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ANDREW HOOD

ABSTRACT

The challenge of building a fully autonomous humanoid robot was taken up by 12 final
year engineering students at the University of Queensland in February 2001. A complete
paper design was completed by the end of that year, and by February 2002 the GuRoo

was structurally built.

The topic of this thesis was to bring the paper design of the motion controllers into reality
and to a functional state. In doing so, conduct a thorough review on the entire operation
of the control system. The hardware has been redesigned: improving the old system.

Also, a mechanism for initial alignment of joints has been developed.

The 2001 motor control design was realized through a distributed control system — as
distinct from a centralised system where control for every joint is coordinated by one
processor. The iPAQ pocket PC in GuRoo's chest generates velocity profiles for each
joint. These velocities are broadcast every 2ms onto the Controller Area Network(CAN).
Each of the 6 joint controllers independently retrieves the appropriate data, and actuates

the associated motors.

The distributed control system was found to be very effective. However, the
implementation of the local control limited the speed of the control algorithm to 250Hz —
the desired speed was 2kHz. This bottleneck has been addressed in the 2002 revision of
the controllers. The new controllers will also use optical switches to accurately initialise
each joint. The new design is more power efficient, smaller, and reduces the wiring

harness complexity.
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1- INTRODUCTION

- By the year 2050,

develop a team of fully autonomous humanoid robots

that can win against the human world soccer champions. [1]

An ambitious, but attainable goal (pun intended). The
task requires much further development in the
engineering  disciplines of image processing,
mechanical design, robot control, and robot
intelligence. The RoboCup organization holds annual
competitions to develop individual skills necessary to
complete the challenge. 2002 was the first year of the

humanoid league competition.

In 2001 a fully autonomous humanoid robot, GuRoo
(Figure 1) was designed and built at the University of
Queensland. This thesis concerns the control of the
robot’s joints.

1.1- Thesis Overview

The control system for the humanoid was designed and
built by two undergraduate students, Jarad Stirzaker
and Tim Cartwright, in 2001. Although the hardware
design was completed, comprehensive testing was still

Figure 1-CAD model of GuRoo

required. Much of the software also needed writing. A review of the system — which had

been developed blind, without a robot to test on — was necessary to measure its

effectiveness in the real world. Having learnt from the operation of the 2001 solution, the

new design was developed.

This thesis deals only with the low-level control of the robot, much work is yet to be done

in higher level programming (gait generation, balance, efficient walking algorithms).

This goal of this project is to build a solid base on which those things can be developed.
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1.2- Motivation

Apart from amusing the engineers involved with designing and building a humanoid
robot, an autonomous machine in the form of a human has positive social ramifications.
Its most obvious application would be in rescue operations, and situations that would
normally involve endangering human life. For a robot to operate in such situations, it is
logical that it would be most effective if it were of the same form and dimensions as the
original operator. Wheeled robots already assist humans in dangerous situations: search
and rescue robots have been sent into the volatile sites at Chernobyl, Moura Mine, and
recently at the World Trade Center in New York. Wheeled robots are very limited in
their accessibility on uneven terrain, and legged machines would be much better in

uncontrolled environments.

The human form is very top heavy, and unstable. We balance while standing without
consciously thinking about it, by constantly flexing and relaxing hundreds of muscles.
While running, we maintain dynamic stability (at no point in their trajectory is a runner
able to stop moving and still be stable). We can negotiate rough terrain with admirable
ease. To complete all three of these tasks, we rely heavily on the precise control of each

of our limbs.

To model our hundreds of muscles by 15 heavy motors in the lower body can at best be
described as crude. It can also be described as difficult. Precise feedback from each joint
is necessary. Currently, the robot is programmed with a specific gait (tested first on the
simulator) in which a velocity profile for each motor is generated on a central computer,
and broadcast to each board every 2ms. The motors must accurately turn at the speeds

they are told to, any error will be carried through and could cause GuRoo to fall over.

To design such a control system in a humanoid robot is of great academic value. By
logging data from the joints as they move, a great deal could be learned about human

joint control, and further development can be made towards humanoid robotics
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1.3- Development so Far — Other humanoids

The relatively new field of humanoid robotics includes two main groups of
developers. Those robots developed for commercialisation, and those for

research.

Two large corporations: Sony and Honda both have humanoid robots.

ASIMO is 10" in a line of humanoids built by Honda over the last 17 years. i

She is 120cm tall, with speech synthesis, ambidextrous hands and stereo Figure 2

vision[2]. The robot walks smoothly and does cute dances for the public, it ASIMO

Honda's

can also walk up stairs and reports of her successfully running are

undocumented though believable.

Sony’s SDR-4X is 50cm tall, weighs 6.5kg, and uses a pair of 64-bit processors, it also
incorporates stereo vision, speech recognition and speech synthesis to a purchasable
product[3]. The robot’s adaptability to disturbances is very impressive as it negotiates a

rough terrain.

Notable humanoid robots built for research include Waseda’a Wabian [4], and Gifu
Industries' Association’s NAGARA, both in Japan.

NAGARA, seen here in Figure 3, is only 83cm tall and weighs 15kg — considerably
smaller than GuRoo. Like GuRoo, it utilises distributed control to coordinate its joints —
which constitute an impressive 28 degrees of freedom. NAGARA contains two main
CPUs (one dedicated to walking) and several motor controllers. These communicate with
IEEE 1394. NAGARA won the Best Humanoid award at RoboCup 2002, having taken

out the humanoid walk and penalty shoot competitions in its class.

Figure 3 - NAGARA humanoid - Winner of Best Humanoid award at RoboCup 2002.
Seen here with its elated crew from Gifu Industries’ Association.

10
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WABIAN (WAseda Blpedal humANoid) is an especially large humanoid — standing at
166 cm, it weighs 107kg. Despite this, its 43 motors (15 AC) can propel the beast at up to

0.21m/s. WABIAN has 51 degrees of freedom, 43 of which are active.

Waseda University has been instrumental in the development of humanoid

robotics technology. The range and success of the humanoid projects
conducted at the university is impressive. From the development of musical
humanoids to artificial joint activators based on pneumatically controlled

pouches, their developments have been ongoing since 1970[4]

MIT’s leg lab also have a large scale bi-ped, M2, an exercise in design and
manufacturing rather than gait generation (as is the GuRoo at this point). H7

from the University of Tokyo is one of the most stable, well

University of
Tokyo's H7

controlled large scale humanoids.[5]

In terms of the control methodologies, many of the very small

Figure 4 - M2
biped form MIT

robots running low power motors are able to have single motor

controllers to actuate the machines.

’ " | systems are not known specifically.

1.4- Development so Far — GuRoo

The project at hand, as mentioned previously, is in its second year of
development. Last years achievements were the finalisation of a mechanical
design, the adaptation of an existing simulator program to calculate relevant
forces, and of course simulate, the walking gaits developed. The high level
control and gait generation to make the GuRoo walk were also done so some
extent, as were the hardware to control the joints. Vision has been developed for
him, though not integrated onto the robot. Over the course of this year the GuRoo
was mechanically built, the joint controllers were completed and the software was
tested and developed in a real environment. Vision has still not been

incorporated.

