the button enters the "over" state. The hitTestState is typically set to the same
display object as the upState. The hitTestState is never actually displayed on-screen; it is only
used for mouse tracking purposes.

A button's state is handled by the SimpleButton class, and is based on movement of the user's
mouse. You don't have control over setting the internal button state (up, down, or over). Rather, you
can only control which display object should appear when the button is in a particular state. By
setting the state properties to different display objects, you can provide feedback to the user as they
interact with the button using their mouse.

The following example creates a new SimpleButton instance and defines button states using the four
state properties defined earlier. Because each state property of the button needs to be set to a
DisplayObject instance, the helper method createCircle() is used to create different colored circle
shapes to be used for the various button states:

package {
 import flash.display.*;
 import flash.events.*;

 public class SimpleButtonDemo extends Sprite {
 public function SimpleButtonDemo() {
 // Create a simple button and configure its location
 var button:SimpleButton = new SimpleButton();
 button.x = 20;
 button.y = 20;

 // Create the different states of the button, using the
 // helper method to create different colors circles
 button.upState = createCircle(0x00FF00, 15);
 button.overState = createCircle(0xFFFFFF, 16);
 button.downState = createCircle(0xCCCCCC, 15);
 button.hitTestState = button.upState;

 // Add an event listener for the click event to be notified
 // when the user clicks the mouse on the button
 button.addEventListener(MouseEvent.CLICK, handleClick);

 // Finally, add the button to the display list
 addChild(button);
 }

 // Helper function to create a circle shape with a given color
 // and radius
 private function createCircle(color:uint, radius:Number):Shape {
 var circle:Shape = new Shape();
 circle.graphics.lineStyle(1, 0x000000);
 circle.graphics.beginFill(color);
 circle.graphics.drawCircle(0, 0, radius);
 circle.graphics.endFill();
 return circle;

 }

 // Event handler invoked whenever the user presses the button
 private function handleClick(event:MouseEvent):void {
 trace("Mouse clicked on the button");
 }
 }
}

After running the preceding code block, a green circle appears in the movie. When you move your
mouse over the green circle, a slightly bigger white circle appears as a rollover. When you click the
white circle, it turns into a slightly smaller gray circle. This visual effect is created by the
SimpleButton instance changing its state based on the actions of your mouse, switching between the
display objects defined in the four state properties.

To listen for events from the button instance, the addEventListener() method is used as described in
Recipe 1.5. The click event, specified with MouseEvent.CLICK, is handled in the preceding code by the
handleClick() method. Anytime the user clicks the button instance, the handleClick() method is
invoked, allowing certain actions to take place. In this simple example, a short message ("Mouse
clicked on the button") is displayed to the console.

The hitTestState property is perhaps the most interesting of the button's state properties. You'll
notice that the preceding code sets the hitTestState to be the same display object that defines the
upState. It is typical to do this because buttons should be activated when the user's mouse is within
the bounds of the upState display object.

Although the hitTestState is never visible, failure to set the hitTestState to a
display object results in a button that can't be interacted with. Always
remember to set the hitTestState of your SimpleButton, even if you simply set
it to the same value as upState.

The hitTestState can be set to any display when you'd like to control the active bounds of a button.
To create a larger hit area for the button, try modifying the previous code segment to set the
hitTestState via this line:

button.hitTestState = createCircle(0x000000, 50);

When running this example, you'll notice that the button displays the white "over" circle before the
mouse even enters the area of the green circle, contrary to previous behavior. This is because the hit
area was increased to a circle of radius 50, giving a larger target area for the user's mouse. You
might also notice that black (0x000000) was specified as the color for the hit area circle. This was
done on purpose to reinforce the fact that the hit area display object is never visible.

An alternate approach to creating a SimpleButton and setting the four display states for every button
is to create a subclass of SimpleButton that defines your button's visual style and creates instances
of that instead. Recipe 6.4 describes how to create new visual classes. Following this technique, you
can create your own version of a SimpleButton, making it easier to add multiple buttons to your
movie.

The following code creates a new RectangleButton class. The RectangleButton class defines the
behavior for a special type of SimpleButton that draws a green rectangle with some text on top of it:

package {
 import flash.display.*
 import flash.text.*;
 import flash.filters.DropShadowFilter;

 public class RectangleButton extends SimpleButton {
 // The text to appear on the button
 private var _text:String;
 // Save the width and height of the rectangle
 private var _width:Number;
 private var _height:Number;

 public function RectangleButton(text:String, width:Number, height:Number) {
 // Save the values to use them to create the button states
 _text = text;
 _width = width;
 _height = height;

 // Create the button states based on width, height, and text value
 upState = createUpState();
 overState = createOverState();
 downState = createDownState();
 hitTestState = upState;
 }

 // Create the display object for the button's up state
 private function createUpState():Sprite {
 var sprite:Sprite = new Sprite();

 var background:Shape = createdColoredRectangle(0x33FF66);
 var textField:TextField = createTextField(false);

 sprite.addChild(background);
 sprite.addChild(textField);

 return sprite;
 }

 // Create the display object for the button's up state
 private function createOverState():Sprite {
 var sprite:Sprite = new Sprite();

 var background:Shape = createdColoredRectangle(0x70FF94);
 var textField:TextField = createTextField(false);

 sprite.addChild(background);
 sprite.addChild(textField);

 return sprite;

 }

 // Create the display object for the button's down state
 private function createDownState():Sprite {
 var sprite:Sprite = new Sprite();

 var background:Shape = createdColoredRectangle(0xCCCCCC);
 var textField:TextField = createTextField(true);

 sprite.addChild(background);
 sprite.addChild(textField);

 return sprite;
 }

 // Create a rounded rectangle with a specific fill color
 private function createdColoredRectangle(color:uint):Shape {
 var rect:Shape = new Shape();
 rect.graphics.lineStyle(1, 0x000000);
 rect.graphics.beginFill(color);
 rect.graphics.drawRoundRect(0, 0, _width, _height, 15);
 rect.graphics.endFill();
 rect.filters = [new DropShadowFilter(2)];
 return rect;
 }

 // Create the text field to display the text of the button
 private function createTextField(downState:Boolean):TextField {
 var textField:TextField = new TextField();
 textField.text = _text;
 textField.width = _width;

 // Center the text horizontally
 var format:TextFormat = new TextFormat();
 format.align = TextFormatAlign.CENTER;
 textField.setTextFormat(format);

 // Center the text vertically
 textField.y = (_height - textField.textHeight) / 2;
 textField.y -= 2; // Subtract 2 pixels to adjust for offset

 // The down state places the text down and to the right
 // further than the other states
 if (downState) {
 textField.x += 1;
 textField.y += 1;
 }

 return textField;
 }
 }
}

Because all of the button drawing is encapsulated into its own reusable class, creating new button
instances is much easier. Instead of having to create a SimpleButton and define the button states by
hand for each instance, you can simply create a new RectangleButton instance and add that to the
display list.

The following example shows how to create three different rectangular buttons using this new
instance:

package {
 import flash.display.*;
 public class SimpleButtonDemo extends Sprite {
 public function SimpleButtonDemo() {

 // Create three rectangular buttons with different text and
 // different sizes, and place them at various locations within
 // the movie

 var button1:RectangleButton = new RectangleButton("Button 1", 60, 100);
 button1.x = 20;
 button1.y = 20;

 var button2:RectangleButton = new RectangleButton("Button 2", 80, 30);
 button2.x = 90;
 button2.y = 20;

 var button3:RectangleButton = new RectangleButton("Button 3", 100, 40);
 button3.x = 100;
 button3.y = 60;

 // Add the buttons to the display list so they appear on-screen
 addChild(button1);
 addChild(button2);
 addChild(button3);
 }
 }
}

See Also

Recipes 1.5, 6.1, 6.4, and 6.8

Recipe 6.6. Loading External Images at Runtime

Problem

You want to load an external image into a movie while it plays.

Solution

Use the new Loader class to load an image (.jpg , progressive .jpg , .png , or .gif) and display it on-
screen.

Discussion

Recipe 9.17 demonstrates how to embed external assets into a movie at compile time via the [Embed]
metadata tag. To load external images or movies at runtime during the playback of a .swf , the
Loader class needs to be used.

The flash.display.Loader class is very similar to the flash.net.URLLoader class discussed in Recipe
19.3 . One of the key differences is that Loader instances are able to load external images and
movies and display them on-screen, whereas URLLoader instances are useful for transferring data.

There are three fundamental steps for loading external content:

Create an instance of the Loader class.1.

Add the Loader instance to the display list.2.

Call the load() method to pull in an external asset.3.

The load() method of the Loader class is responsible for downloading the image or .swf file. It takes
a single URLRequest object as a parameter that specifies the URL of the asset to download and
display.

The following is a small example of using a Loader instance to download an image named image.jpg
at runtime. The code in the LoaderExample constructor has been commented to coincide with the
three basic loading steps previously outlined:

package {
 import flash.display.*;
 import flash.net.URLRequest;
 public class LoaderExample extends Sprite {
 public function LoaderExample() {

 // 1. Create an instance of the Loader class
 var loader:Loader = new Loader();
 // 2. Add the Loader instance to the display list
 addChild(loader);
 // 3. Call the load() method to pull in an external asset
 loader.load(new URLRequest("image.jpg"));
 }
 }
}

When running this code, the Flash Player looks for image.jpg in the same directory that the .swf
movie is being served from because the URLRequest object uses a relative URL. Either a relative or
absolute URL can be used to point to the location of the target to load, but the actual loading of the
asset is governed by Flash Player's security sandbox, as discussed in Recipe 3.12 . As soon as the
asset has downloaded, it is automatically added as a child of the Loader instance.

When loading external assets, it's possible that something could go wrong during the loading process.
For instance, perhaps the URL is pointing to the incorrect location due to a spelling mistake, or
there's a security sandbox violation that won't allow the asset to be loaded. Or, it's possible that the
asset is large and is going to take a long time download. Rather than just having an empty screen
while the asset downloads, you'd like to show a preloader to inform the user of the download
progress.

In these situations, you should add event listeners to the contentLoaderInfo property of the Loader
instance to be able to respond to the different events as they occur. The contentLoaderInfo property
is an instance of the flash.display.LoaderInfo class, designed to provide information about the target
being loaded. The following is a list of useful events dispatched by instances of the LoaderInfo class
and what those events mean:

open

Generated when the asset has started downloading.

progress

Generated when progress has been made while downloading the asset.

complete

Generated when the asset has finished downloading.

init

Generated when the properties and methods of a loaded external .swf are available.

httpStatus

Generated when the status code for a failed HTTP request is detected when attempting to load
the asset.

ioError

Generated when a fatal error occurs that results in an aborted download, such as not being
able to find the asset.

securityError

Generated when data you're trying to load resides outside of the security sandbox.

unload

Generated when either the unload() method is called to remove the loaded content or the
load() method is called again to replace content that already has been loaded.

The following example demonstrates listening for the various download progress related events when
loading an image:

package {
 import flash.display.*;
 import flash.text.*;
 import flash.net.URLRequest;
 import flash.events.*;

 public class LoaderExample extends Sprite {
 public function LoaderExample() {
 // Create the loader and add it to the display list
 var loader:Loader = new Loader();
 addChild(loader);

 // Add the event handlers to check for progress
 loader.contentLoaderInfo.addEventListener(Event.OPEN, handleOpen);
 loader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS, handleProgress);
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, handleComplete);

 // Load in the external image
 loader.load(new URLRequest("image.jpg"));
 }

 private function handleOpen(event:Event):void {
 trace("open");
 }

 private function handleProgress(event:ProgressEvent):void {
 var percent:Number = event.bytesLoaded / event.bytesTotal * 100;
 trace("progress, percent = " + percent);
 }

 private function handleComplete(event:Event):void {
 trace("complete");
 }
 }
}

When running the preceding code, you'll see the open message appear in the console window
followed by one or more progress messages displaying the current percent loaded, followed by the
complete message signaling that the download finished successfully.

By placing code in the event handlers for these events, you can show the progress of a download as
it's being loaded. For instance, the handleOpen() method would be in charge of creating the
preloader and adding it to the display list. The handleProgress() method would update the
percentage value of the preloader, such as setting the text of a TextField instance to the percent
value. Finally, the handleComplete() method would perform "clean up" and remove the preloader,
since the asset is fully downloaded. Focusing on those methods, the code might look something like
this:

private function handleOpen(event:Event):void {
 // Create a simple text-based preloader and add it to the
 // display list
 _loaderStatus = new TextField();
 addChild(loaderStatus);
 _loaderStatus.text = "Loading: 0%";
}

private function handleProgress(event:ProgressEvent):void {
 // Update the loading % to inform the user of progress
 var percent:Number = event.bytesLoaded / event.bytesTotal * 100;
 _loaderStatus.text = "Loading: " + percent + "%";
}

private function handleComplete(event:Event):void {
 // Clean up - preloader is no longer necessary
 removeChild(loaderStatus);
 _loaderStatus = null;
}

The preceding code snippet assumes that there is a _loaderStatus variable as part of the class, with
type TextField :

private var _loaderStatus:TextField;

Instead of messages appearing via the trace() statement as before, modifying the event handlers
allows the loading information to be presented inside of the movie itself. This allows users to see the
information directly and provides a better experience when loading large external assets.

See Also

Recipes 3.12 , 6.7 , 9.17 , and 19.3

Recipe 6.7. Loading and Interacting with External Movies

Problem

You want to load, and be able to interact with, an external .swf movie into your own movie.

Solution

Use the new Loader class to load the .swf file, and then access the .swf file via the content property
of the Loader instance.

Discussion

Recipe 6.6 demonstrates how to load external images via the Loader class. Loading external .swf
movies uses the same techniqueby calling the load() method on a Loader instance and passing a
URL to a .swf instead of an image, the .swf is loaded into the movie. If the Loader is in the main
display hierarchy, the .swf also appears on-screen.

This recipe involves creating two separate .swf files, ExternalMovie.swf and LoaderExample.swf. The
first movie, ExternalMovie.swf, will be loaded at runtime into the second movie, LoaderExample.swf.
The code for ExternalMovie.swf is as follows:

package {
 import flash.display.Sprite;
 import flash.display.Shape;
 public class ExternalMovie extends Sprite {
 private var _color:uint = 0x000000;
 private var _circle:Shape;

 public function ExternalMovie() {
 updateDisplay();
 }

 private function updateDisplay():void {
 // If the circle hasn't been created yet, create it
 // and make it visible by adding it to the display list
 if (_circle == null) {
 _circle = new Shape();
 addChild(_circle);
 }

 // Clear any previously drawn content and draw

 // a new circle with the fill color
 _circle.graphics.clear();
 _circle.graphics.beginFill(_color);
 _circle.graphics.drawCircle(100, 100, 40);
 }

 // Changes the color of the circle
 public function setColor(color:uint):void {
 _color = color;
 updateDisplay();
 }

 // Gets the current circle color value
 public function getColor():uint {
 return _color;
 }

 }
}

The code for ExternalMovie.swf is nothing out of the ordinarya black circle is created when the movie
is executed. The main thing to notice about the code is that there are two public methods for
accessing and modifying the color of the circle, getColor() and setColor(). Whenever the setColor()
method is invoked, the circle is redrawn with the updated color value.

By declaring these methods as public, the methods are able to be called from a movie that loads the
ExternalMovie.swf in at runtime. In contrast, the private updateDisplay() method won't be available
to the loading movie. See Recipe 1.13 for more information about the visibility modifiers for methods.

Now that ExternalMovie.swf is created, a new .swf needs to be created to load the external movie.
This is done with LoaderExample.swf, which has the following code:

package {
 import flash.display.*;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class LoaderExample extends Sprite {

 private var _loader:Loader;

 public function LoaderExample() {
 // Create the Loader and add it to the display list
 _loader = new Loader();
 addChild(_loader);

 // Add the event handler to interact with the loaded movie
 _loader.contentLoaderInfo.addEventListener(Event.INIT, handleInit);

 // Load the external movie

 _loader.load(new URLRequest("ExternalMovie.swf"));
 }

 // Event handler called when the externally loaded movie is
 // ready to be interacted with
 private function handleInit(event:Event):void {
 // Typed as * here because the type is not known at compile-time.
 var movie:* = _loader.content;

 // Calls a method in the external movie to get data out
 // Displays: 0
 trace(movie.getColor());

 // Calls a method in the external movie to set data.
 // Sets the color in the external movie, which draws
 // a circle with the new color, in this case red
 movie.setColor(0xFF0000);
 }
 }
}

The code for LoaderExample.swf is more interesting in that it communicates with the loaded movie.
There are two main aspects in the preceding code:

Listening for the init event1.

Accessing the loaded movie via the content property2.

The init event is fired when the loaded movie has initialized enough that its methods and properties
are available to be interacted with. The movie can be controlled only after the init event has been
fired from the loader. Attempting to interact with a loaded movie before it has initialized will generate
runtime errors.

To control the loaded movie, you'll first need to get a reference to it. This is done via the content
property of the Loader class. In the preceding code, the loader variable refers to the Loader that
pulled in the external .swf file, so you can access the movie via loader.content. If the loader variable
weren't available, the event.target.content path could be used instead to get to the contents of the
Loader. This is because event.target refers to the instance that generated the event, which is the
same instance that the loader variable refers to.

The content property is read-only, and returns an object of type DisplayObject. In the
LoaderExample.swf code, you'll notice that instead of typing the movie variable as a DisplayObject,
the same type as what the content property returns, the * type was used. This is necessary because
trying to call the getColor() or setColor() methods on the movie reference generates compile-time
errors if movie is typed as a DisplayObject.

The movie being loaded, ExternalMovie.swf, has two public methods available for interaction. These
methods are not part of the DisplayObject class; therefore, trying to call one of the methods from a
variable of type DisplayObject is an error. The * type allows you to call any method that you'd like on
the loaded movie. If the method does not exist in the loaded movie, a ReferenceError is thrown

during execution.

The getColor() method returns the color of the circle in ExternalMovie.swf to LoaderExample.swf.
The LoaderExample.swf reports the color as 0, which is the same as 0x000000, or the color black. The
setColor() method allows LoaderExample.swf to change the color of the circle drawn by
ExternalMovie.swf. In this case, the color of the circle is set to red, and you can see that the
ExternalMovie.swf updates the display after the new circle color value is set.

It is only possible to interact with .swf files of Version 9 and above using this
technique. When loading Version 8 and below .swf files, this technique won't
work because ActionScript 3.0 code runs independently of ActionScript 1.0 and
2.0. Communication with these .swf files is not trivial and involves using
LocalConnection as a workaround to send and receive messages. See Chapter
19 for details.

See Also

Recipes 1.13 and 6.6

Recipe 6.8. Creating Mouse Interactions

Problem

You want users to interact with your movie using their mouse.

Solution

Use the various mouse events to listen for mouse interactions on display objects of type
InteractiveObject. Use the read-only mouseX and mouseY properties from DisplayObject to examine the
mouse location relative to a display object, or the localX and localY properties from the MouseEvent
passed to a mouse event handler.

Discussion

Basic mouse interaction can be created with the SimpleButton class, as described in Recipe 6.5. The
SimpleButton class provides an easy way to create a clickable button with different button visual
states: up, over, and down.

However, there are times when buttons just don't provide enough interactivity. By listening to the
various mouse events, you can create interesting interactive experiences. For instance, consider that
you want to track the mouse cursor to create an interactive drawing program, drawing lines on-
screen based on the user's mouse movement. Or, consider that you have a maze that a user must
navigate their mouse through without colliding with the walls to find the exit. Or, perhaps the user's
mouse movement needs to control the direction of a golf club, and the mouse button is used to
swing.

These situations require use of the special InteractiveObject display object, which provides the ability
to respond to the user's mouse. If you go back to the introduction for this chapter, you'll recall that
the InteractiveObject class is a base class fairly high in the display object class hierarchy. Because of
this, the Sprite, Loader, TextField, and MovieClip classes are all examples of the InteractiveObject
class since they fall underneath InteractiveObject in the hierarchy, and you may already be familiar
with their use.

Instances of the InteractiveObject dispatch the necessary events specific to mouse interaction. The
following is a list of more useful mouse events:

click

Generated when the user presses and releases the mouse button over the interactive display

object.

doubleClick

Generated when the user presses and releases the mouse button twice in rapid succession over
the interactive display object.

mouseDown

Generated when the user presses the mouse button over the interactive display object.

mouseUp

Generated when the user releases the mouse button over the interactive display object.

mouseOver

Generated when the user moves the mouse pointer from outside of the bounds of interactive
display object to inside of them.

mouseMove

Generated when the user moves the mouse pointer while the pointer is inside the bounds of
the interactive display object.

mouseOut

Generated when the user moves the mouse pointer from inside the bounds of an interactive
display object to outside of them.

mouseWheel

Generated when the user rotates the mouse wheel while the mouse pointer is over the
interactive display object.

Using these events is simply a matter of calling addEventListener() on the InteractiveObject and
defining an event handler to handle the MouseEvent passed to it.

The following code snippet creates a Sprite, draws a red circle inside of it, and outputs a message to
the console whenever the mouse moves over the circle:

package {
 import flash.display.Sprite;
 import flash.events.*;
 import flash.geom.Point;

 public class InteractiveMouseDemo extends Sprite {

 public function InteractiveMouseDemo() {
 var circle:Sprite = new Sprite();
 circle.x = 10;
 circle.y = 10;
 circle.graphics.beginFill(0xFF0000);
 circle.graphics.drawCircle(0, 0, 5);
 circle.graphics.endFill();

 circle.addEventListener(MouseEvent.MOUSE_MOVE, handleMouseMove);

 addChild(circle);
 }

 // Event handle to capture the move event over the circle
 private function handleMouseMove(event:MouseEvent):void {
 trace("mouse move");
 }
 }
}

In this example, notice that the message appears only when the mouse is moved while the pointer is
over the circle. The circle defines the bounds for the Sprite in this case.

Mouse events are generated from a particular interactive display object only
when the pointer is within the bounds of that object.

Another common use of mouse events stems from wanting to inspect the location of the mouse
pointer to create mouse interactivity. For example, to draw a line with the mouse, the mouse location
needs to be known so the line can be plotted accurately. There are two ways to determine the
location of the mouse pointer:

Using the mouseX and mouseY properties available on any DisplayObject instance.

Using the localX and localY properties available from the MouseEvent instance passed to the
mouse event handler.

The mouseX and mouseY properties can be inspected to determine the location of the mouse cursor
relative to the top-left corner of the DisplayObject. Both of the properties are read-only; it is not
possible to set the location of the mouse cursor, only to examine the location.

So, imagine that a rectangle is at x location 20 and y location 50 and the user moves the mouse
pointer to x location 25 and y location 60. The mouseX property of the rectangle returns 5 and mouseY
of the rectangle reports 10 because from the rectangle's perspective, the mouse is 5 pixels in from
the left and 10 pixels down from the top.

The localX and localY properties of the MouseEvent are also relative. In the MouseEvent case, the
properties are relative to interactive display object that dispatched the event. Therefore, consider

that a rectangle reports mouseX of 10 and dispatches a mouseMove event. The event's localX property
is also 10.

To get the global position of the mouse from local coordinates, use the localToGlobal() method of the
DisplayObject class. The localToGlobal() method takes flash.geom.Point as a parameter that
specifies the local coordinates, and returns a new Point with the coordinates converted to the global
space. The following code snippet focuses on the event handler and demonstrates how to convert
localX and localY to global coordinates:

// Event handler to respond to a mouseMove event
private function handleMouseMove(event:MouseEvent):void {
 /* Displays:
 local x: 3.95
 local y: 3.45
 */
 trace("local x: " + event.localX);
 trace("local y: " + event.localY);

 // Create the point that localToGlobal should convert
 var localPoint:Point = new Point(event.localX, event.localY);
 // Convert from the local coordinates of the display object that
 // dispatched the event to the global stage coordinates
 var globalPoint:Point = event.target.localToGlobal(localPoint);

 /* Displays:
 global x: 13.95
 global y: 13.45
 */
 trace("global x: " + globalPoint.x);
 trace("global y: " + globalPoint.y);
}

A complete working example of creating interactivity through handling the various mouse events can
be demonstrated by the simple drawing program that follows. Whenever the mouse is pressed, the
drawing starts. As the user moves the mouse around the screen, a line is drawn that follows the
movement of the mouse pointer. When the user releases the mouse button, the drawing stops:

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 public class DrawingDemo extends Sprite {

 // Flag to indicate whether the mouse is in draw mode
 private var _drawing:Boolean;

 public function DrawingDemo() {
 // Configure the line style
 graphics.lineStyle(2, 0xFFCC33);

 // Drawing is false until the user presses the mouse
 _drawing = false;

 // Add the mouse listeners on the stage object to be
 // notfied of any mouse event that happens while the
 // mouse is over the entire movie
 stage.addEventListener(MouseEvent.MOUSE_DOWN, startDrawing);
 stage.addEventListener(MouseEvent.MOUSE_MOVE, draw);
 stage.addEventListener(MouseEvent.MOUSE_UP, stopDrawing);
 }

 public function startDrawing(event:MouseEvent):void {
 // Move to the current mouse position to be ready for drawing
 graphics.moveTo(mouseX, mouseY);
 _drawing = true;
 }

 public function draw(event:MouseEvent):void {
 if (_drawing) {
 // Draw a line from the last mouse position to the
 // current one
 graphics.lineTo(mouseX, mouseY);
 }
 }

 public function stopDrawing(event:MouseEvent):void {
 _drawing = false;
 }

 }
}

See Also

Recipes 6.5, 6.9, and Chapter 7

Recipe 6.9. Dragging and Dropping Objects with the
Mouse

Problem

You want to provide a drag-and-drop-style interface.

Solution

Use startDrop(), stopDrag() and dropTarget from the Sprite class to implement drag-and-drop
behavior. Alternatively, extend the ascb.display.DraggableSprite class for visually smoother dragging
behavior using the drag() and drop() methods.

Discussion

Creating drag-and-drop behavior is not as difficult as you might think. The Sprite class includes
methods specifically for the purpose of drag and drop, namely startDrag() and stopDrag().

The startDrag() method can be called on any Sprite instance to have it follow the mouse around the
screen, creating the dragging effect. To stop dragging, call the stopDrag() method on the Sprite
instance. After the drag operation is complete, you can examine the dropTarget property of the
Sprite to determine the object that the Sprite was dropped on. The value of dropTarget is useful for
determining if a drop operation is valid (such as dropping a folder icon on a trashcan to delete it).

When calling startDrag(), you don't have to specify any parameters; however, the method accepts
up to two parameters. The parameters are:

lockCenter

When TRue the center of the Sprite is locked to the mouse position regardless of where the user
pressed the mouse. When false the Sprite follows the mouse from the location where the user
first clicked. The default value is false.

bounds

The Rectangle region where you want to constrain dragging. The Sprite is not capable of being
dragged outside of this region. The default value is null, meaning there is no area constraint.

The following code example uses these methods to set up a simple drag-and-drop behavior. There

are three rectangles on the left capable of being dragged: red, green, and blue. The rectangle on the
right is white, and serves as the target area where you drop the color rectangles. Dragging and
dropping a colored rectangle onto the white rectangle colorizes the white rectangle the same color of
the rectangle that was dropped onto it:

package {
 import flash.display.Sprite;
 import flash.display.DisplayObject;
 import flash.events.MouseEvent;
 import flash.geom.Point;
 import flash.filters.DropShadowFilter;

 public class ColorDrop extends Sprite {

 private var _red:Sprite;
 private var _green:Sprite;
 private var _blue:Sprite;
 private var _white:Sprite;

 // Saves the starting coordinates of a dragging Sprite so
 // it can be placed back
 private var startingLocation:Point;

 // Create the rectangles that comprise the interface
 // and wire the mouse events to make them interactive
 public function ColorDrop() {
 createRectangles();
 addEventListeners();
 }

 private function createRectangles():void {
 _red = new Sprite();
 _red.graphics.beginFill(0xFF0000);
 _red.graphics.drawRect(0, 10, 10, 10);
 _red.graphics.endFill();

 _green = new Sprite()
 _green.graphics.beginFill(0x00FF00);
 _green.graphics.drawRect(0, 30, 10, 10);
 _green.graphics.endFill();

 _blue = new Sprite();
 _blue.graphics.beginFill(0x0000FF);
 _blue.graphics.drawRect(0, 50, 10, 10);
 _blue.graphics.endFill();

 _white = new Sprite();
 _white.graphics.beginFill(0xFFFFFF);
 _white.graphics.drawRect(20, 10, 50, 50);
 _white.graphics.endFill();

 addChild(_red);

 addChild(_green);
 addChild(_blue);
 addChild(_white);
 }

 private function addEventListeners():void {
 _red.addEventListener(MouseEvent.MOUSE_DOWN, pickup);
 _red.addEventListener(MouseEvent.MOUSE_UP, place);

 _green.addEventListener(MouseEvent.MOUSE_DOWN, pickup);
 _green.addEventListener(MouseEvent.MOUSE_UP, place);

 _blue.addEventListener(MouseEvent.MOUSE_DOWN, pickup);
 _blue.addEventListener(MouseEvent.MOUSE_UP, place);
 }

 public function pickup(event:MouseEvent):void {
 // Save the original location so you can put the target back
 startingLocation = new Point();
 startingLocation.x = event.target.x;
 startingLocation.y = event.target.y;

 // Start dragging the Sprite that was clicked on and apply
 // a drop shadow filter to give it depth
 event.target.startDrag();
 event.target.filters = [new DropShadowFilter()];

 // Bring the target to front of the display list so
 // it appears on top of everything else
 setChildIndex(DisplayObject(event.target), numChildren - 1);
 }

 public function place(event:MouseEvent):void {
 // Stop dragging the Sprite around and remove the depth
 // effect (i.e., the drop shadow) from the filter
 event.target.stopDrag();
 event.target.filters = null;

 // Check to see if the Sprite was dropped over the white
 // rectangle, and if so, update the color
 if (event.target.dropTarget == _white) {
 // Determine which color was dropped, and apply that color
 // to the white rectangle
 var color:uint;
 switch (event.target) {
 case _red: color = 0xFF0000; break;
 case _green: color = 0x00FF00; break;
 case _blue: color = 0x0000FF; break;
 }

 _white.graphics.clear();
 _white.graphics.beginFill(color);

 _white.graphics.drawRect(20, 10, 50, 50);
 _white.graphics.endFill();
 }

 // Place the dragging Sprite back to its original location
 event.target.x = startingLocation.x;
 event.target.y = startingLocation.y;
 }

 }
}

Breaking down this code a bit, all of the rectangles are added to the display list and then the
appropriate mouseDown and mouseUp listeners are defined. Every time a mouseDown is received over one
of the colored rectangles, the pickup process starts.

First, the original location of the rectangle is saved. This allows the rectangle's location to be restored
after the drop operation. Next, the startDrag() method is called on the rectangle to start dragging it
around the screen. After that, a DropShadowFilter is applied to provide depth during the drag and
make it appear as if the rectangle were held above the others in the display list. Finally, the rectangle
is moved to the front of the display list via setChildIndex() so that it is drawn on top of all of the
others as it follows the mouse.

When the mouseUp event is detected, the drop operation commences via the place() method. First,
the rectangle has stopDrag() called on it to stop the mouse follow behavior, and the filters are
removed to reverse the depth effect. Next, the rectangle's dropTarget property is examined to
determine if it was dropped over the white rectangle. If the white rectangle is indeed the dropTarget,
the white rectangle is given the same color as the rectangle that was dropped onto it. Finally,
because the rectangle is out of position now from following the mouse around, the original starting
location is restored.

The previous code works alright, but there are two small problems with it: the dropTarget property
isn't always reliable and the dragging is choppy.

The dropTarget property continually changes during movement after startDrag() is issued. This is
good because it allows for feedback to be provided as the object is moved over different possible drop
targets; you can indicate whether a drop is currently allowed based on whatever dropTarget currently
is. However, dropTarget only changes when the pointer passes over a new display object, and not
when the pointer leaves a display object. This presents a problem when you move over an object and
then leave that object without moving over a new one. In such a case, the dropTarget property still
points to the last object that the mouse moved over, even though the mouse may have moved
outside of that object without ever moving over a new object. This means that the mouse is not
guaranteed to actually be over the display object that dropTarget refers to.

To see this effect in action:

Pick up the red rectangle.1.

Move it over the white rectangle.2.

3.

1.

2.

Move the mouse further to the right so the red rectangle is outside the area of the white
rectangle.

3.

With the red rectangle outside the white rectangle, release it.4.

You can see that the white rectangle is colored red because the dropTarget is still referring to the
white rectangle, even though the red rectangle is dropped outside of the white rectangle bounds.

To fix this behavior, use the hitTestPoint() method to determine if the mouse location is within the
bounds of the dropTarget display object. The hitTestPoint() method takes an x and y location and
returns a true or false value, indicating if the location falls within the bounds of the object. An
optional third Boolean parameter can be used to specify how the hit test area is calculated.
Specifying false as the third parameter will use the bounding box rectangle of the object, whereas
TRue uses the actual shape of the object itself. The default value is false.

Inside of the place() method that tests if the colored rectangle was dropped correctly, add a call to
hitTestPoint() inside the conditional checking the dropTarget. This makes sure the mouse cursor still
is within the bounds of the white rectangle before allowing the drop:

if (event.target.dropTarget == _white
 && _white.hitTestPoint(_white.mouseX, _white.mouseY)) {

Another problem with the code is the choppy screen updating during mouse movement. This is
because mouse events happen independently of the rendering process. The movie's frame rate
determines how often the screen is updated, so if the mouse changes the display, the updated
display won't appear until the screen is normally refreshed (as specified by the frame rate).

To combat this problem, the MouseEvent class includes the method updateAfterEvent() . Typically
called when the mouseMove event is handled, updateAfterEvent() notifies the Flash Player that the
screen has changed and instructs it to redraw. This avoids the delay that occurs when waiting for the
frame rate to update the screen normally after mouse movement.

Unfortunately, updateAfterEvent() does not play nice with startDrag(). Even if a mouseMove event
handler is added for the sole purposes of calling updateAfterEvent() to handle the rendering updates,
calling updateAfterEvent() has no effect. Another problem with startDrag() is that you are able to
drag only one Sprite at a time. Although this isn't necessarily a major problem, it is rather limiting.

To address these issues, a new custom visual class, named DraggableSprite, was created as part of
the ActionScript 3.0 Cookbook Library (found at http://www.rightactionscript.com/ascb); it can be
found in the ascb.display package.

The DraggableSprite class inherits from Sprite, and adds two aptly named methods: drag() and
drop(). The drag() method takes the same parameters and is used the same way as startDrag().
The drop() method behaves the same as stopDrag().

The primary difference is that the drag-and-drop functionality available in DraggableSprite is
implemented by custom mouse tracking code, versus having the Flash Player track the mouse
internally. Because of this, both negative aspects of startDrag() are overcome. Multiple
DraggableSprite instances are able to move with the mouse at the same time, and the rendering
delay issue is eliminated because updateAfterEvent() works as expected.

However, when switching to DraggableSprite, the dropTarget property is no longer applicable.

http://www.rightactionscript.com/ascb

Instead, you have to use the getObjectsUnderPoint() method to return the objects beneath the
mouse and determine if a drop is valid based on the information returned.

The getObjectsUnderPoint() method returns an array of display objects that are children of the
container the method was called on. The item at the end of the array, in position length 1, is the top-
most item (the object directly underneath the mouse). The item at position 0 is the very bottom item
underneath the mouse. By testing to see if the white rectangle is in the list of objects under the
mouse location at the time of the drop, you can determine if the drop was valid or not.

The following code is the same drag-and-drop behavior as before, but updated to use
DraggableSprite instead of Sprite:

package {
 import flash.display.Sprite;
 import flash.display.DisplayObject;
 import flash.events.MouseEvent;
 import flash.geom.Point;
 import flash.filters.DropShadowFilter;

 import ascb.display.DraggableSprite;

 public class ColorDrop extends Sprite {

 private var _red:DraggableSprite;
 private var _green:DraggableSprite;
 private var _blue:DraggableSprite;
 private var _white:Sprite;

 // Saves the starting coordinates of a dragging Sprite so
 // it can be placed back
 private var startingLocation:Point;

 // Create the rectangles that comprise the interface
 // and wire the mouse events to make them interactive
 public function ColorDrop() {
 createRectangles();
 addEventListeners();
 }

 private function createRectangles():void {
 _red = new DraggableSprite();
 _red.graphics.beginFill(0xFF0000);
 _red.graphics.drawRect(0, 10, 10, 10);
 _red.graphics.endFill();

 _green = new DraggableSprite()
 _green.graphics.beginFill(0x00FF00);
 _green.graphics.drawRect(0, 30, 10, 10);
 _green.graphics.endFill();

 _blue = new DraggableSprite();
 _blue.graphics.beginFill(0x0000FF);

 _blue.graphics.drawRect(0, 50, 10, 10);
 _blue.graphics.endFill();

 _white = new DraggableSprite();
 _white.graphics.beginFill(0xFFFFFF);
 _white.graphics.drawRect(20, 10, 50, 50);
 _white.graphics.endFill();

 addChild(_red);
 addChild(_green);
 addChild(_blue);
 addChild(_white);
 }

 private function addEventListeners():void {
 _red.addEventListener(MouseEvent.MOUSE_DOWN, pickup);
 _red.addEventListener(MouseEvent.MOUSE_UP, place);

 _green.addEventListener(MouseEvent.MOUSE_DOWN, pickup);
 _green.addEventListener(MouseEvent.MOUSE_UP, place);

 _blue.addEventListener(MouseEvent.MOUSE_DOWN, pickup);
 _blue.addEventListener(MouseEvent.MOUSE_UP, place);
 }

 public function pickup(event:MouseEvent):void {
 // Save the original location so you can put the target back
 startingLocation = new Point();
 startingLocation.x = event.target.x;
 startingLocation.y = event.target.y;

 // Start dragging the Sprite that was clicked on and apply
 // a drop shadow filter to give it depth
 event.target.drag();
 event.target.filters = [new DropShadowFilter()];

 // Bring the target to front of the display list so
 // that it appears on top of everything else
 setChildIndex(DisplayObject(event.target), numChildren - 1);
 }

 public function place(event:MouseEvent):void {
 // Stop dragging the Sprite around and remove the depth
 // effect from the filter
 event.target.drop();
 event.target.filters = null;

 // Get a list of objects inside this container that are
 // underneath the mouse
 var dropTargets:Array = getObjectsUnderPoint(new Point(mouseX, mouseY));

 // The display object at position length - 1 is the top-most object,

 // which is the rectangle that is currently being moved by the mouse.
 // If the white rectangle is the one immedialy beneath that, the
 // drop is valid
 if (dropTargets[dropTargets.length - 2] == _white) {
 // Determine which color was dropped, and apply that color
 // to the white rectangle
 var color:uint;
 switch (event.target) {
 case _red: color = 0xFF0000; break;
 case _green: color = 0x00FF00; break;
 case _blue: color = 0x0000FF; break;
 }

 _white.graphics.clear();
 _white.graphics.beginFill(color);
 _white.graphics.drawRect(20, 10, 50, 50);
 _white.graphics.endFill();
 }

 // Place the dragging Sprite back to its original location
 event.target.x = startingLocation.x;
 event.target.y = startingLocation.y;
 }

 }
}

See Also

Recipes 6.4 and 6.8

Chapter 7. Drawing and Masking
Section 7.0. Introduction

Recipe 7.1. Setting a Line Style

Recipe 7.2. Setting Gradient Line Styles

Recipe 7.3. Drawing a Line

Recipe 7.4. Drawing a Curve

Recipe 7.5. Drawing an Arc

Recipe 7.6. Drawing a Rectangle

Recipe 7.7. Drawing a Circle

Recipe 7.8. Drawing an Ellipse

Recipe 7.9. Drawing a Triangle

Recipe 7.10. Drawing Regular Polygons

Recipe 7.11. Drawing a Star

Recipe 7.12. Filling a Shape with a Solid or Translucent Color

Recipe 7.13. Filling a Shape with a Gradient

Recipe 7.14. Filling a Shape with a Bitmap

Recipe 7.15. Scripting Masks

7.0. Introduction

With ActionScript, you can programmatically draw many display objects such as Shape, Sprite,
Button, and MovieClip. Each of these classes has a graphics property that is an instance of the
flash.display.Graphics class. The Graphics class defines an API for drawing content programmatically.
Most recipes in this chapter discuss how to use the Graphics class API.

Since the Shape, Sprite, Button, and MovieClip classes already define graphics properties that are
references to Graphics instances, it is not necessary to construct new Graphics objects. The graphics
property for a display object draws within that display object. For example, the following code sets
the line style for the Graphics object targeting a sprite called sampleSprite:

sampleSprite.graphics.lineStyle();

The Graphics class defines an API for drawing basic lines and simple shapes. However, some common
shapes are difficult to draw with the Graphics API. For that reason, the AS3CBLibrary (available at
http://www.rightactionscript.com/ascb) includes an ascb.drawing.Pen class. The Pen class is a proxy
(a wrapper) for the Graphics class. You can construct a new Pen instance by passing it a reference to
the Graphics object you want to target:

var pen:Pen = new Pen(sampleSprite.graphics);

The Pen class proxies requests to all the methods of the Graphics class. That means you can call any
of the Graphics methods from the Pen class. In addition, the Pen class defines an API that allows you
to more simply draw arcs, ellipses, polygons, stars, and more. The Pen class methods are discussed
in the relevant recipes in this chapter.

http://www.rightactionscript.com/ascb

Recipe 7.1. Setting a Line Style

Problem

You want to set the line style properties.

Solution

Use the lineStyle() method.

Discussion

Before you can draw programmatically, you must set the line style properties for a Graphics object. If
you don't set the line style properties, the default line style is undefined and lines and fills won't
render. You can set the line style properties by using the lineStyle() method of a Graphics object.

The lineStyle() method accepts up to eight parameters, all of which are optional. The parameters are
as follows:

thickness

The thickness (in pixels) for a line. The default value is 1. The valid values range from 0 to 255.
0 is a hairline. Values outside of the valid range are adjusted to the nearest valid value.

color

The color for the line. The default value is 0x000000.

alpha

The alpha value for the line. The valid range is from 0 to 1. The default value is 1.

pixelHinting

A Boolean value indicating whether or not the lines ought to snap to whole pixels. The default is
false.

scaleMode

One of the constants from the flash.display.LineScaleMode class. The constants are NORMAL
(default), NONE, VERTICAL, and HORIZONTAL. When the value is set to NORMAL, the line thickness
scales when the object within which the line is drawn is scaled. For example, if a sprite
containing a 1-pixel line is scaled 200 percent, the line thickness scales to 2 pixels. If you set
the scale mode to NONE, then the line thickness never scales. If you set the scale mode to
VERTICAL, then the line thickness does not scale when the object is scaled only in the vertical
direction (though it scales when the object is scaled horizontally). Likewise, if you set the scale
mode to HORIZONTAL, the line thickness doesn't scale when the object is scaled only in the
horizontal direction.

caps

A string specifying the end caps to use for the line. The value can be one of the
flash.display.CapsStyle constants. The constants are NONE, ROUND (default), and SQUARE.

joints

A string specifying the type of joints between connecting line segments. The value can be one
of the flash.display.JointStyle constants. The constants are BEVEL, MITER, and ROUND (default).

miterLimit

When the joint style is set to MITER you can optionally specify a miter limit. The default value is
3. The valid range is from 1 to 255. The miter limit determines how far beyond the point at
which the line segments join that the miter joint extends. The effect of a miter limit is
determined by the value as well as the line thickness and the angle between the line segments.

Since all the parameters are optional, you can minimally call the lineStyle() method, as in the
following example:

sampleSprite.graphics.lineStyle();

You can call the lineStyle() method at any point to change the line style. For example, you can set
the line style to a 20 pixel green line, draw a line segment, set the line style to a 10 pixel blue line,
and then draw a second line segment with the new line style.

You must set the line style again after calling the clear() method. Calling the clear() method
effectively resets the line style to the default undefined state.

Recipe 7.2. Setting Gradient Line Styles

Problem

You want to draw lines using gradient styles.

Solution

Use the Graphics.lineGradientStyle() method.

Discussion

The lineGradientStyle() method allows you to draw lines with gradient styles. You must still call
lineStyle() first. However, once you've set the basic line style properties, you can call
lineGradientStyle() to apply a gradient style to lines. The parameters for the lineGradientStyle()
method are exactly the same as the parameters for the beginGradientFill() method.

See Also

Recipe 7.13 for more about parameters.

Recipe 7.3. Drawing a Line

Problem

You want to draw a line using ActionScript.

Solution

Use the Graphics.lineTo() method to draw a line from the current pen location to a destination point.

Discussion

The most basic type of drawing that you can do with ActionScript is a straight line. Flash uses the
current pen location as the starting point, so you need to provide only the coordinates of the
destination point. Use the Grahics.lineTo() method to create a line from the current pen location to
the specified destination point:

// Draws a line from the current pen position to (100,100)

// within the coordinate system of sampleSprite.
sampleSprite.graphics.lineTo(100, 100);

When ActionScript methods are used to draw, all the lines and fills are drawn within the display
object associated with the Graphics object from which the methods are invoked. For example, in the
preceding code, the line is drawn within sampleSprite.

As mentioned previously, when you use the Drawing API methods such as lineTo(), Flash draws the
line beginning at the current pen location. If you have not otherwise moved the pen (by calling a
lineTo(), curveTo(), or moveTo() method, for example) the pen is positioned at the origin of the
display object's coordinate system, point (0,0). You can move the pen without drawing a line by
using the moveTo() method. The moveTo() method simply relocates the pen to the coordinate you
specify; it does not draw any lines:

// Move the pen in sampleSprite to (200,20)
sampleSprite.graphics.moveTo(200, 20);

The moveTo() method is important in situations in which you want to either begin drawing from a
point other than the display object's center or draw lines or shapes without necessarily connecting all
the lines:

// Set a 1-pixel, black, completely opaque line style

sampleSprite.graphics.lineStyle();

// Draw a dashed line using a series of lines and spaces
sampleSprite.graphics.lineTo(10, 0);
sampleSprite.graphics.moveTo(15, 0);
sampleSprite.graphics.lineTo(25, 0);
sampleSprite.graphics.moveTo(30, 0);
sampleSprite.graphics.lineTo(40, 0);
sampleSprite.graphics.moveTo(45, 0);
sampleSprite.graphics.lineTo(55, 0);

As noted in Recipe 7.1, you can change the line style between drawing line or curve segments. So
while the preceding code draws four black line segments, the following code draws four line segments
of different colors:

// Set a 1-pixel, black, completely opaque line style
sampleSprite.graphics.lineStyle();

// Draw a dashed line using a series of lines and spaces
sampleSprite.graphics.lineTo(10, 0);
sampleSprite.graphics.moveTo(15, 0);

// Change the color of the line to blue
sampleSprite.graphics.lineStyle(1, 0x0000FF);
sampleSprite.graphics.lineTo(25, 0);
sampleSprite.graphics.moveTo(30, 0);

// Change the color of the line to green
sampleSprite.graphics.lineStyle(1, 0x00FF00);
sampleSprite.graphics.lineTo(40, 0);
sampleSprite.graphics.moveTo(45, 0);

// Change the color of the line to red
sampleSprite.graphics.lineStyle(1, 0xFF0000);
sampleSprite.graphics.lineTo(55, 0);

The Pen.drawLine() method is useful when you want to draw lines from one specific coordinate to
another. For example, an example showed you how to draw a series of line segments to create a
dashed line. Using a Pen object, that code can be simplified as follows:

var pen:Pen = new Pen(sampleSprite.graphics);

// Draw a dashed line using a series of lines segments
pen.drawLine(0, 0, 10, 0);
pen.drawLine(15, 0, 25, 0);
pen.drawLine(30, 0, 40, 0);
pen.drawLine(45, 0, 55, 0);

See Also

Recipe 7.1

Recipe 7.4. Drawing a Curve

Problem

You want to draw a curve using ActionScript.

Solution

Use the Graphics.curveTo() method.

Discussion

Once you have set a line style, you can draw a curve using the curveTo() method. The curveTo()
method draws an approximation of a Bezier curve (although optimized for performance), which
requires three points: a starting point, a control point, and a destination point:

The starting point is always determined by the pen's current location.

The destination point is simply the point on the canvas to which you want to draw.

The control point is the point that determines the shape of the curve, and it is calculated by
determining where the tangents to the curve at the starting and destination points intersect.
The control point is not actually on the curve in all cases, except for straight line segments.
Figure 7-1 shows the control point for a curve.

Figure 7-1. The control point of a curve

The curveTo() method requires four parameters. The first two parameters specify the X and Y
coordinates of the control point; the next two parameters specify the X and Y coordinates of the
destination point. The following example draws a curve with a control point at 0,100 and a
destination point at 100,100:

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.curveTo(0, 100, 100, 100);

Recipe 7.5. Drawing an Arc

Problem

You want to draw an arc.

Solution

Use the Pen.drawArc() method.

Discussion

An arc is a part of the outline from a circle. Drawing an arc with the curveTo() method is rather
difficult for various reasons. However, by using the Pen.drawArc() method, you can quickly draw an
arc of any radius and length. The drawArc() method accepts the following parameters:

x

The x coordinate of the arc center (the center of the circle).

y

The y coordinate of the arc center.

radius

The radius of the arc.

arc

The angle measurement of the arc, specified in degrees.

startingAngle

The starting angle of the arc. The default value is 0.

radialLines

A Boolean value that indicates whether to draw the radial lines that connect the arc to the
center. The default is false. When set to true, the arc looks like a slice.

The following draws an arc with radial lines; the radius is 50, the arc angle is 80 degrees, and the
starting angle is 20 degrees:

var pen:Pen = new Pen(graphics);
pen.drawArc(100, 100, 50, 80, 20, true);

Recipe 7.6. Drawing a Rectangle

Problem

You want to draw a rectangle at runtime.

Solution

Draw four connecting line segments at right angles. Use the Graphics.drawRect() method. For
rectangles with rounded corners, use the Graphics.drawRoundRect() or
Graphics.drawRoundRectComplex() method.

Discussion

To draw a simple rectangle, draw four lines using the lineTo() method:

// Specify a one-pixel, solid, black line
sampleSprite.graphics.lineStyle(1, 0, 100);

// Draw four lines to form the perimeter of the rectangle
sampleSprite.graphics.lineTo(100, 0);
sampleSprite.graphics.lineTo(100, 50);
sampleSprite.graphics.lineTo(0, 50);
sampleSprite.graphics.lineTo(0, 0);

As you can see, drawing a simple rectangle is no huge feat. However, there are several drawbacks to
using the preceding technique of calling lineTo() four times. The obvious drawback is that it requires
at least five lines of code: one to set the line style and four to draw the line segments. Another
drawback is that you cannot easily draw the rectangle at an angle or with rounded corners.

You can use the Graphics.drawRect() method to simplify drawing a standard rectangle. The method
requires four parameters specifying the X and Y coordinates of the upper-left corner and the width
and height of the rectangle. The following draws a 100x50 rectangle with the upper-left corner
aligned to 0,0:

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.drawRect(0, 0, 100, 50);

The Graphics.drawRoundRect() method draws a rectangle with rounded corners with equal radii. The
method accepts the same parameter list as drawRect() with one additional parameter specifying the

value for the corner radii. The following draws the same rectangle as in the preceding example,
except that it has rounded corners with radii of 20:

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.drawRoundRect(0, 0, 100, 50, 20);

The Graphics.drawRoundRectComplex() method works just like drawRoundRect(), except that you
can specify the values for each radius independently. The method accepts the same parameter list as
drawRect(), with the addition of four parameters for the radii. The addition parameters are in the
order of top left, top right, bottom left, and bottom right. The following draws the same rectangle as
the preceding example, except that the corners have different radius values:

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.drawRoundRect(0, 0, 100, 50, 0, 20, 5, 25);

You can draw filled rectangles by invoking beginFill(), beginGradientFill(), or beginBitmapFill()
before calling the method or methods to draw the rectangle. Then call endFill() after the method(s):

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.beginFill(0xFF0000);
sampleSprite.graphics.drawRectComplex(0, 0, 100, 50);
sampleSprite.graphics.endFill();

Recipe 7.7. Drawing a Circle

Problem

You want to draw a circle at runtime.

Solution

Use the Grahics.drawCircle() method.

Discussion

Drawing a circle with the standard drawing methods is not as simple as you might think. Because of
Flash's simplified, single control point Bezier calculations, it requires at least eight segments to create
a circle that looks convincingly like a circle. Making the calculations in order to draw each segment of
the circle requires a fair amount of math and code. However, the Graphics class has a drawCircle()
method that greatly simplifies drawing a circle. The drawCircle() method requires three parameters:

x

The x coordinate of the circle's center point.

y

The y coordinate of the circle's center point.

radius

The radius of the circle.

The following draws a circle with a radius of 50 and the center point at 100,100:

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.drawCircle(100, 100, 50);

Drawing concentric circles is simple enough; just specify the same center point for the circles:

sampleSprite.graphics.lineStyle();

sampleSprite.graphics.drawCircle(100, 100, 50);
sampleSprite.graphics.drawCircle(100, 100, 100);

You can fill a circle by calling beginFill(), beginGradientFill(), or beginBitmapFill() before drawCircle(
), and calling endFill() after drawCircle():

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.beginFill(0xFF0000);
sampleSprite.graphics.drawCircle(100, 100, 50);
sampleSprite.graphics.endFill();

Recipe 7.8. Drawing an Ellipse

Problem

You want to draw an ellipse (oval) at runtime.

Solution

Use the Pen.drawEllipse() method.

Discussion

An ellipse is a more abstract form of a circle. Rather than having a single, uniform radius, an ellipse is
defined by two radii that intersect at right angles. The two radii are called the major and minor radii,
and also sometimes simply the x radius and y radius.

Drawing an ellipse is just slightly more complex than drawing a circle. However, unlike circles, the
Graphics class has no method for drawing ellipses. Therefore, the simplest way to programmatically
create an ellipse is to use one of the methods of the Pen class. The drawEllipse() method allows for
the following four parameters:

x

The x coordinate of the center of the ellipse.

y

The y coordinate of the center of the ellipse.

xRadius

The radius of the ellipse in the x direction (major axis).

yRadius

The radius of the ellipse in the y direction (minor axis).

The following code defines a Pen object and then draws an ellipse:

var pen:Pen = new Pen(sampleSprite.graphics);

pen.drawEllipse(100, 100, 100, 50);

Recipe 7.9. Drawing a Triangle

Problem

You want to draw a triangle at runtime.

Solution

Use the Pen.drawTriangle() method.

Discussion

You can determine and plot the vertices of a triangle, given the lengths of two sides and the angle
between them. This is a better approach than specifying the lengths of the three sides, because
knowing two sides and the angle between them always determines a triangle, whereas three
arbitrary sides may not fit together to make a triangle.

The calculations involved in drawing a triangle based on two sides and an angle are slightly complex,
so the simplest way to programmatically draw a triangle is to use the drawTriangle() method of the
Pen class. The drawTriangle() method accepts up to seven parameters, described as follows:

x

The X coordinate of the centroid (the center point) of the triangle.

y

The Y coordinate of the centroid of the triangle.

ab

The length of the side formed between points a and b.

ac

The length of the side formed between points a and c.

angle

The angle (in degrees) between sides ab and ac.

rotation

The rotation of the triangle in degrees. If 0 or undefined, side ac parallels the x axis.

Once you've defined a Pen instance, you can use the drawTriangle() method to quickly draw a
triangle, as in the following example:

var pen:Pen = new Pen(sampleSprite.graphics);
pen.drawTriangle(100, 100, 100, 200, 40);

You can precede drawTriangle() with a call to beginFill(), beginGradientFill(), and beginBitmapFill()
to apply a fill to the shape. Of course, you'll also want to then call endFill() after the call to
drawTriangle().

The following code draws a filled triangle aligned to the upper left:

var pen:Pen = new Pen(sampleSprite.graphics);
pen.beginFill(0xFF0000);
pen.drawTriangle(100, 100, 100, 200, 40);
pen.endFill();

See Also

Recipe 7.10 shows how to draw an isosceles triangle (and specify a shape with three sides) using the
drawRegularPolygon() method.

Recipe 7.10. Drawing Regular Polygons

Problem

You want to draw a regular polygon (a polygon where all sides are equal length) at runtime.

Solution

Use the Pen.drawRegularPolygon() method.

Discussion

You can create a method to draw a regular polygon using basic trigonometric ratios to determine the
necessary angles and coordinates of the segments. Of course, since employing those trigonometric
ratios requires quite a lot of code and you actually recall trigonometry, you'll likely find it much easier
to simply use the drawRegularPolygon() method of the Pen class.

The drawRegularPolygon() accepts up to five parameters, described as follows:

x

The x coordinate of the center of the polygon.

y

The y coordinate of the center of the polygon.

sides

The number of sides in the polygon.

length

The length of each side in pixels.

rotation

The number of degrees by which the polygon should be rotated.

Once you have defined a Pen instance, you can quickly draw regular polygons with any number of
sides (with a minimum of three sides, of course, to be a valid polygon):

var pen:Pen = new Pen(sampleSprite.graphics);

// Draw a pentagon in which the sides are each 50 pixels
pen.drawRegularPolygon(100, 100, 5, 50);

As with the other shape drawing methods in this chapter, you can create a filled polygon by invoking
beginFill(), beginGradientFill(), or beginBitmapFill() before drawRegularPolygon(), and invoking
endFill() after drawRegularPolygon():

var pen:Pen = new Pen(sampleSprite.graphics);
pen.beginFill(0xFF0000);
pen.drawRegularPolygon(100, 100, 5, 50);
pen.endFill();

Recipe 7.11. Drawing a Star

Problem

You want to draw a star.

Solution

Use the Pen.drawStar() method.

Discussion

The Pen.drawStar() method enables you to quickly draw a star shape programmatically. The method
accepts the following parameters:

x

The x coordinate of the center of the star.

y

The y coordinate of the center of the star.

points

The number of points on the star.

innerRadius

The radius of the inner part of the star.

outerRadius

The radius of the outer part of the star.

rotation

The default value is 0; you can specify a rotation in degrees.

The following example draws a five-pointed star:

var pen:Pen = new Pen(sampleSprite.graphics);
pen.drawStar(100, 100, 5, 50, 100);

Recipe 7.12. Filling a Shape with a Solid or Translucent
Color

Problem

You want to draw a shape and fill it with a solid or translucent color at runtime.

Solution

Use the Graphics.beginFill() and Graphics.endFill() methods to initiate and close a shape drawn at
runtime.

Discussion

To draw a filled shape, call beginFill() prior to any other drawing methods. Invoke endFill() after
calling other drawing methods to create the shape.

You cannot apply a fill to an existing shape drawn at authoring time or runtime.
Before drawing the shape you want filled, you must first invoke the beginFill()
method.

This example creates a solid green square:

sampleSprite.graphics.lineStyle();
sampleSprite.graphics.beginFill(0x00FF00);
sampleSprite.graphics.lineTo(100, 0);
sampleSprite.graphics.lineTo(100, 100);
sampleSprite.graphics.lineTo(0, 100);
sampleSprite.graphics.lineTo(0, 0);
sampleSprite.graphics.endFill();

The MovieClip.beginFill() method accepts two parameters:

fillColor

The RGB value to use for the fill.

alpha

The value between 0 (transparent) and 1 (opaque) that controls the opacity. The default is 1.

To create a translucent, filled shape, specify an alpha less than 1. If alpha is 0, the shape appears

unfilled. However, setting the alpha to 0 is often appropriate. For example, you may want to create a
draggable movie clip within which parts are transparent. Setting the fill alphas for those parts to 0
can help to accomplish that.

The endFill() method does not require any parameters. It simply ends the fill initiated with beginFill(
), beginGradientFill(), or beginBitmapFill(). To avoid unexpected results, ensure that the pen
returns to the starting point to complete the shape before invoking endFill().

See Also

Recipe 7.13

Recipe 7.13. Filling a Shape with a Gradient

Problem

You want to draw a shape and fill it with a gradient at runtime.

Solution

Use the beginGradientFill() and endFill() methods to initiate and close a shape drawn at runtime.

Discussion

A gradient fill is one in which there is a graded change in colors. Flash supports linear gradients, in
which one color fades into the next from left to right. (If you want the gradient to change vertically
then you can simply rotate the gradient using the matrix transform discussed in this recipe.) Flash
also supports radial gradients, in which the colors radiate out from a center point. You can initiate a
gradient-filled shape by using beginGradientFill() in the same way that you can initiate a solid-filled
shape with beginFill() . The difference is that the call to beginGradientFill() requires a more complex
set of parameters:

gradientType

One of the constants from the flash.display.GradientType class. The options are LINEAR or
RADIAL .

colors

An array of RGB values for the colors to use in the gradient. They are displayed in the gradient
from left to right in a linear gradient, or from the center outward in a radial gradient.

alphas

An array of alpha values that correspond to the colors in the colors parameter array.

ratios

An array whose elements are numbers corresponding to the colors and alphas elements. The
values in the ratios array indicate the point within the gradient at which each color is pure. The
range of values for the ratios should be from 0 (left-most point in a linear fill, or inner-most

point in a radial fill) to 255 (rightmost or outer-most).

matrix

A flash.geom.Matrix object that defines the transform to apply to the gradient. The default
gradient is a unit gradient (1x1) that must be transformed to correctly fill the shape. The
Matrix class defines a createGradientBox() method that you can use to populate the object.
The createGradientBox() method accepts the following parameters:

scaleX

The amount by which the object is scaled horizontally. Since the gradient that's being
transformed is a unit gradient (1x1) the scaleX value is equal to the width of the fill.

scaleY

The amount by which the object is scaled vertically. Since the gradient that's being
transformed is a unit gradient (1x1) the scaleY value is equal to the height of the fill.

rotation

The amount to rotate the gradient in radians. You can convert from degrees to radians
by multiplying by Math.PI/180 . The default value is 0.

tx

The amount to translate in the x direction. The default is 0.

ty

The amount to translate in the y direction The default is 0.

spreadMethod

One of the flash.display.SpreadMethod constants. The options are PAD , REFLECT , and REPEAT .
The default is PAD . When the method is PAD , the gradient is padded on either side with the
colors on the sides. For example, if a gradient is defined to be 100 pixels wide with red on the
left side and blue on the right side, and if the gradient is applied to a rectangle that is 200
pixels wide, the blue will fill the right-most 100 pixels of the rectangle. If the method is REFLECT
, then the gradient continually repeats in a mirror-image fashion. Using the same 100-pixel red
to blue gradient example, the gradient will fill a 200-pixel-pixel rectangle with red to blue and
blue to red when the spreadMethod parameter is set to REFLECT . When the method is set to
REPEAT , the gradient repeats end to end.

interpolationMethod

One of the constants of the flash.display.InterpolationMethod class. The options are LINEAR_RGB
and RGB . The default is RGB . The interpolation method affects how colors gradate.

focalPointRatio

A value from -1 to 1 indicating the focal point for radial gradients (there is no effect for linear
gradients). The default value is 0, which places the focal point in the center. A value of -1
places the focal point to the left edge of the gradient, and a value of 1 places the focal point to
the right edge of the gradient.

The following example draws a radial gradient that fills a circle:

var matrix:Matrix = new Matrix();
matrix.createGradientBox(100, 100, 0, 50, 50);
var colors:Array = [0xFF0000, 0x0000FF];
var alphas:Array = [100, 100];
var ratios:Array = [0x00, 0xFF];
sampleSprite.graphics.lineStyle();
sampleSprite.graphics.beginGradientFill(GradientType.GRADIENT, colors, alphas, ratios, matrix);
sampleSprite.graphics.drawCircle(100, 100, 50);
sampleSprite.graphics.endFill();

Recipe 7.14. Filling a Shape with a Bitmap

Problem

You want to apply a bitmap fill to a shape.

Solution

Use the Graphics.beginBitmapFill() method.

Discussion

The Graphics.beginBitmapFill() method enables you to apply a bitmap as a fill to a shape. The
method accepts the following parameters:

bitmap

A BitmapData object to use as the bitmap fill.

matrix

By default the bitmap is applied with no transform applied. You can specify a flash.geom.Matrix
object to transform the bitmap by scaling, rotating, skewing, and translating the image.

repeat

A Boolean value indicating whether or not the bitmap ought to repeat to tile fill. By default the
value is true . When the value is set to false the bitmap edge's pixels are repeated to fill the
shape.

smooth

A Boolean value indicating whether or not to apply smoothing when the bitmap is scaled
greater than 100 percent. The default is false .

The following sample class loads a bitmap from a URL, copies it to a BitmapData object, and uses
that BitmapData object as a fill for circles drawn programmatically:

package {

 import flash.display.Sprite;
 import flash.geom.Matrix;
 import flash.display.Loader;
 import flash.net.URLRequest;
 import flash.display.BitmapData;
 import flash.events.Event;

 public class Drawing extends Sprite {

 private var _loader:Loader;

 public function Drawing() {
 _loader = new Loader();
 _loader.load(new URLRequest("http://www.rightactionscript.com/samplefiles/image2.jpg"));
 _loader.contentLoaderInfo.addEventListener(Event.COMPELTE, onImageLoad);
 }

 private function onImageLoad(event:Event):void {
 var bitmap:BitmapData = new BitmapData(_loader.width, _loader.height);
 bitmap.draw(_loader, new Matrix());
 var matrix:Matrix = new Matrix();
 matrix.scale(.1, .1);
 var sampleSprite:Sprite = new Sprite();
 sampleSprite.graphics.lineStyle();
 sampleSprite.graphics.beginBitmapFill(bitmap, matrix);
 sampleSprite.graphics.drawCircle(100, 100, 100);
 sampleSprite.graphics.endFill();
 addChild(sampleSprite);

 }

 }
}

Recipe 7.15. Scripting Masks

Problem

You want to create a mask at runtime.

Solution

Use DisplayObject.mask .

Discussion

Masks can be used to create unique shapes or visual effects. For example, you can use masks to
create wipes and transitions. You can use masks to create interesting animations in which only the
masked portion of the artwork is visible at a given time. You can even create masks that shape
tween and use them to mask bitmapped graphics (in movie clips).

Any display object can be used as a mask of another display object by using the mask property. The
following sets maskSprite as the mask for sampleSprite :

sampleSprite.mask = maskSprite;

The following example draws two shapes and uses one as a mask. Note that both display objects are
added to the display list via addChild() . Although masks will work in most cases, even when the
mask object isn't added to the display list, it's recommended that you add the mask object to the
display list:

var maskSprite:Sprite = new Sprite();
var pen:Pen = new Pen(maskSprite.graphics);
pen.beginFill(0xFFFFFF);
pen.drawArc(100, 100, 50, 80, 20, true);
pen.endFill();
var maskedSprite:Sprite = new Sprite();
maskedSprite.graphics.lineStyle();
maskedSprite.graphics.beginFill(0xFF0000);
maskedSprite.graphics.drawRect(0, 0, 200, 200);
maskedSprite.graphics.endFill();
maskedSprite.mask = maskSprite;
addChild(maskedSprite);
addChild(maskSprite);

This next example shows a mask being used to follow the mouse. The mask is assigned to a loader
containing a loaded image, which makes it so only the users can see the portion of the image over
which they have placed the mouse:

var loader:Loader = new Loader();
loader.load(new URLRequest("http://www.rightactionscript.com/samplefiles/image2.jpg"));
addChild(loader);
var maskSprite:Sprite = new Sprite();
maskSprite.graphics.lineStyle();
maskSprite.graphics.beginFill(0xFFFFFF);
maskSprite.graphics.drawCircle(0, 0, 50);
maskSprite.graphics.endFill();
loader.mask = maskSprite;
addChild(maskSprite);
maskSprite.startDrag(true);

Chapter 8. Bitmaps

Section 8.0. Introduction

Recipe 8.1. Creating a BitmapData Object

Recipe 8.2. Adding a Bitmap to the Display List

Recipe 8.3. Drawing a Display Object to a Bitmap

Recipe 8.4. Loading an External Image into a Bitmap

Recipe 8.5. Manipulating Pixels

Recipe 8.6. Creating Rectangular Fills

Recipe 8.7. Creating a Flood Fill

Recipe 8.8. Copying Pixels

Recipe 8.9. Copying Channels

Recipe 8.10. Creating Noise

Recipe 8.11. Creating Perlin Noise

Recipe 8.12. Using Threshold

Recipe 8.13. Applying a Filter to a Bitmap

Recipe 8.14. Dissolving Between Two Bitmaps

Recipe 8.15. Scrolling a Bitmap

8.0. Introduction

Flash 8 introduced the BitmapData class, one of the most important additions to the program at that
time. Since its inception, Flash has been a vector-based tool. Vector graphics consist of mathematical
descriptions of each graphical element. For example, a line starts at point x0, y0 and extends to point
x1, y1. A bitmap, on the other hand, describes a graphic as a rectangular grid of values, with one
color value assigned to each pixel.

The two main advantages of vector graphics are scaling and file size. When you scale a vector
graphic, you are actually moving the points that make up the lines and curves of the graphic further
apart or closer together. Thus, you can scale up or down to almost any size and still maintain smooth
lines and curves. A bitmap, on the other hand, starts to look "blocky" as soon as you increase its size
even slightly, since each pixel is simply made into a larger rectangle.

Since a vector graphic is nothing more than a list of coordinates that make up various lines, curves,
and shapes, the file size tends to be quite low when compared to a bitmap graphic. Bitmap graphics,
on the other hand, contain value information for each pixel in the image. For a 100x100-pixel image,
this is a list of 10,000 individual values. Of course, most bitmap images use some form of
compression to reduce the file size. Even so, they can be quite large.

The advantage of vector graphics went a long way to make Flash such a popular media format on the
web. However, bitmaps are not without their own advantages. For one, bitmaps are much better at
displaying photographic images. The amount of vectors it would take to describe all the shapes and
color variations in a photograph would generally result in a larger file size than a bitmap of the same
image.

Another benefit of bitmaps is that they are often easier on the processor than vectors are. In a vector
image, each point's position must be calculated, and then the formulas for the lines and curves are
calculated and drawn. Complex images can take quite a while to render. Bitmaps are relatively easy
to render, though, no matter how complex they are. In terms of animation, you usually find very
significant gains in speed and efficiency using bitmaps over vectors.

Before Flash 8, support for bitmap images was minimal. Although they could be loaded and
displayed, there wasn't much you could do with them at runtime. The BitmapData class offers a nice
set of tools for creating and manipulating bitmap graphics at runtime in Flash.

Recipe 8.1. Creating a BitmapData Object

Problem

You want to create a new bitmap in your application.

Solution

Use the BitmapData class's constructor to create a new BitmapData object.

Discussion

The BitmapData class represents the pixels in a bitmap image, and contains many built-in methods
for adding content to and manipulating that image. The first step is to create an instance of the class
by calling its constructor, as follows:

var bitmap:BitmapData = new BitmapData(width, height,

 transparent, fillColor);

This class is part of the flash.display package, so make sure you import flash.display.BitmapData at
the top of the file. The width and height parameters specify what size bitmap you want to create.
The next parameter is a Boolean value, which specifies whether the bitmap is created with an alpha
channel (true) or not (false), and the fillColor determines the initial background color of the
image.

Although width and height are mandatory, transparent and fillColor default to true and

0xFFFFFFFF, respectively if not explicitly passed to the constructor.

The fillColor accepts a 32-bit color value, which means that it supports an alpha channel. Of

course, the alpha channel of the fill color is only relevant if you create the BitmapData specifying
transparent as true. Otherwise, all colors are treated as 100 percent opaque.

The following example creates a BitmapData that is initially completely transparent, as the alpha
channel of the fillColor is set to zero:

var bitmap:BitmapData = new BitmapData(100, 100,
 true, 0x00FFFFFF);

After you create a new BitmapData, it exists only in memory. Although you can create content in the
image and manipulate it, it will not be visible until you add it to the display list.

See Also

Recipe 8.2 for information on how to make a BitmapData visible.

Recipe 8.2. Adding a Bitmap to the Display List

Problem

You have created a BitmapData and now want to make it visible.

Solution

Create a Bitmap using the BitmapData and add that to the display list.

Discussion

To make anything visible in an application in ActionScript 3.0, you must add it to the display list. (See
Chapter 6 for a full discussion of the display list.) You add objects to the display list by calling the
addChild() method from the main application class, or any other object that has already been added
to the display list. However, the addChild() method only accepts objects that are subclasses of
flash.display.DisplayObject. The BitmapData class is descended only from Object, so you may not
add it to the display list directly.

To add it to the display list, use the flash.display.Bitmap class, which is a subclass of DisplayObject. It
is a sort of wrapper for BitmapData, allowing a BitmapData to be displayed.

When you create a new instance of Bitmap by calling its constructor, you pass in a reference to a
BitmapData. Then you can add the Bitmap to the display list using addChild(). The following example
creates a BitmapData with a red fill, and displays it via a Bitmap:

var bitmap:BitmapData = new BitmapData(100, 100, true, 0xffff0000);
var image:Bitmap = new Bitmap(bitmap);
addChild(image);

See Also

Recipe 8.1 for how to create a bitmap.

Recipe 8.3. Drawing a Display Object to a Bitmap

Problem

You have some graphical content in a sprite or other display object and want to draw that to a
bitmap.

Solution

Use the BitmapData class's draw() method to draw the content onto the bitmap.

Discussion

When you first create a BitmapData, it is simply a blank rectangle of whatever color you specified.
You may have some existing graphic content in a movie clip, sprite, or other display object that you
would like to draw to the new bitmap. The draw() method allows you to do just this. You pass the
object you want to draw into the draw() method of the BitmapData you want to draw it onto. You
can also pass an instance of the flash.geom.Matrix class to the method. The Matrix class allows you
to scale, rotate, translate, or skew the object's graphics before they are drawn. This parameter is
optional, but if you need to use later parameters and don't want to transform the object, just pass
null. You can also optionally pass a ColorTransform object, which alters the color of the object before

it is drawn. See Recipe 10.1 for information on ColorTransforms. The following example draws a
sprite, named _sprite, into a BitmapData named bitmap, with no transformation:

bitmap.draw(_sprite);

One reason why this becomes important is because the BitmapData class has few tools for basic
drawing. You can set a pixel to a particular color, create a filled rectangle, or do a flood fill. There are
some specialized noise functions, but it lacks basic functions such as line, curve, oval, or outline
drawing tools. To overcome this, you can use the drawing API methods to draw content into a movie
clip or sprite, and then draw that object into the bitmap. The following example creates a BitmapData
and a Sprite. It then uses the drawing API to draw an oval in the sprite and draws the sprite into the
BitmapData:

var bitmap:BitmapData = new BitmapData(100, 100,
 true, 0x00ffffff);
var sprite:Sprite = new Sprite();
sprite.graphics.beginFill(0xff0000, 100);
sprite.graphics.drawEllipse(0, 25, 100, 50);
sprite.graphics.endFill();
bitmap.draw(sprite);

Notice that the bitmap's background has been made transparent (0xffffff), so although the bitmap
itself is actually a rectangle, all you see is the oval that has been drawn to it.

See Also

Recipe 8.1 for how to create a bitmap, Recipe 8.2 for information on how to make a BitmapData
visible, and Recipe 10.1.

Recipe 8.4. Loading an External Image into a Bitmap

Problem

You want to load an external bitmap image and manipulate it as a BitmapData.

Solution

Use the flash.display.Loader class to load the image. When the image has loaded, access the loader's
content property, which is a Bitmap. Accessing that Bitmap's bitmapData property gives you direct
access to the BitmapData representing the loaded image.

Discussion

You load an external bitmap image via the Loader class. This takes a URLRequest object with the URL
of the image you are loading. Listening for the loader's complete event lets you know when the
image has loaded. Here is the setup to create the loaderlisten for the complete event and begin
loading an image:

package {
 import flash.display.Sprite;
 import flash.display.Loader;
 import flash.events.Event;
 import flash.net.URLRequest;

 public class BitmapLoader extends Sprite {
 private var _loader:Loader = new Loader();

 public function BitmapLoader() {
 _loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);
 _loader.load(new URLRequest("image.jpg"));
 }
 }
}

By itself, this code simply loads and displays the specified image. Next, create the onComplete method
that accesses the bitmap information once it has loaded:

 public function onComplete(event:Event):void {
 var image:Bitmap = Bitmap(_loader.content);
 var bitmap:BitmapData = image.bitmapData;

 addChild(image);
 }

First, get a reference to the loader's content property. This is a display object representing the
content that was loaded. If you have loaded an external .swf, it is a MovieClip type. In this case,
however, you have loaded a bitmap image, so the content contains a Bitmap. You should cast it as a
Bitmap so the compiler doesn't complain when you try to access properties that belong only to
Bitmap.

Next, you can access the BitmapData contained within the Bitmap by reading its BitmapData
property. This gives you the ability to modify and manipulate the newly loaded image. This example
draws a white square on the image.

Alternately, you could draw the loaded image into a new BitmapData and display that.

public function onComplete(event:Event):void {
 var loadedImage:Bitmap = Bitmap(_loader.content);

 // Create a new Bitmap data and draw the
 // loaded image to it.
 var bitmap:BitmapData = new BitmapData(loadedImage.width,
 loadedImage.height,
 false, 0xffffffff);
 bitmap.draw(loadedImage, new Matrix())

 // Create a new Bitmap using the BitmapData
 // and display it.
 var image:Bitmap = new Bitmap(bitmap);
 addChild(image);

 // Manipulate the pixels as you wish
 bitmap.fillRect(new Rectangle(0, 0, 50, 50), 0xffffffff);
}

See Also

Recipe 8.1 for how to create a bitmap and Recipe 8.2 for information on how to make a BitmapData
visible.

Recipe 8.5. Manipulating Pixels

Problem

You want to set or read the value of individual pixels in a bitmap.

Solution

Use the getPixel(), setPixel(), getPixel32(), and setPixel32() methods of the BitmapData class.

Discussion

Setting and reading pixel values of a bitmap is relatively straightforward in ActionScript 3.0. To read
the value of a pixel, just pass in the x, y coordinates of the pixel you want to read to one of the
getPixel methods. To set a pixel's color, pass in the coordinates and the color value to one of the
setPixel methods.

The getPixel() and setPixel() methods are designed for use on opaque BitmapData instances, while
getPixel32() and setPixel32() are used on images that support transparency. Opaque images are
24-bit, with 8 bits for each of its red, green, and blue channels. Transparent images add another 8-
bit alpha channel for a total of 32 bits. You specify whether the BitmapData supports transparency or
not in its constructor. See Recipe 8.1.

The following code creates a white, 32-bit BitmapData, and then sets 1,000 random pixels to a semi-
transparent red color:

var bitmap:BitmapData = new BitmapData(100, 100, true, 0xffffffff);
var image:Bitmap = new Bitmap(bitmap);
addChild(image);

for(var i:int = 0; i < 1000; i++) {
 bitmap.setPixel32(Math.round(Math.random() * 100),
 Math.round(Math.random() * 100),
 0x88ff0000);
}

If you use setPixel() on a transparent BitmapData, the alpha channel is set to 100 percent opaque
for that pixel, even if you specify something else. Similarly, if you use setPixel32() on an opaque
image, the alpha channel data is ignored, as such an image does not have an alpha channel. In
general, it is best to use the correct pair of methods for the type of bitmap you are working with.

To read the value of a pixel, pass in the x, y coordinates of the specific pixel to one of the getPixel
methods, depending on what type of bitmap you are using. The method returns either a 24- or 32-bit
number. The following class sets up a rudimentary color picker. It first uses BitmapData's noise()
method to generate some random colors and adds a text field to the stage. Then it listens for the
enterFrame event. On each frame, it gets the value of the pixel under the mouse and converts that
into a hexadecimal string.

package {
 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.text.TextField;
 import flash.events.Event;

 public class ColorChooser extends Sprite {
 private var _bitmap:BitmapData;
 private var _textfield:TextField;

 public function ColorChooser() {
 _bitmap = new BitmapData(100, 100, false, 0xffffffff);
 var image:Bitmap = new Bitmap(_bitmap);
 addChild(image);
 _bitmap.noise(1000, 0, 255, 1|2|4, false);

 _textfield = new TextField();
 addChild(_textfield);
 _textfield.y = 100;

 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 var colorVal:Number = _bitmap.getPixel(mouseX, mouseY)
 _textfield.text = "#" + colorVal.toString(16).toUpperCase();
 }
 }
}

See Also

See Recipes 8.1, 8.6, 8.7, 8.8, 8.9, 8.10, and 8.11 for other ways to add graphical content to a
bitmap.