Of those of similar size to GuRoo,
Waseda’s WABIAN, MIT’s M2, and The University of Tokyo’s H7 all
have distributed control systems, though the drive systems being controlled

vary from GuRoo’s DC motors. The details of the methods used for these

Figure 6 - GuRoo-
hanging on his
stand

11
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1.5- Other team members

Relevant work by others on GuRoo, both in 2001 and 2002, is outlined in the following

undergraduate theses, available from the University of Queensland:

Author Title Year

Jarad Stirzaker | Design of DC Motor Controllers for a Humanoid Robot 2001

Adam Drury Gait Generation & Control Algorithms for a Humanoid { 2002

Robot
Ian Marshall Active Balance Control for a Humanoid Robot 2002
Tim Design and Implementation of Small Scale Joint | 2001
Cartwright Controllers for a Humanoid Robot
Damien Kee Design and Simulation of a Humanoid Drive System 2001

Mark Wagstaff | Mechanical Design and Internal Sensors for a Humanoid 2001

There are other papers to do with the GuRoo project, however they are not

directly relevant to the topic of this thesis.
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1.6- Chapter Outline

This thesis is broken into two distinct parts, though the chapter numbering continues

through the document.

Part A is a discussion of the boards designed by Stirzaker and Cartwright in 2001. The
hardware design in Chapter 2 is completely their work, though this section also
investigates the requirements and background theory of the components of the design.
The software to control these boards is the topic of Chapter 3, the skeletons of which
were done by Stirzaker. The code was completed as part of this thesis, to have the boards
working by the RoboCup competition in July 2002. Chapter 4 is a brief chapter about
board placement and layout. A synopsis of the entire control system design forms
Chapter 5, a discussion of what was effective and what wasn’t, as well as what is

necessary to improve.

Part B is about the new design. From what was learnt in first semester, the specifications
of a new design were determined, and a new revision of the system made. The hardware
design is complete as per Chapter 6, and the software that needs to be written is detailed

in Chapter 7. Chapter 8 talks about the layout and positioning of the new boards.

Chapter 9 is a conclusion of the work done this year, and its effectiveness, as well as a

summary of the new design

Chapter 10 outlines where this project could go in the future, and specifies work yet to be

completed on the new design

13



ANDREW HOOD

PART A

BRINGING THE INCOMPLETE 2001
BOARDS TO FULL FUNCTIONALITY BY
THE ROBOCUP 2002 COMPETITION IN
JULY, AND A COMPLETE REVIEW OF
THAT DESIGN.

14
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2- BREAKING UP THE DESIGN - HARDWARE

2.1- Introduction

This chapter describes the distributed control hardware system of the GuRoo. Both
requirements of the system and associated subsystems are discussed, and the design
decisions made by Stirzaker[6] and Cartwright[7]. Where appropriate, background

theory of a subsystem is explained.

The manner in which the Stirzaker and Cartwright decided to control the joints on the
robot was based on the successful implementation of a distributed control system for a
Puma robotic arm by Kennedy in 1999 [8]. The design was a step away from the
conventional control of that arm, which involves a central box containing analogue and
digital control hardware, power equipment and ran sensor and motor power cables to
each joint individually. In his distributed control system a central processor exists,
though it only generates the movements required by the joints, which it broadcasts onto a
data bus. All low-level control is done on local controller boards, which receive data
from the bus and actuate those motors connected to it. Such a system greatly reduces
wiring harness complexity and requires less powerful processors (though more are
needed) to achieve the same accuracy. It also allows modularisation of the intelligence
and the control into separate components such that either can be upgraded without

affecting the other, as this thesis does indeed do.

The mechanical structure of the humanoid seems an ideal place for such a system, as the
majority of ‘free’ space is close to the motors (in his legs), and not in a central location
(chest or head). It was decided that 5 boards would do the control for 3 DC motors each
in the lower body of GuRoo. Another single board would control the low-power servo
motors in the head and arms. This seemed a good compromise between saving the
limited space available and the loss of speed and thus resolution by controlling multiple
motors. The rest of this thesis details the design of the DC motor boards in the lower
body. The servo motor controller is practically identical, with all motor drive circuitry

replaced by a logic tri-state buffer.

The communication standard used is CAN (Controller Area Network) [9]. Developed by
Bosch GmbH for the automotive industry, it is a multi-master system, with software

identifiable nodes. A simple 2-wire bus is all that is necessary at the physical layer, the

15



ANDREW HOOD

standard includes sophisticated error checking and is capable of data rates greater than
1 Mbps.

The controller boards themselves feature a 16-bit DSP (Digital Signal Processor) from
Texas Instruments as the onboard processor. This chip contains a CAN module, as well
as a range of other features reducing the number of peripherals needed. Some that are
necessary include current and motor position sensing, motor drive circuitry, motor
protection, and some interfacing chips to the CAN and SCI busses. The board is powered
by two supply rails, a 42V unregulated rail which directly powers the motors, and a 7.2V
rail which is regulated to 5V on each board and powers all digital circuitry. All of these

components of the boards are described in more detail below.

Power
Supply & +~——
Regulation

Motor Drive
[y |

Figure 7-block diagram of controller boards

2.2- DSP

The primary requirement for the processing unit on the Joint Controller was that it must
be able to cycle a PI (proportional + integral) control algorithm fast enough to maintain
‘good’ control of the motor. This limit of what was ‘good’ was to be based on previous

experiments done.

The benchmark was set by Kennedy on the Puma arm. Kennedy chose a 16-bit DSP with
an Event Manager containing PWM generation and quadrature decoding done outside the

16
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core of the processor. The encoders in that system had a resolution of 1000 counts per
revolution of the motors shaft, which through the 68:1 gearbox resulted in
0.0053°revolution of the drive shaft. The motors chosen for this robot [10] come with
encoders with 2000 counts on the drive shaft and a 156:1 ratio gearbox, and so
0.00115%rev of resolution. The position therefore of any joint in this system is 4.5 times
that of the Puma Arm. The precision obtained in that experiment and more particularly
Lillywhite’s in 2000 [11] was found to be completely acceptable, and the joints moved at
much higher speeds than the GuRoo’s ever will. The control algorithm on the Puma arm
looped at 20kHz (the same rate as the PWM frequency) though it only controlled 1
motor. It was determined that such precision would not be necessary on the GuRoo. The
higher precision of the motor encoders meant that a control loop of 2kHz would be
acceptable on a similar processing core (16-bit encoder variables, 16-bit PWM resolution,
and low overhead of PWM generation or feedback). It was considered that any processor
that could operate with such a refresh rate would be able to sufficiently control the

GuRo0’s joints.

Other necessary functions of the processor are:
e Analogue to Digital converter
e In-circuit programming capability

e CAN interface module

An 8-bit processor was considered too slow to complete this task. While many exist
which have in-chip PWM functions and CAN capability, none are fast enough to consider

for the resolution specified.

As mentioned, a great advantage of the distributed control system is that low-end
processors can be used and networked to achieve good control. For that reason, no high-

end processors (such as those found in modern PC’s) were considered seriously.

Which left 16-bit and 32-bit options, of which there are many designs dedicated to motor
control. Of the most popular of these — produced by TI, Motorola, and Analog Devices —
Stirzaker and Cartwright specified the Motorola 68376 as the most favourable choice in
terms of functionality. That chip features 32-bit architecture with onboard TPU (Time
Processing Unit) with which 16 pins can be individually programmed to use its capture
register (to decode quadrature pulses) or compare register (for PWM generation). The

68376 also has the desired ADC and communication modules. This choice of processor

17
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would have been able to implement the control loop at speeds well beyond the

specifications decided upon.

Due to cost and lack of availability, the Motorola 68376 was decided against. Instead,
the Texas Instruments TMS320F243 was chosen. It is a 16-bit processor and part of the
same family as the chip used on the PUMA arm controller. The difference between the
F241 (on the PUMA arm) and the F243 (for the GuRoo) is the inclusion of an external
memory interface. This was necessary in order to interface to the external quadrature
decoders. The chip contains the following important features:
e 20 MIPS
e CAN module built in
e Serial Communications Interface (SCI) module
e An Event manager which has:
o 2 x general purpose timers
o 3 x capture units, 2 with Quadrature decoding
o 3 x 16 bit full compare units with programmable deadband
e External Memory Interface
e 8x10bit ADC
See Appendix D for further detail.

The event manager which can generate the PWM waveforms and decode a motor rotation

was a decisive factor in choosing this DSP.

2.3- Power

2.3.1-The Batteries

There are two power rails supplied to the DC motor boards. These come directly
from the two types of batteries used. Firstly, there are large red packs of NiMH cells
with a total 42V out, a legacy o the UQ SunShark team. These are connected in
parallel to power the motors. There is space in the GuRoo’s torso to accommodate 4
of these Battery packs, though only 2 are necessary to supply the power for the period
of competition required at the moment, and the saving of 2kg of weight is beneficial.

Also are two 7.2 V green RC car batteries. One supplies the power for all digital

18
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chips on all boards. The other supplies the power for the low power servo motors in

the GuRoo’s upper body.

2.3.2-Power distribution board

All batteries go through a PCB from which all power gets distributed to the boards.
The intended setup, and the topic of an undergraduate thesis last year [12] was a
converter to minimise losses caused by having a group of mismatched batteries
connected in parallel. This intension was never realized, the thesis was inconclusive.
The solution was a simple board, with diodes only letting current flow out of them,
and 10A fuses running to each output, ensuring that they don’t draw too much

current.

2.3.3-Local Regulation and protection

The 42V rail is not regulated, it directly powers the high side of the H-bridges. There
are fuses on each motor to protect them individually from drawing too much current.

The 7.2V rail going to each board is linearly regulated to 5V for all logic chips.

2.3.4-Power Consumption

The DC motor boards each draw about 300mA at 5V. The DC motors are all rated to
4A peak current, 2A continuous consumption, although a typical value is about 1A

for the most loaded motors

2.4- H-bridge
2.4.1-Why is an H-bridge necessary? Ao
The only real option for motor drive circuitry is a full Generating Driving
. . . Backwards Forward
bridge switch-mode class D amplifier. The motor Vo
power stage must be able to operate in all 4 quadrants >
- 1 1 Driving Generating
of the current-voltage plane, Figure 8, and it must have S e

Figure 8-current-voltage plane for h-
bridge
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a high power output that is precisely controllable. Linear DACs are available,

though they are inefficient and bulky.

An H-bridge configuration consists of two legs of two switches in series, from power

to ground, with the motor’s terminals branching from between the switches (Figure

9). The output (to the motor) is a voltage output which can be controlled in

magnitude as well as polarity. Diodes are put in anti-parallel with each switch so that

current can constantly flow in the motor, and the power delivered to

the motor is directly proportional the voltage applied to it.[13]

The best switches for this type of circuit are Metal Oxide
Semiconductor Field Effect Transistors (MOSFETS) used in their
saturation region. They turn on and off very quickly and can

comfortably handle the power required here.
2.4.2-Switching techniques

Of course it should never occur that both high and low switches on

the same leg are on. The four states seen below are all practical

VDD

o
o

Figure 9-simple H-bridge

states for the switches to be in. configuration
1 ‘ T [ ‘ ! ‘ T
| | \ﬁ: ) \ N
- % — =
\ \ i
| | } N

1

.”}7

Figure 13 - state 1 —
left high and low

Figure 12 - state 2 —
left high and right

Figure 11 - state 3 —
left low and right

right on — positive high on — motor high on — negative
voltage applied shorted (braked) on voltage applied
across motor high side across motor

Figure 10 - state 4 —
left low and right

low on — motor
shorted (braked) on
low side.
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It is also possible to turn off both switches on one leg. Dubbed ‘enable
switching,” this method destroys the linear relationships that otherwise exist in

motor control by taking the motor out of constant conduction mode.

The two most common techniques for accurately controlling the H-bridge are
called bi-polar and uni-polar switching, there is a third method discussed called

one-phase  chopping, it is a variation of wunipolar switching.

Bi-polar switching is the easiest to implement (Figure 14), all that is necessary is a

control signal and an inverter. State 1 is invoked for the positive time of the duty cycle,

and State 3 for the rest of the period. In this method, neither state 2, nor state 4 are ever

used.

In order to achieve an effective zero voltage applied across the motor, the

controller switches with a 50% duty ratio. To drive the motor forward then, the ratio of

on time is increased, and vice versa.

Forward
Voltage

Reverse
Voltage

v T

N A N J

N Y N

Driving Forward Stopped Driving Backward

Figure 14 - bipolar switching voltage waveforms

Time

21




ANDREW HOOD

Unipolar switching makes full use of all 4 states above (Figure 15). On one leg of the
h-bridge, one switch is kept closed. The other leg then switches between its high and
low side with a duty ratio directly proportional to the power to be delivered to the
motor. To change the direction of the voltage applied, legs swap roles: the one which
was switching now holds one FET on, and the other side starts switching. To
continue switching like this is called one-phase chopping, not true unipolar switching,
it is the same concept, though slightly less efficient. In one-phase chopping, there is
always a MOSFET which is not being used. True unipolar switching involves
regularly swapping the legs’ roles, while still keeping the same potential across the
motor. For example, if the right low switch were held on, and the left leg switched
with duty ratio X, then this would regularly be swapped to the top left switch being
on, and the right leg switched with ratio 1-X.

Forward
Voltage

v

\ ~ /\_Y_/\ ~ /

Driving Forward Stopped Driving Backward

Figure 15 - unipolar switching voltage waveforms

}_ T _{ Time
Reverse
Voltage
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2.4.3-Methods of Implementation

As outlined in [8] and[6], the choice of H-bridge design involves selecting one of:

e Integrated H-bridge package

e Semi-discrete solution

e Fully discrete design

Integrated Semi-Discrete Fully discrete
e Choosing e Choosing MOSFETS e Choosing
appropriate chip e Choosing MOSFET | MOSFETS
e Connecting driver chip e Designing driver
correctly e Laying out  circuitry | circuitry
2 conscientiously to optimise | ® Laying out all
% efficiency and safety circuitry  efficiently
E and correctly
e Very easy e More efficient FETS can | ¢ Complete control
e Very small | be chosen of all parts of the
. | footprint required | ® Driver chips are common | circuit
g‘) and cheap e Most efficient
§ e Much greater control of | solution if properly
ECS switches designed
e Often less | ® Requires more board | e Most space
efficient than | space than integrated | required
other solutions solution e Entire driving
e Often not able | ¢ More heat-sinking | design required
to handle large | required for individual |e Same as semi-
currents. MOSFETS discrete solution
e Can force Bi-|e Another current sensory
polar  switching | circuit is needed (see
g" method (described | section H-bridge design)
§ in section
2| Switching
éJ methods)
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With effective MOSFET driver chips so cheaply and readily available, the fully

discrete option need not be considered for this application.