Recipe 8.6. Creating Rectangular Fills

Problem

You want to fill a rectangular area of a bitmap with a color.

Solution

Use the fillRect() method of the BitmapData class.

Discussion

The BitmapData class does not have the wealth of drawing tools available in the drawing API for
movie clips and sprites. It does have a basic rectangle fill tool, though. Using this method is quite
simple. Just pass in the rectangle area you want to fill and the color value with which you want to fill
it:

_bitmap.fillRect(rectangle, color);

The rectangle must be an instance of the flash.geom.Rectangle class. You can make an instance of
the class by calling its constructor with the x, y, width, and height of the rectangle you want to
create, as so:

var rect:Rectangle = new Rectangle(0, 0, 50, 100);

The following code creates a white bitmap, and then draws a red square in the middle of it:

public function RectExample() {
 _bitmap = new BitmapData(100, 100, false, 0xffffffff);
 var image:Bitmap = new Bitmap(_bitmap);
 addChild(image);
 _bitmap.fillRect(new Rectangle(25, 25, 50, 50), 0xffff0000);
}

Note that there is only one version of fillRect() for both transparent and non-transparent images. If
you are using it with an image that does not have an alpha channel, just pass a 24-bit color value, as
the extra bits for alpha are ignored anyway. If you are using it with a transparent image, be sure to
use a full 32-bit number. If you just pass a 24-bit value, the alpha channel is set at 0 percent alpha.

See Also

Recipes 8.5, 8.7, 8.8, 8.9, 8.10, and 8.11 for other ways to add graphical content to a bitmap.

Recipe 8.7. Creating a Flood Fill

Problem

You want to fill a large area, possibly irregular, with a color.

Solution

Use the floodFill() method of the BitmapData class.

Discussion

The floodFill() method has the same syntax as the setPixel() method. That is, you pass it an x, y
coordinate and a color. The method colors that pixel and any surrounding pixels the same color. This
is the same as the bucket tool in most graphics programs, such as Adobe Photoshop.

The following code demonstrates it in action. It first creates a bitmap and a number of random
squares and then sets up a mouseDown handler that performs a flood fill on the selected pixel:

package {
 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.events.MouseEvent;
 import flash.geom.Rectangle;

 public class FloodFillDemo extends Sprite {
 private var _bitmap:BitmapData;

 public function FloodFillDemo () {
 var sprite:Sprite = new Sprite();
 addChild(sprite);
 _bitmap = new BitmapData(stage.stageWidth,
 stage.stageHeight,
 false, 0xffffffff);

 for(var i:int = 0; i < 20; i++) {
 _bitmap.fillRect(new Rectangle(
 Math.random() * stage.stageWidth,
 Math.random() * stage.stageHeight,
 50, 50), Math.random() * 0xffffffff);
 }

 var image:Bitmap = new Bitmap(_bitmap);
 sprite.addChild(image);
 sprite.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
 }

 public function onMouseDown(event:MouseEvent):void {
 _bitmap.floodFill(mouseX, mouseY, 0xffff0000);
 }
 }
}

See Also

Recipes 8.5, 8.6, 8.8, 8.9, 8.10, and 8.11 for other ways to add graphical content to a bitmap.

Recipe 8.8. Copying Pixels

Problem

You want to copy a rectangular area from one BitmapData to another.

Solution

Use the copyPixels() method of the BitmapData class.

Discussion

The theory behind the copyPixels() method is quite simple. It takes the pixel data from one bitmap
and draws it onto another. In that sense, it is much like the draw() method. However, in the case of
copyPixels(), you get more control over how much of the bitmap is copied and where it is copied to.
You do this by specifying a source rectangle and a destination point:

bitmap.copyPixels(sourceBmp, srcRect, destPoint);

The source rectangle is an instance of the flash.geom.Rectangle class. You use this to define a
rectangular area of the original BitmapData. This is the only portion of that bitmap that is copied.

The destination point is an instance of flash.geom.Point. This specifies the x, y coordinate of the
destination bitmap where you want to paste the copied pixels.

The following example shows how to copy several rectangular areas of a loaded bitmap onto another
BitmapData:

package {
 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.display.Loader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.geom.Point;
 import flash.geom.Rectangle;

 public class AS3CB extends Sprite {
 private var _bitmap:BitmapData;
 private var _loader:Loader;

 public function AS3CB() {
 _loader = new Loader();
 _loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoad);
 _loader.load(new URLRequest("myphoto.jpg"));
 _bitmap = new BitmapData(stage.stageWidth,
 stage.stageHeight,
 false, 0xffffffff);
 var image:Bitmap = new Bitmap(_bitmap);
 addChild(image);
 }

 public function onLoad(event:Event):void {
 var loaderBmp:Bitmap = Bitmap(_loader.content);
 var w:Number = loaderBmp.width / 10;
 for(var i:int = 0; i < 10; i++) {
 _bitmap.copyPixels(loaderBmp.bitmapData,
 new Rectangle(i * w, 0,
 w, loaderBmp.height),
 new Point(i * (w + 2), i));
 }
 }
 }
}

In the preceding code, the important part is highlighted in bold.

The defined rectangle copies progressive vertical strips from the loaded image, and the point places
them in the new bitmap, spaced out by a couple of extra pixels.

There are a few more optional parameters. You can specify another BitmapData to use as an alpha
channel, and you can choose to blend the alpha levels of the existing and new alpha bitmap. The
syntax for this is:

bitmap.copyPixels(sourceBmp, srcRect, destPoint,
 alphaBmp, alphaDestRect, blend);

This is a more advanced use of the metho. We won't cover it here in detail, but you are free to
experiment with it on your own.

See Also

Recipes 8.5, 8.6, 8.7, 8.9, 8.10, and 8.11 for other ways to add graphical content to a bitmap.

Recipe 8.9. Copying Channels

Problem

You want to copy the red, green, blue, or alpha from one BitmapData to another.

Solution

Use the copyChannel() method of the BitmapData class.

Discussion

The copyChannel() method is yet another method that draws information from one bitmap to
another. Actually, the first three arguments are the same as the copyPixels() method. In addition, it
has source channel and destination channel parameters:

bitmap.copyPixels(sourceBmp, srcRect, destPoint,
 srcChannel, destChannel);

The two channel parameters can be one of the integers 1, 2, 4, or 8, which represent the red, green,
blue, and alpha channels, respectively. Rather than risking a typographical error, you should use the
static properties of the BitmapDataChannel class: RED, GREEN, BLUE, and ALPHA.

You simply tell the method which channel you want to take from the original image and which
channel you want to copy it into in the destination image. The following code copies the red, green,
and blue channels of a loaded image to a new bitmap, slightly offset from one another:

var loaderBmp:Bitmap = Bitmap(loader.content);
bitmap.copyChannel(loaderBmp.bitmapData,
 loaderBmp.bitmapData.rect,
 new Point(),
 BitmapDataChannel.RED,
 BitmapDataChannel.RED);

bitmap.copyChannel(loaderBmp.bitmapData,
 loaderBmp.bitmapData.rect,
 new Point(5, 5),
 BitmapDataChannel.GREEN,
 BitmapDataChannel.GREEN);

bitmap.copyChannel(loaderBmp.bitmapData,

 loaderBmp.bitmapData.rect,
 new Point(10, 10),
 BitmapDataChannel.BLUE,
 BitmapDataChannel.BLUE);

See Also

Recipes 8.5, 8.6, 8.7, 8.8, 8.10, and 8.11 for other ways to add graphical content to a bitmap.

Recipe 8.10. Creating Noise

Problem

You want to create a random noise pattern in a bitmap.

Solution

Use the noise() method of the BitmapData class.

Discussion

A noise filter or pattern is simply sets each pixel in an affected area to a random value. Although you
could loop through each pixel in a bitmap and use setPixel() to randomly change its color, there is an
easier and more powerful way of doing the same thing in one line: the noise() method.

By itself, noise() creates a random, speckled image, like what you see when a television is tuned to
a channel with no signal. However, by combining noise with other filters, such as the blur filter, you
can get some very useful effects.

The noise() method is called directly on an instance of BitmapData, and its parameters are
straightforward:

bitmap.noise(seed, low, high, channel, grayscale);

Use the seed parameter to determine the random pattern; it can be any integer. If you call the
method twice with the same seed, you get the same noise pattern. To ensure you get a different
pattern each time you call it, pass in a random number like so:

Math.random() * 100000

The low and high parameters determine the minimum and maximum values for each pixel. They can
range from 0 to 255. Setting them higher gives you a brighter noise pattern; setting them lower
makes darker noise.

The channel parameter specifies to which color channel of the bitmap the noise will be applied. You
can specify 1, 2, 4, or 8 for red, green, blue, and alpha, respectively; or use the static properties of
the BitmapDataChannel class: RED, GREEN, BLUE, and ALPHA, to guard against typos.

Finally, grayscale is a Boolean value. true applies the random value to the three color channels

equally, resulting in a colorless noise.

Here are some examples. First, create a bitmap, add the noise, and then display it:

bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xff000000);
bitmap.noise(1000, 0, 255, BitmapDataChannel.RED, false);
var image:Bitmap = new Bitmap(_bitmap);
addChild(image);

This creates a random pattern in the red channel. Upping the low value gives you a lighter noise
pattern:

bitmap.noise(1000, 200, 255, BitmapDataChannel.RED, false);

You can easily convert that to a grayscale image by setting the last parameter to true:

bitmap.noise(1000, 200, 255, BitmapDataChannel.RED, true);

If you have set grayscale to true, it doesn't matter which channel you create the noise on. You can
also combine various channels to create multicolored noise, using the | operator:

bitmap.noise(1000, 0, 255, BitmapDataChannel.RED |
 BitmapDataChannel.GREEN |
 BitmapDataChannel.BLUE,
 false);

Finally, as mentioned earlier, perhaps one of the best uses of noise is when you combine it with other
filters or effects. The following code creates some noise in a bitmap, and then applies a horizontal
blur filter, producing a passable brushed metal effect:

bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xff000000);
bitmap.noise(1000, 128, 255, BitmapDataChannel.RED, true);
bitmap.applyFilter(bitmap,
 bitmap.rect,
 new Point(),
 new BlurFilter(30, 1, 3));
var image:Bitmap = new Bitmap(bitmap);
addChild(image);

This is just one example of combining noise with other effects. With some experimenting and
practice, you can come up with many more.

See Also

Recipes 8.5, 8.6, 8.7, 8.8, 8.9, and 8.11 for other ways to add graphical content to a bitmap.

Recipe 8.11. Creating Perlin Noise

Problem

You want to create random organic effects, such as clouds, smoke, or water.

Solution

Use the perlinNoise() method of the BitmapData class.

Discussion

Like the noise() method, perlinNoise() creates random patterns on a bitmap. However, Perlin noise
uses an algorithm that produces smooth, organic-looking textures. It was created by Ken Perlin for
creating textures in the movie Tron. These textures are perfect for use as explosions, smoke, water,
and many other natural-looking effects, and since they are generated by an algorithm, they require
much less memory than bitmap-based textures. The usage is as follows:

bitmap.perlinNoise(baseX, baseY, octaves, seed, stitch, fractal,
 channels, grayscale, offsets);

The first six parameters are necessary; the final three are optional. Since there are so many
parameters to consider, let's create a simple example and then see what each one does. The
following code creates a bitmap, applies Perlin noise to it and then displays it:

bitmap = new BitmapData(stage.stageWidth, stage.stageHeight, false, 0xff000000);
bitmap.perlinNoise(100, 100, 1, 1000, false, false, 1, true, null);
var image:Bitmap = new Bitmap(bitmap);
addChild(image);

Add this code to a new class, and run it to see a simple Perlin noise pattern. See Figure 8-1 for an
example of what you should see. Now you can start changing parameters and see what effect the
changes have.

First off, baseX and baseY determine the size of the pattern. Here they are set to 100 each. Try
changing baseX to 200 and baseY to 50 and see how that stretches out the noise horizontally. Already
you can see that it looks a bit like rippling water, as you can see in Figure 8-2.

Figure 8-1. Simple Perlin noise

Figure 8-2. Perlin noise stretched on the x axis

The octaves parameter is an integer that determines how many iterations of noise to create. More
octaves makes more detailed noise, and of course take longer to produce.

The seed parameter works exactly like the seed in the noise() method. If you specify the same seed
each time you run the program, you get the same noise pattern. Setting this to a random number
gives you a different pattern each time.

The stitch parameter, when set to true, makes the left and right, and top and bottom sides of the
pattern match up. This allows you to make a small bitmap and tile it, such as in a bitmap fill from the
drawing API, as shown in the following example:

bitmap = new BitmapData(100, 100, false, 0xff000000);
bitmap.perlinNoise(100, 100, 2, 1000, true, false, 1, true);
graphics.beginBitmapFill(bitmap);
graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
graphics.endFill();

Here, the bitmap is 100x100, and the stitch parameter is set to true in the perlinNoise() call. The
bitmap is used as a bitmap fill and tiles seamlessly.

When set to true, the fractal parameter results in the edges of the gradients being smoothed out
more. To see it in action, start with this code:

bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xff000000);
bitmap.perlinNoise(200, 100, 5, 1000, false, false, 1, true, null);
var image:Bitmap = new Bitmap(bitmap);
addChild(image);

After you see the image that creates, change fractal to TRue:

bitmap.perlinNoise(200, 100, 5, 1000, false, true, 1, true, null);

Notice the difference that made (see Figure 8-3)? This parameter is useful for making things like
cloud or fog, as you can see by the example, which is already starting to look like clouds.

Figure 8-3. Perlin noise with fractal set to true

The next two parameters, channel and grayscale, work exactly like they do in the noise() method.
The channel can be any of the following: 1, 2, 4, or 8, representing the red, green, blue, and alpha
channels, respectively. 1 has been used in the examples so far, for brevity, but it is recommended
that you use the static properties of the BitmapDataChannel class: RED, GREEN, BLUE, and ALPHA, to
avoid typos.

Of course, if you set grayscale to TRue, it doesn't matter which color channel you specify, as the
resulting image will be grayscale. However, if you set it to false and specify one or more color
channels, you can create colored patterns. The next example creates some red clouds:

bitmap.perlinNoise(200, 100, 5, 1000, false, true,
 BitmapDataChannel.RED, false, null);

The following code produces a multicolor pattern by using all three color channels:

bitmap.perlinNoise(200, 100, 5, 1000, false, true,
 BitmapDataChannel.RED |
 BitmapDataChannel.GREEN |
 BitmapDataChannel.BLUE,
 false, null);

You can also make Perlin noise on the alpha channel, which is useful for creating transparent cloud
effects or fog.

The final parameter is offsets. This is an array of Point objects. Each point specifies how much a
single octave is offset on the X- and Y-axes. If your Perlin noise has more than one octave, you
probably want to make an array of points equal in length to the number of octaves, and include the
same point for each element. Otherwise, each octave scrolls differently, or not at all. Of course, you
can use this for some interesting parallax effects. The following example shows a two-octave Perlin
noise pattern scrolling on the X-axis:

package {
 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.events.Event;
 import flash.geom.Point;

 public class Clouds extends Sprite {
 private var _bitmap:BitmapData;
 private var _xoffset:int = 0;

 public function Clouds() {

 _bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 true, 0xffffffff);
 var image:Bitmap = new Bitmap(_bitmap);
 addChild(image);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 _xoffset++;
 var point:Point = new Point(_xoffset, 0);

 // use the same point in both elements
 // of the offsets array
 _bitmap.perlinNoise(200, 100, 2, 1000, false, true,
 1, true, [point, point]);
 }
 }
}

See Also

Recipes 8.5 , 8.6, 8.7 , 8.8, 8.9, and 8.10 for other ways to add graphical content to a bitmap.

Recipe 8.12. Using Threshold

Problem

You want to change the value of some pixels in a bitmap, based on their current value.

Solution

Use the threshold() method of the BitmapData class.

Discussion

The threshold() method is probably the most complex in the BitmapData API, but quite powerful
once you understand how it works. The method uses two BitmapData objects:

destBitmap , which is the bitmap that will be altered.

sourceBitmap , which is the other bitmap that gets passed in as a parameter. The method uses
this bitmap's pixel data for its calculations.

The method compares each pixel in sourceBitmap against a specified value, using one of six
comparison operators. If the comparison fails, the corresponding pixel in destBitmap is set to a
specified color value. If it passes the comparison, the pixel is either not changed, or you have the
option of copying over the sourceBitmap 's value for that pixel.

Here is the syntax for the method:

destBitmap.threshold(sourceBitmap,
 sourceRect,
 destPoint,
 operation,
 threshold,
 color,
 mask,
 copySource)

We've already covered destBitmap and sourceBitmap . The next parameter, sourceRect , is an
instance of the flash.geom.Rectangle class. It defines what portion of the sourceBitmap you want to
use for comparison. If you want to use the entire bitmap, you can pass in sourceBitmap.rect as a
value to this parameter.

The destPoint parameter specifies the point in the destBitmap at which the pixels start to be

affected. Picture the sourceBitmap overlaid on destBitmap , with its top-left corner on this point. If
you want to use 0, 0 as the origin, just pass new Point() to this parameter.

The operation parameter is one of six strings that are equivalent to the comparison operators in
ActionScript. They are < , <= , > , >= , == , and != . For example, if you specify < as an operation, the
test passes for a given pixel if its value is less than the threshold value, and it fails if it is greater than
that.

Next is threshold . Each pixel is compared against this value. You can pass a full 32-bit number in
here, and compare each pixel against that, but it may not give you the results you expected. The
reason is the way color values work. For example, a pixel of 100 percent red (0xFFFF0000) evaluates
as "more than" a pixel of 100 percent blue (0xFF0000FF) or green (0xFF00FF00). So normally what
you want to do is use a mask to isolate a specific channel and compare against that.

The mask parameter is the hardest for most people to grasp. All it is doing is isolating a particular
color channel. Normally you would just pass a hexadecimal value here, with two zeros (00) for each
color channel that you want to mask out, and FF for the channel you want to use. For example,
0x00FF0000 isolates the red channel, and 0xFF000000 isolates the alpha channel. See Figure 8-4 for a
breakdown of the channels in a hexadecimal color value.

Figure 8-4. The breakdown of a hexadecimal number

The next two parameters determine what happens when a pixel passes or fails a comparison. The
color parameter is the color the corresponding pixel is set to in the destBitmap if the comparison
passes. The copySource parameter determines what happens if it fails. If this is true , the
sourceBitmap 's pixel value for that pixel is copied over to the destBitmap . If it is false , nothing
happens for that pixel in the destBitmap ; it is left as is.

Now let's see a few examples in action. Here's some sample code that creates a source and
destination bitmap and creates some Perlin noise in the source. Then it adds the destination bitmap
to the display list and applies a threshold using the source bitmap:

var srcBmp:BitmapData = new BitmapData(stage.stageWidth,
 stage.stageHeight,
 true, 0xffffffff);
srcBmp.perlinNoise(200, 100, 2, 1000, false, true, 1, true);

var destBmp:BitmapData = new BitmapData(stage.stageWidth, stage.stageHeight, true, 0xffffffff);
var image:Bitmap = new Bitmap(destBmp);
addChild(image);
destBmp.threshold(srcBmp, // sourceBitmap
 srcBmp.rect, // sourceRectangle
 new Point(), // destPoint
 "<", // operator
 0x00880000, // threshold
 0x00000000, // color
 0x00ff0000, // mask
 true); // copySource

Here the method checks to see if a given pixel's red channel (since this is defined in the mask) is less
than 0x00880000 . If so, it makes that pixel transparent. If not, it copies over the source pixel. Since
the Perlin noise was created in grayscale, it doesn't matter which of the three color channels (red,
green, or blue) you use. If you are using a full color image as a source, you might want to
experiment with different channels to see which gives you the desired effect:

As you can see if you run this code, it makes all the darker areas of the Perlin noise pattern
transparent.

Changing the operator to " >" has the opposite effect, cutting out all the lighter value pixels.

Making the threshold value higher or lower, say 0x00330000 or 0x00AA0000 , cuts out more or
less pixels.

Try setting a different color value to see what effect this has. Also try changing copySource to
false and see that it does not copy over the pixels, but keeps the original values.

One thing to note is that there is no reason why the source and destination bitmaps cannot be the
same bitmap. You can use a bitmap's own pixel data as a threshold. However, realize that you are
permanently altering that bitmap, so you won't be able to repeat the operation with the same result,
if needed.

As with many of the BitmapData methods, they are often most powerful when used in combination.
For example, adding one line to the previous example creates a drop shadow, which pops the pattern
into 3D:

destBmp.applyFilter(destBmp, destBmp.rect,
 new Point(), new DropShadowFilter());

See Also

Recipes 8.13 , 8.14 , and 8.15 for other ways to manipulate the content in a bitmap.

Recipe 8.13. Applying a Filter to a Bitmap

Problem

You want to apply a filter to a BitmapData .

Solution

Use the applyFilter() method of the BitmapData class, or add a filter to the filters array of the
enclosing Bitmap .

Discussion

As mentioned, there are two methods of applying a filter to a bitmap. The first method is to use the
applyFilter() method directly on the BitmapData itself. Like some of the other BitmapData methods,
this method is applied to one BitmapData , which is the destination bitmap, and it can take another
BitmapData as a source bitmap:

destBmp.applyFilter(srcBmp, sourceRect, destPoint, filter);

The srcBmp is the bitmap file you want to apply the filter to.

The sourceRect is the specific rectangular area from the source bitmap that you want to apply
the filter to.

The destPoint parameter specifies the upper lefthand point from which the pixels will be
affected in the destination bitmap.

The filter , of course, is an instance of the BitmapFilter that you want to apply.

You can, of course, apply a filter using the same bitmap as both source and destination. Doing so is
considered "destructive," not because it's a bad thing but because it permanently changes the
bitmap.

The values of each pixel are calculated based on the original content and the filter parameters, and
these values overwrite the original pixel data. This is useful in a couple of instances:

If you are sure you will never need to change either the bitmap's content or the filter itself.

When you have multiple or repeated applications of a filter.

For example, the following code sets 100 random pixels near the mouse position to white and then
applies a default blur filter. This is repeated on each frame, so the longer you leave the mouse at one
point, the brighter it gets. However, as you move it around, the blur is repeatedly applied to those
white pixels, eventually fading them out. The result is a glowing trail.

package {
 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.filters.BlurFilter;
 import flash.events.Event;
 import flash.geom.Point;

 public class FilteredBitmap extends Sprite {
 private var _bitmap:BitmapData;
 private var _image:Bitmap;
 private var _blurFilter:BlurFilter;

 public function FilteredBitmap() {
 _bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xff000000);
 _image = new Bitmap(_bitmap);
 addChild(_image);
 _blurFilter = new BlurFilter();
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 for(var i:int = 0; i < 100; i++) {
 _bitmap.setPixel(mouseX + Math.random() * 20 - 10,
 mouseY + Math.random() * 20 - 10,
 0xffffffff);
 }
 _bitmap.applyFilter(_bitmap, _bitmap.rect, new Point(), _blurFilter);
 }
 }
}

As you can see, the destructive method can be quite creative. Contrast that to a nondestructive
method that uses two different bitmaps. One is the source bitmap and the other is the destination.
The method applies the filter to the bitmap data in the source bitmap, and places the result in the
destination bitmap. It is nondestructive because the filter never alters the original pixels in the source
bitmap.

package {
 import flash.display.Sprite;

 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.filters.BlurFilter;
 import flash.events.Event;
 import flash.geom.Point;

 public class FilteredBitmap2 extends Sprite {
 private var _bitmap:BitmapData;
 private var _bitmap2:BitmapData;
 private var _image:Bitmap;
 private var _blurFilter:BlurFilter;

 public function FilteredBitmap2() {
 _bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xff000000);
 _bitmap2 = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xff000000);
 _image = new Bitmap(_bitmap);
 addChild(_image);
 _blurFilter = new BlurFilter();
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 for(var i:int = 0; i < 100; i++) {
 _bitmap2.setPixel(mouseX + Math.random() * 20 - 10,
 mouseY + Math.random() * 20 - 10,
 0xffffffff);
 }
 _bitmap.applyFilter(_bitmap2, _bitmap.rect, new Point(), _blurFilter);
 }
 }
}

The other method of applying a filter to a bitmap is to add it to the filters property of the Bitmap that
holds a BitmapData . This is another nondestructive method of applying a filter, as the pixel data in
the BitmapData is not touched. The filter is only applied to the Bitmap that wraps the BitmapData .
The following code shows this method in action.

package {
 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.filters.BlurFilter;
 import flash.events.Event;

 public class FilteredBitmap3 extends Sprite {
 private var _bitmap:BitmapData;
 private var _image:Bitmap;

 public function FilteredBitmap3() {

 _bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xff000000);
 _image = new Bitmap(_bitmap);
 addChild(_image);
 _image.filters = [new BlurFilter()];
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 for(var i:int = 0; i < 100; i++) {
 _bitmap.setPixel(mouseX + Math.random() * 20 - 10,
 mouseY + Math.random() * 20 - 10,
 0xffffffff);
 }
 }
 }
}

Here you can see that the filter is applied only the one time. The drawn pixels are slightly blurred, but
they don't continuously blur until they fade out. If at some point you deleted the filter from the
Bitmap , you would see that the white pixels are still perfectly sharp, as the blur was only applied to
the container, not the actual bitmap data.

See Also

Recipes 8.12 , 8.14 , and 8.15 for other ways to manipulate the content in a bitmap.

Recipe 8.14. Dissolving Between Two Bitmaps

Problem

You want to fade between one bitmap and another.

Solution

Use the pixelDissolve() method of the BitmapData class.

Discussion

Like many of the other BitmapData methods, pixelDissolve() uses a source and destination bitmap.
Each time it is called, it copies a specified number of random pixels from the source bitmap to the
destination. To complete a full dissolve, call this method repeatedly, either in an enterFrame handler
or a timer-based function. See Recipe 11.1 for information on timer-based animation.

The first time the pixelDissolve() method is called, you pass it a random number to use as a seed for
the first round of pixel copying. It returns a number that you should keep track of and use as the
seed for the next iteration.

Here is the syntax for the method:

seed = srcBmp.pixelDissolve(destBmp, sourceRect, destPoint,

 seed, numPixels, fillColor);

The sourceRect and destPoint parameters work the same way they do in other BitmapData
methods that use two bitmaps. The seed is explained more in Recipe 8.10.

The numPixels parameter determines how many pixels are copied each time the method is

called.

The fillColor offers an easy way of fading a single bitmap to a specified color. If you use the

same BitmapData as source and destination, instead of copying identical pixels from one to the
other (which would have no visible effect), the chosen pixels are set to the fill color specified in
this parameter. You can ignore this when using two different bitmaps.

The first example uses two bitmapsone white, one blackand dissolves between them at 1,000 pixels
per frame:

package {
 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.events.Event;
 import flash.geom.Point;

 public class Dissolve extends Sprite {
 private var _bitmap:BitmapData;
 private var _bitmap2:BitmapData;
 private var _image:Bitmap;
 private var _seed:Number;
 private var _pixelCount:int = 0;

 public function Dissolve() {
 _bitmap = new BitmapData(stage.stageWidth,
 stage.stageHeight,
 false, 0xffffffff);
 _bitmap2 = new BitmapData(stage.stageWidth,
 stage.stageHeight,
 false, 0xff000000);
 _image = new Bitmap(_bitmap);
 addChild(_image);
 _seed = Math.random() * 100000;
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 _seed = _bitmap.pixelDissolve(_bitmap2,
 _bitmap.rect,
 new Point(),
 _seed,
 1000);
 _pixelCount += 1000;
 if(_pixelCount > _bitmap.width * _bitmap.height) {
 removeEventListener(Event.ENTER_FRAME,
 onEnterFrame);
 }
 }
 }
}

An important thing to note here is that the pixelDissolve() method has no way of knowing when it is
done (i.e., when all the pixels have been copied over from one bitmap to the other). It is up to you to
keep a count of the number of pixels that have been copied and stop copying when this exceeds the
total number of pixels in the image (its width times its height).

In the following example, the same BitmapData is used as both source and destination, and a black
fill color is applied:

package {

 import flash.display.Sprite;
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.events.Event;
 import flash.geom.Point;

 public class Dissolve2 extends Sprite {
 private var _bitmap:BitmapData;
 private var _image:Bitmap;
 private var _seed:Number;
 private var _pixelCount:int = 0;

 public function Dissolve2() {
 _bitmap = new BitmapData(stage.stageWidth,
 stage.stageHeight,
 false,
 0xffffffff);
 _image = new Bitmap(_bitmap);
 addChild(_image);
 _seed = Math.random() * 100000;
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 _seed = _bitmap.pixelDissolve(_bitmap,
 _bitmap.rect,
 new Point(),
 _seed,
 1000,
 0xff000000);
 _pixelCount += 1000;
 if(_pixelCount > _bitmap.width * _bitmap.height)
 {
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }
 }
 }
}

Pixel dissolves are particularly effective when done between two photographic images, at a fast rate.
If you don't know what size your images are going to be but you want to keep the speed constant,
you can set numPixels to a percentage of the size of the image, like so:

var numPixels:Number = _bitmap.width * _bitmap.height / 100;
_seed = _bitmap.pixelDissolve(_bitmap,
 _bitmap.rect,
 new Point(),
 _seed,
 numPixels,
 0xff000000);
_pixelCount += numPixels;

This copies 1/100th of the total pixels on each iteration. At 30 frames per second, this would be
(approximately) a 3-second dissolve, regardless of the size of the images.

See Also

Recipes 8.12, 8.13, and 8.15 for other ways to manipulate the content in a bitmap.

Recipe 8.15. Scrolling a Bitmap

Problem

You want to scroll the content of a BitmapData.

Solution

Use the scroll() method of the BitmapData class.

Discussion

The operation and syntax is simple and straightforward. You pass the amounts you want to scroll the
bitmap's content on the X- and Y-axes:

_bitmap.scroll(xAmount, yAmount);

The method effectively copies the pixels in the bitmap and pastes them back, offset by the amount
specified. Any pixels that aren't overwritten in the operation remain the same as they were originally.

You can call scroll() repeatedly in an enterFrame handler or timer function to animate the scrolling of
the bitmap. The following code demonstrates this by generating a Perlin noise pattern and then
scrolling it:

public function Scroll() {
 _bitmap = new BitmapData(stage.stageWidth, stage.stageHeight,
 false, 0xffffffff);
 _bitmap.perlinNoise(100, 100, 3, 1000, true, true, 1, true);
 _image = new Bitmap(_bitmap);
 addChild(_image);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
}

public function onEnterFrame(event:Event):void {
 _bitmap.scroll(-1, -1);
}

Note that the edges that are not copied in the scroll are not cleared, but left as they were.

See Also

Recipes 8.12, 8.13, and 8.14 for other ways to manipulate the content in a bitmap.

Chapter 9. Text

Section 9.0. Introduction

Recipe 9.1. Creating an Outline Around a Text Field

Recipe 9.2. Creating a Background for a Text Field

Recipe 9.3. Making a User Input Field

Recipe 9.4. Making a Password Input Field

Recipe 9.5. Filtering Text Input

Recipe 9.6. Setting a Field's Maximum Length

Recipe 9.7. Displaying Text

Recipe 9.8. Displaying HTML-Formatted Text

Recipe 9.9. Condensing Whitespace

Recipe 9.10. Sizing Text Fields to Fit Contents

Recipe 9.11. Scrolling Text Programmatically

Recipe 9.12. Responding to Scroll Events

Recipe 9.13. Formatting Text

Recipe 9.14. Formatting User-Input Text

Recipe 9.15. Formatting a Portion of Existing Text

Recipe 9.16. Setting a Text Field's Font

Recipe 9.17. Embedding Fonts

Recipe 9.18. Creating Text that Can Be Rotated

Recipe 9.19. Displaying Unicode Text

Recipe 9.20. Assigning Focus to a Text Field

Recipe 9.21. Selecting Text with ActionScript

Recipe 9.22. Setting the Insertion Point in a Text Field

Recipe 9.23. Responding When Text Is Selected or Deselected

Recipe 9.24. Responding to User Text Entry

Recipe 9.25. Adding a Hyperlink to Text

Recipe 9.26. Calling ActionScript from Hyperlinks

Recipe 9.27. Working with Advanced Text Layout

Recipe 9.28. Applying Advanced Anti-Aliasing

Recipe 9.29. Replacing Text

Recipe 9.30. Retrieving a List of System Fonts

9.0. Introduction

The flash.text.TextField class is the way in which all text is displayed in Flash Player. Even the text
components such as TextArea and TextInput use the TextField class to display text. Flash Player
enables a great deal of functionality for text fields from enabling user input to embedding fonts to
using Cascading Style Sheets (CSS) to format text. In this chapter, we'll discuss all the many things
you can accomplish with text.

As implied in the preceding paragraph, the TextField class is packaged in the flash.display package.
Therefore, you need to either import the class or refer to the class with the fully qualified class name.
All examples in this chapter assume you've imported the class with the following line of code:

import flash.text.TextField;

ActionScript 3.0 uses a display list that is quite different from previous versions of ActionScript. With
earlier versions of ActionScript, you construct a text field using the TextField constructor as follows:

var field:TextField = new TextField();

However, with ActionScript 3.0, the new text field object isn't automatically added to the display list.
That means that if you want to make the text field visible, you have to use the addChild() method.
As discussed in Chapter 6, the addChild() method is defined for all container display objects, such as
Sprite, and it adds the object specified as a parameter to the display list of the object from which it is
called. For example, the following line of code adds the field TextField object to the display list of the
instance of the TextExample class:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 public class TextExample extends Sprite {
 public function TextExample() {
 var field:TextField = new TextField();
 addChild(field);
 }
 }
}

When the examples in this chapter reference an object called field, it's frequently assumed that the
object is a TextField object that was instantiated via the TextField constructor and added to the
display list with the addChild() method.

Recipe 9.1. Creating an Outline Around a Text Field

Problem

You want to place a border around a text field.

Solution

Set the text field's border property to true. Additionally, you can change the color of the border by
setting the object's borderColor property.

Discussion

By default, a text field does not have a visible border, which is assumed to be the most common
preferred behavior. For example, you may not want a border around an item label. However, there
are many cases in which you will want to apply a border to a text field, such as a field that requires
some user input. The border shows the user where to click to input a value. Simply setting a text
field's border property to true turns on the border around the object:

field.border = true;

To turn off the border, simply set the border property to false.

The default border color is black, but that can be changed with the borderColor property, which
accepts a hex RGB value corresponding to the desired color:

field.borderColor = 0xFF00FF; // Make the border violet.

Recipe 9.2. Creating a Background for a Text Field

Problem

You want to make a visible background behind the text in a text field.

Solution

Set the text field's background property to true. Additionally, you can change the color of the
background by setting the object's backgroundColor property.

Discussion

By default, text fields don't have a visible background. However, you can create a background for a
text field by setting the background property for that object to true:

field.background = true;

By default, the background for a text field is white (if made visible). You can, however, assign the
background color by setting the value of the object's backgroundColor property, which accepts a hex
RGB value corresponding to the desired color, as shown here:

field.backgroundColor = 0x00FFFF; // Set the background to light blue

Recipe 9.3. Making a User Input Field

Problem

You want to create a user input field to allow the user to enter text.

Solution

Set the text field's type property to TextFieldType.INPUT.

Discussion

There are two types of text fields: dynamic and input. The default text field type is dynamic. This
means that it can be controlled with ActionScript, but the user cannot input text into it. To enable the
field for user input, set the type property to the INPUT constant of the flash.display.TextFieldType
class:

field.type = TextFieldType.INPUT;

Though it isn't a requirement, input fields generally also have a border and a background. Otherwise,
the user might find it difficult to locate and select the field:

field.border = true;
field.background = true;

For a user to be able to input text, the field's selectable property must be true, which is the default.
You don't need to set the selectable property to true, unless you previously set it to false.

If you have previously defined an input text field that you want to make a dynamic text field (so that
it does not accept user input) you can set the type property to the DYNAMIC constant of the
flash.display.TextFieldType class:

field.type = TextFieldType.DYNAMIC;

Recipe 9.4. Making a Password Input Field

Problem

You want to create a password-style text field that hides the characters as asterisks. You also want to
disable copying from the text field.

Solution

Set the text field's password property to true.

Discussion

When a user enters a password into a field, you generally want to make it so others aren't able to
read the password. This is a basic security precaution. The common convention is to display only
asterisks in the field as the user types. This way, the user can see that she is successfully entering a
value without anyone else being able to easily read what she's just typed.

To create an input field that is automatically masked with asterisks, you only need to set the
TextField .password property to TRue:

field.password = true;

When you set the password property to true, all text entered into the text field, either
programmatically or by user input, displays as asterisks:

field.password = true;
field.text = "example text"; // Text field displays: ************

Password text fields also disable copying from the text field. That prevents a user from being able to
copy passwords or similar data and then paste it into a plain text document.

Password text fields are most commonly also input text fields; however, you can set the password
property to TRue for a dynamic text field as well.

Although password text fields hide the data from the display, they do not
encrypt the data or make it more secure for sending over a network. If data
security is important to your application, you must use technologies that make
data secure as it is transferred over a network. If you send data from Flash
using standard HTTP, then the data is sent in an unsecured fashion. Use a
technology such as SSL if you must send data in a secure fashion.

Recipe 9.5. Filtering Text Input

Problem

You want to restrict the characters that a user can type into an input field.

Solution

Set the restrict property of the text field.

Discussion

By default, a user can type any character into an input field. However, in many scenarios, you might
want to restrict the allowable characters. For example, you might restrict characters to numbers and
dashes in the case of an input field for telephone numbers.

The TextField .restrict property lets you specify the allowed characters for user input into a field.

Specify a string containing the allowable characters, such as:

field.restrict = "abcdefg";

This example lets the user enter any of the allowable characters: a, b, c, d, e, f, or g. Other
characters are disallowed. If the user tries to enter grabs, only gab appears, since the letters r and s
are not in the allowable character set.

If the restrict string is set to the empty string then all characters are allowed.
To prevent input entirely, set the type to DYNAMIC.

Also, note that ActionScript distinguishes between upper- and lowercase characters. In other words,
there is a difference between a and A. If the restrict property is set to abcdefg, the uppercase
variants of the allowable characters (such as A, B, C) will be entered as the lowercase (allowable)
equivalents (a, b, c). The same is true in reverse, such that if a lowercase character is entered when

only the uppercase counterpart is allowed, the character is converted to uppercase.

The restrict property supports certain regular expression-like patterns. Therefore, you can also
enter ranges by indicating the first character in the range and the last character in the range
separated by a dash (-):

field.restrict = "a-zA-Z"; // Allow only upper- and lowercase letters
field.restrict = "a-zA-Z "; // Allow only letters and spaces
field.restrict = "0-9"; // Allow only numbers

In addition to specifying allowable characters, you can also disallow characters with a restrict string
by using the caret character (^).

All characters and ranges in a restrict string following the caret are disallowed; for example:

field.restrict = "^abcdefg"; // Allows all except lowercase a through g
field.restrict = "^a-z"; // Disallows all lowercase letters (but allows other
 // characters, including uppercase.)
field.restrict = "0-9^5"; // Allows numbers only, with the exception of 5

You can also specify allowable characters by using Unicode escape sequences. For example, if you
want to disallow users from entering the character (Control-Z) into a field, you can specify its
Unicode code point in the restrict property, as follows:

field.restrict = "^\u001A";

To allow a literal character that has a special meaning when used in a restrict string (such as a
dash or caret), you must escape the character in the restrict string by preceding it with two
backslashes (not just one), as shown here:

field.restrict = "0-9\\-"; // Allow numbers and dashes
field.restrict = "0-9\\^"; // Allow numbers and caret marks

If you want to escape the backslash character, you must precede it with three backslashes, for a
total of four backslashes:

field.restrict = "0-9\\\\"; // Allow numbers and backslashes

The restrict property only affects the characters that the user can input. It does not have any affect
on which characters can be displayed programmatically.

Recipe 9.6. Setting a Field's Maximum Length

Problem

You want to limit the length of the string input into a text field.

Solution

Set the text field's maxChars property.

Discussion

By default, an input text field allows a user to type in as many characters as he desires. However,
you may have good reason to want to set a maximum. For example, if an input field prompts a user
for his two-character country code, you might want to prevent the user from entering more than two
characters. Setting the maxChars property to a number limits the user input to that many characters:

field.maxChars = 6; // maximum of 6 characters can be input

Set maxChars to null to allow an entry of unlimited length, if you've previously assigned a non-null
value to maxChars.

See Also

Recipe 9.5

Recipe 9.7. Displaying Text

Problem

You want to display text within a text field.

Solution

Set the text property of a text field.

Discussion

Aside from being used as input fields, text fields are often used to display text to the user. Setting a
text field's text property causes the corresponding text to display in the field:

field.text = "this will display in the field";

Special characters, such as \\t for tab and \\n for newline, can be used within a text string.

You can append text by using the += operator or the appendText() method:

field.appendText("new text");

See Also

Recipe 9.8 for information on support for HTML-formatted text.

Recipe 9.8. Displaying HTML-Formatted Text

Problem

You want to display HTML content in a text field.

Solution

Set the text field's htmlText property to the value of the HTML content to display.

Discussion

Text fields can interpret and display basic HTML tags, if properly configured. Using HTML in a text
field is a convenient way to add hyperlinks and simple formatting, such as font color and bolded text.

The value of the text field object's htmlText property is interpreted as HTML:

field.htmlText = "<u>This displays as underlined text.</u>";

No matter what, the text property of a text field is rendered as plain text. This means that even if
the text property is set to <u>test</u>, the object displays <u>test</u> instead of test. That means
that if you want to display HTML code in its unrendered format assign the HTML value to the text
property of the text field, as follows:

field.text = "<u>underlined text</u>";

/* text field displays:
<u>underlined text</u>
*/

This can be a useful technique if, for example, you want to show both the rendered HTML and the
HTML source code in side-by-side text fields:

htmlCode = "<i>italicized text</i>";
sourceHTML.text = htmlCode;
renderedHTML.htmlText = htmlCode;

You cannot display both rendered and unrendered HTML in the same text field. If you try, you will
end up with unreliable results.

The set of HTML tags supported by text fields includes: , <i>, <u>, (with face, size, and
color attributes), <p>, < br>, <a >, , , and <textformat> (with leftmargin, rightmargin,
blockindent, indent, leading, and tabstops attributes corresponding to the TextFormat class's
properties of the same names).

Recipe 9.9. Condensing Whitespace

Problem

You want to condense whitespace in an HTML text field display.

Solution

Set the object's condenseWhite property to true.

Discussion

When you use HTML in a text field, the optional condenseWhite setting condenses whitespace, as is
done in most HTML browsers. For example, the following text would be rendered in a web browser
with only a single space between "hello" and "friend" in spite of the fact that the original source has
multiple spaces between the two words.

hello friend

In ActionScript text fields, however, all of the spaces are displayed, unless you set the condenseWhite
property to TRue:

field.condenseWhite = true;
field.htmlText = "hello friend"; // Displays: "hello friend"

The condenseWhite property works only when the html property is TRue.

See Also

Recipe 9.8

Recipe 9.10. Sizing Text Fields to Fit Contents

Problem

You want to size a text field's viewable area to fit the text it contains.

Solution

Use the autoSize property.

Discussion

You can set the autoSize property of a text field so it automatically resizes itself in order to fit its
contents. The possible values for autoSize are the RIGHT , LEFT , CENTER , and NONE constants of the
flash.text.TextFieldAutoSize class. By default, autoSize is set to NONE , meaning that the text field
does not automatically resize.

Set the property to LEFT if you want the text field to resize while fixing the upper-left corner's
position. In other words, the text field's lower-right corner is the point that moves when it expands
and contracts:

// These two lines do the same thing
field.autoSize = TextFieldAutoSize.LEFT;
field.autoSize = true;

Set the property to CENTER if you want the text field to be anchored at its center point. While the top
of the object remains fixed, it expands and contracts downward and equally to the right and left:

field.autoSize = TextFieldAutoSize.CENTER;

Set the property to RIGHT if you want the upper-right corner of the text field to remain steady while
the object expands and contracts in the direction of the lower-left corner:

field.autoSize = TextFieldAutoSize.RIGHT;

When wordWrap is set to false (the default), then the text field expands horizontally to
accommodate the text. In such a case, the text field expands vertically only if there are newlines
within the text assigned to the text field. The following example illustrates a text field that auto sizes
to accommodate all the text on one line:

var field:TextField = new TextField();

field.autoSize = TextFieldAutoSize.LEFT;
field.text = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi tortor purus, aliquet a, ornare ac, suscipit a, est. Nullam hendrerit molestie erat. Nunc nulla tortor, ullamcorper et, elementum vel, fringilla sed, dui. Praesent fermentum interdum orci.";
addChild(field);

The following adds a newline character to the text assigned to the text field so that it auto sizes to
display all the text on two lines:

var field:TextField = new TextField();
field.autoSize = TextFieldAutoSize.LEFT;
field.text = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi tortor purus, aliquet a, ornare ac, suscipit a, est.";
field.text += "\n";
field.text += "Nullam hendrerit molestie erat. Nunc nulla tortor, ullamcorper et, elementum vel, fringilla sed, dui. Praesent fermentum interdum orci.";
addChild(field);

When wordWrap is set to TRue , then the text field never expands beyond the value of the width
property (100 by default). If necessary, the text automatically wraps to a new line if autoSize is set
to RIGHT , LEFT , or CENTER :

var field:TextField = new TextField();
field.autoSize = TextFieldAutoSize.LEFT;
field.wordWrap = true;
field.text = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi tortor purus, aliquet a, ornare ac, suscipit a, est. Nullam hendrerit molestie erat. Nunc nulla tortor, ullamcorper et, elementum vel, fringilla sed, dui. Praesent fermentum interdum orci.";
addChild(field);

See Also

Recipe 9.6

Recipe 9.11. Scrolling Text Programmatically

Problem

You want to scroll text in a text field via ActionScript.

Solution

Use the scrollV, maxScrollV, bottomScrollV, scrollH, and maxScrollH properties of the text field.
Use the mouseWheelEnabled property to enable scrolling of text by way of the mouse wheel.

Discussion

You can control the scrolling of a text field with ActionScript and without the aid of a scrollbar. For
example, you may want to scroll the contents of a text field automatically to display a word or
selection within the text. You can programmatically control a text field's scrolling in both the vertical
and horizontal directions using some built-in properties. You should use the scrollV, maxScrollV, and
bottomScrollV properties to control vertical scrolling, and use the scrollH and maxScrollH properties
to control horizontal scrolling.

Every text field has a number of lines, whether it is 1 or 100. Each of these lines is identified by a
number starting at 1. Some of these lines may be visible, and some may be beyond the border of the
text field. Therefore, to view the lines that extend beyond the visible portion of the text field you
must scroll to them. Figure 9-1 illustrates this point. It depicts a text field's display where the solid
line indicates the object's border (the visible area), and the dotted line surrounds the rest of the text
contained within the object but lying outside the its visible area. To the left of the text field are line
numbers for each line of text. The three labelsscrollV, bottomScrollV, and maxScrollVindicate the
meaning of the text field properties of the same names.

Figure 9-1. Understanding scrollV, bottomScrollV, and maxScrollV

The scrollV property is a read-write property that indicates the top line of the text field's visible area.
In Figure 9-1, the scrollV property's value is 1. To scroll the contents of a text field, assign a newline
number to the scrollV property. Setting scrollV to 6, for example, scrolls the contents of the text
field up until line 6 is the top-most line displayed. The value of scrollV should always be an integer;
Flash cannot scroll to non-integer values:

field.scrollV = 1; // Scroll to the top
field.scrollV += 1; // Scroll to the next line
field.scrollV = 6; // Scroll to line 6

You can scroll to the next page of a text field's contents by using the bottomScrollV property, which
indicates the bottom-most visible line in the text field. While you cannot set bottomScrollV, you can
use it to determine the new value to assign to scrollV. In Figure 9-1, bottomScrollV is 13. If scrollV
is set to 6, then bottomScrollV is automatically updated to 18:

// Scroll to the next page with the previous page's bottom line
// at the top
field.scrollV = field.bottomScrollV;
// Scroll to the next complete page without the bottom line from
// previous page
field.scrollV = field.bottomScrollV + 1;

You should use the maxScrollV property to scroll to the last page of contents within a text field. The
maxScrollV property is also a read-only property. This property contains the value of the maximum
line number that can be assigned to scrollV. Therefore, the maxScrollV property changes only when
the number of lines in the text field changes (either through user input or ActionScript assignment).
In Figure 9-1, maxScrollV is 14. This is because with 26 total lines in the text field and 13 visible
lines, when scrollV is set to 14, the last visible line is 26 (the last line in the text field).

Don't try to set scrollV to a value less than 1 or greater than the value of maxScrollV. Although this
won't cause an error, it won't scroll the text beyond the contents. Add blank lines to the beginning or
end of the text field's contents to artificially extend its scrolling range:

field.scrollV = field.maxScrollV; // Scroll to the bottom

The vertical scrolling properties are in units of lines, but the horizontal scrolling properties (scrollH
and maxScrollH) are in units of pixels. Other than that, scrollH and maxScrollH work more or less in
the same fashion as scrollV and maxScrollV (there is no property for horizontal scrolling that
corresponds to bottomScrollV). The scrollH property is a read-write property that allows you to
control the value of the leftmost visible pixel starting with 0. The maxScrollH property is a read-only
property that indicates the pixel value of the maximum value that can be assigned to scrollH:

field.scrollH = 0; // Scroll to the far left
field.scrollH += 1; // Scroll to the right 1 pixel
field.scrollH = field.maxScrollH; // Scroll to the far right

Figure 9-2 depicts maxScrollH for a dynamic text field (a field whose type is set to DYNAMIC). Text
shown in gray is outside the visible area of the text field.

Figure 9-2. The maxScrollH property for a dynamic text field

Figure 9-3 depicts maxScrollH for an input text field (a field whose type is set to input).

Flash automatically adds a buffer space to allow room for user input. Again,
text shown in gray is outside the visible area of the text field.

Figure 9-3. The maxScrollH property for an input text field

Use the mouseWheelEnabled property to enable text scrolling using a scrollwheel mouse. The
property is set to false by default; setting the property to TRue enables mouse wheel scrolling, as
shown here:

field.mouseWheelEnabled = true;

Recipe 9.12. Responding to Scroll Events

Problem

You want to have some actions performed when a text field's contents are scrolled.

Solution

Listen for the scroll event.

Discussion

When a text field is scrolled vertically or horizontally (meaning that the scrollV or scrollH property
has been changed either by your custom ActionScript code or a scrollbar), the text field dispatches a
scroll event. The scroll event name is defined by the SCROLL constant of the flash.events.Event class,
and the event that is dispatched is a flash.events.Event object. The following code registers a listener
for the scroll event for a text field called field:

field.addEventListener(Event.SCROLL, onTextScroll);

The following defines an example onTextScroll() method that listens for the scroll event:

private function onTextScroll(event:Event):void {
 trace("scroll");
}

See Also

Recipes 9.23 and 9.24

Recipe 9.13. Formatting Text

Problem

You want to format the text in a text field.

Solution

Use HTML tags, pass a TextFormat object to the TextField.setTextFormat() method, or use a
StyleSheet object, and apply it to the text field's styleSheet property.

Discussion

Although you can set the color of the entire contents of the text field using the textColor property,
for example, the TextField class doesn't offer precise control over character formatting. However,
there are several ways in which you can apply more exacting formatting to text fields:

Use HTML tags to apply formatting. For example, you can use , , and <u> tags.

Use a TextFormat object.

Use CSS.

Each of the three ways in which you can apply formatting to a text field has its own advantages and
disadvantages. Applying HTML formatting is relatively simple, but it is the most difficult to manage of
the different techniques. Using a TextFormat object is the more complex than applying formatting via
HTML. However, when you want to apply complex formatting, it is a better option than HTML
formatting. Using CSS with a StyleSheet object allows the greatest flexibility, and it allows you to
load a CSS document, which makes it simple to maintain because you can edit the CSS document
without having to re-export the .swf file.

For fast and simple formatting, HTML tags are simplest. For example, the following code displays
bolded and underlined text:

field.html = true;
field.htmlText = "Bold text <u>Underlined text</u>";

You can use TextFormat objects to apply more complex formatting to the text displayed in text fields.
The first step in formatting text with a TextFormat object is to instantiate the object by using the
constructor method:

var formatter:TextFormat = new TextFormat();

Next, assign values to the TextFormat object's properties as you want:

formatter.bold = true; // Bold the text
formatter.color = 0xFFFF00; // Make the text yellow
formatter.blockIndent = 5; // Adjust the margin by 5 points

You can apply text formatting to the existing text for an entire text field by passing a TextFormat
object to the text field's setTextFormat() method:

field.setTextFormat(formatter);

When you invoke the setTextFormat() method this way, the formatting from the TextFormat object
is applied to the text already assigned to the text field. The formatting does not apply to any text
assigned to the text field after the setTextFormat() method is invoked. If additional text is entered
by the user, the original text retains its applied formatting, but the inserted text does not have any
special formatting applied to it. All formatting is removed if the text value is modified by appending a
value by way of ActionScript:

field.text = "this is sample text";
field.setTextFormat(formatter); // Formatting applied
field.text = "this is new text"; // No formatting applied
field.setTextFormat(formatter); // Formatting reapplied
field.text += "appended text"; // Formatting removed

If you make changes to the TextFormat object, you should reapply the formatting to the text field by
passing the modified object to the setTextFormat() method. Otherwise, the changes are not
automatically displayed.

CSS support is available using the flash.text.StyleSheet class. The StyleSheet constructor does not
require any parameters, as shown here:

var css:StyleSheet = new StyleSheet();

Table 9-1 lists the supported CSS properties and the equivalent ActionScript properties. Use the CSS
property names when defining a CSS document or a string to parse as CSS, and use the ActionScript
properties when defining style objects (as discussed next).

 color

color

The hexadecimal value as a string in the format of #RRGGBB.
display

 display

The way in which the text is displayed in the text field. The possible options are inline (no
line breaks before or after the text), block (default style with line breaks before and after), or
none (hidden).

 font-family

 fontFamily

A comma-delimited list of font names. In addition to embedded fonts or named device fonts,
Flash Player supports the following device font groups: _sans , _serif , _typewriter . You
can also use sans-serif , serif , and mono , and they will be interpreted as _sans , _serif ,
and _typewriter , respectively.

 font-size

 fontSize

The numeric font size.

 font-style

 fontStyle

normal or italic .

 font-weight

 fontWeight

normal or bold .

 kerning

 kerning

TRue or false . Kerning only works with embedded fonts that support kerning. Additionally,

the .swf must be compiled on Windows for kerning to work.

 letter-spacing

 letterSpacing

The number of pixels to add between letters.

 margin-left

 marginLeft

Number of pixels to apply to the left margin.

 margin-right

 marginRight

Number of pixels to apply to the right margin.

 text-align

 textAlign

left , center , right , or justify .

 text-decoration

 textDecoration

none or underline .

 text-indent

 textIndent

Number of pixels to apply as the indent.

Table 9-1. CSS properties supported by Flash Player

CSS property ActionScript property Description

You can construct a new StyleSheet object and then populate it in several ways. One way to populate
a StyleSheet object is to define style objects and assign them by using the setStyle() method. A
style object is an associative array with properties from the ActionScript properties list of Table 9-1 .

The following is an example of a style object:

var sampleStyle:Object = new Object();
sampleStyle.color = "#FFFFFF";
sampleStyle.textAlign = "center";

Note that you can define a style object with object literal notation as well, as shown here:

var sampleStyle:Object = {color: "#FFFFFF", textAlign: "center"};

Once you've defined one or more style objects, you can add them to the StyleSheet object with the
setStyle() method. The setStyle() method requires two parameters: the name of the style and the
style object. You can define styles for tags as well as for classes. The following defines a CSS class
called sample :

css.setStyle(".sample", sampleStyle);

Although you can define a stylesheet with style objects and the setStyle() method, the most
common and practical use of the class is to load and parse an external CSS document. Loading CSS
at runtime has the advantage that you can change the styles by editing the CSS document, and you
don't have to recompile the .swf .

To load a CSS document, use the flash.net.URLLoader class. Once data from the document has
loaded, you can use that data to populate a StyleSheet object by passing the data to the parseCSS()
method of the object. The next example uses styles.css , a CSS document defined as follows and
saved in the same directory as the .swf :

p {
 font-family: _sans;
 color: #FFFFFF;
}
.emphasis {
 font-weight: bold;
 font-style: italic;
}

The following example illustrates how to load a CSS document and use that data to populate a
StyleSheet object:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.Event;
 import flash.text.TextFieldAutoSize;
 import flash.text.StyleSheet;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 public class CSSText extends Sprite {

 public function CSSText() {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onLoadCSS);
 var request:URLRequest = new URLRequest("styles.css");
 loader.load(request);
 }

 private function onLoadCSS(event:Event):void {
 var css:StyleSheet = new StyleSheet();
 css.parseCSS(URLLoader(event.target).data);
 var field:TextField = new TextField();
 field.autoSize = TextFieldAutoSize.LEFT;
 field.wordWrap = true;
 field.width = 200;
 addChild(field);
 field.styleSheet = css;
 field.htmlText = "<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi tortor purus, aliquet a, ornare ac, suscipit a, est. Nullam hendrerit molestie erat. Nunc nulla tortor, ullamcorper et, elementum vel, fringilla sed, dui. Praesent fermentum interdum orci.</p>";
 }
 }
}

There are a few things to watch for when working with CSS in Flash:

CSS can be applied only to text fields rendering HTML.

The HTML and CSS must correspond. For example, if the CSS defines a class called
someCSSClass , then it has an effect only if the HTML applies that class to some portion of the
text (as in the preceding example).

The HTML text must be applied after the CSS is applied.

If you want to allow the user to select from different CSS documents, it may be helpful to store the
HTML text in a variable or an associative array. Then you can re-apply the HTML each time the new
CSS is loaded, as in the following example:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.text.TextFieldAutoSize;
 import flash.text.StyleSheet;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 public class CSSText extends Sprite {

 private var _field:TextField;
 private var _html:String;

 public function CSSText() {
 var css1:TextField = new TextField();
 css1.text = "stylesheet 1";
 css1.selectable = false;
 var css1Container:Sprite = new Sprite();
 css1Container.addEventListener(MouseEvent.CLICK, onCSS1);
 css1Container.addChild(css1);
 addChild(css1Container);

 var css2:TextField = new TextField();
 css2.text = "stylesheet 2";
 css2.selectable = false;
 var css2Container:Sprite = new Sprite();
 css2Container.addEventListener(MouseEvent.CLICK, onCSS2);
 css2Container.addChild(css2);
 addChild(css2Container);

 css2Container.y = 25;

 _field = new TextField();
 _field.autoSize = TextFieldAutoSize.LEFT;
 _field.wordWrap = true;
 _field.width = 200;
 addChild(_field);
 _html = "<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi tortor purus, aliquet a, ornare ac, suscipit a, est. Nullam hendrerit molestie erat. Nunc nulla tortor, ullamcorper et, elementum vel, fringilla sed, dui. Praesent fermentum interdum orci.</p>";
 _field.y = 50;
 }

 private function loadCSS(url:String):void {
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onLoadCSS);
 var request:URLRequest = new URLRequest(url);
 loader.load(request);

 }

 private function onCSS1(event:MouseEvent):void {
 loadCSS("styles.css");
 }

 private function onCSS2(event:MouseEvent):void {
 loadCSS("styles2.css");
 }

 private function onLoadCSS(event:Event):void {
 var css:StyleSheet = new StyleSheet();
 css.parseCSS(URLLoader(event.target).data);
 _field.styleSheet = css;
 _field.htmlText = _html;

 }
 }
}

See Also

Recipe 9.8 explains how to use HTML-formatted text, Recipe 9.14 explains how to apply formatting to
new text rather than existing text, and Recipe 9.15 applies formatting to individual characters rather
than an entire field.

Recipe 9.14. Formatting User-Input Text

Problem

You want to apply formatting to text as the user enters it into a text field.

Solution

Apply a TextFormat object by using the defaultTextFormat property of the text field.

Discussion

You should use the defaultTextFormat property of a text field object to apply text formatting to text
as it is entered by user input. Create a TextFormat object as in Recipe 9.13, and then assign that
object to the text field's defaultTextFormat property:

var formatter:TextFormat = new TextFormat();
formatter.color = 0x0000FF; // Make the text blue
field.defaultTextFormat = formatter;

When you use defaultTextFormat, the formatting is applied to text that the user types into the field.

See Also

Recipes 9.13 and 9.15

Recipe 9.15. Formatting a Portion of Existing Text

Problem

You want to add formatting to some, but not all, text in a text field, or you want to apply different
formatting to various parts of a text field.

Solution

Create a TextFormat object and use it to format a substring of the text field by using one of the
setTextFormat() method variations.

Discussion

You can format an entire text field as shown in Recipe 9.13, or you can use one of the versions of the
setTextFormat() method to format just a portion of a text field. These variations allow you to apply
formatting to the specified character range only.

You can set the formatting for a single character within a text field by invoking the setTextFormat()
method and passing it two parameters:

index

The zero-relative index of the character to which the formatting should be applied.

textFormat

A reference to a TextFormat object.

This example applies the formatting to the first character only:

field.setTextFormat(0, formatter);

Alternatively, if you want to apply the formatting to a range of characters, you can invoke
setTextFormat() with three parameters:

startIndex

The beginning, zero-relative character index.

endIndex

The index of the character after the last character in the desired range.

textFormat

A reference to a TextFormat object.

This example applies the formatting to the first 10 characters:

field.setTextFormat(0, 10, formatter);

You may notice that when you try to format portions of a text field, certain formatting options do not
get applied under certain circumstances. For example, text alignment is applied only if the formatti ng
is applied to the first character in the line.

See Also

Recipe 9.13

Recipe 9.16. Setting a Text Field's Font

Problem

You want to use ActionScript to change the font used for some displayed text.

Solution

Use a tag in HTML, set the font property of a TextFormat object, or use the font-family
property in CSS.

Discussion

You can programmatically specify the font that is used to display text by using one of several
different options. You can use a tag if you are applying the formatting using HTML. For
example:

field.htmlText = "Formatted text";

You can also use the font property of a TextFormat object. You can assign to this property the string
name of the font (or fonts) that should be used:

formatter.font = "Arial";

And you can also define a font-family property in CSS:

p {
 font-family: Arial;
}

The font specified must be available on the computer on which the movie is running. Because some
computers may not have the preferred font installed, you can specify multiple font names separated
by commas, as follows:

formatter.font = "Arial, Verdana, Helvetica";

The preceding example uses a TextFormat object. However, you can specify a
comma-delimited list of fonts by using any of the techniques described.

The first font is used unless it cannot be found, in which case the Flash Player attempts to use the
next font in the list.

If none of the specified fonts are found, the default system font is used. You can optionally specify a
font group. Font groups use the default device font within a category. A font group is often preferable
to allowing Flash Player to use the default system font, since at least you'll know what general
characteristics the font will have. There are three font groups: _sans, _serif, and _typewriter. The
_sans group is generally a font such as Arial or Helvetica, the _serif group is generally a font such as
Times or Times New Roman, and the _typewriter group is generally a font such as Courier or Courier
New.

See Also

Recipes 9.13, 9.15, and 9.17

Recipe 9.17. Embedding Fonts

Problem

You want to ensure that text displays properly, even if the intended font isn't installed on the user's
computer.

Solution

Embed the font by using the [Embed] metatag. Then set the text field's embedFonts property to true ,
and apply the font to the text field using a tag, a TextFormat object, or CSS.

Discussion

You should embed fonts if you want to ensure that text displays using the intended font, even if the
user's computer does not have that font installed. To embed a font, use the [Embed] metatag. The
[Embed] metatag should appear in an ActionScript file outside the class declaration. You can embed
either TrueType fonts or system fonts. To embed a TrueType font with the [Embed] metatag use the
following syntax:

[Embed(source="pathToTtfFile", fontName="FontName", mimeType="application/x-font-truetype")]

The path to the TrueType font file can be relative or absolute, such as in the following example:

[Embed(source="C:\Windows\Fonts\Example.ttf", fontName="ExampleFont", mimeType="application/x-font-truetype")]

The fontName attribute value is how you refer to the font from CSS or ActionScript.

The syntax for embedding system fonts is similar, except that it uses a systemFont attribute rather
than a source attribute. The systemFont attribute value is the name of the system font you want to
embed. The following embeds Times New Roman:

[Embed(systemFont="Times New Roman", fontName="Times New Roman", mimeType="application/x-font-truetype")]

The preceding example uses the same name for fontName as the actual system font name.

Once you've embedded the font, the next step is to tell the text field to use the embedded font. To do
that, simply set the embedFonts property of the text field to true . By default, the property is false ,
which means that Flash uses device fonts. By setting the embedFonts property to true , the text field
can use embedded fonts only. If you try to assign a device font to a text field with embedFonts set to
TRue , nothing is displayed:

field.embedFonts = true;

Once you've enabled embedded fonts, your next step is to tell the text field which embedded font to
use; you do this with a tag, a TextFormat object, or with CSS. For example, if the fontName
value is Times New Roman, your code might look like the following:

formatter.font = "Times New Roman";

The following example sets the font by using a font tag:

field.htmlText = "Example";

And the following illustrates how to set the font by using CSS:

var css:StyleSheet = new StyleSheet();
css.setStyle("p", {fontFamily: "Times New Roman"});
field.htmlText = "<p>Example</p>";

You cannot specify a comma-delimited list of fonts if embedFonts is set to TRue .

See Also

Recipes 9.13 and 9.16

Recipe 9.18. Creating Text that Can Be Rotated

Problem

You want to make sure that some text continues to display, even when it's rotated.

Solution

Use embedded fonts.

Discussion

Unless you specifically use an embedded font, text fields use device fonts. For most situations, this is
perfectly workable. However, in situations in which you want to rotate a text field or its parent
container (e.g., you want to place a label next to an object vertically), you must use embedded fonts.
Device fonts disappear when rotating a text field.

See Also

Recipe 9.17 explains how to embed fonts.

Recipe 9.19. Displaying Unicode Text

Problem

You want to display Unicode text in your application, possibly including non-English characters.

Solution

Load the text from an external source. Optionally, use Unicode escape sequences for the characters
within the assignment to the text field's text property.

Discussion

If you want to display Unicode text in a text field, there are several ways in which you can accomplish
that:

Load the Unicode text from an external source (e.g., a text file, XML document, database).

Use the character directly within the ActionScript code as a string value.

Use a Unicode escape sequence.

If you load the text from an external source, you can load Unicode text and assign it to a text field.
For more information regarding loading content from external sources, see Chapter 20.

Assuming you're using an editor that supports Unicode (such as Flex Builder), you can add the
character directly within the code. Optionally, if you know the escape sequence for the character, you
can assign it to a text field's text property. All Unicode escape sequences in ActionScript begin with
\\u and are followed by a four-digit hexadecimal number. The escape sequences must be enclosed in
quotes. The following example displays a registered mark (®) in both ways:

field.text = "Add a registered mark directly (®) or with a Unicode
escape sequence (\u00AE)";

If you want a Unicode character reference online, under Windows, you can
open up the Character Map utility using Start Programs Accessories

 System Tools Character Map. On Mac OS X, first enable the Input
Menu in System Preferences International Input Menu, and turn on the
checkbox next to Character Palette. To open the Character Palette, go to the
menu bar, select the flag for your country (e.g., the Stars and Stripes for the
U.S.), and select Show Character Palette.

See Also

Table A-1 in the Appendix lists the Unicode escape sequences.

Recipe 9.20. Assigning Focus to a Text Field

Problem

You want to use ActionScript to bring focus to a text field.

Solution

Use the Stage.focus property.

Discussion

Use the Stage.focus property to programmatically assign focus to a specific text field. Every display
object has a stage property that references the Stage instance. Therefore, from a class that extends
a display object class (Sprite, MovieClip, etc.) the following code assigns focus to a text field called
field:

stage.focus = field;

When an .swf first loads in a web browser, it does not have focus. Therefore, you must move focus to
the Flash Player before you can programmatically assign focus to an element of the Flash application.
The following is a working example that uses a sprite button to assign focus to a text field:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.events.MouseEvent;

 public class TextExample extends Sprite {

 public function TextExample() {
 var field:TextField = new TextField();
 field.border = true;
 field.background = true;
 field.type = TextFieldType.INPUT;
 addChild(field);
 var button:Sprite = new Sprite();
 button.graphics.lineStyle();
 button.graphics.beginFill(0xFFFFFF);

 button.graphics.drawRect(0, 0, 100, 50);
 button.graphics.endFill();
 button.addEventListener(MouseEvent.CLICK, onClick);
 button.y = 100;
 addChild(button);
 }

 private function onClick(event:MouseEvent):void {
 stage.focus = TextField(getChildAt(0));
 }

 }
}

To remove focus from a text field you should assign Stage.focus the null value:

stage.focus = null;

Recipe 9.21. Selecting Text with ActionScript

Problem

You want to highlight a portion of the text within a text field.

Solution

Use the TextField.setSelection() method.

Discussion

The TextField.setSelection() method highlights a portion of the text in the text field. The
setSelection() method takes two parameters:

startIndex

The beginning, zero-relative index of the text to highlight.

endIndex

The index of the character after the text to highlight.

For the selection to work, the text field must have focus, which you can set by using Stage.focus, as
discussed in Recipe 9.20:

stage.focus = field; // Set the focus to the text field
field.text = "this is example text"; // Set the text value
field.setSelection(0, 4); // Highlight the word "this"

Use the read-only selectionBeginIndex and selectionEndIndex properties to retrieve the indices of
the selected character range.

See Also

Recipes 9.20 and 9.23

Recipe 9.22. Setting the Insertion Point in a Text Field

Problem

You want ActionScript to set the insertion point for a text field.

Solution

Use the TextField.setSelection() method.

Discussion

You can use TextField.setSelection() to set the cursor position in a text field by setting the beginning
and ending index parameters to the same value. This example sets the cursor position in the text
field, assuming it has focus:

// Positions the insertion point before the first character
field.setSelection(0, 0);

You can retrieve the index of the cursor position with the read-only caretIndex property:

trace(field.caretIndex);

See Also

Recipe 9.21

Recipe 9.23. Responding When Text Is Selected or
Deselected

Problem

You want to perform a task when a text field is selected or deselected.

Solution

Listen for the focusIn and focusOut events.

Discussion

Text fields dispatch focusIn events when focus is shifted to the field and they dispatch focusOut
events when focus is shifted away from the field. The events dispatched in both cases are
flash.events.FocusEvent objects. The FocusEvent class defines a relatedObject property. In the case
of focusIn events, the relatedObject property is a reference to the object that just had focus. In the
case of focusOut events, the relatedObject property is a reference to the object that just received
focus. Use the flash.events.FocusEvent constants of FOCUS_IN and FOCUS_OUT when registering
listeners:

field.addEventListener(FocusEvent.FOCUS_IN, onFocus);

The focusIn and focusOut events both occur after the focus has already changed. They are non-
cancelable events. If you want to be able to cancel the events, you must listen for events that occur
before focusIn and focusOut are dispatched. The keyFocusChange and mouseFocusChange events
are cancelable events that occur when the user attempts to move focus from a text field by way of
the keyboard or mouse, respectively. You can register listeners by using the FocusEvent constants of
KEY_FOCUS_CHANGE and MOUSE_FOCUS_CHANGE. Use the FocusEvent.preventDefault() method to cancel
the default behavior. The following example disallows using the Tab key to move from field1 to
field2 if field1 doesn't have any text:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.events.FocusEvent;

 public class Text extends Sprite {

 private var _field1:TextField;
 private var _field2:TextField;

 public function Text() {
 _field1 = new TextField();
 _field1.border = true;
 _field1.background = true;
 _field1.type = TextFieldType.INPUT;
 addChild(_field1);
 _field1.addEventListener(FocusEvent.KEY_FOCUS_CHANGE, onKeyFocus);
 _field2 = new TextField();
 _field2.border = true;
 _field2.background = true;
 _field2.type = TextFieldType.INPUT;
 addChild(_field2);
 _field2.y = 100;

 }

 private function onKeyFocus(event:FocusEvent):void {
 if(_field1.text == "") {
 event.preventDefault();
 }
 }

 }
}

Recipe 9.24. Responding to User Text Entry

Problem

You want to perform a task when the content of a text field is modified by user input.

Solution

Listen for the textInput event.

Discussion

You can specify actions to be performed each time the content of a text field is changed by user
input, whether that change is deleting or cutting characters, typing in a character, or pasting
characters. When a user makes any change to the value of an input text field, the text field
dispatches a textInput event. You can register a listener to listen for the textInput event using the
flash.events.TextEvent.TEXT_INPUT constant:

field.addEventListener(TextEvent.TEXT_INPUT, onTextInput);

The textInput event is a TextEvent object, and it is cancelable. The TextEvent class defines a text
property, which contains the value of the text entered by the user. The following example ensures
that the first character the user types in a text field is not an "a":

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.text.TextFieldType;
 import flash.events.TextEvent;
 import flash.events.TextEvent;

 public class Text extends Sprite {

 private var _field:TextField;

 public function Text() {
 _field = new TextField();
 _field.border = true;
 _field.background = true;
 _field.type = TextFieldType.INPUT;

 addChild(_field);
 _field.addEventListener(TextEvent.TEXT_INPUT, onTextInput);

 }

 private function onTextInput(event:TextEvent):void {
 if(event.text == "a" && _field.length == 0) {
 event.preventDefault();
 }
 }

 }
}

See Also

Recipe 9.12

Recipe 9.25. Adding a Hyperlink to Text

Problem

You want to hyperlink some of the text displayed in a text field.

Solution

Use HTML <a href> tags within the object's htmlText property. Alternatively, use a TextFormat object
with a value assigned to the url property.

Discussion

Both solutions to this problem require that you set the text field's html property to TRue:

field.html = true;

If you want to use HTML to add a hyperlink, add an <a href> tag to the text field's htmlText
property, as follows:

field.htmlText = "Website";

You can add a target window into which to open the link by adding a target attribute to the <a href>
HTML tag. For example:

field.htmlText = "<a href='http://www.rightactionscript.com'
target='blank'>Website";

When text is hyperlinked in Flash, the mouse cursor changes to a hand when it is over the linked
text. Flash does not inherently provide any indication that the text is linked, unlike most HTML
browsers (which use an underline and color change). For this reason, it is helpful to add HTML
markup that underlines and colors the linked text:

var htmlLink:String = "<u>";
htmlLink += "Website";
htmlLink += "</u>";
field.htmlText = htmlLink;

You can accomplish the same tasks without HTML by using a TextFormat object. The TextFormat
class includes a url property for just this purpose. Assigning the URL to the url property links the
formatted text; for example:

field.text = "Website";
var formatter:TextFormat = new TextFormat();
formatter.url = "http://www.rightactionscript.com/";
field.setTextFormat(formatter);

If you want to specify a target window into which the link opens, you can set the value of the
TextFormat object's target property, as follows:

field.text = "Website";
var formatter:TextFormat = new TextFormat();
formatter.url = "http://www.rightactionscript.com/";
formatter.target = "_blank";
field.setTextFormat(formatter);

As with the HTML technique, when using a TextFormat object to create a hyperlink, Flash does not
offer any indication as to the link's presence other than the hand cursor when it is moused over. You
can add color and/or an underline to the linked text to provide the user with the indication that it is a
link. You should use the TextFormat object's color and underline properties for this purpose:

field.text = "Website";
var formatter:TextFormat = new TextFormat();
formatter.color = 0x0000FF;
formatter.underline = true;
formatter.url = "http://www.rightactionscript.com/";
field.setTextFormat(formatter);

You can use either of the techniques in this recipe to add links that point not only to http and https
protocols, as shown in the examples, but also to link to other protocols. For example, you can use the
same techniques to open a new email message:

field.text = "email";
var formatter:TextFormat = new TextFormat();
formatter.color = 0x0000FF;
formatter.underline = true;
formatter.url = "mailto:joey@person13.com";
field.setTextFormat(formatter);

Be aware, however, that many other types of links (such as mailto links) only work when the movie
is played in a web browser in which a default client for the protocol has been defined.

Using CSS, you can apply advanced formatting to <a href> tags by using the a:link, a:active, and
a:hover styles, as shown in the following example:

var css:StyleSheet = new StyleSheet();

css.parseCSS("a {color: #0000FF;} a:hover {text-decoration: underline;}");
field.styleSheet = css;
field.html = true;
field.htmlText = "Website";

See Also

Recipes 9.8 and 9.15

Recipe 9.26. Calling ActionScript from Hyperlinks

Problem

You want to call an ActionScript method when the user clicks a hyperlink.

Solution

Use the event protocol and listen for link events.

Discussion

Many applications require calling ActionScript when the user clicks a hyperlink. With ActionScript 3.0,
however, it is a very simple task. First, you must define the hyperlink to use the event protocol, as
follows:

field.htmlText = "Website";

When you use the event protocol, the default behavior does not occur. When the user clicks on a
hyperlink, it normally opens the URL in a web browser. However, when you use the event protocol,
an event is dispatched, which means you have to register a listener to listen for that event. The event
type is link, and you can use the flash.events.TextEvent.LINK constant when registering a listener:

field.addEventListener(TextEvent.LINK, onClickHyperlink);

The event that is dispatched is a flash.events.TextEvent type. The text property of the event object
contains the value of the HRef attribute minus the event protocol. That means that in the preceding
example, the value of the event object's text property is http://www.rightactionscript.com. Since the
hyperlink does not attempt to open a URL in a browser window when using the event protocol, you
don't have to use a valid URL for the href value. You can use any string that would be useful in
determining which hyperlink the user clicked.

http://www.rightactionscript.com

Recipe 9.27. Working with Advanced Text Layout

Problem

You want to work with advanced text layout.

Solution

Use the numLines property and the getCharBoundaries() , getCharIndexAtPoint() ,
getFirstCharInParagraph() , getLineIndexAtPoint() , getLineIndexOfChar() , getLine- Length() ,
getLineMetrics() , getLineOffset() , getLineText() , and getParagraphLength() methods.

Discussion

In versions of Flash Player up to and including Flash Player 8, it was difficult to control and read text
layout with much precision. Starting with Flash Player 8.5, though, the TextField class defines an API
for more precise reading of text layout.

The TextField class defines two methods for retrieving information about characters from text. The
getCharBoundaries() method returns a flash.geom.Rectangle object that defines the boundaries of
the character at the index specified by the parameter. The getCharIndexAtPoint() method returns
the index of a character at the x and y coordinates specified by the parameters. The following
example uses getCharIndexAtPoint() and getCharBoundaries() to highlight a character when the
user clicks on it:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.MouseEvent;
 import flash.geom.Rectangle;

 public class Text extends Sprite {

 private var _field:TextField;
 private var _highlight:Sprite;

 public function Text() {
 _field = new TextField();
 _field.border = true;
 _field.background = true;
 _field.multiline = true;
 _field.wordWrap = true;

 _field.selectable = false;
 _field.width = 400;
 _field.height = 400;
 addChild(_field);
 _field.text = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi tortor purus, aliquet a, ornare ac, suscipit a, est. Nullam hendrerit molestie erat. Nunc nulla tortor, ullamcorper et, elementum vel, fringilla sed, dui. Praesent fermentum interdum orci.";
 _field.addEventListener(MouseEvent.CLICK, onClick);
 _highlight = new Sprite();
 addChild(_highlight);
 }

 private function onClick(event:MouseEvent):void {
 var index:int = _field.getCharIndexAtPoint(mouseX, mouseY);
 var rectangle:Rectangle = _field.getCharBoundaries(index);
 _highlight.graphics.clear();
 _highlight.graphics.lineStyle(0, 0, 0);
 _highlight.graphics.beginFill(0x00FFFF, .25);
 _highlight.graphics.drawRect(rectangle.x, rectangle.y, rectangle.width, rectangle.height);
 _highlight.graphics.endFill();
 }

 }
}

The TextField class also defines a property and methods for retrieving information about lines of text.
The numLines property tells you how many lines of text a text field contains. The
getLineIndexAtPoint() method returns the index of a line at the coordinates specified as the
parameters passed to the method. The getLine- IndexOfChar() returns the line index of the line that
contains the character with the index specified by the parameter passed to the method. The
getLineLength() method returns the number of characters in a line specified by its line index. The
getLineText() method returns the text contained within a line at a specified line index. The
getLineOffset() method returns the character index the first character of a line at a specified line
index. The getLineMetrics() method returns a flash.text.TextLineMetrics object for a line with a
specified line index. The TextLineMetrics class defines ascent, descent, height, width, leading, and x
properties that describe the line of text.