Stirzaker chose the ST 16203 fully integrated h-bridge solution for the first generation
of control boards for the GuRoo. This was because of a predicted lack of space
problem. The 16203s can handle up to 4A continuous current, so they just meet
specifications required, and they come in a very convenient 11 pin multi-watt
package which requires minimal board space, and allows for easy heat-sinking. The
chips were mounted along one width of the controller board, and it was initially
planned to use the GuRoo’s frame itself to dissipate wasted energy (this never
eventuated, other heat-sinks were built and mounted). Heat-sinks were required as
the losses in the H-bridge were quite high (See section 2.4.4 Power Loss).

Because of the design of this package as well, bipolar switching was required.
2.4.4- Power loss

While MOSFETs are very power efficient, there exists loss in both while the switch is
on (conducting), and during switching.

Switching losses can be calculated, defined as:

Pgy, = WC((m) + WC(()jf) = 12 Vid pu /s (tC(on) + tC(off))

where:

Py, = Switching power loss

V., =inputvoltage

1, = current flowing through MOSFET

[, = switching frequency

Loqony = time for switchto fully open(V s has dropped to lowest value)
Loy = time for switchto fully close (1

out

has dropped to zero)

Conduction losses are simply

P, =1"R*2

Where:

P, = Conduction power loss

I =Current through H — Bridge

R = On resistance of MOSFET

times 2, the number of MOSFETS conducting at any time
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The power losses in the 16203 are mainly conduction losses, the result of the high Rps
(0.3Q nominal).

These are just the losses in the MOSFETS, there are also losses in the motor itself.
These losses are increased by high current ripple from the driving stage. In fact,
when GuRoo was first powered, the losses through the motor were so high that within

minutes they became too hot to touch.

The power dissipated as heat is found by:

P]{)SS = [2R
where,
P, =the power wasted in the coil of the motor

I =the current ripple
R =the effective impedance of the motor

the current ripple is found using:

-
dT

which, as long as the motor always conducts current (the case here), can be written

p-12
At

where

V = effective voltage across motor
L = the inducta nce of the motor
At=T,, or T, of duty cycle
Al = ripple current amplitude

As mentioned, the motors in the humanoid were dissipating more heat then was safe
for them. Obviously, the impedance of the motor could not be changed, and so the
ripple current needed to be minimised. The voltage across the motor was effectively
fixed. This was about 80V because of the bipolar switching method used. The value
of At could not be reduced past 10us (100kHz), as this was the maximum switching
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speed specified for the 16203 h-bridges. The only thing that could be changed was
the inductance. Extra inductors were purchased at the suggestion of Dr Wyeth,
doubling the motors inductance when in series with it. This halved the current ripple

and the motors ran perfectly cold.
2.4.5-Motor protection

There are two cases that are important to consider when designing motor and
motor drive circuit protection. The first is when the motor is being over driven,
more power is being delivered than the motor’s windings were designed to
handle. The second is driving circuitry failure, in which a MOSFET, or FET
driver begins behaving unexpectedly and could cause damage to the motor or

other circuitry.

The first is compensated for in software. Through the current sensing circuitry
described below, the amount of power being delivered to the motors is monitored.
As the current approaches a dangerous value, the PWM values are limited to limit
current to through the motor. In case this software-implemented safety is for any
reason insufficient, a hardware mechanism is also in place. The !PDPINT pin of
the DSP automatically shuts down all PWM outputs within 12ns of becoming
active (low). It is triggered by any of three comparators NORed, the comparators

have as their inputs the amplified current sense voltages and a tuneable pot.

The second case is harder to catch. The most likely device to fail is a MOSFET,
if its channel is blown open, the switch will be permanently on. Switching the
other FET on the same leg as one which is damaged shorts power to ground, and
will very quickly damage other components, including batteries. The fuse in
series with the power should blow, immediately cutting power. However fuses
can be slow to react, and the sensing mechanisms discussed below can be used for
fast reactions. Sudden changes in current can be handled in software to disable
motor drives (though at the moment they are not) and the hardware interrupt
should act quickly enough to avoid excessive damage to the batteries. However,
given the integrated package of the current H-bridge, the entire device would need

replacing if an internal component fails. Thus far none have.
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2.4.6- Current Sensing

It is important for a motor controller to monitor how much power
is being put into the motor. The information can be used for safety
and component protection (as is the case at the moment), or for
global feedback for efficiency monitoring, or even used to help
efficiently control the motor. A simple and effective way to
measure the current is to place a low-ohmic, high power resistor in

between the lower MOSFETS and ground.

The small voltage across the resistor then is amplified, fed into the
processor’s ADC and appropriately scaled in software to the
current being drawn. With this information, the processor can then
limit the current going through the motor so that the motor is not

always driven at its maximum rating.
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Figure 17 - Motor drive and current sense circuitry on 2001 board design
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The TMS chip chosen has an interrupt pin dedicated to shutting down motor power.

This is ideal for this sort of situation as analogue to digital conversion can be quite

slow. The amplified voltage from the sense resistor is then compared (in the LM2901

comparator) to a voltage set by a potentiometer, and the three results of the

comparator are NORed. If the sense voltage (corresponding to the current through
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the motor) is ever greater than that set by the pot, the !PDPINT interrupt occurs and
shuts down all PWM outputs on the Event manager within 12ns. This feature would

be most useful in the case of an H-bridge failure.
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Figure 18 - tuneable limit for hardware interrupt

2.5- External Decoders

In order to accurately monitor the position of each joints position, HEDS5540
quadrature encoders from HP are attached to the shaft of each motor. These encoders
output 2 square waves, 90 degrees out of phase and an index which occurs once every
revolution. By determining which wave is leading, direction of the motor is

determined, and by counting the pulses, relative position is also gained.

The DSPs event manager includes a quadrature decoding module, however with three
motors per board, two more decoders are required. The HP HCTL2016 was chosen
to do this job. A 16 pin chip, it decodes the 2 pulses into a 16-bit number which it
then places on an 8 bit bus. The high byte of data is accessed by asserting the SEL
pin. The output can be latched by disserting the !OE pin. This chip must have an
external clock to run. The clock has a maximum frequency of 14MHz. As this is
slower than the clock frequency of the TMS chip, a T flip-flop was used to halve the
output clock speed of the DSP.
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The interface to these two decoders is through the external memory bus. The lower
byte of the 16-bit data bus on the TMS connects to the quadrature decoder chip for
motor 2 of each board, and the high byte connects to the chip for motor 3. The SEL
pin is connected to the A0 pin of the external memory address bus, so to access the
high bytes of the counter from the decoder, the TMS chip must read from external
memory address 0x0001. When an external memory is made, the !IS pin is

automatically asserted low, which latches the number in the decoder.

2.6- Networking and Programming Interfaces

There are 3 interfaces from other devices to the TMS DSP on the motor controller
board.

The CAN, through which the boards can talk to each other is very simple. The
transmit and receive of the CAN module in the TMS connects to the transceiver chip,
the PCA82C250 from Philips, which converts the ground referenced signals into a
differential 2 wire bus. There are two 2-pin connectors per board, so that the bus
might be daisy-chained. There is also a 120Q resistor and a jumper in series between
the CANH and CANL pins of the bus, this is to terminate the bus. Only the last board

in the daisy chain will have this jumper shorted.

The SCI module is used to program the DSP, and also help in debugging during
development. The onboard interface is simply an 8 pin header, the transceiver and its

surrounding circuitry were put on a separate board to save space.

The JTAG (IEEE standard 1149.1) header was included on the controller board, as it
was known (from Kennedy’s experiences in 1999) that the serial bootloader on the
TMS chip was frequently corrupted. The TMS chip can be completely programmed
through the JTAGGER, though the peripherals are expensive so usually localised to
one computer. The JTAG interface is simply a 14 pin header with appropriate pins

connected.

2.7- Other Inclusions on 2001 Controller

Limit switches were envisaged to be put on each joint of the GuRoo so that if

confused about where his limbs are, he could never drive two parts of his frame
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against each other and damage himself. The six connectors for these are fed into an

external interrupt. The use of these was never implemented.

Connectors also for temperature sensors on the motors, and pressure sensors on his
feet were included. The pressure sensors run straight into the ADC, while the three
temperature sensors are MUXed and amplified before also getting connected to an
ADC input.

A reset pushbutton is connected to a MAXS811 reset chip, which ensures that the reset

line of the TMS chip is asserted for an appropriate length of time.

Another pushbutton is connected to an external interrupt pin. This was very useful in

debugging.

LEDs indicate power at both the 42V and the 5V rails as well as three connected to
general 10 pins, to help with debugging.
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3- IMPLEMENTATION OF SOFTWARE FOR 2001

BOARD

From the undertaking of this thesis until the Robocup competition in July, all work was
concentrated on bringing the existing boards to a functional state. The boards were
designed by Stirzaker[6] and Cartwright[7] in 2001. The capabilities of the boards was
not known originally, though the design was sound, having been based on Kennedy’s

work[8] in 1999 on the puma arm project.

Much of the software, or skeletons of the software to be written had been done last year.
The focus of the work to be completed before July was to be able to safely run a control
loop. Hardware changes would be unavoidable last resorts to what could not be fixed to
a tolerable level in software. To run a control loop the processor had to be able to read
accurately read the quadrature encoders on each of the three motors, as well as pulse each
of those motors individually to a changing duty ratio. The controller had to be able to
cycle through this loop and update the PWM according to the velocity the motor should
be turning at several hundred times per second. Another requirement, though not
essential for the control loop was the operation of the analogue to digital converter to
read the current flowing through each motor, in order to limit the power delivered to it, to

fail in a graceful manner.

The software that runs on the controller boards for the GuRoo is a PI (Proportional plus
Integral) control loop operating on the velocities of each joint. This is the equivalent of
PD (Proportional plus Derivative) control on the joint’s position, it ensures that the speed
that the motor is going is as close as possible to the desired velocity. For more

information, see [14].

The control loop itself, and the tuning of the gains for each joint was the responsibility of

Drury. The low-level sensor reading and motor actuation was a topic of this thesis.

3.1- Structure

All control software is written to be portable between the robot itself and the simulator
used to test on. boar d1. c contains the actual control loop, and its associated header

files contain the gains associated with each joint. On the robot, boar d1. c is called
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from st ar t up. ¢, which contains the main loop. The main loop begins by initialising
the board by setting the software selectable pins to the appropriate functions, and setting
up the internal registers to perform the operations desired of them. It then runs and loops
the control algorithm. It is the functions in boar dl.c that then call back to
| ow_| evel . ¢, which contains the following methods.

. lowlevel.c
calls control loop
s conol " startup.c

B boardil.c

actual joint position

desired joint position

motor current

_(not used)

3.2- set_pwm

The PWM is setup to operate at 100KHz by setting the T2PR register to 200
(20Mhz/100kHz = 200). This gives the user a range of 200 values to set the duty
ratio. Then it is a simple matter of setting the CMPRXx register associated with each
motor. This was the original implementation of set pwm, it was passed a motor
number and a duty ratio between —100 and +100, which was then scaled between 0
and 200 and the CMPRXx register was set with that.

It was found however, that there was not enough resolution with which to set
individual values of the pwm. The solution to this problem of resolution was to

‘feather’ the pwm values. ‘Feathering’” was a term coined by Dr Wyeth in the spur of

32



ANDREW HOOD

the moment, though assumed by his dutiful undergraduate students to be the correct
word for the concept described below, which was implemented by Adam Drury and

Damien Kee.

The control loop (@250Hz) operates on each desired velocity 400 times before the
desired velocities are refreshed from the CAN bus. In order to get more than 200
values between 0 and 100%, a number between 0 and 216 is passed to set _pw( ),
the bottom 4 bits of the 16-bit number are masked off, and for a proportional number
of the 400 cycles, the CMPRx register is set to a value 1 greater than its base number.
This gives 16 bits more resolution to set _pwn() .

3.3-read_curr

A simple matter of correctly configuring the ADC of the DSP correctly, reading
converted values and appropriately scaling them. A large amount of time was spent
debugging this system before it was found that the VrefHI and VrefLO had been
connected backwards on the board. When this hardware problem was fixed, the

simple conversion and scaling is indeed all that this function did.

While it worked flawlessly in testing, the function gave some very strange results
when used on the actual robot. It was found, though not till after the competition in
July, that these strange results were caused by a flaw in the communication method to

the computer.

Because of these believed inaccurate readings from the ADC, another method was
necessary in order to limit the current delivered to the motors at high load. Dr Wyeth
devised a very clever plan. A limit was set on the maximum PWM value that could
be used to drive the motors based on the battery voltage, maximum safe current, and
back-EMF (based on the current speed of the motor).

PWM LIMIT =IR-K,®

where:

1 = maximum safe current

R = Armature resistance of motor

Ky = back-emf constant

w = measured angular velocity of the motor

33



ANDREW HOOD

3.4-read_enc

This function simply gets passed an int relating to a motor number, it then reads in the
16-bit numbers of the three quad decoders (one internal and two external) and returns
the position of the motor number passed to it. Two intermediate variables are used,
into which the 2 external memory reads are loaded (High data bytes when SEL/AO is
asserted, and low data bytes when de-asserted). The data is then split back up and re-
arranged back into two 16-bit numbers relating to each motor. A case statement then

returns the appropriate number to the calling method.

HCTL2016 EXT DATA qdec_ext

decoder chins variables in DSP variables in DSP

SEL asserted

SEL de-asserted

SEL asserted

SEL de-asserted

There was a considerable amount of trouble experienced when trying to access the
external memory bus. While the assembler instructions were known, the compiler
had an indirect syntax to address the port on this processor, and ignored in-line

assembler calls in the C code.

These external memory reads are most certainly the bottleneck of the processor’s
code execution. While they obviously cannot be eliminated, the code can be further

optimized.

A more efficient algorithm was written and tested — though later lost due to an
unwittingly reformatted computer — which significantly reduced the delays inherent in
the external memory reads. This algorithm eliminated the redundant memory
accesses that occur every time the function is called. Read_enc() became a simple



ANDREW HOOD

case statement returning the now global variables gdec_ext 2, qdec_ext 3, and
of course the timer counter associated with the internal decoder. A new function was
created which read the data from the memory bus in, and stored them in global
variables, this had to be run before r ead_enc() .