There are two methods for retrieving information about paragraphs. The getFirstCharInParagraph()
method returns the character index of the first character in a paragraph that also contains the
character at the index specified in the parameter. The getParagraphLength() method returns the
number of characters in a paragraph that contain the character at the index specified by the
parameter.

The following example uses most of the methods discussed in this recipe to highlight a paragraph
when the user clicks a character:

package {

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.events.MouseEvent;
 import flash.geom.Rectangle;
 import flash.text.TextLineMetrics;

 public class Text extends Sprite {

 private var _field:TextField;
 private var _highlight:Sprite;

 public function Text() {
 _field = new TextField();
 _field.border = true;
 _field.background = true;
 _field.multiline = true;
 _field.wordWrap = true;
 _field.selectable = false;
 _field.width = 400;
 _field.height = 400;
 addChild(_field);
 _field.text = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi tortor purus, aliquet a, ornare ac, suscipit a, est. Nullam hendrerit molestie erat. Nunc nulla tortor, ullamcorper et, elementum vel, fringilla sed, dui. Praesent fermentum interdum orci.";
 _field.addEventListener(MouseEvent.CLICK, onDoubleClick);
 _highlight = new Sprite();
 addChild(_highlight);
 }

 private function onDoubleClick(event:MouseEvent):void {
 var index:int = _field.getCharIndexAtPoint(mouseX, mouseY);
 var startIndex:int = _field.getFirstCharInParagraph(index);
 var stopIndex:int = startIndex + _field.getParagraphLength(index);
 var startLine:int = _field.getLineIndexOfChar(startIndex);
 var stopLine:int = _field.getLineIndexOfChar(stopIndex - 1);
 var metrics:TextLineMetrics;
 var lineCharacter:int;
 var rectangle:Rectangle;
 _highlight.graphics.clear();
 _highlight.graphics.lineStyle(0, 0, 0);
 for(var i:int = startLine; i <= stopLine; i++) {
 lineCharacter = _field.getLineOffset(i);
 rectangle = _field.getCharBoundaries(lineCharacter);
 metrics = _field.getLineMetrics(i);
 _highlight.graphics.beginFill(0x00FFFF, .25);
 _highlight.graphics.drawRect(rectangle.x, rectangle.y, metrics.width, metrics.height);
 _highlight.graphics.endFill();
 }
 }

 }
}

Recipe 9.28. Applying Advanced Anti-Aliasing

Problem

You want to have more precise control over anti-aliasing of text.

Solution

Embed the font, set the antiAliasType property of the text field to
flash.text.AntiAliasType.ADVANCED, and set the gridTypeFit and sharpness properties.

Discussion

By default, text displays with normal anti-aliasing settings. For most fonts at sizes 10 and higher the
normal anti-aliasing settings make for legible text. However, for smaller font sizes and for certain
fonts, the normal anti-aliasing settings make the text less than legible. In those cases, you can set
the anti-alias type for the text field to advanced and use the gridFitType and sharpness properties to
more precisely control how the text is rendered.

To enable advanced anti-alias settings for a text field, you must use embedded
fonts. See Recipe 9.17 for more details on how to embed fonts.

The TextField.antiAliasType property accepts one of the flash.text.AntiAliasType constants of NORMAL
(default) or ADVANCED. Set the value of the property to ADVANCED for a text field if you want to enable
more precise anti-alias settings:

field.antiAliasType = AntiAliasType.ADVANCED;

The gridFitType property determines how the font outlines snap to whole pixels on the screen. The
possible values are the NONE, PIXEL, and SUBPIXEL constants of the flash.text.GridFitType class. The
default value of NONE means that the text does not snap to whole pixels. That can cause text to
appear blurry at smaller font sizes. The PIXEL setting snaps horizontal and vertical lines of the font
outlines to whole pixels on the screen. The PIXEL setting works only when text is left-aligned. If you
want center- or right-aligned text to snap to pixels, use the SUBPIXEL setting.

field.gridFitType = GridTypeFit.PIXEL;

The sharpness property ranges from -400 to 400, with a default value of 0; it determines how crisply
the edges of the font outlines are rendered. The lower the number, the less sharply the fonts are
rendered. The greater the number, the more sharply the fonts are rendered. If the text is not legible
because it appears blurry, and you've already set the gridFitType to PIXEL or SUBPIXEL, then increase
the sharpness value.

See Also

Recipe 9.17

Recipe 9.29. Replacing Text

Problem

You want to replace text.

Solution

Use the replaceSelectedText() method to replace the highlighted text and replaceText() to replace a
range of text.

Discussion

The replaceSelectedText() method enables you to replace the selected text in a text field. Simply
pass the method the string to use as the replacement text. For the method to work, the text field
must have focus:

_field.replaceSelectedText("new text");

Use the replaceText() method to replace text within a text string given a starting and ending index.
The following replaces the text from index 100 to index 150, with the new string specified by the third
parameter:

_field.replaceText(100, 150, "new text");

Recipe 9.30. Retrieving a List of System Fonts

Problem

You want to retrieve a list of fonts on the user's system.

Solution

Use the static TextField.fontList property.

Discussion

When you want to use system fonts (rather than embedding the font or using a font group), first
determine which fonts the user has installed. You can retrieve an array of system fonts on the user's
computer with the TextField.fontList property.

trace(TextField.fontList);

Retrieving the list of available system fonts simply yields an array of strings. To apply a font to the
text, you'll have to use one of the techniques discussed in Recipe 9.16.

Chapter 10. Filters and Transforms

Section 10.0. Introduction

Recipe 10.1. Applying Color Changes

Recipe 10.2. Applying Color Tints

Recipe 10.3. Resetting Color

Recipe 10.4. Shearing

Recipe 10.5. Applying Basic Filters

Recipe 10.6. Applying Advanced Filter Effects (Emboss, etc.)

Recipe 10.7. Embossing

Recipe 10.8. Detecting Edges

Recipe 10.9. Sharpening

Recipe 10.10. Making a Digital Negative

Recipe 10.11. Applying Grayscale

Recipe 10.12. Changing Saturation

Recipe 10.13. Changing Brightness

Recipe 10.14. Changing Contrast

10.0. Introduction

ActionScript lets you to apply several different transforms and filters to display objects (and bitmaps)
to change their color, shape, rotation, size, and to apply special effects. Transforms are changes in
color, shape, rotation, and size. The remainder of special effects di scussed in this chapter use filters.
Filters are native to Flash Player; they allow you to apply effects ranging from blurs to embossing.

Recipe 10.1. Applying Color Changes

Problem

You want to apply a color to a display object.

Solution

Assign a flash.geom.ColorTransform object to the display object's transform.colorTransform
property.

Discussion

Every display object has a transform.colorTransform property. The colorTransform property is a
flash.geom.ColorTransform object that determines which color transforms are applied to the object.
The colorTransform property always returns a copy of the actual ColorTransform object applied to
the display object. That means that you cannot directly change the properties of the colorTransform
property. You can, however, retrieve a copy of the actual ColorTransform object by assigning the
value from the colorTransform property to a variable. Then you can change the properties of that
copy and reassign it to the colorTransform property, as shown in the following example:

var color:ColorTransform = sampleSprite.transform.colorTransform;
color.rgb = 0xFFFFFF;
sampleSprite.transform.colorTransform = color;

The ColorTransform class defines two ways to change the solid color that is applied to a display
object. You can set the value of the rgb property, as in the preceding example. The rgb property
expects a uint value. Generally it's convenient to specify the value in hexadecimal representation
(0xRRGGBB), as in the preceding example. You can also set the redOffset, greenOffset, blueOffset,
and alphaOffset properties to work with each of the offsets individually. The offset values can range
from -255 to 255:

var color:ColorTransform = sampleSprite.transform.colorTransform;
color.redOffset = 255;
color.greenOffset = 255;
color.blueOffset = 255;
sampleSprite.transform.colorTransform = color;

The preceding code sets each offset for a color transform to 255 to create a white fill effect, and it
then applies that transform to sampleSprite. If you changed the alphaOffset value as well, it would

affect the transparency of the display object to which the transform is applied. Applying an
alphaOffset via a color transform and changing a display object's alpha property has the same
effect, except that alphaOffset is on a scale from 0 to 255 and alpha is on a scale from 0 to 100.

See Also

Recipe 10.2

Recipe 10.2. Applying Color Tints

Problem

You want to apply a tint to a display object rather than a solid color.

Solution

Work with the transform.colorTransform property of the display object. However, change the values
of the multiplier properties rather than the offset properties.

Discussion

Recipe 10.1 shows how to apply solid colors to display objects. When you apply a solid color to a
display object, it causes any contrast within the display object artwork to be indistinguishable.
Applying a solid color is essentially the same as applying a fill to the entire shape of the display
object. That means that every pixel within the display object is assigned the same color value.

When you apply a tint, each pixel's color is changed relative to the original pixel color value, which
means the contrast is maintained. You can apply a tint to a display object in much the same way a
solid color is applied. Both use the transform.col orTransform property of the object. The difference is
that when you apply a tint, you want to set the offset properties to 0 (the default values) and change
the values of the multiplier properties.

The multiplier properties (redMultiplier, greenMultiplier, blueMultiplier, and alphaMultiplier)
have valid ranges from 0 to 1. The multiplier values determine how much of the red, green, blue, and
alpha components of the original pixel color value to display. The default value for the multiplier
properties is 1, which means that by default each pixel displays at 100 percent of the red, green,
blue, and alpha components of the original pixel value. The following makes a display object appear
with a green tint by keeping the greenMultiplier at 1 and setting the redMultiplier and
blueMultiplier properties to 0:

var color:ColorTransform = sampleSprite.transform.colorTransform;
color.redMultiplier = 0;
color.blueMultiplier = 0;
sampleSprite.transform.colorTransform = color;

See Also

Recipe 10.1

Recipe 10.3. Resetting Color

Problem

You want to reset the color of a display object back to the default.

Solution

Assign a new ColorTransform object with default values to the transform.colorTransform property of
the display object.

Discussion

The default values of a flash.geom.ColorTransform object will reset the color of a display object. You
can construct a ColorTransform object with default values by calling the constructor with no
parameters. The following example resets the color settings for sampleSprite:

sampleSprite.transform.colorTransform = new ColorTransform();

See Also

Recipes 10.1 and 10.2

Recipe 10.4. Shearing

Problem

You want to shear (skew) a display object.

Solution

Create a Matrix object with default values, without the b and c properties. The b and c properties
control the y and x shearing, respectively. Assign the Matrix object to the transform.matrix property
of the display object.

Discussion

Shearing (or skewing) fixes a point on a plane and translates all the pixels on one side of the point in
one direction and all the pixels on the opposite side equally in the opposite direction. The effect is
that a rectangle becomes a parallelogram.

The flash.geom.Matrix class defines a, b, c, d, tx, and ty properties. The b and c properties determine
how much skewing is applied (whereas a and d determine the scale factor and tx and ty determine
the x and y TRanslation). The b property determines skewing along the y axis, and the c property
determines skewing along the x axis. The default values for the b and c properties are 0. The greater
the values, the greater the skewing is down and to the right. Negative values skew the object up and
to the left. The following code draws a square and skews it into a parallelogram along the y axis. The
Matrix object uses the default values for the properties, except for b, which is assigned a non-default
value of 1. (The default values are a=1, b=0, c=0, d=1, tx=0, and ty=0.)

var box:Sprite = new Sprite();
box.graphics.lineStyle();
box.graphics.drawRect(0, 0, 100, 100);
addChild(box);
box.transform.matrix = new Matrix(1, 1, 0, 1, 0, 0);

Recipe 10.5. Applying Basic Filters

Problem

You want to apply basic filters such as drop shadows, blurs, glows, and bevels.

Solution

Construct a new filter object and assign it to the filters array of a display object.

Discussion

The flash.filters package contains the following basic filter classes: DropShadowFilter , BlurFilter ,
GlowFilter , BevelFilter , GradientGlowFilter , and GradientBevelFilter . We distinguish the preceding
list as basic filters because they don't require additional display objects to apply as part of surface
mapping or matrices to apply for complex transforms. Each of the basic filter classes consist of fairly
straightforward properties that have straightforward effects on the display objects to which the filters
are applied. For example, the DropShadowFilter class allows you to change the drop shadow offset,
color, and the amount of blur applied to the shadow by way of properties (and parameters passed to
the constructor).

Since basic filters are discussed in the Flash and Flex documentation, we won't discuss unnecessary
details of how to construct and change the basic properties of those classes.

Once you've constructed a filter object, you can apply it to a display object by using the object's
filters property. The filters property is an array of filter objects. The following applies a drop shadow
to a display object called sampleSprite :

sampleSprite.filters = [new DropShadowFilter()];

When you assign an array of filters to the filters property of a display object, the array is copied
rather than referenced. That means that any changes to the array or the filters in the array won't
have an effect on the display object until it has been reassigned, as shown in the following example:

var dropShadow:DropShadowFilter = new DropShadowFilter();
var sampleFilters:Array = [dropShadow];

// Applies the drop shadow.
sampleSprite.filters = sampleFilters;

// Change the color of the drop shadow to white. However, since the actual filter
// applied to sampleSprite is a copy of dropShadow this doesn't have an effect
// on sampleSprite.
dropShadow.color = 0xFFFFFF;

// Add a glow filter to the array. However, since the array assigned to sampleSprite
// is a copy of sampleFilters there is no effect on sampleSprite.
sampleFilters.push(new GlowFilter());

// Reassign sampleFilters to the filters property of sampleSprite. Now the updates
// to the drop shadow and the array (the addition of the glow filter) affect the
// display object.
sampleSprite.filters = sampleFilters;

Likewise, when you read the value of the filters property for a display object, it always returns a copy
of the filters array. That means you cannot use methods of the Array class directly with the filters
property to add or remove filters.

var dropShadow:DropShadowFilter = new DropShadowFilter();

// Applies the drop shadow.
sampleSprite.filters = [dropShadow];

// This does not add a glow filter.
sampleSprite.filters.push(new GlowFilter());

// Instead, you have to copy the current filters array, append the new filter,
// and reassign the array.
var sampleFilters:Array = sampleSprite.filters;
sampleFilters.push(new GlowFilter());
sampleSprite.filters = sampleFilters;

The effects of the filters property are cumulative such that each filter in the array is applied in
sequence. For example, if the filters array has two elements, a drop shadow, and a glow filter, then
the glow (since it is second in the array) is applied to the effect of the object with the drop shadow
filter applied to it.

If you want to apply filters non-cumulatively, you have to apply each filter to a new copy of the
display object. Consider the following example that applies a drop shadow and a glow filter to the
same object. The glow filter is applied to the entire surface, including the drop shadow, which
generally is not the intended effect, since in most cases you'd presumably want to apply all filter
effects to the original shape rather than having them apply cumulatively.

var box:Sprite = new Sprite();
box.graphics.lineStyle();
box.graphics.beginFill(0xFFFFFF);
box.graphics.drawRect(0, 0, 100, 100);

box.graphics.endFill();
addChild(box);
box.filters = [new DropShadowFilter(10), new GlowFilter()];

The following draws two boxes, and applies the glow to one and a drop shadow filter to a copy with
the knockout property set to TRue :

var box:Sprite = new Sprite();
box.graphics.lineStyle();
box.graphics.beginFill(0xFFFFFF);
box.graphics.drawRect(0, 0, 100, 100);
box.graphics.endFill();
var boxShadow:Sprite = new Sprite();
boxShadow.graphics.lineStyle();
boxShadow.graphics.beginFill(0xFFFFFF);
boxShadow.graphics.drawRect(0, 0, 100, 100);
boxShadow.graphics.endFill();
addChild(boxShadow);
addChild(box);
box.filters = [new GlowFilter()];
boxShadow.filters = [new DropShadowFilter(10, 45, 0, 1, 4, 4, 1, 1, false, true)];

The knockout property is available for the majority of the basic filters, and it applies the filter while
hiding the original shape. For example, if you enable the knockout property for a drop shadow filter,
the result is just the drop shadow without the original shape to which the filter was applied. This is
useful in many scenarios, including when you want to composite several filters in a noncumulative
manner, as in the preceding example. In the preceding example, the knockout property is set to TRue
from the DropShadowFilter constructor. You can consult the documentation for each of the basic
filters to learn about the exact parameters for the constructors.

The filters can be cleared from a display object by assigning an empty array or null to the filters
property of the object:

sampleSprite.filters = [];

Recipe 10.6. Applying Advanced Filter Effects (Emboss,

etc.)

Problem

You want to apply an advanced filter effect, such as embossing, edge detection, etc.

Solution

Use a ConvolutionFilter object.

Discussion

The flash.filters.ConvolutionFilter class allows you to apply many effects ranging from brightness and
contrast changes to more dramatic effects such as embossing, blurring, edge detection, and
sharpening.

The convolution filters require an array of values that define a matrix to apply, so you can map each
pixel to a new bitmap surface by combining adjacent pixel values. (The actual linear mathematics
used are beyond the scope of this book.) The ConvolutionFilter class simplifies the application of such
effects so you don't need to know matrix multiplication or how to apply the pixel mapping. Instead,
all you need to know are the basics of the effects of the array of matrix values.

The ConvolutionFilter constructor defines all default values for parameters. However, once an effect is
applied, you'll need to define nondefault values for at least the first three parameters. The first two
parameters define the dimensions of the matrix, and the third parameter is an array of the matrix
values.

The first parameter defines the number of columns, and the second parameter defines the number of
rows. The following is an example matrix with four columns and two rows:

1 2 3 4
5 6 7 8

Although you can define matrices with nearly any dimension, all the effects discussed in this book
require square matrices (matrices with equal numbers of rows and columns).

The values for the third parameter (the array of matrix values) are specified from left to right and
from top to bottom. For example, the preceding matrix example could be described with the following
array:

[1, 2, 3, 4, 5, 6, 7, 8]

A square matrix with a 1 in the center surrounded by zeros has a neutral effect. The following code
example applies such a matrix to a display object; the matrix would cause no noticeable effect:

sampleSprite.filteres = [ConvolutionFilter(3, 3, [0, 0, 0, 0, 1, 0, 0, 0, 0])];

When the sum of matrix values is 1, as with this example, there is no effect on brightness. Higher
sums cause an increase in brightness, and lower sums produce less brightness. The following
example increases the brightness of the display object without any additional effects:

sampleSprite.filteres = [ConvolutionFilter(3, 3, [0, 0, 0, 0, 2, 0, 0, 0, 0])];

The following example applies a blur to a display object. However, since the sum of the matrix values
is greater than 1, it makes the object brighter. In this case, the brightness effect is so great that it
makes it difficult to even distinguish the blur effect:

sampleSprite.filters = [new ConvolutionFilter(3, 3, [1, 1, 1, 1, 1, 1, 1, 1, 1])];

You can correct unintentional brightness issues by applying a divisor. The divisor does not affect the
intended effect (such as a blur or sharpen effect) while correcting unintended brightness. To reset to
the default brightness for the object, use a divisor that is equal to the sum of the matrix values.
Specify the divisor as the fourth parameter. The following example applies the same blur as in the
preceding example, but it uses a divisor to reset the brightness:

sampleSprite.filters = [new ConvolutionFilter(3, 3, [1, 1, 1, 1, 1, 1, 1, 1, 1], 9)];

For all the effects discussed in this chapter, the effect increases as the center value decreases and
decreases as the center value moves increases. For example, the preceding blur effect is lessened if
the center value is 2. Note: you'd also have to change the divisor to keep the same brightness.

A more detailed discussion of convolution filters is beyond the scope of this book. If you want to learn
more about convolution filter theory and devise your own matrices for directional effects, you can
read the technical details at http://www.cee.hw.ac.uk/hipr/html/convolve.html .

Also, all examples in this chapter are nondirectional. For example, the blur in the preceding example
is nondirectional, which means it does not appear as a motion or radial blur.

See Also

Recipes 10.7 , 10.8 , and 10.9

Recipe 10.7. Embossing

Problem

You want to emboss a display object.

Solution

Apply a convolution filter with an emboss matrix.

Discussion

An emboss effect causes the edges of a surface to appear raised or recessed. A emboss matrix has a
positive value in the center with values on the left and the opposite values on the right arranged in a
symmetrical pattern. They determine the amount of embossing applied. The greater the value, the
more embossing is applied. The values on the top and bottom of the center column determine
whether the embossing causes a raised or raised effect, and they also need to be symmetrical. The
following describes a generic emboss matrix:

a d -c
b e -b
c -d -a

The following is an example of a basic emboss matrix:

-1 1 1
-1 1 1
-1 -1 1

The following 3x3 matrix defines a good general purpose emboss effect when applied with a
convolution filter:

-2 -1 0
-1 1 1
 0 1 2

The following example applies the preceding emboss effect to a display object. Note that a divisor
isn't necessary, since the values are symmetrical and the center value is 1:

sampleSprite.filters = [new ConvolutionFilter(3, 3, [-2, -1, 0, -1, 1, 1, 0, 1, 2])];

See Also

Recipe 10.6

Recipe 10.8. Detecting Edges

Problem

You want to detect the edges of a display object.

Solution

Use an edge detection matrix with a convolution filter.

Discussion

To apply an edge detection effect with a convolution filter, use a matrix with a negative value in the
center surrounded by a symmetrical set of positive values, as described in the following generic
matrix:

a b c
d e d
c b a

The following matrix applies a generic edge detection effect:

0 1 0
1 -3 1
0 1 0

The following applies the preceding edge detection effect to a display object:

sampleSprite.filters = [new ConvolutionFilter(3, 3, [0, 1, 0, 1, -3, 1, 0, 1, 0])];

The greater the center number, the less edge detection is applied. The following uses a center value
of -1 with a divisor:

sampleSprite.filters = [new ConvolutionFilter(3, 3, [0, 1, 0, 1, -1, 1, 0, 1, 0], 3)];

See Also

Recipe 10.6

Recipe 10.9. Sharpening

Problem

You want to apply a sharpening effect to a display object.

Solution

Use a sharpening matrix and apply it with a convolution filter.

Discussion

You can sharpen an object by using a matrix very similar to the structure of the matrix that detects
edges. The only difference is that with an edge detection matrix the center value is negative
surrounded by positive values; the sharpen matrix, instead uses a positive center value surrounded
by negative values. The following example sharpens a display object:

sampleSprite.filter = [new ConvolutionFilter(3, 3, [0, -1, 0, -1, 5, -1, 0, -1, 0])];

You can apply a less dramatic sharpen effect by increasing the center value and using a divisor:

sampleSprite.filter = [new ConvolutionFilter(3, 3, [0, -1, 0, -1, 10, -1, 0, -1, 0], 5)];

You can apply a more dramatic sharpen effect by decreasing the center value and either increasing
the surrounding values or using a divisor:

sampleSprite.filter = [new ConvolutionFilter(3, 3, [0, -1, 0, -1, 1, -1, 0, -1, 0], -3)];

See Also

Recipe 10.6

Recipe 10.10. Making a Digital Negative

Problem

You want to make a digital negative from a display object.

Solution

Use a digital negative matrix and apply it with a ColorMatrixFilter object.

Discussion

You can use a digital negative matrix in conjunction with a flash.filters.ColorMatrixFilter object to
apply the matrix. The digital negative matrix is as follows:

-1 0 0 0 255
 0 -1 0 0 255
 0 0 -1 0 255
 0 0 0 1 0

The following example applies a digital negative effect to a display object:

sampleSprite.filters = [new ColorMatrixFilter([-1, 0, 0, 0, 255, 0, -1, 0, 0, 255, 0, 0, -1, 0, 255, 0, 0, 0, 1, 0])];

You can also use the ascb.filters.ColorMatrixArrays.DIGITAL_NEGATIVE constant, as shown here:

sampleSprite.filters = [new ColorMatrixFilter(ColorMatrixArrays.DIGITAL_NEGATIVE)];

Recipe 10.11. Applying Grayscale

Problem

You want to apply a grayscale effect.

Solution

Use a grayscale matrix, and apply it using a ColorMatrixFilter object.

Discussion

You can apply a grayscale effect by converting all colors to their luminance equivalents. A simplified,
nontechnical definition of luminance is the measure of brightness. You can convert a color to the
equivalent luminance by multiplying the colors by the red, green, and blue luminance constants. The
constants used for computer graphics differ from the NTSC standard used for broadcast purposes.
The computer graphics luminance constants are 0.3086, 0.694, and 0.0820, respectively, for the RGB
values. The following matrix describes a grayscale effect:

0.3086 0.6094 0.0820 0 0
0.3086 0.6094 0.0820 0 0
0.3086 0.6094 0.0820 0 0
0 0 0 1 0

The following applies a grayscale effect to a display object:

sampleSprite.filters = [new ColorMatrixFilter([0.3086, 0.6094, 0.0820, 0, 0, 0.3086, 0.6094, 0.0820, 0, 0, 0.3086, 0.6094, 0.0820, 0, 0, 0, 0, 0, 1, 0])];

You can use the ascb.filters.ColorMatrixArrays.GRAYSCALE constant:

sampleSprite.filters = [new ColorMatrixFilter(ColorMatrixArrays.GRAYSCALE)];

Recipe 10.12. Changing Saturation

Problem

You want to change the saturation of a display object.

Solution

Use a saturation matrix and apply it with a ColorMatrixFilter object.

Discussion

You can affect saturation with the following matrix:

a b c 0 0
d e f 0 0
g h i 0 0
0 0 0 1 0

In the preceding matrix, you need to determine the values of a through i with the following
equations, where red , blue , and green are the luminance constants and value is the saturation
value:

a = (1 value) * red + value
b = (1 value) * green
c = (1 value) * blue
d = (1 value) * red
e = (1 value) * green + value
f = (1 value) * blue
g = (1 value) * red
h = (1 value) * green
i = (1 value) * blue + value

When the saturation value is 0, the matrix is a grayscale matrix.

You can use the ascb.filters.ColorMatrixArrays.getSaturationArray() method to construct a
saturation matrix array, given just the value.

sampleSprite.filters = [new ColorMatrixFilter(ColorMatrixArrays.getSaturationArray(2))];

Recipe 10.13. Changing Brightness

Problem

You want to change the brightness of a display object.

Solution

Use a matrix, and apply it using a ColorMatrixFilter objects. Optionally, you can change brightness
using a ConvolutionFilter object.

Discussion

You can adjust the brightness using a ColorMatrixFilter object by passing it a matrix that scales or
offsets the red, green, and blue equally. The following matrix is a general representation of a matrix
that scales the red, green, and blue equally:

a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 1 0

The following matrix offsets the red, green, and blue values equally:

1 0 0 0 a
0 1 0 0 a
0 0 1 0 a
0 0 0 1 0

The following example increases the brightness of a display object by scaling the colors to twice their
original values:

sampleSprite.filters = [new ColorMatrixFilter([2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0])];

You can also adjust brightness with a ConvolutionFilter object, as mentioned in Recipe 10.6 .

See Also

Recipe 10.6

Recipe 10.14. Changing Contrast

Problem

You want to adjust the contrast of a display object.

Solution

Use a contrast matrix and apply it with a ColorMatrixFilter object.

Discussion

As mentioned in Recipe 10.13 , you can adjust the brightness by either scaling or offsetting color
values. You can change contrast by both scaling and offsetting color values at the same time. The
following matrix describes a generic contrast matrix:

a 0 0 0 b
0 a 0 0 b
0 0 a 0 b
0 0 0 1 0

You can calculate the scale and offset values from one contrast value by using the following
equations:

a = value * 11
b = 63.5 (value * 698.5)

You can use the ascb.filters.ColorMatrixArrays.getContrastArray() method to construct a contrast
array given the contrast value. The effective range for the contrast value is from 0 to 1:

sampleSprite.filters = [new ColorMatrixFilter(ColorMatrixArrays.getContrastArray(1))];

See Also

Recipe 10.13

Chapter 11. Programmatic Animation

Section 11.0. Introduction

Recipe 11.1. Moving an Object

Recipe 11.2. Moving an Object in a Specific Direction

Recipe 11.3. Easing

Recipe 11.4. Acceleration

Recipe 11.5. Springs

Recipe 11.6. Using Trigonometry

Recipe 11.7. Applying Animation Techniques to Other Properties

11.0. Introduction

Animation can be defined as any visual change over time. If an image does not change over a period
of time, it's impossible to tell whether it is a still image or an animation. There are a variety of
properties you can manipulate to produce change, and thus animation. The most obvious is changing
an object's position to make it move. You can also change its size, shape, rotation, transparency or
color, to name a few. As long as something changes visually, the viewer never sees the animation.

In the earliest versions of Flash, most animation was done by using tweens. An object was placed on
a keyframe, another keyframe was made, and the object was changed in some way. Flash filled in
the frames in between, hence, the term tween. Using ActionScript, you can create much more
dynamic and interactive animation.

As for what you can animate, a movie clip or sprite is usually a good answer. These objects can
contain graphics, and they can have methods and properties that allow them to be moved, scaled,
rotated, and otherwise transformed any way you see fit. A movie clip would normally be used only in
the Flash authoring environment, where additional frames are added, as in a tween.

Finally, you need some way of getting the changes to occur over time. Your best bet is either an
enterFrame handler or a timer. ActionScript statements can be used to make changes to the
animated object's properties on each frame, or timer cycle, if you're using a timer. Since motion is
the most obvious kind of animation, the examples in this chapter start out by moving objects around.
As the chapter progresses, you'll see some examples that apply the same techniques to other
properties, such as animating the size of an object or its orientation.

Recipe 11.1. Moving an Object

Problem

You have a graphic in a sprite and you want to animate it, giving it some motion.

Solution

Decide on a velocity for the x or y-axis (or both), and add that velocity to the object's position on
each frame or animation interval.

Discussion

Velocity is often incorrectly defined as speed. However, velocity also includes a direction factor. For
example, "10 miles per hour" is speed, but "10 miles per hour due north" is a velocity. If you are
dealing with velocity on the x or y-axis, the direction is inherent. A positive x velocity is to the right;
negative to the left. Likewise, a positive y velocity is down, and negative is up.

The first example defines the x velocity, _vx, and sets it to 3. Since this example uses the
enterFrame event for animation, the object will move three pixels to the right on each frame:

package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Velocity extends Sprite {
 private var _sprite:Sprite;
 private var _vx:Number = 3;

 public function Velocity() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0x0000ff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.x = 50;
 _sprite.y = 100;
 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 _sprite.x += _vx;

 }
 }
}

If you set _vx to -3 instead, you'll see that it goes in the opposite direction. You can also add in some
y velocity by creating a _vy variable, giving it a value, and changing the onEnterFrame method, as
follows:

public function onEnterFrame(event:Event):void {
 _sprite.x += _vx;
 _sprite.y += _vy;
}

If you aren't a fan of frame-based animation (as in the previous example), you can use a timer
function instead, as shown here in bold:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class Velocity extends Sprite {
 private var _sprite:Sprite;
 private var _vx:Number = 3;
 private var _vy:Number = 2;
 private var _timer:Timer;

 public function Velocity() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0x0000ff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.x = 50;
 _sprite.y = 100;
 addChild(_sprite);
 _timer = new Timer(30);
 _timer.addEventListener("timer", onTimer);
 _timer.start();
 }

 public function onTimer(event:TimerEvent):void {
 _sprite.x += _vx;
 _sprite.y += _vy;
 }
 }
}

See Also

Recipe 11.2 for information on how to move an object at a given speed and angle.

Recipe 11.2. Moving an Object in a Specific Direction

Problem

You want to move an object at a certain speed in a specific angular direction.

Solution

Convert the speed and angle to x and y velocities and add these to the object's x and y position on
each frame or animation interval.

Discussion

Recipe 11.1 explains how you can move something at specific velocities on the x and y-axes, but
what if you just know the angle and speed you want an object to move? For example, you want the
object to move at an angle of 135 degrees, with a speed of 4 pixels per frame.

You can use some basic trigonometric functions to convert this angle and speed to component x and
y velocities. First, you need to make sure the angle is in radians. If the angle is in degrees, convert it
by using the following formula:

radians = degrees * Math.PI / 180;

If you ever need to convert the opposite way, use:

degrees = radians * 180 / Math.PI;

Once you have the angle in radians, use the Math.sin and Math.cos functions, along with the speed,
to find the x and y velocities, using the following formulas:

vx = Math.cos(angle) * speed;
vy = Math.sin(angle) * speed;

Then you can simply move the object as outlined in Recipe 11.1. Here is an example using 135
degrees and a speed of 4 pixels per frame:

package {
 import flash.display.Sprite;
 import flash.events.Event;

 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class AngularVelocity extends Sprite {
 private var _sprite:Sprite;
 private var _angle:Number = 135;
 private var _speed:Number = 4;
 private var _timer:Timer;

 public function AngularVelocity () {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0x0000ff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.x = 200;
 _sprite.y = 100;
 addChild(_sprite);
 _timer = new Timer(30);
 _timer.addEventListener("timer", onTimer);
 _timer.start();
 }

 public function onTimer(event:TimerEvent):void {
 var radians:Number = _angle * Math.PI / 180;
 var vx:Number = Math.cos(radians) * _speed;
 var vy:Number = Math.sin(radians) * _speed;
 _sprite.x += vx;
 _sprite.y += vy;
 }
 }
}

Of course, in such a simple example, it wouldn't make sense to recalculate the x and y velocities on
each interval, as they never change. Instead, just calculate it one time, save the result, and use it on
each frame. In many cases, however, the speed and direction will be constantly changing, and
therefore need to be computed new for each frame.

See Also

Recipe 11.1

Recipe 11.3. Easing

Problem

You want an object to smoothly move to a specific location, slow down, and stop as it reaches that
spot.

Solution

Use an easing formula.

Discussion

First, we'll look at the concept of simple easing. You have an object at a certain position and you
want it to ease to another position. Take the distance between the two points and move the object a
fraction of that distancemaybe one-half, one-third, or less. On the next iteration, find the new
distance and move the object a fraction of that. Continue this way until the object is so close to the
target that you can consider it there.

You'll see that the first couple of jumps are quite big, but successive jumps get smaller and smaller
until the object appears not to be moving at all. Viewed in terms of velocity, the velocity starts out
high and approaches zero. Another way of looking at it is that velocity is dependent on distance. A
large distance makes for a high velocity.

The following example shows a simple example of easing. The target position is specified by _targetX
and _targetY. The fraction that the object moves each time is set in _easingSpeed. Here it is set to
0.1, which means the object moves one-tenth of the distance to the target on each animation
interval:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class Easing extends Sprite {
 private var _sprite:Sprite;
 private var _easingSpeed:Number = 0.1;
 private var _targetX:Number = 400;
 private var _targetY:Number = 200;
 private var _timer:Timer;

 public function Easing() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0x0000ff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.x = 50;
 _sprite.y = 50;
 addChild(_sprite);
 _timer = new Timer(30);
 _timer.addEventListener("timer", onTimer);
 _timer.start();
 }

 public function onTimer(event:TimerEvent):void {
 var vx:Number = (_targetX - _sprite.x) * _easingSpeed;
 var vy:Number = (_targetY - _sprite.y) * _easingSpeed;
 _sprite.x += vx;
 _sprite.y += vy;
 }
 }
}

One problem with this setup is that the timer continues to run, even after the object has gotten as
close as it's going to get to the target. To handle that, find the distance to the target and if it is less
than a certain value, just turn off the timer, as illustrated by the bolded code in the following
example:

public function onTimer(event:TimerEvent):void {
 var dx:Number = _targetX - _sprite.x;
 var dy:Number = _targetY - _sprite.y;
 var dist:Number = Math.sqrt(dx * dx + dy * dy);
 if(dist < 1)
 {
 _sprite.x = _targetX;
 _sprite.y = _targetY;
 _timer.stop();
 }
 else
 {
 var vx:Number = dx * _easingSpeed;
 var vy:Number = dy * _easingSpeed;
 _sprite.x += vx;
 _sprite.y += vy;
 }
}

This example first finds the distance on the two axes and the total distance. If the distance is less
than 1, it places the object at the target point and kills the timer. Otherwise, it continues as normal.

Sometimes though, you may not want the easing to stop; for example, in a moving target. The

following example has the object easing toward the mouse. In other words, it simply replaces mouseX
and mouseY for _targetX and _targetY:

public function onTimer(event:TimerEvent):void {
 var vx:Number = (mouseX - _sprite.x) * _easingSpeed;
 var vy:Number = (mouseY - _sprite.y) * _easingSpeed;
 _sprite.x += vx;
 _sprite.y += vy;
}

This is the simplest form of easing, and will suffice in a good many cases. Robert Penner
(http://www.robertpenner.com), a well-known and highly respected Flash programmer, has
developed a set of much more complex easing formulas that have become a sort of standard for
easing applications. They even have been incorporated into the standard ActionScript classes that
come with both Flash and Flex. At this writing, the equations are written for ActionScript 1.0 and 2.0
only, but they could easily be adapted for ActionScript 3.0. These equations do such things as easing
in, easing out, easing in and out, or easing based on a specific time interval or number of frames,
with many different formulas.

See Also

Recipes 11.1 and 11.2 for the basics on velocity.

http://www.robertpenner.com)

Recipe 11.4. Acceleration

Problem

You want an object to start moving slowly and then speed up over time.

Solution

Apply acceleration.

Discussion

Many people think of acceleration as simply speeding up. After all, when you want to go faster in your
car, you step on the accelerator. A more scientific definition would be a change in velocity. Although
this certainly encompasses increasing an object's speed, it also applies to slowing it down or changing
its direction.

Acceleration requires an understanding of velocity as covered in Recipes 11.1 and 11.2. Acceleration
also has a magnitude and direction, which can be represented as acceleration on the x and y-axes.
With each frame or animation interval, the acceleration of each axis is added to the velocity on that
axis, and then the velocity is added to the position, as in Recipe 11.1.

The following example uses the variables _ax and _ay for acceleration and _vx and _vy for velocity:

package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Accel extends Sprite {
 private var _sprite:Sprite;
 private var _ax:Number = .3;
 private var _ay:Number = .2;
 private var _vx:Number = 0;
 private var _vy:Number = 0;

 public function Accel() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0x0000ff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.x = 50;
 _sprite.y = 100;

 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 _vx += _ax;
 _vy += _ay;
 _sprite.x += _vx;
 _sprite.y += _vy;
 }
 }
}

As you can see, the sprite starts out motionless and gradually picks up speed as it goes across the
stage. Generally, since acceleration is additive, the acceleration values should start out small;
velocity builds up quickly over time.

Also, similar to Recipe 11.2, you can start with a direction and magnitude for the acceleration force:

var angle:Number = 45;
var accel:Number = .5;

Then convert this to acceleration on each axis:

var radians:Number = angle * Math.PI / 180;
_ax = Math.cos(radians) * accel;
_ay = Math.sin(radians) * accel;

Now you have values that you can add to the velocity.

It's worth noting that gravity is simply acceleration on the y-axis. You can create a gravity variable
and set it to a constant value. Then add it to the y velocity on each frame, and you will have realistic
gravity.

See Also

Recipes 11.1 and 11.2 for information on velocity .

Recipe 11.5. Springs

Problem

You want an object to jump to and settle at a specific point, as if it were attached by a spring or
rubber band.

Solution

Use Hooke's Law, the formula for a spring.

Discussion

Hooke's Law describes the forces at work in a spring. In simple terms, it says that the force applied
by the spring (acceleration) is proportional to how far it is stretched. This makes total sense. For
example, if you barely pull on a rubber band, it snaps back lightly. But if you pull it back as far as you
can, it snaps back with enough force to be painful.

Obviously, springs have different amounts of "springiness" or tension. Some are easy to stretch and
won't snap back too strongly. Others require a lot more force to pull, and will spring back with an
equally strong force. A number can be used to represent each spring's strength. The variable _k
represents this constant, and it is generally a small fraction of 1. A value such as 0.1 or 0.2 works
well.

When a spring is modeled with ActionScript, you also need to specify a target point that the spring
will pull the object to. Finally, you need to apply some damping or friction. In the real world, as an
object springs back and forth, it loses a bit of energy and eventually comes to rest somewhere. If you
don't add dampening to your code, the object just springs back and forth forever. To apply damping,
multiply the velocity values by a fraction, such as 0.95. This removes 5 percent of its speed on each
frame, eventually slowing it down to a stop. Here is an example, with all these principles in place:

package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Spring extends Sprite {
 private var _sprite:Sprite;
 private var _vx:Number = 20;
 private var _vy:Number = 0;
 private var _k:Number = .1;
 private var _damp:Number = .94;
 private var _targetX:Number = 200;

 private var _targetY:Number = 200;

 public function Spring() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0x0000ff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.x = 0;
 _sprite.y = 0;
 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 var ax:Number = (_targetX - _sprite.x) * _k;
 var ay:Number = (_targetY - _sprite.y) * _k;
 _vx += ax;
 _vy += ay;
 _sprite.x += _vx;
 _sprite.y += _vy;
 _vx *= _damp;
 _vy *= _damp;
 }
 }
}

In this example, the spring's force, represented by the variable _k, is set to 0.1. The variable _damp is
set to 0.94; this variable controls the damping or friction. The target point 200, 200 is stored in the
variables _targetX and _targetY.

In the onEnterFrame method, get the distance from the target to the object's current position. This
tells you how far the spring is stretched. Multiply this by _k, the spring's strength. This gives you the
force (or acceleration) to apply. Add this to the velocity and add the velocity to the position.

Finally, apply the damping by multiplying the velocity by the damp variable.

When you test this, you should see the sprite spring quickly to the target point, go past it, and spring
back. Eventually it settles down and comes to rest.

The target point does not have to be stationary. You can easily alter the previous example to use the
mouse coordinates as a target by changing the two lines that determine the acceleration:

var ax:Number = (mouseX - _sprite.x) * _k;
var ay:Number = (mouseY - _sprite.y) * _k;

This gives you a very smooth, interactive spring.

Try using different values for _k and _damp to see how you can alter the spring's properties.

See Also

Recipes 11.1, 11.2, and 11.4 for information velocity and acceleration.

Recipe 11.6. Using Trigonometry

Problem

You want to do some advanced animation, involving rotation, circular motion, or oscillation.

Solution

Use the built-in math functions Math.sin(), Math.cos(), and Math.atan2().

Discussion

Recipes 11.2 and 11.4 touched on the use of the sine and cosine functions, but they can be used for
many other useful effects, such as moving objects in circular or oval paths, smoothly back and forth
around a position, or rotating to a particular angle. Both Math.sin() and Math.cos() are based on the
properties of a right triangle (a triangle that has one 90-degree angle). Without getting into a
trigonometry lesson, if you feed either function a series of increasing numbers, they will return values
that go smoothly back and forth from -1 to 0, 1, 0, and back to -1, continuously. The following code
snippet demonstrates this:

for(var i:Number = 0; i < 10; i += 0.1) {
 trace(Math.sin(i));
}

This traces a long list of numbers. If you examine those numbers, you'll see that they start at 0, go
up to 0.999, back down to -0.999, back up, and so on. You can now multiply that by another
number, say 40, and get a list of values from -40 to 40. If you use this in an enterFrame handler, or
timer-based method, and apply the result to an object's position, you can get it to oscillate back and
forth, or up and down, as the following example shows:

package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Oscillation extends Sprite {
 private var _sprite:Sprite;
 private var _angle:Number = 0;
 private var _radius:Number = 100;

 public function AS3CB() {
 _sprite = new Sprite();

 _sprite.graphics.beginFill(0x0000ff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.x = 0;
 _sprite.y = 100;
 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 _sprite.x = 200 + Math.sin(_angle) * _radius;
 _angle += .05;
 }
 }
}

Here, _angle is the variable holding the increasing value fed to Math.sin(). The result is multiplied by
the _radius variable, which is set at 100. This causes the sprite to go back and forth 100 pixels.

If you use Math.cos() and do the same thing with the sprite's y position, you have circular motion:

public function onEnterFrame(event:Event):void {
 _sprite.x = 200 + Math.sin(_angle) * _radius;
 _sprite.y = 200 + Math.cos(_angle) * _radius;
 _angle += .05;
}

To make more of an oval shaped path, just use a different radius value on each axis. For example,
set _xRadius to 100, _yRadius to 50, and do the following:

public function onEnterFrame(event:Event):void {
 _sprite.x = 200 + Math.sin(_angle) * _xRadius;
 _sprite.y = 200 + Math.cos(_angle) * _yRadius;
 _angle += .05;
}

Now, if you create separate angles and amounts to add to each angle, you can get a very random-
looking motion. First, create separate variables for each axes' factors:

private var _xAngle:Number = 0;
private var _yAngle:Number = 0;
private var _xSpeed:Number = .13;
private var _ySpeed:Number = .09;
private var _xRadius:Number = 100;
private var _yRadius:Number = 50;

Then apply those to the motion code:

public function onEnterFrame(event:Event):void {
 _sprite.x = 200 + Math.sin(_xAngle) * _xRadius;
 _sprite.y = 200 + Math.cos(_yAngle) * _yRadius;
 _xAngle += _xSpeed;
 _yAngle += _ySpeed;
}

One possible use for this example is to simulate a fly, randomly buzzing around a room.

Another very useful trig function is Math.atan2(). The main use for this is in finding the angle
between two points. It takes two parameters: the distance between the two points on the y-axis, and
the distance between them on the x-axis. It then returns the angle, in radians, between the points.

A common scenario for using Math.atan2() is in making an object (a sprite, for example) point at the
mouse. The y distance is mouseY _sprite.y, and the x distance is mouseX _sprite.x. Math.atan2()
returns an angle. Convert that to degrees and use it to set _sprite.rotation. Of course, you'll need
some sort of sprite graphic that shows which direction it is rotating. The next example creates the
classic "following eyes," a little desktop toy that follows the mouse around the screen and has been
created for just about every graphical operating system out there (actually, this example creates only
a single eye, but it demonstrates the principle):

package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class FollowingEye extends Sprite {
 private var _sprite:Sprite;

 public function AS3CB() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0xffffff, 100);
 _sprite.graphics.drawCircle(0, 0, 25);
 _sprite.graphics.endFill();
 _sprite.graphics.beginFill(0x000000, 100);
 _sprite.graphics.drawCircle(20, 0, 5);
 _sprite.graphics.endFill();
 _sprite.x = 100;
 _sprite.y = 100;
 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 var dx:Number = mouseX - _sprite.x;
 var dy:Number = mouseY - _sprite.y;
 var radians:Number = Math.atan2(dy, dx);
 _sprite.rotation = radians * 180 / Math.PI;
 }
 }
}

The setup code draws an extra circle on the right edge of the first. When you are doing this kind of
rotation, align your graphics so that "zero degrees" is facing to the right like this. The enterFrame
handler calculates the two distances and the resulting angle, converts to degrees and assigns it to the
eye's rotation.

Recipe 11.7. Applying Animation Techniques to Other
Properties

Problem

You want to apply the techniques in this chapter's recipes to something other than an object's
motion.

Solution

Apply the techniques as given, but assign the results to a property other than the object's x and y
position.

Discussion

Although changing an object's position is the most obvious method of animation, all of the techniques
in this chapter can be applied to almost any property of a movie clip or sprite. This recipe provides
several examples to get you started, but the possibilities are so numerous that it would be impossible
to list them all.

First, try applying some velocity to the rotation property; this variable is called _vr for rotational
velocity:

package {
 import flash.display.Sprite;
 import flash.events.Event;

 public class AnimatingRotation extends Sprite {
 private var _sprite:Sprite;
 private var _vr:Number = 4;

 public function AS3CB() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0xffffff, 100);
 _sprite.graphics.drawRect(-50, -20, 100, 40);
 _sprite.graphics.endFill();
 _sprite.x = 100;
 _sprite.y = 100;
 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 public function onEnterFrame(event:Event):void {
 _sprite.rotation += _vr;
 }
 }
}

This example uses a rectangle instead of a circle, so you can see the rotation in action. It sets _vr to
4, and then adds that to the sprite's rotation on each frame.

The next example applies a spring formula to the scale of the sprite. A click handler sets a random
target scale, and the enterFrame handler applies the spring action. When you click on the sprite, it
bounces to a new size:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;

 public class AnimatingProperties extends Sprite {
 private var _sprite:Sprite;
 private var _k:Number = 0.1;
 private var _damp:Number = 0.9;
 private var _scaleVel:Number = 0;
 private var _targetScale:Number = 1;

 public function AS3CB() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0xffffff, 100);
 _sprite.graphics.drawRect(-50, -50, 100, 100);
 _sprite.graphics.endFill();
 _sprite.x = 100;
 _sprite.y = 100;
 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 _sprite.addEventListener(MouseEvent.CLICK, onClick)
 }

 public function onEnterFrame(event:Event):void {
 _scaleVel += (_targetScale - _sprite.scaleX) * _k
 _sprite.scaleX += _scaleVel;
 _sprite.scaleY = _sprite.scaleX;
 _scaleVel *= _damp;
 }

 public function onClick(event:MouseEvent):void {
 _targetScale = Math.random() * 2 - .5;
 }
 }
}

You could create similar functionality using easing (see Recipe 11.3) instead of springs. Photo gallery
applications often use this technique for displaying differently sized photos. The photo content area
eases to the new size, and then the photo fades in.

A more complex application of motion code is to use the techniques to color transforms to smoothly
go from one color to another. This is probably best done with easing. Start out with one color and
gradually ease into another color.

The following example sets up two sets of color values: _red1, _green1, _blue1, and _red2, _green2,
_blue2. Each value is a number from 0.0 to 1.0. In the enterFrame handler, these values are fed to
the red, green, and blue multiplier values of a color transform object that is applied to the sprite. All
of the values ease from the first to the second value, so they smoothly transition from one to the
other. There is also a click handler on the sprite, which randomly sets three new multiplier values;
each time you click on the square, it eases to a new color:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.geom.ColorTransform;

 public class AnimatingColor extends Sprite {
 private var _sprite:Sprite;

 private var _red1:Number = 1;
 private var _green1:Number = 0;
 private var _blue1:Number = 0;

 private var _red2:Number = 0;
 private var _green2:Number = .5;
 private var _blue2:Number = 1;

 private var _easingSpeed:Number = 0.05;

 public function AS3CB() {
 _sprite = new Sprite();
 _sprite.graphics.beginFill(0xffffff, 100);
 _sprite.graphics.drawRect(-50, -50, 100, 100);
 _sprite.graphics.endFill();
 _sprite.x = 100;
 _sprite.y = 100;
 addChild(_sprite);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 addEventListener(MouseEvent.CLICK, onClick);
 }

 public function onEnterFrame(event:Event):void {
 _red1 += (_red2 - _red1) * _easingSpeed;
 _green1 += (_green2 - _green1) * _easingSpeed;
 _blue1 += (_blue2 - _blue1) * _easingSpeed;
 _sprite.transform.colorTransform =
 new ColorTransform(_red1, _green1, _blue1);

 }

 public function onClick(event:MouseEvent):void {
 _red2 = Math.random();
 _green2 = Math.random();
 _blue2 = Math.random();
 }
 }
}

See Also

Recipe 11.3

Chapter 12. Strings

Section 12.0. Introduction

Recipe 12.1. Joining Strings

Recipe 12.2. Using Quotes and Apostrophes in Strings

Recipe 12.3. Inserting Special Whitespace Characters

Recipe 12.4. Searching for a Substring

Recipe 12.5. Extracting a Substring

Recipe 12.6. Parsing a String into Words

Recipe 12.7. Removing and Replacing Characters and Words

Recipe 12.8. Retrieving One Character at a Time

Recipe 12.9. Converting Case

Recipe 12.10. Trimming Whitespace

Recipe 12.11. Reversing a String by Word or by Character

Recipe 12.12. Converting Between Strings and Unicode or ASCII

12.0. Introduction

Strings are the fundamental textual element of the ActionScript language. A string is a series of zero
or more characters enclosed in single or double quotes. Unlike some other languages, ActionScript
does not differentiate between single characters and strings. Both characters and strings are grouped
into the String datatype. For example:

var exampleA:String = "this is a string";
var exampleB:String = 'this is also a string';
var exampleC:String = "strings can contain characters such as (*+5~";
var exampleD:String = ""; // Empty string
var exampleE:String = "x"; // Single character
var exampleF:String; // Defaults to null when no value is assigned

String values must always be enclosed within quotes. You can use either single or double quotes, but
the starting and ending quotes enclosing a string must be of the same type.

// Both of these strings cause errors because of mismatched quotes.
var exampleA:String = "an incorrect string'; // Ending quote should be double
var exampleB:String = 'another incorrect string"; // Ending quote should be single

ActionScript provides functionality that allows you to work with strings and characters in many ways.
A new feature of ActionScript 3.0 relating to strings is the built-in support for regular expressions
(pattern matching), which is covered in Chapter 13.

Recipe 12.1. Joining Strings

Problem

You want to concatenate (join) together two or more strings into a single value.

Solution

Use the string concatenation operator +, the combination concatenation-assignment operator +=, or
the String.concat() method.

Discussion

Multiple strings can be joined in a single expression using the concatenation operator, +, between two
string operands:

// This results in a single value of "Thisworks" (no space)
var example:String = "This" + "works";

If you want to join more than two strings, use additional concatenation operators and string value
operands in the appropriate order:

// Results in a single value of "This works" (with a space)
var example:String = "This" + " " + "works";

In the preceding examples, there is little reason why you would need to join the string literals instead
of assigning a single string value ("This works" instead of "This" + " " + "works"). However, this
demonstrates the technique you'll use when working with dynamic values. You can use the
concatenation operator to join not only string literals, but also variables containing string values (or
values that can be converted to strings). For example:

var attendance:int = 24;
// Results in a single value of "There are 24 people"
var output:String = "There are " + attendance + " people";

The concatenation operator automatically converts any nonstring values to strings, as long as at least
one of the operands in the statement is a string. In the preceding example, the numerical value 24 is
converted to the string value 24 automatically before being joined with the other strings. However, if
all the operands are numbers, the ActionScript interpreter treats the + operator as the addition

operator instead of the concatenation operator:

var first:int = 24;
var second:int = 42;
// Results in the compiler error, "Implicit coercion of a value
// type 'Number' to an unrelated type 'String'"
var result:String = first + second;

You can concatenate, rather than add, two or more numbers in several ways. One way is to
concatenate an empty string to the beginning of the statement:

var first:int = 24;
var second:int = 42;
// Results in a string value of "2442"
var result:String = "" + first + second;

The empty string must be placed first in the expression because if the two numbers appear first, they
are added rather than concatenated, even though the final value is still converted to a string:

var first:int = 24;
var second:int = 42;
// Results in a string value of "66"
var result:String = first + second + "";

Another option is to use the String() conversion function to ensure that at least one of the numbers
is cast to a string before performing the concatenation:

var first:int = 24;
var second:int = 42;
// Results in a string value of "2442"
var result:String = String(first) + second;

When you use this technique for only two numbers, it does not matter which one you convert to a
string (or you can convert both). But if you are joining more than two numbers, you should convert
the first or second number to a string. Otherwise, the numbers preceding the value that is converted
to a string will be added rather than concatenated:

var first:int = 24;
var second:int = 42;
var third:int = 21;
// Results in a string value of "6621"
var result:String = first + second + String(third);

Yet another option is to use the toString() method available on most built-in objects. Both Number
and int data types have a toString() method available:

var first:int = 24;

var second:int = 42;
var third:int = 21;
// Results in a string value of "244221"
var result:String = first.toString() + second + third;

If you want to add, rather than concatenate, two number values in the middle of a string
concatenation statement, you should enclose that expression in parentheses. This changes the order
of operation and evaluates the inner expression first, treating it as an addition operation rather than
a concatenation operation:

var first:int = 24;
var second:int = 42;
// Results in "There are 66 people"
var result:String = "There are " + (first + second) + " people";

You can also append text to existing strings by using the concatenation assignment += operator:

var attendance:int = 24;
var example:String = "There are ";
example += attendance;
// Results in a string value of "There are 24 people"
example += " people";

This technique can be useful for several reasons. First of all, sometimes you want to join long string
values and your code remains more readable when you break it up into multiple lines:

var example:String = "This is the first sentence in a long paragraph of text.";
example += "By adding line by line to the string variable you make ";
example += "your code more readable.";

However, instead of using three separate statements the preceding code can be expressed more
efficiently by using clever spacing and line breaking with the regular + operator. Note that there is
only one ; making the entire assignment statement expand over three lines:

var example:String = "This is the first sentence in a long paragraph of text. "
 + "By splitting the long string into smaller, more manageable pieces "
 + "and using the + operator, you can make your code more readable.";

The most practical use of concatenation assignment is when you need to append more text to a
string over time rather than all at once. For example, you may have a chat history window that
updates whenever someone contributes text to the conversation. You can append the new text to an
existing string by using the combination concatenation assignment operator. For example:

// A method that will append the username and message to
// a chat history string variable
private function updateChatHistory(message:String, username:String):void {

 // Assume history is a string variable that contains past conversation history.

 // Append the username and message with a new line to the existing string.
 _history += username + ":" + message + '\n';
};

You can also use the String.concat() method to append new values to the end of an existing string.
The concat() method does not affect the original string. Instead, it returns a new string containing
the result of the concatenation:

var original:String = "original string value.";

// Set modified to "original string value.now modified."

// The value of original remains unchanged.
var modified:String = original.concat("now modified.");

Flash 4 used the & operator for string concatenation. Flash converts the &
operator to the add operator when updating Flash 4 files to Flash 5 or Flash 6
format. The + operator is the preferred string concatenation operator in Flash 5
and later.

See Also

Recipe 12.6

Recipe 12.2. Using Quotes and Apostrophes in Strings

Problem

You want to use quotes or apostrophes within a string value.

Solution

Use a backslash to escape the quotes or apostrophes contained within the string. Alternatively, use
single quotes within double quotes, or vice versa.

Discussion

The ActionScript compiler tries to match u p quotes of the same kind (single quotes with single
quotes and double quotes with double quotes) when processing string literals. Therefore, if you
enclose a string literal within quotes of one type and also try to include the same kinds of quotes in
the string value, the code fails to compile as you intended.

This string assignment causes an error because of mismatched quotes. In the following example, the
string starts with a double quote ("Yes), therefore, the double quote character before the Y signals
the end of the string to the compiler. As such, it does not understand what to do with the remaining
characters:

var error:String = "He said, "Yes.""; // Incorrect.

One possible solution is to use single quotes to enclose a string literal that contains double quotes, or
double quotes to enclose a string literal that contains single quotes, as follows:

// This assignment works. The result is a string: He said, "Yes."
var exampleA:String = 'He said, "Yes."';

// This assignment also works. The result is a string: He said, 'Yes.'
var exampleB:String = "He said, 'Yes.'";

However, if the string value contains both single and double quotes, this technique does not work.
Furthermore, you have to pay close attention to what type of quotes are used when creating the
strings, and you lose consistency in your program with constant quote switching. An alternative
solution, which works all the time, is to use the backslash character (\\) to escape any quotes used
within the string value (i.e., escape the quote by preceding it by a backslash):

// This assignment works. The result is a string: He said, "Yes."
var sExample:String = "He said, \"Yes.\"";

The backslash tells the compiler to interpret the next character literally, and not with any special
meaning it might normally have. Therefore, when you precede a quotation mark within a string value
with the backslash character, you tell the compiler that the quote does not signal the boundary of the
string value, but rather it is to be interpreted as just another character in the string.

Recipe 12.3. Inserting Special Whitespace Characters

Problem

You want to add whitespace characters, such as tabs or newline characters, to your string.

Solution

Use the escape sequences for the special characters.

Discussion

There are five special whitespace characters with escape sequences, as shown in Table 12-1.

Table 12-1. Whitespace escape sequences

Whitespace character Escape sequence

Newline

 \n

Tab
\t

Backspace
\b

Form feed

 \f

Whitespace character Escape sequence

Carriage return

 \r

You can use these escape sequences within a string; they are most useful when displaying a string
value in a text field:

// Results in a string value: these words are separated by tabs
var example:String = "these\twords\tare\tseparated\tby\ttabs";

/* Results in a string value:
these
words
are
separated
by
newlines
*/
var example:String = "these\nwords\nare\nseparated\nby\nnewlines";

Unlike previous versions of ActionScript, ActionScript 3.0 no longer includes support for the newline
constant. If you have code that uses newline anywhere, you will need to replace it with the \\n
escape sequence.

The result is the same.

// Generates a compile error replace newline with "\n" to compile
var error:String = "two" + newline + "lines"; // Compile error: "Access of
 // undefined property 'newline'"

Within Flash, the newline, form feed, and carriage return characters all result in the same display.
However, when you load content into Flash from external sources, some values will have newline
characters, some will have form feeds, and some will have carriage returns.

Carriage return

 \r

You can use these escape sequences within a string; they are most useful when displaying a string
value in a text field:

// Results in a string value: these words are separated by tabs
var example:String = "these\twords\tare\tseparated\tby\ttabs";

/* Results in a string value:
these
words
are
separated
by
newlines
*/
var example:String = "these\nwords\nare\nseparated\nby\nnewlines";

Unlike previous versions of ActionScript, ActionScript 3.0 no longer includes support for the newline
constant. If you have code that uses newline anywhere, you will need to replace it with the \\n
escape sequence.

The result is the same.

// Generates a compile error replace newline with "\n" to compile
var error:String = "two" + newline + "lines"; // Compile error: "Access of
 // undefined property 'newline'"

Within Flash, the newline, form feed, and carriage return characters all result in the same display.
However, when you load content into Flash from external sources, some values will have newline
characters, some will have form feeds, and some will have carriage returns.

Recipe 12.4. Searching for a Substring

Problem

You want to find a string value inside of a string.

Solution

Use the indexOf() or lastIndexOf() methods from the String class.

Discussion

You can use the indexOf() and lastIndexOf() methods to determine whether a string contains a
specified substring value. Each method returns the starting index of the substring found. The
indexOf() method searches from left to right, whereas the lastIndexOf() methods searches from
right to left in the string. If the substring is not found, the value -1 is returned.

The indexOf() method takes two parameters:

substring

The substring value for which you want to search.

startIndex

The optional zero-based starting position from which to search within the string. Zero-based
means the first character in the string is at position 0, not 1. If omitted, the method begins the
search from the beginning of the string (at index 0).

If you want to test whether a string contains another string, you can use the indexOf() method with
only one parameter. For example:

var example:String = "This string contains the word cool twice. Very cool.";

// Get the index of the first occurrence of the substring "cool" within example.
var index:int = example.indexOf("cool");

// If the indexOf() method returns 1, no occurrences of "cool" were found.
if (index != -1) {

 // Displays: "String contains word cool at index 30" because the first

 // occurrence of the substring appears starting at index 30 within example.
 TRace("String contains word cool at index " + index);
}

You can get the indices of subsequent occurrences of a substring by specifying the second, optional
parameter of the indexOf() method. A simple and effective way to search for the next occurrence of
a substring is to pass the method a starting index parameter value of one more than what was
returned by the previous search.

var example:String = "This string contains the word cool twice. Very cool.";

// Get the index of the first occurrence of the substring "cool" within example.
var index:int = example.indexOf("cool");

if (index != -1) {
 // Displays: "String contains word cool at index 30"
 trace("String contains word cool at index " + index);
}

// Get the index of the second occurrence of the substring "cool" within example.

// Pass the method the previous value of index + 1. This starts the
// search past the starting index of the previous occurrence, thus finding

// the next occurrence. If you do not add 1 to index when passing it to

// indexOf(), the method returns the location of the first occurrence again.
index = example.indexOf("cool", index + 1);

if (index != -1) {
 // Displays: "String contains word cool at index 47" because the next

 // occurrence of the substring appears starting at index 47 within example.
 trace("String contains word cool at index " + index);
}

You can use indexOf() in a while statement to get the indices of every occurrence of a substring. For
example:

var example:String = "This string contains the word cool. Very cool. Yes, cool.";

// Initialize index to 1 so that the while statement searches

// the string from the beginning (index 0, at index + 1)
var index:int = -1;

// Loop until indexOf() returns 1.
while ((index = example.indexOf("cool", index + 1)) != -1) {

 /* Displays:
 String contains word cool at index 30
 String contains word cool at index 41
 String contains word cool at index 52

 */
 trace("String contains word cool at index " + index);
}

The while conditional in the preceding code looks more complicated than it really is. If you take it
apart, you can see that it is composed of manageable and understandable parts. The first part
assigns to index the value returned by the indexOf() method:

index = example.indexOf("cool", index + 1);

The first time this statement is encountered, the initial value of index is -1 because it was set to -1
prior to the while statement. It is absolutely essential that this be done for the process to work
properly, since 1 is added to the index each loop iteration. If index is not given a value, a default
value of 0 is used; adding 1 to 0 causes the search to start at the second character of the string, at
index 1. Each subsequent time the while condition is evaluated, the value of index has the value of
the starting index of the previously found match. If we fail to add 1 to index in the loop, the index
never moves past the first match and loops infinitely. That is, if the indexOf() method returns 30 and
it starts looking from 30 on the next iteration, 30 is returned again by indexOf() and the cycle
repeats.

The second part of the while conditional tests to make sure that the result of the indexOf() method is
not -1 before executing the loop body again. This is important because without it the while loop would
continue infinitely since any non-zero numerical value, positive or negative, in a conditional is
interpreted as TRue. When indexOf() returns -1, it means that no more matches exist, so the while
loop terminates.

The lastIndexOf() method works much like indexOf(), except that it searches from right to left in
the string, effectively searching the string backward. The lastIndexOf() method returns the starting
index of the last occurrence of the substring. The starting index returned is the position of the
beginning of the found substring, not its end, even though the search is performed backward.

Like indexOf(), the lastIndexOf() method takes two parameters:

substring

The substring value for which you want to search.

startIndex

The optional zero-based starting position from which to search within the string. Zero-based
means the first character in the string is at position 0, not 1. If omitted the method begins the
search from the end of the string (at index string.length 1).

When the substring cannot be found in the string, lastIndexOf() returns -1:

var example:String = "This string contains the word cool twice. Very cool.";

// Get the index of the last occurrence of the substring "cool" within example.

var index:int = example.lastIndexOf("cool");

if (index != -1) {
 // Displays: "String contains word cool at index 47" because the last

 // occurrence of the substring appears starting at index 47 within example.
 trace("String contains word cool at index " + index);
}

// Get the index of the next to last occurrence of "cool" within example.

// Pass the method the previous value of index - 1. This starts the
// search one to the left original occurrence, thus finding an earlier occurrence

// from right to left. If you do not subtract 1 to index when passing it to

// lastIndexOf(), the method returns the location of the last occurrence again.
index = example.lastIndexOf("cool", index - 1);

if (index != -1) {
 // Displays: "String contains word cool at index 30" because the next to last

 // occurrence of the substring appears starting at index 30 within example.
 trace("String contains word cool at index " + index);
}

If you want to retrieve the indices of every occurrence of a substring, you can use the same
technique we previously used for indexOf(), a combination of a while loop and lastIndexOf() with a
starting index value.

var example:String = "This string contains the word cool. Very cool. Yes, cool.";

// Initialize index to example.length so that the while statement starts searching
// at the very last index. The last index is actually example.length 1, but we

// subtract 1 from the index in the loop so we initialize index carefully here.
var index:int = example.length;

// Loop until lastIndexOf() returns 1.
while ((index = example.lastIndexOf("cool", index - 1)) != -1) {

 /* Displays:
 String contains word cool at index 52
 String contains word cool at index 41
 String contains word cool at index 30
 */
 trace("String contains word cool at index " + index);
}

This code block is very similar to the one used for indexOf() but there are two subtle differences. The
first difference is that we initialize index to example.length instead of -1 as before because
lastIndexOf() searches from right to left instead of left to right and we need to start our search at
the end of the example string. The second difference is that instead of adding 1 to the index for the
search, we subtract 1 so that lastIndexOf() will search to the left of a previously found occurrence to
find all occurrences.

Both the indexOf() and lastIndexOf() methods are case-sensitive in their searches. For example,
the substring "cool" would not be found in the string "Cool" because the cases are not the same. To
perform a case-insensitive search, use the toLowerCase() method in conjunction with the indexOf()
or lastIndexOf() method.

// Create a string that spells "cool" as both "cool" and "Cool".
var example:String = "Cool. This is a string with the word cool. It spells"
 + " cool as both cool (lowercase) and Cool (capitalized).";

var search:String = "cool";

// Output the index of the first occurrence of "cool". The result is 37,
// because it does not find "Cool" due to the case-sensitive search.
trace(example.indexOf(search));

// Output the index of the first occurrence of "cool" after lowercasing the

// string with toLowerCase(). The result is 0 because it now finds "Cool"
// (which has been converted to cool) at the beginning of the string.
trace(example.toLowerCase().indexOf(search));

// Output the index of the last occurrence of "cool". The result is 66,
// because it does not find the last "Cool" due to the case-sensitivity.
trace(example.lastIndexOf(search));

// Output the index of the last occurrence of cool after lowercasing the
// string. The result is 87, because it finds the last "Cool".
trace(example.toLowerCase().lastIndexOf(search));

// Now, change the search string to "Cool" (capitalized).
search = "Cool";

// Output the index of the first occurrence of "Cool" after lowercasing the
// string. The result is 1, because "Cool" doesn't exist in the lowercase string.
trace(example.toLowerCase().indexOf(search));

// This is similar to the preceding line of code, but the search string is also
// converted to lowercase. Therefore, the result is 0, because the starting index
// of the first occurrence of "cool" (regardless of case) is 0. Lowercasing both
// the string being searched and the substring for which you are searching
// ensures that a completely case-insensitive search is performed.
trace(example.toLowerCase().indexOf(search.toLowerCase()));

In this code snippet, you can freely substitute toUpperCase() for toLowerCase() for case-insensitive
searching. The key is that you force the original string and the substring to the same case (either
upper or lower) before starting the search.

See Also

Recipe 13.3

Recipe 12.5. Extracting a Substring

Problem

You want to extract a substring from a string.

Solution

Use the substring(), substr(), or slice() methods.

Discussion

The substring(), substr(), and slice() methods all return the value of a substring without affecting
the original string. The only difference between the three methods is in the parameters they accept.

The substr() method takes up to two parameters.

startIndex

The position of the first character of the substring. The value can be negative, in which case
the index is calculated from the end of the string, where -1 is the last character, -2 is the
second-to-last character, and so on.

length

The number of characters in the substring to extract. If this parameter is omitted, all the
characters from the start index to the end are used.

var example:String = "Bunnies";
trace(example.substr(0)); // Displays: Bunnies
trace(example.substr(0, 3)); // Displays: Bun
trace(example.substr(3, 3)); // Displays: nie
trace(example.substr(-1)); // Displays: s
trace(example.substr(-2, 5)); // Displays: es

The substring() and slice() method both take the same parameters.

startIndex

The position of the first character of the substring to extract.

endIndex

The position of one character after the last character in the substring to extract. That is, the
substring will include from start index up to, but not including, the character at endIndex. If this
parameter is omitted, all the characters from the start index to the end of the string are used.

The substring() and slice() methods differ in that substring() accepts positive index values only; it
interprets negative values as 0. Also, if endIndex is less than startIndex, the substring() method

automatically reverses them before executing, always using the smaller of the two parameters as the
starting index. The slice() method, on the other hand, accepts negative values for both startIndex
and endIndex; it interprets negative values as counting back from the end of the string, where -1 is

the last character in the string. The slice() method returns an empty string if you specify an
endIndex that is less than startIndex.

var example:String = "Rabbits";

// Both of these output the entire string, beginning at index 0 and

// going to the last index (the value of which is example.length - 1).
trace(example.substring(0)); // Displays: Rabbits
trace(example.slice(0)); // Displays: Rabbits

// The substring() method outputs nothing because it converts the negative

// indices to 0. The slice() method outputs "it", which is the substring from
// the third-to-last character (index -3) to next-to-last character (index -1).
trace(example.substring(-3, -1)); // Displays nothing (an empty string)
trace(example.slice(-3, -1)); // Displays: it

// Both of these output the substring "ab".
trace(example.substring(1, 3)); // Displays: ab
trace(example.slice(1, 3)); // Displays: ab

// The substring() method outputs the substring "ab" because it reverses the

// order of the parameters automatically. The slice() method outputs nothing

// because the slice() method does not reverse the order of the parameters.
trace(example.substring(3, 1)); // Displays: ab
trace(example.slice(3, 1)); // Displays nothing (an empty string)

You commonly use the substring extraction methods in conjunction with the indexOf() and
lastIndexOf() methods. You can use indexOf() and lastIndexOf() methods to search for the
substring within a string, and then use the substring extraction methods to get the substrings.

This example extracts a file's extension and its filename (without the extension), presumed to be
separated from each other by a period:

var filename:String = "document.jpg";
// Find the location of the period.
var extensionIndex:Number = filename.lastIndexOf('.');

// The extension-less filename ("mydocument") is everything before the period.
var extensionless:String = filename.substr(0, extensionIndex);
trace("The filename is " + extensionless);

// The extension ("jpg") is everything after the period.
var extension:String = filename.substr(extensionIndex + 1, filename.length);
trace("The file extension is " + extension);

You can also use the split() method, assuming there is only one period in the filename:

var filename:String = "document.jpg";
// Split the string wherever the period occurs.
var nameParts:Array = filename.split(".");

// The first element is "document" (everything before the first period).
var extensionless:String = nameParts[0];
trace ("The filename is " + extensionless);

// The next element is "jpg" (anything after the first
// period and before the next one).
var extension:String = nameParts[1];
trace ("The file extension is " + extension);

Compare and contrast the two preceding examples. What if the filename doesn't contain a period,
e.g., document? (Hint: The first example produces invalid results.) What if the filename contains
more than one period, such as ascb_fig8.1.bmp? (Hint: The second example produces invalid
results.)

Here is a general solution:

// This method returns everything before the last period, if any.
private function removeExtension(filename:String):String {
 // Find the location of the period.
 var extensionIndex:Number = filename.lastIndexOf('.');
 if (extensionIndex == -1) {
 // Oops, there is no period. Just return the filename.
 return filename;
 } else {
 return filename.substr(0, extensionIndex);
 }
}

// This method returns everything after the last period, if any.
private function extractExtension(filename:String):String {
 // Find the location of the period.
 var extensionIndex:Number = filename.lastIndexOf('.');
 if (extensionIndex == -1) {
 // Oops, there is no period, so return the empty string.
 return "";
 } else {

 return filename.substr(extensionIndex + 1, filename.length);
 }
}

Here's example usage:

trace(removeExtension("document.jpg")); // Displays: document
trace(removeExtension("document")); // Displays: document
trace(removeExtension("document.1.jpg")); // Displays: document.1
trace(extractExtension("document.jpg")); // Displays: .jpg
trace(extractExtension("document")); // Displays nothing
trace(extractExtension("document.1.jpg")); // Displays: .jpg

See Also

Recipe 12.6

Recipe 12.6. Parsing a String into Words

Problem

You want to process the individual words in a string.

Solution

Use the split() method.

Discussion

The split() method, Recipe 5.6, splits a string into an array using the specified delimiter. To split a
string into words, use the split() method with a space as the delimiter.

// Create a string with multiple words.
var example:String = "This is a string of words";

// Split the string into an array of words using a space as the delimiter.
var words:Array = example.split(" ");

// Loop through the array and do something with each word.
// In this example, just output the values.
for (var i:int = 0; i < words.length; i++) {
 /* Displays:
 this
 is
 a
 string
 of
 words
 */
 trace(words[i]);
}

You can process the individual words in many ways. The following is a complete example that uses
this technique to split a string into words and then creates sprites containing those words. The user
can then drag the words around on stage to form various sentences or statements similar to the
popular magnetic poetry kits:

 package {

 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;

 public class ActionScriptPoetry extends Sprite {

 public function ActionScriptPoetry() {

 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 // Create a string, and split the string into an array of words.
 var example:String = "This is a string of ActionScript poetry words";
 var words:Array = example.split(" ");
 var word:Sprite;
 var wordText:TextField;

 // Loop through all the words in the array.
 for (var i:int = 0; i < words.length; i++) {

 // Create a new sprite for each word and add it to the
 // display list so the sprite is drawn on-screen
 word = new Sprite();
 addChild(word);

 // Create a text field within the sprite by creating a new
 // TextField instance and adding it as a child
 wordText = new TextField();
 word.addChild(wordText);

 // The text field should autosize to fit its contents. It should also have
 // a border and background so that it mimics the look of poetry magnets,
 // and the text should not be selectable since we want to drag it around.
 wordText.autoSize = TextFieldAutoSize.LEFT; // Left-justify the text
 wordText.border = true;
 wordText.background = true;
 wordText.selectable = false;

 // Set each text fields's text value to one of the words from the array.
 wordText.text = words[i];

 // The sprite is draggable when clicked, and it stops being
 // draggable when released.
 word.addEventListener(MouseEvent.MOUSE_DOWN, handleDrag);
 word.addEventListener(MouseEvent.MOUSE_UP, handleDrop);

 // Randomize the position of the sprites containing words
 var rx:Number = Math.random() * stage.stageWidth - word.width;

 var ry:Number = Math.random() * stage.stageHeight - word.height;
 word.x = rx;
 word.y = ry;
 trace(word);
 }
 }

 // This function is called when the uses presses a word with the mouse
 private function handleDrag(event:MouseEvent):void {
 // The event target will be the TextField, so to get the
 // word we work up to the parent
 var word:Sprite = event.target.parent;

 // Make the clicked on word draw on top of everything else
 setChildIndex(word, numChildren - 1);

 // Drag the word around to coincide with mouse movement
 word.startDrag();
 }

 // This function is called when the user releases the mouse
 private function handleDrop(event:MouseEvent):void {
 // The event target will be the TextField, the parent is the Sprite
 var word:Sprite = event.target.parent;

 // Stop moving the word around with the mouse
 word.stopDrag();
 }
 }
}

The preceding use of split() by itself is all you need when the original string value contains words and
spaces but no punctuation. If the string has punctuation or other miscellaneous characters, you
should use a regular expression as the parameter to split() to remove them. The regular expression
to match punctuation around words should be constructed using the value /[^a-zA-Z0-9]+/.

// Create a string that uses punctuation.
var example:String = "Here are some words. Also, here is some punctuation!";

// Create an array of words from the string without first removing punctuation.
var words:Array = example.split(' ');

// Display the elements of the array. Some of the elements also contain the
// punctuation. This is likely undesirable.
for (var i:int = 0; i < words.length; i++) {
 /* Outputs:
 Here
 are
 some
 words.
 Also,

 here
 is
 some
 punctuation!
 */
 trace(words[i]);
}

// Use a regular expression for punctuation and splits around that to produce
// a cleaned array of words from the string
words = example.split(/[^a-zA-Z0-9]+/);

// Output all the elements of the words array. This time each element is a word,
// and none of the elements include punctuation.
for (i = 0; i < words.length; i++) {
 /* Outputs:
 Here
 are
 some
 words
 Also
 here
 is
 some
 punctuation
 */
 trace(words[i]);
}

Regular expressions, covered in Chapter 13, are a powerful new feature of ActionScript 3.0.

See Also

Chapter 13; Recipes 5.6 and 12.5

Recipe 12.7. Removing and Replacing Characters and
Words

Problem

You want to remove characters from a string or replace one substring with another.

Solution

Use the replace() method or split() and join() combination.

Discussion

ActionScript 3.0 includes a new method String.replace(), not found in previous versions, that allows
you to replace substrings within a string. This method accepts two parameters:

pattern

The substring or regular expression you want to find and replace.

replace

The value with which to replace each pattern match. This value is typically a string but can also
be a function that returns a string. It is useful when pattern is a regular expression.

There are two uses of this method based on the parameters provided. This recipe focuses on using a
string for the pattern. A regular expression pattern also can be used, as covered in Recipe 13.4.

Here is a simple example of replacing a substring in a sentence. The replace() method returns a new
string with pattern replaced by replace, leaving the original string unmodified.

var example:String = "This is a cool sentence."

// Replace " is " with " is not " in example.
// Displays: This is not a cool sentence.
trace(example.replace(" is ", " is not "));

In this example, the word "is" is surrounded by spaces when used as the pattern. This is important
because failing to do so matches the "is" in "This" and the sentence starts with "This not is," which is
not the desired effect.

When a string is used for the pattern in the replace() method, the method lacks functionality
compared to using a regular expression. The two biggest problems are that only the first occurrence
of pattern is replaced and you have to roll your own solution for case-insensitive replacement.