The new setup reduced the bottleneck by nearly 2/3ds. Rather than being limited to a
maximum speed of 700Hz (actually running at 250Hz), the control loop could now

refresh at speeds up to 1.5kHz.

The new revision, as described, is a very simple alteration to the existing code. The
control gains were never re-tuned to the new speed because of lack of necessity.
There was little point in re-writing the method after it was lost, as all work was
concentrated on the hardware re-design, which would not require external memory

accCess.
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4- BOARD PLACEMENT AND LAYOUT

4.1- Board locations

e The current design has the 6 controller boards distributed as
follows:

e 2 X 1 board in each shin controlling both ankle joints and knee
joint

e 2 X 1 board in each thigh controlling all three hip joints

e 1 board in the stomach controlling all three waist joints

e 1 board in the back controlling all 8 servo motors
4.2- Wiring

e The wiring harness consists of:
e A pair of 42V power cables running to each board
e A pair of 7.2V power cables running to each board

e A small CAN pair daisy-chained from board to board

Figure 19-Controller Board
locations

e Short cables running from each board to the motor terminals and encoder outputs

4.3- Board Layout

The board layout was simple, with power
electronics along the left side of Figure 20, the h-
bridge packages along the edge of the board, for
heat-sinking. Digital circuitry is on the right side
of the board. 7.2V power comes into the bottom

right of the board, and the same connector type | Figure 20-2001 board populated

delivers power to each motor on the left. The

large, black connector in the center of the board is 42V in. The encoder and CAN
headers are at the top of the board, and SCI and JTAG headers on the right.
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5- RESULTS AND SYNOPSIS OF OLD SYSTEM

5.1- GuRoO’s success

By the beginning of April 2002, the 2001 design of the joint controllers was functional.
The control and low-level software had been written and the hardware modification for
the ADC had been discovered. By the end of April, all boards had been built,
programmed and tested, the GuRoo took his first steps. In

June, GuRoo went to RoboCup 2002 to compete in the first
humanoid league competition for RoboCup. Unfortunately, he
did not win. He placed 7" out of 10 in both the walking
competition and the freestyle — in which he stood on one leg
and waved to the crowd. Those robots that rated higher were
all smaller machines, and the focus of development on them
was walking stability, something that was a two-week rush job
on this project. GuRoo had some problems in Japan, the
source of which was the USB to CAN interface box which had
been bought (this has since been fixed by replacing USB with
SCI and using a controller board as the interface). The joint

controllers worked well.

5.2- Board Design

coiming towards
photographer

The fundamental idea behind this control system — local

Figure 21-GuRoo, midstep,

the

controller boards distributed throughout the robot, communicating on a network — worked
very well. The network protocol chosen too — CAN — was very successful. The

component of the system that required re-working was the actual controller boards.

The control loop was not able to operate at its intended speed. Rather than the 2kHz
expected, the control algorithm — which took 1.28ms to execute — was given 4ms (so
@250Hz) in which to do so. This allowed room for additional, possibly time-consuming

functions to be included (such as serial feedback to a computer).

The feathering function was also a waste of processing time, if this could be eliminated —
while maintaining the PWM resolution — the control loop could run much faster.
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Apart from the fact that it was not capable of running at the desired speed and it required
a slight hardware modification, the 2001 design of the controller board functioned as it

was designed to. The joint control was adequate, and the robot was capable of walking.

There exists slackness in the control loop still: this has to do both with the control
algorithm (tuning of gains and lack of full PID) and the speed at which the control runs.
However, it was discovered that this ‘soft’ control was in fact fundamental in the success
of the gait implementation on the robot (see paper in appendix E). The control at the time
of writing operates on the desired velocities of each joint compared to the actual
velocities, with no consideration of efficiency of motion. This is somewhat crude
control, a much better solution would be to operate on both the velocities and the power
used driving the motors. In order to do that, more processing power is required. Whether
that extra power be used to increase the speed of the control loop, or to do extra current

sensing and related calculations is for future generations of GuRoo developers to decide.

The bulky heatsinks and additional high-current inductors on the motor drive circuitry
were an unexpected, though necessary addition to the robot’s weight. The efficiency of
this system was a large concern and was to be addressed in the new revision of the

boards.

5.3- Hole in Current Design

A major problem in testing walking gaits on the GuRoo was that the initial position from
which he starts was never set. Each boot-up the power would be applied while on his
stand, after which GuRoo was placed on the ground and each joint was adjusted (by eye)
to a rough starting position. The original plan during the design was to use the
mechanical stops on each joint, either by driving each joint a certain direction slowly
until it found a limit switch, or by folding and twisting the robot to its limits before
applying power, then driving back to a set relative position. In fact, this second technique
is currently used on the ankle joints of the robot. However, to contort the entire robot so
that each joint is at a stop is completely impractical, as well as potentially damaging to
the robot. A new system is absolutely essential to the progress of the GuRoo’s

development.
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5.4- Implementation of Design

The positioning of components on the 2001 controller boards was quite poor (Figure 20).
A large amount of space was wasted, despite the fact that the justifications for many
component choices were for a lack of space. There were very few useful test-points, nor
a convenient place on which to clip test-leads onto the ground of the board. The DSP
was difficult to reach on two sides because of the proximity of high profile components.
Also, the motor power headers were not in sequential order, making it easy to connect
motors incorrectly (no major mishaps occurred). The lack of debugging LEDs made

software development difficult sometimes.

The connectors chosen were another problem. Some connectors chosen were only
slightly smaller than standard IDC headers, though they were considerably harder to find,

difficult to use because of a locking mechanism, and hard to crimp.

The wiring harness was quite large, requiring two pairs of separate power wires for each
board.

Figure 22 - 2001 board mounted in Left Thigh
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PART B

CREATING A NEW DESIGN OF THE
CONTROLLER HARDWARE, AND A
DISCUSSION OF THE SOFTWARE TO BE
WRITTEN TO OPERATE IT.
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6- NEW DESIGN

6.1- Design Specifications

In order to correct the faults mentioned previously, a new design of controller boards
was necessary. The major issues which needed addressing were:
e The control loop must be able to run faster — at least at the original
specification of 2kHz
e A mechanism for accurately aligning each joint must be put in place
e The supply of the motor’s power should be made more efficient — efficient

enough to do away with the bulky heat-sinks currently required

In order to accomplish these tasks, many options were considered. The second two
problems (alignment and motor power supply) could be tackled individually, they
both have standard interfaces to any sort of processor. Different processor
arrangements could change the arrangement of the entire system though, so this was
decided first.

6.2- CPU

As mentioned, the major bottleneck of the system in terms of speed is the external
memory accesses require by the DSP at the moment.

e

A simple upgrade of processor (to TI’s next generation of 40MHz chips, or to
Motorola’s or AD’s comparable chips) was a possibility, to keep the same
configuration, but cycle through instructions faster. This implementation would have
met specifications (though hardly exceeded them), in terms of speed, however the
bottle neck would remain on the external memory bus. Also, if any more processing
power were ever desired of the controller (for more complex control, or to offload

some intelligence processing onto these boards), the power would not be available.