To replace all occurrences, you have to use a combination of a loop and the replace method:

// Create a string with contractions, and another string to store the replacements
var example:String = "It's a bird, it's a plane, it's ActionScript Man!";

var replaced:String = example; // Initialize replaced with the original text

// As long as the pattern substring is found in replaced, we need to replace again
while (replaced.indexOf("it's") != -1) {
 // Replace the first instance of "it's" with "it is".
 replaced = replaced.replace("it's", "it is");
}

// To get around the case-sensitivity problem, we need to change the pattern and
// go through the replace process again. This fixes the uppercase "It's"
replaced = replaced.replace("It's", "It is");

// Outputs: It is a bird, it is a plane, it is ActionScript Man!
trace(replaced);

The split() method also can be used to replace and remove characters and words in a string. Unlike
using replace() with a string pattern, split replaces all occurrences of a word. However, both
methods share the same case-sensitivity problem. The following is an example of replacing the HTML

 tag with the \\n character to properly break a sentence into multiple lines:

var example:String = "This is
a sentence
on 3 lines";

// Remove the
 tags and replace them with newline characters ('\n')
/* Display:
 This is
 a sentence
 on 3 lines
*/
trace(example.split("
").join('\n'));

When a string is split, an array of strings is returned. The Array.join() method can then be used to
build a new string out of the individual array elements. Splitting removes the delimiter, allowing us to
join the string again with a new delimiter passed to the join() method. This technique replaces all
occurrences of the delimiter passed to split.

To remove characters or words instead of replacing them simply use the empty string as the
replacement string:

var example:String = "This is a cool sentence.";

// Remove the word "cool" and it's trailing space from example
// Displays: This is a sentence.
trace(example.replace("cool ", ""));

See Also

Recipes 12.4 and 12.7

Recipe 12.8. Retrieving One Character at a Time

Problem

You want to retrieve one character at a time from a string.

Solution

Use a for statement and the String.charAt() method. Alternatively, use String.split() with the empty
string as the delimiter to split the string into an array of all the characters, and then use a for
statement to loop through the array.

Discussion

The simplest way to extract each character of a string is to use a for statement that loops over all of
the character positions in the string from index zero to string.length 1, incrementing by one on
each iteration. Within the for statement body, you can use the charAt() method to extract the
character for processing.

var example:String = "a string";

// Loop over all of the chatacters of the string.
for (var i:int = 0; i < example.length; i++) {
 /* Output each character, one at a time. This displays:
 a

 s
 t
 r
 i
 n
 g
 */
 trace(example.charAt(i));
}

You can achieve the same effect by using the split() method to first split the string into an array of
characters, and then looping through the array to process each character. Use the empty string as
the delimiter parameter for the split() method to break between each character.

var example:String = "a string";

// Split the string into an array of characters (one-character strings).
var characters:Array = example.split("");

// Loop through all the elements of the characters array.
for (var i:int = 0; i < characters.length; i++) {
 /* Output each character element. This displays:
 a

 s
 t
 r
 i
 n
 g
 */
 trace(characters[i]);
}

Both techniques are generally interchangeable, though the second one offers some advantages if you
want to work with the characters by using common array methods. For example, if you first split a
string into an array of characters, you can sort that array. This is not as easily done when you use
the charAt() technique:

var example:String = "a string";

var characters:Array = example.split("");

// Alphabetically sort the array of characters.
characters.sort();

for (var i:int = 0; i < characters.length; i++) {
 /* Displays:

 a
 g
 i
 n
 r
 s
 t
 */
 trace(characters[i]);
}

Also, if you want to use this process to remove every instance of a particular character, it is easier
with an array than with the charAt() technique:

var example:String = "a string";

var characters:Array = example.split("");

for (var i:Number = 0; i < characters.length; i++) {

 // Remove all "r" elements from the array. Be sure to decrement i if an
 // element is removed; otherwise, the next element is improperly skipped.
 if (characters[i] == "r") {
 characters.splice(i, 1);
 i--;
 }
}

// Displays: a sting
trace(characters.join(""));

Although the preceding technique for replacing characters works for simple cases, you should see
Recipe 12.7 for more capable alternatives.

See Also

Recipe 12.7

Recipe 12.9. Converting Case

Problem

You want to change the case of a string or perform a case-insensitive comparison.

Solution

Use the to UpperCase() and toLowerCase() methods.

Discussion

The toUpperCase() and toLowerCase() methods return new strings in which all the characters are
uppercase or lowercase, respectively, without modifying the original string. This is useful in situations
in which you want to ensure uniformity of case. For example, you can use toLowerCase() or
toUpperCase() to perform case-insensitive searches within strings, as is shown in Recipe 12.4 . Both
methods affect alphabetical characters only, leaving non-alphabetic characters unchanged:

var example:String = "What case?";

// Displays: what case?
trace(example.toLowerCase());

// Displays: WHAT CASE?
trace(example.toUpperCase());

// The original string value is unchanged: What case?
trace(example);

Both methods return a new string. To alter the original string, reassign the return value to it, as
follows:

var example:String = example.toLowerCase();

You can use toLowerCase() and toUpperCase() in concert to capitalize the first letter of a word. The
custom ascb.util.StringUtilities.toInitialCap() method does just that. The following is the code in the
StringUtilities class in which the toInitialCap() method is defined:

public static function toInitialCap(original:String):String {
 return original.charAt(0).toUpperCase() + original.substr(1).toLowerCase();
}

The following is an example usage of the method:

var example:String = "bRuCE";
trace(StringUtilities.toInitialCap(example)); // Displays: Bruce

The toTitleCase() method converts a string to so-called title case (initial letters capitalized). The
following is the definition of the method:

public static function toTitleCase(original:String):String {
 var words:Array = original.split(" ");
 for (var i:int = 0; i < words.length; i++) {
 words[i] = toInitialCap(words[i]);
 }
 return (words.join(" "));
}

And the following is a sample usage of the method:

var example:String = "the actionScript cookbook";

// Displays: The ActionScript Cookbook
trace(StringUtilities.toTitleCase(example));

See Also

Recipe 12.4

Recipe 12.10. Trimming Whitespace

Problem

You want to trim the whitespace from the beginning and end of a string.

Solution

Use the custom ascb.util.StringUtilities.trim() method. Alternatively, if you are using the Flex 2
framework, you can use the mx.utils.StringUtil.trim() static method.

Discussion

Extra whitespace at the beginning and end of a string is a common enough annoyance that you
should have a way of dealing with it. ActionScript does not provide a native trim() implementation,
so you have to either write your own or use a pre-coded solution.

The basic steps involved are as follows.

Split the string into an array of characters.1.

Remove whitespace elements at the beginning of the array until there is not a whitespace
character (tab, form feed, carriage return, newline, or space).

2.

Remove whitespace elements at the end of the array.3.

Use join() to form the array characters into a single string and return that value.4.

The ascb.util.StringUtilities.trim() method works as described in the preceding steps. The following is
the actual definition of the method, along with the isWhitespace() helper method:

// Returns true if the character is a whitespace character
public static function isWhitespace(ch:String):Boolean {
 return ch == '\r' ||
 ch == '\n' ||
 ch == '\f' ||
 ch == '\t' ||
 ch == ' ';
}

public static function trim(original:String):String {

 // Split the string into an array of characters.
 var characters:Array = original.split("");

 // Remove any whitespace elements from the beginning of the array using
 // splice(). Use a break statement to exit the loop when you reach a
 // non-whitespace character to prevent it from removing whitespace
 // in the middle of the string.
 for (var i:int = 0; i < characters.length; i++) {
 if (isWhitespace(characters[i])) {
 characters.splice(i, 1);
 i--;
 } else {
 break;
 }
 }

 // Loop backward through the array removing whitespace elements until a
 // non-whitespace character is encountered. Then break out of the loop.
 for (i = characters.length - 1; i >= 0; i--) {
 if (isWhitespace(characters[i])) {
 characters.splice(i, 1);
 } else {
 break;
 }
 }

 // Recreate the string with the join() method and return the result.
 return characters.join("");
}

The following illustrates how you can use the trim() method.

// Create a string with beginning and ending whitespace.
var example:String = "\n\r\f\ta string\t\t\n\n";

/* Display the value before calling the trim() method. Displays:
this string value is:

 a string

<end>
*/
trace("this string value is: " + example + "<end>");

// Set example to the value returned by the trim() method.
example = StringUtilities.trim(example);

// Now, display the value again using the same trace() statement.
//Displays: this string value is: a string<end>

trace("this string value is: " + example + "<end>");

The Flex 2 framework implementation of trim is almost exactly the same. Here is some example code
for that:

// Displays: a string<end>
trace(StringUtil.trim("\n \r\ta string\t\t\n\n") + "<end>");

Recipe 12.11. Reversing a String by Word or by Character

Problem

You want to reverse a string either by word or by character.

Solution

Use the split() method to create an array of the words/characters and use th e reverse() and join()
methods on that array.

Discussion

You can reverse a string by word or character by using the same process. The only difference is in
the delimiter you use in the split() method and the joiner you use in the join() method. In either
case, the basic algorithm is:

Split the string into an array, using a space as the delimiter for words or the empty string as the
delimiter for characters.

1.

Call the reverse() method of the array, which reverses the order of the elements.2.

Use the join() method to reconstruct the string. When you are reversing by word, use a space
as the joiner; when reversing by character, use the empty string as the joiner:

3.

The following code illustrates the process:

var example:String = "hello dear reader";

// Split the string into an array of words.
var words:Array = example.split(" ");

// Reverse the array.
words.reverse();

// Join the elements of the array into a string using spaces.
var exampleRevByWord:String = words.join(" ");

// Displays: reader dear hello
trace(exampleRevByWord);

// Split the string into an array of characters.
var characters:Array = example.split("");

// Reverse the array elements.
characters.reverse();

// Join the array elements into a string using the empty string.
var exampleRevByChar:String = characters.join("");

// Displays: redaer raed olleh
trace(exampleRevByChar);

Recipe 12.12. Converting Between Strings and Unicode or

ASCII

Problem

You want to convert between characters and their corresponding Unicode code point (a.k.a. character
code). Or you want to convert strings to and from ASCII codes.

Solution

Use the String.charCodeAt() and String.fromCharCode() methods.

Discussion

You can use fromCharCode() to display characters you cannot directly enter into your Flash
document. The method is a static method, which means that it is invoked from the top-level String
object instead of from a string instance. It takes an integer or a series of integers and coverts the
character codes to their string equivalents. When values less than 128 are used, fromCharCode()
essentially converts a numeric ASCII code to its equivalent character:

/* Displays:
 New paragraph: ¶
 Cents: ¢
 Name: Darron
*/
trace("New paragraph: " + String.fromCharCode(182));
trace("Cents: " + String.fromCharCode(162));
trace("Name: " + String.fromCharCode(68, 97, 114, 114, 111, 110));

The charCodeAt() method can be used to retrieve the code point of the character at a particular
index of a string. For characters whose Unicode code point is less than 128, charCodeAt() converts a
character to its equivalent ASCII code:

var example:String = "abcd";

// Outputs the code point, 97, of the first character, a.
trace(example.charCodeAt(0));

The fromCharCode() method is an alternative to using Unicode escape sequences to display special
characters. However, you can also use fromCharCode() in concert with charCodeAt() to test for the

existence of special characters:

var example:String = String.fromCharCode(191) + "D"
 + String.fromCharCode(243) + "nde est"
 + String.fromCharCode(225) + " el ba"
 + String.fromCharCode(241) + "o?";

// Test whether the first character of the string has the code point of
// 191. Use the unicode escape sequence instead of fromCharCode(191) to
// produce the speical character. If so displays: The string "¿Dónde está
// el baño?" has a ¿ at the beginning.
if (example.charCodeAt(0) == 191) {
 trace("The string \"" + example + "\" has a \u00BF at the beginning.");
}

You can use the charCodeAt() and fromCharCode() methods in concert to encode and decode a
string.

The following methods are useful for creating cryptographic word games, but they are not secure and
should not be used for sensitive data .

public static function encode(original:String):String {

 // The codeMap property is assigned to the StringUtilities class when the encode()
 // method is first run. Therefore, if no codeMap is yet defined, it needs
 // to be created.
 if (codeMap == null) {

 // The codeMap property is an associative array that maps each original code
 // point to another code point.
 codeMap = new Object();

 // Create an array of all the code points from 0 to 255.
 var originalMap:Array = new Array();
 for (var i:int = 0; i < 256 ; i++) {
 originalMap.push(i);
 }

 // Create a temporary array that is a copy of the originalMap array.
 var tempChars:Array = originalMap.concat();

 // Loop through all the character code points in originalMap.
 for (var i:int = 0; i < originalMap.length; i++) {

 // Create a random number that is between 0 and the last index of tempChars.
 var randomIndex:int = Math.floor(Math.random() * (tempChars.length - 1));

 // Assign to codeMap values such that the keys are the original code points,
 // and the values are the code points to which they should be mapped.
 codeMap[originalMap[i]] = tempChars[randomIndex];

 // Remove the elements from tempChars that was just assigned to codeMap.
 // This prevents duplicates.
 tempChars.splice(randomIndex, 1);
 }
 }

 // Split the string into an array of characters.
 var characters:Array = original.split("");

 // Replace each character in the array with the corresponding value from codeMap.
 for (i = 0; i < characters.length; i++) {
 characters[i] = String.fromCharCode(codeMap[characters[i].charCodeAt(0)]);
 }

 // Return the encoded string.
 return characters.join("");
}

public static function decode(encoded:String):String {

 // Split the encoded string into an array of characters.
 var characters:Array = encoded.split("");

 // The reverseCodeMap property is assigned the first time the decode() method is
 // first run. Therefore, if no reverseCodeMap is yet defined, it needs to be
 // created.
 if (reverseCodeMap == null) {

 // Create an associative array that reverses the keys and values of codeMap.
 // This allows you to do a reverse lookup based on the encoded character
 // rather than the original character.
 reverseCodeMap = new Object();
 for (var key in codeMap) {
 reverseCodesMap[codeMap[key]] = key;
 }
 }

 // Loop through all the characters in the array, and replace them
 // with the corresponding value from reverseCodeMap, thus recovering
 // the original character values.
 for (var i:int = 0; i < characters.length; i++) {
 characters[i] = String.fromCharCode(reverseCodeMap[characters[i].charCodeAt(0)]);
 }

 // Return the decoded string.
 return characters.join("");
}

The following is a simple usage example:

var example:String = "Peter Piper picked a peck of pickled peppers.";

// Create the encoded version of example using the encode() method.
var encoded:String = StringUtilities.encode(example);

// Output the value of the encoded string. This will be randomly generated
// each time you run the movie. It might look something like this:
// æT#Tmïæ~*Tmï*~NcT­ï?ï*TNcï?2ï*~Nc?T­ï*T**Tm:V
trace(encoded);

// Output the value returned by the decode() method:
// Displays: Peter Piper picked a peck of pickled peppers.
trace(StringUtilities.decode(encoded));

Chapter 13. Regular Expressions
Section 13.0. Introduction

Recipe 13.1. Understanding Regular Expression Patterns

Recipe 13.2. Testing Regular Expressions

Recipe 13.3. Looking for Pattern Matches

Recipe 13.4. Removing and Replacing Characters and Words Using Patterns

Recipe 13.5. Creating a Nongreedy Pattern

Recipe 13.6. Validating User Input with Common Patterns

13.0. Introduction

One of the most powerful features added to ActionScript 3.0 is regular expressions (more commonly
known as regexes or regexps). Regular expressions are, put simply, patterns that can be matched
against strings. You may be familiar with other types of patterns, such as wildcards (e.g., * and ?),
which can be used to match patterns while searching for files. Patterns are also used in Recipe 9.5 .
Regular expressions support this type of pattern matching, but they are also much more
sophisticated.

Regular expressions can be useful in many situations. For instance, the patterns can be applied
against strings to perform a variety of tasks, including:

Finding substrings beginning with a vowel (a, e, i, o, or u)

Extracting specific values within a string, such as the year value from a full date

Validating user input to ensure an email address is formatted correctly

Stripping out HTML tags from a block of text to remove the markup

The patterns used for regular expressions are built by combining characters that have special
meaning and can range from being very simple:

[a-zA-Z]

to being extremely complex and cryptic, such as this regex for matching a valid IP address:

^([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])\.([01]?\d\d?|2[0-4]\d|25[0-5])$

Simple patterns, such as .* , are easy to understand, but more complex patterns are difficult to learn
and are even harder to implement. Thankfully, every regular expression can be broken down into a
plain English description. For example, the simple regular expression .* means "any character
repeated any number of times." More complex patterns, such as (A|a)ction(S|s)cript , are no
different because they are built by combining simple patterns in various ways. The pattern
(A|a)ction(S|s)cript means "either a capital or lowercase 'a', followed by the string 'ction', followed
by either a capital or lowercase 's', followed by the string 'cript'," and can be used to find occurrences
of "ActionScript" (and subtle variations, such as "actionScript") in a string.

Mastering the syntax of regular expressions is not trivial. As with anything else, a little effort to learn

the basic principles can go a long way, and knowing and understanding regular expressions is a
powerful tool to have at your fingertips.

To learn more about regular expressions, you should get a copy of Mastering Regular Expressions ,
by Jeffrey E.F. Friedl (O'Reilly), or Regular Expressions Pocket Reference , by Tony Stubblebine
(O'Reilly). Both books teach you everything you need to know about regexes.

Despite how complex regular expression patterns can be, it's fairly easy to use regular expressions in
ActionScript, as you'll soon discover. This chapter focuses on the more common uses of regular
expressions within the context of Flash and ActionScript, and by no means is an exhaustive or
comprehensive guide.

Recipe 13.1. Understanding Regular Expression Patterns

Problem

You want to understand the basic building blocks of regular expressions.

Solution

Regular expressions are built by combining characters with special meaning. First start by learning
the basic patterns, and then use this knowledge to put together more complex patterns.

Discussion

A regular expression is a pattern constructed using the regular expression syntax and is typically
used during text processing and pattern matching. The syntax consists of characters,
metacharacters, and metasequences. Characters are interpreted literally, whereas metacharacters
and metasequences have special meaning in the regular expression context. For example, the regular
expression built from the characters hello matches the string "hello," whereas the regular expression
consisting only of the . metacharacter means "any character" and matches "a", "b", "1", etc.
Additionally, the regular expression built from using the \\d metasequence matches any digit, such
as "1" or "9".

Before getting too in-depth with the regular expression syntax, let's start by discussing how regular
expressions are created in ActionScript 3.0. Regular expressions are built with the RegExp class and
can be constructed from either a string describing the pattern or from a regular expression literal. A
regular expression literal is a forward slash, followed by the regular expression pattern, followed by
another forward slash, such as / pattern /. The follow code demonstrates how to create a regular

expression for the pattern hello by using both a string and the RegExp constructor, as well as a
regular expression literal:

// Create a pattern for hello using the RegExp class constructor
// passing in a string describing the pattern
var example1:RegExp = new RegExp("hello");

// Create the same hello pattern using a regular expression literal
var example2:RegExp = /hello/;

Both the example1 and example2 regular expressions match the same pattern, namely the string
"hello." In general, the pattern is the same regardless of which method you use to create the regular
expression. However, when a backslash (\\) is part of the regular expression pattern, using a string
and the RegExp constructor gets tricky.

Because the RegExp object is created by passing a string to the constructor, all
references to \\ within the string must be escaped as \\\\. Since \\ is also a
special character in RegExp patterns, to search for backslash in a regular
expression, you must escape it like this: \\\\\\\\.

Backslashes mark the beginning of an escape sequence inside a string (see Recipe 12.3) and lose
their meaning in the regular expression context. That is, the backslash is interpreted as a special
string character before being interpreted in the regex. Therefore, if you want to match a pattern with
a backslash, you have to use a double backlash in the string approach. The regular expression literal
does not have the same problem:

// Create a regular expression to match a digit (note the double
// backslash)
var example1:RegExp = new RegExp("\\d");

// Create a regular expression to match a digit
var example2:RegExp = /\d/;

// Create a regular expression that matches a backslash.
var example3:RegExp = new RegExp("\\\\");

// Create a regular expression to match a backslash
Var example4:RegExp = /\\/;

The preferred way to create regular expressions is by using regular expression
literals, and this convention is used throughout the rest of this chapter.

By now you know that characters in a regular expression pattern are interpreted literally. By
combining metacharacters and metasequences with regular characters, you can create powerful
combinations useful for matching many pattern types. Let's take a look at the metacharacters, what
they mean, and how they might be used.

Table 13-1 summarizes the regular expression metacharacters. Any time you want to use one of
these metacharacters literally, it must be preceded by a backslash. For example, to match an open
curly brace, use the regular expression \\{.

Table 13-1. Regular expression metacharacters

Expression Meaning Example

 ?

Matches the preceding
character zero or one time
(i.e., preceding character is
optional)

ta?k matches tak
or tk but not tik
or taak

 *

Matches the preceding
character zero or more times

wo*k matches
wok, wk, or
woook, but not
wak

 +

Matches the preceding
character one or more times

craw+l matches
crawl or crawwwl
but not cral

. (period)
Matches any one character
except newline (unless the
dotall flag is set)

c.ow matches
crow or clow but
not cow

 ^

Matches the start of the
string (also matches the start
of a line when the multiline
flag is set)

^wap matches
wap but not
swap

 $

Matches the end of the string
(also matches the position
before a newline "\\n" when
the multiline flag is set)

ow$ matches ow
but not owl

 |

Matches either the left or
right side of the pipe

one|two matches
one or two but
not ten

\
Escapes the special meaning
of the metacharacter
following the backslash

\\. matches a
period, instead
of "any one
character" like
the
metacharacter .
would

(and)

Creates groups within the
regular expression to:Define
the scope of |Define the
scope of { and }Use back

l(o|a)g matches
log or lag but
not luga(b){1,2}
matches ab or
abb but not

Expression Meaning Example (and) scope of { and }Use back
references, where \\1 refers
to whatever is matched in the
first group, etc.

abb but not
a(a|b)\\1
matches aa or
bb but not ab or
ba

[and]

Defines character classes that
represent matches for a
single character. Presence of
a indicates a range of
charactersA caret (^) at the
beginning negates the
character class (everything
except what is defined by the
class matches)Metacharacters
do not need to be escaped
with a backslash (but a dash
and beginning caret do)

l[oa]g matches
log or lag but
not lug[a-z]
matches any
lowercase
character such
as a or h but not
1, 2, or Fl[^oa]g
matches lug but
not lag or
log[+\\-]
matches + or -

Similar to metacharacters, the metasequences are described in Table 13-2 listing what the
expression matches along with an example.

Table 13-2. Regular expression metasequences

Expression Matches Example

 {n}
Exactly n occurrences of
the preceding character
or group

Cre{2}l matches
creel but not crel
or creel

 {n,}
At least n occurrences of
the preceding character
or group

Cre{2,}l matches
creel or creeeel
but not crel

 {n,m}

At least n but no more
than m instances of
preceding character or
group

Cre{2,3}l

matches creel or
creeel but not
crel or creel

 \A At the start of the
string; similar to (^)

\\Awap matches
wap but not
swap

(and) scope of { and }Use back
references, where \\1 refers
to whatever is matched in the
first group, etc.

abb but not
a(a|b)\\1
matches aa or
bb but not ab or
ba

[and]

Defines character classes that
represent matches for a
single character. Presence of
a indicates a range of
charactersA caret (^) at the
beginning negates the
character class (everything
except what is defined by the
class matches)Metacharacters
do not need to be escaped
with a backslash (but a dash
and beginning caret do)

l[oa]g matches
log or lag but
not lug[a-z]
matches any
lowercase
character such
as a or h but not
1, 2, or Fl[^oa]g
matches lug but
not lag or
log[+\\-]
matches + or -

Similar to metacharacters, the metasequences are described in Table 13-2 listing what the
expression matches along with an example.

Table 13-2. Regular expression metasequences

Expression Matches Example

 {n}
Exactly n occurrences of
the preceding character
or group

Cre{2}l matches
creel but not crel
or creel

 {n,}
At least n occurrences of
the preceding character
or group

Cre{2,}l matches
creel or creeeel
but not crel

 {n,m}

At least n but no more
than m instances of
preceding character or
group

Cre{2,3}l

matches creel or
creeel but not
crel or creel

Expression Matches Example

 \A At the start of the
string; similar to (^)

\\Awap matches
wap but not
swap

 \b

Word boundary
\\b7\\b matches
7 but not 71 or
573

 \B Non-word boundary

\\B7\\B matches
573 but not 71
or 7 or 37

 \d Any numeric digit; same
as [0-9]

a\\d matches a1
and a8 but not
ab or ad

 \D Any non-digit character;
same as [^0-9]

a\\D matches aB
and ak, but not
a8 or a1

 \n The newline character

a\\nb matches
"a\\nb"

 \r

The return character
a\\rb matches
"a\\rb"

 \s

Single whitespace
character (space, tab,
line feed, or form feed)

King\\sTut

matches King Tut
and King\\tTut

 \S

Single nonwhitespace
character

\\STut matches
gTut but not Tut

 \t The tab character

a\\tb matches
"a\\tb"

 \A At the start of the
string; similar to (^)

\\Awap matches
wap but not
swap

 \b

Word boundary
\\b7\\b matches
7 but not 71 or
573

 \B Non-word boundary

\\B7\\B matches
573 but not 71
or 7 or 37

 \d Any numeric digit; same
as [0-9]

a\\d matches a1
and a8 but not
ab or ad

 \D Any non-digit character;
same as [^0-9]

a\\D matches aB
and ak, but not
a8 or a1

 \n The newline character

a\\nb matches
"a\\nb"

 \r

The return character
a\\rb matches
"a\\rb"

 \s

Single whitespace
character (space, tab,
line feed, or form feed)

King\\sTut

matches King Tut
and King\\tTut

 \S

Single nonwhitespace
character

\\STut matches
gTut but not Tut

 \t The tab character

a\\tb matches
"a\\tb"

Expression Matches Example

 \unnnn

The Unicode character
specified by the hex
digits nnnn

\\u000a matches
"\\n"

 \w

Any word character;
same as [A-Za-z0-9_]

a\\wm matches
arm and a8m,
but not a m or
aém

 \W

Any non-word
character; same as [^A-
Za-z0-9_]

a\\Wm matches a
m or aém, but
not a7m or aim

 \xnn

The ASCII character
specified by the hex
digits nn

\\x0a matches
"\\n"

 \Z

The end of the string;
matches before the line
break if the string ends
in one

ab\\Z matches
"ab\\n" and ab,
but not "ab\\nc"

 \z

The end of the string;
matches after the line
break if the string ends
in one

ab\\z matches
ab, but not
"ab\\n" or
"ab\\nc"

Table 13-1 and Table 13-2 describe the basic syntax rules that make up regular expressions. By
combining characters, metacharacters, and metasequences, you can match a wide variety of
patterns. There is more to the story, however.

Regular expressions can also include certain flags that indicate if any special processing should be
done with the pattern. There are five flags that can be accessed as properties of a RegExp object:
global, ignoreCase, multiline, dotall, and extended.

The flags must be set when the expression is created; trying to modify a flag on a RegExp instance
results in a compile-time error:

// Generates a compile-time error in strict mode:
// Property is read-only
example.global = true;

 \unnnn

The Unicode character
specified by the hex
digits nnnn

\\u000a matches
"\\n"

 \w

Any word character;
same as [A-Za-z0-9_]

a\\wm matches
arm and a8m,
but not a m or
aém

 \W

Any non-word
character; same as [^A-
Za-z0-9_]

a\\Wm matches a
m or aém, but
not a7m or aim

 \xnn

The ASCII character
specified by the hex
digits nn

\\x0a matches
"\\n"

 \Z

The end of the string;
matches before the line
break if the string ends
in one

ab\\Z matches
"ab\\n" and ab,
but not "ab\\nc"

 \z

The end of the string;
matches after the line
break if the string ends
in one

ab\\z matches
ab, but not
"ab\\n" or
"ab\\nc"

Table 13-1 and Table 13-2 describe the basic syntax rules that make up regular expressions. By
combining characters, metacharacters, and metasequences, you can match a wide variety of
patterns. There is more to the story, however.

Regular expressions can also include certain flags that indicate if any special processing should be
done with the pattern. There are five flags that can be accessed as properties of a RegExp object:
global, ignoreCase, multiline, dotall, and extended.

The flags must be set when the expression is created; trying to modify a flag on a RegExp instance
results in a compile-time error:

// Generates a compile-time error in strict mode:
// Property is read-only
example.global = true;

There are two ways to set flags, depending on which method is used to create the regex. When using
the RegExp constructor, you can pass a second string parameter that lists the flags for the regex.
When using a regular expression literal, the flags should follow the trailing forward slash that ends
the expression:

// Create a regular expression with the global and ignoreCase flags
var example1:RegExp = new RegExp("hello", "gi");

// Create a regular expression with the global and ignoreCase flags
var example2:RegExp = /hello/gi;

By default, all the flags are set to false unless they are explicitly declared when the regex is created.
Table 13-3 lists the various flags and their meaning.

Table 13-3. Regular expression flags

Flag Meaning Example

 g (global)

Matches more
than one match

/the/g matches
the multiple
times

 i (ignoreCase)

Performs a case-
insensitive match
for [a-z] and [A-
Z] (and not
special characters
like é)

/a/i matches a
and A

 m (multiline)

Allows ^ to match
the end of a line;
allows $ to match
the beginning of a
line

/^a/m matches
both \\na and a

 s (dotall)

Allows . to match
the newline
character \\n

/a./s matches
both a\\n and
ab

 x (extended)

Allows spaces in
the regex that are
ignored by the
pattern, allowing
regex to be
written more

/a \\d/x

matches a2 but
not a 2 (with a
space between
the characters)

Flag Meaning Example written more
clearly

The most commonly used flags are ignoreCase and global, but specifying the extended flag can help
in understanding regexes. With the extended flag set, you can insert extra whitespace to highlight the
different parts that make up the expression; for example:

var example1:RegExp = /(a(b)*){2,}/

// Use the extended flag for slightly more readability
var example2:RegExp = /(a (b)*){2,}/x;

The preceding code creates a regular expression for "a, followed by b any number of times, with the
whole expression repeated at least 2 times" and matches "abba" and "abbbabbbbbbbb," but not
"abbb."

A key point to remember is that every regex can be reduced to these fundamental building blocks.
Understanding this and learning how to break down complex regex patterns will help avoid some of
the frustration associated with learning regular expressions. It's worth your time to learn regular
expressions, and once you've got them down, they'll prove to be a valuable tool to have on your belt.

See Also

Recipes 9.5 and 12.3. A good reference for regular expressions can be found at http://www.regular-
expressions.info. See Mastering Regular Expressions, by Jeffrey Friedl (O'Reilly) for extensive practice
with regular expressions and Regular Expressions Pocket Reference, by Tony Stubblebine (O'Reilly)
for a quick lookup guide.

written more
clearly

The most commonly used flags are ignoreCase and global, but specifying the extended flag can help
in understanding regexes. With the extended flag set, you can insert extra whitespace to highlight the
different parts that make up the expression; for example:

var example1:RegExp = /(a(b)*){2,}/

// Use the extended flag for slightly more readability
var example2:RegExp = /(a (b)*){2,}/x;

The preceding code creates a regular expression for "a, followed by b any number of times, with the
whole expression repeated at least 2 times" and matches "abba" and "abbbabbbbbbbb," but not
"abbb."

A key point to remember is that every regex can be reduced to these fundamental building blocks.
Understanding this and learning how to break down complex regex patterns will help avoid some of
the frustration associated with learning regular expressions. It's worth your time to learn regular
expressions, and once you've got them down, they'll prove to be a valuable tool to have on your belt.

See Also

Recipes 9.5 and 12.3. A good reference for regular expressions can be found at http://www.regular-
expressions.info. See Mastering Regular Expressions, by Jeffrey Friedl (O'Reilly) for extensive practice
with regular expressions and Regular Expressions Pocket Reference, by Tony Stubblebine (O'Reilly)
for a quick lookup guide.

http://www.regular-
http://www.regular-

Recipe 13.2. Testing Regular Expressions

Problem

You want to test a regex against a string to determine if a match can be made.

Solution

Use the RegExp.test() and RexExp.exec() methods.

Discussion

Recipe 13.1 discusses the building blocks of regular expressions. Once you have created a regular
expression that describes the pattern of what you want to find in a string, there are two methods
from the RegExp class that can perform the search, test() and exec().

To determine whether a pattern can be matched against a string, use the test() method on a RegExp
instance. The test() method takes the string being tested against as the parameter and returns a
Boolean value of true if the pattern can be matched, and false otherwise:

// Create a pattern to match against a string
var example:RegExp = /abc/;

// Displays: true
trace(example.test("A string with abc in it"));

// Displays: true
trace(example.test("abc"));

// Displays: false
trace(example.test("Another string to test against..."));

The test() method returns true if the regular expression can be matched anywhere in the string, but
it won't allow you to extract the match or determine where in the string the match was found. To
retrieve this information, use the exec() method.

The exec() method works in much the same way that test() does, except that instead of returning a
Boolean value, an array is returned containing the substring that matched the pattern. If no match is
found, exec() returns null.

// Create a pattern to match against a string

var example:RegExp = /abc/;

// Save the result of a string with a substring that matches
// the pattern
var result:Array = example.exec("A string with abc in it");

// Displays: abc
trace(result);
// Displays: 14
trace(result.index);

// Save the result of a string that doesn't contain a match for
// the pattern
result = example.exec("A string with no match");

// Displays null
trace(result);

By default, the exec() starts searching from the beginning of the string and returns an array
containing the first match that it finds, or null if no match is found. The array returned contains two
properties when a match is found:

index, which points to the starting location in which the matching substring was found.

input, which is the string that the regex was executed against.

In most cases, the array returned from exec() contains a single elementthe substring that matched
the regex. However, when parentheses are used in the pattern to group certain elements together,
each substring that matches a group is another element in the returned result:

var example:RegExp = /(\d)abc(\d*)/;

var result:Array = example.exec("7abc");

// Displays: 3
trace(result.length);
// Displays: 7abc
trace(result[0]);
// Displays: 7
trace(result[1]);
// Displays:
trace(result[2]);

The pattern used for example contains two groupsone for "a digit" and another for "a digit repeated
any number of times, including 0." After the exec() method is invoked, the result is an array
containing three elements instead of just one.

The first element, at position 0, is the actual substring that matched the regular expression, in
this case "7abc."

The second element, at position 1, is the string that matched the first parenthetical group \\d,
which in this case is "7" because the group calls for a digit.

The third element, at position 2, is the empty string because the second group \\d*, which
means "a digit repeated any number of times, including 0," was matched against the empty
string.

As noted earlier, exec() always starts searching from the beginning of the target string, at position
0, to find a match. However, when a regex is flagged as global, the lastIndex property of the regex
determines the starting position to look for a pattern match. Every time the exec() method is called
on a global regex, the lastIndex property is automatically set to the position that immediately
follows the last character in the matching substring. To match all occurrences of a pattern in a string,
exec() needs to be called multiple times on a global regexone time for each match. Additionally, the
lastIndex property can be set by hand to find a match after a specific position in the string.

The exec() method continues to cycle through the string with each call when a
regex is flagged as global. After the method returns null, the regex returns to
the beginning of the string for the next search.

// Create a global regex to match multiple times in a string
var example:RegExp = /abc/g;

// Search for the first match
var result:Array = example.exec("abc abc");

// Displays 0
trace(result.index);
// Displays 3
trace(example.lastIndex);

// Search for the second match
result = example.exec("abc abc");

// Displays 4
trace(result.index);
// Displays 7
trace(example.lastIndex);

// Search for a match again, but none is found so null is returned
result = example.exec("abc abc");

// Displays: null
trace(result);
// Displays: 0
trace(example.lastIndex);

After the first call to exec() in the preceding example, a match is found at index 0 and the lastIndex
property is automatically set to 3. When exec() is called the second time, the regex starts looking for
a match at position 3 and finds the second match at index 4 (automatically setting lastIndex to

position 7). When exec() is called the final time, no match can be found and result is null. In this
case, the lastIndex is set to 0 so that the next call to exec() starts at the beginning of the string.

You can use a while statement with the exec() method to find all the matches, like so:

// Create a regular expression that matches three-letter words
var example:RegExp = /\b[a-z]{3}\b/g;
var target:String = "This string has two three letter words";

/* Loop until the exec() method returns null. This while loop outputs:
 has
 two
*/
var result:Array;
while ((result = example.exec(target)) != null) {
 trace(result);
}

See Also

Recipes 13.1 and 13.3

Recipe 13.3. Looking for Pattern Matches

Problem

You want to search a string with a regex to find matches to the pattern.

Solution

Use the String.search() and String.match() methods.

Discussion

The String.search() and RegExp.test() methods behave similarly, as discussed in Recipe 13.2. The
search() method works on a string object and takes a regular expression as a parameter. If the
regex can be matched in the string, the starting position for the matching substring is returned. If the
regex cannot be matched, -1 is returned:

var example:String = "ActionScript 3 Cookbook";

// Displays: 6
trace(example.search(/script/i));

// Displays: -1
trace(example.search(/script/));

In the preceding code block, the search() method is first invoked by using a regex that matches the
substring script in a case-insensitive manner. The matching substring Script is found at position 6.
In the second call to search(), the same regex is used, but this time without the ignoreCase flag
being set. Because the verbatim substring script does not appear in the example string, -1 is

returned.

The search() method does not respect the global flag or lastIndex property of
the regex passed to it. It always begins its search from the beginning of the
string.

// Create a global regular expression that matches three-letter words
var regex:RegExp = /\b[a-z]{3}\b/g;
var sentence:String = "This string has two three letter words.";

/* Displays:
 12
 0
 12
*/
trace(sentence.search(regex));
trace(regex.lastIndex);
trace(sentence.search(regex));

When looking for a match with search(), it is only ever possible to find the position of the first match,
even if the regex is flagged as global. The lastIndex property is not automatically adjusted like it is
with RegExp.exec() (see Recipe 13.2). Additionally, even if you set the lastIndex property by hand,
it is not respected by the search() method:

// Force the last index to be past the first matching position
regex.lastIndex = 13;

/* Displays:
 12
 13
*/
trace(sentence.search(regex));
trace(regex.lastIndex);

Because the search() method doesn't respect global regexes, it's only possible to determine if the
string can match a given regexnot how many times a match can be made (just like the RegExp.test(
) method). For situations when you want to extract all of the substring matches to a regex pattern,
use the String.match() method, which behaves similarly to the RegExp.exec() method (again,
discussed in Recipe 13.2).

The match() method works on a string object and takes a regular expression as a parameter. It
returns an array containing the substrings that were matched to the pattern. If the regex is not
flagged as global, the array contains only one elementthe first matching substring found. If the
regex is global, the array starts looking for matches at the beginning of the string and returns an
array containing every match found in the string. If no match can be made, match() returns null.

// Create a global regular expression that matches three-letter words
var regex:RegExp = /\b[a-z]{3}\b/g;
var sentence:String = "This string has two three letter words.";

var matches:Array = sentence.match(regex);

/* Displays:
 has,two
 2
*/
trace(matches);
trace(matches.length);

See Also

Recipes 13.1 and 13.2

Recipe 13.4. Removing and Replacing Characters and

Words Using Patterns

Problem

You want to remove characters from a string that matches a regex, or you want to replace pattern
matches with a different substring.

Solution

Use the String.replace() method.

Discussion

The String.replace() method (see Recipe 12.7) allows you to use a string pattern to replace
characters and words. Instead of using a string to define the pattern to replace, a more powerful
approach is to use a regular expression.

You'll recall from Recipe 12.7 that the replace() method takes two parameters:

pattern

The substring or regular expression you want to find and replace.

replace

The value with which to replace each pattern match. This value is typically a string, but can
also be a function that returns a string; this is particularly useful when pattern is a regular

expression.

Using the replace() method is the same as what you're already familiar with, except instead of using
a string pattern, you use a regex. Remember that replace() does not modify the original string, so
make sure you use the string returned by replace() to work with the result:

var example:String = "<p>A string with HTML in it</p>";

// Replace the HTML by using a non-greedy global regex, using the empty
// string as the replacement substring for every match to the pattern.
example = example.replace(/<.*?>/g, "");

// Displays: A string with HTML in it
trace(example);

The preceding code demonstrates how to remove HTML tags within a string. The use of a nongreedy
regex is required, as discussed in Recipe 13.5 . By using the empty string as the replacement string
for all pattern matches, the result is the pattern matches being removed from the original string.

The RegExp 's global flag determines how the replace() method behaves. When the flag is set, all
instances of the pattern are replaced. When the flag is not set, only the first occurrence of the
pattern is replaced.

Using a regular expression as the pattern parameter makes the replace parameter more powerful as
well. When the replace parameter is a string, there are special replacement codes that exist to allow
parts of the pattern to be used as the replacement. Table 13-4 lists the replacement codes that can
appear in the replace string, as well as what the code is replaced by.

 $$

The $ character.

 $&

The matched substring.

 $\Q

The text in the string that precedes the matched substring. Note that the character after the $

is an accent grave, usually found just to the left of the 1 key and above the tab key.

 $'

The text in the string that follows the matched substring.

 $n

The n th group match when n ranges from 19.

 $nn

The nn th group match where nn is a two-digit number from 10-99.

Table 13-4. Replacement codes

Code Is replaced by

The replacement codes give you a powerful way to replace text. Say you have a plain text string and
you want to replace every link starting with http:// with its HTML equivalent, surrounding the link
with anchor tags and setting the href attribute correctly. This task is virtually impossible when using a
string as the pattern , but with a regex pattern and the replacement codes that replace accepts, the
desired effect is achieved much more easily:

var example:String = "Visit me at http://www.darronschall.com, or Adobe at "
 + "http://www.adobe.com.";

// Replace links starting with http:// and ending in .com, .net,
// or .org with the matched subtstring wrapped inside of an anchor
// tag, using the match as both the href attribute and the link text
example = example.replace(/http:\/\/.*?\.(com|net|org)/g, "$&");

/* Displays:
Visit me at http://www.darronschall.com, or Adobe at http://www.adobe.com.
*/
trace(example);

Although replacement codes are valuableand let you do creative and useful thingsperhaps a more
powerful method to replace text is to use a replacement function as the replace parameter. The
replacement function is invoked every time a match to the pattern is found and the string value
returned by the function is used as the replacement value. The replacement function is passed a
varying number of arguments that can be used to generate the appropriate string replacement for
the match. The parameters passed to the function, in order, are:

The matched substring

The matched groups, dependant upon the number of groups that appear in the pattern, one
parameter for each group; use arguments.length 3 to determine the number of matching group
substrings passed into the function

The starting index of the matched substring within the string

The string replace() was called on

Because the number of groups in the regex could vary, there isn't a strongly typed method header to
use. Instead, you have to declare the replacement function as taking no arguments and rely on the
arguments array to get the information you need:

var example:String = "Visit me at http://www.darronschall.com, or Adobe at "
 + "http://www.adobe.com.";

// Replace all links according to the replaceLinks function, which
// determines what the text for the anchor tag should say
example = example.replace(/http:\/\/.*?\.(com|net|org)/g, replaceLinks);

/* Displays:
Visit me at my website,

http://

or Adobe at their website.
*/
trace(example);

You can then define replaceLinks() as follows.

public function replaceLinks():String {
 var linkText:String;
 // Whenever the link being replaced is darronschall.com, use
 // "my website" as the text value for the anchor tag, otherwise
 // use "their website"
 if (arguments[0] == "http://www.darronschall.com") {
 linkText = "my website";
 } else {
 linkText = "their website";
 }
 // Construct an HTML link from the matched text using the
 // appropriate link text
 return "" + linkText + "";
}

By using a replacement function, the preceding code conditionally changed the text in the anchor tag
based on the value of the matched substring. This type of functionality goes above and beyond what
replacement codes are able to accomplish.

See Also

Recipes 12.7 and 13.5

Recipe 13.5. Creating a Nongreedy Pattern

Problem

You're using a regular expression but not seeing the correct results. The pattern is acting greedy,
matching more characters than you want it to.

Solution

Replace the regex with a nongreedy version to match the smallest amount of characters possible.

Discussion

Whenever you create a pattern that includes matches for character repetition using the * and +
metacharacters or the { n , m } metasequence, the pattern is greedy. A greedy pattern is one that

tries to consume as much text as possible, matching the largest substring it can. Patterns are greedy
because of the underlying code in the regular expression engine, and understanding how that engine
works allows you to create more precise regexes.

Consider that you want to remove HTML tags in a string, as described in Recipe 13.4. Every HTML tag
starts with an opening < and ends in a closing >. In between the angle brackets, there could be a wide
variety of characters, such a numbers, letters, quotes, the equal sign, etc. For the sake of simplicity,
instead of creating a character class for everything that could appear between the < and >, a .* will
match "any character, any number of times." So, you construct the regular expression /<.*>/g and
try running it against a string that contains HTML tags:

var example:String = "hello, world!";

// Displays: hello
trace(example.match(/<.*>/g));

You might have expected that the regular expression would produce two matches, one for and
another for . From the preceding code block, you can see that only one match was produced, the
entire string hello. This is an example of a greedy pattern in action.

The first character in the expression is a <, which is taken literally. It matches in the string at the
very first position so the engine moves on in the pattern and keeps processing. The next character in
the pattern is a ., which matches everything except a newline, followed by the *, which repeats the .
zero or more times. This is where the pattern becomes greedy.

The . matches the b because it falls under the "any character" umbrella. After the b in the string is a

>, which again falls under "any character" andas you guessed itis matched by the .. The engine keeps
repeating the ., matching hello, world! up until the end of the string. At the end of the string,
the . fails because there is nothing left; however, the pattern still needs to match a closing >.
Because the engine knows that the * repetition has been fulfilled in matching the ., the engine
backtracks and starts looking for a match to the > to complete the pattern. Moving backward in the
string from the end, the ! is not a match to the > required by the pattern, so the engine moves
backward yet again knowing that the .* has been fulfilled. It keeps moving backward through the d,
l, r, o, etc. until it meets the > character just before the comma. The angle bracket at this location
matches the closing angle bracket in the pattern, and the engine considers the pattern to have been
matched successfully, returning a match of hello.

The RegExp engine wants to match a pattern as quickly as possible. Because a match has been made
at this point, there is no need to continue to backtrack and try to find a smaller match. Therefore,
greedy patterns always return the longest match.

There are two possible solutions to greedy patterns. The first is to make a pattern nongreedy,
sometimes called a lazy pattern. The second is to creatively use a character class.

You make a pattern lazy by removing greedy repetition. Lazy patterns match the smallest possible
substring. Creating a lazy pattern is as simple as adding the ? metacharacter to the end of the
repetition expression, as described in Table 13-5.

Table 13-5. Lazy patterns

Expression
Lazily matches the preceding character or

group

 ?? Zero or one time

 *? Zero or more times

 +? One or more times

 {n,}? At least n times

 {n,m}? At least n but no more than m times

The greedy /<.*>/g pattern used earlier to match HTML tags can be replaced with the lazy pattern of

/<.*?>/g, giving the desired effect of matching all of the HTML tags:

var example:String = "hello, world!";

// Displays: ,
trace(example.match(/<.*?>/g));

By making the pattern lazy, the underlying RegExp engine treats the pattern differently than it would
a greedy pattern. The < is matched just like before, but this time the . is followed by a lazy * (as
signified by the ?), and the engine knows to match as few characters as possible. At this point, the
requirement of "any character, zero or more times" has already been met since zero characters have
been consumed and the engine starts looking for the closing >. The b in the string is encountered,
which doesn't match >. The engine backtracks just like before, but in doing so forces the lazy * to
consume more text. The .* is expanded to match the b, and the engine again looks to match the >.
The next character in the string is >, which matches successfully and completes the pattern. The
engine therefore returns as a match, which is exactly the desired result.

Instead of making a lazy pattern, you can replace the . with a character class that includes every
character except the >, resulting in the /<[^>]*>/g pattern:

var example:String = "hello, world!";

// Displays: ,
trace(example.match(/<[^>]*>/g));

In this case, a character class might be the better option because it eliminates the backtracking done
by the engine. The engine processes the < as normal, and then matches characters up until the > in
the string since it's not a part of the character class. It then moves on to the > in the pattern and
reports a successful match because > is found in the string.

See Also

Recipes 13.1, 13.3, and 13.4

Recipe 13.6. Validating User Input with Common Patterns

Problem

You want to make sure that a user correctly entered information, such as an email address, social
security number, telephone number, or Zip/Postal Code.

Solution

Use one of the common patterns included in this recipe.

Discussion

Regular expressions are extremely useful for validating a wide range user input. For example, you
might have a form that allows a user to enter an email address to sign up for your latest online game
and you need to ensure the email address is valid. Or, you might possibly want to make sure that a
birth date was entered correctly. Or, you might want to verify that a credit card number was input
properly. The following list of regular expressions will help:

Match a date in the format ##/##/####, where both the day and month value can be 1 or 2 digits,
and the year can be either 2 digits or 4 digits when starting with 19 or 20:

^\d{1,2}\/\d{1,2}\/(\d{2}|(19|20)\d{2})$

Match a social security number in the format ###-##-####, where the dashes are optional and
the three groups can have optional spacing between them:

^\d{3}\s*-?\s*\d{2}\s*-?\s*\d{4}$

Match a five-digit U.S. Zip Code with an optional dash and four-digit extension:

^\d{5}(-\d{4})?$

Match a Canadian Postal Code in the format L#L #L# (where L is a letter). There is a restriction
placed on the first letter in the Postal Code to ensure that a valid province, territory, or region is
specified:

^[ABCEGHJKLMNPRSTVXY]\d[A-Z] \d[A-Z]\d$

Match a U.S. telephone number in the format (###) ###-####, where the area code is optional,
the parentheses around the area code are optional and could be replaced with a dash, and there is
optional spacing between the number groups:

^(\(\s*\d{3}\s*\)|(\d{3}\s*-?))?\s*\d{3}\s*-?\s*\d{4}$

Match a U.S. telephone number, like the previous expression, except allow for an optional one- to
five-digit extension specified with an "x", "ext", or "ext." and optional spacing:

^(\(\s*\d{3}\s*\)|(\d{3}\s*-?))?\s*\d{3}\s*-?\s*\d{4}\s*((x|ext|ext\.)\s*\d{1,5})?$

Match a credit card number with four group of four digits separated by optional dashes and optional
spacing between the groups:

^(\d{4}\s*\-?\s*){3}\d{4}$

Match U.S. currency starting with a $ and followed by any number with at most two optional decimal
digits:

^\$\d(\.\d{1,2})?$

Match an email address where the domain is not an IP address and may contain any number of
optional subdomains. When creating this regex, it's a good idea to set the ignoreCare flag to true :

^[a-z0-9][-._a-z0-9]*@([a-z0-9][-_a-z0-9]*\.)+[a-z]{2,6}$

Match an IP address when you are only concerned that the address is formatted correctly with four
groups of one to three digits separated by periods:

^(\d{1,3}\.){3}\d{1,3}$

The preceding regex matches 999.999.999.999, which technically is not a valid IP address, but it has
the correct IP address formatting.

Match an IP address when you are concerned that the address is formatted correctly and that each number group only ranges from 0-255:

^((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)$

Match an email address when the domain is either a domain name consisting of any number of optional subdomains or an IP address:

^[a-z0-9][-._a-z0-9]*@(([a-z0-9][-_a-z0-9]*\.)+[a-z]{2,6}|((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?))$

To use one of the preceding regular expressions in the context of validating user input, use the
RegExp.test() method described in Recipe 13.2 :

// Create a regular expression to test for a valid Zip Code
var zipCode:RegExp = /^\d{5}(-\d{4})?$/;

// Check to see if the user input is a valid Zip Code
if (!zipCode.test("12384-1231")) {
 // Zip Code is not valid, alert the user of an error here
} else {
 // Zip Code is valid, probably don't need to do anything here
}

When creating regular expressions, there is usually a tradeoff between accuracy and complexity.
Consider the two IP address regexes provided in the preceding list. The first IP address regex is fairly
easy to understand; it matches one to three digits followed by a period three times, and then
matches another group of one to three digits. Although this regex is simple, it's not entirely accurate.
IP addresses limit each number group in the range of 0 to 255, whereas this regex accepts any
number between 0 and 999. Therefore, the first regex is only good at determining if the IP address is
formatted correctly and not reliable for determining if the IP address is actually valid.

The second IP address regex is much more complex, but also more accurate. It limits the number
groups to values from 0 to 255, and also ensures that four number groups exist and are separated by
periods. It's up to you to determine which regex is best for your situation.

Complex regexes are hard to understand and create, but tend to offer the most accuracy. Simple
regexes are much easier to understand and create, but may either match more than what you really
want them to (false positives), or may not match something that that you want them to (false
negatives).

Another example of the complexity and accuracy tradeoff is the regex for matching a date. The regex
provided to match a date in the format ##/##/#### allows for false positives. For instance,
01/99/2006 is accepted by the pattern, but January does not have 99 days in it.

Unfortunately, trying to create a regex to match a date in a specific format that accepts only valid
month, day, and year combinations is virtually impossible because of the conditional dependencies. In

these situations, use a combination of regex grouping and ActionScript code. You can inspect the
groups matched in the regex and perform logic to ensure that the group values make sense:

// Verify a date based on a string input from the user
var inputDate:Date = extractDate(theInputString);

// Test to see if the date was valid or not
if (inputDate == null) {
 // Could not parse the date correctly, invalid
} else {
 // Valid date
}

The following is the definition for extractDate() :

// Attempts to extract a date value from a string in the
// format of ##/##/#### or ##/##/##. Returns a Date object
// described by the string value if successful, or null
// otherwise.
public function extractDate(possibleDate:String):Date {
 var datePattern:RegExp = /^(\d{1,2})\/(\d{1,2})\/(\d{2}|(19|20)\d{2})$/;

 // Use the regex to filter out badly formatted dates right away
 var result:Array = datePattern.exec(possibleDate);

 // A null result means the format was invalid
 if (result == null) {
 return null;
 }

 // At this point, the date is formatted corrected and the result
 // array contains the matched substring as well as all of the matched
 // groups. If the possibleDate is "02/08/2006", then the result array
 // contains: 02/08/2006,02,08,2006,20

 // Convert the string values to ints
 var month:int = parseInt(result[1]);
 var day:int = parseInt(result[2]);
 var year:int = parseInt(result[3]);

 // Perform additional logic to make sure month, day, and year all make sense
 if (month > 12 || day > 31 || month == 0 || day == 0) {
 // Month or day value is too high or too low - not valid
 return null;
 } else if (day == 31 && (month == 9 || month == 4 || month == 6
 || month == 11 || month == 2)) {
 // 31 days for September, April, June, November, or February - not valid
 return null;
 } else if (day == 30 && month == 2) {
 // 30 days for February - not valid
 return null;

 } else if (day == 29 && month == 2
 && !(year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))) {
 // 29 days in February, but not a leap year - not valid
 return null;
 } else {
 // Handling two digit years is tricky. The year 99 should be 1999, but 06
 // should be 2006. Using 06 in the Date constructor will yield 1906 as the
 // year, so pick an arbitrary year, say, 15, and everything less than that
 // will be converted to 20xx. Everything after that will be 19xx by default.
 if (year <= 15) {
 year += 2000;
 }
 // Logically, month, day, and year all make sense, so return the
 // proper Date object. Subtract 1 from the month because months
 // are zero indexed in ActionScript.
 return new Date(year, month - 1, day);
 }
}

See Also

Recipes 13.1 and 13.2

Chapter 14. Dates and Times
Section 14.0. Introduction

Recipe 14.1. Finding the Current Date and Time

Recipe 14.2. Retrieving the Date Values

Recipe 14.3. Retrieving the Day or Month Name

Recipe 14.4. Formatting the Date and Time

Recipe 14.5. Formatting Seconds or Milliseconds as Minutes and Seconds

Recipe 14.6. Converting Between DMYHMSM and Epoch Milliseconds

Recipe 14.7. Using Timers

Recipe 14.8. Calculating Elapsed Time or Intervals Between Dates

Recipe 14.9. Parsing a Date from a String

14.0. Introduction

Dates and times are important to many ActionScript applications, particularly when more robust
applications are developed to offer services to users. For example, date and time values are
important for determining the amount of time that has elapsed for timed operations, for determining
whether a user's trial membership is active or about to expire, and for storing transaction dates.

ActionScript stores dates and times internally as epoch milliseconds, the number of milliseconds that
have elapsed since the Epochmidnight, January 1, 1970 Coordinated Universal Time (UTC). For our
purposes, UTC is essentially equivalent to the more familiar Greenwich Mean Time (GMT). See the
U.S. Naval Observatory's site (http://aa.usno.navy.mil/faq/docs/UT.html) regarding the subtle
distinctions. Many programming languages store dates in terms of the epoch (often in seconds
instead of milliseconds); therefore, you can readily work with date and time values that have been
imported from other sources (and vice versa).

In addition, the Date class allows you to set and get date and time values in terms of years, months,
days, and so on by using properties such as fullYear, month, etc. These properties are for your
convenience, but the values are stored internally as epoch milliseconds.

http://aa.usno.navy.mil/faq/docs/UT.html

Recipe 14.1. Finding the Current Date and Time

Problem

You want to know the current date and time.

Solution

Create a new date by using the Date() constructor with no parameters. Alternatively, use a CGI
script or any other server-side program to return the server time and create a new Date object from
that value.

Discussion

The date and time that ActionScript calculates on its own is based on the client computer's date and
time settings. Therefore, if the user's computer has the incorrect time, so will the Date object. With
that caveat in mind, you can retrieve the current client-side date and time by creating a new Date
object by using a constructor without parameters, as follows:

// Create a new Date object.
var current:Date = new Date();

// Displays client-side date and time.
trace(current);

If you have an Internet connection, the Flash movie attempts to retrieve the date and time from a
server. This technique can ensure more accurate dates and times. Although the server's time settings
might be inaccurate, at least the time will be consistent for all clients.

The basic process when reading the time from a server is as follows:

Create a CGI script on the web server that outputs the number of seconds since midnight of
January 1, 1970 (the epoch).

1.

Use a flash.net.URLLoader object from ActionScript to load the epoch seconds.2.

Convert the loaded seconds from a string to a number, multiply by 1,000, and construct a new
Date object by passing the value to the constructor.

3.

3.

PHP is a scripting language that can be found on a large number of web hosts. It is quite simple to
create a PHP page to output the current time and date as the number of seconds since the epoch. All
you need to do is create a PHP document with the following content and upload it to the server:

<?php echo time();?>

If you don't have PHP on your server, or if you are simply more comfortable with Perl (another
language that is almost universally available on web servers), then here is a Perl script that outputs
the number of seconds since the epoch:

#!/usr/local/bin/perl
print "Content-type:text/plain\n\n";
print time;

There are a few tips to keep in mind when setting up this script on your server:

The first line indicates where the Perl interpreter can be found. The value given in the example
is fairly universal. However, contact your web server administrator if you encounter problems.

Many servers disable remote script execution without particular file extensions; however, the
.cgi extension is commonly allowed. Try renaming the script getDate.cgi.

Most web servers limit CGI access to specific directories. These directories are normally found in
the account's root directory (or within the web root of the account), and are named either cgi or
cgi-bin. Make sure you save the script in the correct directory.

On Unix servers, your CGI script must have its permissions set to 755. Most FTP programs allow
you to change permissions. If you are working from a shell script, use the following command:

 chmod 755 filename

Regardless of what server-side language you use, you need to load the time value from the server
using ActionScript. You can accomplish that by using a flash.net.URLLoader object.

If you pass the Date constructor a single value, ActionScript interprets it as the number of
milliseconds since the epoch and creates a new Date object that corresponds to that value.
Therefore, you must multiply the value returned by the script (which is in seconds) by 1,000; for
example:

package {

 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class ServerDateTimeExample {

 public function ServerDateTimeExample() {
 // The following code constructs a URLLoader object, adds
 // an event listener so that the onDateTimeLoad() method is
 // called when the data loads, and then it makes the request
 // to the server script.
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onDateTimeLoad);
 loader.load(new URLRequest("script.cgi"));
 }

 private function onDateTimeLoad(event:Event):void {
 var loader:URLLoader = URLLoader(event.target);
 var data:int = parseInt(loader.data);
 var current:Date = new Date(data * 1000);
 trace(current);
 }

}

The date is always stored in ActionScript as the milliseconds since the epoch, and it is always
displayed with proper offsets, based on the user's local time zone setting (unless you specifically use
the UTC methods). So, if the user's computer has the incorrect time zone setting, the display might
be incorrect. However, the actual date (as stored in epoch milliseconds) is still correct.

See Also

Recipe 14.9; if your server's time is not reliable or accurate enough for your needs, there are many
existing date and time servers on the Internet from which you can retrieve reasonably accurate date
and time information. See, for example, http://tycho.usno.navy.mil. For details on synchronizing
time via the Network Time Protocol, see http://www.ntp.org.

http://tycho.usno.navy.mil
http://www.ntp.org.

Recipe 14.2. Retrieving the Date Values

Problem

You want to retrieve the year, month, day of month, day of week, hour, minute, second, or
millisecond value from a Date object.

Solution

Use the fullYear, date, month, day, hours, minutes, seconds, or milliseconds properties.

Discussion

The fullYear, date, month, day, hours, minutes, seconds, and milliseconds properties return the
values from a Date object:

The fullYear property specifies the year as a four-digit value, such as 2010.

The date property specifies the day of the month as a value from 1 to 31.

The month property specifies the month as an integer from 0 (January) to 11 (December).

The day property specifies the day of the week as an integer from 0 (Sunday) to 6 (Saturday).

The hours property returns the hours value as an integer from 0 (midnight) to 23 (11 p.m.).

The minutes and seconds properties return values from 0 to 59.

The milliseconds property returns a value from 0 to 999.

Each of these properties has a UTC (Coordinated Universal Time, also known as Greenwich Mean
Time) correspondent. For example, although the hours property returns the current hours value
based on the client computer's clock, the hoursUTC property returns the current hours value in UTC
time.

Recipe 14.3. Retrieving the Day or Month Name

Problem

You want to retrieve the name of the day or month.

Solution

Create arrays that contain the string values for the names of the days of the week and the names of
the months of the year. Use the numeric day and month to extract the string values from the arrays.

Discussion

The ActionScript Date class provides the day and month properties, which return integer values
representing the day of the week (from 0 to 6) and the month of the year (from 0 to 11). However,
you may want the name of the day or month instead of its zero-relative number. To address this,
create arrays containing the names of the days and months. Or, more conveniently, you can use
constants of the custom ascb. util. DateFormat class. The constants DAYS , DAYS_ABBREVIATED , MONTHS
, and MONTHS_ABBREVIATED are each arrays that contain strings that correspond to the numeric values
returned by day and month . The actual definitions of those constants are as follows:

public static const DAYS:Array = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"];
public static const DAYSABBREVIATED:Array = ["Sun", "Mon", "Tues", "Wed", "Thurs", "Fri", "Sat"];
public static const MONTHS:Array = ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"];
public static const MONTHSABBREVIATED:Array = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];

You can then use those constants as shown in the following example:

var example:Date = new Date(2010, 3, 10);

trace(DateFormat.DAYS[example.day]); // Displays: Saturday
trace(DateFormat.DAYSABBREVIATED[example.day]); // Displays: Sat
trace(DateFormat.MONTHS[example.month]); // Displays: April
trace(DateFormat.MONTHSABBREVIATED[example.month]); // Displays: Apr

See Also

Recipe 14.4

Recipe 14.4. Formatting the Date and Time

Problem

You want to display a formatted date and/or time value.

Solution

Use Date.toString(), or use the custom DateFormat.format() method that returns the date and time
as a string in the requested format.

Discussion

The Date.toString() method returns a user-friendly string version of the target Date object; for
example:

// Displays (something like): Tue Jan 5 14:25:20 GMT-0800 2010
trace((new Date()).toString());

Because ActionScript automatically invokes the toString() method on any object used in a string
context, you can obtain the same result even if you omit toString(), as in the following example:

// Also displays: Tue Jan 5 14:25:20 GMT-0800 2010
trace(new Date());

The Date class doesn't have any other built-in functionality for formatting a date or time in a
customized way. You can, of course, compose a string value, as in the following example:

var example:Date = new Date(2010, 0, 5, 10, 25);
var formatted:String = (example.month + 1) + "/" + example.fullYear;
trace(formatted); // Displays: 1/2010

However, you may have to write a lot of custom code each time you want to display the date and/or
time. Instead, you can use the format() method of an ascb.util.DateFormat instance. The
DateFormat class is a custom class that is specifically designed to assist with formatting dates and
times when given a mask. The mask can be composed of any characters, but some characters act
like variables. Table 14-1 shows the characters you can use as variables when creating the mask.

Table 14-1. Date and time symbols

Symbol Meaning Example

a Lowercase a.m. or p.m. a.m.

A Uppercase A.M. or P.M. P.M.

d Day of month (leading 0) 01

D Abbreviated day of week Sun

F Month January

g 12-hour 1

G 24-hour 1

h 12-hour (leading 0) 01

H 24-hour (leading 0) 01

i Minutes (leading 0) 01

j Day of month 1

l Day of week Sunday

m Numeric month (leading 0) 01

M Abbreviated month Jan

n Numeric month 1

s Seconds (leading 0) 01

t Days in month 31

w Numeric day of week 0

y 2-digit year 06

Y 4-digit year 2006

When you create a DateFormat object, you should pass it a mask string as a parameter to the
constructor. Most characters that aren't used as variables in the mask context are interpreted
literally. For example, the following creates a DateFormat object that outputs the date in standard
U.S. format with forward slashes between the month, date, and year:

var formatter:DateFormat = new DateFormat("m/d/Y");

Once you've created a DateFormat object, you can call the format() method to format any Date
instance as a string using the mask you specified:

var example:Date = new Date(2010, 0, 5, 10, 25);
var formatter:DateFormat = new DateFormat("m/d/Y");
trace(formatter.format(example)); // Displays: 01/05/2010

You can use the mask property to get and set the mask string. That means you can change the mask
for an existing DateFormat object:

var example:Date = new Date(2010, 0, 5, 10, 25);
var formatter:DateFormat = new DateFormat("m/d/Y");
trace(formatter.format(example)); // Displays: 01/05/2010
formatter.mask = "m/d/Y h:i a";
trace(formatter.format(example)); // Displays: 01/05/2010 10:25 am

You can also use single quotes around any portion of the mask that you want to have interpreted
literally.

That's important if you want to display any of the characters that would otherwise be interpreted as
variables within the mask:

var example:Date = new Date(2010, 0, 5, 10, 25);
var formatter:DateFormat = new DateFormat("m/d/Y at h:i a");
trace(formatter.format(example)); // Displays: 01/05/2010 am31 10:25 am
formatter.mask = "m/d/Y 'at' h:i a";
trace(formatter.format(example)); // Displays: 01/05/2010 at 10:25 am

See Also

Recipe 14.5; the variable characters used in the mask are the same as those used by PHP. You may
find the information at http://www.php.net/manual/en/function.date.php useful for reference.

http://www.php.net/manual/en/function.date.php

Recipe 14.5. Formatting Seconds or Milliseconds as
Minutes and Seconds

Problem

You want to display seconds or milliseconds in minutes and seconds (mm:ss) format.

Solution

Use either the custom ascb.util.DateFormat.formatSeconds() or
ascb.util.DateFormat.formatMilliseconds() methods.

Discussion

Many values in ActionScript are given in milliseconds or seconds. For example, sound lengths are
given in milliseconds. However, in most cases, you want to format the value as minutes and seconds
when displaying it to the user. You can accomplish this with a short amount of code. To further
simplify things, that code has already been made into static methods of the DateFormat class.

The ascb.utils.DateFormat class has two methods that convert a number to the format mm:ss. The

formatSeconds() method converts seconds to that format, while the formatMilliseconds() method
converts milliseconds to that format.

See Also

Recipe 14.4

Recipe 14.6. Converting Between DMYHMSM and Epoch
Milliseconds

Problem

You want to convert between DMYHMSM format (days, months, years, hours, minutes, seconds,
milliseconds) and epoch milliseconds.

Solution

Use the time property.

Discussion

Most of us are more comfortable thinking of dates and times in terms of their components such as
hours, days, and years than working with epoch milliseconds or seconds. For example, it's much
easier to give the time and date as 10:25 a.m., Tuesday, January 5, 2010 than to discuss the
corresponding epoch value of 1,262,715,900,000 milliseconds. However, languages such as
ActionScript store times in the epoch milliseconds (or epoch seconds) format. Therefore, it's
important to be able to convert between different formats when displaying dates and times to users,
or when sharing dates between applications that use different formats.

When constructing a date in ActionScript, you can use the DMYHMSM approach, as follows:

// Construct a date for 10:25 AM, Tuesday, January 5, 2010
var example:Date = new Date(2010, 0, 5, 10, 25);

ActionScript automatically performs the conversion and stores the date as the corresponding epoch
milliseconds value. To retrieve that value, all you need to do is call the time property from the Date
object, as follows:

// For Pacific Standard Time, displays: 1262715900000
// The output may vary depending on your time zone.
trace(example.time);

You can pass the epoch seconds value returned by time to another application (such as a CGI script)
or use it for performing date mathematics (see Recipe 14.1).

On the other hand, you may want to set a date using the epoch milliseconds. For example, in Recipe

14.1 the CGI script returns the current server time to Flash in epoch seconds (which needs to be
converted to milliseconds by multiplying by 1,000). Also, when performing date mathematics you
may want to set a date according to epoch milliseconds. You have two options for setting a date
according to the epoch milliseconds. One choice is to pass the milliseconds value to the Date
constructor as the only parameter, and the other is to assign the milliseconds value to the time
property of an existing date. Both techniques are effectively the same.

// Construct a new Date object for 310:25 AM, Tuesday, January 5,
// 2010. Here, we use the value displayed in the Output window from
// the preceding example.
var example:Date = new Date(1262715900000);

// Displays: Tue Jan 5 10:25:00 GMT-0800 2010 (timezone offset
// may vary)
trace(example);

See Also

Recipe 14.1

Recipe 14.7. Using Timers

Problem

You want to poll a method at a specific interval or add a delay.

Solution

Use the flash.util.Timer class.

Discussion

The flash.util.Timer class allows you to add timed events or a delay to method calls. You can
construct a Timer instance with the constructor. Pass the constructor a number of milliseconds to use
as the interval between timer events. The following example instantiates a Timer object that
dispatches events every 1,000 milliseconds (1 second):

var timer:Timer = new Timer(1000);

Once you've constructed the Timer, you next need to add an event listener to handle the events it
dispatches. Timer objects dispatch flash.event.TimerEvent events. The timer event is dispatched at
the interval specified when constructing the Timer object (or as set by the delay property). The
following example code defines an event listener for the timer event (using the TimerEvent.TIMER
constant), which calls a method named onTimer():

timer.addEventListener(TimerEvent.TIMER, onTimer);

The event handler method is passed a TimerEvent object:

function onTimer(event:TimerEvent):void {
 trace("on timer");
}

Timer objects do not start automatically; you must call the start() method first:

timer.start();

By default, timers run until stopped by the stop() method. However, you can also specify a number

of intervals by passing a second parameter to the constructor. The default value of 0 causes the
timer to repeat indefinitely, while non-zero values specify a finite number of intervals. The following
constructs a timer that has just five intervals:

var timer:Timer = new Timer(1000, 5);

You can use a timer with just one interval to add a delay. The following timer code defers the call to
the deferredMethod() method for five seconds:

var timer:Timer = new Timer(5000, 1);
timer.addEventListener(TimerEvent.TIMER, deferredMethod);
timer.start();

Recipe 14.8. Calculating Elapsed Time or Intervals
Between Dates

Problem

You wan t to calculate an elapsed time, elapsed date, or relative time.

Solution

For simple elapsed time, you can add and subtract from the epoch milliseconds, or use the value
returned by getTimer(). For more complex conversions, use the methods of the custom DateUtilities
class.

Discussion

For simple conversions such as adding or subtracting an hour, day, or week to or from a date, simply
add or subtract from the date's epoch milliseconds value. For this purpose, note that a second is
1,000 milliseconds, a minute is 60,000 milliseconds, an hour is 3,600,000 milliseconds, a week is
604,800,000 milliseconds, and so on. Unless you have a knack for remembering these conversion
values, storing them as constants is a convenient option. The constants have already been defined in
the custom ascb.util.DateUtilities class as follows:

public static const MILLISECOND:Number = 1;
public static const SECOND:Number = MILLISECOND * 1000;
public static const MINUTE:Number = SECOND * 60;
public static const HOUR:Number = MINUTE * 60;
public static const DAY:Number = HOUR * 24;
public static const WEEK:Number = DAY * 7;

You can use the Date.time property to retrieve a date's current value in epoch milliseconds, and then
assign a new value to the time property relative to the current value. The following example adds one
day to a given Date object:

var example:Date = new Date(2010, 0, 5, 10, 25);

// Displays: Tue Jan 5 10:25:00 GMT-0800 2010
trace(example);

// Add one day to the previous date by setting the new date/time

// to the original date/time plus DateUtilities.DAY (the number

// of milliseconds in a day).
example.time += DateUtilities.DAY;

// Displays: Wed Jan 6 10:25:00 GMT-0800 2010
trace(example);

You'll often want to calculate an elapsed time to create a timer for a game or other activity.
Calculating the elapsed time is simply a matter of recording the time during initialization and then
comparing it to the current time later during execution. You can use a Date object to make those
calculations; however, it is much more efficient to use the flash.util.getTimer() function. The
getTimer() function returns the number of milliseconds since the Player started running. By checking
its value at successive times, the getTimer() function can also be used to determine the elapsed
time. The following example uses the getTimer() function to repeatedly update the displayed text:

package {

 import flash.display.Sprite;
 import flash.display.TextField;
 import flash.util.Timer;
 import flash.events.TimerEvent;
 import flash.util.getTimer;

 public class Example extends Sprite {

 private var _text:TextField;
 private var _start:uint;

 public function Example() {
 _start = getTimer();
 _text = new TextField();
 addChild(_text);
 var timer:Timer = new Timer(1000);
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();
 }

 private function onTimer(event:TimerEvent):void {
 _text.text = (getTimer() - _start) + " milliseconds";
 }

 }
}

Here, the previous example is tweaked to create a countdown timer:

package {

 import flash.display.Sprite;
 import flash.display.TextField;
 import flash.util.Timer;

 import flash.events.TimerEvent;
 import flash.util.getTimer;

 public class Example extends Sprite {

 private var _text:TextField;
 private var _timer:Timer;
 private var _start:uint;
 private var _count:uint = 20;

 public function Example() {
 _start = getTimer();
 _text = new TextField();
 addChild(_text);
 _timer = new Timer(500);
 _timer.addEventListener(TimerEvent.TIMER, onTimer);
 _timer.start();
 }

 private function onTimer(event:TimerEvent):void {
 var elapsed:int = Math.round(_count - (getTimer() - _start) / 1000);
 _text.text = ellapsed + " seconds";
 if(elapsed < 0) {
 _text.text = "---------";
 _timer.stop();
 }
 }

 }
}

The earlier example calculated elapsed times using Date objects. When it comes to adding and
subtracting years and months from dates, you cannot rely on constants. This is because the number
of milliseconds in a month varies with the number of days in the month, and leap years have more
milliseconds than other years. However, the Date class handles wraparound calculations
transparently when using the getter and setter methods. The most effective way to handle date math
is to use the custom DateUtilities.addTo() method and have it perform the calculations for you. The
method takes up to eight parameters, seven of which are defined in Table 14-2. The first is required,
and it is the Date object to which you want to add (or subtract as the case may be). The parameters
defined in Table 14-2 are optional numeric parameters, each of which can be positive or negative.

Table 14-2. Parameters for the addTo() method

Parameter Description

Parameter Description

 years A number of years to add to the
date.

 months A number of months to add to the
date.

 days A number of days to add to the date.

 hours A number of hours to add to the
date.

 minutes A number of minutes to add to the
date.

 seconds A number of seconds to add to the
date.

 milliseconds A number of milliseconds to add to
the date.

The following shows how you might use the addTo() method to add (and subtract) years, months,
and days to a date:

var example:Date = new Date(2010, 0, 5, 10, 25);

trace(DateUtilities.addTo(example, 10));
trace(DateUtilities.addTo(example, -4));
trace(DateUtilities.addTo(example, 0, 1, 1));
trace(DateUtilities.addTo(example, 0, -1, -1));

/* Displays:
Sun Jan 5 10:25:00 GMT-0800 2020
Thu Jan 5 10:25:00 GMT-0800 2006
Sat Feb 6 10:25:00 GMT-0800 2010
Fri Dec 4 10:25:00 GMT-0800 2009
*/

This example demonstrates how to create a new Date object based on an elapsed time from an
existing Date object. However, you may want to calculate the elapsed time between two existing
Date objects, which is not as trivial as you might think. You might try subtracting the return value of
the time property of one Date object from another. However, this doesn't offer a general solution for

 years A number of years to add to the
date.

 months A number of months to add to the
date.

 days A number of days to add to the date.

 hours A number of hours to add to the
date.

 minutes A number of minutes to add to the
date.

 seconds A number of seconds to add to the
date.

 milliseconds A number of milliseconds to add to
the date.

The following shows how you might use the addTo() method to add (and subtract) years, months,
and days to a date:

var example:Date = new Date(2010, 0, 5, 10, 25);

trace(DateUtilities.addTo(example, 10));
trace(DateUtilities.addTo(example, -4));
trace(DateUtilities.addTo(example, 0, 1, 1));
trace(DateUtilities.addTo(example, 0, -1, -1));

/* Displays:
Sun Jan 5 10:25:00 GMT-0800 2020
Thu Jan 5 10:25:00 GMT-0800 2006
Sat Feb 6 10:25:00 GMT-0800 2010
Fri Dec 4 10:25:00 GMT-0800 2009
*/

This example demonstrates how to create a new Date object based on an elapsed time from an
existing Date object. However, you may want to calculate the elapsed time between two existing
Date objects, which is not as trivial as you might think. You might try subtracting the return value of
the time property of one Date object from another. However, this doesn't offer a general solution for

calculating the elapsed time between two Date objects. Although the operation yields the number of
milliseconds between the two dates, the result isn't easy to manipulate when the times are not within
the same day. Manually converting the number of milliseconds to a number of years, months, and
days is difficult due to the varying number of days per month, leap year, etc. Furthermore, handling
negative elapsed times can be cumbersome.

One convenient solution is to create a Date object representing an elapsed time. This lets you use the
Date class's built-in methods to calculate the number of years, months, and days between two Date
objects. You can use the UTC get methods to retrieve most of the offsets, as illustrated in the
following example:

var one:Date = new Date();

var two:Date = DateUtilities.addTo(one, 4, 1, 3, 10);

var elapsed:Date = new Date(two.time - one.time);

trace(elapsed); // Displays: Sun Feb 3 16:00:00 GMT-0800 1974
trace(elapsed.hoursUTC); // Displays: 10
trace(elapsed.monthUTC); // Displays: 1

There are several caveats, however. Although ActionScript internally stores dates relative to the
epoch time, most Date class methods return absolute values, not values relative to the Epoch. For
example, the year for a date in 1971 is returned as 1971, not 1. For the elapsed time object to be
useful, you need to subtract constants from the year and day values. (The month, hour, minute,
second, and millisecond of the epoch time are all 0, so there is no need for custom methods to return
relative values for these values.) Subtract 1970 from the year, and then subtract 1 from the day:

trace(elapsed.dateUTC); // Displays: 4 (incorrect)
trace(elapsed.dateUTC - 1); // Displays: 3 (correct)
trace(elapsed.dateUTC); // Displays: 1974 (incorrect);
trace(elapsed.dateUTC - 1970); // Displays: 4 (correct);

To work with elapsed times more efficiently, you might want to use some of the methods of the
custom DateUtilities class. The class has a static method called elapsed() that returns an object with
the amount of elapsed time between two dates, as illustrated in the following example:

var one:Date = new Date();

var two:Date = DateUtilities.addTo(one, 4, 1, 3);

var elapsed:Object = DateUtilities.elapsed(two);
for(var item:String in elapsed) {
 trace(item + ": " + elapsed[item]);
}

/* Displays:
milliseconds: 0
seconds: 0
minutes: 0

hours: 0
days: 3
months: 1
years: 4
*/

If you pass only one parameter to the elapsed() method, it assumes that you want to find the
amount of time that has elapsed between the specified date and the current date.