A novel idea was to step away from a sequential processor to run the control loop.
Programming an FPGA or CPLD using VHDL to decode the quad encoded waves,
calculate errors and implement PWM cycles would be a very viable option. The

operation of logic devices like an FPGA is very fast as many calculations are
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performed in parallel. Such a system is theoretically infinitely expandable to control
many motors with large enough gate arrays, and so a good generic design could be
used in a number of distributed control environments. A sequential processor would
still be required to do the analogue to digital conversion and interpret CAN messages,
though a much simpler, cheaper chip could be used. This design was not chosen,
mostly because of lack of time and necessity. Unless the distributed control system is
abandoned (at this point, there is no point) the joint controllers will never have to
operate more than 3 motors, so expandability was not a requirement, nor is the

increase in speed justifiable in terms of advantages.

Another option then is to choose a processor with enough dedicated quad decoders
such that an external memory interface is not necessary. The Motorola 68376 chosen
by Stirzaker and Cartwright is an option, though for the same reasons of cost and
availability that it was rejected last year, it was not chosen. Instead, 16-bit DSPs with
dedicated quad decoders were focused upon. Of these, there are none that have 3
decoders, many from Motorola and TI have two. To keep the same arrangement of
controller boards incorporating these chips, the third quad encoder input could have
been connected to 2 external interrupt pins, and the decoding done in an interrupt
routine. However this would not have eliminated the overhead of quad decoding, and
some doubts were raised about the processors ability to do this decoding without
compromising its ability to receive all CAN messages and operate the control loop.
The decision then to only operate two motors off of the local control boards was

made.

Of those available, the Motorola DSP56F8XX family, the Motorola HCI12
microcontrollers and the TI TMS320LF24XX series DSPs made the shortlist. While
the Motorola chips were faster and had more flash available, the TI chip was
preferred for its higher RAM capacity, easy availability and the design experience
with them.

The TMS320LF2406a’s full specifications are given in appendices D and F, however
some of the most important improvements from the F243 are:

e 40 MIPS operation

e low power 3.3V design

e Same core design, thus fully code compatible with TMS320F243

e 2.5k of 16-bit words of RAM
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e 32k of 16-bit words of flash memory
e boot ROM

e 2 event manager modules

100Ch
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Class D motor power stage, it was
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necessary to eliminate power loss both
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switching losses do play a part. The easiest way to
oo . . L. Figure 23-Semi discrete h-
reduce switching losses is by reducing the switching | ,,;40e design

frequency. Indeed for software reasons explained
later, this would be beneficial in terms of code efficiency. The single disadvantage of
reducing switching frequency is if it were to affect the ripple current and thus power

loss in the motor windings.

In order to solve the problems of loss through the motors, the ripple current must be

decreased.

The solution to all of these improvements is to move from bi-polar switching to uni-
polar or a similar method (why it isn’t pure unipolar is explained in section 2.4.3
Current sense) and to discard the integrated h-bridge package
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6.3.1-MOSFET selection

The main requirement of the MOSFET to be chosen were that it have a very low Rps, and
be able to handle up to 60V impulses, and avalanche current. It should also have a
method of being heat-sunk onto the PCB, to dissipate what energy is wasted back into the
board.

The IRFI1Z44VSs a NMOS field effect transistor was chosen from International Rectifier.
It has an ON resistance (Rps) of 0.0165Q, and a reverse breakdown voltage (Vpss) of

60V. It comes in a convenient D2Pak package, which can dissipate 2W of energy.

The matching PMOS transistors for this choice had a considerably higher Rpg, it was then
desirable (as previous designs indicated) to use NMOS transistors on both the high and
low sides of the h-bridge. A MOSFET driver chip was then necessary to driver the high
side of the h-bridge.

6.3.2-MOSFET driver selection

NMOS transistors as switches turn on when a positive voltage is applied from the gate to
the source of the FET. For the FETs chosen, the threshold of switching is 4V, with a
maximum limit of 20V. In order to apply this positive voltage to the high side of the h-
bridge, a driver chip provides this bootstrap differential. Often the chips come with
additional functionality such as internal inverters and dead-time generators so that only

two signals are required (right and left legs) and shoot-through along a leg cannot occur.

The driver chip should be able provide a high enough bootstrap voltage for the FETs
chosen, as well as able to control each leg of the bridge independently. It needs to be
able to supply enough current to charge the G-S capacitance of the FET at switching
frequencies up to 100kHz. No internal inverters are necessary, as the DSP has
complementary outputs on its PWM pins, though they may aid in PCB routing, so they
are desirable. Nor is dead-band generation necessary as the DSP can do it.

There were three readily available sources of these driver chips. ST (SGS-Thomson),
Intersil(previously Harris), and IR (International Rectifier). The majority of these were
either built for 20V or 600V systems. Many of those for 600V were appropriate for this

situation.
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All of those from ST were designed for 5V systems, and required 3.6V as a minimum
High Level Input Voltage. They would have required external interface circuitry and
were not significantly better than the other options to consider. IR have some very nice
small package options, the IR2104S {IR datasheet} in particular. They require very little
external circuitry. An 8 pin SOIC packages contains a half bridge (so two would be
required per h-bridge) with internal inverter, internal dead-band, and a shutdown pin.
Unfortunately, this choice could only source 130mA, which at 100kHz would be only
just adequate to drive the gate of the FETs at 100kHz.

The best option for the MOSFET driver was the HIP4081 by Intersil {hip chip data
sheet}. The same chip as used by Kennedy on the Puma arm, it is ideal for Class D
amplifiers like this one. It accepts all 4 signals (no internal inverters) though it does have
a user settable dead-band. It accepts 3.3V logic signals and is more than capable of
driving the MOSFET gates. It also has a disable pin which can be used to float the
motors, to move them manually while power is still applied to the robot. Its only

disadvantage is the size it requires, both IC footprint and external circuitry requirements.
6.3.3-Current sensing and Motor Protection

The mechanisms in place for motor protection were deemed sufficient. No dangerous
case could be thought of which the old design could not handle. As long as the
potentiometer to set the level of !PDPINT interrupt is tuned, the batteries, motors and
MOSFETs should be safe.

Setup

Current sensing in a semi discrete h-bridge is somewhat more convoluted than the
previous design. Whereas previously current always flowed through the h-bridge from
top to bottom, the unipolar switching method to be employed allows current to
recirculate. When the motor is ‘shorted’ (either both top and both bottom switches are
on) the current does not flow out through ground, instead, the current stored in the motor
coil loops back through these switches. Therefore the current in each leg is sensed
individually. To interpret the power drawn, the current through each leg subtracted from
each other. The polarity of that number indicates current direction.
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Note that only current sense circuitry is included on the bottom half of the h-

bridge. In order to accurately measure power consumption, true unipolar
switching cannot be used. State 2 in section 2.4.2 Switching Techniques will not
register any current being drawn from the sensors. This does not matter in terms
of safety to the motor and circuitry, as that state only occurs briefly and is not
dangerous, and any failure will still be recorded. However the use of torque
control to efficiently control the motors would be affected. If future development
on GuRoo were to include torque control, only one-phase chopping (discussed in
section 2.4.2switching Techniques) could be used. This is not a bad thing — thus
no high-side sensing circuitry — but if a motor were to always be driving in one

direction, one FET would be unused.

Component Selection
The circuitry itself involves: a MAX4094 op-amp to scale the voltages read from
the sense resistor for the ADC and a LM339 comparator with a tuneable

potentiometer to set a current threshold.