The DateUtilities class also has several additional static methods that return elapsed times between
two dates in specific intervals (years, months, days, etc.). By default, each of those methods
calculates the total number of specified intervals between the two dates, as shown here:

var one:Date = new Date();

var two:Date = DateUtilities.addTo(one, 4, 1, 3);

trace(DateUtilities.elapsedYears(two, one)); // Displays: 4
trace(DateUtilities.elapsedMonths(two, one)); // Displays: 49
trace(DateUtilities.elapsedDays(two, one)); // Displays: 1495
trace(DateUtilities.elapsedHours(two, one)); // Displays: 35880
trace(DateUtilities.elapsedMinutes(two, one)); // Displays: 2152800
trace(DateUtilities.elapsedSeconds(two, one)); // Displays: 129168000
trace(DateUtilities.elapsedMilliseconds(two, one)); // Displays: 129168000000

Optionally, you can pass a Boolean value as a third parameter to any of the methods. A value of TRue
causes the methods to return the relative values instead. The elapsedYears() method is the
exception, since it returns the same value either way, as shown in the following example:

var one:Date = new Date();

var two:Date = DateUtilities.addTo(one, 4, 1, 3);

trace(DateUtilities.elapsedMonths(two, one, true)); // Displays: 1
trace(DateUtilities.elapsedDays(two, one, true)); // Displays: 3
trace(DateUtilities.elapsedHours(two, one, true)); // Displays: 0
trace(DateUtilities.elapsedMinutes(two, one, true)); // Displays: 0
trace(DateUtilities.elapsedSeconds(two, one, true)); // Displays: 0
trace(DateUtilities.elapsedMilliseconds(two, one, true)); // Displays: 0

Recipe 14.9. Parsing a Date from a String

Problem

You want to create a Date object from a string.

Solution

Use the parse() method of a DateFormat object.

Discussion

ActionScript does not provide native methods for parsing a string into a Date object, and in many
cases, that doesn't pose any difficulty. For example, Flash Remoting allows you to return native Date
objects from other applications. Even if you are not working with Flash Remoting, you can pass
values between Flash and other applications using epoch seconds/milliseconds. However, if you need
to parse a string into a date, you should use the parse method of the custom ascb.util.DateFormat
class. The method takes the string value as a parameter, parses out each of the date's parts (the
year, hour, etc.), and then returns a new Date object.

To use the DateFormat class, you need to create an instance with the constructor. When you create
the instance, you should pass a mask string to the constructor as a parameter. Recipe 14.4 has more
details on creating a mask string:

var formatter:DateFormat = new DateFormat("m/d/Y");

Once you've created a DateFormat instance, you can next call the parse() method. Pass it a string in
the format specified by the mask, and it parses the date, returning a new Date instance:

// Displays: Sat May 1 00:00:00 GMT-0700 2010 (timezone offset may vary)
trace(formatter.parse("05/01/2010"));

formatter.mask = "m/d/Y 'at' h:i a";

// Displays: Sat May 1 22:25:00 GMT-0700 2010 (timezone offset may vary)
trace(formatter.parse("05/01/2010 at 10:25 PM"));

See Also

Recipe 14.4

Chapter 15. Programming Sound
Section 15.0. Introduction

Recipe 15.1. Creating a Sound Object and Loading a Sound

Recipe 15.2. Starting and Stopping a Sound

Recipe 15.3. Setting the Buffer for a Sound

Recipe 15.4. Offsetting the Start of a Sound

Recipe 15.5. Playing a Sound Multiple Times (Looping)

Recipe 15.6. Getting the Size of a Sound File

Recipe 15.7. Reading the ID3 Tag of a Sound File

Recipe 15.8. Find Out When a Sound Finishes Playing

Recipe 15.9. Tracking the Progress of a Playing Sound

Recipe 15.10. Pausing and Restarting a Sound

Recipe 15.11. Reading the Level of a Sound

Recipe 15.12. Stopping All Sounds

Recipe 15.13. Reading the Sound Spectrum

Recipe 15.14. Changing the Volume or Pan of a Sound

Recipe 15.15. Creating a Sound Application

15.0. Introduction

Proper use of sound in an application, game, or web site can greatly enhance the user's experience.
In the Flash IDE, you can import sound into the library, put sound on timeline frames, attach sounds
to movie clips, and so on. This chapter covers programming sound with ActionScript 3.0, using the
Sound class and its related classes.

The Sound class is set up to load and stream external MP3 sound files. Since the files aren't
embedded in the .swf and are being loaded from an external URL, the domain security restrictions
outlined in Chapter 3 apply.

Classes covered in this chapter include:

Sound

SoundChannel

SoundLoaderContext

SoundMixer

SoundTransform

These are all part of the flash.media package, so as your first order of business, make sure that you
import flash.media.Sound in each example as well as any of the other classes the example uses.

Recipe 15.1. Creating a Sound Object and Loading a
Sound

Problem

You want to load into your .swf and have it available to the application.

Solution

Create a Sound object and load an external sound file into it.

Discussion

Creating a Sound object is as easy as making an instance of any class. First, though, make sure the
Sound class is imported:

import flash.media.Sound;

and then just create an instance of the Sound class:

_sound = new Sound();

Now of course, you need to give it a sound file to play. As mentioned earlier, this will be an external
MP3 file, such as a song. For all of the examples in this chapter, it's assumed that you have an MP3
file named song.mp3, and that this is stored in the same directory as the .swf on your server or hard
drive.

To load a sound file into your Sound object, first create a URLRequest object (you'll need to import
flash.net.URLRequest), passing in the string containing the path to the MP3 file:

soundFile = new URLRequest("song.mp3");

You can then pass this to the load method of your Sound object:

_sound.load(soundFile);

You can even shortcut these last two steps, as seen in the following class example:

package {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.net.URLRequest;

 public class LoadSoundExample extends Sprite {
 private var _sound:Sound;

 public function LoadSoundExample () {
 _sound = new Sound();
 _sound.load(new URLRequest("song.mp3"));
 }
 }
}

The class now has a property, _sound, which you can use any time you need to play that sound. Note
that the sound does not actually start playing yet. You have merely set it up and started the sound
information coming in. See Recipe 15.2 for information on how to control a sound's playing.

An even quicker way is to pass the URLRequest right into the constructor when you create the sound,
like so:

public function LoadSoundExample() {
 _sound = new Sound(new URLRequest("song.mp3"));
}

When you pass in the request in the constructor like this, the sound automatically calls its own load(
) method right away and starts to load that sound data. This is especially useful if you are only
loading a single sound file into the Sound object.

Otherwise, it may be better to create the Sound object beforehand and call the load() method when
you know which sound file you want to load. An example of this is a music player application in which
users can select a song from a play list. When the song is selected, the application sends its path to
the sound's load() method, and it is ready to play.

Recipe 15.2. Starting and Stopping a Sound

Problem

You've created a Sound object and started streaming a sound file into it. Now you want to play it and
eventually stop it.

Solution

Use the play() method to start the sound playing. Use the close() method to stop the sound from
streaming.

Discussion

Playing a sound which has been loaded into a Sound object is very easy. Simply call the play()
method of that Sound object, like so:

_sound = new Sound(new URLRequest("song.mp3"));
_sound.play();

It is that simple. There are some additional optional parameters to the play() method, which are
covered in Recipes 15.1 and 15.10.

The close() method of the Sound object not only stops the sound from playing, but also stops the
streaming of the sound file. To play that sound again, call the load() method to restart loading the
sound data. The close() method should be called only when you are sure you are finished with that
particular sound. Recipe 15.1 discusses a way to stop the sound from playing without stopping the
stream, using the SoundChannel class.

See Also

Recipe 15.1 for information on how to load external sound files and Recipe 15.10.

Recipe 15.3. Setting the Buffer for a Sound

Problem

You want to ensure that a streaming sound plays smoothly.

Solution

Set a buffer time by using the SoundLoaderContext class.

Discussion

The Sound class streams audio as it plays, which means that a sound starts playing before it is fully
downloaded. This is especially useful for larger sound files, such as full songs, which can be several
megabytes in size.

Depending on how your sound is encoded and the available bandwidth, a sound may be playing
faster than it is downloading. In this case, the sound may pause while it waits for more sound data to
load in. To safeguard against this, you can set a buffer. This causes the Sound object to pre-load a
certain amount of sound data before it starts playing. Then, if there is a momentary slowdown in
bandwidth, the sound can keep playing the buffered data without pausing.

By default, a Sound object creates a one-second buffer when you tell it to load a sound file. In other
words, even if you tell it to play immediately, the Sound object waits until at least one second's worth
of sound data has come in. Additionally, if that buffer is used up and the sound needs to stop to wait
for more data, it refills that one-second buffer before it resumes playing again.

If you are unsure of network conditions or have sound files that were encoded at a high bitrate
(requiring more bits of information per second of playing time), then you may want to increase the
size of this buffer to ensure smoother playback. You do this by creating a SoundLoaderContext
object, passing in the size of the buffer, in milliseconds, to the constructor. For example, if you
wanted to create a five-second buffer, you would do the following:

buffer = new SoundLoaderContext(5000);

You can use this object for either method of loading a soundin the constructor of the Sound object, or
in the load() method (see Recipe 15.1). Just pass it in as the second parameter after the
URLRequest parameter, as shown here:

var request:URLRequest = new URLRequest("song.mp3");
var buffer:SoundLoaderContext = new SoundLoaderContext(5000);

_sound = new Sound(request, buffer);
_sound.play();

or:

var request:URLRequest = new URLRequest("song.mp3");
var buffer:SoundLoaderContext = new SoundLoaderContext(5000);
_sound = new Sound();
_sound.load(request, buffer);
_sound.play();

See Also

Recipe 15.1 for information on how to load external sound files.

Recipe 15.4. Offsetting the Start of a Sound

Problem

You want a sound to start playing, not from the start of the sound, but at a position some ways into
it.

Solution

Pass a start time to the play() method.

Discussion

There may be instances when you want to start playing a sound file, but not from the very beginning
of the sound. In other words, you want to cut off some amount from the start of the sound and play
it from that offset point. The Sound object gives you very precise control so you can pinpoint the
exact place where a sound will start playing, right down to the millisecond.

If you call a Sound object's play() method without any parameters, it starts playing from the very
beginning. But you can pass it an optional parameter that is the number of milliseconds into the
sound at which you want it to start. For example, the following causes the sound to start playing at
exactly 5.5 seconds after its beginning point:

_sound.play(5500);

This particularly comes in handy when you have a sound file that has some introductory material at
the beginning that you want to skip over. If you can't edit the sound file to cut that part out, all you
need to do is set the start time and skip over the initial portion.

Another example would be to create a system of cue points in the sound. Say you had a recording of
a speech and you wanted to allow users to listen to any of several portions of that speech. Taking
note of the points at which each portion begins, you can set these up as cue point values in an array.
Now, by specifying which cue point to start playing the sound from, you can get the start time from
the array and pass that to the play() method. The following class demonstrates a simple example of
this:

package {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.net.URLRequest;

 public class CuePoints extends Sprite {
 private var _sound:Sound;
 private var _cuePoints:Array;

 public function CuePoints() {
 _cuePoints = [0, 10000, 30000, 68000, 120000];
 _sound = new Sound(new URLRequest("song.mp3"));

 // Play from the third cuepoint (30 seconds in)
 playCuePoint(2);
 }

 public function playCuePoint(index:int):void {
 _sound.play(_cuePoints[index]);
 }

 }
}

Of course, in a full application you would have buttons or some other user interface element allowing
the user to choose a cue point, which would then pass the index to the playCuePoint() method.

Recipe 15.1 explains the functionality to create a pause/restart function in a sound player.

See Also

Recipes 15.1 and 15.2

Recipe 15.5. Playing a Sound Multiple Times (Looping)

Problem

You want to play a sound file more than once, or have it play over and over in a continuous loop.

Solution

Set a looping value in the play() method.

Discussion

When you play a sound, it only plays oncefrom beginning to endby default. There may be cases when
you want to have the sound play more than once, or even play continuously. For example, you may
have a short music loop for the background to a game or for a web site. You can set this loop to play
continuously so it sounds like one long song.

The way to set the number of loops (or times) to play is by passing in a value as the second
parameter of the play() method. Of course, if you do this, you'll also have to set a value for the
optional first parameter of the start offset (see Recipe 15.1). If you don't want to offset the start of
the sound, but want to use the loop parameter, just pass zero as the first parameter, like so:

_sound.play(0, 3);

This plays the sound file from the very beginning (zero offset) and loops it three times.

The minimum sensible value you can set for a loop is one, which causes the sound to play only once.
If you pass in zero (or even a negative number), the sound still plays only one time.

There is no automatic way to cause the sound to loop forever; however, you can pass a very high
value. An easy solution is to pass in int.MAX_VALUE, which is the highest value that an integer
variable can hold, and is equal to 2,147,483,647. Even if your sound was only one second long, this
would cause it to play for almost 70 years, which is pretty safe to call "continuously."

See Also

Recipes 15.1 and 15.2

Recipe 15.6. Getting the Size of a Sound File

Problem

You want to know the total size of the MP3 audio file you are loading, as well as the amount that has
downloaded so far (so you can create a visual streaming indicator).

Solution

Access the bytesTotal and bytesLoaded properties of the Sound object.

Discussion

When streaming an audio file, it's often a good idea to let the user know how much data has been
loaded. The Flash Player loads the sound as fast as it can, and plays the sound at its encoded rate.
Ideally, the sound data will load faster than the sound is playing so there won't be a point at which
the audio stops playing to load more data. However, in cases of poor connectivity or low bandwidth,
and when sounds have been encoded with a high bitrate, the Flash Player may be struggling to keep
enough sound data buffered so the sound doesn't stop.

Therefore, it's a good idea to give the user some sort of visual representation for the amount of
buffered sound data, alongside the progress of the sound as it plays. You've probably seen this in
many types of streaming media players, such as Windows Media Player or QuickTime Player. Usually
there's a progress bar tracking the song as it plays. The background of the bar might be white. On
top of that would be a growing black bar representing the progress of the song. Additionally, you
might have a gray bar that indicates the buffered amount. As long as the gray bar (buffer) stays
ahead of the black one (play position), you know you'll have smooth playback. When it catches up,
the media stops playing while the gray bar moves ahead, buffering more data. When it has enough,
the media starts again, and the black bar starts moving again, and hopefully the gray has enough of
a head start this time.

This recipe covers how to create that gray bar, using two properties of a Sound object: bytesTotal
and bytesLoaded. (Recipe 15.9 shows how to create the black bar.) These properties are pretty self-
explanatory; bytesTotal contains the total size of the MP3 file you're streaming, and bytesLoaded
contains how much of it has actually downloaded. If you divide these two values, you'll have the
percentage of the sound that has loaded.

The following example sets up an enterFrame handler. On each frame it draws a white rectangle on
the stage, and then calculates the percent of the sound that has loaded. It uses this to draw another
bar (gray, of course) that represents that percent.

package {

 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class ProgressBar extends Sprite {
 private var _sound:Sound;

 public function ProgressBar() {
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 _sound = new Sound(new URLRequest("song.mp3"));
 _sound.play();
 }

 public function onEnterFrame(event:Event):void
 {
 var barWidth:int = 200;
 var barHeight:int = 5;
 var loaded:int = _sound.bytesLoaded;
 var total:int = _sound.bytesTotal;
 if(total > 0) {
 // Draw a background bar
 graphics.clear();
 graphics.beginFill(0xFFFFFF);
 graphics.drawRect(10, 10, barWidth, barHeight);
 graphics.endFill();

 // The percent of the sound that has loaded
 var percent:Number = loaded / total;

 // Draw a bar that represents the percent of
 // the sound that has loaded
 graphics.beginFill(0xCCCCCC);
 graphics.drawRect(10, 10,
 barWidth * percent, barHeight);
 graphics.endFill();
 }
 }
 }
}

If you are playing a sound from your hard disk or local server, you'll barely be able to see the
progress bar move; the sound loads almost instantly and the bar will quickly jump to 100 percent. If
possible, try to put the MP3 file on an external web server somewhere and access it over the
Internet. This gives you a more accurate view of what your end users will see. Also, the browser
tends to cache the sound file as it plays, so try clearing your browser's cache before testing this file
to give a more realistic view of the buffering.

See Also

Recipe 15.1 for information on how to load external sound files andRecipe 15.7.

Recipe 15.7. Reading the ID3 Tag of a Sound File

Problem

You want to access information about the MP3 file you are playing, such as the name of the song,
artist, album, genre, etc.

Solution

Read the id3 property of the Sound object.

Discussion

MP3 audio files are able to contain an abundance of metadata about the sound. This is most often
used in music files to record the name of the song, the artist, album, genre, year of release,
composer, etc. How much information is actually included in these tags depends on who encoded or
tagged the file. In most cases though, you'll at least be able to get at the songname and artist tag.

This data is available to you in ActionScript through the id3 property of a Sound object.

This property is an instance of the flash.media.ID3Info class, which contains the following properties:

album

artist

comment

genre

songName

TRack

year

So, to read the song's name, you would access it as follows:

_sound.id3.songName

There is just one catch to all of this, though: you can't access these id3 tags until they have actually

downloaded into your .swf. If you try to read a tag immediately after you create your Sound object or
call play(), it won't be defined. Factually, the request for the sound file has probably not even
reached the server at that point, so of course there will be no tag data available.

So, how do you know when this id3 data is available? Fortunately, the Sound object has an ID3 event
that you can listen for. When this event fires, it is safe to read the id3 tags. The Sound class extends
the EventDispatcher class, so you can use add- EventDispatcher to listen for this event, which is
defined as flash.events.Event.ID3, and assign a handler method to it; this is the method to use for
reading the id3 tags.

The following example creates a text field and lists all available id3 tags:

package {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.text.TextField;

 public class ID3Reader extends Sprite {
 private var _sound:Sound;

 public function ID3Reader () {
 _sound = new Sound(new URLRequest("song.mp3"));
 _sound.addEventListener(Event.ID3, onID3);
 _sound.play();
 }

 public function onID3(event:Event):void {
 // Create a text field and display it
 var id3Display:TextField = new TextField();
 addChild(id3Display);
 id3Display.x = 10;
 id3Display.y = 20;
 id3Display.width = 200;
 id3Display.height = 200;
 id3Display.background = true;
 id3Display.multiline = true;
 id3Display.wordWrap = true;

 // Add some info about the song to the text field
 id3Display.text += _sound.id3.songName + "\n";
 id3Display.text += _sound.id3.artist + "\n";
 id3Display.text += _sound.id3.album + "\n";
 id3Display.text += _sound.id3.year + "\n"; }
 }
 }
}

See Also

Recipe 15.1 for information on how to load external sound files and Recipe 15.6.

Recipe 15.8. Find Out When a Sound Finishes Playing

Problem

You've started playing a sound file and need to know when it has finished playing.

Solution

Listen for the soundComplete event.

Discussion

There are many cases when you might need to know when a sound is finished playing. For example,
if have an audio introduction that you want to play before a user moves onto the next section of a
site, you will want to know when it is safe to go to the next section. Or perhaps you have a music
player with a playlist of songs. You'll want to know when each song is complete so you can start the
next one.

For this recipe, and the next few, you'll be working with another class in the flash.media package,
SoundChannel. When you call a Sound object's play() method, it returns a SoundChannel object.
Thus, each sound playing in a .swf is represented by a single SoundChannel object. These channels
are mixed together to produce the final audio output.

When a sound file has finished playing, its corresponding SoundChannel object fires a soundComplete
event. This is defined as flash.events.Event.SOUND_COMPLETE. You can add a listener to the
SoundChannel object and supply a handler method, which is called when the sound has finished
playing.

The following example sets up a simple playlist:

package {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.media.SoundChannel;

 public class PlayList extends Sprite {
 private var _sound:Sound;
 private var _channel:SoundChannel;
 private var _playList:Array; // the list of songs
 private var _index:int = 0; // the current song

 public function PlayList() {
 // Create the playlist and start playing
 _playList = ["song1.mp3",
 "song2.mp3",
 "song3.mp3"];
 playNextSong();
 }

 private function playNextSong():void
 {
 // If there are still songs in the playlist
 if(_index < _playList.length) {
 // Create a new Sound object, load and play it
 // _playList[_index] contains the name and path of
 // the next song
 _sound = new Sound();
 _sound.load(new URLRequest(_playList[_index]));
 _channel = _sound.play();

 // Add the listener to the channel

 _channel.addEventListener(Event.SOUND_COMPLETE,
 onComplete);

 // Increase the counter
 _index++;
 }
 }

 public function onComplete(event:Event):void
 {
 playNextSong();
 }
 }
}

Here, the index variable starts out as zero. This causes _playList[index] to be evaluated as
"song.mp3", which gets loaded first. Then index is incremented. When the soundComplete event fires,
the playNextSong() method loads the next song in _playList, until the index is greater than the
number of songs in the playlist.

See Also

Recipe 15.1 for information on how to load external sound files.

Recipe 15.9. Tracking the Progress of a Playing Sound

Problem

You want to know where the playhead is in the current song so you can see how much of the song
has played, in relation to the full song.

Solution

Use Sound.length to determine how long a song is, and SoundChannel.position to determine how
much of it has played.

Discussion

Recipe 15.6 discussed how to add a progress bar that not only shows the playing position of a sound
file, but also how much of that file has been loaded into the player. That recipe created the part of
the bar that showed how much of the song has loaded.

This recipe covers the other part, showing you how to track a sound's progress as it plays. To do this,
you'll need to know two things: the length of the sound and its current playing position. Although it
may seem counterintuitive, these two properties are found in two different classes. The length of the
sound is a property of the Sound object, and the playing position is part of the SoundChannel. Similar
to how the buffering progress bar was created, these two values can be compared against each other
to get the percentage of the sound that has played.

Unfortunately, it gets just a bit more complex than the buffering bar. The problem is that the length
property isn't accurate until the sound file is fully loaded. It actually just shows the length of the
loaded data. So, for example, if 10 percent of a 10-minute audio file has loaded so far, then length
would report that the file was 1 minute long. (Actually, both length and position report the time in
milliseconds, but you can convert that to minutes and seconds if you needed to display the numbers.)

Fortunately, you can do some simple math to get an estimate of the sound file's actual length. Since
length reports a fraction of the actual length, if you divide it by that fraction, the result is very close
to the true time of the sound. Taking the example just mentioned, length shows a time of one
minute. However, that's based on just 1/10th of the file being loaded. If you divide 1 by 1/10 (the
same as multiplying by 10), you get 10 minutes as the length of the sound.

The fraction in this case is bytesLoaded/bytesTotal, which has already been calculated and stored in a
variable to draw the buffering bar. So all it really takes is one more line of code to correct the length:

length /= percentBuffered;

As in Recipe 15.2, you'll get a more accurate picture of how this works if you
access the MP3 file over the web and clear your browser's cache each time.

The following example shows both progress bars together:

package {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class ProgressBar2 extends Sprite {
 private var _sound:Sound;
 private var _channel:SoundChannel;

 public function ProgressBar2() {
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 _sound = new Sound(new URLRequest("song.mp3"));
 _channel = _sound.play();
 }

 public function onEnterFrame(event:Event):void
 {
 var barWidth:int = 200;
 var barHeight:int = 5;

 var loaded:int = _sound.bytesLoaded;
 var total:int = _sound.bytesTotal;

 var length:int = _sound.length;
 var position:int = _channel.position;

 // Draw a background bar
 graphics.clear();
 graphics.beginFill(0xFFFFFF);
 graphics.drawRect(10, 10, barWidth, barHeight);
 graphics.endFill();

 if(total > 0) {
 // The percent of the sound that has loaded
 var percentBuffered:Number = loaded / total;

 // Draw a bar that represents the percent of
 // the sound that has loaded
 graphics.beginFill(0xCCCCCC);
 graphics.drawRect(10, 10,
 barWidth * percentBuffered,

 barHeight);
 graphics.endFill();

 // Correct the sound length calculation
 length /= percentBuffered;

 // The percent of the sound that has played
 var percentPlayed:Number = position / length;

 // Draw a bar that represents the percent of
 // the sound that has played
 graphics.beginFill(0x666666);
 graphics.drawRect(10, 10,
 barWidth * percentPlayed,
 barHeight);
 graphics.endFill();
 }
 }
 }
}

See Also

Recipe 15.1 for information on how to load external sound files and Recipe 15.2.

Recipe 15.10. Pausing and Restarting a Sound

Problem

You want to pause a sound and restart it later from where it stopped playing.

Solution

Take note of the position property of the sound's SoundChannel. When you restart the sound, use
that value as an offset.

Discussion

As noted in Recipe 15.2, you can call the close() method of a Sound object to make it stop playing.
However, this also stops the sound from streaming, so to replay it, you'll need to re-call the load()
method.

Fortunately, the SoundChannel class offers a stop() method, which causes the sound to stop playing
without affecting the loading. To restart the sound, just call the play() method again.

You should note, however, that the play() method causes the sound to start from the beginning.
This is the expected behavior for a "stop" button, as seen on many media players. Creating a "pause"
button takes a bit more work. The strategy is to set up a handler method that's called when a pause
button is pressed. In this function, read and store the current position of the SoundChannel, which
gives you the time in milliseconds from the sound's beginning. Store this in a class variable so it can
be accessed later. At this point, the pause button becomes a play button. When pressed again, call
the play() method of the Sound object, passing in the saved position. This causes the sound to play
from that point, which is the exact point at which it stopped. The following example demonstrates
this strategy:

package {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.display.Sprite;
 import flash.events.MouseEvent;

 public class PlayPause extends Sprite {
 private var _sound:Sound;
 private var _channel:SoundChannel;

 private var _playPauseButton:Sprite;
 private var _playing:Boolean = false;
 private var _position:int;

 public function PlayPause() {
 // Create sound and start it
 _sound = new Sound(new URLRequest("song.mp3"));
 _channel = _sound.play();
 _playing = true;

 // A sprite to use as a Play/Pause button
 _playPauseButton = new Sprite();
 addChild(_playPauseButton);
 _playPauseButton.x = 10;
 _playPauseButton.y = 20;
 _playPauseButton.graphics.beginFill(0xcccccc);
 _playPauseButton.graphics.drawRect(0, 0, 20, 20);
 _playPauseButton.addEventListener(MouseEvent.MOUSE_UP,
 onPlayPause);
 }

 public function onPlayPause(event:MouseEvent):void {
 // If playing, stop. Take note of position
 if(_playing) {
 _position = _channel.position;
 _channel.stop();
 }
 else {
 // If not playing, re-start it at
 // last known position
 _channel = _sound.play(_position);
 }
 _playing = !_playing;
 }
 }
}

The code creates a sprite to serve as a button. In the mouse up handler, the sound is stopped if it is
playing, and its position is noted. The next time the button is pressed, the sound starts playing at the
position where it left off.

See Also

Recipe 15.2

Recipe 15.11. Reading the Level of a Sound

Problem

You want to know how loud a currently playing sound is.

Solution

Access the SoundChannel.leftPeak and SoundChannel.rightPeak properties.

Discussion

Any sound, as it is playing, goes through various levels of loudness and softness. This is known as its
amplitude. ActionScript 3.0 lets you access the amplitude for the left and right channels of a stereo
sound separately. These are the leftPeak and rightPeak properties of the SoundChannel object that is
created when you start playing a sound.

These values are in a range from 0.0 to 1.0, with 1.0 being the maximum amplitude. Don't confuse
this with volume, which can be an overall setting for a sound, and is controlled via the
SoundTransorm object (see Recipe 15.14). This is the level of sound volume at a particular instance,
and it varies constantly as the sound plays.

The following example reads these values and creates two bars, the lengths of which are based on
the current amplitude of each channel on each frame:

package {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;
 import flash.events.Event;

 public class SoundLevels extends Sprite {
 private var _sound:Sound;
 private var _channel:SoundChannel;

 public function SoundLevels() {
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 _sound = new Sound(new URLRequest("song.mp3"));
 _channel = _sound.play();
 }

 public function onEnterFrame(event:Event):void
 {
 var leftLevel:Number = _channel.leftPeak * 100;
 var rightLevel:Number = _channel.rightPeak * 100;
 graphics.clear();
 graphics.beginFill(0xcccccc);
 graphics.drawRect(10, 10, leftLevel, 10);
 graphics.endFill();
 graphics.beginFill(0xcccccc);
 graphics.drawRect(10, 25, rightLevel, 10);
 graphics.endFill();

 }
 }
}

See Also

Recipe 15.1 for information on how to load external sound files and Recipe 15.14.

Recipe 15.12. Stopping All Sounds

Problem

You want to stop all currently playing sounds.

Solution

Use the stopAll() method of the SoundMixer object.

Discussion

As mentioned earlier, whenever you start playing a sound, it creates a SoundChannel object. You can
play multiple sounds in a .swf, and each one will be assigned to a separate sound channel. Some
aspects of a sound are controlled via the Sound object itself, some from the sound channel. In the
end, all of the currently playing channels are mixed together to create the final sound coming from
the speakers. The object responsible for this is the SoundMixer object. Its properties and methods
apply to all the sounds in the movie as they are mixed together.

One of these methods is the stopAll() method. As expected, this stops every currently playing sound
in the .swf.

Although sound can greatly enhance the experience of a web site, game, etc., you should always give
the user the option to turn off the sound. The stopAll() method is the simplest way to do this. It is a
static method of the SoundMixer class, so you can call it directly from there. Usually this would be
done in an event handler attached to a button or sprite, like so:

public function stopSounds(event:Event):void {
 SoundMixer.stopAll();
}

See Also

Recipe 15.2

Recipe 15.13. Reading the Sound Spectrum

Problem

You want to visually represent the sound wave of the sounds playing in your .swf.

Solution

Use SoundMixer.computeSpectrum() to fill a byte array with the spectrum data of the sound playing
in the .swf. Read the values of this array to create a visualization of that data.

Discussion

One of the most exciting additions to the sound capabilities in ActionScript 3.0 is the ability to access
sound spectrum data. Throughout the years and versions of Flash, developers have yearned to get at
this data. Some third-party tools read this data in and created a separate text file containing the
values of the sound spectrum data. This file could be read in and synchronized to the sound.
However, these solutions were complex to work with and not very efficient. Now that this feature is
built into the SoundMixer class, and with the addition of the new ByteArray class, you can easily
display this data with just a few lines of code.

First, let's cover the ByteArray class. This new special class in ActionScript 3.0 is used to handle
blocks of binary data in a highly compact, efficient, and optimized way. It is part of the flash.utils
package. Essentially, it is what it sounds like: an array of bytes. But its methods allow for fast
manipulation and access of its datamuch faster than a traditional ActionScript array.

For use in computing the sound spectrum, you first need to create an empty ByteArray, as shown in
the following example:

var spectrum:ByteArray = new ByteArray();

This ByteArray is then passed into SoundMixer.computeSpectrum(). This method takes a snapshot
of the sound as it's playing and calculates the current sound wave on both the left and right channels.
It breaks this into 256 values on each channel, each from -1.0 to 1.0. It stores these values in the
empty ByteArray you just passed in.

This data is now available for you to use however you want. You just need to loop through the
ByteArray 512 times, calling getFloat(). The first 256 calls give you the values for the left channel;
the next 256 are for the right channel.

The following example uses these values, along with a BitmapData object and setPixel32() to create

a visual representation of both channels' sound waves:

package {
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;
 import flash.utils.ByteArray;

 public class Spectrum extends Sprite {
 private var _sound:Sound;
 private var _channel:SoundChannel;
 private var _spectrumGraph:BitmapData;

 public function Spectrum() {
 // Create bitmap for spectrum display
 _spectrumGraph = new BitmapData(256, 60,
 true,
 0x00000000);
 var bitmap:Bitmap = new Bitmap(_spectrumGraph);
 addChild(bitmap);
 bitmap.x = 10;
 bitmap.y = 10;

 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 _sound = new Sound(new URLRequest("song.mp3"));
 _channel = _sound.play();
 }

 public function onEnterFrame(event:Event):void
 {
 // Create the byte array and fill it with data
 var spectrum:ByteArray = new ByteArray();
 SoundMixer.computeSpectrum(spectrum);

 // Clear the bitmap
 _spectrumGraph.fillRect(_spectrumGraph.rect,
 0x00000000);

 // Create the left channel visualization
 for(var i:int=0;i<256;i++) {
 _spectrumGraph.setPixel32(i,
 20 + spectrum.readFloat() * 20,
 0xffffffff);
 }

 // Create the right channel visualization
 for(var i:int=0;i<256;i++) {

 _spectrumGraph.setPixel32(i,
 40 + spectrum.readFloat() * 20,
 0xffffffff);
 }
 }
 }
}

See Also

Recipe 15.14

Recipe 15.14. Changing the Volume or Pan of a Sound

Problem

You want to change the volume of a sound, making it softer or louder, or set the pan (amount of
left/right balance) of a sound.

Solution

Create a new SoundTransform object, specifying the volume at which you want the sound to play, or
the amount and direction of panning you want to apply. Pass this to the soundTransform property of
the SoundChannel object associated with the sound you want to control.

Discussion

In previous versions of ActionScript, you could set the volume and panning of a sound directly on the
Sound object itself. Now these aspects of the sound playback are abstracted into the
SoundTransform class.

A SoundChannel object has a soundTransform property, which is an instance of the SoundTransform
class. To change a sound's volume or panning, create a new SoundTransform object and set the
desired values. Next, set the SoundChannel's soundTransform property to this new object. For
example, the following sets the sound volume to 50 percent:

var _sound:Sound = new Sound(new URLRequest("song.mp3"));
var channel:SoundChannel = _sound.play();
var transform:SoundTransform = new SoundTransform();
transform.volume = .5;
channel.soundTransform = transform;

As you can gather, the volume can range from 0.0 (silent) to 1.0 (full volume). Similarly, you can set
the panning of a sound:

var channel:SoundChannel = _sound.play();
var transform:SoundTransform = new SoundTransform();
transform.pan = -1.0;
channel.soundTransform = transform;

This sets the sound to play only in the left speaker, as the values here can range from -1.0 (full left)
to 1.0 (full right).

You can also pass the volume and pan amounts straight to the SoundTransform's constructor, like
so:

var channel:SoundChannel = _sound.play();
var transform:SoundTransform = new SoundTransform(.5, -1.0);
channel.soundTransform = transform;

The first parameter is volume, and the second is pan.

See Also

Recipe 15.13

Recipe 15.15. Creating a Sound Application

Problem

You want to create a full-featured sound application, such as a streaming MP3 player.

Solution

Apply the other recipes in this chapter to play a streaming sound and add as many features as you
want.

Discussion

This recipe combines many of the techniques shown throughout this chapter, integrated into a single
application. There is much more that could be done with this, but it should give you a start at seeing
how to use all these features together.

package {
 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.text.TextField;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.events.TimerEvent;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.media.SoundTransform;
 import flash.net.URLRequest;
 import flash.text.TextFormat;
 import flash.utils.Timer;

 public class CookBookPlayer extends Sprite {
 private var _channel:SoundChannel;
 private var _displayText:TextField;
 private var _sound:Sound;
 private var _panControl:PanControl;
 private var _playing:Boolean = false;
 private var _playPauseButton:Sprite;
 private var _position:int = 0;
 private var _spectrumGraph:SpectrumGraph;

 private var _volumeControl:VolumeControl;

 public function CookBookPlayer() {
 // Stage alignment
 stage.scaleMode =
 flash.display.StageScaleMode.NO_SCALE;
 stage.align = flash.display.StageAlign.TOP_LEFT;

 // Enter frame listener
 var timer:Timer = new Timer(20);
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();
 _playing = true;

 // Display a text field
 _displayText = new TextField();
 addChild(_displayText);
 _displayText.x = 10;
 _displayText.y = 17;
 _displayText.width = 256;
 _displayText.height = 14;

 // Create a sound object
 _sound = new Sound(new URLRequest(""http://www.rightactionscript.com
 samplefiles/sample.mp3""));
 _sound.addEventListener(Event.ID3, onID3);
 _channel = _sound.play();

 // Create a bitmap for spectrum display
 _spectrumGraph = new SpectrumGraph();
 _spectrumGraph.x = 10;
 _spectrumGraph.y = 33;
 addChild(_spectrumGraph);

 // Create the Play and Pause buttons
 _playPauseButton = new PlayButton();
 _playPauseButton.x = 10;
 _playPauseButton.y = 68;
 addChild(_playPauseButton);
 _playPauseButton.addEventListener(MouseEvent.MOUSE_UP,
 onPlayPause);

 // Create volume and pan controls
 _volumeControl = new VolumeControl();
 _volumeControl.x = 45;
 _volumeControl.y = 68;
 addChild(_volumeControl);
 _volumeControl.addEventListener(Event.CHANGE,
 onTransform);

 _panControl = new PanControl();
 _panControl.x = 164;

 _panControl.y = 68;
 addChild(_panControl);
 _panControl.addEventListener(Event.CHANGE,
 onTransform);
 }

 public function onTransform(event:Event):void
 {
 // Get volume and pan data from controls
 // and apply to a new SoundTransform object
 _channel.soundTransform = new SoundTransform(
 _volumeControl.volume,
 _panControl.pan);
 }

 public function onPlayPause(event:MouseEvent):void
 {
 // If playing, stop and record that position
 if(_playing) {
 _position = _channel.position;
 _channel.stop();
 }
 else {
 // Else, restart at the saved position
 _channel = _sound.play(_position);
 }
 _playing = !_playing;
 }

 public function onID3(event:Event):void {
 // Display selected id3 tags in the text field
 _displayText.text = _sound.id3.artist + " : " +
 _sound.id3.songName;
 _displayText.setTextFormat(
 new TextFormat("_typewriter", 8, 0));
 }

 public function onTimer(event:TimerEvent):void {
 var barWidth:int = 256;
 var barHeight:int = 5;

 var loaded:int = _sound.bytesLoaded;
 var total:int = _sound.bytesTotal;

 var length:int = _sound.length;
 var position:int = _channel.position;

 // Draw a background bar
 graphics.clear();
 graphics.beginFill(0xFFFFFF);
 graphics.drawRect(10, 10, barWidth, barHeight);
 graphics.endFill();

 if(total > 0) {
 // The percent of the sound that has loaded
 var percentBuffered:Number = loaded / total;

 // Draw a bar that represents the percent of
 // the sound that has loaded
 graphics.beginFill(0xCCCCCC);
 graphics.drawRect(10, 10,
 barWidth * percentBuffered,
 barHeight);
 graphics.endFill();

 // Correct the sound length calculation
 length /= percentBuffered;

 // The percent of the sound that has played
 var percentPlayed:Number = position / length;
 // Draw a bar that represents the percent of
 // the sound that has played
 graphics.beginFill(0x666666);
 graphics.drawRect(10, 10,
 barWidth * percentPlayed,
 barHeight);
 graphics.endFill();

 _spectrumGraph.update();
 }

 }
 }
}

// "helper classes"
// (This is an outside package, but it's available to classes
// in the same file)
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.Sprite;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.filters.DropShadowFilter;
import flash.geom.Rectangle;
import flash.media.SoundMixer;
import flash.utils.ByteArray;

class PlayButton extends Sprite {
 public function PlayButton() {
 // Draw the Play/Pause graphic
 graphics.beginFill(0xcccccc);
 graphics.drawRoundRect(0, 0, 20, 16, 4, 4);

 graphics.endFill();
 graphics.beginFill(0x333333);
 graphics.moveTo(4, 4);
 graphics.lineTo(8, 8);
 graphics.lineTo(4, 12);
 graphics.lineTo(4, 4);
 graphics.drawRect(10, 4, 2, 8);
 graphics.drawRect(14, 4, 2, 8);
 graphics.endFill();

 }
}
class SpectrumGraph extends Sprite {
 private var _spectrumBMP:BitmapData;

 public function SpectrumGraph()
 {
 // Bitmap to draw spectrum data in
 _spectrumBMP = new BitmapData(256, 30,
 true, 0x00000000);
 var bitmap:Bitmap = new Bitmap(_spectrumBMP);
 bitmap.filters = [new DropShadowFilter(3, 45, 0, 1,
 3, 2, .3, 3)];
 addChild(bitmap);
 }

 public function update():void
 {
 // Get spectrum data
 var spectrum:ByteArray = new ByteArray();
 SoundMixer.computeSpectrum(spectrum);

 // Draw to bitmap
 _spectrumBMP.fillRect(_spectrumBMP.rect, 0xff666666);
 _spectrumBMP.fillRect(new Rectangle(1, 1, 254, 28),
 0x00000000);
 for(var i:int=0;i<256;i++) {
 _spectrumBMP.setPixel32(i,
 10 + spectrum.readFloat() * 10,
 0xff000000);
 }
 for(var i:int=0;i<256;i++) {
 _spectrumBMP.setPixel32(i,
 20 + spectrum.readFloat() * 10,
 0xff000000);
 }
 }
}

class VolumeControl extends Sprite {
 public var volume:Number = 1.0;

 public function VolumeControl()
 {
 addEventListener(MouseEvent.CLICK, onClick);
 draw();
 }

 public function onClick(event:MouseEvent):void
 {
 // When user clicks the bar, set the volume
 volume = event.localX / 100;
 draw();
 dispatchEvent(new Event(Event.CHANGE));
 }

 private function draw():void {
 // Draw a bar and the current volume position
 graphics.beginFill(0xcccccc);
 graphics.drawRect(0, 0, 102, 16);
 graphics.endFill();

 graphics.beginFill(0x000000);
 graphics.drawRect(volume * 100, 0, 2, 16);
 }
}

class PanControl extends Sprite {
 public var pan:Number = 0;

 public function PanControl()
 {
 addEventListener(MouseEvent.CLICK, onClick);
 draw();
 }

 public function onClick(event:MouseEvent):void
 {
 // When the user clicks bar, set pan
 pan = event.localX / 50 - 1;
 draw();
 dispatchEvent(new Event(Event.CHANGE));
 }

 private function draw():void {
 // Draw the bar and current pan position
 graphics.beginFill(0xcccccc);
 graphics.drawRect(0, 0, 102, 16);
 graphics.endFill();

 graphics.beginFill(0x000000);
 graphics.drawRect(50 + pan * 50, 0, 2, 16);
 }
}

Chapter 16. Video
Section 16.0. Introduction

Recipe 16.1. Loading and Playing Back Video

Recipe 16.2. Controlling Video Sound

Recipe 16.3. Reading Playback Time

Recipe 16.4. Reading Video Duration

Recipe 16.5. Controlling Playback Time

Recipe 16.6. Scaling Video

Recipe 16.7. Managing and Monitoring Buffering and Loading

Recipe 16.8. Listening for Cue Points

Recipe 16.9. Applying Filters to Video

Recipe 16.10. Pausing and Resuming Video

Recipe 16.11. Stopping Video

Recipe 16.12. Scrubbing Video

Recipe 16.13. Clearing the Video Display

Recipe 16.14. Determining User Bandwidth

16.0. Introduction

The Flash Player is capable of playing back video. Although it's possible to embed video content
within an .swf file, most Flash video content is stored in Flash video files (.flv files) and loaded into
the Flash Player at runtime using ActionScript. By loading .flv files at runtime, you have smaller .swf
files, more flexible content management, and greater control over the loading and playback of the
video content.

Flash video loaded from .flv files has two faces: progressive download and streaming. Streaming .flv
video requires a streaming server, such as Flash Media Server. In contrast, progressive download
doesn't require any additional software. However, for the most part, the ActionScript required to
work with streaming and progressive download video is identical. The recipes in this chapter discuss
how to work with progressive download video and focus exclusively on working with .flv files.

Recipe 16.1. Loading and Playing Back Video

Problem

You want to load and playback progressive download Flash video.

Solution

Use a NetStream object to load and playback the video and use a Video object to display the video.

Discussion

ActionScript 3.0 requires several classes working together to load and playback Flash video. You must
use a NetStream object to load the video and control the playback; however, the NetStream class is
only concerned with moving data, it doesn't know how to render the data as a video. For that you
have to use a Video object. The Video object allows you to pass it a NetStream object, which then
uses the NetStream data to render the video to the screen.

The NetStream constructor requires that you pass it a NetConnection object. The NetConnection
object determines the origin of the data that the NetStream object handles. When the Flash video
streams from a Flash Communication Server or Flash Media Server, the NetConnection object points
to the server. However, for progressive download video content the NetConnection object uses a null
connection string. The following code constructs a NetConnection object and initializes it for use with
progressive download video. Note that the code assumes you've imported the
flash.net.NetConnection class:

var videoConnection:NetConnection = new NetConnection();
videoConnection.connect(null);

Once you've constructed a NetConnection object and called the connect() method with a null value,
construct the NetStream object, and then pass the NetStream constructor a reference to the
NetConnection object. The following code constructs a NetStream object (assuming you've imported
flash.net.NetStream):

var videoStream:NetStream = new NetStream(videoConnection);

Once you've constructed the NetStream object, add a Video object, and associate the NetStream
with the Video.

The flash.media.Video class is a display object, which means that you have to add it to the display list

once constructed. The following code constructs a new Video object and then adds it to the display
list:

var video:Video = new Video();
addChild(video);

You can associate a NetStream object with a Video object by using the Video object's
attachNetStream() method, passing a reference to the NetStream object as a parameter to the
method:

video.attachNetStream(videoStream);

After you attached the NetStream object to the Video object, any video data controlled by the
NetStream object gets rendered by the Video object.

Everything discussed up to this point is necessary to initialize all the requisite objects and
associations. However, nothing so far actually tells the Flash Player to load the video and start
playbackboth of which are accomplished with one simple method call. The NetStream class defines a
play() method that loads and starts the Flash video playback as specified by the parameter passed
to it. The parameter can be a relative or absolute URL. The following tells the Flash Player to load and
start the playback of a Flash video called example.flv that's in the same directory as the calling .swf:

videoStream.play("example.flv");

If the .flv file is in the same domain as the calling .swf, then the play() call isn't subject to Flash
Player security. However, if the FLV is in a different domain, then a security policy file is required to
allow the calling SWF to load and playback the FLV.

Flash video playback starts automatically as soon as enough has buffered. You can control buffering
and monitor loading, both of which are discussed in Recipe 16.7.

If the FLV file has metadata embedded within it (and most encoders do embed metadata) you'll also
have to handle the metadata event as described in Recipe 16.4. Additionally, if the FLV contains cue
points, you'll have to handle the cue point events as described in Recipe 16.8. If the FLV contains
metadata and/or cue points and you don't handle the events, Flash Player throws errors.

See Also

Recipes 16.4, 16.7, and 16.8

Recipe 16.2. Controlling Video Sound

Problem

You want to control the volume and pan transform of the sound portion of the video.

Solution

Use the soundTransform property of the NetStream object.

Discussion

If a Flash video has an audio track, the audio plays back automatically along with the video. If you
want to manage the volume or pan transform of the sound you can use the soundTransform property
of the NetStream object to retrieve a reference to the SoundTransform object associated with the
audio. For more details on working with SoundTransform objects, see Recipe 15.14.

See Also

Recipe 15.14

Recipe 16.3. Reading Playback Time

Problem

You want to read the current playback time of a video.

Solution

Use the time property of the NetStream object.

Discussion

The time property of the NetStream class is a read-only property that reports the playback time of
the video. The value is in seconds from the start of the video. The following displays the playback
time of a video in a text field:

textField.text = videoStream.time + " seconds";

Note that the value is not rounded to the nearest whole number. That means you can have values
such as 1 as well as values such as 5.235. If you need whole numbers, you can use Math.round(),
Math.floor(), or Math.ceil().

Since the time property is read-only, you cannot use it to control playback. If you want to control
playback, use the seek() method as described in Recipe 16.5.

See Also

Recipes 4.3 and 16.5

Recipe 16.4. Reading Video Duration

Problem

You want to read the total length (duration) of a video.

Solution

Use an onMetaData() callback and read the duration metadata value.

Discussion

The NetStream class does not define a property that reports the total length of a Flash video.
However, in most cases, it is possible to read that value from the FLV file itself. FLV files can contain
metadata, and almost all video encoders include a duration metadata value, which stores the length
of the video in seconds (which can be fractions of seconds). Assuming the FLV has a duration
metadata value, you can read that value with ActionScript.

When a NetStream object is loading an FLV file, it automatically calls an onMetaData() callback
method when the metadata has loaded. The callback model differs from the standard event model
used by most of the ActionScript 3.0 APIs. In most cases in which you work with events you add a
listener using addEventListener(). However, in the case of metadata events you must define an
onMetaData() method for an object and then assign that object to the client property of the
NetStream object. The method is automatically passed an associative array parameter typed as
Object that contains properties and values corresponding to each of the metadata properties that
have been read from the FLV. The following example uses trace() to display the duration metadata
value of a video clip:

var client:Object = new Object();
client.onMetaData = function(metadata:Object):void {
 trace(metadata.duration);
};
videoStream.client = client;

In practice, the preceding example isn't all that useful. Rather, you're more likely to assign a function
reference to the onMetaData property of the NetStream object. When the function is called, it is called
with the correct scope. The following example class loads, plays back a video, and displays the
playback time and duration:

package {

 import flash.display.TextField;
 import flash.media.Video;
 import flash.net.NetConnection;
 import flash.net.NetStream;
 import flash.events.NetStatusEvent;
 import flash.display.TextFieldAutoSize;
 import flash.display.Sprite;
 import flash.events.Event;

 public class Example extends Sprite {

 private var _stream:NetStream;
 private var _video:Video;
 private var _playbackTime:TextField;
 private var _duration:uint;

 public function Example() {
 _video = new Video(160, 120);
 _playbackTime = new TextField();
 _playbackTime.autoSize = TextFieldAutoSize.LEFT;
 _playbackTime.y = 120;
 _playbackTime.text = "test";
 _duration = 0;
 var connection:NetConnection = new NetConnection();
 connection.connect(null);
 _stream = new NetStream(connection);
 _stream.play("video.flv");
 var client:Object = new Object();
 client.onMetaData = onMetaData;
 _stream.client = client;
 _video.attachNetStream(_stream);
 addChild(_video);
 addChild(_playbackTime);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

 private function onMetaData(data:Object):void {
 _duration = data.duration;
 }

 private function onEnterFrame(event:Event):void {
 if(_duration > 0 && _stream.time > 0) {
 _playbackTime.text = Math.round(_stream.time) + " / " +
 Math.round(_duration);
 }
 }

 }
}

See Also

Recipe 16.8

Recipe 16.5. Controlling Playback Time

Problem

You want to control the playback of a video.

Solution

Use the seek() method of the NetStream object.

Discussion

Although you may assume you can set the playback time by assigning a value to the time property of
the NetStream object that controls the video, that won't work. As mentioned in Recipe 16.3, the time
property is read-only. Rather, you must use the seek() method. The seek() method requires one
parameter to specify the number of seconds from the start of the video to which you want to move
the playback. The following example seeks five seconds from the start of the video before starting
the playback:

videoStream.seek(5);

When using seek() with progressive download video, you can seek to only a part of the video that
has downloaded. For example, if half of a 60-second video has downloaded, you can seek to 10
seconds, but you cannot seek to 50 seconds.

When you use seek(), Flash Player jumps to the nearest video keyframe to the value you specify.
Videos are encoded with different keyframe rates. Higher keyframe rates have larger bandwidth
requirements than lower keyframe rates. However, higher keyframe rates enables greater granularity
when seeking.

See Also

Recipe 16.12

Recipe 16.6. Scaling Video

Problem

You want to change the dimensions of the video display.

Solution

Set the width and height properties of the Video object. If you want the video to playback at the
dimensions at which it was encoded, use the videoWidth and videoHeight values.

Discussion

The dimensions at which a video plays back are determined by the width and height of the Video
object. When you construct a Video object, you can specify the display's initial width and height; for
example, the following constructs a Video object that is 160x120 pixels:

var video:Video = new Video(160, 120);

However, you can still change the dimensions after the object is constructed by using the width and
height properties. The following doubles the dimensions of the Video object constructed in the
preceding example:

video.width = 320;
video.height = 240;

The Video class also defines two read-only properties, videoWidth and videoHeight, which return the
width and height at which the video was encoded. You can use the videoWidth and videoHeight
properties to set the width and height of the Video object, as follows:

video.width = video.videoWidth;
video.height = video.videoHeight;

However, note that the videoWidth and videoHeight properties are not correctly defined until the FLV
has started to download. Therefore, if you want to set the width and height of the Video object based
on the encoded dimensions, you must wait until the videoWidth and videoHeight properties are
correctly defined. You can use a netStatus event listener for that purpose:

videoStream.addEventListener(NetStatusEvent.NET_STATUS, onStatus);

Then define the listener with an if statement that tests for videoWidth and videoHeight greater than
0, as well as width and height values not equal to videoWidth and videoHeight. Since the videoWidth
and videoHeight are set at the same time, you only need to test for one of them:

private function onStatus(event:NetStatusEvent):void {
 if(_video.videoWidth > 0 && _video.width != _video.videoWidth) {
 _video.width = _video.videoWidth;
 _video.height = _video.videoHeight;
 }
}

Recipe 16.7. Managing and Monitoring Buffering and
Loading

Problem

You want to manage video buffering and monitor the progress of a video as it downloads.

Solution

Use the bufferTime property to set the number of seconds that must buffer before playback starts,
and then use bytesLoaded and bytesTotal to monitor the download's progress.

Discussion

By default, video starts to playback as soon as 0.1 (one-tenth) seconds of the video has buffered.
Larger buffers can ensure a smoother playback. At 0.1 seconds, it is possible that users with slower
connections or connections with spikes in network usage could experience choppy playback or
frequent rebuffering. If you increase the buffer size, users will most likely experience a smoother
playback. You can set the buffer using the bufferTime property; the following sets the buffer time to
10 seconds:

videoStream.bufferTime = 10;

Generally a one-buffer-fits-all approach is not the optimal solution. Although it may work in most
cases, you cannot ensure the best user experience with that approach. Guaranteeing the best
playback experience for all users requires slightly more work. The first step is to detect each user's
bandwidth. Once you've detected a user's bandwidth (see Recipe 16.14), you have two basic options:

If it's acceptable that users with slower connections view lower quality encodings of the video,
you can encode many versions of the video at different bit rates and select the appropriate one
for the user based on the detected bandwidth.

If you want all users to view the same video (encoded at the same bit rate), then you can set
the buffer based on the detected bandwidth. That means users with slower connections will
have much higher buffer values and will have to wait longer before the video starts to playback.

If you want to display progress to the user while video is buffering, you can use the bufferLength
property in conjunction with the bufferTime property. The bufferLength property is a read-only
property that returns the number of seconds currently in the buffer. You can use

bufferLength/bufferTime to return a ratio for the buffer progress.

The bufferLength property tells you how many seconds have loaded into the buffer, but it doesn't tell
you how much of the entire video has downloaded. You can use the bytesLoaded and bytesTotal
properties to determine how much of the entire video has downloaded.

See Also

Recipe 16.1 and 16.14

Recipe 16.8. Listening for Cue Points

Problem

You want to listen for cue points encoded in the FLV.

Solution

Use an onCuePoint() callback.

Discussion

The FLV format allows you to embed cue points within the file. You can use cue points for many
purposes, such as:

Captions

Synchronizing animations with video

Logging video playback statistics

You have to embed the cue points in the FLV file using one of the FLV encoders such as the Flash
Video Exporter (which ships with Flash Professional), On2 Flix (http:// www.on2.com), or Sorenson
Squeeze (http:// www.sorensonmedia.com). When playing back the video, the Flash Player receives a
notification when a cue point is reached. As with metadata, cue points don't use the standard event
model used by most of ActionScript 3.0. Rather, when a cue point is reached Flash Player calls a
callback method called onCuePoint(). As with onMetaData() the onCuePoint() method must be
defined for an object that is assigned to the client property of the NetStream object. The onCuePoint(
) method accepts one parameter, which is an object with the following properties:

name

The name assigned to the cue point when encoding.

time

The time at which the cue point occurs (in seconds)

http://
http://

type

Either "event" or "navigation," depending on which type was selected when encoding

parameters

An associative array with string key/value pairs assigned when encoding the FLV

The following illustrates one way in which you can create a client object, assign the onCuePoint
reference, and assign the client object to the NetStream object:

var client:Object = new Object();
client.onCuePoint = onCuePoint;
videoStream.client = client;

Then define the method appropriately:

private function onCuePoint(cuePoint:Object):void {
 trace(cuePoint.name + " " + cuePoint.time);
}

See Also

Recipe 16.4

Recipe 16.9. Applying Filters to Video

Problem

You want to apply filter effects (blur, color, displacement map, etc.) to a video.

Solution

Assign an array of all the filters you want to apply to the Video object's filters property.

Discussion

The Video class inherits the filters property from the DisplayObject class. That means you can apply
filters to Video objects just as you would any display object (see Recipe 10.5).

See Also

Recipe 10.5

Recipe 16.10. Pausing and Resuming Video

Problem

You want to pause or resume video playback.

Solution

Use the pause() method of the NetStream class.

Discussion

The pause() method of the NetStream class allows you to pause and resume playback of a video.
When you call the method without parameters, it toggles the pause state of the video (pauses if it's
playing and resumes if it's already paused):

videoStream.pause();

If you pass the method a true value, the video pauses if it's currently playing, and nothing occurs if
the video is already paused:

videoStream.pause(true);

Likewise, if you call the method with a false value, it resumes if the video is paused, and nothing
occurs if the video is already playing:

videoStream.pause(false);

Although it's a common mistake, you should not use the play() method to resume playback of a
paused video. The play() method is only used to load and start the initial playback of a video.

Recipe 16.11. Stopping Video

Problem

You want to stop a video from playing and downloading.

Solution

Use the close() method of the NetStream class.

Discussion

When you want to stop a video from playing back, use the close() method of the NetStream object
that controls the video. When you use the pause() method, the video simply pauses and starts
playing again (typically when a UI button is pressed by the user), but even when paused, the FLV
data continues to download. If you want to completely stop a video from downloading, use the close(
) method, as follows:

videoStream.close();

When you call the close() method, Flash Player deletes the FLV data from the player. If you request
the video again, it needs to start the download all over again. It is possible, however, that a web
browser might cache the FLV, and subsequent requests to the same FLV might retrieve the cached
version. In such instances, subsequent requests for the same FLV would be faster to playback.
However, if an FLV is cached, it's possible that a user might see a cached version rather than an
updated version. To ensure that the user always sees the latest version of the FLV, append a unique
query string to the FLV request URL, as shown in the following example:

videoStream.play("video.flv?uniqueIndex=" + (new Date()).getTime());

If you don't want a video to be cached for digital rights purposes, you cannot use progressive
download video. In such cases, you need to stream the video by using a technology such as Flash
Media Server, which is outside of the scope of this book.

Recipe 16.12. Scrubbing Video

Problem

You want to scrub the playback of video (move the playhead forward or backward while the video
plays).

Solution

Use a slider controller in conjunction with the seek() method.

Discussion

A common way to control video playback is to "scrub" the video using a slider controller. You can
implement a scrub controller by building a slider that uses the seek() method to control a NetStream
object.

The following sample code illustrates one way to write such a controller:

package com.oreilly.as3cb.components {

 import flash.display.Sprite;
 import flash.net.NetStream;
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.geom.Rectangle;

 public class VideoScrubber extends Sprite {

 private var _thumb:Sprite;
 private var _track:Sprite;
 private var _stream:NetStream;
 private var _duration:Number;
 private var _scrubbing:Boolean;

 public function VideoScrubber(stream:NetStream, duration:Number) {
 _stream = stream;
 _duration = duration;
 _track = new Sprite();
 _track.graphics.lineStyle();
 _track.graphics.drawRect(0, -2.5, 100, 5);
 addChild(_track);

 _thumb = new Sprite();
 _thumb.graphics.lineStyle();
 _thumb.graphics.beginFill(0xFFFFFF);
 _thumb.graphics.drawRect(-5, -5, 10, 10);
 _thumb.graphics.endFill();
 addChild(_thumb);
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 _thumb.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
 _thumb.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);
 }

 private function onMouseDown(event:MouseEvent):void {
 _scrubbing = true;
 var rectangle:Rectangle = new Rectangle(0, 0, _track.width, 0);
 _thumb.startDrag(false, rectangle);
 }

 private function onMouseUp(event:MouseEvent):void {
 _scrubbing = false;
 _thumb.stopDrag();
 }

 private function onEnterFrame(event:Event):void {
 if(_duration > 0) {
 if(_scrubbing) {
 _stream.seek(_duration * _thumb.x / _track.width);
 }
 else {
 _thumb.x = _stream.time / _duration * _track.width;
 }
 }
 }

 }
}

In the preceding code example, the constructor accepts a NetStream parameter and a parameter
specifying the duration of the video. The constructor then creates the elements for a slider control.
When the user clicks on the slider, the code calls the startDrag() method and sets _scrubbing to
true. While _scrubbing is true, the code calls the seek() method of the stream, passing it the
playback time value corresponding to the placement of the slider control.

Note that the preceding example does not detect mouseUp events because it's
possible that the mouse could be outside the slider control when the user
releases the button. The solution to this issue is rather complex (hence the
reason it's not discussed in this recipe). The solution is detailed in Recipe 6.9.

See Also

Recipe 6.9

Recipe 16.13. Clearing the Video Display

Problem

You want to clear a video display.

Solution

Call the clear() method of the Video object.

Discussion

When you close a NetStream object, it doesn't automatically clear the video display. The last frame of
the video remains visible in the Video object until you either remove the Video object or call the
clear() method. The following example clears a Video object by calling the clear() method.

video.clear();

You can remove a Video object from the display list by way of removeChild().

removeChild(video);

Recipe 16.14. Determining User Bandwidth

Problem

You want to optimize a user's video playback by determining her network bandwidth.

Solution

Download an image file and time the download to calculate the speed of the user's network
connection.

Discussion

Unfortunately, the Flash Player doesn't have a built-in bandwidth detection system. And because
actual bandwidth varies based on many factors (such as network usage, interference in wireless
networks, applications running on the same system competing for bandwidth, etc.), there is no way
to accurately predict what a user's bandwidth will be for the next 10 minutes, hour, or any amount of
time. However, you can measure a user's actual bandwidth over a period of time and use that to
determine what her bandwidth could be in the near future.

To measure a user's bandwidth, you need to download a (noncompressed) file, such as a JPEG file
using Flash Player. Using ActionScript, you can measure both the total bytes downloaded and the
amount of time it took to download those bytes. Using those two values, you can calculate an
average amount of data downloaded per unit of time. For the purposes of video, bandwidth is usually
measured as bit rate in units of kilobits per second. There are 8 bits in a byte and 1,000 bytes per
kilobyte. That means you can use the following to convert from bytes to kilobits:

kilobits = bytes / 1000 * 8;

The ratio of bytes/kilobytes and bits/kilobits is different if you are talking about data communication
or disk storage. For disk storage, the ratio is 1/1024, while for data communications it is 1/1000.

The larger the file that the user has to download, the more accurate the measurement is likely to be.
For example, if the user downloads a 10 kilobyte file, it may be that the request hits a network lag
and the measurement can be significantly lower than the actual average bandwidth. On the other
hand, you don't want to force the user to download too large a file, since that would cause the user

to have to wait too long while testing bandwidth.

One option is to use a moderately sized file (something in the 50100 kilobytes range) and run the
test several times. That way, if the first two tests are within a certain range of each other you can
assume subsequent tests would also be relatively close, and you don't need to run further tests. If
the first two tests have a wide margin, then you can run additional tests. If the same file is
downloaded several times, you need to make sure that you use a unique URL each time so the Flash
Player doesn't retrieve the file from a browser's cache. The following class illustrates how this sort of
bandwidth test works:

package com.oreilly.as3cb.util {

 import flash.events.EventDispatcher;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.events.Event;
 import flash.util.getTimer;

 public class BandwidthTest extends EventDispatcher {

 private var _downloadCount:uint;
 private var _bandwidthTests:Array;
 private var _detectedBandwidth:Number;
 private var _startTime:uint;

 public function get detectedBandwidth():Number {
 return _detectedBandwidth;
 }

 public function BandwidthTest() {
 _downloadCount = 0;
 _bandwidthTests = new Array();
 }

 // Run the bandwidth test.
 public function test():void {

 // Use a URLLoader to load the data.
 var loader:URLLoader = new URLLoader();

 // Use a URL with a unique query string to ensure the data is
 // loaded from the server and not from browser cache.
 var request:URLRequest = new URLRequest("bandwidthtestimage.jpg?unique="
 + (new Date()).getTime());
 loader.load(request);
 loader.addEventListener(Event.OPEN, onStart);
 loader.addEventListener(Event.COMPLETE, onLoad);
 }

 // When the file starts to download get the current timer value.
 private function onStart(event:Event):void {
 _startTime = getTimer();

 }

 private function onLoad(event:Event):void {

 // The download time is the timer value when the file has downloaded
 // minus the timer value when the value started downloading. Then
 // divide by 1000 to convert from milliseconds to seconds.
 var downloadTime:Number = (getTimer() - _startTime) / 1000;
 _downloadCount++;

 // Convert from bytes to kilobits.
 var kilobits:Number = event.target.bytesTotal / 1000 * 8;

 // Divide the kilobits by the download time.
 var kbps:Number = kilobits / downloadTime;

 // Add the test value to the array.
 _bandwidthTests.push(kbps);

 if(_downloadCount == 1) {
 // If it's only run one test then run the second.
 test();
 }
 else if(_downloadCount == 2) {

 // If it's run two tests then determine the margin between the
 // first two tests.
 // If the margin is small (in this example, less than 50 kbps)
 // then dispatch a complete event. If not run a test.
 if(Math.abs(_bandwidthTests[0] - _bandwidthTests[1]) < 50) {
 dispatchCompleteEvent();
 }
 else {
 test();
 }
 }
 else {
 // Following the third test dispatch a complete event.
 dispatchCompleteEvent();
 }

 }
 private function dispatchCompleteEvent():void {
 // Determine the avarage bandwidth detection value.
 _detectedBandwidth = 0;
 var i:uint;
 for(i = 0; i < _bandwidthTests.length; i++) {
 _detectedBandwidth += _bandwidthTests[i];
 }
 _detectedBandwidth /= _downloadCount;
 // Dispatch a complete event.
 dispatchEvent(new Event(Event.COMPLETE));

 }

 }
}

You can use instances of the preceding class to run a bandwidth test. To do so, create a new
instance, add a listener, and run the test() method.

var bandwidthTester:BandwidthTest = new BandwidthTest();
bandwidthTester.addEventListener(Event.COMPLETE, onBandwidthTest);
bandwidthTester.test();

When the complete event occurs, you can retrieve the detected bandwidth using the
detectedBandwidth property.

private function onBandwidthTest(event:Event):void {
 trace(event.target.detectedBandwidth);
}

See Also

Recipes 19.1 (the APIs that load binary data, such as image files, can be used) and 19.4

Chapter 17. Storing Persistent Data
Section 17.0. Introduction

Recipe 17.1. Creating and Opening a Local Shared Object

Recipe 17.2. Writing Data to a Shared Object

Recipe 17.3. Saving a Local Shared Object

Recipe 17.4. Reading Data from a Shared Object

Recipe 17.5. Removing Data from a Shared Object

Recipe 17.6. Serializing Custom Classes

Recipe 17.7. Sharing Data Between Flash Applications

Recipe 17.8. Controlling the Size of Local Shared Objects

17.0. Introduction

Much of the data you work with in ActionScript is stored in memory while the movie is executing.
When the movie is closed, the memory is released and the data is no longer available. What if you
want to be able to store data between different visits to the movie? Or what if you want to be able to
share data between movies running on the same client? To accomplish these feats, you'll need to
look at how you can store data outside of the Flash Player.

In ActionScript, the SharedObject class lets you to implement persistence on the client machine.
There are two types of shared objects that can be created: local and remote. This chapter focuses
solely on local shared objects (LSOs).

Local shared objects are similar to browser cookies in that they are stored on the client's machine.
LSOs are useful for storing the same kind of information for which cookies have traditionally been
used, such as the ability for a web site to remember a user so that the user does not have to
manually login during each visit. However, LSOs are more powerful than cookies because, by default,
they never expire, they can store more data than cookies, they aren't transmitted between the client
and server, and they can store native ActionScript datatypes. In contrast to remote shared objects
(RSOs), LSOs are available to use without any additional software involved on either the client or
server.

Recipe 17.1. Creating and Opening a Local Shared Object

Problem

You want to store information that persists between visits to a .swf file.

Solution

Use a LSO.

Discussion

As mentioned in the introduction to this chapter, LSOs are to Flash what cookies are to web
browsersbut more so. They are called "super cookies" by some developers because they allow you to
store large amounts of data and store and retrieve many intrinsic ActionScript datatypes (as well as
objects created from custom classes). In general, LSOs are referred to as Flash cookies.

The default maximum size that LSOs can grow to is 100 KB. However, counting on the use of this
much storage space for a movie could lead to potential problems because users have full control over
the size of LSOs through the Flash Player's Settings Manager and can restrict growth as they see fit.
LSO files are saved to the client computer in a binary file ending with a .sol extension. Flash movies
within the same domain can write to and read from the .sol files by means of ActionScript's
flash.net.SharedObject class.

When a .sol file is created, it is placed in an application data directory for the Flash Player. For users
using Microsoft Windows, it will be in a directory something like this: C:\Documents and Settings\[
username] \\Application Data\\Macromedia\\Flash Player\\#SharedObjects\\ [random character
directory name]. On Mac OS X, the directory will be something like /Users/[username]
/Library/Preferences/Macromedia/Flash Player/#SharedObject/ [random character directory name
]. The random character directory name is essential for security purposes. A rogue .swf movie might

try guessing the name and location of a shared object from a particular web site so that it can load
the LSO from the filesystem to gain access to data it normally doesn't have access to. After all, .sol
files are stored in a standard location. By augmenting the path with randomness, guessing the path
to the .sol files is virtually impossible.

The static getLocal() method is the mechanism by which LSOs are both created and opened for
reading. The method requires at least one parameter; a string that specifies the name of the shared
object to create or open:

var example:SharedObject = SharedObject.getLocal("example");

The getLocal() method attempts to first locate an existing LSO by the specified name with a .sol
extension stored on the client computer. If none is found, the Flash Player creates a new LSO with
that name. In either case, the existing or new LSO is opened. The getLocal() method returns a
SharedObject instance. It is used instead of the new operator to instantiate a new local shared
object.

See Also

Recipe 17.2 has important information on how to store data in a local shared object. Recipe 17.3 has
details on how to retrieve data from a local shared object. Recipe 17.4 has information on the
SharedObject.flush() method, which is used to manually save data to a shared object. Recipe 17.5
discusses sharing data between movies. Recipe 17.6 has details on opening the Flash Player Settings
dialog box to the Local Storage tab to configure disk space usage.

Recipe 17.2. Writing Data to a Shared Object

Problem

You want to add data to an LSO.

Solution

Add the values as properties of the shared object's data object.

Discussion

Shared objects have a special built-in property named data. The data property is an object to which
you should add any information that you want stored in the shared object:

// Store a username value to the example shared object.
example.data.username = "Darron";

Unlike previous versions of ActionScript, properties can no longer be attached directly to the shared
object. A compile-time error is generated when trying to store data on the SharedObject instance
itself instead of in the data property. This prevents potential erroneous attempts to save data:

example.variable = "This will cause a compile-time error.";

Additionally, trying to assign a value to the data property directly is incorrect:

example.data = "This will cause another compile-time error.";

The correct approach is to attach the value to a new property under the data property, as follows:

example.data.variable = "This is the correct way to store data.";

You can store several native ActionScript datatypes to the shared object's data property, as follows.

example.data.exampleArray = new Array("a", "b", "c");
example.data.exampleDate = new Date();
example.data.exampleObject = { key1: "example", key2: -12, key3: null };

However, you cannot store visual elements (such as movie clips, sprites, buttons, or text fields) or
shared objects themselves to a shared object's data property so that the data persists correctly
between sessions.

Recipe 17.3. Saving a Local Shared Object

Problem

You want to save data in an LSO to the client computer.

Solution

Use the SharedObject.flush() method.

Discussion

Flash automatically attempts to save LSO data to disk when either the movie is unloaded from the
Player (such as when the Player closes), when the SharedObject instance is garbage collected (which
occurs when there are no longer any references to the instance) or when the SharedObject.clear()
method is invoked. However, it isn't a good practice to rely on the automatic save function, as there
are several reasons why the data might be written to disk successfully. Instead, you should explicitly
instruct the LSO to write the data to disk using the SharedObject.flush() method:

var flushResult:String = example.flush();

The flush() method takes an optional parameter specifying the minimum amount of disk space, in
bytes, that should be used when writing the shared object. The value specified defaults to 0, meaning
that only the minimum required space should be used to write the local shared object to disk.

When the flush() method is invoked, it attempts to write the data to the client computer. The result
of a flush() invocation can be one of three possibilities:

If the user denies LSO storage for the domain, or if the Flash Player fails to save the data for
some reason, the data is not saved and the method throws an Error.

If the amount of disk space required to save the LSO's data is less than the local storage setting
for the domain, the data is written to disk and the method returns
SharedObjectFlushStatus.FLUSHED, indicating a successful call. When the optional minimum
disk space is passed to flush(), the amount of space allotted must be greater than or equal to
that value for the data to be flushed successfully.

If the user has not allotted as much space as the shared object data requires, she is prompted
to allow enough space or to deny access to save the data. When this happens, the method
returns SharedObjectFlushStatus.PENDING. If the user chooses to grant access, the extra

space is automatically allotted and the data is saved.

In the third case, in which the flush() method returns the SharedObjectFlushStatus.PENDING
constant, there is an additional step you can take to determine whether the user grants or denies
access to save the data. When the user makes a selection from the automatic prompt, the netStatus
event is raised. It is up to you to define an event handler to handle the results in the way that is
appropriate for your application. When the event handler is invoked, it is passed a parameter of type
flash.events.NetStatusEvent. Examine the info.code string property to determine if the user granted
access (when code is set to SharedObject.Flush.Success) or if the user denied access (when code is
set to SharedObject.Flush.Failed).

Here is an example that invokes flush() to save the data explicitly. It then handles the possible
responses:

var example:SharedObject = SharedObject.getLocal("example");
example.data.someData = "a value";
try {
 var flushResult:String = example.flush();
 // If the flush operation is pending, add an event handler for

 // netStatus to determine if the user grants or denies access.
 // Otherwise, just check the result.
 if (flushResult == SharedObjectFlushStatus.PENDING) {
 // Add an event handler for netStatus so we can check if the user
 // granted enough disk space to save the shared object. Invoke

 // the onStatus method when the netStatus event is raised.
 example.addEventListener(NetStatusEvent.NET_STATUS, onStatus);

 } else if (flushResult == SharedObjectFlushStatus.FLUSHED) {
 // Saved successfully. Place any code here that you want to
 // execute after the data was successfully saved.
 }
} catch (e:Error) {
 // This means the user has the local storage settings to 'Never.'
 // If it is important to save your data, you may want to alert the
 // user here. Also, if you want to make it easy for the user to change
 // his settings, you can open the local storage tab of the Player
 // Settings dialog box with the following code:

 // Security.showSettings(SecurityPanel.LOCAL_STORAGE);.
}

// Define the onStatus() function to handle the shared object's

// status event that is raised after the user makes a selection from

// the prompt that occurs when flush() returns "pending."
function onStatus(event:NetStatusEvent):void {
 if (event.info.code == "SharedObject.Flush.Success") {

 // If the event.info.code property is "SharedObject.Flush.Success",
 // it means the user granted access. Place any code here that
 // you want to execute when the user grants access.
 } else if (event.info.code == "SharedObject.Flush.Failed") {

 // If the event.info.code property is "SharedObject.Flush.Failed", it
 // means the user denied access. Place any code here that you
 // want to execute when the user denies access.

 }

 // Remove the event listener now since we only needed to listen once
 example.removeEventListener(NetStatusEvent.NET_STATUS, onStatus);
};

If you know in advance that a shared object is likely to continue to increase in size with each session,
it is prudent to request a larger amount of local storage space when the shared object is created.
Otherwise, each time the current allotted space is exceeded, the user is prompted again to accept or
deny the storage request. Setting aside extra space avoids repeatedly asking the user for permission
to store incrementally more data. In this situation, the minimum disk space parameter should be
passed to the flush() method to specify a certain number of bytes to set aside for the shared object:

// Request 500 KB of space for the shared object.
var flashResult:String = example.flush(500 * 1024);

See Also

Recipe 17.8

Recipe 17.4. Reading Data from a Shared Object

Problem

You want to read values that have been previously written to a LSO.

Solution

Read the values from the properties stored in the shared object's data property.

Discussion

There is nothing difficult about reading the values from a client-side shared object. All persistent
values are stored in the shared object's data property, so you simply read the values from the data
property, as follows:

// Read the value of exampleProperty from the shared object,

// example, and display it in the Output window.
trace(example.data.exampleProperty);

By using a combination of reading and writing data, you can determine if this is the first time a user
is viewing a .swf file.

// Create a shared object and store some data in it
var example:SharedObject = SharedObject.getLocal("example");

if (example.data.previouslyViewed) {
 // The user has already viewed the .swf file before, perhaps
 // we skip an introductory help screen here.
} else {
 // This is the first time the user is viewing the .swf file

 // because previouslyViewed has not yet been set to true.

 // Set previouslyViewed to true so that the next time this
 // code is run we know the user has been here before.
 example.data.previouslyViewed = true;
 example.flush();
}

Recipe 17.5. Removing Data from a Shared Object

Problem

You want to remove properties from a shared object, or you want to remove the entire shared object
from the disk.

Solution

Use delete to delete a property from the shared object's data property, or use the clear() method to
remove the shared object.

Discussion

Removing data from a shared object is a straightforward process, but it has to be done the correct
way. In ActionScript you will commonly find that people set complex variables such as objects or
arrays to null or undefined to remove them. Doing this with a shared object, however, is the wrong
approach.

// Attempt to delete someVariable from the example shared object.
// This statement will compile but does not do as we intend it to.
example.data.someVariable = null;

A shared object is capable of storing both null and undefined as valid values. Therefore, the
preceding code does not remove someVariable from the data property, but rather someVariable is
given the value of null in the assignment statement instead of being removed from the shared
object. The correct way to completely remove something from a shared object is to delete it, like
this.

// Remove someVariable from the example shared object.
delete example.data.someVariable;

You can also remove an entire shared object by invoking the clear() method on it. After the clear()
method is called, the physical .sol file that stores the shared object is removed form the disk. The
following code is an example of removing a shared object.

// Create a shared object and store some data in it
var example:SharedObject = SharedObject.getLocal("example");
example.data.someData = "a value";

// Displays: a value
trace(example.data.someData);

// Remove the shared object from the disk
example.clear();

// Displays: undefined
trace(example.data.someData);

After a shared object has been cleared, the shared object reference is still valid. This means that you
can use the shared object as if it were newly created. Adding values to the data property makes
them persistent, as you would expect with normal shared object behavior. In effect, the clear()
method empties the shared object entirely, making it ready to be used again if needed.

Recipe 17.6. Serializing Custom Classes

Problem

You want to store an instance of a custom class in an LSO.

Solution

Use the flash.net.registerClassAlias() method to preserve type information and add the class
instance to the shared object's data property.

Discussion

LSOs use a special binary format, Action Message Format (AMF), for encoding information. When you
store a class instance in an LSO, the instance is encoded as a generic object that contains properties.
Thus, when you try to read the instance back from the shared object, it cannot be read as a class
instance because it was not encoded with type information.

To get around this limitation, the registerClassAlias() method from the flash.net package is used.
This method is very similar to the Object.registerClass() method used in ActionScript 1.0 and 2.0;
however, Object.registerClass() has been removed from ActionScript 3.0 and replaced with
flash.net.registerClassAlias().

The registerClassAlias() method takes two parameters. The first parameter is a string alias that is
used to represent a class. You can use an arbitrary string value that you want as the alias, but the
best practice is to use the fully qualified class name. If you have a Person class in a model package,
the string alias you should use is model.Person to provide clarity and avoid ambiguity. This approach
also avoids accidentally using a string alias multiple times, since it is impossible to have two classes
with the same fully qualified class name. The second parameter is the reference to the class you want
to map the class alias to.

registerClassAlias("somePackage.ExampleClass", ExampleClass);

This code tricks the LSO into storing information about the class that created it. Therefore, when the
data is retrieved from the shared object, the Flash Player knows what kind of object it is.

The custom class must have an alias registered in any movie that retrieves the
custom object data from a shared object.

The following code example is a complete implementation of saving an instance of a class to an LSO.
First, create a custom class to serialize.

// Create a Person class in the model package
package model {

 public class Person {

 private var _firstName:String;
 private var _age:int;

 public function Person(firstName:String, age:int) {
 _firstName = firstName;
 _age = age;
 }

 public function toString():String {
 return _firstName + " is " + _age + " years old";
 }

 }

}

Next, create a main class to read and write the data.

package {
 import flash.net.registerClassAlias;
 import flash.net.SharedObject;
 import model.Person;

 public class Example {

 public function Example() {

 // Map "model.Person" to the Person class
 registerClassAlias("model.Person", Person);

 // Create a shared object and store a Person instance in it
 var example:SharedObject = SharedObject.getLocal("example");

 // Test to see if the person instance has been saved already
 if (example.data.person == undefined) {
 trace("first time, saving person instance");
 var person:Person = new Person("Darron", 24);

 // Write the class instance to the local shared object
 example.data.person = person;

 } else {
 trace("person instance already saved, using stored values");
 }

 /* Every time this code is executed, the following is displayed:
 Darron is 24 years old
 */
 trace(example.data.person.toString());
}

There is an important piece to point out about the preceding code. The call to registerClassAlias()
must happen before the SharedObject.getLocal() method call. For the shared object to be read
correctly, the class alias has to be created before the shared object is decoded. Creating the shared
object without first creating the alias results in the Person instance not being read; instead, it is
decoded as a generic object instead of a class instance.

Recipe 17.7. Sharing Data Between Flash Applications

Problem

You want two movies within the same domain to have access to the same LSO.

Solution

Specify a local path parameter when creating and opening the LSO.

Discussion

By default, LSOs are saved to a path on the client computer that is unique to the domain, path, and
name of the .swf file calling the getLocal() method. This prevents name conflicts between LSOs from
different domains, or even different movies on the same domain. For example, on a system running
Windows XP, if a movie named movie.swf served from http://www.person13.com/ascb writes an LSO
named example , the data is saved in a location such as the following:

C:\Documents and Settings\[user name]\Application Data\Macromedia\Flash Player\#SharedObjects\[random directory name]\person13.com\ascb\movie.swf\example.sol

The name of the .swf file is included in the path to which the LSO is saved so it won't conflict with an
LSO named example created by another movie served from the same domain and path. However, in
some cases, you want two movies on the same domain to have access to the same LSO. In these
cases, you should use the optional local path parameter when creating and opening the LSO using
getLocal() .

The local path parameter (the second parameter passed to getLocal()) must be a string that
specifies the full or partial path to the .swf file that created the LSO; for example:

var example:SharedObject = SharedObject.getLocal("example", "/");

If the preceding code exists in movie.swf , which is served from http://www.person13.com/ascb , the
LSO is stored at a location such as the following:

C:\Documents and Settings\[user name]\Application Data\Macromedia\Flash Player\#SharedObjects\[random directory name]\person13.com\example.sol

The difference in this directory versus the one presented earlier is that it lacks the movie and path
information. An LSO created this way can be opened by any other Flash movie in the same domain
with the following line of ActionScript:

http://www.person13.com/ascb
http://www.person13.com/ascb

var example:SharedObject = SharedObject.getLocal("example", "/");

It is important to understand that a movie can only create and/or open an LSO within the same full
or partial path. To understand this, consider an example with two Flash movies: movieOne.swf and
movieTwo.swf . Both movies are served from the same domain (http:// www.person13.com) but at
different paths. movieOne.swf is served from http:// www.person13.com/ascb/firstGroup , and
movieTwo.swf is served from http:// www.person13.com/ascb/secondGroup . In this scenario,
movieOne.swf can create and read LSOs with any of the following local path values:

/
/ascb
/ascb/firstGroup

and movieTwo.swf can create and read LSOs with any of the following local path values:

/
/ascb
/ascb/secondGroup

Therefore, if you want both movies to be able to access a common LSO, you must specify one of the
two local paths that the movies share (/ or /ascb) when you invoke the getLocal() method.

To illustrate how you can share data between two (or more) Flash movies within the same domain,
take a look at the following example. If the movies don't exist within the same directory, you must
first specify a common local path to both of them in the directory hierarchies. Start by looking at
what happens if you fail to specify a common local path:

Create a new .swf movie that contains the following code, and name it movieA.swf :1.
var count:SharedObject = SharedObject.getLocal("count");

// The first time the shared object is read, default the value to 0
if (count.data.value == undefined) {
 count.data.value = 0;
} else {
 // Every time the shared object is read, increment the count value
 count.data.value++;
}

// Create a text field to display the count value
var output:TextField = new TextField();
output.text = "count value: " + count.data.value;
addChild(output);

2.

Create a new directory somewhere on your computer. Name this directory LSOTest .3.

Create two subdirectories within LSOTest . Name these subdirectories movieAPath and
movieBPath .

4.

5.

http://
http://
http://

4.

Copy the movieA.swf file to both of the subdirectories that were just created.5.

Rename the movie as movieA.swf to movieB.swf in the LSOTest/movieBPath directory.6.

Open and close the movieA.swf file multiple times. Each time the file is loaded, the count value
should increment by one.

7.

Open and close the movieB.swf file multiple times. Each time the file is loaded, the count value
should increment by one. However, notice that the number starts at 0. This is because, as it
stands, movieA.swf and movieB.swf use different shared objects. Even though the shared
objects have the same name, they have different paths, which created different .sol shared
object files.

8.

To cause both movies to use the same shared object, you must tell them to look in the same
path. Modify the line of code that opens the shared object so that it reads as follows:

9.

var count:SharedObject = SharedObject.getLocal("count", "/");10.

This causes both movies to look to a common path for the shared object, and hence use the
same file.

11.

Copy and rename the .swf file with the updated code to the appropriate directories to match
previous steps, placing movieA.swf in the movieAPath directory and movieB.swf in the
movieBPath directory.

12.

Repeat Steps 5 and 6. This time, notice that each update to one movie also increments the
value used by the other movie. This is because they are now using the same shared object .

13.

Recipe 17.8. Controlling the Size of Local Shared Objects

Problem

You want to control the amount of disk space used by a shared object.

Solution

Use the Security.showSettings() method or visit the web site for the Flash Player Settings Manager.

Discussion

As mentioned in Recipe 17.8 , the default size for an LSO is 100 KB. Recipe 17.3 explained that the
flush() method can be used to request a certain amount of disk space for an LSO. If the disk space
requested exceeds the maximum allowed value, the user is prompted to either allow or deny the
request. Through the use of the flash.system.Security.showSettings() method, it is possible to bring
up a dialog that allows the user to set the maximum amount of data allowed to be stored in an LSO.
The following code opens the Settings UI to the local disk storage section.

// Show the settings for local storage
Security.showSettings(SecurityPanel.LOCAL_STORAGE);

To coincide with the Settings UI for a specific domain, there is a more comprehensive Settings
Manager that allows a user to change to global settings. Athough the Settings UI and Settings
Manager provide similar functionality, they are completely different items. The Settings UI is a special
form inside the Flash Player that is displayed via the showSettings() method, allowing the user to
control the settings for a specific domain. The Settings UI can be opened through ActionScript as the
preceding code block shows. It can also be opened manually by right/Control-clicking inside the Flash
Player, and then selecting Settings from the contextual menu. In contrast, the Settings Manager is
accessed via the macromedia.com web site. To open the Settings Manager to the Website Storage
form, go to
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager07.html
.

This URL may look like just a simple a web page or screenshot, but it's actually a functional Flash
application that modifies the global settings of the Flash Player. Updating a value via the Settings
Manager URL affects how the Flash Player behaves. For instance, if you want to change the default
size of an LSO (for LSOs that have not been initially created yet), navigate to the Global Storage
Settings page
(http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager03.html
).

http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager07.html

Adjust the slider until it displays an acceptable value to you. After the slider value has been changed,
the default maximum size for LSOs has been modified.

Remember, as a developer you have no control over LSO disk space on a client's computer. The best
you can do is request a certain amount of space, explain why you might need that space, and hope
that the user grants it to you. It is not recommended, however, to rely on LSOs for functionality
critical to your application because the client has the final say of the LSO sizeif the LSO is even
allowed at all.

Chapter 18. Communicating with Other
Movies

Section 18.0. Introduction

Recipe 18.1. Creating Local Connections

Recipe 18.2. Sending Data

Recipe 18.3. Validating Receipt of Communication over Local Connections

Recipe 18.4. Accepting Local Communications from Other Domains

18.0. Introduction

When discussing Flash movies interacting with one another, there are two possible scenarios to
consider. First, two movies running on the same client computer may have the ability to
communicate with each other. Second, there is communication between movies running on different
computers.

Prior to Version 6 of the Flash Player, the only way to communicate between movies on the same
computer (without using server-side functionality) was to use the fscommand() function to execute
JavaScript methods and use that JavaScript to bridge the communication gap between the movies.
Unfortunately, these methods were both cumbersome to use and not always reliable (due to lack of
support in various browsers). Also, these methods worked only with Flash movies running in web
browsers in which the browser windows had references to one another. However, Flash Player 6
introduced local connections, a means by which any Flash movie can broadcast to and listen for
broadcasts from any other movie on the same computer. The advantages of local connections are:

They are relatively simple to use.

They are implemented entirely in ActionScript and they work for movies running in Flash Player
6 or later.

To communicate between movies on separate client computers, the use of a server-side technology is
required. There are three possible approaches to use in this scenario:

Remote shared objects can be used in conjunction with Flash Media Server (formerly Flash
Communication Server) to allow separate movies to send and receive data between themselves.

A socket connection can be made to a server that can handle a message passing between all
connected clients.

For communication that is not considered real-time, it is possible to use a polling methodology
coupled with a server-side technology to send and receive new information from the server at
certain intervals.

This chapter focuses on inter-movie communication through the use of LocalConnection, allowing
multiple movies on the same client computer to interact with each other.

See Also

Chapter 24 has more information about communicating between clients on different computers
through the use of socket connections. Chapter 19 has information about sending and receiving data,
which may be useful in situations where real-time communication is not a requirement.

Recipe 18.1. Creating Local Connections

Problem

You want to communicate from one or more Flash movie(s) to another Flash movie playing on the
same client computer.

Solution

Use the LocalConnection class in the flash.net package to invoke a function in the receiving movie
from the sending movie. Use LocalConnection.connect() to listen for messages in the receiving
movie and define the function that will be invoked. Use LocalConnection.send() from the sending
movie(s) to invoke a function in the remote movie. Both the sending and receiving movies must
specify the same named channel for communication.

Discussion

When two or more Flash movies are playing on the same client computer, they can communicate
with one another via a local connection created with the flash.net.LocalConnection class. As long as
the movies are playing on the same computer, a connection can be made regardless of the domains
from which the movies are being served.

By default, movies accept communications from movies on the same domain
only. However, you can configure them to receive from other domains as well.
See Recipe 18.4.

To successfully communicate between multiple movies on the same computer, you must do three
things:

Configure the receiving movie to listen for communications.1.

Tell the receiving movie what to do when messages are received.2.

Send messages to the receiving movie from the sending movie(s).3.

A receiving movie must listen for messages over a specific, named local connection. To establish this
communication channel, you should create a local connection object in the receiving movie and tell it
to listen to a named connection using the connect() method:

import flash.net.LocalConnection;

// Create the local connection object in the receiving movie.
var receiver:LocalConnection = new LocalConnection();

// Instruct the local connection instance to listen for messages

// sent over the "_exampleChannel" channel.
receiver.connect("_exampleChannel");

As shown in the preceding example, the best practice is to name your communication channel (not
the local connection object) with an initial underscore (_). Naming your connections in this way also
simplifies communicating across domains. By starting the connection name with an underscore, the
Flash Player does not augment the connection name with domain-specific information behind the
scenes. When an underscore is not the first character in the connection name, the connection name
string is converted into domain:connectionName automatically, where domain is either the domain
name that served up the .swf file or local host when the .swf file is run locally.

All communications over the local connection are mapped by the receiving local connection instance.
By default, the receiving local connection object looks for methods defined on the instance with the
same name as the method sent in the request. For example, if the sending movie sends a
communication that looks for a method named example(), the receiving local connection object looks
for an example() method that it defines. In previous versions of ActionScript, this was simply a
matter of creating a function and attaching it to the instance through a name of example.

// Previous to ActionScript 3.0, this would create an example function
// that could be invoked through a local connection.
receiver.example = function () {
 output.text = "communication received";
};

However, in ActionScript 3.0, this will not work. By default, the LocalConnection class does not allow
properties and methods to be created on class instances at runtime. That means there are three
basic solutions:

Create a dynamic LocalConnection subclass, and use instances of that for all receiving local
connections.

Create a LocalConnection subclass that defines the methods you intend to call from the sending
.swf.

Redirect requests to a client object.

We'll next look at each of these solutions.

To allow runtime modification of a class to then attach functions to an instance, the class has to be
declared dynamic. The easiest way to do this in ActionScript 3.0 is to extend the LocalConnection
class with a dynamic class, and use the newly created class as the receiver to attach methods to.
That class would look like this:

package {

 import flash.net.LocalConnection;

 // Create a dynamic Location Connection class that we can
 // attach functions to.
 dynamic public class DynamicLocalConnection extends LocalConnection {
 // Empty all we need is the dynamic keyword
 }
}

Now use the DynamicLocalConnection in place of the regular LocalConnection class and create a
receiving function as in previous versions of ActionScript:

// Create the local connection object in the receiving movie.
var receiver:DynamicLocalConnection = new DynamicLocalConnection();

// Instruct the local connection instance to listen for messages
// sent over the "_exampleChannel" channel.
receiver.connect("_exampleChannel");

// Because the DynamicLocalConnection class is dynamic, we can
// create a new function on the instance to respond to local
// conection messages.
receiver.example = function():void {
 trace("communication received");
};

This first solution has the advantage of being very flexible. You can use the DynamicLocalConnection
class for all receiving local connections in all projects. The problem is that it is so flexible that it
doesn't lend itself to well-defined interfaces, which is something you typically strive for in object-
oriented design.

The second solution requires you use a well-defined API. You can create a LocalConnection subclass
that defines the specific method or methods you want to handle. For example, the following class
defines an example() method.

package {
 import flash.net.LocalConnection;
 public class ExampleLocalConnection extends LocalConnection {
 public function ExampleLocalConnection() {}
 public function example():void {
 trace("communication received");
 }
 }
}

The next solution uses a LocalConnection property called client to redirect requests to a different
object other than the receiving local connection instance. The client object must define the requested

methods as public methods. The following example illustrates this:

package {
 import flash.net.LocalConnection;
 public class Example {
 private var _localConnection:LocalConnection;
 public function Example() {
 _localConnection = new LocalConnection();
 _localConnection.connect("_exampleChannel");
 _localConnection.client = this;
 }
 public function example():void {
 trace("communication received");
 }
 }
}

If you want to define the requested methods as private, then you have the option if you use a
generic object as a proxy, as shown in the following example:

package {
 import flash.net.LocalConnection;
 public class Example {
 private var _localConnection:LocalConnection;
 public function Example() {
 _localConnection = new LocalConnection();
 _localConnection.connect("_exampleChannel");
 _localConnection.client = {example: example};
 }
 private function example():void {
 trace("communication received");
 }
 }
}

Now that we've configured the receiving .swf, we next need to build the sending .swf. The sending
.swf uses the LocalConnection.send() method to send a communication. The first parameter of the
send() method is a string that specifies the name of a connection over which to send the
communication, enabling you to create multiple discrete connections. The second parameter of the
send() method is a string specifying the name of the method to call in the receiving movie. When a
movie receives a message, it invokes the method of the same name on the receiving local connection
object.

The following example invokes a remote method named example:

// Send a communication across the "_exampleChannel" channel that

// invokes a method named example() in the receiving movie.
var sender:LocalConnection = new LocalConnection();
sender.send("_exampleChannel", "example");

When using the LocalConnection class, communication is many-to-one. That is, there can be multiple
senders for a specific channel but only a single receiver. If a receiver tries to connect to a channel
that another receiver has already opened, the connect() method throws an error and won't allow the
connection to be made. You can use a try...catch block to test for a receiver being able to
successfully create a listening connection on a channel, like this:

var receiver:LocalConnection = new LocalConnection();
try {
 receiver.connect("_exampleChannel");
} catch(e:Error) {
 // Error could not listen on _exampleChannel because another
 // receiver has already claimed it.
}

For LocalConnection to work properly, note that both the sending and receiving movies have to be
playing on the same computer at the same time. To communicate between movies that play on the
same computer at different times, use an LSO. See Recipe 17.1 and Recipe 17.7 for information on
using LSOs.

See Also

Recipes 17.1, 17.7, and 18.2

Recipe 18.2. Sending Data

Problem

You want to send data to one or more movies playing on the same computer.

Solution

Pass the data as additional parameters to the send() method of the sending local connection object.

Discussion

You can send data to another movie using a local connection by passing the data as additional
parameters to the send() method of the sending local connection object. The send() method
requires at least two parameters: the name of the connection and the name of the method to invoke
on the receiving movie. Any additional parameters passed to the send() method are automatically
passed as parameters to the receiving movie's method. Note that the name of the method you are
invoking on the receiving movie cannot be one of the built-in method or properties of the
LocalConnection class, or the send() call will fail. The built-in method and property names that
cannot be used as the method name parameter are send, connect, close, allowDomain,
allowInsecureDomain, client, and domain.

You should define the receiving method so it accepts the parameters sent to it. In this example, a
local connection receiver class is created that contains a method named example(). The method
expects three parameters: str, num, and bool; for example:

package {

 import flash.net.LocalConnection;

 public class ExampleReceiver {

 private var _receiver:LocalConnection;

 public function ExampleReceiver() {
 // Instantiate the local connection receiver and listen on the

 // "_exampleChannel" channel for other movies calling the example
 // method.
 _receiver = new LocalConnection();
 _receiver.connect("_exampleChannel");
 _receiver.client = this;
 }

 public function example(str:String, num:Number, bool:Boolean):void {
 trace("The parameters are: " + str + "\n" + num + "\n" + bool);
 }
 }
}

The following code snippet sends a message that calls example() in the receiving movie and passes it
parameters, similar to invoking it like: example("a string", 6.5, true):

// Send three parameters to a receiving movie's local connection

// method named example(). The parameters happen to be a String, a
// Number, and a Boolean.
var sender:LocalConnection = new LocalConnection();
sender.send("_exampleChannel", "example", "a string", 6.5, true);

You are not limited to sending just primitive datatypes. Specifically, you can send data of the
following complex types: Object, Array, Date, TextFormat, and XML.

Additionally, you can send objects of custom types. The process for doing so involves many of the
same steps as storing and retrieving custom object types from a shared object. You can find more
details about the theory behind this in Recipe 17.6, but the required steps are:

Define the custom class, and if necessary, import it in both the sending and receiving movies.1.

Register the class in the sending and receiving movies by using the flash.net.registerClass()
method, making sure to use the same alias in all movies.

2.

Send a class instance over a local connection with the send() method.3.

The following is an example of the code in a sending movie and a receiving movie that passes data of
a custom object type from one to the other.

First, let's define the custom class called Person:

// Create a Person class in the model package
package model {

 public class Person {

 private var _firstName:String;
 private var _age:int;

 public function Person(firstName:String, age:int) {
 _firstName = firstName;
 _age = age;
 }

 public function toString():String {

 return _firstName + " is " + _age + " years old";
 }

 }

}

Here's the receiving .swf code:

import flash.net.registerClassAlias;
import model.Person;

registerClassAlias("model.Person", model.Person);

package {
 import flash.net.LocalConnection;
 public class ExampleReceiver {

 private var _localConnection:LocalConnection;

 public function ExampleReceiver() {
 _localConnection = new LocalConnection();
 _localConnection.connect("_exampleChannel");
 _localConnection.client = this;
 }

 public function example(person:Person):void {
 trace(person.toString());
 }

 }
}

And here's the sending .swf code:

package {
 import flash.net.registerClassAlias;
 import model.Person;
 public class ExampleSender {

 public function ExampleSender() {
 registerClassAlias("model.Person", Person);

 // Create a Person instance to send across
 var person:Person = new Person("Darron", 24);

 // Create the local connection and send a Person instance
 // to the receiving movie.
 var sender:LocalConnection = new LocalConnection();
 sender.send("_exampleChannel", "example", person);

 }
 }
}

Regardless of what type of data is being sent, the same rules apply to any type of local connection
communication. Both movies must be running on the same computer at the same time, and the
receiving movie must be listening on the same channel that the sending movie uses to send. Also, it's
worth noting that once you have defined a custom datatype in both the sending and receiving
movies, you can send that type of data in both directions (although you should use two separate
channels for bidirectional communication, as discussed in Recipe 18.3).

See Also

Recipes 17.6 and 18.3

Recipe 18.3. Validating Receipt of Communication over
Local Connections

Problem

You want a sending movie to receive confirmation that the communication was successfully received.

Solution

Configure the receiving movie to return a receipt to the sending movie.

Discussion

To confirm that a communication was received, you can have the receiving movie send a message
back to the original sending movie. Due to the nature of local connections, a single channel cannot be
used for two-way communication. For this reason, we have to create a local connection channel for
each direction of communication. Use the following steps to confirm receipt of a message:

Set up the sending and receiving movies, as described in Recipe 18.1.1.

In addition to whatever code you include in the method that is invoked on the receiving movie,
write code to send a receipt over a new channel (for example, "_exampleChannelReceipt "). You
can use this.send() within the local connection's method to send a receipt back to the original
sender.

2.

In the sending movie, call the connect() method, passing it the name of the channel over which
the receiving movie sends the receipt ("_exampleChannelReceipt").

3.

In the sending movie, create a method on the local connection object to handle the receipt
communication. Make sure this method name matches the name of the method that the
receiving movie invokes when sending the receipt.

4.

The following is an example of some code from a sending movie and a receiving movie.

First, the receiving movie code, using the DynamicLocalConnection class:

// Create the receiving code to listen on the "_exampleChannel"
// channel.
var receiver:DynamicLocalConnection = new DynamicLocalConnection();
receiver.connect("_exampleChannel");

receiver.example = function():void {
 // In addition to whatever other code goes in the
 // receiving method, add this code to issue a receipt

 // back to the sending movie over the "_exampleChannelReceipt"

 // channel. The this keyword refers to the current local
 // connection object.
 this.send("_exampleChannelReceipt", "receipt");
};

Then, the sending movie code:

// Create the local connection object for sending over the

// "_exampleChannel" channel.
var sender:DynamicLocalConnection = new DynamicLocalConnection();
seder.send("_exampleChannel", "example");

// Tell the local connection to listen on the

// "_exampleChannelReceipt" channel for the receipt broadcast
// by the receiving movie.
sender.connect("_exampleChannelReceipt");

// Define the receipt() method that gets called from the
// receiving movie.
sender.receipt = function():void {
 output.text = "Receiver has delivered sent receipt";
};

The key is that the name of the channel on which a local connection object listens (using connect())
must be the same as the name of the channel over which another movie's local connection object
sends a message (using send()).

To take this one step further, you can tell the receiving local connection the name of the channel to
send a receipt to. This is useful when multiple movies are sending data to the same movie and the
receiving movie does not necessarily know which movie delivered the data. To achieve this effect,
pass the channel name to the receiver by using code like this:

sender.send("_exampleChannel", "example", "_exampleChannelReceipt1");

The sender movie would send the name of the channel it's listening for a receipt on. The receiving
movie then sends the receipt over that channel name:

receiver.example = function(receiptChannelName:String):void {
 this.send(receiptChannelName, "receipt");
}

By passing around the receipt channel name, the receipt channel is never hardcoded into the
receiving movie, making the approach more flexible.

See Also

Recipe 18.1

Recipe 18.4. Accepting Local Communications from Other
Domains

Problem

You want a movie to accept local connection communications from movies served from other
domains.

Solution

Use the allowDomain() method of the receiving local connection object.

Discussion

By default, receiving movies accept communications from sending movies on the same domain only.
However, you can use the allowDomain() method of a local connection object to allow or disallow
communications from any domain. You need to call the allowDomain() method for each receiving
local connection object for which you wish to define a custom list of domains to accept or deny.

The behavior of allowDomain() has changed from previous versions of ActionScript. Before, the
method acted as a callback. It would automatically invoke when a local connection object received a
communication. Based on the return value of the method, the communication was either accepted or
denied.

In ActionScript 3.0, the allowDomain() method needs to be explicitly called on a LocalConnection
instance. The method takes one or more strings, specifying the domains that are allowed to send
messages to the local connection instance that allowDomain() is called from. In this example, we
specifically allow movies from darronschall.com to send messages to the current movie.

var receiver:LocalConnection = new LocalConnection();
receiver.connect("_exampleChannel");

// Allow movies from darronschall.com to send data over

// "_exampleChannel" to execute code within this movie.
receiver.allowDomain("darronschall.com");

To allow more than one domain to be able to send data to a movie, pass additional parameters to the
allowDomain() method with one string for each domain to allow:

receiver.allowDomain("macromedia.com", "adobe.com", "google.com");

There are two special domain strings that can be used in allowDomain(). To allow any domain, use ~
as the domain string. It is generally not a good practice to allow communications from all domains,
because doing so allows any other movie to invoke an arbitrary method on your movie. It is better to
specify trusted domains from which to accept connections. To allow any locally instantiated movie to
send data, use localhost as the domain string.

Local connection objects also provide a convenient means of determining the domain of the receiving
movie. The domain property can be accessed from any local connection instance to reveal the
domain from which the movie is being served. It is a read-only property, meaning you can only
inspect it. Trying to set domain results in a compiler error. You can pass the domain to the
allowDomain() method to allow communications from the same domain; for example:

receiver.allowDomain(receiver.domain);

The preceding example accomplishes exactly the same thing as though you had not called the
allowDomain() method at all; it allows communications from the same domain only. Normally,
therefore, you use the allowDomain() method and domain property to allow communications from
the same domain as well as communications from other domains:

receiver.allowDomain("darronschall.com", receiver.domain);

The preceding code allows local connection messages to be sent from darronschall.com, and also
from the same domain that the movie is served from.

Similar to the allowDomain() method is the allowInsecureDomain() method. For the most part, the
methods are the same. The difference lies in the use of HTTPS. When a movie is served over HTTPS,
the local connection instances inside won't accept data and communication from movies that are
delivered via HTTP. Unless the Flash Player is instructed otherwise via allowInsecureDomain(), by
default communication from an HTTP movie to an HTTPS movie is denied, even if the movies are
served from the same domain.

It is generally not good practice to use allowInsecureDomain() because it can comprise the security
benefits offered by HTTPS. You can't trust the integrity of local connection communication received
from movies delivered over HTTP, as it may be possible for the movie to be altered during delivery.
Nevertheless, if you must use allowInsecureDomain(), call it just like you would allowDomain() .

receiver.allowInsecureDomain("adobe.com");

See Also

Recipe 3.12

Chapter 19. Sending and Loading Data

Section 19.0. Introduction

Recipe 19.1. Loading Variables from a Text File

Recipe 19.2. Loading Variables from a Server-Side Script

Recipe 19.3. Loading a Block of Text (Including HTML and XML)

Recipe 19.4. Checking Load Progress

Recipe 19.5. Accessing Data Being Downloaded

Recipe 19.6. Sending Data to a Server-Side Script

Recipe 19.7. Sending Variables and Handling a Returned Result

19.0. Introduction

There are many reasons why you may want to send and load values from and to your Flash movies,
including to:

Send form values to a server-side script to store in a database.

Send values from an email form to a server-side script to send the email.

Load values from a text file (appropriate when the values are subject to change, such as for the
current weather or for a links page).

Load values from a server-side script where the values are drawn from a database, such as
categories in an e-commerce application.

Send values to a server-side script for processing, and return a value to the Flash movie, such
as for a login process.

When loading data from a URL, the Flash Player interprets the data in one of three possible ways: as
text, raw binary data, or URL-encoded variables. URL-encoded variables follow these rules:

Each variable name is associated with a value using an equals sign, without spaces on either
side of the equals sign.

Variable values loaded into Flash movies are always treated as strings; therefore, you should
not enclose any values in quotes, as you would within ActionScript. A proper example of this is
artist=Picasso.

When there is more than one name/value pair, each pair is separated by an ampersandfor
example, artist=Picasso&type=painting.

Spaces within the values should be replaced by plus signs (+), not %20, as in:
title=The+Old+Guitarist. (Spaces and %20 may also work, but stick with plus signs for the
greatest compatibility.)

Any character that is not a digit, a Latin 1 letter (non-accented), or a space should be converted
to the hexadecimal escape sequence. For example, the value "L'Atelier" should be encoded as
L%27Atelier (%27 is the escape sequence for an apostrophe). See Table 19-1 for a list of
common escape sequences.

Table 19-1. Common URL-encoded escape sequences

Character Escape sequence Character Escape sequence

<space>
%20 or +

.
%2E

 ! %21

/
%2F

 " %22

: %3A

#

 %23

; %3B

 $ %24

< %3C

 % %25

= %3D

 & %26

> %3E

 ' %27

? %3F

(

 %28

@ %40

)
%29

| %7C

*

 %2A

~ %7E

Character Escape sequence Character Escape sequence

 + %2B

\ %5C

 , %2C

^ %5E

 - %2D

_ %5F

Here is an example of variables in URL-encoded format:

artist=Picasso&type=painting&title=Guernica&room=L%27Atelier

Sending and loading data has changed dramatically in ActionScript 3.0. The LoadVars class has been
removed and replaced with a more robust URLLoader class in the flash.net package. URLLoader is
supported by a new cast of characters, namely URLRequest, URLVariables, and URLStream (and a
few others). These classes combine to form a rich API that offers more functionality and flexibility
than what was available in previous versions.

Something that has not changed, however, is that loading data into the Flash Player is still subject to
the standard security sandbox. That is, you can load from a file or script only if it is within the same
domain that the movie is served from. For ways around the domain security limitation, see Recipe
3.12.

 + %2B

\ %5C

 , %2C

^ %5E

 - %2D

_ %5F

Here is an example of variables in URL-encoded format:

artist=Picasso&type=painting&title=Guernica&room=L%27Atelier

Sending and loading data has changed dramatically in ActionScript 3.0. The LoadVars class has been
removed and replaced with a more robust URLLoader class in the flash.net package. URLLoader is
supported by a new cast of characters, namely URLRequest, URLVariables, and URLStream (and a
few others). These classes combine to form a rich API that offers more functionality and flexibility
than what was available in previous versions.

Something that has not changed, however, is that loading data into the Flash Player is still subject to
the standard security sandbox. That is, you can load from a file or script only if it is within the same
domain that the movie is served from. For ways around the domain security limitation, see Recipe
3.12.

Recipe 19.1. Loading Variables from a Text File

Problem

You want to load variables from an external text file into your Flash movie.

Solution

Use the URLLoader.load() method in conjunction with DataFormat.VARIABLES as the dataFormat to
read URL-encoded data into a Flash movie.

Discussion

You should use the URLLoader.load() method whenever you want to load URL-encoded data into
your Flash movie from a text file. This technique allows your Flash movie to access values that
frequently change without modifying the Flash movie itself.

The load() method requires a URLRequest instance as a parameter that points to the URL of the text
file. The URL can be an absolute or relative address. Additionally, the URLLoader needs to be
configured to interpret the text as URL-encoded variables instead of plain text. Setting the
dataFormat property of the URLLoader instance to the DataFormat.VARIABLES constant accomplishes
this. Here is code to illustrate loading data from a text file:

import flash.net.*;

// You must first create the URLLoader object.
var example:URLLoader = new URLLoader();

// Configure the instance to interpret data as URL-encoded variables
example.dataFormat = DataFormat.VARIABLES;

// This example loads values from a text file at an absolute URL.
example.load(new URLRequest("http://www.darronschall.com/example.txt"));

// This example loads values from a text file located at a relative

// URL, in this case, in the same directory as the .swf file.
example.load(new URLRequest("example.txt"));

Here is an example of what the text file might contain:

someText=testing&someNumber=123

Once you invoke the load() method of a URLLoader instance, the Flash Player attempts to load the
values from a URL into the data property of the same URLLoader instance. After the data loads, Flash
attempts to decode the values and dispatches a complete event when done, signaling that the data is
now available in the movie. It is up to you to add an event handler so you can do something useful
once the data is loaded and decoded.

In the event that the load fails, the URLLoader dispatches a different type of event based on the type
of failure. Therefore, you should not only listen for the complete event on success, but also for any of
the failure events.

The failure events that a load() call can generate include:

httpStatus

Generated when the Flash Player can detect the status code for a failed HTTP request when
attempting to load data.

ioError

Generated when the Flash Player encounters a fatal error that results in an aborted download.

securityError

Generated when data is attempted to be loaded from a domain that resides outside of the
security sandbox.

Here is an example of listening for the various events:

package {
 import flash.events.*;
 import flash.net.*;
 import flash.util.trace;

 public class Example {

 public function Example() {
 // Create the URLLoader instance to be able to load data
 var loader:URLLoader = new URLLoader();

 // Define the event handlers to listen for success and failure
 loader.addEventListener(IOErrorEvent.IO_ERROR, handleIOError);
 loader.addEventListener(HTTPStatusEvent.HTTP_STATUS, handleHttpStatus);
 loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
 handleSecurityError);
 loader.addEventListener(Event.COMPLETE, handleComplete);

 // Configure the loader to load URL-encoded variables

 loader.dataFormat = DataFormat.VARIABLES;

 // Attempt to load some data
 loader.load(new URLRequest("example.txt"));
 }

 function handleIOError(event:IOErrorEvent):void {
 trace("Load failed: IO error: " + event.text);
 }

 function handleHttpStatus(event:HTTPStatusEvent):void {
 trace("Load failed: HTTP Status = " + event.status);
 }

 function handleSecurityError(event:SecurityErrorEvent):void {
 trace("Load failed: Security Error: " + event.text);
 }

 function handleComplete(event:Event):Void {
 trace("The data has successfully loaded");
 }
}

If loading is successful, the Flash Player stores the loaded variables as properties of the data property
of the URLLoader instance and dispatches the complete event. The following example is an event
handler for the complete event that accesses known properties loaded from a file. It assumes that
there are variables named someText and someNumber in the text file from which the data was loaded:

function handleComplete(event:Event):void {
 // Cast the event target as a URLLoader instance because that is
 // what generated the event.
 var loader:URLLoader = URLLoader(event.target);

 // Access the variable(s) that were loaded by referencing the
 // variable name off of the data property of the URLLoader
 // instance.
 trace("someText = " + data.someText);
 trace("someNumber = " + data.someNumber);
}

Here is what the text file might look like:

someText=ActionScript+3.0+Cookbook&someNumber=3

In most cases, you already know the names of the variables that are loaded from the external file or
script. For example, you might use a URLLoader instance to load a daily article from a server-side
script or file, and regardless of the article's content, you expect three variables (title, author, and
articleBody) to be loaded. You know which variables to expect because you wrote the server-side
script, work with the person who wrote the script, or have access to documentation on the script.

However, there are some situations in which you might not know all the variables that are being
loaded. As such, you can use a for . . . in statement to enumerate all the variables that have loaded;
for example:

function handleComplete(event:Event):void {
 var loader:URLLoader = URLLoader(event.target);

 // Use a for . . . in loop to loop over all of the variables that
 // were loaded
 for (var property:String in loader.data) {
 // The property name is stored in the property variable,
 // and the value is retrieved by lookig up the property
 // off of data.
 trace(property + " = " + loader.data[property]);
 }
}

In previous versions of ActionScript, the loaded variables were added directly to an instance of the
LoadVars class. This presented a problem with the loop defined in the preceding code block because
property was not always a loaded variable. It was sometimes a regular property of the LoadVars
instance, giving false positives for variable names loaded. In ActionScript 3.0, all of the loaded
variables are stored in a vanilla data object off of the instance. This makes the preceding loop safe,
since property is always the name of a variable that was loaded and never a property of the
URLLoader instance itself.

Recipe 19.2. Loading Variables from a Server-Side Script

Problem

You want to load variables into a Flash movie from a server-side script (ColdFusion, Perl, PHP, etc.).

Solution

Use the URLLoader.load() method in conjunction with DataFormat.VARIABLES as the dataFormat to
read URL-encoded data generated by a server-side script into a Flash movie.

Discussion

The ActionScript to load variables from a server-side script is exactly the same as that used to load
variables from a text file. When you call the load() method, you should pass it the URL of the script
from which you want to load the variables, and then handle the results by listening for the complete
event as shown in Recipe 19.1.

When the values for variables are generated from a database or another resource accessible only to
the server, use server-side scripts as the source for variables loaded into the Flash Player. The script
that you use must output URL-encoded data only, beginning from the first character. If you are
writing a CGI script in Perl, the result is URL-encoded, so you won't need to make any special
adjustments; for example:

#!/usr/bin/perl

In a more practical example this value would be retrieved
from a database or other server-side resource.
$someText = "test";

Define the Content-Type header.
print "Content-Type: text/plain\n\n";

Output the name-value pair.
print "someText=$someText";

However, when you use a ColdFusion page to generate variables to load into your movie, you need to
take steps to ensure that it outputs URL-encoded data and that the output begins from the first
character. Otherwise, extra whitespace characters may precede the output of the URL-encoded data,
causing improperly decoded values. Here is what you should do:

1.

Include the <cfsetting enablecfoutputonly="yes"> tag at the beginning of the document.1.

Make sure to enclose any values you want to output within a <cfoutput> element.2.

Place the whole document in a <cfprocessingdirective suppresswhitespace="yes"> tag. This
ensures that no extra whitespace characters are output.

3.

For example:

<cfsetting enablecfoutputonly="yes">
<cfprocessingdirective suppresswhitespace="yes">
 <cfset someText = "test">
 <cfoutput>someText=#someText#</cfoutput>
</cfprocessingdirective>

If you use PHP, perform output using echo or print from within a processing directive, such as:

<?php
$someText = "test";
echo "someText=$someText";
?>

Other preprocessor markup languages may or may not require additional steps to ensure proper
output. JSP and ASP (.NET and classic) do not require any special considerations. One trick that
seems to work in most cases is to simply surround each name/value pair with ampersands. This
ensures that the variable delimiter is present so the variables can be correctly decoded by the Flash
Player. This solution should work regardless of the language/platform you are using (ASP, JSP, CFML,
etc.). For example, if you don't want to use the <cfprocessingdirective> and <cfsetting> tags in
your ColdFusion page, you should be able to rewrite the preceding ColdFusion example as follows
(note the ampersands in bold):

<cfset someText="test">

<cfoutput>&someText=#someText#&</cfoutput>

In each of the preceding examples, the server-side script returns a single variable, someText, to the
Flash Player. The following example uses ActionScript code to load the variable from a script and
display it in the movie:

package {

 import flash.events.*;
 import flash.net.*;
 import flash.util.trace;

 public class Example() {

 public function Example() {
 // Create the URLLoader instance to be able to load data

 var loader:URLLoader = new URLLoader();

 // Define the event handler to be invoked when the load completes
 loader.addEventListener(Event.COMPLETE, handleComplete);

 // Configure the loader to load URL-encoded variables
 loader.dataFormat = DataFormat.VARIABLES;

 // Attempt to load some data
 loader.load(new URLRequest("getSomeText.cfm"));
 }

 private function handleComplete(event:Event):void {
 // Cast the event target as a URLLoader instance because that is
 // what generated the event.
 var loader:URLLoader = URLLoader(event.target);

 // Access the variable(s) that were loaded by referencing the
 // variable name off the data property of the URLLoader instance.
 trace("someText = " + loader.data.someText);
 }

 }
}

Of course, many of the same things apply to loading variables from a script as when loading from a
file. For example, if you don't know all the variable names, you can use a for...in statement to list
them and their values, as shown in Recipe 19.1.

See Also

Recipe 19.1

Recipe 19.3. Loading a Block of Text (Including HTML and
XML)

Problem

You want to load a block of text, possibly some HTML or XML.

Solution

Use the URLLoader.load() method in conjunction with DataFormat.TEXT as the dataFormat to read
the text from a file or output from a server-side script.

Discussion

ActionScript 3.0 handles loading text differently than ActionScript 1.0 and 2.0. In previous versions,
there were two different callback methods that you could define on a LoadVars instance to interpret
data loaded from a URL. The onLoad() callback method was invoked when URL-encoded data was
processed. The onData() method fired when the data was finished downloading, but before it was
processed (before onLoad()). By using onData() instead of onLoad(), you were able to access the
text that was downloaded before it was processed as URL-encoded data and lost.

The flash.net.URLLoader class behaves differently than LoadVars, its predecessor. The URLLoader
does not distinguish between data that has finished downloading and data that has been processed
and decoded. Rather, there is only a complete event broadcast when data finishes download, and the
dataFormat property determines how the downloaded data is interpreted. Setting the dataFormat
property to DataFormat.TEXT instructs the URLLoader instance to interpret the data as plain text. In
Recipes 19.1 and 19.2, the dataFormat property is set to DataFormat.VARIABLES to interpret the data
as URL-encoded variables. By default, a URLLoader instance processes the data downloaded as text.

Consider that you want to load the following HTML text from an external file called example.html, and
then display it in an HTML-enabled text field:

Title: ActionScript 3.0 Cookbook

Authors: Joey Lott, Darron Schall, Keith Peters

Publisher URL: www.oreilly.com

The following ActionScript class works to load text from the file, and then displays the text in an
HTML-enabled text field:

package {

 import flash.display.*;
 import flash.text.*;
 import flash.events.*
 import flash.net.*;

 public class HTMLLoadingExample extends Sprite {
 private var _output:TextField;

 public function HTMLLoadingExample() {
 initializeOutput();

 loadData();
 }

 private function initializeOutput():void {
 _output = new TextField();
 _output.width = stage.stageWidth;
 _output.height = stage.stageHeight;
 _output.html = true; // Enable HTML for the text field

 addChild(_output);
 }

 private function loadData():void {
 var loader:URLLoader = new URLLoader();

 // Instruct the loader to read the file as plain text - This line is not
 // necessary because the dataFormat is DataFormat.TEXT by default.
 loader.dataFormat = DataFormat.TEXT;

 // Register an event handler for when the data is finished downloading
 loader.addEventListener(Event.COMPLETE, handleComplete);

 // Load the HTML text from the example.html file
 loader.load(new URLRequest("example.html"));
 }

 private function handleComplete(event:Event):void {
 var loader:URLLoader = URLLoader(event.target);

 // Assign the htmlText of the text field to the HTML text that was contained

 // in example.html. The data property of the URLLoader is the file contents.
 _output.htmlText = loader.data;
 }
 }
}

The data property takes on different characteristics based on what dataFormat is set to. When the
dataFormat is DataFormat.TEXT, the data property of the URLLoader instance is a String containing
the text that was inside of the file that was loaded. When the dataFormat is set to
DataFormat.VARIABLES, the data property is an Object that maps variable names with their values.

When the dataFormat is set to DataFormat.BINARY, the data property becomes a flash.util.ByteArray
instance.

See Also

Recipes 19.1 and 19.2

Recipe 19.4. Checking Load Progress

Problem

You want to know how much of the data has loaded.

Solution

Subscribe to the progress event of the URLLoader.

Discussion

The URLLoader class has a progress event that is dispatched whenever progress is made in
downloading data. The Flash Player passes a flash.events.ProgressEvent instance to the event
handler, allowing you to inspect the bytesLoaded and bytesTotal properties of the event. The
bytesLoaded property contains the number of bytes that have been received so far. The bytesTotal
property contains the total number of bytes in the file being loaded, or zero if the information is
unknown.

The data is fully loaded when the bytesLoaded property of the ProgressEvent is the same as the
bytesTotal property. However, this is usually not something you check in your progress event
handler. Instead, listen for the complete event, which is dispatched when the data is fully loaded. See
Recipes 19.1, 19.2, and 19.3 for examples of handling the complete event.

To check on the loading progress, use code like the following:

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*
 import flash.net.*;

 public class CheckProgressExample extends Sprite {
 private var _output:TextField;

 public function CheckProgressExample() {
 initializeOutput();
 loadData();
 }

 private function initializeOutput():void {
 _output = new TextField();

 _output.width = stage.stageWidth;
 _output.height = stage.stageHeight;

 addChild(_output);
 }

 private function loadData():void {
 var loader:URLLoader = new URLLoader();

 // Listen for the progress event to check download progress
 loader.addEventListener(ProgressEvent.PROGRESS, handleProgress);

 loader.load(new URLRequest("example.txt"));
 }

 private function handleProgress(event:ProgressEvent):void {
 // Calculate the percentage by multiplying the loaded-to-total
 // ratio by 100
 var percent:Number = Math.round(event.bytesLoaded
 / event.bytesTotal * 100);

 _output.text = " Loaded: " + event.bytesLoaded + "\n"
 + " Total: " + event.bytesTotal + "\n"
 + "Percent: " + percent;
 }
 }
}

In practice, it's fairly unlikely that you'll need to actually monitor the loading of data via the progress
event. It is only plausibly necessary in cases of very large amounts of data being downloaded.

When using URLLoader, you cannot read the data while the download is in progress. The progress
event is simply a notification of download progress because of this behavior. To access the data as it
downloads, use URLStream, as discussed in Recipe 19.5.

See Also

Recipes 19.1, 19.2, 19.3, and 19.5

Recipe 19.5. Accessing Data Being Downloaded

Problem

You want to access data as it downloads.

Solution

Use a flash.net.URLStream instance to load binary data that you can read as the data loads into your
movie.

Discussion

Recipe 19.4 outlines how to check on the progress of data as it is downloaded. However, due to the
nature of the URLLoader class, the data cannot be read until the download is complete. To read data
as it arrives, you must use the URLStream class instead.

The URLStream class allows you to read data in a binary format as it loads into the Flash Player,
similar to using a URLLoader with its dataFormat property set to DataFormat.BINARY. The interface of
URLStream is very similar to URLLoader. You use the same events described in Recipe 19.1 to check
for loading success and failure in both URLStream and URLLoader. The key difference is how the
progress event is handled.

In the case of URLLoader, the progress event is only useful to indicate the amount of data that has
been received and perhaps display the percentage loaded somewhere onscreen. In the case of
URLStream, the progress event allows you to inspect the data by using the bytesAvailable property
and one of the various read methods, such as readInt(), readByte(), readBoolean(), etc.

Using URLStream is an advanced feature and is recommended only if
URLLoader is not sufficient and if you have a good understanding of data on a
byte level.

The following is some example code that uses a URLStream to load a .txt file, accessing the bytes of
the file as it downloads into the Flash Player:

package {
 import flash.display.*;
 import flash.events.*
 import flash.net.*;

 public class CheckProgressExample extends Sprite {

 public function CheckProgressExample() {
 var streamer:URLStream = new URLStream();

 // Listen for the progress event to act on data
 // as it is received
 streamer.addEventListener(ProgressEvent.PROGRESS, handleProgress);

 streamer.load(new URLRequest("example.txt"));
 }

 private function handleProgress(event:ProgressEvent):void {
 // Cast the target of the vent as a URLStream
 var streamer:URLStream = URLStream(event.target);

 // Loop over all of the bytes that are available
 while (streamer.bytesAvailable > 0) {
 // Read a byte value and output it to the console window
 trace("Read byte: " + streamer.readByte());
 }
 }
 }
}

In the preceding code example, it is important to look at how many bytes are
available via the bytesAvailable property before attempting a read operation.
Trying to read more bytes than what is available in the input buffer results in
an EOFError exception being thrown.

See Also

Recipes 19.1 and 19.4

Recipe 19.6. Sending Data to a Server-Side Script

Problem

You want to send data from a Flash movie to a server-side script.

Solution

Create a URLRequest instance that contains the data and pass it to the script with the
flash.net.sendToURL() method. If you want to open the results of the script in a specific browser
window, use the flash.net.navigateToURL() method. If you expect a response, use the
URLLoader.load() method instead, as described in Recipes 3.12 and 19.7.

Discussion

Use the sendToUrl() method from the flash.net package to send data to a server-side script if you do
not need to process the result. For example, you might want to submit a web form's data to a
server-side script without displaying any result from the server-side processing. However, the
sendToURL() method does not return any confirmation that the data was received, so it isn't
practical in most cases. Even if you just want to display a static message, such as "Thank you for
submitting the form," you need confirmation that the variables were successfully received on the
server. Therefore, if you want confirmation of receipt, use the URLLoader.load() method, as
described in Recipes 3.12 and 19.7.

The URLRequest instance passed to sendToUrl determines what (and how) data is sent to a server-
side script. Typically, the data property of the request is set to a URLVariables instance to send
name-value pairs to the server. It can also be set to a flash.util.ByteArray to HTTP POST binary data
to a server, or data can be set to a String to send text, perhaps an XML-RPC request (see
http://www.xmlrpc.com), to a server. The following code snippet shows how to create a URLRequest
by using a URLVariables instance to send name-value pairs to a server-side script:

function sendData():void {

 // Create a request that sends data to the process.cfm page
 var request:URLRequest = new URLRequest("process.cfm");

 // Create some variables to send, someText and someNumber.
 var variables:URLVariables = new URLVariables();
 variables.someText = "Some text to send";
 variables.someNumber = 26.2;

 // Set the data to be sent to the variables, created earlier
 request.data = variables;

http://www.xmlrpc.com

 // Send the data to the script for processing
 sendToURL(request);
}

The URL passed during the URLRequest creation can be absolute or relative, and is governed by the
Flash Player security sandbox. For more information about security, see Recipe 3.12.

// Set the url property to a CGI script with an absolute URL
request.url = "http://www.darronschall.com/cgi-bin/submitVars.cgi";

// Set the url property to a script relative to the location
// of the .swf file
request.url = "cgi-bin/submitVars.cgi";

The server's response to a sendToURL() method is disregarded by the Flash movie and data is sent
transparently behind the scenes. To send data to a script and open the results in a specific browser
window, use the navigateToURL() method instead. This method is almost exactly the same as
sendToURL() except it takes an additional parameterthe name of the window to send the results to.
Use the window name of _blank to display the response in a new browser window, or you can display
the result in another, named window or frame that is already open if you know the correct target
name for it. Neither of these two options have any effect on the browser window containing the Flash
movie. However, specifying the target as _self or _parent replaces the page contained the Flash
movie.

// Send variables containted in a URLRequest instance to a script
// and display the output in a new browser
navigateToURL(request, "_blank");

If you want the response to be returned to the Flash movie, use the URLLoader.load() method, as
discussed in Recipes 3.12 and 19.7.

By default, data is sent to the specified script via the HTTP POST method when you use sendToURL()
or navigateToURL(). Set the method property of the URLRequest instance containing the data to
change this behavior. Use URLRequestMethod.GET for HTTP GET and use URLRequestMethod.POST for
HTTP POST.

var request:URLRequest = new URLRequest("cgi-bin/submit.cgi");

// Create some variables to send
var variables:URLVariables = new URLVariables();
variables.someText = "Post me!";
request.data = variables;

// Configure the variables to be sent via HTTP POST
request.method = URLRequestMethod.POST;

// Send the request and open the response in a new window
navigateToURL(request, "_blank");

See Also

Recipes 3.12 and 19.7

Recipe 19.7. Sending Variables and Handling a Returned
Result

Problem

You want to send variables to a server-side script and handle the results of the server-side
processing.

Solution

Use the URLLoader.load() method coupled with a URLRequest instance that has its data property
set.

Discussion

You should use the URLLoader.load() method when you want to send variables to a server-side
script and have the results returned to Flash. An example of such a scenario is a Flash storefront for
a product catalog whose data is stored in a database. Typically, items are categorized. When a user
selects a category, the Flash movie might send the selected category ID to a server-side script and
expect the script to return all the items in the category.

The URLLoader.load() method sends variables to a server-side script in the same way that the
sendToURL() and navigateToURL() methods do. The data set in the URLRequest instance passed to
the load() method is sent to the script at the specified URL. Handling results is exactly the same as
discussed in Recipe 19.2. When the complete event is handled, the data property of the URLLoader
that dispatched the event contains the result of the script processing.

Here is a complete example that sends data to a script that returns URL-encoded values and places
the result in a text field on the screen:

package {
 import flash.display.*;
 import flash.text.*;
 import flash.events.*
 import flash.net.*;

 public class SendAndLoadExample extends Sprite {
 private var _output:TextField;

 public function SendAndLoadExample() {
 initializeOutput();

 sendData();
 }

 private function initializeOutput():void {
 _output = new TextField();
 _output.width = stage.stageWidth;
 _output.height = stage.stageHeight;

 addChild(output);
 }

 private function sendData():Void {
 // Create a URLRequest to contain the data to send

 // to process.cfm
 var request:URLRequest = new URLRequest("process.cfm");

 // Create name-value pairs to send to the server
 var variables:URLVariables = new URLVariables();
 variables.method = "getProductDetail"
 variables.productId = 2;
 request.data = variables;

 // Create a URLLoader to send the data and receive a
 // response
 var loader:URLLoader = new URLLoader();

 // Expect the script to return URL-encoded variables
 loader.dataFormat = DataFormat.VARIABLES;

 // Listen for the complete event to read the server response
 loader.addEventListener(Event.COMPLETE, handleComplete);

 // Send the data in the URLRequest off to the script
 loader.load(request);
 }

 private function handleComplete(event:Event):void {
 var loader:URLLoader = URLLoader(event.target);

 // Expect the script to return name and description variables.
 // Display these values in a text field on the screen.
 _output.text = "Name: " + loader.data.name + "\n"
 + "Description: " + loader.data.description;
 }
 }
}

See Also

Recipes 19.1, 19.2, 19.3, 19.4, and 19.6

Chapter 20. XML

Section 20.0. Introduction

Recipe 20.1. Understanding XML Structure (Reading and Writing XML)

Recipe 20.2. Creating an XML Object

Recipe 20.3. Adding Elements to an XML Object

Recipe 20.4. Adding Text Nodes to an XML Object

Recipe 20.5. Adding Attributes to an XML Element

Recipe 20.6. Reading Elements in an XML Tree

Recipe 20.7. Finding Elements by Name

Recipe 20.8. Reading Text Nodes and Their Values

Recipe 20.9. Reading an Element's Attributes

Recipe 20.10. Removing Elements, Text Nodes, and Attributes

Recipe 20.11. Loading XML

Recipe 20.12. Loading XML from Different Domains

Recipe 20.13. Sending XML

Recipe 20.14. Searching XML

Recipe 20.15. Using HTML and Special Characters in XML

20.0. Introduction

XML is a structured, text-based way of formatting and describing data. It was originally designed to
be to both simple and flexible and has rapidly grown into an industry standard because of its
portability, especially for data exchange and interoperability between applications.

When working in ActionScript, XML will probably cross your path. Chapter 19 explains how to send
and load data in a URL-encoded format. URL-encoding is fine for passing simple data between the
Flash Player and server-side scripts, but for complex data or Unicode characters, XML generally
works much better because of its structured format. For example, if you want to load data from a
text file that represents a simple datatype such as a string, URL-encoded data, such as the following,
can be loaded using a URLLoader instance:

myString=a+string+value

However, when you want to load data from an external source and use that data to create an
ActionScript object, you are presented with the problem of how to represent that data as a URL-
encoded string. You might try something like the following, in which each property value pair is
separated by an asterisk (*), and each property is separated from its corresponding value by a
vertical pipe (|):

myObject=prop0|val0*prop1|val1*prop2|val2

Once the string value is returned for myObject, you could use String.split() to recreate the elements
that make up the object. Although you can get by with this approach, it is often much easier to
represent complex values in XML. For example, the same object can be represented by the following
XML snippet:

<myObject>
 <prop0>val0</prop0>
 <prop1>val1</prop1>
 <prop2>val2</prop2>
</myObject>

XML data offers several advantages over URL-encoded data, including:

When creating XML manually (for a static XML document) or programmatically (from a
ColdFusion script, PHP script, etc.), it is much easier to represent complex data.

Most server-side scripting languages offer built-in functionality for reading and generating XML
data.

XML is a standard used for the transfer and storage of data across all kinds of applications and

platforms.

Of course, XML isn't the only way of transferring data in and out of the Flash Player. Chapters 19, 21,
and 24 discuss ways to communicate outside of the Flash Player as well. However, this chapter
focuses solely on XML, an industry standard technique for exchanging data that doesn't require the
use of additional server-side software (as Flash Remoting and Sockets do). XML has become an
important part of ActionScript 3.0 and has been given special treatment this time around.

ActionScript 3.0 boasts a revolutionary new syntax for working with XML. ECMAScript for XML,
otherwise known as E4X, is a language extension that gives you a simpler, easier to read approach
for working with XML objects than the traditional Document Object Model (DOM), an interface of the
past. Using E4X, you'll find that you can work with XML much easier than before. Additionally, if this
is your first time working with XML, E4X dramatically lowers the learning curve of using XML.

In this chapter, the following terminology is used:

XML document

A file that contains XML. This term may also refer to XML data that is being loaded or sent. An
XML document is not to be confused with the XMLDocument class.

XML packet

An XML packet can be any snippet of XMLfrom an entire XML document to just a single nodeas
long as it is represents a complete, well-formed piece of information in XML.

XML node

The basic building block for XML. Nodes can be elements, text nodes, attributes, and so on. We
refer to elements and text nodes collectively as "nodes" when talking in general terms.

XML element

The term "element" is often used interchangeably with the term "tag." More accurately,
however, an element contains tags. Elements must have an opening and closing tag
(<element></element>), or the opening and closing tags can be combined into one when the
element has no nested elements (<element />).

Root node

An element that is at the top of the XML hierarchy of elements.

Text node

A node containing text. Text nodes are generally nested within elements.

Attribute

Is part of an element. Attributes are placed within the tags of elements in name/value pair
format, such as <element name="value">.

XML declaration

The declaration typically looks like this: <?xml version="1.0" ?>. This is a special tag that the
XML parser recognizes as containing information about the XML document, and it is not parsed
as an element.

XML tree

Also sometimes called the "data tree," an XML tree is the hierarchy of nodes in XML data.

Recipe 20.1. Understanding XML Structure (Reading and
Writing XML)

Problem

You want to understand how to read or write XML.

Solution

XML is tag-based and hierarchical. If you are familiar with HTML, learning the basics of XML should
not be very difficult.

Discussion

Although reading and writing good XML is not a skill that is specific to ActionScript, it is, nonetheless,
a skill from which your ActionScript can benefit. If you are not yet familiar with XML, don't worry.
This is going to be painless.

XML is a way of representing structured data. This means that you explicitly define the context for
the data. For example, without XML you might have a string of data such as:

Jerry,Carolyn,Laura

You can use XML to tell us who these people are:

<family>
 <father>Jerry</father>
 <mother>Carolyn</mother>
 <sister>Laura</sister>
</family>

Now, as you can see, the XML tells us a lot more about the data. Here are a few other points to
notice about XML:

XML is composed mainly of nodes. A node is a general term that can refer to many parts within
the XML. For example, <family> is a node in the preceding XML snippet; these nodes are called
elements. Also, the values Jerry, Carolyn, and Laura are nodes; these nodes are called text
nodes.

Every XML element must have a matching opening and closing tag. The opening tag might look
like <family>, and the closing tag is identical, except that it uses a forward slash to indicate it is
closing the element, as in </family>. The opening and closing tags can be combined if the
element does not contain any nested nodes. For example, <emptyElement /> is an element that
combines the opening and closing tags. Notice that there is a space between the element name,
emptyElement, and the forward slash. The space isn't necessary; it's just a matter of personal
style.

Elements can contain nested nodes (be they other elements or text nodes). There are several
examples of this in the <family> XML document shown earlier. The <family> element, which is
the root node in this example, contains three nested elements: <father>, <mother>, and
<sister>; these nested nodes are also called child nodes. Each of these child nodes also
contains a nested node. However, their nested nodes are text nodes, not elements. Regardless,
they are still treated as child nodes.

There is one other type of node that we want to look at here. An attribute is a special kind of node
that can be assigned to an element, and in many cases it can even be used as an alternative to a
nested node. If you've ever worked with HTML, you are already familiar with attributes. Some
common attributes in HTML include the HRef attribute of the <a> element and the colspan attribute of
the <td> element. Here is how we can rewrite the same XML document we examined previously using
attributes instead of nested nodes:

<family father="Jerry" mother="Carolyn" sister="Laura" />

Notice that we were able to eliminate the nested elements and write the same data all in one
element. Also notice that since <family> no longer contains any nested nodes, we can combine the
opening and closing tags into one.

You may be wondering when and why to use attributes versus nested nodes. This is often a matter of
preference. Sometimes it may appear easier or clearer to you to write the XML data by using
attributes. Generally, attributes are a good idea when you want to represent a fairly small number of
values and when those values are relatively short. Also, the attributes' names need to be unique
within the element. When you want to represent a larger amount of data, such as when the data is
long (more than a few words) or when the attribute names would not be unique within the element,
use nested elements instead.

Also, you can use a combination of both attributes and nested nodes. Here is an example of an
<article> element that includes attributes for the title and author, but uses a nested text node to
represent the article text. This is a good example of when one of the values (the article text) is
simply too long to reasonably be an attribute.

<article title="XML: It's Not Just for Geeks" author="Samuel R.
Shimowitz">
My friends couldn't believe it when I started working with XML.
I became an outcast, confined to my dark office illuminated only
by the glow of my trusty CRT.
</article>

You can create XML strings right in Flash for cases in which you are constructing XML data to send to
an external script. For example:

var dataToSend:String = "<feedback name='Anon' comments='nice'>";

To construct a static XML document outside of Flash, use a simple text editor and save it as plain
text. To create an XML document dynamically by using a server-side script, consult the appropriate
reference for the language you are using.

See Also

The preceding examples are very simple cases. XML can get much more complex, including
namespaces, document type declarations, etc. Most of these details are well beyond the scope of this
book and beyond what you need to know to work with XML and ActionScript. For more information on
XML in general, see http://www.xml.com. Also, for a general overview of XML, you might consider
XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means (O'Reilly) and/or the XML Pocket
Reference by Simon St.Laurent and Michael Fitzgerald (O'Reilly).

http://www.xml.com

Recipe 20.2. Creating an XML Object

Problem

You want to create an XML object complete with a tree structure and data.

Solution

A populated XML object contains data, just as a populated city contains people.

Use one of the following to create a populated XML object:

Create an XML object and populate it by assigning to it an XML literal.

Populate an XML object tree by passing an XML string to the XML constructor.

Create an empty XML object and use E4X to populate the XML tree one node at a time.

Create a blank object, and load the XML data from an external source.

Discussion

There are many possibilities for creating a populated XML object in ActionScript. Each technique
offers its own advantages, and you should base your decision on the needs of your project.

The simplest way to create a populated XML object is create a new XML object and assign an XML
literal to it:

var example:XML = <abc><a>ehbee<c>see</c></abc>;

This is an example of E4X in action. Notice that directly inside the code file, an XML packet is used on
the right-hand side of an equals sign. If the XML had been contained in quotation marks, this would
be interpreted as a string, but ActionScript 3.0 provides native support for XML datatypes. The
ActionScript compiler understands that the expression on the right is XML, and it populates the
example XML instance with the XML packet provided.

This first technique is appropriate when you already know the XML structure before you want to
create the object. It is even applicable if you want to use dynamic data inside of the XML literal. Place
a variable name inside of curly braces ({ and }) to use its value inside the XML literal. For example, if
you want to create a simple XML object to send a user's name and score to the server, you would

construct the XML literal as follows:

// Assume two variables exist, username and score
var username:String = "Darron";
var score:int = 1000;

// Use curly braces around the variable name to use its value when
// assigning XML via an XML literal
var example:XML = <gamescore>
 <username>{username}</username>
 <score>{score}</score>
 </gamescore>;

You can also create a string and pass it as a parameter to the XML constructor. The preceding
example can also be written as follows:

// Create the XML structure with a string so use the value of both

// username and score inside of the XML packet.
var str:String = "<gamescore><username>" + username + "</username>"
 + "<score>" + score + "</score></gamescore>";

// Pass the string to the constructor to create an XML object
var example:XML = new XML(str);

The example XML objects created in the two previous code blocks are identical in structure. In
general, use the curly brace approach to create XML objects when you know what the structure is
going to be at compile time but need data at runtime (like a score that's generated after the game
has been played).

There are other cases in which you don't necessarily know all the data at one time. You might want
to build the XML object's tree over time. For example, if you use an XML object to store a user's
shopping cart information, you need to modify the object's data each time the user modifies his
shopping cart. In such cases, you should construct a new XML object at the start and use E4X to
manipulate it by adding and removing nodes, as described in Recipes 20.3 and 20.10.

And let's not forget about populating XML objects with data retrieved from an external source, such
as a static XML document or a script that generates dynamic XML. Up to this point, we've looked only
at constructing XML objects to send data to a server or to use throughout our programs, but you can
load data from the server for all kinds of reasons: retrieving user data, catalog information, or movie
initialization information, just to name a few. For these scenarios, see Recipe 20.11 for how to load
an XML document from a server.

See Also

Recipes 20.3, 20.4, 20.5, and 20.10 for more information on constructing an XML tree using E4X. For
more information on loading information from external sources, see Recipe 20.11.

Recipe 20.3. Adding Elements to an XML Object

Problem

You want to construct an XML object and add elements to it.

Solution

Use E4X syntax to create child elements and add them to an XML tree. Additionally, use the
insertChildBefore() and insertChildAfter() methods for more control over how new elements are
added.

Discussion

You might want to add elements to an XML object to construct an XML data structure to pass to
another application. There are several ways to accomplish this, as discussed in Recipe 20.2.

Adding elements to an existing XML object is simple with E4X syntax. Use the dot operator (.) on the
XML instance and add the element much the same way a generic property is added to a regular
Object:

// Create an XML instance to add elements to
var example:XML = <example />;

// Create a new XML node named newElement and add it to the

// example instance
example.newElement = <newElement />;

/* Displays:
 <example>
 <newElement/>
 </example>
*/
trace(example);

In the preceding example, an XML literal is created for an empty newElement node. This is then added
to the example instance by using the dot operator and assigning a newElement property to the
newElement node. In this situation, the property name and the element name do not need to be the
same. However, it would be confusing if they were not. The element name overrides the property
name when adding an XML node to an existing XML object.

You can also create a new element by creating a property on the XML instance and assigning it a
value, as follows:

// Create an XML instance to work with
var example:XML = <example />;

// Create a new property emptyElement and assign it an empty
// string value
example.emptyElement = "";

/* Displays:
 <example>
 <emptyElement/>
 </example>
*/
trace(example);

The preceding example demonstrates that you can create child elements on an XML object without
actually adding XML nodes, like in the first example. Assigning an empty string value to a new
emptyElement property creates an empty element node named emptyElement.

If you don't know the name of the element you'd like to add, or if you want it based off of the value
of a variable, you can use the alternative bracket notation. Instead of using the dot operator, place a
string inside of brackets ([and]). The string is evaluated and the value is used as the property
name. This allows you to build a property name and, consequently, an element name, dynamically:

// Create an XML instance to work with
var example:XML = <example />;

var id:int = 10;

// Create a string to incorporate the value of id in the node name
example["user" + id] = "";

/* Displays:
 <example>
 <user10/>
 </example>
*/
trace(example);

There are some cases when using the bracket syntax is required. For example, it is perfectly legal
XML to have an element node name with a hyphen in it. Trying to create an element name with a
hyphen by using the dot operator gives a compiler error:

example.some-element = ""; // Generates a compiler error

The hyphen has a special meaning to the compiler; it is used to for subtraction. The preceding code
snippet is interpreted as a subtraction statement, attempting to subtract the variable element from

example.some, and then assigning the empty string to that value. This subtraction statement is not
syntactically valid, which explains the compiler error. Furthermore, even if the statement above
would compile as valid use of subtraction, it is not the intended behavior of creating an element node.
Using bracket notation fixes this:

example["some-element"] = "";

One problem with the simplicity of E4X is that any time a new element is added, it is always added at
the end of the XML tree. To solve this, use the insertChildBefore() and insertChildAfter() methods to
have more control over how new element nodes are added. The insertChildBefore() method inserts a
new element before an existing element in the XML tree, while insertChildAfter() inserts a new
element after an existing element. Each method takes the same two parameters: the node marking
the inserting point and the data to insert. The following code snippet shows how to use both of these
methods to modify an XML tree:

// Create an XML instance to work with
var example:XML = <example/>;

// Create an empty two element node
example.two = "";

// Before the two element node, add a one element node
example = example.insertChildBefore(example.two, <one />);

// After the two element node, add a three element node
example = example.insertChildAfter(example.two, <three />);

/* Displays:
<example>
 <one/>
 <two/>
 <three/>
</example>
*/
trace(example);

In the preceding example, note that the insertChildBefore() and insertChildAfter() methods do not
modify the XML instance in which they are called. Instead, they return a new instance containing the
modifications. To capture the modifications, assign the result of the method call to the XML instance
again, as the previous example shows.

See Also

Recipes 20.2 and 20.4

Recipe 20.4. Adding Text Nodes to an XML Object

Problem

You want to add text nodes to an XML object.

Solution

Use E4X syntax to create text nodes and add them to an XML tree. Use the appendChild(),
prependChild(), insertChildAfter(), and insertChildBefore() methods for more control over how the
text nodes are added.

Discussion

Creating text nodes with E4X is, you guessed it, simple. The process is very similar to the method
described in Recipe 20.3. As with elements, creating text nodes is just a matter of using the dot
operator (.) to set a property on an XML instance to any value that can be converted to a string.
Here is an example:

// Create an XML instance to work with
var example:XML = <example/>;

// Create a text node from a string
example.firstname = "Darron";

// Create a text node from a number
example.number = 24.9;

// Create a text node from a boolean
example.boolean = true;

// Create a text node from an array
example.abc = ["a", undefined, "b", "c", null, 7, false];

/* Displays:
<example>
 <firstname>Darron</firstname>
 <number>24.9</number>
 <boolean>true</boolean>
 <abc>a,,b,c,,7,false</abc>
</example>
*/

trace(example);

This example adds both text and element nodes to the example XML instance. The value on the
righthand side of the assignment statement is converted into a string and becomes the text node.
Then the property name is converted into an element node with the text node as a child, and the
entire element node is appended to the XML instance.

For more control over where the text nodes are placed inside of element nodes, use either
appendChild(), prependChild(), insertChildBefore(), or insertChildAfter(). These methods allow you
to control precisely where the text node is inserted into the XML tree:

// Create an XML instance to work with
var example:XML = <example/>;

// Append a two element node containing a text node child
// with value 2
example.appendChild(<two>2</two>);

// Prepend a one element node containing a text node child
// with value "number 1"
example.prependChild(<one>"number 1"</one>);

// After the one element node, insert a text node with
// value 1.5
example.insertChildAfter(example.one[0], 1.5);

// Before the two element node, insert a part element node
// containing a text node child with value 1.75
example.insertChildBefore(example.two[0], <part>1.75</part>);

/* Displays:
<example>
 <one>"number 1"</one>
 1.5
 <part>1.75</part>
 <two>2</two>
</example>
*/
trace(example);

In the preceding code example, a mixed element was created. A mixed element is one that contains
not only a child text node or child elements, but both. The example element is mixed because it
contains not only child elements (<one>, <part>, and <two>) but also a nested text node (with the
value of 1.5). This is perfectly valid XML, and it demonstrates that an element can have more children
than just a single text node.

See Also

Recipe 20.3

Recipe 20.5. Adding Attributes to an XML Element

Problem

You want to add attributes to an XML element.

Solution

Use the @ operator in E4X syntax to assign attributes to element nodes.

Discussion

Use the @ operator to assign attributes to an element with E4X; the basic syntax looks like this:

elementNode.@attributeName = "value";

Use the dot operator (.) after an element node variable, followed by the @ operator. Immediately
after the @ symbol, specify the name of the attribute, and use a regular assignment statement to give
the attribute a value. The value to the right of the equals sign is converted to a string before being
assigned:

// Create an XML instance to work with
var example:XML = <example><someElement/></example>;

// Add some attributes to the someElement element node
example.someElement.@number = 12.1;
example.someElement.@string = "example";
example.someElement.@boolean = true;
example.someElement.@array = ["a", null, 7, undefined, "c"];

/* Displays:
<example>
 <someElement number="12.1" string="example" boolean="true"
 array="a,,7,,c"/>
</example>
*/
trace(example);

When using this syntax, the attribute name must be a valid variable name. This means that the

attributes must have names consisting of numbers, letters, and underscores, and the first character
cannot be a number. However, XML attribute names can sometimes contain other characters that,
when used with the @ operator, generate compile errors. In these situations, you can use bracket
notation to create attributes whose names contain invalid variable name characters. For example:

example.someElement.@["bad-variable-name"] = "yes";

You can also use bracket notation to create attributes dynamically, building the attribute name with
variable values. For example:

example.someElement.@["color" + num] = "red";

See Also

Recipe 20.9

Recipe 20.6. Reading Elements in an XML Tree

Problem

You want to extract the child elements of an XML object.

Solution

Use the elements() method to return all of the elements as an XMLList and a for each loop to iterate
over the list.

Discussion

You'll often want to "walk" (traverse) an XML tree to extract or examine one or more elements. This
is convenient for searching for a given element or processing elements in which you don't know (or
don't care about) their precise order.

E4X provides a convenient elements() method that returns all of the element child nodes of an XML
object. By using this method inside a for each loop, you can walk through the XML tree:

var menu:XML = <menu>
 <menuitem label="File">
 <menuitem label="New"/>
 </menuitem>
 <menuitem label="Help">
 <menuitem label="About"/>
 </menuitem>
 This is a text node
 </menu>;

for each (var element:XML in menu.elements()) {
 /* Displays:
 File
 Help
 */
 trace(element.@label);
}

The preceding example demonstrates that the elements() method only returns the child nodes of an
XML object that are of type element (ignoring the other node types like text). It also only returns the
immediate children of the XML object. The New and About menuitems are not returned by the

menu.elements() call in the previous code snippet because they are not immediate children of the
menu element. To walk the entire tree, you'll need to create a recursive function, as follows:

var menu:XML = <menu>
 <menuitem label="File">
 <menuitem label="New"/>
 </menuitem>
 <menuitem label="Help">
 <menuitem label="About"/>
 </menuitem>
 This is a text node
 </menu>;

/* Displays:
File
New
Help
About
*/
walk(menu);

// A recursive function that reaches every element in an XML tree
function walk(node:XML):void {
 // Loop over all of the child elements of the node
 for each (var element:XML in node.elements()) {
 // Output the label attribute
 trace(element.@label);
 // Recursively walk the child element to reach its children
 walk(element);
 }
}

See Also

Recipe 20.7, 20.8, and 20.9

Recipe 20.7. Finding Elements by Name

Problem

You want to find an element by its node name rather than by its position in the XML hierarchy.

Solution

Use E4X syntax to "dot down" to a particular element.

Discussion

E4X makes working with XML objects as simple as working with regular objects. For each element
node, you access that element in the same way you access the property of an object; for example:

var fruit:XML = <fruit><name>Apple</name></fruit>;

// Displays: Apple
trace(fruit.name);

As you can see here, to access the name element in the XML packet, use the dot operator (.) and
reference name directly of the fruit XML instance. For elements nested deeper in the XML tree, use a
series of dots and element names to reach the element, as follows:

var author:XML = <author><name><firstName>Darron</firstName></name></author>;

// Displays: Darron
trace(author.name.firstName);

One shortcut to consider for accessing deeply nested element nodes without knowing the path to get
to the node is to use the double-dot operator. For example, you can omit the path and extract the
firstName node directly, like this:

var author:XML = <author><name><firstName>Darron</firstName></name></author>;

// Displays: Darron
trace(author..firstName);

The double-dot operator works for any level of nesting; it doesn't matter if the target node is two or

ten levels deep.

When there are multiple element nodes that share the same name, accessing the element name from
an XML instance becomes indexable, much like an Array. Use bracket notation, coupled with an
integer, to access a particular element node; for example:

var items:XML = <items>
 <item>
 <name>Apple</name>
 <color>red</color>
 </item>
 <item>
 <name>Orange</name>
 <color>orange</color>
 </item>
 </items>;

// Displays: Apple
trace(items.item[0].name);
// Displays: Orange
trace(items.item[1].name);

Using items.item returns an XMLList with two elements, each representing one of the item element
nodes in the XML literal. The first item element node can be accessed by examining index 0, and the
second item element node is accessed with index 1. The first element index is always 0, and the last
element index is always one less than the total number of elements. Use the length() method to
count the number of elements found:

// Displays: 2
trace(items.item.length());

If you want to examine every element node with a particular node name and you don't know how
many there are, use a for each loop, like this:

var items:XML = <items>
 <item>
 <name>Apple</name>
 <color>red</color>
 </item>
 <item>
 <name>Orange</name>
 <color>orange</color>
 </item>
 </items>;

// Use the double dot syntax so we can omit the path
for each (var name:XML in items..name) {
 /* Displays:
 Apple
 Orange

 */
 trace(name);
}

As with other applications of the dot operator, you can use bracket notation instead of the dot
operator. This is useful for situations in which you want to use a variable's value as the element
name to find:

var nodeName:String = "color";

var fruit:XML = <fruit><color>red</color></fruit>;

// Displays: red
trace(fruit[nodeName]);

Bracket notation cannot be used with the double-dot operator. For example, the following code
generates an error:

trace(fruit..[nodeName]); // Generates a compile error

See Also

Recipe 20.14

Recipe 20.8. Reading Text Nodes and Their Values

Problem

You want to extract the value from a text node.

Solution

Use E4X syntax, or, alternatively, use the text() method to return an XMLList of text nodes for an
element. Then use the toString() method to convert the text node's value to a string, use a
conversion function such as int() or Number() to convert the value to another datatype, or let the
Flash Player automatically convert the value to a specific type.

Discussion

Recipe 20.4 looks at text nodes and how to create them in XML objects. This recipe explains how to
extract the value from a text node. You can get a reference to the text node in much the same as
you reference element nodes, discussed in Recipes 20.6 and 20.7. Once you have a reference to the
text node, you can extract its value by using toString() or a conversion method on the node. For
example, consider the following XML packet:

<book>
 <title>ActionScript 3.0 Cookbook</title>
</book>

The root node of this XML packet is <book>, which contains <title> as its child element. The <title>
element, in turn, contains a nested node; a text node with a value of ActionScript 3.0 Cookbook.

If this XML packet is assigned to an XML object, you can "dot down" with E4X syntax to get to the
title element node by name, and then use the toString() method to access the text node child of
title:

var book:XML = <book>
 <title>ActionScript 3.0 Cookbook</title>
 </book>;

// Use E4X syntax to access the title element, and assign
// it to the title variable.
var title:String = book.title.toString();

// Displays: ActionScript 3.0 Cookbook

trace(title);

In this example, converting the title element node to a String is done by explicitly invoking the
toString() method. In truth, you can omit the call to toString() because the Flash Player does this
for us automatically. However, it is generally a good idea to explicitly use toString() so your code
communicates its intent.

Similarly, you can convert a text node to other types besides String. The following example
demonstrates converting text nodes to various types by using both conversion functions Boolean()
and int(), and letting the Flash Player automatically do the conversion for the Number type (instead
of explicitly using Number()):

var example:XML = <example>
 <bool>true</bool>
 <integer>12</integer>
 <number>.9</number>
 </example>;

// Convert a text node of "true" to boolean true
var bool:Boolean = Boolean(example.bool);

// Convert a text node of "12" to an integer
var integer:int = int(example.integer);

// Convert a text node of ".9" to a number
var number:Number = example.number;

/* Displays:
true
12
.9
*/
trace(bool);
trace(integer);
trace(number);

The preceding example is slightly misleading. The Boolean() conversion function may not work
exactly the way you think it does. Changing the text node value in the <bool> element from TRue to
false results in the bool variable being set to TRue, and not false like you might think. This behavior
is by design, frustrating as it may be. A simple technique to convert the string false to a Boolean
false is to use the toLowerCase() method and compare the value with the string true:

var bool:Boolean = example.bool.toLowerCase() == "true";

Until now we've examined element nodes with a single text node as a child. What about mixed
elements? Trying to convert a mixed element into a string results in a formatted XML string as
output:

var fruit:XML = <fruit>

 <name>Apple</name>
 An apple a day...
 </fruit>;

// Explicity using toString() here is required
var value:String = fruit.toString();

/* Displays:
<fruit>
 <name>Apple</name>
 An apple a day...
</fruit>
*/
trace(value);

In these situations, the text() method should be used to return only the text nodes of an element.
As demonstrated in Recipe 20.6, use a for each loop to iterate over the nodes:

var fruit:XML = <fruit>
 <name>Apple</name>
 An apple a day...
 </fruit>;

for each (var textNode:XML in fruit.text()) {
 // Displays: An apple a day...
 trace(textNode);
}

See Also

Recipes 20.4, 20.6, and 20.7

Recipe 20.9. Reading an Element's Attributes

Problem

You want to extract the attributes of an element.

Solution

Use the attributes() method to return a list of attributes for an element. Alternatively, use the @
operator in E4X syntax or attribute() method to access an attribute by name.

Discussion

You should use the attributes() method to return an XMLList of attributes for a particular element
node. The XMLList returned is indexable, just like an Array instance. Examining a particular index
returns the value for the attribute at that index:

var fruit:XML = <fruit name="Apple" color="red" />;

// Use the attributes() method and save the results as an XMLList
var attributes:XMLList = fruit.attributes();

// Displays: Apple
trace(attributes[0]);
// Displays: red
trace(attributes[1]);

In this example, only the values of the attributes are retrieved. Use the name() method on the
attribute reference to retrieve its name. In the following example, the second attribute (located at
index 1) is examined for its name:

var fruit:XML = <fruit name="Apple" color="red" />;

// Displays: color
trace(fruit.attributes()[1].name());

To loop over all of the attributes of an element, use a for each loop. Use a combination of the name(
) method to retrieve the attribute's name and the attribute reference itself for its value. In the
following example, toString() is explicitly called on the attribute reference to convert its value to a
string, like in Recipe 20.8:

var fruit:XML = <fruit name="Apple" color="red" />;

for each (var attribute:XML in fruit.attributes()) {
 /* Displays:
 name = Apple
 color = red
 */
 trace(attribute.name() + " = " + attribute.toString());
}

If you are interested in a particular attribute and know its name, the E4X syntax makes accessing the
element trivial. Use E4X to dot down to the particular element node, and then use the @ operator
followed by the attribute's name to access its value:

var fruit:XML = <fruit name="Apple" color="red" />;

// Displays: red
trace(fruit.@color);

Additionally, you can use the attribute() method and pass in the name of the attribute to access its
value:

var fruit:XML = <fruit name="Apple" color="red" />;

// Displays: red
trace(fruit.attribute("color"));

You can also use a wildcard (*) with the @ operator to access all attributes of an element, similar to
using the attributes() method:

var fruit:XML = <fruit name="Apple" color="red" />;

// Displays: Apple
trace(fruit.@*[0]);

// Displays: red
trace(fruit.@*[1]);

// Displays: 2
trace(fruit.@*.length());

Because the attributes are always returned as an XMLList, the attributes are indexable, making them
easy to access.

E4X syntax is extremely powerful. Consider having an XML packet that contains multiple elements,
with certain elements having an attribute named price. The following code snippet shows how you
might use E4X to total the prices of all of the elements with a price attribute:

// Create a fictitious shopping cart
var cart:XML = <cart>
 <item price=".98">crayons</item>
 <item price="3.29">pencils</item>
 <group>
 <item price=".48">blue pen</item>
 <item price=".48">black pen</item>
 </group>
 </cart>;

// Create a total variable to represent represent the cart total
var total:Number = 0;

// Find every price attribute, and add its value to the running total
for each (var price:XML in cart..@price) {
 total += price;
}

// Displays: 5.23
trace(total);

By using the double-dot operator before the @ operator in E4X syntax, the search for price attributes
looks at the entire XML tree underneath the cart element node.

As shown in Recipe 20.5, you can also use bracket syntax to access an attribute by name in a
dynamic manner, or when the attribute name contains characters not allowed in variable names:

var example:XML = <example bad-variable-name="yes" color12="blue" />;
var num:Number = 12;

// Displays: yes
trace(example.@["bad-variable-name"]);

// Displays: blue
trace(example.@["color" + num]);

See Also

Recipes 20.5 and 20.8

Recipe 20.10. Removing Elements, Text Nodes, and
Attributes

Problem

You want to remove an element node, text node, or attribute from an XML object.

Solution

Use the delete keyword.

Discussion

In previous recipes you have learned how to add element and text nodes, and attributes to XML
objects. You've also learned how to read them back in and loop over them. But what if you want to
delete a particular element or attribute? The secret is to use the delete keyword, followed by what
you want to delete:

var example:XML = <example>
 <fruit color="Red">Apple</fruit>
 <vegetable color="Green">Broccoli</vegetable>
 <dairy color="White">Milk</dairy>
 </example>;

// Remove the color attribute from the fruit element
delete example.fruit.@color;

// Remove the dairy element entirely
delete example.dairy;

// Remove the text node from the vegetable element node
delete example.vegetable.text()[0];

/* Displays:
<example>
 <fruit>Apple</fruit>
 <vegetable color="Green"/>
</example>
*/
trace(example);

Of particular interest in the preceding example is how the text node was deleted. Using certain
methods like text() and elements() on an XML object, or, in certain situations, using E4X syntax,
returns an XMLList with multiple items. The delete keyword only works in conjunction with a single
item, and as such, you must use bracket notation to reference a particular item in the XMLList that
you want to delete. To delete all the items in the XMLList, use a for loop and iterate over the items in
reverse order:

var example:XML = <example>
 <fruit color="red" name="Apple" />
 </example>;

// Get an XMLList of the attributes for fruit
var attributes:XMLList = example.fruit.@*;

// Loop over the items backwards to delete every attribute.
// By removing items from the end of the array we avoid problems
// with the array indices changing while trying to loop over them.
for (var i:int = attributes.length() - 1; i >= 0; i--) {
 delete attributes[i];
}

/* Displays:
<example>
 <fruit/>
</example>
*/
trace(example);

Recipe 20.11. Loading XML

Problem

You want to load XML data from an XML document or a server-side script that generates XML.

Solution

Use the URLLoader.load() method with its dataFormat property set to DataFormat.TEXT to load the
data as plain text. Use an event handler for the complete event and convert the text into an XML
instance.

Discussion

In previous versions of ActionScript, loading an XML file was done by invoking the load() method
directly on an XML object. In ActionScript 3.0, sending and loading of data has been consolidated into
the new URLLoader class and its related classes. There are no special considerations given to loading
XML in ActionScript 3.0, leaving it up to you to implement your own solution.

The process of loading an XML file, while multistep, is relatively painless. First, a URLLoader instance
must be made to load the data from the URL. To instruct the URLLoader to load the data as plain
text, its dataFormat property must be set to DataFormat.Text. An event listener for the complete
event needs to be added so you receive notification when the data has finished downloading. In the
complete event handler, one of the techniques outlined in Recipe 20.2 should be used to convert the
loaded data into an XML object. Finally, the URLLoader.load() method must be invoked to kick off
the loading process, being passed a URLRequest instance that points to the URL of the XML file. A
complete example looks like this:

package {
 import flash.display.*;
 import flash.events.*;
 import flash.net.*;
 import flash.util.*;

 public class LoadXMLExample extends Sprite {

 public function LoadXMLExample() {
 var loader:URLLoader = new URLLoader();
 loader.dataFormat = DataFormat.TEXT;
 loader.addEventListener(Event.COMPLETE, handleComplete);
 loader.load(new URLRequest("example.xml"));
 }

 private function handleComplete(event:Event):void {
 try {
 // Convert the downlaoded text into an XML instance
 var example:XML = new XML(event.target.data);

 // At this point, example is ready to be used with E4X
 trace(example);

 } catch (e:TypeError) {
 // If we get here, that means the downloaded text could
 // not be converted into an XML instance, probably because
 // it is not formatted correctly.
 trace("Could not parse text into XML");
 trace(e.message);
 }
 }
 }
}

In the preceding example, note the use of the try...catch block in the handleComplete method. In the
event that the XML file did not contain valid XML markup, a TypeError is generated when the
downloaded data is converted into an XML instance. The error is caught by the catch block, allowing
you to handle the parsing failure gracefully.

For more information about using URLLoader, refer to Chapter 19.

See Also

Recipe 20.2 and Chapter 19, specifically Recipe 19.3.

Recipe 20.12. Loading XML from Different Domains

Problem

You want to be able to load XML from domains other than the domain that the .swf is served from.

Solution

Use a crossdomain.xml policy file on the remote domain with an entry to allow access from the
domain the .swf is served from.

Discussion

See Recipe 3.12 for information about using a crossdomain.xml policy file.

See Also

Recipe 3.12

Recipe 20.13. Sending XML

Problem

You want to send XML data to a server-side script.

Solution

Create a URLRequest instance containing the XML data to send. Use flash.net.sendToURL() to send
the data and ignore the server response, use flash.net.navigateToURL() to send the data and open
the server response in a specific browser window, or use URLLoader.load() to both send the data
and download the response into the .swf file.

Discussion

XML is normally used to transfer data to and from applications, and in this case, Flash movies.
Therefore, it is quite unusual that you would want to create XML objects in your Flash movies for use
within Flash alone. Instead, you generally load XML data from another source, create XML data in
Flash for the purpose of sending to another application, or both.

This recipe examines sending XML data from Flash to another application, and there are lots of
reasons to do this. For example, in a Flash game you might want to use XML to send the user's name
and score to the server. At other times, you might want to send XML packets to a server-side script
to invoke server-side functionality. This is a process that is sometimes called a remote procedure call
(RPC), and it can use XML to send the function invocation information (function name, parameters,
etc.) to the server. There is a formal specification for using XML in this manner called XML-RPC (see
http://www.xmlrpc.com). So, as you can see, the possibilities for sending XML to the server are quite
diverse.

As discussed in Recipe 20.11 and Chapter 19, ActionScript 3.0 consolidates sending and loading data
into the methods of the flash.net package. Previously, the XML class contained both send() and
sendAndLoad() methods to send XML to a server, but in ActionScript 3.0 you must use URLRequest
instead. Recipes 19.6 and 19.7 cover the basic techniques using a URLReuest instance to send and
receive data.

Let's take a look at a complete working example. In what follows, you'll first create the necessary
client-side ActionScript code, and then you should choose from one of the server-side solutions.
Choose one that's supported by your server (or your personal computer, if you use that as your
server). There are server-side scripts in Perl, PHP, and ColdFusion.

The first thing you should do is create a new ActionScript 3.0 class with the following code:

http://www.xmlrpc.com

package {
 import flash.display.*;
 import flash.text.*;
 import flash.filters.*;
 import flash.events.*;
 import flash.net.*;

 public class XMLSendLoadExample extends Sprite {

 private var _message:TextField;
 private var _username:TextField;
 private var _save:SimpleButton;

 public function XMLSendLoadExample() {
 initializeDispaly();
 }

 private function initializeDispaly():void {
 _message = new TextField();
 _message.autoSize = TextFieldAutoSize.LEFT;
 _message.x = 10;
 _message.y = 10;
 _message.text = "Enter a user name";

 _username = new TextField();
 _username.width = 100;
 _username.height = 18;
 _username.x = 10;
 _username.y = 30;
 _username.type = TextFieldType.INPUT;
 _username.border = true;
 _username.background = true;

 _save = new SimpleButton();
 _save.upState = createSaveButtonState(0xFFCC33);
 _save.overState = createSaveButtonState(0xFFFFFF);
 _save.downState = createSaveButtonState(0xCCCCCC);
 _save.hitTestState = save.upState;
 _save.x = 10;
 _save.y = 50;
 // When the save button is clicked, call the handleSave method
 _save.addEventListener(MouseEvent.CLICK, handleSave);

 addChild(_message);
 addChild(_username);
 addChild(_save);
 }

 // Creates a button state with a specific background color
 private function createSaveButtonState(color:uint):Sprite {
 var state:Sprite = new Sprite();

 var label:TextField = new TextField();
 label.text = "Save";
 label.x = 2;
 label.height = 18;
 label.width = 30;
 var background:Shape = new Shape();
 background.graphics.beginFill(color);
 background.graphics.lineStyle(1, 0x000000);
 background.graphics.drawRoundRect(0, 0, 32, 18, 9);
 background.filters = [new DropShadowFilter(1)];

 state.addChild(background);
 state.addChild(label);
 return state;
 }

 private function handleSave(event:MouseEvent):void {
 // Generate a random score to save with the username
 var score:int = Math.floor(Math.random() * 10);

 // Create a new XML instance containing the data to be saved
 var dataToSave:XML = <gamescore>
 <username>{username.text}</username>
 <score>{score}</score>
 </gamescore>;

 // Point the request to the script that will handle the XML
 var request:URLRequest = new URLRequest("/gamescores.cfm");

 // Set the data property to the dataToSave XML instance to send the XML
 // data to the server
 request.data = dataToSave;
 // Set the contentType to signal XML data being sent
 request.contentType = "text/xml";
 // Use the post method to send the data
 request.method = URLRequestMethod.POST;

 // Create a URLLoader to handle sending and loading of the XML data
 var loader:URLLoader = new URLLoader();
 // When the server response is finished downloading, invoke handleResponse
 loader.addEventListener(Event.COMPLETE, handleResponse);
 // Finally, send off the XML data to the URL
 loader.load(request);
 }

 private function handleResponse(event:Event):void {
 try {
 // Attempt to convert the server's response into XML
 var success:XML = new XML(event.target.data);

 // Inspect the value of the success element node
 if (success.toString() == "1") {
 _message.text = "Saved successfully.";

 } else {
 _message.text = "Error encountered while saving.";
 }

 } catch (e:TypeError) {
 // Display an error message since the server response was not understood
 _message.text = "Could not parse XML response from server.";
 }
 }
 }
}

The contentType property of a URLRequest instance is set to application/x-www-form-urlencoded by
default, so it's important to set contentType to text/xml whenever you want to send XML data.
Additionally, you'll want to set the method of the request to URLRequestMethod.POST to send the XML
data to the server via HTTP POST.

Obviously, in a real-world example, the user's score would be generated by her
performance in a game. In this example, we just want to demonstrate sending
and receiving XML, so we generate the score randomly.

The next step is to create the server-side script. First, here's the Perl option. If you use this option,
place the following code in a text file named gamescores.cgi (or gamescores.pl) in a directory on
your web server that has CGI access enabled (usually cgi or cgi-bin).

#!/usr/bin/perl

Flash/Perl+CGI XML interaction demo
Arun Bhalla (arun@groogroo.com)

use strict;
use XML::Simple;
use CGI;

my $ScoreFile = "scores.txt";

Here we assume that this CGI script is receiving XML in text/xml
form via POST. Because of this, the XML appears to the script
via STDIN.
my $input = XMLin(join('',<STDIN>));

Write out the HTTP header
print CGI::header('text/xml');

Try to open score file for writing, or return an error message.
open(SCORES, ">> $ScoreFile") || (printMessage(0) &&
 die "Error opening $ScoreFile");

Save the score in a pipe-delimited text file.

print SCORES join('|', $input->{username}, $input->{score}), "\n";

Return the result in XML.
printMessage(1);

Subroutine to output the result in XML.
sub printMessage {
 my $value = shift;
 my $message = {};
 $message->{success} = $value;
 print XMLout($message, keeproot => 1, rootname => 'success');
}

If you are using ColdFusion, a sample ColdFusion script is provided in the following code block. Place
this code in a ColdFusion page named gamescores.cfm within a directory on your web server that can
run ColdFusion pages:

<cfsilent>
<cfsetting enablecfoutputonly="Yes">
<cfset success = 0>
<cftry>
 <!--- XML packet sent by Flash. --->
 <cfset scores_xml = XmlParse(getHTTPRequestData().content) >

 <!--- Parse out the XML packet sent from Flash. --->

 <!--- Grab the username and score from the XML document and save as
 local variables so they are easier to work with. // --->
 <cfset username = scores_xml.gamescore.username.XmlText >
 <cfset score = scores_xml.gamescore.score.XmlText >

 <!--- Append the latest score to our scores file. This could also be
 stored in the database or another XML document. // --->
 <cffile action="APPEND" file="#ExpandPath('scores.txt')#"
 output="#username#|#score#|#getHTTPRequestData().content#" addnewline="Yes">
 <cfset success = 1 >
 <cfcatch type="Any">
 <cfset success = 0 >
 <cffile action="APPEND" file="#ExpandPath('attempts.txt')#" output="ERROR"
 addnewline="Yes">
 </cfcatch>
</cftry>
</cfsilent>
<cfcontent type="text/xml">
<cfoutput><?xml version="1.0" ?><success>#success#</success></cfoutput>
<cfsetting showdebugoutput="no" enablecfoutputonly="No">

If you are using PHP on your server, place the following code in a PHP page named gamescores.php
on your web server in a directory that allows PHP access:

<?php

// Read In XML from Raw Post Data.
$xml = $GLOBALS['HTTP_RAW_POST_DATA'];

// Process XML using DOM PHP extension.
$document = xmldoc($xml);

// Read root element <gameinfo>.
$rootElement = $document->root();

// Read child nodes <username> and <score>.
$childNodes = $rootElement->children();

$data = "";

// Loop through child nodes and place in array.
foreach($childNodes as $childNode){
 // Add data to array;
 $name = $childNode->tagName();
 $value = $childNode->get_content();
 $data[$name] = $value;
}

// Append data to scores.txt (format: username|score)
$fp = fopen("scores.txt","a+");
$dataString = $data['username'] . "|" . $data['score'] . "\n";
fputs($fp,$dataString,strlen($dataString));
fclose($fp);

// Return success code to Flash
echo "<success>1</success>";
?>

All three scripts have one thing in common: they all output an XML response with <success> as the
root node, containing a text node value of 1 for successful save and 0, which indicates some type of
error.

To test the Flash movie once you have it and the server-side script in place, you need only to run the
movie and click on the button. The movie should get a successful response, and if you check in the
directory on the server in which the script has been created, you should find a scores.txt file
containing the data that was entered via the Flash movie.

See Also

Chapter 19specifically Recipes 19.6 and 19.7, and Recipe 20.11.

Recipe 20.14. Searching XML

Problem

You want to search an XML object for nodes or attributes that meet certain criteria.

Solution

Use the E4X syntax along with predicate filtering on an XML object to pick out certain values from an
XML tree.

Discussion

This chapter examines how E4X syntax with XML objects simplifies reading and writing values in an
XML tree. As simple as E4X is to use, it is also extremely powerful. E4X syntax is similar to using
XPath for searching XML documents. If you are familiar with XPath concepts, using the advanced
features of E4X (such as its predicate filtering) should come naturally. Predicate filtering allows you to
pick out element nodes that meet a certain Boolean expression condition using the syntax .(
condition), as you'll see later in this recipe.

Let's start by creating an XML object from an XML literal:

var foodgroup:XML = <foodgroup>
 <fruits>
 <fruit color="red">Apple</fruit>
 <fruit color="orange">Orange</fruit>
 <fruit color="green">Pear</fruit>
 <fruit color="red">Watermelon</fruit>
 <servings>3</servings>
 </fruits>
 <vegetables>
 <vegetable color="red">Tomato</vegetable>
 <vegetable color="brown">Potato</vegetable>
 <vegetable color="green">Broccoli</vegetable>
 <servings>2</servings>
 </vegetables>
 </foodgroup>;

When you know the name of element nodes, you simply dot down to reach them. For example, to
return a list of all of the <fruit> element nodes, use the following E4X expression:

var fruitList:XMLList = foodgroup.fruits.fruit;

If you're interested in a particular <fruit> element node, you can access the node by specifying an
index value using bracket notation:

var theApple:XML = foodgroup.fruits.fruit[0];

If you don't know (or care) about the full path from the root node to the node (or nodes) for which
you are searching, use the double-dot operator to indicate that you want to locate all matching nodes
at any level in the XML tree. For example, the following returns all <vegetable> nodes regardless of
where they are in the hierarchy:

var vegetableList:XMLList = foodgroup..vegetable;

An asterisk (*) is a wildcard for "any node." For example, the following E4X expression returns
assigns to servings an XMLList containing all <servings> element nodes that are children of any

nodes that are, in turn, children of the <foodgroup> node:

var servings:XMLList = foodgroup.*.servings;

The @ sign is used to signify an attribute. The following example generates an XMLList containing the
values of the color attributes for the <fruit> nodes:

var colorValues:XMLList = foodgroup.fruits.fruit.@color;

Now let's look at predicate filtering. Predicate filtering uses the syntax .(condition) to pick out

element nodes that meet the condition specified. The condition is specified via a Boolean expression.
The filtering acts on the XML or XMLList object that precedes the predicate filter expression.

For example, let's say you want to pick out all of the <fruit> element nodes where the color
attribute is red. This can be accomplished by first generating an XMLList of all of the <fruit> element
nodes using E4X dot-down syntax, and then filtering with the Boolean expression @color == "red":

/* Displays:
<fruit color="red">Apple</fruit>
<fruit color="red">Watermelon</fruit>
*/
trace(foodgroup..fruit.(@color == "red"));

In this example, two things are happening in the expression passed to the TRace statement:

The foodgroups..fruit portion returns an XMLList of all of the <fruit> element nodes that
appear in the XML tree.

Predicate filtering is applied on the XMLList of <fruit> nodes and a new XMLList is created that
contains only those <fruit> elements matching the filtering expression, in this case, the

elements with color attributes equal to red. You can see that both of the fruit element nodes
with red as the value of the color attribute appear in the TRace output.

The preceding example selected the red <fruit> element nodes, but what if we wanted to select any
node that had red as the value for the color attribute? Use the asterisk to look for any node, along
with a predicate filter that looks for the existence of a color attribute, and if the color attribute
exists, checks to make sure its value is red:

/* Displays:
<fruit color="red">Apple</fruit>
<fruit color="red">Watermelon</fruit>
<vegetable color="red">Tomato</vegetable>
*/
trace(foodgroup..*.(hasOwnProperty("@color") && @color == "red"));

The Boolean expression used as the condition can be any expression that results in a Boolean true or
false value. In the preceding example, hasOwnProperty checks to make sure the element has an
attribute for color, and if so tests the value of the color attribute to see if its value is red. Only when
the condition evaluates to true is the element added to the XMLList that the E4X expression returns.

So far, predicate filtering has only been done with attributes; however, it can also be used to specify
that a certain element node needs to have a particular text node as a value. This is particularly useful
when you have an XML document that has repeated element nodes that contain child nodes. For
example, here is how to display the value of the color attribute for whichever <fruit> element node
has a <name> element node with a text node value of Apple:

var fruits:XML = <fruits>
 <fruit color="red">
 <name>Apple</name>
 </fruit>
 <fruit color="orange">
 <name>Orange</name>
 </fruit>
 <fruit color="green">
 <name>Pear</name>
 </fruit>
 <fruit color="red">
 <name>Watermelon</name>
 </fruit>
 </fruits>;

// Displays: red
trace(fruits.fruit.(name == "Apple").@color);

As you can see, predicate filtering is quite powerful, and it gets even more powerful when combined
with regular expressions. The following example uses a regular expression to find all of the <fruit>
element nodes that have a <name> child node containing a text node starting with a vowel:

var fruits:XML = <fruits>
 <fruit color="red">

 <name>Apple</name>
 </fruit>
 <fruit color="orange">
 <name>Orange</name>
 </fruit>
 <fruit color="green">
 <name>Pear</name>
 </fruit>
 <fruit color="red">
 <name>Watermelon</name>
 </fruit>
 </fruits>;
/* Displays:
<fruit color="red">
 <name>Apple</name>
</fruit>
<fruit color="orange">
 <name>Orange</name>
</fruit>
*/
trace(fruits.fruit.(/^[aeiouAEIOU].*/.test(name)));

The preceding code snippet creates a regular expression (between the / and /) that in plain English
reads as "start with a vowel, upper- or lowercase, and be followed by any character any number of
times." The test() method is invoked on the regular expression to test it against the parameter
passed inin this case, the <name> element node, which is converted to its text node value for the
particular <fruit> element being evaluated. Because the test() method returns a Boolean value, it's
safe to use as part of predicate filter Boolean condition.

Regular expressions are covered in detail in Chapter 13.

See Also

Recipes 20.7, 20.8, 20.9, and Chapter 13

Recipe 20.15. Using HTML and Special Characters in XML

Problem

You want to use HTML or other text that uses characters with specific meaning in the context of XML.

Solution

Use a CDATA tag to enclose the text.

Discussion

While this recipe doesn't deal with anything specific to ActionScript per se, it is relevant in that it
addresses something you'll likely encounter when working with XML with respect to Flash or
otherwise. In XML, certain characters are interpreted in specific ways. For example, the greater-than
and less-than characters are interpreted as the delimiters of XML tags. If you try to use one of those
characters as part of some group of text within the XML document, it causes parser errors when you
try to use the document; for example:

<example>a < b</example>

As you can see, the preceding encloses the text a < b in a text node. However, because the less-than
character is interpreted in a specific way in the context of an XML document, the example causes a
parser error. Another common example is one in which you want to store some HTML within an XML
document; for example:

<htmlExample>Darron</htmlExample>

In such a case the HTML is interpreted as XML, not as a string. The preceding XML packet contains
<htmlExample> as the root node, with a child <a> node that contains a text node with the string value
of Darron .

In any case, you can enclose text in a CDATA (Character Data) tag, which won't be interpreted by the
XML parser. Instead, the parser simply treats the enclosed data as a string.

A CDATA tag begins with <![CDATA[and it ends with]]> . Therefore, the first example can be written
as follows:

<example><![CDATA[a < b]]></example>

The second example can be rewritten as follows:

<htmlExample><![CDATA[Darron]]></htmlExample>

When the XML is parsed, the character data inside the CDATA tag is treated as a single string, but the
CDATA tag itself is discarded. So, for example, the text node in the first example would be retrieved as
a < b , not <![CDATA[a < b]]> . In the second example, the XML packet is interpreted as a root node
of <htmlExample> , with a single text node containing the entire HTML link as a string. Because of the
CDATA tag, the <a> is not interpreted as a child node as it was previously, and instead is just part of
the string value of the text node.

Chapter 21. Web Services and Flash
Remoting

Section 21.0. Introduction

Recipe 21.1. Calling Web Services Methods

Recipe 21.2. Handling Web Services Responses

Recipe 21.3. Handling Web Services Errors

Recipe 21.4. Calling Flash Remoting Methods

Recipe 21.5. Handling Flash Remoting Responses

21.0. Introduction

Remote procedure calls (RPCs) are a powerful way to build distributed and robust applications. RPC is
essential for most Flash platform applications. For example, you can use RPC to send data to the
server from Flash Player or retrieve data from the server to display to the user. There are many ways
for making remote procedure calls from Flash Player; however, there are two ways that stand out:
web services and Flash Remoting.

When referring to web services in this book, the focus is on Simple Object Access Protocol (SOAP).
Web services of this type use SOAP for communication between the server and client. SOAP can
serialize complex datatypes, which means you can call server-side methods from a client and pass it
parameters of both simple (numbers, strings, and Boolean values) and complex types (objects.) The
server-side method can even return complex data to the client, such as arrays, Date objects, and
even custom datatypes. SOAP web services are supported by nearly every platform, including Java,
ColdFusion, PHP, .NET, and Perl to name a few. Flash Player, however, does not have built-in web
services support, and it doesn't natively understand SOAP either.

However, Flash Player can communicate over HTTP, and it can parse XML data. Since SOAP web
services communicate over HTTP and SOAP is an XML-based protocol, it is possible to use
ActionScript to call web services methods.

Flash Remoting is very similar to web services, but with a few significant advantages:

Flash Remoting uses HTTP as well, but rather than using SOAP, it uses a binary protocol called
Active Messaging Format (AMF). Since AMF packets are binary, you can send much more data
across the wire at much less expense. The result is that Flash Remoting is faster than other web
services.

Flash Remoting is natively supported by Flash Player.

Flash Remoting is also available for Java, ColdFusion, .NET, and Perl, though it is quite likely
that there are many less prominent platforms that support web services that don't currently
support Flash Remoting.

Flash Remoting and Web services both make asynchronous requests to service methods, and both
can be used to create sophisticated client-server applications. The recipes in this chapter look at how
to work with these technologies.

Recipe 21.1. Calling Web Services Methods

Problem

You want to call a web service method.

Solution

Use an mx.rpc.soap.WebService object, and call the method from the WebService object.

Discussion

As mentioned earlier, Flash Player has no built-in web services capabilities, but the Flex framework
does include a solution. This recipe discusses how to use the Flex 2 solution for working with web
services. For a Flash solution, see additional notes at http://www.rightactionscript.com/ascb .

The Flex framework includes mx.rpc.soap.WebService , a class that simplifies calling web services
methods by using ActionScript. The first step is to construct a new WebService object, as follows:

var webService.WebService = new WebService();

Every web service must have a Web Service Description Language (WSDL) resource that describes
the service. You can tell the WebService object where to locate the WSDL using the wsdl property:

webService.wsdl = "http://www.rightactionscript.com/webservices/FlashSurvey.php?wsdl";

Before you can call methods, you must load the WSDL data from the specified URL by using the
loadWSDL() method:

webService.loadWSDL();

The loadWSDL() method makes a request for the WSDL data asynchronously. That means you have
to listen for an event to know when the WSDL data has loaded. When the data has loaded, the
WebService object dispatches a load event of type mx.rpc.soap.LoadEvent , as shown here:

webService.addEventListener(LoadEvent.LOAD, onWSDL);

Once the WSDL data has correctly loaded, call the web services methods directly from the
WebService object. For example, the WSDL URL used in this example points to a real web service,
which has a method called getAverages() that can be called from the WebService object, as follows:

webService.getAverages();

If the method happens to expect parameters, pass them to the method as you would any normal
ActionScript method. For example, the same web service also has a method called takeSurvey() ,
which expects two integer values; the following calls the method and passes it values of 10 and 15:

webService.takeSurvey(10, 15);

Web services method calls occur asynchronously, which means a response is not returned
immediately. See Recipe 21.2 for more details on how to retrieve the return value from a web
services method.

See Also

Recipe 21.2

Recipe 21.2. Handling Web Services Responses

Problem

You want to retrieve the return value from a web services method.

Solution

Add a result event listener to the web services method object.

Discussion

Web services methods are complex objects of type mx.rpc.soap.Operation, to which you can assign
event listeners. When a web services method returns a value, the method object dispatches a result
event of type mx.rpc.events.ResultEvent. If you want to handle the event, you can add a listener to
the method object. For example, if webService is a WebService object that maps to a web service
that defines a method called getAverages(), you can add a listener as follows:

webService.getAverages.addEventListener(ResultEvent.RESULT, onGetAverages);

You then call the method normally:

webService.getAverages();

When the listener is called, it is passed a ResultEvent parameter. The ResultEvent class defines a
property called result that contains the return value. Assuming the getAverages() web services
method returns an associative array with two properties called flash and actionscript, the following
displays those values in a text area called textArea:

private function onGetAverages(event:ResultEvent):void {
 textArea.text = "The averages for Flash and ActionScript are " +
event.result.flash + " and " + event.result.actionscript;
}

Recipe 21.3. Handling Web Services Errors

Problem

You want to handle errors from a web service.

Solution

Listen for a fault event.

Discussion

When a web services error occurs, the operation dispatches a fault event of type
mx.rpc.events.FaultEvent . You can add a listener to the Operation object directly. However, it's
generally advisable to handle fault events at the WebService object level. Operation fault events
bubble up to the WebService object if they aren't handled at the Operation level. The following adds a
fault event listener to a WebService object:

webService.addEventListener(FaultEvent.FAULT, onWebServiceFault);

The FaultEvent class defines a fault property of type mx.rpc.Fault . Fault objects return details about
the error using the faultCode , faultDetail , faultString , and rootCause properties. The following
displays an Alert when an error occurs:

private onWebServiceFault(event:FaultEvent):void {
 var fault:Fault = FaultEvent.fault;
 var message:String = "An error occurred. The details are as follows\ncode: " + fault.faultCode;
 message += "\ndetail: " + faul.faultDetail;
 Alert.show("Web Service Error", message);
}

Recipe 21.4. Calling Flash Remoting Methods

Problem

You want to call a Flash Remoting method.

Solution

Use a NetConnection object, connect to the Flash Remoting gateway and use the call() method to
call the method.

Discussion

Flex and Flash have ActionScript-based APIs that are designed to simplify Flash Remoting method
calls. However, this recipe discusses the low-level solution that relies only on the intrinsic (native to
Flash Player) solution.

All Flash Remoting operations rely on the flash.net.NetConnection class. The first step when making
Flash Remoting method calls is to construct a new NetConnection object. You should use one
NetConnection object per Flash Remoting service (a service generally being a class):

var connection:NetConnection = new NetConnection();

Next, call the connect() method, passing it the URL to the Flash Remoting gateway. For example, if
you are using ColdFusion running locally as a standalone product, then try the following:

connection.connect("http://localhost:8500/flashservices/gateway/");

The following connects to a working example AMFPHP Flash Remoting gateway:

connection.connect("http://www.rightactionscript.com/flashremoting/gateway.php");

If you don't know which gateway URL to use, consult either the documentation
for the Flash Remoting server product or your network administrator
responsible for managing the server portion of Flash Remoting.

The connect() method does not immediately attempt to connect to the gateway URL. If the URL is
invalid, or if there is a server-side error, you won't receive an error until you actually call a method.

The next step is to call a Flash Remoting method using the call() method of the NetConnection
object. The call() method requires two parameters. The first parameter specifies the name and path
of the service and method. The second parameter tells the NetConnection object how to handle the
response from the method call. For a discussion of how to handle responses from Flash Remoting,
see Recipe 21.2. In this initial discussion, it's assumed that the application doesn't need to handle a
response; as such, a null value is passed for the second parameter.

The first parameter for the call() method specifies the method using a dot-delimited path in the
following format:

package.ServiceObject.method

For example, if you are using a ColdFusion component (CFC) accessible at
http://localhost:8500/com/oreilly/as3cb/Example.cfc, and the CFC defines a method called test(),
the following code calls the method:

connection.call("com.oreilly.as3cb.Example.test", null);

You can pass parameters to the method by adding them to the parameter list of the call() method.
For example, if the test() method accepts a number and a string parameter, you can use the
following code to pass those values:

connection.call("com.oreilly.as3cb.Example.test", null, 15, "abcd");

See Also

Recipes 21.2 and 21.5

http://localhost:8500/com/oreilly/as3cb/Example.cfc

Recipe 21.5. Handling Flash Remoting Responses

Problem

You want to retrieve a return value from a Flash Remoting method.

Solution

Use a Responder object with call() .

Discussion

Recipe 21.1 discusses how to use the call() method of a NetConnection object to call a Flash
Remoting method. The second parameter of that method is designed for specifying how Flash Player
should handle responses. If you pass a value of null (as in the examples in that recipe), then no
responses are handled. If you want to handle the responses, use a flash.net.Responder object.

The Responder constructor lets you pass it two function references, which handle return values and
errors:

var responder:Responder = new Responder(onResult, onError);

When the result function gets called, it's passed one parameter with the value returned by the Flash
Remoting method:

private function onResult(returnValue:Datatype):void {
}

The error handler method is passed an object with properties that describe the error in greater detail.

The following example makes a call to a Flash Remoting method called getAverages() and uses
trace() to display the values. The getAverages() method returns an associative array with two
properties called flash and actionscript :

package {
 import flash.net.NetConnection;
 import flash.net.Responder;

 public class Example {
 private var _connection:NetConnection;
 public function Example() {
 _connection = new NetConnection();

 _connection.connect("http://www.rightactionscript.com/flashremoting/ gateway.php");
 var responder:Responder = new Responder(onResult, onError);
 _connection.call("FlashSurvey.getAverages", responder);
 }

 private function onResult(result:Object):void {
 trace(result.flash + " " + result.actionscript);
 }

 private function onError(error:Object):void {
 trace(error.description);
 }
 }
}

When returning values from Flash Remoting methods, you should always return types that serialize
well; do not return record sets. Instead, you should always convert record sets to arrays of
associative arrays. That ensures the greatest interoperability.

See Also

Recipe 21.4

Chapter 22. Building Integrated
Applications

Section 22.0. Introduction

Recipe 22.1. Calling JavaScript Functions

Recipe 22.2. Calling ActionScript Functions

Recipe 22.3. Passing Parameters from HTML

22.0. Introduction

The ExternalInterface class allows the Flash Player to communicate in a synchronous manner with the
application within which it is embedded. In many cases that host application is a web browser. As
such, this chapter focuses exclusively on how to build applications that integrate ActionScript and
JavaScript when Flash Player is embedded in a browser.

Recipe 22.1. Calling JavaScript Functions

Problem

You want to call a JavaScript function from ActionScript.

Solution

Use ExternalInterface.call().

Discussion

Use the ExternalInterface.call() method to make synchronous calls to JavaScript functions from
ActionScript. The call() method requires at least one parameter as a string specifying the name of
the function to call:

ExternalInterface.call("changeTitle");

The function must be defined in the HTML page with the same name:

<script language="JavaScript">
 function changeTitle(title) {
 if(title == undefined) {
 title = "New Title";
 }
 window.title = title;
 }
</script>

If the JavaScript function accepts parameters, you can pass values to it by adding additional
parameters when calling the call() method. For example, the following passes a value to the
changeTitle() function:

ExternalInterface.call("changeTitle", "ActionScript 3.0 Cookbook");

Since call() is synchronous, any values returned by the JavaScript function are immediately returned
to ActionScript. That means you can assign the return value from a call to a variable. The following
ActionScript illustrates how that can work:

var title:String = ExternalInterface.call("getTitle");

The JavaScript function for the preceding ActionScript call might look like:

<script language="JavaScript">
 function getTitle() {
 return window.title;
 }
</script>

ExternalInterface works for the following browsers:

Internet Explorer 5.0+ (Windows)

Netscape 8.0+ (Windows and Mac OS X)

Mozilla 1.7.5+ (Windows and Mac OS X)

Firefox 1.0+ (Windows and Mac OS X)

Safari 1.3+ (Mac OS X)

If you need to support a browser that ExternalInterface does not work with, you can still make calls
to JavaScript functions. However, you must then use the flash.net.navigateToURL() function.

The navigateToURL() function is asynchronous, meaning it does not return a value. To call a
JavaScript function using navigateToURL() you must use a flash.net URLRequest object that has a
value using the javascript protocol. The following is an example that calls the JavaScript alert()
function:

var request:URLRequest = new URLRequest("javascript:alert('example');");
navigateToURL(request);

See Also

Recipe 22.2

Recipe 22.2. Calling ActionScript Functions

Problem

You want to call an ActionScript function from JavaScript.

Solution

Use ExternalInterface.addCallback() to register the ActionScript function, and then call the function
from the JavaScript reference to the Flash Player object.

Discussion

The ExternalInterface API allows you to register ActionScript functions, which makes them accessible
to JavaScript. Use the static addCallback() method to register the ActionScript functions. The
addCallback() method requires two parameters: the name by which you want to be able to reference
the function from JavaScript and a reference to the function. The following example registers a
function called displayMessage using an identifier (the name by which the function can be called from
JavaScript) of showMessage:

ExternalInterface.addCallback("showMessage", displayMessage);

From JavaScript, you need to get a reference to the Flash Player object. There are two basic Flash
Player versions that run in the browser: ActiveX and the plug-in version. The ActiveX version runs
natively in Internet Explorer, while the plug-in version is used by the rest of the browsers.

The ActiveX player is controlled by the <object> tag in an HTML page, and you can retrieve a
JavaScript reference using window. objectId where objectId is the value of the id attribute of the

<object> tag. For example, if the <object> tag's id attribute is example, then the reference to the
ActiveX player would be window.example.

The plug-in player is controlled by the <embed> tag in an HTML page, and you can retrieve a
JavaScript reference by using window.document. embedName, where embedName is the value of the name

attribute of the <embed> tag. For example, if the <embed> tag's name attribute is example, then the
reference to the plug-in player would be window.document.example.

In most cases, you probably won't know which Flash Player version the user will have. You can use
navigator.appName in JavaScript to determine which browser the user has:

If navigator.appName contains the string Microsoft, then the user is running Internet Explorer,

which means they have the ActiveX player.

If navigator.appName doesn't contain the string Microsoft, then the user is using the plug-in
version of the player.

Use the following JavaScript to detect which version of the player the user has and retrieve the
correct reference:

<script language="JavaScript">
var flashPlayer;
function detectFlashPlayer() {
 if(navigator.appName.indexOf("Microsoft") != -1) {
 flashPlayer = window.objectId;
 }
 else {
 flashPlayer = window.document.embedName;
 }
}
</script>

Next, use the onLoad attribute in the <body> tag to call detectFlashPlayer() when the page loads, for
example:

<body onLoad="detectFlashPlayer">

The flashPlayer variable contains the correct reference to the Flash Player the user has on his
system.

You can call any registered ActionScript function directly from the Flash Player reference. For
example, if a function has been registered with the identifier showMessage, the following calls that
function from JavaScript (assuming flashPlayer is a variable referencing the Flash Player):

flashPlayer.showMessage();

You can pass parameters to the functions, as well. If the ActionScript function with the
ExternalInterface identifier of showMessage accepts a string parameter, then you can call it from
JavaScript as follows:

flashPlayer.showMessage("example message");

See Also

Recipe 22.1

Recipe 22.3. Passing Parameters from HTML

Problem

You want to pass parameters from HTML to an SWF.

Solution

Use FlashVars .

Discussion

FlashVars provides a solution by which you can pass parameters to an SWF from HTML. This can be
very useful when you want to pass simple data to an SWF and the data is likely to change, depending
on where the application is deployed. For example, you might want to pass web services URLs to an
SWF when the URLs change, depending on the server on which the SWF is deployed. That enables
you to redeploy the SWF with new values without having to recompile the SWF.

The FlashVars solution requires two parts: one part is implemented in HTML, and the other is
implemented in ActionScript.

The HTML portion of the FlashVars solution requires adding a <param name="FlashVars" > tag to the
<object> tag, and a FlashVars attribute to the <embed> tag. The value for the tag and attribute is a
URL-encoded sequence of name-value pairs. For example, the following constitutes a valid FlashVars
value that defines two name-value pairs, url1 and url2 :

url1=http://www.example.com&url2=http://www.sample.com

Within ActionScript, you can reference the variables and values passed via FlashVars using the
root.loaderInfo.parameters property of any display object. The root.loaderInfo.parameters
property is an associative array, the keys of which are the names of the variables passed to the SWF
via FlashVars . For example, using the preceding example value, the root.loaderInfo.parameters
property would have two keys: url1 and url2 .

Using FlashVars with JavaScript, you can pass a query string from the HTML page to an SWF. The
following JavaScript illustrates how to write the <object> and <embed> tags with JavaScript so they
pass the query string data from the HTML page to the SWF using FlashVars :

// Retrieve the query string, and assign it to a variable.
var parameters = window.location.search.substr(1);
var objectEmbed = '<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" id="Example" width="100%" height="100%" codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab">';
objectEmbed += '<param name="movie" value="Example.swf" />';
objectEmbed += '<param name="quality" value="high" />';

objectEmbed += '<param name="bgcolor" value="#869ca7" />';
objectEmbed += '<param name="allowScriptAccess" value="sameDomain" />';
objectEmbed += '<param name="FlashVars" value="' + parameters + '" />';
objectEmbed += '<embed src="Example.swf" quality="high" bgcolor="#869ca7" width="100%" height="100%" name="Example" align="middle" play="true" loop="false" quality="high" allowScriptAccess="sameDomain" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" FlashVars="' + parameters + '"></embed>';
objectEmbed += '</object>';
document.write(objectEmbed);

FlashVars is an important feature of Flash Player. However, it's important to use FlashVars correctly.
FlashVars is not designed to be a universal mechanism for passing data to an SWF. FlashVars is only
for simple data that is likely to change, depending on where the SWF is deployed. For more complex
initialization data loading, use a URLLoader object to load data at runtime.

Chapter 23. File Management

Section 23.0. Introduction

Recipe 23.1. Downloading Files

Recipe 23.2. Detecting When a User Selects a File to Upload

Recipe 23.3. Monitoring Download Progress

Recipe 23.4. Browsing for Files

Recipe 23.5. Filtering Files That Display in the Browser Window

Recipe 23.6. Detecting When the User Has Selected a File to Upload

Recipe 23.7. Uploading Files

Recipe 23.8. Monitoring File Upload Progress

23.0. Introduction

Prior to Version 8, the Flash Player did not support any mechanism for allowing the user to browse
her computer for files. Furthermore, Flash Player didn't have a mechanism for uploading or
downloading files, either. As such, most web applications used HTML-based solutions for uploading
and downloading files. Flash-based applications not deployed on the Web often had to use customized
solutions for uploading and downloading files. Flash Player 8 and higher now supports the new APIs,
which greatly simplify file I/O by allowing Flash Player to browse a user's system for files to upload
and download.

Flash Player allows users to browse to files on their local disks and upload and download files using
the FileReference and FileReferenceList classes. This chapter discusses the details of working with
those APIs.

Recipe 23.1. Downloading Files

Problem

You want to let users download files to their computer.

Solution

Use the download() method of a FileReference object.

Discussion

The flash.net.FileReference class defines a download() method that allows users to download a file
from a URL to their computers. When Flash Player calls the download() method, it attempts to open
a dialog box, titled "Select location for download." This dialog box allows users to use a standard
operating system dialog to browse their local disks for a location to which they want to save files.

The first step before calling the download() method is to construct a FileReference object, as follows:

var fileReference:FileReference = new FileReference();

The download() method requires at least one parameter as a URLRequest object, specifying the URL
from which you want to download the file. In the simplest case, the URL points to a static file that the
user can download. The following example opens a save dialog box that allows users to select a
location to which they can save a copy of example.txt from the same directory on the server where
the SWF resides:

var urlRequest:URLRequest = new URLRequest("example.txt");
fileReference.download(urlRequest);

Specifying a full path to a file is as simple as specifying the URL when constructing the URLRequest
object, as the following example illustrates:

var urlRequest:URLRequest = new URLRequest("http://www.myexamplesite.com/example.txt");
fileReference.download(urlRequest);

The save dialog box also allows users to change the name of the file they're downloading. By default,
the filename field displays the name of the file as it exists on the server. In the preceding example,
the filename field in the save dialog box displays example.txt . In many cases, though, you may want
to use a different default name than the name of the file specified in the URL. For example, if a static

file was created by a server-side script, it may have a unique identifier name as its filename (e.g.,
R7AS82892KHWI014.jpg) that you may not want to display to users by default. Additionally, there
are cases when the file is created dynamically at request time by a script, and the URLRequest object
points to that script. In those cases, the default value for the filename field in the save dialog box is
the name of the script (e.g., script.cgi), which not only isn't user-friendly, but it can cause the file to
be misread by Windows computers if it has the incorrect file extension.

The download() method accepts a second, optional parameter by which you can specify a different
default value for the filename field in the save dialog box. The second parameter is a string, the value
of which is displayed in the filename field. The following example prompts the user to download a file
that is created dynamically at request time by a script (script.cgi). In this example, the script
outputs a JPEG image file. Rather than using the default filename value (script.cgi), the code
specifies a filename value of example.jpg :

var urlRequest:URLRequest = new URLRequest("script.cgi");
fileReference.download(urlRequest, "example.jpg");

When working with the download() method, it's important to use a try... catch statement because
the method can throw errors. If an error isn't handled properly, it can cause things to malfunction (if
the code assumes the operation was successful) and can display a default error message to the user.
It's almost never a good idea to allow Flash Player to throw an unhandled event that would display a
default error message to the user, as that would likely cause the user to feel as though something
has broken. Handling the error with ActionScript code allows the application to respond to the error
much more gracefully than it would if the error were unhandled. The two most common errors are
IllegalOperationError and SecurityError . The IllegalOperationError occurs when you call download()
and a save dialog box is already open; only one such dialog box can be open at a time. The
SecurityError occurs when the SWF doesn't have permission to download the file because the SWF is
an untrusted file:

try {
 fileReference.download(urlRequest, fileName);
}
catch (illegalOperation:IllegalOperationError) {
 // code to handle an illegal operation error
}
catch (security:SecurityError) {
 // code to handle a security error
}

Although less common, the download() method can also throw errors of type ArgumentError and
MemoryError . ArgumentError errors occur when the URL- Request parameter has a data property
that isn't of type URLVariables or String . Although your URLRequest allows you to assign a byte
array to the data property, the download() method works only when the data property is of type
URLVariables of String . The memory error is fairly obscure, and it can occur when one of two
conditions is present. If the URLRequest is set to make a GET request and System.useCodePage is true
, Flash Player may not be able to convert characters from Unicode to multibyte character format as
required. Alternatively, Flash Player may not be able to allocate the necessary memory to open the
save dialog box.

In addition to the errors that the download() method throws, it also dispatches error events. The

download() method dispatches a security error event of type SecurityErrorEvent when Flash Player
was unable to download the file for security reasons. Security error events occur when Flash Player's
sandbox security doesn't grant the SWF permission to download a file from the specified URL. The
download() method can dispatch an I/O error event of type IOErrorEvent when there is an error
downloading the file due to one of the following reasons:

A network error

The server requires authentication and Flash Player isn't running in a browser

An invalid protocol (only HTTP, HTTPS, and FTP work)

You must add an event listener to handle error events such as SecurityErrorEvent and IOErrorEvent .
You can add an event listener for an error event just as you would for a standard event. The
following example adds a listener for an IOErrorEvent type.

fileReference.addEventListener(IOErrorEvent.IO_ERROR, onIOError);

See Also

Recipe 23.2

Recipe 23.2. Detecting When a User Selects a File to
Upload

Problem

You want to detect when a user selects a file in order to start a download.

Solution

Listen for the select event. Listen for the cancel event to detect when the user has clicked the cancel
button.

Discussion

The download() method does not pause the execution of ActionScript code. As soon as the
download() method is called, Flash Player attempts to open the save dialog box. Once it either
successfully opens the save dialog box or throws an error, the Flash Player continues to the next line
of ActionScript code. That means you cannot expect the user to have selected a file and clicked the
Save button immediately following the download() method call. Rather, you must listen for a select
event to tell you when the user has pressed the Save button. The select event is of type Event, and
you can use the Event.SELECT constant to add the listener, as follows:

fileReference.addEventListener(Event.SELECT, onSelectFile);

As soon as the select event occurs, you can retrieve the filename the user has selected by reading
the name property of the FileReference object:

private function onSelectFile(event:Event):void {
 trace(event.target.name);
}

The user also has the option of clicking the Cancel button from the save dialog box. If the user clicks
the Cancel button, the file is not downloaded, and the dialog closes. When the user clicks the Cancel
button, the FileReference object dispatches a cancel event of type Event. You can use the
Event.CANCEL constant to add a listener, as follows:

fileReference.addEventListener(Event.CANCEL, onCancelDialog);

See Also

Recipe 23.1

Recipe 23.3. Monitoring Download Progress

Problem

You want to monitor download progress.

Solution

Listen for the progress event.

Discussion

You can monitor the progress of a file(s) as it downloads by using the progress event. Every time
part of the file downloads to the user's computer, the FileReference object dispatches a progress
event of type ProgressEvent . You can use the ProgressEvent.PROGRESS constant to add a listener, as
follows:

fileReference.addEventListener(ProgressEvent.PROGRESS, onFileProgress);

The progress event object has two properties, bytesLoaded and bytesTotal , which return the bytes
that have downloaded and the total bytes, respectively. The following example method uses the
values of those properties to display the download progress in a text field called fileProgressField :

private function onFileProgress(event:ProgressEvent):void {
 fileProgressField.text = event.bytesLoaded + " of " + event.bytesTotal + " bytes";
}

When the file has completed downloading, the FileReference object dispatches a complete event of
type Event . Use the Event.COMPLETE constant to add a listener:

fileReference.addEventListener(Event.COMPLETE, onFileComplete);

See Also

Recipe 23.1

Recipe 23.4. Browsing for Files

Problem

You want to let the user browse his local disk(s) for a file (s) to upload.

Solution

Use the browse() method of either a FileReference or FileReferenceList object.

Discussion

Using the browse() method of a FileReference of FileReferenceList object, you can open a dialog box
that allows the user to browse his local disks for a file or files. The difference between the browse()
methods of the FileReference and FileReferenceList classes is that the former allows the user to select
just one file, while the latter allows the user to select more than one file by holding the Control or
Shift key (or the Command key on a Macintosh):

fileReference.browse();

As with the download() method, the browse() method can throw errors, and it's best to handle the
errors using try/catch. An illegal operation error can occur in one of two scenarios:

Only one browse dialog box can be open at a time. If a dialog box is already open and you call
browse(), it throws an error of type IllegalOperationError.

If the user has configured his global Flash Player settings to disallow file browsing, calling the
browse() method will throw an error.

This block of code illustrates how to use a TRy/catch block to handle an IllegalOperationError thrown
when calling browse().

try {
 fileReference.browse();
}
catch (illegalOperation:IllegalOperationError) {
 // code to handle error
}

Handling the error ensures that Flash Player will not display a default error message to the user
(which could be disconcerting to the user).

See Also

Recipe 23.5

Recipe 23.5. Filtering Files That Display in the Browser

Window

Problem

You want to filter the type of files that display in the browse dialog box so the user only sees the
types of files you want to allow her to upload.

Solution

Pass an array of FileFilter objects to the browse() method.

Discussion

By default the browse() method displays a dialog box that displays all files on the user's filesystem.
However, you also have the option of filtering the types of files that are displayed. For example, you
may want to display only image files or only text files. You can accomplish this by passing an array of
flash.net.FileFilter objects to the browse() method.

The FileFilter constructor requires at least two parameters:

The first parameter determines what displays in the "Files of type" drop-down menu in the
browse dialog box.

The second parameter determines which file extensions are filtered.

File extensions must be semicolon-delimited, each prepended with an asterisk and a dot. The
following constructs a FileFilter object that filters for files with file extensions of .png , .gif , and .jpg :

var fileFilter:FileFilter = new FileFilter("Images", "*.png;*.gif;*.jpg");

Additionally, you may opt to specify a third parameter of Macintosh file types. As with file extensions,
file types are semicolon delimited. When the Macintosh file types parameter is omitted, the file
extensions are used as a filter for both Windows and Macintosh files. When the Macintosh file types
parameter is specified, the file extensions are used as a filter for Windows files, while they are
ignored for Macintosh files in preference of the Macintosh file types. Macintosh operating systems
now support file extensions as a way of determining the file type, yet they also continue to support
type codes assigned to the files.

You can specify which filter (or filters) to use by passing them as elements of an array to the browse(
) method, as follows:

fileReference.browse([fileFilter]);

In the preceding example, only one filter is passed to the browse() method. Each filter that's passed
to the browse() method adds a new option to the "Files of type" drop-down menu in the browse
dialog box. For example, the following code allows four options in the Files of type menuImages ,
Documents , Archives , and All .

var fileFilter1:FileFilter = new FileFilter("Images", "*.png;*.gif;*.jpg");
var fileFilter2:FileFilter = new FileFilter("Documents", "*.txt;*.doc;*.pdf;*.rtf");
var fileFilter3:FileFilter = new FileFilter("Archives", "*.zip;*.tar;*.hqx");
var fileFilter4:FileFilter = new FileFilter("All", "*.*");
_fileReference.browse([fileFilter1, fileFilter2, fileFilter3, fileFilter4]);

When you pass an array of FileFilter objects to the browse() method, there is a possibility that the
browse() method can throw an argument error of type ArgumentError . Argument errors occur if any
of the FileFilter objects have incorrectly formatted values.

The file filter parameter also works with the browse() method of FileReferenceList .

See Also

Recipe 23.4

Recipe 23.6. Detecting When the User Has Selected a File
to Upload

Problem

You want to detect when the user has selected a file from the browse dialog box.

Solution

Listen for a select event. Listen for a cancel event to determine if and when the user clicks the
Cancel button.

Discussion

When the user selects a file and clicks the Open button from a browse dialog box, the FileReference
object dispatches a select event of type Event. You can use the Event.SELECT constant to add a
listener, as follows:

fileReference.addEventListener(Event.SELECT, onSelectFile);

When the user has selected a file, the details of that file are immediately available (name, size,
createdDate, etc.). For example, as soon as a FileReference object dispatches a SELECT event you
can retrieve the filename, as in the following example:

selectedFileTextField.text = fileReference.name;

When the user clicks the Cancel button from a browse dialog box, the FileReference object dispatches
a cancel event of type Event. You can use the Event.CANCEL constant to add a listener, as follows:

fileReference.addEventListener(Event.CANCEL, onCancelBrowse);

The select and cancel events also work for FileReferenceList objects.

See Also

Recipe 23.7

Recipe 23.7. Uploading Files

Problem

You want to allow users to upload files.

Solution

Use the upload() method of the FileReference object.

Discussion

The upload() method of a FileReference object allows you to upload a file to a server by using a
server-side script that is configured to accept uploads using HTTP(S). At a minimum, the upload()
method requires one parameter as a URLRequest object specifying the URL of the script to which you
want to send the file data:

var urlRequest:URLRequest = new URLRequest("uploadScript.cgi");
fileReference.upload(urlRequest);

All uploads use POST with a Content-Type of multipart/form-data. By default, the Content-
Disposition is set to Filedata. The script needs to know the Content-Disposition value so it can
read the file data. If the script needs to use a Content-Disposition other than the default, you can
specify a value as the second, optional parameter you pass to the upload() method, as follows:

fileReference.upload(urlRequest, "UploadFile");

You can only upload a file if the user has selected the file using browse(). If the user selects a file
using a FileReference object's browse() method, then you can call upload() after the select event
occurs. If the user selects files using FileReferenceList, then you must call the upload() method for
each file in the object's fileList property. The fileList property of a FileReferenceList object is an
array of FileReference objects corresponding to each of the files selected by the user.

The upload() method can throw errors. The possible errors thrown by upload() are identical to those
thrown by download(). Additionally, like download(), the upload() method can dispatch security
error events and IO error events. See Recipe 23.1 for more details on handling these errors and error
events.

See Also

Recipe 23.1

Recipe 23.8. Monitoring File Upload Progress

Problem

You want to monitor the progress of a file as it uploads to your server.

Solution

Listen for a progress event.

Discussion

You can monitor file upload progress, much as you can monitor a file download progress. A
FileReference object dispatches progress events when the file is uploading. When the file has
completed uploading, it dispatches a complete event. See Recipe 23.3 for details.

See Also

Recipe 23.3

Chapter 24. Socket Programming
Section 24.0. Introduction

Recipe 24.1. Connecting to a Socket Server

Recipe 24.2. Sending Data

Recipe 24.3. Receiving Data

Recipe 24.4. Handshaking with a Socket Server

Recipe 24.5. Disconnecting from a Socket Server

Recipe 24.6. Handling Socket Errors

24.0. Introduction

Socket connections allow the Flash Player to send and load data from a server over a specified
network port. The main difference between socket and server connections in Chapter 20 is that
socket connections don't automatically close after data transfer is complete.

When a socket connection is made, the connection stays open until the client (the Flash Player) or
the server explicitly closes it. Because of this, sockets enable a special type of communication called
data push, which means that the server sends information to the Flash Player at any time without a
request coming from the Player itself.

Socket connections are typically used to create multiuser applications. An example of one such
application would be an online chat room. The chat program might consist of a central chat server
with various connected Flash Player clients. Each time a client .swf sends a message to the server,
the server determines which client should receive the message and pushes the message to that
specific client over the open connection. In this case, the receiving client didn't ask for the message,
but rather the message was simply pushed out to it by the server. When a client closes a connection,
the server notifies the other clients that someone has logged off of the system.

Two types of socket connections can be made from the Flash Player to a socket server. They are very
similar in behavior and operation, but have a few subtle differences. The first is an XML socket
connection that is similar to the XMLSocket in previous versions of the Flash Player. New for Flash
Player 9 is a binary socket connection.

To create an XML socket connection, use the flash.net.XMLSocket class. To create a binary socket
connection, use the flash.net.Socket class.

XML socket connections are focused around text. The client and server communicate by exchanging
XML packets containing data. Actions are carried out by analyzing the contents of the XML packets.

Binary socket connections are new in ActionScript 3.0 and enable raw connections that allow for
transfer of binary information. Binary sockets are slightly more advanced than XML sockets because
they require a low-level knowledge of binary datatypes, but they are also more powerful because you
can connect to a wider range of socket servers and generally do more with them. For example,
binary sockets allow you to connect to mail servers (via POP3, SMTP, and IMAP), news servers (via
NNTP), chat servers, or even implement screen sharing and remote desktop applications by
connection to a VNC server (via RFB).

Regardless of which socket connection type you use, the connection behaves in an asynchronous
manner. This means that you can't read data from the socket connection until you have been notified
that data is available via an event handler. All data reading must be done in an event handler that
executes automatically when data is available. Synchronous socket connections, when attempting to
read data from the socket causes your program to wait until data becomes available in the socket,
are easier to program but not as efficient. You'll learn more about how to deal with the asynchronous
nature of the Flash Players socket connections as you go through this chapter.

Recipe 24.1. Connecting to a Socket Server

Problem

You want to establish a connection with a socket server.

Solution

Use either the Socket.connect() or XMLSocket.connect() method and listen for the connect event to
be notified when a connection is made.

Discussion

To connect to a socket server, there are two critical pieces of information that you need to know
before attempting to make a connection. The first is the domain name or IP address of the server to
which the connection will be made, and the second is the port over which the connection should take
place.

Whether you are using a Socket or an XMLSocket instance, the connection process is exactly the
same; both classes define a connect() method that takes two parameters:

host

A string value specifying the host to connect to, either with a domain name such as
www.example.com , or with an IP address such as 192.168.1.101 . To connect to the web server
the Flash movie is being served from, pass null instead of a string hostname.

port

An int value specifying the port number that should be used to connect to the host. The port
value must be at least 1024, unless the server has a policy file specifically allowing ports less
than 1024.

Because of the asynchronous nature of socket programming in Flash, the connect() method does not
wait for a connection to happen before continuing to the next line of ActionScript code. If you try to
interact with a socket before a connection has been fully established, you'll encounter unexpected
results and your code won't work correctly.

The proper way to connect to a socket is to first add an event listener for the connect event before
attempting to call connect() . The connect event is dispatched by both Socket and XMLSocket
objects when a successful connection has been made, letting you know that the socket is ready to be

interacted with.

The code for connecting a Socket instance to a socket server running on localhost over port 2900
looks like this:

package {
 import flash.display.Sprite;
 import flash.events.*;
 import flash.net.Socket;

 public class SocketExample extends Sprite {

 private var socket:Socket;

 public function SocketExample() {
 socket = new Socket();

 // Add an event listener to be notified when the connection
 // is made
 socket.addEventListener(Event.CONNECT, onConnect);

 // Connect to the server
 socket.connect("localhost", 2900);
 }

 private function onConnect(event:Event):void {
 trace("The socket is now connected...");
 }

 }
}

If you want to connect via XMLSocket instead, the code is almost exactly the same. First, you create
the event listener for the connect event, and then you invoke the connect() method. The only
difference is that all Socket references should be replaced with XMLSocket :

package {
 import flash.display.Sprite;
 import flash.events.*;
 import flash.net.XMLSocket;

 public class SocketExample extends Sprite {

 private var socket:XMLSocket;

 public function SocketExample() {
 socket = new XMLSocket();

 // Add an event listener to be notified when the connection is made
 socket.addEventListener(Event.CONNECT, onConnect);

 // Connect to the server
 socket.connect("localhost", 2900);
 }

 private function onConnect(event:Event):void {
 trace("The xml socket is now connected...");
 }

 }
}

If the connection fails, one of two things can happen: either the connection fails right away and a
runtime error is generated, or an ioError or securityError event is raised to indicate that the
connection could not be completed successfully. For more information about handling the error
events, see Recipe 24.6 .

Remember, when connecting to a host with a socket connection, the following Flash Player security
sandbox rules apply:

The .swf and host must be in the exact same domain in order for a successful connection to be
made.

1.

A .swf delivered over a network cannot connect to a local server.2.

A local untrusted .swf cannot access any network resources.3.

To allow cross-domain access or connections to a port lower than 1024, a cross-domain policy
file can be used.

4.

Violating the security sandbox by attempting to connect to an untrusted domain or on a low port
raises a securityError event. These issues can both be worked around by using a cross-domain
policy file, discussed in Recipe 3.12 . To use a cross-domain policy file with either a Socket or
XMLSocket object, you need to load the policy file by using flash.system.Security.loadPolicyFile() , as
shown here:

Security.loadPolicyFile("http://www.rightactionscript.com/crossdomain.xml");

When assembling the cross-domain policy file, you should specify not only the allowed domains, but
also the allowed ports. If you do not specify allowed ports, Flash Player assumes that port 80
(standard HTTP port) is the only allowed port. You can specify a comma-delimited list using the port
attribute of the <allow-access-from> tag. The following policy file allows all domains to connect to
ports 80 and 110 (standard HTTP and POP mail ports):

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="*" to-ports="80,110" />
</cross-domain-policy>

See Also

Recipes 3.12 , 24.5 , and 24.6

Recipe 24.2. Sending Data

Problem

You want to send data to a socket server.

Solution

For Socket objects, use the write methods (writeByte(), writeUTFBytes(), etc.) to write the data to
the buffer and call flush() to send the data. For XMLSocket objects, use the send() method.

Discussion

The Socket and XMLSocket classes define different APIs for sending data to the socket server. Let's
look at the Socket API first.

When you want to send data to a socket server using a Socket object, you first must write the data
to the buffer. The Socket class defines a slew of methods for writing data. Each of the methods writes
a different type of data (or writes the data differently). The methods are writeBoolean(), writeByte(
), writeBytes(), writeDouble(), writeFloat(), writeInt(), writeMultiByte(), writeObject(),
writeShort(), write- UnsignedInt(), writeUTF(), and writeUTFBytes(). Most of the methods accept
one parameter of the type implied by the name of the method. For example, writeBoolean() accepts
a Boolean parameter and writeByte(), writeDouble(), writeFloat(), writeInt(), writeShort(), and
writeUnsignedInt() accept numeric parameters. The writeObject() method accepts an object
parameter that must be serializable to AMF format. The writeBytes() method allows you to pass it a
ByteArray parameter along with offset and length parameters. For example, the following calls
writeBytes() passing, it a reference to a ByteArray object and specifying that it should write all the
bytes (starting at offset 0 with length equal to the length of the ByteArray):

socket.writeBytes(byteArray, 0, byteArray.length);

The writeUTF() and writeUTFBytes() methods allow you to write strings. Each method accepts a
string parameter. The writeUTFBytes() method simply writes the string as bytes. The writeUTF()
method first writes the number of bytes before writing the actual byte data.

The writeMultiByte() method also writes string data, but using a nondefault character set. The
method requires two parameters: the string to write and the name of the character set to use. The
help documentation for Flash and Flex list the supported character sets along with the labels and
aliases for each. Use the label value as a string when specifying the character set for writeMultiByte(
). The following example writes a string example using Unicode:

socket.writeMultiByte("example", "unicode");

Which method or methods you use to write data to a Socket object is entirely dependent on what
sort of data you want to write and what sort of data the server expects. Using a Socket object, you
can write a Telnet or POP mail client entirely by using ActionScript. Both protocols expect ASCII text
commands. For example, after connecting to a POP server, you can specify a user with the USER
command. The following writes such a command to a Socket object:

// POP servers expect a newline (\n) to execute the preceding command.
socket.writeUTFBytes("USER exampleUsername\n");

Writing the data to the Socket object does not actually send the data to the socket server. Each call
to a write method appends the data to the Socket object. For example, the following writes four
bytes to a Socket object, but none of them are sent:

socket.writeByte(1);
socket.writeByte(5);
socket.writeByte(4);
socket.writeByte(8);

When you want to send the accumulated data to the socket server, use the flush() method. The
flush() method simply sends all the written data and clears the buffer:

socket.flush();

The XMLSocket class has a much simpler API for sending data. Writing and sending data occur with
one method aptly named send(). The send() method accepts parameter of any datatype. It
converts the parameter to a string and sends it to the server. Traditionally the parameter is an XML
object or a string containing data structured as XML:

xmlSocket.send(xml);

However, the exact format of the data is entirely dependent on the format the server expects. If the
server expects XML-formatted data, then you'll need to send XML-formatted data. If the server
expects URL-encoded data, then you'll need to send URL-encoded data.

See Also

Recipes 24.1 and 24.3

Recipe 24.3. Receiving Data

Problem

You want to read data from a socket server.

Solution

For Socket instances, subscribe to the socketData event and invoke one of the read methods, such as
readByte() or readInt(), in the event handler, making sure not to read past bytesAvailable.

For XMLSocket instances, subscribe to the data event and interpret the XML data received inside of
the event handler.

Discussion

Receiving data from a socket connection depends on the type of socket you use. Both Socket and
XMLSocket are capable of receiving data from a server, but they do so using slightly different
techniques. Let's focus on how the Socket class works first before discussing XMLSocket.

As you've learned in the introduction to this chapter, sockets in Flash behave asynchronously.
Therefore, it's not possible to simply create a socket connection and attempt to read data from the
socket right away. The read methods don't wait for data to be transferred from the server before
returning. Instead, you can only read data from a socket after the client has already downloaded the
data from the host server. It is an error to try and read data from a Socket before any data is
available.

To know when data is available to be read, the socketData event is broadcasted from Socket
instances. By adding an event listener for the socketData event, your event handler is invoked
anytime there is new data received from the socket server. Inside the event handler is where you
write code to read and interpret the received data.

To read the data sent from the server, the Socket class provides a number of different read methods,
depending on the type of data you want to read. For instance, you can read a byte with the
readByte() method, or read an unsigned integer with the readUnsignedInt() method. See Table 24-
1 for a list of the different datatypes that can be read from the socket server, what the return value
is, and how many bytes the read method consumes.

Table 24-1. Socket read methods for various datatypes

Method : Return type Description
Bytes

read

 readBoolean():Boolean
Reads a Boolean
value from the
socket

1

 readByte():int
Reads a signed
byte from the
socket

1

 readDouble():Number

Reads an IEEE
754 double-
precision
floating-point
number from the
socket

8

 readFloat():Number

Reads an IEEE
754 single-
precision
floating-point
number from the
socket

4

 readInt():int
Reads a signed
32-bit integer
from the socket

4

 readObject():*
Reads an AMF-
encoded object
from the socket

n

 readShort():int
Reads a signed
16-bit integer
from the socket

2

 readUnsignedByte():uint
Reads an
unsigned byte
from the socket

1

 readUnsignedInt():uint

Reads an
unsigned 32-bit
integer from the
socket

4

Method : Return type Description
Bytes

read

 readUnsignedShort():uint

Reads an
unsigned 16-bit
integer from the
socket

2

 readUTF():String
Reads a UTF-8
string from the
socket

n

There are also two additional read methods not covered in Table 24-1. They are readBytes() and
readUTFBytes(). The readBytes() method is the only Socket read method to not return a value, and
it takes the following three parameters:

bytes

A flash.util.ByteArray instance to read the data from the socket into.

offset

A uint value specifying the offset into bytes where read data from the socket should start being
placed. The default value is 0.

length

A uint value for the number of bytes to read. The default is 0, meaning all available data will be
read from the socket into the bytes ByteArray.

The readUTFBytes() method, on the other handle, takes a single length parameter specifying the

number of UTF-8 bytes to read, and it returns the String corresponding to the read bytes.

Before reading data from a Socket, it is important to check the socket's
bytesAvailable property first. Attempting to read more data than what is
available will result in a flash.errors.EOFError.

The following code example connects to a socket server, and reads and displays the data sent from
the server one byte at a time:

package {
 import flash.display.Sprite;
 import flash.events.ProgressEvent;
 import flash.net.Socket;

 readUnsignedShort():uint

Reads an
unsigned 16-bit
integer from the
socket

2

 readUTF():String
Reads a UTF-8
string from the
socket

n

There are also two additional read methods not covered in Table 24-1. They are readBytes() and
readUTFBytes(). The readBytes() method is the only Socket read method to not return a value, and
it takes the following three parameters:

bytes

A flash.util.ByteArray instance to read the data from the socket into.

offset

A uint value specifying the offset into bytes where read data from the socket should start being
placed. The default value is 0.

length

A uint value for the number of bytes to read. The default is 0, meaning all available data will be
read from the socket into the bytes ByteArray.

The readUTFBytes() method, on the other handle, takes a single length parameter specifying the

number of UTF-8 bytes to read, and it returns the String corresponding to the read bytes.

Before reading data from a Socket, it is important to check the socket's
bytesAvailable property first. Attempting to read more data than what is
available will result in a flash.errors.EOFError.

The following code example connects to a socket server, and reads and displays the data sent from
the server one byte at a time:

package {
 import flash.display.Sprite;
 import flash.events.ProgressEvent;
 import flash.net.Socket;

 public class SocketExample extends Sprite {

 private var socket:Socket;

 public function SocketExample() {
 socket = new Socket();

 // Listen for when data is received from the socket server
 socket.addEventListener(ProgressEvent.SOCKET_DATA, onSocketData);

 // Connect to the server
 socket.connect("localhost", 2900);
 }

 private function onSocketData(event:ProgressEvent):void {
 trace("Socket received " + socket.bytesAvailable + " byte(s) of data:");

 // Loop over all of the received data, and only read a byte if there
 // is one available
 while (socket.bytesAvailable) {
 // Read a byte from the socket and display it
 var data:int = socket.readByte();
 trace(data);
 }
 }
 }
}

In the preceding example, if the socket server sends back a message (such as "Hello"), the output of
the code would look like this when a client connects:

Socket received 5 byte(s) of data:
72
101
108
108
111

Once data is read from the Socket, it cannot be read again. For example, after
reading a byte, that byte cannot be "put back" and read as part of an int later.

When the data received by a Socket object is ASCII text, you can reconstruct a string by using the
readUTFBytes() method. The readUTFBytes() method requires that you tell it how many bytes to
read and convert to a string. You can use bytesAvailable to read all the bytes:

var string:String = socket.readUTFBytes(socket.bytesAvailable);

The XMLSocket class behaves in a similar manner to the Socket class in regard to how it receives
data from the server. In both cases, an event listener must be used to be notified that data is
available due to Flash's asynchronous socket implementation. However, the process used to actually
read the data is very different.

An XMLSocket instance dispatches a data event when data has finished downloading from the server.
The data event, defined by the flash.events.DataEvent.DATA constant, contains a String data
property that contains the information received from the server.

When using XMLSocket, the data returned from the server is always interpreted
as a String. There are no specific read methods for various datatypes.

The data returned from the server is the raw server response. Because of this, you're not limited to
just using XML with XMLSocket connections, but rather you can send and receive plain String
information as well. If you're expecting XML back from the server, however, you must first convert
the data into an XML instance before working with it.

The following code example initiates a connection over XMLSocket to a server running on port 2900
on the local computer. After the connection is successfully made, a <test> message is sent to the
server. The onData event listener handles the response from the server, which in this case is the

string <response><test success='true'/></response>. You can see that the data property of the
event passed to onData is just a String, and that the XML constructor is used to convert the String

into an XML instance. Finally, E4X syntax is used to output a portion of the converted XML (for more
information about working with XML and using E4X, see Chapter 21):

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.DataEvent;
 import flash.net.XMLSocket;

 public class SocketExample extends Sprite {

 private var xmlSocket:XMLSocket;

 public function SocketExample() {
 xmlSocket = new XMLSocket();

 // Connect listener to send a message to the server
 // after we make a successful connection
 xmlSocket.addEventListener(Event.CONNECT, onConnect);

 // Listen for when data is received from the socket server
 xmlSocket.addEventListener(DataEvent.DATA, onData);

 // Connect to the server
 xmlSocket.connect("localhost", 2900);

 }

 private function onConnect(event:Event):void {
 xmlSocket.send("<test/>");
 }

 private function onData(event:DataEvent):void {
 // The raw string returned from the server.
 // It might look something like this:
 // <response><test success='true'/></response>
 trace(event.data);

 // Convert the string into XML
 var response:XML = new XML(event.data);

 // Using E4X, access the success attribute of the "test"
 // element node in the response.
 // Output: true
 trace(response.test.@success);
 }
 }
}

Before the data event can be dispatched, the XMLSocket instance must detect
the null byte ('\\0') from the server. That is, sending a string from the server
is not enough for the client to receive it. Instead, the string must be terminated
by the null byte.

See Also

Recipes 18.2, 24.1, and 24.4

Recipe 24.4. Handshaking with a Socket Server

Problem

You want to do handshaking with a socket server and need to know what the received data's context
is to know how to process it.

Solution

Create different constant variables to represent states of the protocol. Use the constants to map
particular processing functions with the corresponding state. In a socketData event handler, call the
appropriate function by invoking it through the state map.

Discussion

A common scenario when connecting to a socket is going through a handshake process. Typically, the
server initially sends data to the client. The client then responds to the data in a particular manner,
and the server responds again accordingly. This entire process repeats until the handshaking is
complete and a "normal" connection is established.

It gets difficult to process the response from the server because the socketData event handler does
not keep track of context. That is, there is no "why" sent along with the server response, or no "this
data is in response to" processing directive. Knowing how to process the response from the server is
not usually something that can be gathered through the response itself, especially when the response
varies. Perhaps one response returns two bytes and another returns an integer followed by a double.
You can begin to see how this presents itself as a problem.

The solution is to create various state constants to represent the different contexts in which the
server sends data to the client. By associating each of these constants with a particular function to
handle the data, you can easily call the correct processing function based on the current state of the
protocol.

Consider the following handshaking scenario that happens when you connect to a socket server:

The server responds immediately when it connects with an integer representing the highest
version of the protocol that the server supports.

1.

The client responds with an integer to indicate the actual version of the protocol that should be
used for communication.

2.

3.

4.

2.

The server sends back an 8-byte authentication challenge.3.

The client sends the authentication challenge back to the server.4.

The server closes the connection if the client response was not what the server was expecting,
or, at this point, the protocol moves into a normal operating mode and the handshaking is
complete.

5.

In reality, Step 4 involves a more secure response to an authentication challenge. Instead of just
sending back the challenge verbatim, you would really want to use some sort of encryption with a
user-supplied key. Perhaps the client asks the user for a password, and then the password entered is
used as the encryption key for the 8-byte challenge. The encrypted challenge is then sent back to the
server. If this challenge response matches what the server expected, then the client knew the right
password and the connection should be allowed.

To implement the handshaking processed outlined, you first want to create constants to represent
the different kinds of data returned from the server. First, there is determining the version from Step
1. Second, there is receiving the challenge from Step 3. Finally, there is the normal operating mode
from Step 5. These can be represented by the following constants:

public const DETERMINE_VERSION:int = 0;
public const RECEIVE_CHALLENGE:int = 1;
public const NORMAL:int = 2;

It doesn't matter what values are given to the constants. Rather, the only important part is that all
the values are different so no two constants represent the same int value.

The next step is to create different functions to process the data. The three functions created will be
named readVersion(), readChallenge(), and readNormalProtocol(). After the functions have been
defined, a map must be created to associate one of the previous state constants with the function
used to process the data received during that state. The code for that looks like this:

stateMap = new Object();
stateMap[DETERMINE_VERSION] = readVersion;
stateMap[RECEIVE_CHALLENGE] = readChallenge;
stateMap[NORMAL] = readNormalProtocol;

The final step is to code the socketData event handler in such a way that the correct processing
function is invoked based on the current state of the protocol. To do this, a currentState int variable
is created. Then, using the stateMap, the processing function is invoked by looking up the function
associated with currentState:

var processFunc:Function = stateMap[currentState];
processFunc(); // Invoke the appropriate processing function

There is a little bit of bookkeeping involved in this process. Be sure to update currentState in your
code to accurately reflect the current state of the protocol.

The entire code example to process the handshaking scenario previously described looks like the
following:

package {
 import flash.display.Sprite;
 import flash.events.ProgressEvent;
 import flash.net.Socket;
 import flash.utils.ByteArray;

 public class SocketExample extends Sprite {

 // The state constants to describe the protocol
 public const DETERMINE_VERSION:int = 0;
 public const RECEIVE_CHALLENGE:int = 1;
 public const NORMAL:int = 2;

 // Maps a state to a processing function
 private var stateMap:Object;

 // Keeps track of the current protocol state
 private var currentState:int;

 private var socket:Socket;

 public function SocketExample() {
 // Initialzes the states map
 stateMap = new Object();
 stateMap[DETERMINE_VERSION] = readVersion;
 stateMap[RECEIVE_CHALLENGE] = readChallenge;
 stateMap[NORMAL] = readNormalProtocol;

 // Initialze the current state
 currentState = DETERMINE_VERSION;

 // Create and connect the socket
 socket = new Socket();
 socket.addEventListener(ProgressEvent.SOCKET_DATA, onSocketData);
 socket.connect("localhost", 2900);
 }

 private function onSocketData(event:ProgressEvent):void {
 // Look up the processing function based on the current state
 var processFunc:Function = stateMap[currentState];
 processFunc();
 }

 private function readVersion():void {
 // Step 1 - read the version from the server
 var version:int = socket.readInt();

 // Once the version is read, the next state is receiving
 // the challenge from the server
 currentState = RECEIVE_CHALLENGE;

 // Step 2 - write the version back to the server
 socket.writeInt(version);
 socket.flush();
 }

 private function readChallenge():void {
 // Step 3 - read the 8 byte challenge into a byte array
 var bytes:ByteArray = new ByteArray();
 socket.readBytes(bytes, 0, 8);

 // After the challenge is received, the next state is
 // the normal protocol operation
 currentState = NORMAL;

 // Step 4 - write the bytes back to the server
 socket.writeBytes(bytes);
 socket.flush();
 }

 private function readNormalProtocol():void {
 // Step 5 - process the normal socket messages here now that
 // that handshaking process is complete
 }
 }
}

See Also

Recipes 18.2, 24.1, and 24.3

Recipe 24.5. Disconnecting from a Socket Server

Problem

You want to disconnect from a socket server, or be notified when the server disconnects you.

Solution

Invoke the Socket.close() or XMLSocket.close() method to explicitly close the connection, or listen
for the close event to be notified when the server closes the connection for you.

Discussion

A general rule to follow when programming is to clean up after yourself. That is, if you create an
object, you should also delete it when it is no longer necessary. In this case, whenever you connect
to a socket server, you should explicitly close the connection when you're done. Leaving an unused
socket connection open is a waste of resources and should be avoided if at all possible. If you don't
close a connection, then the server may continue to keep an open socket connection that is not being
used, which can quickly cause a server to overrun its allotment of allowed socket connections.

Closing a socket connection is the same for both Socket and XMLSocket instances. All you need to do
is invoke the close() method on the socket instance:

// Assume socket is a connected Socket instance
socket.close(); // Disconnect from the server

Using an XMLSocket is exactly the same:

// Assume xmlSocket is a connected XMLSocket instance
xmlSocket.close(); // Disconnect from the server

The close() method is useful for letting the server know that the client wants to disconnect. To be
notified when the server closes the connection on its own, you should listen for the close event by
calling addEventListener() on the Socket or XMLSocket instance with Event.CLOSE as the event type;
for example:

var socket:Socket = new Socket();

// Add an event listener to be notified when the server disconnects
// the client

socket.addEventListener(Event.CLOSE, onClose);

Invoking the close() method does not raise the close event. Instead, the close
event is raised only when the server initiates the disconnection.

Once a socket is closed, it is no longer capable of reading or writing data. If you'd like to reuse the
socket, you have to establish a connection again as described in Recipe 24.1.

See Also

Recipe 24.1

Recipe 24.6. Handling Socket Errors

Problem

You want to handle errors that might occur when using sockets.

Solution

Use try/catch to handle I/O and end of file (EOF) errors.

Discussion

Both the Socket and XMLSocket classes behave similarly in regard to errors and error events. When
calling the connect() method, Socket and XMLSocket objects can throw an error of type
SecurityError when either of the following conditions is true:

The .swf is classified as local untrusted.

The port number is higher than 655535.

When calling send() (XMLSocket) or flush() (Socket), the method can throw an error of type IOError
if the socket isn't connected. Although you can (and likely should) place the send() or flush()
method calls within try/catch blocks, you should not rely on try/catch blocks as part of your
application logic. Rather, use an if statement to test whether or not the socket object's connected
property is true before calling send() of flush() if you want such a test to be part of the application
logic. For example, the following uses an if statement as part of the application logic to call a
connectToSocketServer() method if the Socket object isn't currently connected. It also uses a
TRy/catch block to write to a log if the flush() method throws an error:

if (socket.connected) {
 try {
 socket.flush();
 }
 catch(error:IOError) {
 logInstance.write("socket.flush error\n" + error);
 }
}
else {
 connectToSocketServer();
}

All of the Socket read methods can throw errors of type EOFError and IOError. EOF errors occur when
you try to read data, but nothing is available. I/O errors occur when you try to read from a socket
that is closed.

In addition to the errors thrown by methods of the Socket and XMLSocket classes, objects of those
classes also dispatch error events. There are two basic types of error events that occur with
socketsIOError and securityError. The IOError event is of type IOErrorEvent, and it occurs when data
fails to send or load. The securityError event is of type SecurityErrorEvent, and it occurs when a
socket attempts to connect to a server but fails because the server is either outside of the sandbox or
because the port number is lower than 1024.

Both security error event scenarios are correctable by way of a cross-domain
policy file.

Appendix A. Unicode Escape Sequences
for Latin 1 Characters
Table A-1 lists the characters in the Latin 1 character repertoire, with Unicode equivalents in the
range of U+0000 to U+00FF (that is, C0 Controls, Basic Latin, C1 Controls, and Latin 1 Supplemental).
It is reproduced from Appendix B of ActionScript for Flash MX: The Definitive Guide with the
permission of the author, Colin Moock.

The table's first column (labeled Dec) lists each character's code point in decimal (the standard ASCII
or Latin 1 value), the second column provides the Unicode escape sequence for the character, and
the third column describes or shows the character itself.

Table A-1. ISO 8859-1 (Latin 1) characters and Unicode mappings

Dec Unicode Description Dec Unicode Description

0 \u0000 [null] 15 \u000f [shift in]

1 \u0001 [start of heading] 16 \u0010 [data link escape]

2 \u0002 [start of text] 17 \u0011 [device control one]

3 \u0003 [end of text] 18 \u0012 [device control two]

4 \u0004 [end of transmission] 19 \u0013 [device control three]

5 \u0005 [enquiry] 20 \u0014 [device control four]

6 \u0006 [acknowledge] 21 \u0015 [negative acknowledge]

7 \u0007 [bell] 22 \u0016 [synchronous idle]

8 \u0008 [backspace] 23 \u0017
[end of transmission
block]

9 \u0009 [horizontal tabulation] 24 \u0018 [cancel]

10 \u000a [line feed] 25 \u0019 [end of medium]

11 \u000b [vertical tabulation] 26 \u001a [substitute]

12 \u000c [form feed] 27 \u001b [escape]

13 \u000d [carriage feed] 28 \u001c [file separator]

Dec Unicode Description Dec Unicode Description

14 \u000e [shift out] 29 \u001d [group separator]

30 \u001e [record separator] 66 \u0042 B

31 \u001f [unit separator] 67 \u0043 C

32 \u0020 [space] 68 \u0044 D

33 \u0021 ! 69 \u0045 E

34 \u0022 " (straight quotes) 70 \u0046 F

35 \u0023 # 71 \u0047 G

36 \u0024 $ 72 \u0048 H

37 \u0025 % 73 \u0049 I

38 \u0026 & 74 \u004a J

39 \u0027
' (straight
apostrophe)

 75 \u004b K

40 \u0028 (76 \u004c L

41 \u0029) 77 \u004d M

42 \u002a * 78 \u004e N

43 \u002b + 79 \u004f O

44 \u002c , (comma) 80 \u0050 P

45 \u002d (minus) 81 \u0051 Q

46 \u002e . (period) 82 \u0052 R

47 \u002f / 83 \u0053 S

48 \u0030 0 84 \u0054 T

49 \u0031 1 85 \u0055 U

50 \u0032 2 86 \u0056 V

51 \u0033 3 87 \u0057 W

52 \u0034 4 88 \u0058 X

53 \u0035 5 89 \u0059 Y

54 \u0036 6 90 \u005a Z

55 \u0037 7 91 \u005b [

56 \u0038 8 92 \u005c \

14 \u000e [shift out] 29 \u001d [group separator]

30 \u001e [record separator] 66 \u0042 B

31 \u001f [unit separator] 67 \u0043 C

32 \u0020 [space] 68 \u0044 D

33 \u0021 ! 69 \u0045 E

34 \u0022 " (straight quotes) 70 \u0046 F

35 \u0023 # 71 \u0047 G

36 \u0024 $ 72 \u0048 H

37 \u0025 % 73 \u0049 I

38 \u0026 & 74 \u004a J

39 \u0027
' (straight
apostrophe)

 75 \u004b K

40 \u0028 (76 \u004c L

41 \u0029) 77 \u004d M

42 \u002a * 78 \u004e N

43 \u002b + 79 \u004f O

44 \u002c , (comma) 80 \u0050 P

45 \u002d (minus) 81 \u0051 Q

46 \u002e . (period) 82 \u0052 R

47 \u002f / 83 \u0053 S

48 \u0030 0 84 \u0054 T

49 \u0031 1 85 \u0055 U

50 \u0032 2 86 \u0056 V

51 \u0033 3 87 \u0057 W

52 \u0034 4 88 \u0058 X

53 \u0035 5 89 \u0059 Y

54 \u0036 6 90 \u005a Z

55 \u0037 7 91 \u005b [

56 \u0038 8 92 \u005c \

Dec Unicode Description Dec Unicode Description

57 \u0039 9 93 \u005d]

58 \u003a : 94 \u005e ^

59 \u003b ; 95 \u005f _ (underscore)

60 \u003c < 96 \u0060 \Q (accent grave)

61 \u003d = 97 \u0061 a

62 \u003e > 98 \u0062 b

63 \u003f ? 99 \u0063 c

64 \u0040 @ 100 \u0064 d

65 \u0041 A 101 \u0065 e

102 \u0066 f 138 \u008a control chr

103 \u0067 g 139 \u008b control chr

104 \u0068 h 140 \u008c control chr

105 \u0069 i 141 \u008d control chr

106 \u006a j 142 \u008e control chr

107 \u006b k 143 \u008f control chr

108 \u006c l 144 \u0090 control chr

109 \u006d m 145 \u0091 control chr

110 \u006e n 146 \u0092 control chr

111 \u006f o 147 \u0093 control chr

112 \u0070 p 148 \u0094 control chr

113 \u0071 q 149 \u0095 control chr

114 \u0072 r 150 \u0096 control chr

115 \u0073 s 151 \u0097 control chr

116 \u0074 t 152 \u0098 control chr

117 \u0075 u 153 \u0099 control chr

118 \u0076 v 154 \u009a control chr

119 \u0077 w 155 \u009b control chr

120 \u0078 x 156 \u009c control chr

57 \u0039 9 93 \u005d]

58 \u003a : 94 \u005e ^

59 \u003b ; 95 \u005f _ (underscore)

60 \u003c < 96 \u0060 \Q (accent grave)

61 \u003d = 97 \u0061 a

62 \u003e > 98 \u0062 b

63 \u003f ? 99 \u0063 c

64 \u0040 @ 100 \u0064 d

65 \u0041 A 101 \u0065 e

102 \u0066 f 138 \u008a control chr

103 \u0067 g 139 \u008b control chr

104 \u0068 h 140 \u008c control chr

105 \u0069 i 141 \u008d control chr

106 \u006a j 142 \u008e control chr

107 \u006b k 143 \u008f control chr

108 \u006c l 144 \u0090 control chr

109 \u006d m 145 \u0091 control chr

110 \u006e n 146 \u0092 control chr

111 \u006f o 147 \u0093 control chr

112 \u0070 p 148 \u0094 control chr

113 \u0071 q 149 \u0095 control chr

114 \u0072 r 150 \u0096 control chr

115 \u0073 s 151 \u0097 control chr

116 \u0074 t 152 \u0098 control chr

117 \u0075 u 153 \u0099 control chr

118 \u0076 v 154 \u009a control chr

119 \u0077 w 155 \u009b control chr

120 \u0078 x 156 \u009c control chr

Dec Unicode Description Dec Unicode Description

121 \u0079 y 157 \u009d control chr

122 \u007a z 158 \u009e control chr

123 \u007b { 159 \u009f control chr

124 \u007c | 160 \u00a0 [no break space]

125 \u007d } 161 \u00a1 ¡

126 \u007e ~ 162 \u00a2 ¢

127 \u007f [delete] 163 \u00a3 £

128 \u0080 control chr 164 \u00a4 ¤

129 \u0081 control chr 165 \u00a5 ¥

130 \u0082 control chr 166 \u00a6

131 \u0083 control chr 167 \u00a7 §

132 \u0084 control chr 168 \u00a8

133 \u0085 control chr 169 \u00a9 ©

134 \u0086 control chr 170 \u00aa ª

135 \u0087 control chr 171 \u00ab «

136 \u0088 control chr 172 \u00ac ¬

137 \u0089 control chr 173 \u00ad -

174 \u00ae ® 210 \u00d2 Ò

175 \u00af ¯ 211 \u00d3 Ó

176 \u00b0 ° 212 \u00d4 Ô

177 \u00b1 ± 213 \u00d5 Õ

178 \u00b2 2 214 \u00d6 ...

179 \u00b3 3 215 \u00d7 x

180 \u00b4 216 \u00d8 Ø

181 \u00b5 m 217 \u00d9 Ù

182 \u00b6 ¶ 218 \u00da Ú

183 \u00b7 · 210 \u00d2 Ò

184 \u00b8 ¸ 219 \u00db Û

121 \u0079 y 157 \u009d control chr

122 \u007a z 158 \u009e control chr

123 \u007b { 159 \u009f control chr

124 \u007c | 160 \u00a0 [no break space]

125 \u007d } 161 \u00a1 ¡

126 \u007e ~ 162 \u00a2 ¢

127 \u007f [delete] 163 \u00a3 £

128 \u0080 control chr 164 \u00a4 ¤

129 \u0081 control chr 165 \u00a5 ¥

130 \u0082 control chr 166 \u00a6

131 \u0083 control chr 167 \u00a7 §

132 \u0084 control chr 168 \u00a8

133 \u0085 control chr 169 \u00a9 ©

134 \u0086 control chr 170 \u00aa ª

135 \u0087 control chr 171 \u00ab «

136 \u0088 control chr 172 \u00ac ¬

137 \u0089 control chr 173 \u00ad -

174 \u00ae ® 210 \u00d2 Ò

175 \u00af ¯ 211 \u00d3 Ó

176 \u00b0 ° 212 \u00d4 Ô

177 \u00b1 ± 213 \u00d5 Õ

178 \u00b2 2 214 \u00d6 ...

179 \u00b3 3 215 \u00d7 x

180 \u00b4 216 \u00d8 Ø

181 \u00b5 m 217 \u00d9 Ù

182 \u00b6 ¶ 218 \u00da Ú

183 \u00b7 · 210 \u00d2 Ò

184 \u00b8 ¸ 219 \u00db Û

Dec Unicode Description Dec Unicode Description

185 \u00b9 1 220 \u00dc Ü

186 \u00ba º 221 \u00dd

187 \u00bb » 222 \u00de

188 \u00bc 1/4 223 \u00df ß

189 \u00bd 1/2 224 \u00e0 à

190 \u00be 3/4 225 \u00e1 á

191 \u00bf ¿ 226 \u00e2 â

192 \u00c0 227 \u00e3 ã

193 \u00c1 Á 228 \u00e4 ä

194 \u00c2 Â 229 \u00e5 å

195 \u00c3 Ã 230 \u00e6 æ

196 \u00c4 Ä 231 \u00e7 ç

197 \u00c5 Å 232 \u00e8 è

198 \u00c6 233 \u00e9 é

199 \u00c7 Ç 234 \u00ea ê

200 \u00c8 È 235 \u00eb ë

201 \u00c9 É 236 \u00ec ì

202 \u00ca Ê 237 \u00ed í

203 \u00cb Ë 238 \u00ee î

204 \u00cc Ì 239 \u00ef ï

205 \u00cd Í 240 \u00f0

206 \u00ce Î 241 \u00f1 ñ

207 \u00cf Ï 242 \u00f2 ò

208 \u00d0 243 \u00f3 ó

209 \u00d1 Ñ 244 \u00f4 ô

245 \u00f5 õ 250 \u00fa ú

246 \u00f6 ö 251 \u00fb û

247 \u00f7 ÷ 252 \u00fc ü

185 \u00b9 1 220 \u00dc Ü

186 \u00ba º 221 \u00dd

187 \u00bb » 222 \u00de

188 \u00bc 1/4 223 \u00df ß

189 \u00bd 1/2 224 \u00e0 à

190 \u00be 3/4 225 \u00e1 á

191 \u00bf ¿ 226 \u00e2 â

192 \u00c0 227 \u00e3 ã

193 \u00c1 Á 228 \u00e4 ä

194 \u00c2 Â 229 \u00e5 å

195 \u00c3 Ã 230 \u00e6 æ

196 \u00c4 Ä 231 \u00e7 ç

197 \u00c5 Å 232 \u00e8 è

198 \u00c6 233 \u00e9 é

199 \u00c7 Ç 234 \u00ea ê

200 \u00c8 È 235 \u00eb ë

201 \u00c9 É 236 \u00ec ì

202 \u00ca Ê 237 \u00ed í

203 \u00cb Ë 238 \u00ee î

204 \u00cc Ì 239 \u00ef ï

205 \u00cd Í 240 \u00f0

206 \u00ce Î 241 \u00f1 ñ

207 \u00cf Ï 242 \u00f2 ò

208 \u00d0 243 \u00f3 ó

209 \u00d1 Ñ 244 \u00f4 ô

245 \u00f5 õ 250 \u00fa ú

246 \u00f6 ö 251 \u00fb û

247 \u00f7 ÷ 252 \u00fc ü

Dec Unicode Description Dec Unicode Description

248 \u00f8 253 \u00fd

249 \u00f9 ù 254 \u00fe

248 \u00f8 253 \u00fd

249 \u00f9 ù 254 \u00fe

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! (exclamation point), escape sequence for

! logical NOT

!= (logical inequality operator) 2nd

!== (inequality operator)

" (double quotes), escape sequence for

(pound sign)

 escape sequence for

#include directives

$ (dollar sign)

 escape sequence for

 regular expression metacharacter

$$ replacement code

$& replacement code

$' replacement code

$\Q replacement code

$n replacement code

$nn replacement code

% (percent sign), escape sequence for

& (ampersand)

 concatenating strings and

 escape sequence for

& bitwise operator

&& logical AND

' (quotes)

 URL-encoded escape sequence for

() (parentheses)

 conditional operators and

 regular expression metacharacters

 URL-encoded escape sequence for

(semicolon)

 concatenating strings and

)

 concatenating strings and

* (asterisks)

 in password input fields

 loading data from external sources and

 regular expression metacharacters

 nongreedy patterns

 URL-encoded escape sequence for

x (Yen)

*= (compound assignment operator)

*? expression

+ (plus sign)

 as a regular expression metacharacter

 nongreedy patterns and

 concatenation operator

 URL-encoded escape sequence for

++ increment operator

+=

 compound assignment operator

 concatenation-assignment operator

+= operator, appending text

+? expression

, (comma)

 URL-encoded escape sequence for

- (dash)

 pattern matching

 URL-encoded escape sequence for

-- decrement operator

-= (compound assignment operator)

-source-path option (mxmlc)

. (dot)

 regular expression metacharacter

 saving class files

 XML objects, adding elements 2nd

.as files

 custom classes, creating

 detecting Flash Players with

 placing code

.cfm files

 gamescores.cfm

.fla files 2nd

 class files, saving

.flas files, detecting Flash Players with

.flv files

.gif files

.html files

.jpg files

.NET

.png files

.swf files

 detecting Flash Players with[swf files

 detecting Flash Players with

/ (forward slash), storing data and

/* */ comments

// (comments)

/= (compound assignment operator)

/ascb

 character

' (apostrophe)

32-bit color values

< (less than)

 equality operators and

<< bitwise operator

<= operator

<a> HTML tag

 hyperlinks, adding to text

 HTML tag

 HTML tag

 HTML tag

 embedding fonts

 setting fonts in text fields

<i> HTML tag

 HTML tag

 HTML tag

<p> HTML tag

<textformat> HTML tag

<u> HTML tag

= (equal sign)

 assignment statements and

 differences with == and

 variables, assigning

=== equality operator

> (greater than)

 equality operators and

 threshold() method, as a parameter

>= operator

>> bitwise operator

>>> bitwise operator

? (question mark), as a regular expression metacharacter

? : (ternary conditional operator)

?? expression

@ (at sign)

 adding attributes to XML elements

 reading XML attributes

\ 2nd 3rd 4th 5th 6th

\\ (backslash)

 escaping quotes and apostrophes

 pattern matching

 regular expressions

\\A regular expression metasequence

\\b (backspace character)

\\B (non-word boundary) metasequence

\\b (word boundary) regular expression metasequence

\\D regular expression metasequence

\\d regular expression metasequence

\\f (form feed character)

\\n (newline character)

\\n (newline character)[n (newline character)

\\r (carriage return character) 2nd

\\s (single white space) metasequence character

\\t (tab character) 2nd

\\unnnn regular expression metasequence

\\W (non-word character) metasequence

\S (single non-whitespace) metasequence

\w (word character) metasequence[w (word character) metasequence

\xa3 (British pound)

\xa3 EURO SIGN (Euro)

\xnn ASCII character metasequence

\Z regular expression metasequence

\z regular expression metasequence

^ (caret)

 bitwise operator

 pattern matching 2nd

_ (underscore), declaring private/protected property names

_rotation property

_sans font group (sans font group)

_serif font group

_typewriter font group

{ } (curly braces)

 associative arrays and

 for statements and

{n,m} regular expression metasequence 2nd

{n,m}? expression

{n,} regular expression metasequence

{n,}? expression

{n} regular expression metasequence

| (bar)

 bitwise OR 2nd

 regular expression metacharacter

|| logical OR

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ab parameter (drawTriangle() method)

About Adobe Flash Player 9 menu item

ac parameter (drawTriangle() method)

acceleration of display objects

 springs

access modifiers

actions (statements)

ActionScript interpreter

ActionScript Project Wizard

ActionScript Virtual Machine (AVM)

Active Message Format (AMF) 2nd

ActiveX 2nd

ADCP sounds

addCallback() method

addChild() method

 adding item to display lists

 text fields, making visible

addChildAt() method

 adding item to display lists

addEventListener() method 2nd 3rd

 repeating tasks and

addTo() method

adjacent sides

Adobe Flash Player Detection Kit

advanced text layout

alert() function (JavaScript)

alignment of movies, changing

allowDomain() method

alpha channel, creating bitmats

alpha parameter

 lineStyle() method

 MovieClip.beginFill() method

ALPHA property (BitmapDataChannel class)

 noise() method

 perlinNoise() method

alphaMultiplier property

alphaOffset property (ColorTransform class)

AMF (Active Message Format) 2nd

ampersand (&)

 concatenating strings and

 escape sequence for

amplitude

AND (&&) logical

angle measurements, converting

angle parameter (drawTriangle() method)

animation (programmatic)

 applying techniques to other properties

 moving objects

 specific directions 2nd

anti-aliasing

antiAliasType property

apostrophe (')

appendChild() method

appendText() method

applications

 properties, customizing

applyFilter() method (BitmapData class)

arc parameter (drawArc() method)

arcs, drawing

ArgumentError 2nd 3rd

arguments

 command-line

 methods

Array class

array of objects

Array.CASEINSENSITIVE constant

Array.DESCENDING constant

Array.NUMERIC constant

Array.pop()

Array.push() method

Array.RETURNINDEXEDARRAY constant

Array.UNIQUESORT constant

arrays

 associative

 creating

 reading elements of

 comparing

 copies, creating

 custom sorts, implementing

 date and times, retrieving

 elements, adding to start/end of

 inserting elements in the middle of

 looping through

 matching elements, searching for

 minimum/maximum elements, getting

 multidimensional, storing

 randomizing

 removing elements

 reversing/sorting

 strings, converting

ArrayUtilities.duplicate() method

ArrayUtilities.equals() method

ArrayUtilities.findLastMatchIndex() method

ArrayUtilities.findMatchIndex() method

ArrayUtilities.findMatchIndices() method

ArrayUtilities.max()

ArrayUtilities.min()

AS3CBLibrary

ascb.drawing.Pen class

ascb.filters.ColorMatrixArrays.getSaturationArray() method

ascb.play package

ascb.util package

 NumberFormat class, using

 NumberUtiltites class and

ascb.util.DateFormat class

ascb.util.DateFormat.formatMilliseconds() method

ascb.util.DateFormat.formatSeconds() method

ascb.util.DisplayObjectUtilities class

ascb.util.StringUtilities.trim() method

ASCII

 converting to Unicode

 Socket objects and

assignment operators 2nd

 equality operators, differences and

associative arrays

 creating

asterisks (*)

 in password input fields

 loading data from external sources and

 regular expression metacharacters

 nongreedy patterns

 URL-encoded escape sequence for

at sign (@)

 adding attributes to XML elements

 reading XML attributes

attachMovie() method 2nd

attachNetStream() method

attributes (XML)

 adding to XML elements

 nested nodes and

 reading

 removing

attributes() method

audio capabilities, detecting

autoSize property

AVM (ActionScript Virtual Machine)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

backgroundColor property

backslash (\\)

 escaping quotes and apostrophes

 pattern matching

 regular expressions

backspace (\\b) character

bandwidth

bar (|) as a regular expression metacharacter

bases, representing different

baseX parameter (perlinNoise() method)

baseY parameter (perlinNoise() method)

basics

beginBitmapFill() method

 solid/translucent colors, filling shapes

beginFill() method 2nd

beginGradientFill() method

 lines styles, setting

 solid/translucent colors, filling shapes

 triangles, drawing

BevelFilter class

bevels

Bezier curves 2nd

bin folder, creating projects and

binary bases

Bitmap class

bitmap parameterj for Graphics.beginBitmapFill() method

BitmapData class 2nd

bitmapData property

BitmapDataChannel class 2nd

bitmaps

 channels, copying

 copying pixels

 dissolving between two

 external images, loading

 filling shapes with

 filters, applying to

 flood fills, creating

 noise patterns, creating

 objects, drawing to

 Perlin noise, creating

 pixels, manipulating

 scrolling

bitwise operators

bitwise OR (|) 2nd

blockindent attribute (<textformat> tag)

BLUE property (BitmapDataChannel class) 2nd

 perlinNoise() method

blueMultiplier property

blueOffset property (ColorTransform class)

BlurFilter class

blurs

Booleans

 arrays, comparing

 coin toss, simulating and

 conditional operators and

 dragging/dropping objects and

 equality expressions returning

border property

borderColor property

bottomScrollV property (text fields)

bounds parameter (startDrag() method)

break statements

 matching elements in arrays and

brightness, changing on display objects

British pound (\xa3)

browse() method

 filtering files for display

 uploading files and

browsers, filtering files for display

buffers

 setting for sound

 video, managing/monitoring

bufferTime property

Button class

button instances

buttons, creating

ByteArray class

bytesLoaded property

 ProgressEvent class

 Sound object

bytesTotal property (Sound object)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

call() method

 Flash remoting responses, handling

 JavaScript functions, calling

cancel event 2nd

caps parameter (lineStyle method)

CardHand objects

Cards class

cards, simulating playing

caret (^)

 bitwise operator

 pattern matching 2nd

caretIndex property

carriage return character (\\r) 2nd

Cascading StyleSheets (CSS)

 embedding fonts with

 hyperlinks, adding to text

 setting fonts in text fields

case keyword

case, converting

case-sensitivity

 converting

 filtering text input

 replace() and split() methods and

 sorting arrays and

 substrings, searching and

catch blocks

 download method, working with

 handling socket error

category property (Unit objects)

CDATA tags

cellphone screens

Celsius, converting between Fahrenheit

CGI scripts

 getting current date and time

channel parameter

 noise() method

 perlinNoise() method

channels, copying

character codes (Unicode)

charAt() method

charCodeAt() method

chmod

circles

 determining points along

 drawing

classes

 custom

 creating

 naming

 placing code

 properties, customizing

 saving

 SharedObject, persistent information and

 variables

clear() method 2nd 3rd

click event (InteractiveObject) 2nd

close() method 2nd 3rd

 disconnecting from socket servers

code

 placing

 reusable 2nd

coin toss, simulating

ColdFusion 2nd 3rd 4th

color

 applying changes

 filling shapes

 grayscale, applying

 resetting

 tints, applying

color attribute (tag)

color CSS property

color parameter

 beginGradientFill() method

 lineStyle method

color property (TextFormat object)

color transform objects

ColorMatrixFilter class

 brightness, changing

 contrast, changing

 grayscale, applying

 saturation, changing

ColorTransform object 2nd 3rd 4th

comma (,)

 URL-encoded escape sequence for

comma-delimited

 keys (associative arrays)

 strings

command-line compilers

 classpaths, setting

commands

communicating between movies

 local connections

 receipt validation

 sending data and

 same computer

 sending data

compare functions

compilers

 saving class files

complete event (LoaderInfo class)

complex data, storing

composite datatypes 2nd

composition of classes

compound assignment operators

concat() method 2nd 3rd

 multidimensional arrays and

concatenate (strings)

concatenation-assignment operator (+=)

condenseWhite property

conditional statements

connect() method 2nd 3rd

connectToSocketServer() method

Console view, using trace

const keyword

constants

constructors

 placing code

content property (Loader class) 2nd

contentLoaderInfo property

ContextMenu class

contrast, changing on display objects

control points, drawing curves

convert() method

Converter class

 measurement, converting between units

convertWithLabel() method

convolution filters, embossing display objects

ConvolutionFilter class 2nd

cookies

Coordinated Universal Time (UTC)

coordinates, making up vector graphics

coping by value (primitive data)

copyChannel() method

copyPixels() method 2nd

copySource parameter (threshold() method) 2nd

country codes (variants)

Courier

Courier New

createCircle() method

createEmptyMovieClip() method

CSS (Cascading StyleSheets)

 embedding fonts with

 hyperlinks, adding to text

 setting fonts in text fields

cue points

curly braces ({ })

 associative arrays and

 for statements and

currency, formatting amounts

currencyFormat() method

curves, drawing

curveTo() method

 arcs, drawing

 curves, drawing

 lines, drawing

custom classes

 creating

 serializing

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

dash (-)

 pattern matching

 URL-encoded escape sequence for

data, sending/loading

dataFormat property (URLLoader.load() method)

datatypes

Date class

date property (Date object)

DateFormat class

 parsing dates from strings

dates

 calculating elapsed time/intervals between

 date values, retrieving

 day/month names, retrieving

 finding current

 formatting

 parsing from strings

DateUtilities class

DateUtilities.addTo() method

day property (Date object)

DAYS constant (DateFormat class)

days parameter (addTo() method)

DAYS_ABBREVIATED constant (DateFormat class)

deal() method

Debugger menu item

declarations (XML)

declaring methods

default keyword

defaultTextFormat property

Delegate class

delete keyword

deleteCount parameter (splice() method)

delimiter parameter (split() method)

dependencies of classes

deselected text, responding to

destBitmap object (threshold() method)

destPoint parameter

 applyFilter() method

 pixelDissolve() method

 threshold() method

dice, simulating

digital negatives

direction (acceleration)

directories

 holding classes

 saving class files

 sharing data between Flash applications

discard() method, simulating playing cards

dispatchEvent()

display ActionScript property

display lists

 adding items to

 objects, moving forward/backward

 removing items from

display object containers

display settings, detecting

DisplayObectContainer class

 moving objects forward/backward

 removing items from display lists

DisplayObject class

 adding items to display list

 custom visual classes, creating

 external movies and

 mouse interactions, creating

 simple buttons, creating

DisplayObject.mask

DisplayObjectUtilities.removeAllChildren() method

DMYHMSM format (days, months, years, hours, minutes, seconds, milliseconds)

documents (XML)

dollar sign ($)

 escape sequence for

 regular expression metacharacter

domains, loading .swfs from different

dot (.)

 regular expression metacharacter

 XML objects, adding elements 2nd

"dot down"

 finding elements

 text nodes, reading

dotall (s) flag

dots (.)

 saving class files

double quotes ("), escape sequence for

doubleClick event (InteractiveObject)

download() method

 uploading files, detecting selections

downloading files

downState property (SimpleButton class)

drag() method

DraggableSprite custom visual class

dragging objects with the mouse

draw() method

 BitmapData class

 simulating playing cards

drawArc() method

drawCircle() method

drawing

 arcs

 circles

 curves

 ellipses

 lines

 polygons

 rectangles

 stars

 triangles

Drawing API

drawRectangle() method

drawRegularPolygon() method

drawRoundRect() method

drawTriangle() method

drop shadows

drop() method

dropping objects with the mouse

DropShadowFilter class

dropTarget property (Sprite class)

duplicate arrays

duplicate() method

 multidimensional arrays and

duplicateMovieClip() method

duration metadata value

dynamic classes

dynamic text fields

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

E4X syntax

 finding elements by name

 searching XML

 text nodes, adding

 text nodes, reading

easing, moving display objects

Eclipse IDE

 parameters, keeping track of

 trace, using

edge detection matrixes

edges (display object), detecting

elapsed() method

elements (arrays)

 adding to start/end of

 associative

 creating

 reading

 copies of

 inserting in middle of

 looping through

 minimum/maximum, getting

 multidimensional/complex data, storing

 randomizing

 removing

 reversing/sorting

 searching for matching

elements (XML)

 extracting

 finding by name

 removing

elements() method

ellipses, drawing

else statements

else...if statements

 coin toss, simulating with

emboss matrixes

embossing

encrypting passwords

endFill() method 2nd

 gradients, filling shapes with

endIndex parameter

 setSelection() method

 setTextFormat() method

 substring() and slice() methods

enterFrame event 2nd 3rd 4th

 dissolving between two bitmaps

 repeating tasks over time

 responding to mouse/key events

 sound files and

Epoch milliseconds

equal sign (=)

 assignment statements and

 differences with == and

 variables, assigning

equality operators

equality, checking

equals() method

error handling

ErrorReportingEnable variable (mm.cfg)

escape sequences

 Unicode for Latin 1 characters

escaping characters

Euro (!!EURO!!)

event object

event protocol

EventDispatcher class 2nd

EventDispatcher class, handling events

events

 dispatching

 handling

exactFit mode

exclamation point (!), escape sequence for

exec() (RegExp class)

Express Install (Flash Player Detection Kit)

extended (x) flag

extends keyword

external images

 bitmaps, loading into

 runtime, loading

external movies, loading/interacting with

ExternalInterface class

ExternalInterface.addCallback() method

ExternalInterface.call() method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

face attribute (tag)

Fahrenheit, converting between Celsius

fault events, listening for

file management

 browsing for files and

 detecting when users select files for uploading

 downloading files

 filtering files for display

 monitoring download progress

 monitoring file upload progress

 uploading files 2nd

FileFilter objects

FileReference object 2nd

fillColor parameter

 MovieClip.beginFill() method

fillColor parameter (pixelDissolve() method)

fillRect() method

filters 2nd

 advanced effects, applying

 applying basic

 applying to bitmaps

 detecting edges

 digital negatives, making

 sharpening display objects

filters property

finally blocks

findLastMatchIndex() method

findMatchIndex() method 2nd

findMatchIndices() method

Firefox

Flash cookies

Flash Player

 detecting

 menu items, hiding

 prompting users to change settings

 type, checking

Flash Player Detection Kit

Flash Player Settings Manager

Flash remoting

 methods, calling

 responses, handling

Flash Remoting gateway

Flash Video Exporter

flash.display package 2nd 3rd

 TextField class

flash.display.CapsStyle class

flash.display.Graphics class

flash.display.JointStyle class

flash.display.LineScaleMode class

flash.display.Loader class 2nd

flash.display.SpreadMethod constants

flash.display.Stage class

flash.display.TexfieldType class

flash.errors package

flash.events

flash.events.DataEvent.DATA constant

flash.events.Event class

flash.events.FocusEvent objects

flash.events.TextEvent type

flash.events.TextEvent.TEXT_INPUT constant

flash.filters package

flash.filters.ColorMatrixFilter class

flash.filters.ConvolutionFilter class

flash.geom.ColorTransform class

flash.geom.Matrix class 2nd

flash.geom.Matrix object

flash.geom.Rectangle class 2nd

 copying pixels

flash.geom.Rectangle object

flash.media.ID3Info class

flash.media.Video class

flash.net.FileReference class

flash.net.navigateToURL() method

flash.net.NetConnection class.

flash.net.registerClassAlias() method

flash.net.Responder object

flash.net.sendToURL() method

flash.net.URLLoader class 2nd 3rd 4th

flash.net.URLStream instance

flash.net.XMLSocket class

flash.system.Capabilities class

 video capabilities, detecting

flash.system.Capabilities object

flash.system.Capabilities.hasAudio property

flash.system.Capabilities.language property

flash.system.Capabilities.os property

flash.system.Capabilities.version property

flash.system.IME class 2nd

flash.system.IME.enabled property

flash.system.Security class

flash.system.Security.allowDomain()

flash.system.Security.allowInsecureDomain()

flash.system.Security.showSettings() method

flash.text.AntiAliasType.ADVANCED

flash.text.GridFitType class

flash.text.TextField class

flash.text.TextFieldAutoSize class

flash.util.getTimer() function

flash.util.Timer class

flash.utils package

FlashVars

Flex Builder 2nd 3rd

 class files, saving

 trimming whitespace and

floating-point numbers

 random, generating

 rounding

flood fills, creating

floodFill() method

flush() method 2nd 3rd

focalPointRatio parameter (beginGradientFill() method)

FocusEvent.preventDefault() method

focusIn event

focusOut event

font groups

font property (TextFormat object)

font-family CSS property

font-size CSS property

font-style CSS property

font-weight CSS property

fontFamily ActionScript property

fonts

 embedding

 rotating

 text fields, setting in

fontSize ActionScript property

fontStyle ActionScript property

fontWeight ActionScript property

for keyword

for statement

 array, looping through

 associative arrays, reading

 matching elements in arrays with

 removing elements from arrays

 repeating operations many times

for...each loops, reading XML elements

form feed character (\\f)

format() method

 dates and time

 formatting numbers for displaying without masks

FormatSeconds() method

forward slash (/), storing data and

fps (frames per second)

fractal parameter (perlinNoise() method)

frames per second (fps)

Friedel, Jeffrey

fromCharCode() method 2nd

fscommand() function

fullYear property (Date object)

function keyword

functions 2nd

 fscommand()

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

g (global) flag 2nd

 replace() method and

 search() method and

gamescore.cfm

getCategories() method

getCharBoundaries() method

getCharIndexAtPoint() method

getChildAt() method

getChildIndex() method

getColor() method

getConverterFrom() method

getConverterTo() method 2nd

getFirstCharInParagraph() method

getLineIndexAtPoint() method

getLineIndexOfChar() method

getLineLength() method

getLineMetrics() method

getLineOffset() method

getLineText() method

getLocal() method 2nd

getNextHighestDepth() method

getObjectsUnderPoint() method

getParagraphLength() method

getPixel() method

getPixel32() method

getTimer()

getTimer() function

global (g) flag 2nd

 replace() method and

 search() method and

GlowFilter class

glows

GMT (Greenwich Mean Time)

GradientBevelFilter class

GradientGlowFilter class

gradientType parameter (beginGradientFill() method)

Graphics class

Graphics object

 line styles, setting

Graphics.beginBitmapFill() method

Graphics.beginFill() method

Graphics.curveTo() method

Graphics.drawRect() method

Graphics.drawRoundRect() method

Graphics.drawRoundRectComplex() method

Graphics.endFill() method

Graphics.lineGradientStyle() method

Graphics.lineTo() method

grayscale

grayscale parameter

 noise() method

 perlinNoise() method

greater than (>)

 equality operators and

 threshold() method, as a parameter

greedy patterns

GREEN property (BitmapDataChannel class)

 noise() method

 perlinNoise() method

greenMultiplier property

greenOffset property (ColorTransform class)

Greenwich Mean Time (GMT)

gridTypeFit property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handheld devices, supporting Flash Players

handleClick() method

handleComplete() method

handleOpen() method

handleProgress() method

handlers

handling errors

handshaking

hasAudio property, detecting audio capabilities

hasEmbeddedVideo property

hash tables

hasMP3 property, detecting audio capabilities

hasStreamingVideo property

hasVideoEncoder property

hexadecimal numbers

hierarchy tree (display lists)

high parameter (noise() method)

hitTestPoint() method

hitTestState property (SimpleButton class) 2nd

Hooke's Law

host parameter (connect() method)

hours parameter (addTo() method)

hours property (Date object)

HTML (Hypertext Markup Language)

 <a> tag 2nd

 tag

 tag

 tag 2nd 3rd

 <i> tag

 tag

 tag

 <p> tag

 <textformat> tag

 <u> tag

 displaying

 fonts, setting in text fields

 formatting text

 loading a block of text

 passing parameters from

 removing tags with regular expressions

 XML, special characters and

htmlText property

 hyperlinks, adding to text

http protocol

https protocol

httpStatus event (LoaderInfo class)

httpStatus failure event

hyperlinks

 adding to text

 calling ActionScript from

Hypertext Markup Language [See HTML]

hypotenuse

 circles, determining points along

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

i (ignoreCase) flag 2nd

id3 property (Sound object)

ID3 tag, reading

if statements

 complex conditional testing, using

ignoreCase (i) flag 2nd

IllegalOperationError 2nd

images

 bitmaps, loading into

 runtime, loading

IMAP

IME (Input Method Editor)

import statements

indent attribute (<textformat> tag)

index parameter (setTextFormat() method)

index variables (loop counters)

indexes (arrays)

 associative arrays and

 looping through

 multidimensional data and

 removing elements with

indexOf() method

inequality, checking

inheritance, defining

init event (LoaderInfo class)

 external movies and

initialization expressions

innerRadius parameter (Pen.drawStar() method)

input fields

 filtering input

 maximum length, setting

 password

 user-input

 formatting

Input Method Editor (IME)

insertChildAfter() method 2nd

insertChildBefore() method 2nd

insertion points, setting

instances (object)

int keyword

int type

integer-indexed arrays

InteractiveObject class

InteractiveObject display object

internal keyword 2nd

 reusing code and

internal variables

Internet Explorer

interpolationMethod parameter (beginGradientFill() method)

interpreter (ActionScript)

ioError event (LoaderInfo class)

ioError failure event

IOErrorEvent event listener

isNaN()

ISO-639-1 language codes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Java

JavaScript

 ActionScript functions, calling

 Flash Players, detecting

 functions, calling

 passing parameters from HTML

join() method

 converting arrays to stings

 reversing strings

 trimming whitespace

joints parameter (lineStyle method)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

kerning ActionScript property

kerning CSS property

key events, responding tp

KeyboardEvent class

keyDown event

keyFocusChange events

keyframes

keys 2nd

kilograms, converting between pounds

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

label property (Unit objects)

labelPlural property (Unit objects)

language codes

languages (system), checking

last in, first out (LIFO)

lastIndexOf() method

Latin 1 characters

lazy expressions

leading attribute (<textformat> tag)

leftmargin attribute (<textformat> tag)

length parameter

 drawRegularPolygon() method

 substr() method

less than (<)

 equality operators and

letter-spacing CSS property

letterSpacing ActionScript property

LIFO (last in, first out)

limit (split() method)

line styles

 gradient

lineGradientStyle() method

lines, drawing

lineStyle() method

lineTo() method

 rectangles, drawing

literal notation (arrays)

literals (regular expressions)

load() method 2nd 3rd 4th 5th

Loader class 2nd

 external images, loading as bitmaps

 external movies, loading/interacting with

 mouse interactions and

LoadVars class

LoadVars.load() method 2nd

 loading variables from text file

LoadVars.sendAndLoad() method

loadWSDL() method

local connections

 communication and

 communication between movies

 sending data and

local shared objects (LSO)

 controlling size of

 creating/opening

 removing data from

 saving

 sharing data between Flash applications

 writing data to

LocalConnection class 2nd

LocalConnection.connect() method

LocalConnection.send() method

Locale class

Locale.slanguage property

Locale.svariant property

localToGlobal() method

localX property (MouseEvent class)

localY property (MouseEvent class)

lockCenter parameter (startDrag() method)

logical AND (&&)

logical inequality operator (!=) 2nd

logical NOT (!)

logical OR (||)

loop counters

loop statements

 arrays

looping sounds

low parameter (noise() method)

LSO [See local shared objects]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m (multiline) flag

Mac OS X mm.cfg file, locating

Macromedia XML (MXML) 2nd

 class files, saving

magnitude (acceleration)

mailto links

major radii

margin-left CSS property

margin-right CSS property

marginLeft ActionScript property

marginRight ActionScript property

markup languages

mask parameter (threshold() method)

masks

 formatting numbers for display without

 scripting

Mastering Regular Expressions (Friedel, Jeffrey)

math

Math class 2nd

Math.atan2() function

Math.ceil() method 2nd

Math.cos() function 2nd

Math.floor() method 2nd

Math.PI

Math.pow()

Math.random()

 randomizing elements in arrays

Math.round() method 2nd

Math.sin() function 2nd

Math.sqrt()

mathematical operators

Matrix class

 drawing objects to bitmaps

 shearing display objects

matrix parameter

 beginGradientFill() method

 Graphics.beginBitmapFill() method

maxChars property

maximum parameter (NumberUtilities.random() method)

maxScrollH property (text fields)

maxScrollV property (text fields)

MaxWarnings variable (mm.cfg)

Media Players

MemoryError 2nd

menu items (Flash Player), hiding

messages, tracing

metacharacters

metadata, specifying properties

metasequences

methods

 allowDomain()

 exiting

 generating to enhance reusability

 LoadVars.load()

 LoadVars.sendAndLoad()

 obtaining results

 placing code

 reusing code

 String.split()

 web services, calling

Microsoft Windows

milliseconds parameter (addTo() method)

milliseconds property (Date object)

milliseconds, formatting

minimum parameter (NumberUtilities.random() method)

minor radii

minutes parameter (addTo() method)

minutes property (Date object)

minutes, formatting

miterLimit parameter (lineStyle method)

mm.cfg file 2nd

month property (Date object)

MONTHS constant (DateFormat class)

months parameter (addTo() method)

MONTHS_ABBREVIATED constant (DateFormat class)

mouse events

 dragging/dropping objects with

 interactions, creating

 responding to

mouseDown event (InteractiveObject)

MouseEvent class 2nd

 dragging dropping objects

MouseEvent.CLICK

MouseEvent.MOUSE_UP

mouseFocusChange event

mouseMove event (InteractiveObject)

mouseOut event (InteractiveObject)

mouseUp event (InteractiveObject)

mouseWheel event (InteractiveObject)

mouseWheelEnabled property

mouseX property (DisplayObject class) 2nd

mouseY property (DisplayObject class) 2nd

moveTo() method

MovieClip class 2nd 3rd

 adding items to display list

 custom visual classes and

 mouse interactions and

movies

 alignment of, changing

 communication 2nd

 communication between

 local connections and

 same computer

 external, loading/interacting

 scaling

Mozilla

MP3s, detecting audio capabilities and

multidimensional arrays

multiline (m) flag

multiplier properties

mx.rpc.events.FaultEvent

mx.rpc.soap.WebService object

mx.utils.StringUtil.trim() static method

MXML (Macromedia XML) 2nd

 class files, saving

mxmlc

 viewing command-line arguments

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

name property (Unit objects)

names of packages

NaN (not a number) constant

navigateToURL() method

Navigator view (Flex Builder 2)

nested for statements

nested nodes, XML

 attributes and

NetConnection class

NetStream class

New ActionScript Project Wizard

new operator

newline character (\\n) 2nd

NNTP

noBorder mode

nodes (XML) 2nd

noise patterns, creating

 Perlin

noise() method

 BitmapData class

 perlinNoise method and

non-word boundary (\\B) metasequence

non-word character (\\W) metasequence

nongreedy patterns

noScale mode

NOT (!) logical

not (false), creating bitmaps

not a number (NaN) constant

Number keyword

number parameter (NumberUtilities.round() method)

number systems, converting between

number type

NumberFormat class

 currency amounts, formatting

 formatting numbers for displaying without masks

NumberFormat.currencyFormat() method

numbers

 angle measurements, converting

 bases, representing different

 calculating distance between two points

 circles, determining points along

 converting between different systems

 currency, formatting amounts

 masks, formatting for display without

 random, generating

 rounding

 simulating

 coin tosses

 playing cards

 unique, generating

NumberUtilities.getUnique() method

NumberUtilities.random() method

 coin toss, simulating

 dice, simulating

NumberUtilities.round() method

numChildren property

numLines property

numPixels parameter (pixelDissolve() method)

 setting

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Object class

Object.registerClass() method

objects

 acceleration of

 dragging/dropping with the mouse

 drawing to bitmaps

 easing

 moving

 moving forward and backward

 sound, creating/loading

 springs

 XML

 creating

 populated

octal bases

octal literals

octaves parameter (perlinNoise() method)

offsets parameter (perlinNoise() method)

On2 Flix

onCuePoint() callback

onLoad() method

onMetaData() method 2nd

onMouseDown method

onMouseUp method

onTextScroll() method

onvertWithLabel() method

open event (LoaderInfo class)

operating systems, detecting

operation parameter (threshold () method)

opposite sides

OR (|) bitwise 2nd

OR (||) logical

outerRadius parameter (Pen.drawStar() method)

Outline view (Flex Builder 2)

outlines, creating around text fields

override attribute

overState property (SimpleButton class)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

package keyword

packages

packet (XML)

parallel arrays

parameters (method), generalizing for enhancing reusability

parentheses (())

 conditional operators and

 regular expression metacharacters

 URL-encoded escape sequence for

parse() method

parseCSS() method

parseInt() function

 converting between number systems and

password input fields

password property

pattern parameter

 regular() method

 String.replace() method

patterns [See regular expressions]

pause() method

pausing sound

Pen class

 ellipses, drawing

 polygons, drawing

 triangles, drawing

pen locations

 curves, drawing

 lines, drawing

Pen.drawArc() method

Pen.drawEllipse() method

Pen.drawLine() method

Pen.drawRegularPolygon() method

Pen.drawStar() method

Pen.drawTriangle() method

percent sign (%), escape sequence for

Perl 2nd

Perlin noise 2nd

Perlin, Ken

perlinNoise() method

permissions for .cgi scripts

persistent data

PHP, getting current date and time

pixelDissolve() method (BitmapData class)

pixelHinting parameter (lineStyle method)

pixels (bitmaps)

 copying

 manipulating

place() method

play() method 2nd

 finding out when a sound finishes

 ID3 tag and

 looping sounds

 offsetting the start of a sound

playback time

 controlling

 reading

player versions, detecting

playing cards, simulating

plus sign (+)

 as a regular expression metacharacter

 nongreedy patterns and

 URL-encoded escape sequence for

points parameter (Pen.drawStar() method)

policy files

polygons, drawing

pop() method

POP3

port parameter (connect() method)

position property (SoundChannel class)

postfix operators

pound sign (#)

 escape sequence for

pounds, converting between kilograms

poundsign (\xa3)

predicate filtering

prefix operators

prependChild() method

primitive data

primitive datatypes

Print menu item

private keyword 2nd

 reusing code

programmatic animation

progress event 2nd

 LoaderInfo class

 URLLoader class

ProgressEvent

progressive .jpg

Project Wizard

projects (Flex)

 creating

properties

 applications, customizing

 associative arrays

protected keyword 2nd

 reusing code

 subclasses, creating

 superclass methods and

protected variables

public keyword 2nd

 reusing code and

 subclasses, creating

 superclass methods and

push() method

Pythagorean Theorem

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Quality menu item

question mark (?), as a regular expression metacharacter

QuickTime Players

quotes (')

 URL-encoded escape sequence for

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

radialLines parameter (drawArc() method)

radii

radius parameter

 drawArc() method

 drawCircle() method

radix parameter (parseInt() function)

random numbers

random() method

 coin toss, simulating

 dice, simulating

RangeErrors 2nd 3rd

ratios parameter (beginGradientFill() method)

readBoolean() method

readByte() method 2nd

readChallenge() method

readDouble() method

readFloat() method

readInt() method 2nd

readNormalProtocol() method

readObject() method

readShort() method

readUnsignedByte() method

readUnsignedInt() method

readUnsignedShort() method

readUTF() method

readVersion() method

Rectangle region

rectangles, drawing

rectangular fills, creating

recursion

RED property (BitmapDataChannel class)

 noise() method

 perlinNoise() method

redMultiplier property

redOffset property (ColorTransform class)

regexes [See regular expressions]

RegExp class

RegExp.test() method

regexps [See regular expressions]

registerClassAlias() method

regular expressions 2nd

 literals

 nongreedy patterns

 pattern matches

 looking for

 removing and replacing characters/words

 splitting strings

 testing

 understanding patterns

 user input, validating

Regular Expressions Pocket Reference (Stubblebine, Tony)

relatedObject property

remote procedure calls (RPC) 2nd

remote shared objects (RSO)

removeChild() method

removeChildAt() method

Rendering Engine

reparenting

repeat parameter, for Graphics.beginBitmapFill()

replace parameter

 replace() method

 String.replace() method

replace() method

replacement codes

replaceSelectedText() method

replaceText() method

reserved words

Responder class

restarting sound

restrict property, filtering text input with

result event listener

ResultEvent parameter

results

 variables, server-side processing

return character [See carriage return character]

return statements

reusable code 2nd

reverse() method

 reversing strings

RexExp.exec() method

RGB color values

rgb property

right triangles, calculating distance of

rightmargin attribute (<textformat> tag)

root nodes (XML)

root.loaderInfo.parameters property

rotation parameter

 createGradientBox() method

 drawRegularPolygon() method

 drawTriangle() method

 Pen.drawStar() method

round() method

 random numbers, generating

rounding numbers

roundToInterval parameter

 NumberUtilities.random() method

 NumberUtilities.round() method

RPC (remote procedure calls) 2nd

RSO [See remote shared objects]

runtime environment

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s (dotall) flag

saturation, changing on display objects

save dialog boxes

scale modes (movies)

scaleMode parameter (lineStyle method)

scaleX parameter (createGradientBox() method)

scaleY parameter (createGradientBox() method)

scope

screenResolutionX property

screenResolutionY property

scripts, server-side

 variable results

ScriptTimeoutError

scroll events, responding to

scroll() method (BitmapData class)

scrollH property (text fields)

scrollV property (text fields)

scrubbing video

search() method

seconds parameter (addTo() method)

seconds property (Date object)

seconds, formatting

Secure Socket Layer (SSL)

security (system), dealing with

Security.showSettings() method

securityError event (LoaderInfo class)

securityError failure event

SecurityErrorEvent event listener

SecurityPanel.CAMERA value (flash.system.SecurityPanel class)

SecurityPanel.DEFAULT value (flash.system.SecurityPanel class)

SecurityPanel.LOCAL_STORAGE value (flash.system.SecurityPanel class)

SecurityPanel.MICROPHONE value (flash.system.SecurityPanel class)

SecurityPanel.PRIVACY value (flash.system.SecurityPanel class)

SecurityPanel.SETTINGS_MANAGER value (flash.system.SecurityPanel class)

seed parameter

 noise() method

 perlinNoise() method

 pixelDissolve() method

seek() method

 NetStream class

select events 2nd

selected text, responding to

semicolon (\ 2nd

send() method

sending data to server-side script

servers, loading .swfs from different

setChildIndex() method

 dragging/dropping objects

setColor() method

setInterval() function

setPixel() method

 noise patterns, creating with

setPixel32() method

setSelection() method

setStyle() method

setTextFormat() method

 formatting portions of text

setTimeout() function

setting (display), detecting

Settings dialog box

Settings menu item

Shape class 2nd 3rd

 custom visual classes

shapes

 bitmaps, filling with

 gradient, filling with

 solid/translucent colors, filling

shared objects

 reading data from

 removing data from

SharedObject class

SharedObject classes

 persistent information and

SharedObject.clear() method

SharedObject.flush() method

sharpening

sharpness property

shearing

shift() method

Show All menu item

Show Redraw Regions menu item

showAll mode

showSettings() method

sides parameter (drawRegularPolygon() method)

simple buttons, creating, interactive buttons, creating

Simple Object Access Protocol [See SOAP]

SimpleButton class

 mouse interactions and

single non-whitespace (\\s) metasequence

single white space (\\s) matasequence]

size attribute (tag)

skewing

slice() method 2nd

 multidimensional arrays and

smooth parameter (Graphics.beginBitmapFill() method)

SMTP

SOAP (Simple Object Access Protocol)

Socket objects

 handling socket errors

 receiving data

 sending data

socket programming

 connecting to

 disconnecting from servers

 handling socket errors

 handshaking

 receiving data

 sending data

Socket.close() method

Socket.connect() method

socketData event handler

solid colors, filling shapes

sort() method

 custom sorts, implementing

 randomizing elements in arrays

sorter function

sorting arrays

 custom, implementing

sortOn() method

sound

 applications, creating

 buffers, setting for

 creating/loading objects

 finding out when finishes

 getting the size of

 ID3 tag, reading

 looping

 offsetting the start of

 pausing/restarting

 reading the level of

 spectrums, reading

 starting/stopping

 stopping

 video

 volume and pan of

Sound object

Sound.length

SoundChannel class 2nd

 pausing/restarting sounds

 tracking the progress of sounds

SoundChannel.leftPeak property

SoundChannel.position

SoundChannel.rightPeak property

soundComplete event

SoundLoaderContext class

SoundMixer class 2nd

SoundMixer.computeSpectrum() method

SoundTransform class 2nd

soundTransform property

sourceBitmap object (threshold() method)

sourceRect parameter (pixelDissolve() method)

spaces inserting leading/trailing

special whitespace characters

spectrums (sound)

speed of display objects

splice() method

 inserting elements in the middle of arrays

split() method

 converting strings to arrays

 randomizing elements in arrays

 removing and replacing characters/words

 retrieving one character at a time

 reversing strings

spreadMethod parameter for beginGradientFill() method

springs

Sprite class 2nd 3rd 4th

 adding items to display list

 custom visual classes

 dragging/dropping objects with the mouse

 mouse interactions and

Sprite.rotation property

square brackets (\ 2nd

SSL (Secure Socket Layer)

stage

stage.align property

Stage.focus property

stage.scaleMode property

stage.showDefaultContextMenu property

standalone players

stars, drawing

start() method (addEventListener)

startDrag() method 2nd

startDrop() method

startIndex parameter

 indexOf() method

 lastIndexOf() method

 setSelection() method

 setTextFormat() method

 substr(), substring(), and slice() methods

startingAngle parameter (drawArc() method)

statement body

statements

static attribute

static methods

 creating

static properties

stitch parameter (perlinNoise() method)

stop() (addEventListener)

stopAll() method

stopDrag() method

strict equality/inequality

strict flag

String class

String data type

String() conversion function

String.charAt() method

String.charCodeAt() method

String.concat() method 2nd

String.fromCharCode() method

String.match() method

String.replace() method 2nd

String.search() method

String.split() method 2nd 3rd

strings

 arrays, converting

 dates, parsing

 joining

 parsing into words

 quotes and apostrophes in

 removing and replacing characters/word

 retrieving one character at a time

 reversing by words/characters

 special whitespace characters

 substrings

 extracting

 searching for

 Unicode, converting between

 whitespace, trimming

StringUtils class

structure (XML)

Stubblebine, Tony

StyleSheet object

StyleSheet property

subclasses

 creating

 superclass methods, implementing

subdirectories, saving class files

substr() method

substring parameter

 indexOf() method

 lastIndexOf() method

substring() method

substrings

 extracting

 searching for

super cookies

super keyword

superclasses

 implementing subclass versions of

swapDepths()

switch statements

system languages, checking

system security, dealing with

systemFont attribute

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tabstops attribute (<textformat> tag)

tags, XML

ternary conditional operator (? :)

test expressions

test() (RegExp class)

TexField.setTextFormat() method

text

 advanced layout, working with

 anti-aliasing, applying advanced

 backgrounds, creating

 displaying

 fonts

 embedding

 formatting

 portions of

 HTML, displaying

 hyperlinks

 calling ActionScript from

 input fields

 filtering

 maximum length, setting

 password

 insertion points, setting

 outlines around

 replacing

 responding to user entries

 rotating

 scroll events, responding

 scrolling programmatically

 selected/deselected, responding to

 selecting with ActionScript

 sizing fields

 Unicode, displaying

 user-input, formatting

 whitespace, condensing

text files, loading variables from

text nodes 2nd

 adding

 reading

 removing

 trees

text-align CSS property

text-decoration CSS property

text-indent CSS property

textAlign ActionScript property

textDecoration ActionScript property

TextField class 2nd 3rd

 adding items to display list

 loading external content and

 mouse interactions and

 removing items from display lists

TextField.password property

TextField.restrict property

TextField.setSelection() method 2nd

TextFormat object

textFormat parameter (setTextFormat() method) 2nd

TextFormat.align property

textIndent ActionScript property

textInput event

thickness parameter (lineStyle method)

threshold

threshold parameter (threshold() method)

threshold() method (BitmapData class)

time

 calculating intervals between dates

 DMYHMSM and Epoch milliseconds, converting between

 finding current

 formatting

 formatting seconds/milliseconds as minutes and seconds

 timers, using

time property (NetStream class)

Timer class

Timer() method

TimerEvent.TIMER constant

timers

Times

Times New Roman

tints (colors)

toLowerCase() method 2nd

 converting case

toString() method 2nd 3rd 4th 5th

toUpperCase() method

 converting case

trace()

 loading external images and

TraceOutputFileEnable variable (mm.cfg)

TraceOutputFileName variable (mm.cfg)

transform.colorTransform property 2nd 3rd

transforms

translucent colors, filling shapes

traversing XML trees

trees (XML)

triangles

 calculating distance of

 drawing

trigonometry

try blocks

 download method, working with

 handling socket errors

tweens

two-dimensional arrays

tx parameter (createGradientBox() method)

ty parameter (createGradientBox() method)

type parameter of addEventListener()

type property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

uint type

uint values, setting values for rgb property

undefined elements (arrays)

underline property (TextFormat object)

underscore (_), declaring private/protected property names

Unicode

 converting between strings and

 escape sequences for Latin 1 characters

unique numbers

Unit class

 measurement, converting between units

Unit.DEGREE constant (Unit class)

Unit.getUnits() method

Unit.GRADIAN constant (Unit class)

Unit.RADIAN constant (Unit class)

unload event (LoaderInfo class)

unshift() method

update expressions

updateAfterEvent() method

upload() method

UpperCase() method

upState property (SimpleButton class)

URL-encoded escape sequences

URLLoader class

URLLoader object

 external content, loading

URLLoader.load() method 2nd

URLRequest class

 downloading files

URLRequest instances

URLs (Uniform Resource Locators)

 variables, loading from text files

user input

 fields

 formatting

 regular expressions, validating with

 responding to

UTC (Coordinated Universal Time)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

values 2nd

var keyword

 constants, creating

variables

 loading

 from server-side script

variants (country codes)

VBScript, Flash Player detecting

vector graphics

velocities for display objects

video

 bandwidth, determining

 controlling playback time

 cue points, listening for

 display

 duration, reading

 loading/playing back

 managing/monitoring buffering

 pausing/resuming

 playback time, reading

 scaling

 scrubbing

 sound, controlling

 stopping

video capabilities, detecting

Video class 2nd

visual class, creating custom

void, declaring methods

volume (sound)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Web Service Description Language (WSDL)

web services

 errors, handling

 methods, calling

WebService object

while statement

 indexOf() method and

whitespace (text)

 condensing

 inserting special characters

 trimming

wildcards

Windows 2000

 mm.cfg file, locating

Windows XP

 mm.cfg file, locating

Wizard (Project)

word boundary (\\d) metasequence

word character (\\w) metasequence

writeBoolean() method

writeByte() method

writeDouble() method

writeFloat() method

writeInt() method

writeMultiByte() method

writeObject() method

writeShort() method

writeUnsignedInt() method

writeUTF() method

writeUTFBytes() method 2nd

WSDL (Web Service Description Language)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x (extended) flag

X coordinates

 flood fills, creating

 Perlin noise and

 rectangles, drawing

 scrolling bitmaps

x parameter

 drawArc() method

 drawCircle() method

 drawEllipse() method

 drawRegularPolygon() method

 drawTriangle() method

 Pen.drawStar() method

x-axis, moving objects

XML

 advantages

 attributes

 nested nodes and

 elements

 adding to objects

 HTML, using

 loading

 block of text

 from different domains

 nodes

 nested

 objects

 creating

 populated

 policy files

 root node

 searching

 sending

 socket objects 2nd

 sending data

 tags

 text nodes

 adding to objects

XML-RPC

XMLList

 reading attributes

XMLSocket objects 2nd

 handling socket errors

 receiving data

XMLSocket.close() method

XMLSocket.connect() method

XPath

xRadius parameter (drawEllipse() method)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Y coordinates

 flood fills, creating

 Perlin noise and

 rectangles, drawing

 scrolling bitmaps

y parameter

 drawArc() method

 drawCircle() method

 drawEllipse() method

 drawRegularPolygon() method

 drawTriangle() method

 Pen.drawStar() method

y-axis, moving objects

years parameter (addTo() method)

Yen (x)

yRadius parameter (drawEllipse() method)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zero-indexed arrays

zeros, inserting leading/trailing

Zoom In menu item

Zoom Out menu item

	ActionScript 3.0 Cookbook
	Table of Contents
	Preface
	Chapter 1. ActionScript Basics
	Section 1.0. Introduction
	Recipe 1.1. Creating an ActionScript Project
	Recipe 1.2. Customizing the Properties of an Application
	Recipe 1.3. Where to Place ActionScript Code
	Recipe 1.4. How to Trace a Message
	Recipe 1.5. Handling Events
	Recipe 1.6. Responding to Mouse and Key Events
	Recipe 1.7. Using Mathematical Operators
	Recipe 1.8. Checking Equality or Comparing Values
	Recipe 1.9. Performing Actions Conditionally
	Recipe 1.10. Performing Complex Conditional Testing
	Recipe 1.11. Repeating an Operation Many Times
	Recipe 1.12. Repeating a Task over Time
	Recipe 1.13. Creating Reusable Code
	Recipe 1.14. Generalizing a Method to Enhance Reusability
	Recipe 1.15. Exiting a Method
	Recipe 1.16. Obtaining the Result of a Method
	Recipe 1.17. Handling Errors

	Chapter 2. Custom Classes
	Section 2.0. Introduction
	Recipe 2.1. Creating a Custom Class
	Recipe 2.2. Determining Where to Save a Class
	Recipe 2.3. Creating Properties That Behave As Methods
	Recipe 2.4. Creating Static Methods and Properties
	Recipe 2.5. Creating Subclasses
	Recipe 2.6. Implementing Subclass Versions of Superclass Methods
	Recipe 2.7. Creating Constants
	Recipe 2.8. Dispatching Events

	Chapter 3. Runtime Environment
	Section 3.0. Introduction
	Recipe 3.1. Detecting the Player Version
	Recipe 3.2. Detecting the Operating System
	Recipe 3.3. Checking the Player Type
	Recipe 3.4. Checking the System Language
	Recipe 3.5. Detecting Display Settings
	Recipe 3.6. Scaling the Movie
	Recipe 3.7. Changing the Alignment
	Recipe 3.8. Hiding the Flash Player's Menu Items
	Recipe 3.9. Detecting the Device's Audio Capabilities
	Recipe 3.10. Detecting the Device's Video Capabilities
	Recipe 3.11. Prompting the User to Change Player Settings
	Recipe 3.12. Dealing with System Security

	Chapter 4. Numbers and Math
	Section 4.0. Introduction
	Recipe 4.1. Representing Numbers in Different Bases
	Recipe 4.2. Converting Between Different Number Systems
	Recipe 4.3. Rounding Numbers
	Recipe 4.4. Inserting Leading or Trailing Zeros or Spaces
	Recipe 4.5. Formatting Numbers for Display Without a Mask
	Recipe 4.6. Formatting Currency Amounts
	Recipe 4.7. Generating a Random Number
	Recipe 4.8. Simulating a Coin Toss
	Recipe 4.9. Simulating Dice
	Recipe 4.10. Simulating Playing Cards
	Recipe 4.11. Generating a Unique Number
	Recipe 4.12. Converting Angle Measurements
	Recipe 4.13. Calculating the Distance Between Two Points
	Recipe 4.14. Determining Points Along a Circle
	Recipe 4.15. Converting Between Units of Measurement

	Chapter 5. Arrays
	Section 5.0. Introduction
	Recipe 5.1. Adding Elements to the Start or End of an Array
	Recipe 5.2. Looping Through an Array
	Recipe 5.3. Searching for Matching Elements in an Array
	Recipe 5.4. Removing Elements
	Recipe 5.5. Inserting Elements in the Middle of an Array
	Recipe 5.6. Converting a String to an Array
	Recipe 5.7. Converting an Array to a String
	Recipe 5.8. Creating a Separate Copy of an Array
	Recipe 5.9. Storing Complex or Multidimensional Data
	Recipe 5.10. Sorting or Reversing an Array
	Recipe 5.11. Implementing a Custom Sort
	Recipe 5.12. Randomizing the Elements of an Array
	Recipe 5.13. Getting the Minimum or Maximum Element
	Recipe 5.14. Comparing Arrays
	Recipe 5.15. Creating an Associative Array
	Recipe 5.16. Reading Elements of an Associative Array

	Chapter 6. Display List
	Section 6.0. Introduction
	Recipe 6.1. Adding an Item to the Display List
	Recipe 6.2. Removing an Item from the Display List
	Recipe 6.3. Moving Objects Forward and Backward
	Recipe 6.4. Creating Custom Visual Classes
	Recipe 6.5. Creating Simple Buttons
	Recipe 6.6. Loading External Images at Runtime
	Recipe 6.7. Loading and Interacting with External Movies
	Recipe 6.8. Creating Mouse Interactions
	Recipe 6.9. Dragging and Dropping Objects with the Mouse

	Chapter 7. Drawing and Masking
	Section 7.0. Introduction
	Recipe 7.1. Setting a Line Style
	Recipe 7.2. Setting Gradient Line Styles
	Recipe 7.3. Drawing a Line
	Recipe 7.4. Drawing a Curve
	Recipe 7.5. Drawing an Arc
	Recipe 7.6. Drawing a Rectangle
	Recipe 7.7. Drawing a Circle
	Recipe 7.8. Drawing an Ellipse
	Recipe 7.9. Drawing a Triangle
	Recipe 7.10. Drawing Regular Polygons
	Recipe 7.11. Drawing a Star
	Recipe 7.12. Filling a Shape with a Solid or Translucent Color
	Recipe 7.13. Filling a Shape with a Gradient
	Recipe 7.14. Filling a Shape with a Bitmap
	Recipe 7.15. Scripting Masks

	Chapter 8. Bitmaps
	Section 8.0. Introduction
	Recipe 8.1. Creating a BitmapData Object
	Recipe 8.2. Adding a Bitmap to the Display List
	Recipe 8.3. Drawing a Display Object to a Bitmap
	Recipe 8.4. Loading an External Image into a Bitmap
	Recipe 8.5. Manipulating Pixels
	Recipe 8.6. Creating Rectangular Fills
	Recipe 8.7. Creating a Flood Fill
	Recipe 8.8. Copying Pixels
	Recipe 8.9. Copying Channels
	Recipe 8.10. Creating Noise
	Recipe 8.11. Creating Perlin Noise
	Recipe 8.12. Using Threshold
	Recipe 8.13. Applying a Filter to a Bitmap
	Recipe 8.14. Dissolving Between Two Bitmaps
	Recipe 8.15. Scrolling a Bitmap

	Chapter 9. Text
	Section 9.0. Introduction
	Recipe 9.1. Creating an Outline Around a Text Field
	Recipe 9.2. Creating a Background for a Text Field
	Recipe 9.3. Making a User Input Field
	Recipe 9.4. Making a Password Input Field
	Recipe 9.5. Filtering Text Input
	Recipe 9.6. Setting a Field's Maximum Length
	Recipe 9.7. Displaying Text
	Recipe 9.8. Displaying HTML-Formatted Text
	Recipe 9.9. Condensing Whitespace
	Recipe 9.10. Sizing Text Fields to Fit Contents
	Recipe 9.11. Scrolling Text Programmatically
	Recipe 9.12. Responding to Scroll Events
	Recipe 9.13. Formatting Text
	Recipe 9.14. Formatting User-Input Text
	Recipe 9.15. Formatting a Portion of Existing Text
	Recipe 9.16. Setting a Text Field's Font
	Recipe 9.17. Embedding Fonts
	Recipe 9.18. Creating Text that Can Be Rotated
	Recipe 9.19. Displaying Unicode Text
	Recipe 9.20. Assigning Focus to a Text Field
	Recipe 9.21. Selecting Text with ActionScript
	Recipe 9.22. Setting the Insertion Point in a Text Field
	Recipe 9.23. Responding When Text Is Selected or Deselected
	Recipe 9.24. Responding to User Text Entry
	Recipe 9.25. Adding a Hyperlink to Text
	Recipe 9.26. Calling ActionScript from Hyperlinks
	Recipe 9.27. Working with Advanced Text Layout
	Recipe 9.28. Applying Advanced Anti-Aliasing
	Recipe 9.29. Replacing Text
	Recipe 9.30. Retrieving a List of System Fonts

	Chapter 10. Filters and Transforms
	Section 10.0. Introduction
	Recipe 10.1. Applying Color Changes
	Recipe 10.2. Applying Color Tints
	Recipe 10.3. Resetting Color
	Recipe 10.4. Shearing
	Recipe 10.5. Applying Basic Filters
	Recipe 10.6. Applying Advanced Filter Effects (Emboss, etc.)
	Recipe 10.7. Embossing
	Recipe 10.8. Detecting Edges
	Recipe 10.9. Sharpening
	Recipe 10.10. Making a Digital Negative
	Recipe 10.11. Applying Grayscale
	Recipe 10.12. Changing Saturation
	Recipe 10.13. Changing Brightness
	Recipe 10.14. Changing Contrast

	Chapter 11. Programmatic Animation
	Section 11.0. Introduction
	Recipe 11.1. Moving an Object
	Recipe 11.2. Moving an Object in a Specific Direction
	Recipe 11.3. Easing
	Recipe 11.4. Acceleration
	Recipe 11.5. Springs
	Recipe 11.6. Using Trigonometry
	Recipe 11.7. Applying Animation Techniques to Other Properties

	Chapter 12. Strings
	Section 12.0. Introduction
	Recipe 12.1. Joining Strings
	Recipe 12.2. Using Quotes and Apostrophes in Strings
	Recipe 12.3. Inserting Special Whitespace Characters
	Recipe 12.4. Searching for a Substring
	Recipe 12.5. Extracting a Substring
	Recipe 12.6. Parsing a String into Words
	Recipe 12.7. Removing and Replacing Characters and Words
	Recipe 12.8. Retrieving One Character at a Time
	Recipe 12.9. Converting Case
	Recipe 12.10. Trimming Whitespace
	Recipe 12.11. Reversing a String by Word or by Character
	Recipe 12.12. Converting Between Strings and Unicode or ASCII

	Chapter 13. Regular Expressions
	Section 13.0. Introduction
	Recipe 13.1. Understanding Regular Expression Patterns
	Recipe 13.2. Testing Regular Expressions
	Recipe 13.3. Looking for Pattern Matches
	Recipe 13.4. Removing and Replacing Characters and Words Using Patterns
	Recipe 13.5. Creating a Nongreedy Pattern
	Recipe 13.6. Validating User Input with Common Patterns

	Chapter 14. Dates and Times
	Section 14.0. Introduction
	Recipe 14.1. Finding the Current Date and Time
	Recipe 14.2. Retrieving the Date Values
	Recipe 14.3. Retrieving the Day or Month Name
	Recipe 14.4. Formatting the Date and Time
	Recipe 14.5. Formatting Seconds or Milliseconds as Minutes and Seconds
	Recipe 14.6. Converting Between DMYHMSM and Epoch Milliseconds
	Recipe 14.7. Using Timers
	Recipe 14.8. Calculating Elapsed Time or Intervals Between Dates
	Recipe 14.9. Parsing a Date from a String

	Chapter 15. Programming Sound
	Section 15.0. Introduction
	Recipe 15.1. Creating a Sound Object and Loading a Sound
	Recipe 15.2. Starting and Stopping a Sound
	Recipe 15.3. Setting the Buffer for a Sound
	Recipe 15.4. Offsetting the Start of a Sound
	Recipe 15.5. Playing a Sound Multiple Times (Looping)
	Recipe 15.6. Getting the Size of a Sound File
	Recipe 15.7. Reading the ID3 Tag of a Sound File
	Recipe 15.8. Find Out When a Sound Finishes Playing
	Recipe 15.9. Tracking the Progress of a Playing Sound
	Recipe 15.10. Pausing and Restarting a Sound
	Recipe 15.11. Reading the Level of a Sound
	Recipe 15.12. Stopping All Sounds
	Recipe 15.13. Reading the Sound Spectrum
	Recipe 15.14. Changing the Volume or Pan of a Sound
	Recipe 15.15. Creating a Sound Application

	Chapter 16. Video
	Section 16.0. Introduction
	Recipe 16.1. Loading and Playing Back Video
	Recipe 16.2. Controlling Video Sound
	Recipe 16.3. Reading Playback Time
	Recipe 16.4. Reading Video Duration
	Recipe 16.5. Controlling Playback Time
	Recipe 16.6. Scaling Video
	Recipe 16.7. Managing and Monitoring Buffering and Loading
	Recipe 16.8. Listening for Cue Points
	Recipe 16.9. Applying Filters to Video
	Recipe 16.10. Pausing and Resuming Video
	Recipe 16.11. Stopping Video
	Recipe 16.12. Scrubbing Video
	Recipe 16.13. Clearing the Video Display
	Recipe 16.14. Determining User Bandwidth

	Chapter 17. Storing Persistent Data
	Section 17.0. Introduction
	Recipe 17.1. Creating and Opening a Local Shared Object
	Recipe 17.2. Writing Data to a Shared Object
	Recipe 17.3. Saving a Local Shared Object
	Recipe 17.4. Reading Data from a Shared Object
	Recipe 17.5. Removing Data from a Shared Object
	Recipe 17.6. Serializing Custom Classes
	Recipe 17.7. Sharing Data Between Flash Applications
	Recipe 17.8. Controlling the Size of Local Shared Objects

	Chapter 18. Communicating with Other Movies
	Section 18.0. Introduction
	Recipe 18.1. Creating Local Connections
	Recipe 18.2. Sending Data
	Recipe 18.3. Validating Receipt of Communication over Local Connections
	Recipe 18.4. Accepting Local Communications from Other Domains

	Chapter 19. Sending and Loading Data
	Section 19.0. Introduction
	Recipe 19.1. Loading Variables from a Text File
	Recipe 19.2. Loading Variables from a Server-Side Script
	Recipe 19.3. Loading a Block of Text (Including HTML and XML)
	Recipe 19.4. Checking Load Progress
	Recipe 19.5. Accessing Data Being Downloaded
	Recipe 19.6. Sending Data to a Server-Side Script
	Recipe 19.7. Sending Variables and Handling a Returned Result

	Chapter 20. XML
	Section 20.0. Introduction
	Recipe 20.1. Understanding XML Structure (Reading and Writing XML)
	Recipe 20.2. Creating an XML Object
	Recipe 20.3. Adding Elements to an XML Object
	Recipe 20.4. Adding Text Nodes to an XML Object
	Recipe 20.5. Adding Attributes to an XML Element
	Recipe 20.6. Reading Elements in an XML Tree
	Recipe 20.7. Finding Elements by Name
	Recipe 20.8. Reading Text Nodes and Their Values
	Recipe 20.9. Reading an Element's Attributes
	Recipe 20.10. Removing Elements, Text Nodes, and Attributes
	Recipe 20.11. Loading XML
	Recipe 20.12. Loading XML from Different Domains
	Recipe 20.13. Sending XML
	Recipe 20.14. Searching XML
	Recipe 20.15. Using HTML and Special Characters in XML

	Chapter 21. Web Services and Flash Remoting
	Section 21.0. Introduction
	Recipe 21.1. Calling Web Services Methods
	Recipe 21.2. Handling Web Services Responses
	Recipe 21.3. Handling Web Services Errors
	Recipe 21.4. Calling Flash Remoting Methods
	Recipe 21.5. Handling Flash Remoting Responses

	Chapter 22. Building Integrated Applications
	Section 22.0. Introduction
	Recipe 22.1. Calling JavaScript Functions
	Recipe 22.2. Calling ActionScript Functions
	Recipe 22.3. Passing Parameters from HTML

	Chapter 23. File Management
	Section 23.0. Introduction
	Recipe 23.1. Downloading Files
	Recipe 23.2. Detecting When a User Selects a File to Upload
	Recipe 23.3. Monitoring Download Progress
	Recipe 23.4. Browsing for Files
	Recipe 23.5. Filtering Files That Display in the Browser Window
	Recipe 23.6. Detecting When the User Has Selected a File to Upload
	Recipe 23.7. Uploading Files
	Recipe 23.8. Monitoring File Upload Progress

	Chapter 24. Socket Programming
	Section 24.0. Introduction
	Recipe 24.1. Connecting to a Socket Server
	Recipe 24.2. Sending Data
	Recipe 24.3. Receiving Data
	Recipe 24.4. Handshaking with a Socket Server
	Recipe 24.5. Disconnecting from a Socket Server
	Recipe 24.6. Handling Socket Errors

	Appendix A. Unicode Escape Sequences for Latin 1 Characters
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