The MAX4094 was chosen for the following features, in order of consideration:
e Ability to be powered from a single 3.3V rail
e Low offset voltage — 1.4mV
e Rail to Rail output voltages
e Low input voltage noise — 12nV/rt.Hz

e Low supply current — 660nA
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The 3.3V rail was chosen to power the amplifier. While the 12V rail was
available, many cheap op-amps can be supplied by a single low voltage rail and as
long as they have rail-to-rail outputs, are fine for this application. The low offset
voltage was important because if it were too large it could distort the result of the
low voltages being amplified. Factors such as high slew rate were not mandatory
as it would only be beneficial in the case of a catastrophic failure of a MOSFET,
when power will be short circuited to ground, the fuse is the only protection of
this case. There are many pin-compatible op-amps with the MAX4094, if a

cheaper or more effective alternative is found, it can always replace this choice.

The comparator, the LM339 was chosen primarily for its open collector output.
Other features desired were:

e 3.3V operation

e low propagation delay

e Jow offset voltage

e low power consumption
The open-collector output of the comparator was important to eliminate the logic

OR gate necessary on last year’s design.
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Figure 24- internal diagram of LM339 comparator, note the open collector output

The two comparators are ORed by tying their outputs together, the open-collector
output with a pull-up resistors ensures that power and ground are not shorted

when either comparator becomes active.

The open-collector output comparators have a much higher propagation delay
(500ns versus 4.5ns) however it was calculated that any delay under lus was
acceptable. Given the slew rate of the op amp, the delay inherent in the DSP, and
the 500ns delay through this comparator, the current would be able to rise up to
0.14A above the threshold set by the pot. This is well below anything damaging

to the batteries or other drive circuitry.

Discrete Device Calculations

The sense resistors should have as large a value as possible, though still able to
handle the power flowing through them. 1 Watt resistors are readily available
with a large range of low-ohmic values. Kennedy[8] used two 0.047 Q resistors
in series to have a large resistance and high power capability, as he was unsure of
the average power through the PUMA’s motors, and was worried that the resistors

might heat up considerably during normal operation. Knowing a rough average
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current of 1A for the most strained motors in this system, any ohmic value which
can pass the maximum current of 4Amps should keep sufficiently cool at normal
operation. A 0.068Q, 1W resistor was chosen.

The low pass filter between the sense resistor and the op amp is to ensure that
noise associated with the MOSFET switching is not measured. As it is possible
that in future, the PWM frequency may be as low as 20kHz, the cutoff should be
set at about 10kHz. The break frequency is defined by f, = 3RC ;C , choosing the
V7
common value of 100pF for the capacitor and solving for R gives a good high
value of 150k, this high impedance will help block high frequency current
flowing out of the through the capacitor.

non-inverting

U7C

amplifier Q6
MOSTFET
R54

Ly 150K

1001)F| Low Pass Filter |

sense
resistor

The op-amps scale the voltage across this small resistor to values between 0 and

3.3V. The voltage across the 0.068Q resistor with 4A passing through it is

calculated by:
V=I*R

V' =4%0.068
V=0.272

Scaling this to 3.3V requires a gain of ~12.
The resistor values of the amplifier then are calculated by:
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input is connected to the scaled voltage from the op-amp. When this value is
greater than the value on the swiper of the pot, the output of the comparator drops
to OV, and the !PDPINT interrupt is triggered.

6.4- Power

6.4.1- Requirements

The new chosen DSP requires a 3.3V power supply for both the core and the I/O
of the chip. The MOSFET driver chip, the hip4081 requires a positive rail
between 10 and 20V, nominally 12.

6.4.2- Possible Solutions

Adopting the existing system, and linearly regulating from 7.2V to the now
required 3.3V would be a large waste of power.

72-33=39

3.9V * 0.5A (conceivable current drawn by boards) = 1.95W wasted.

This is considerable waste of power, and a more efficient solution was sought.
The power distribution board in the robot’s back could have been modified to

regulate power to these fixed voltage levels. The wires running from that board to

each joint controller would have been subject to a considerable amount of noise
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from the motors, and the inductance in these wires would have generated strange
effects which could have been difficult to filter.

Local SMPS (switch-mode power supply) regulators are readily available, from
many companies, including maxim, national, and linear technologies (do not be
fooled by their name). These converters, in either: buck (regulate down), boost
(step up), or buck-boost (either up or down and inverting) configurations

commonly have power efficiency close to 95%.

With the 7.2V and 42V rails available, two main options were considered as to
where the board’s power could be drawn from. The first would be to keep the
existing arrangement in which all board power is drawn from the 7.2V batteries.
This would involve a buck converter from 7.2V to 3.3V, and a boost to 12V. A
much more elegant solution however was to do away with the 7.2V battery packs,
thereby saving 0.5kg of weight in the GuRoo. Both 12V and 3.3V would be
drawn from the 42V battery packs, as well as the motor power itself. Only 1

power connector is then required, so a smaller board could be made.

To regulate from 42V to 12V and 3.3V, two options were considered. Firstly, a
flyback controller topology with two windings on the output coil could do the job.
Alternatively, two cascaded buck converters could step from 42V to 12V first,
and then from 12V to 3.3V. The second option was favoured as the isolation
offered by the first was not needed and the voltage output precision was easier to

obtain in the cascaded buck converters.

6.4.3- Chosen

Telecom SMPS chips were found to be ideal for this application. Normally used
to supply low-power circuitry off of the 48V telephone lines, they efficiently

regulate down to low values with little output ripple.

The LT1676 SMPS chip was chosen from Linear Technologies. It can supply up
to 700mA, has the output voltage selectable, and has very little output ripple.
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6.4.4-An Amendment — 5V regulator

After nearly the entire 3.3V and 12V system had been designed, it was discovered that

the DSP required a 5V source to power VCCP when programming flash. The pin

required a maximum of 15mA so a small package was chosen to do the job. The Ip2985

comes in a 5-pin SOP-23 package, and can source up to 150maA.

6.5- Alignment sensors

When the robot is initialised (when power is applied) the joint could be in any
position. It is, of course, desirable that absolute position control be achieved.
Indeed, it is essential for any calculations of reverse kinematics (which are not
used now but will be in future projects) that these values be accurate. It was
specified then, as a requirement of the new system that a method of alignment be

devised.

A method that required no additional hardware involved keeping the quadrature
decoders powered at all times. A small battery mounted on each PCB, and
making use of the shutdown feature in the DSP chosen (or similar modes in the

FPGAs considered) could have kept a running count for a period of about three
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days. A simple recharging circuit and a central plug-pack input could have kept a
continuous running count of the joints’ positions. The initialisation of this design
would have involved locking each joint against a mechanical stop and driving a
measured distance to its desired initial placement. While this calibration would
need doing only once when the controller boards were in place, each time they
were re-programmed, or left un powered for more than 3 days, the joint would

need to be reset, such a solution was not practical in a testing environment.

A neat solution would be to mount a potentiometer on each joint. The swiper of
the pot would then be fed into the ADC of the DSP. When starting each time, the
controller would know how far away, and in which direction, each joint is from its
desired initial position. A simple control algorithm could even be run to return
the robot to that position in the most efficient and accurate manner. Great
resolution from the potentiometer need not be essential if the analogue input is
coupled with the index pulse from the quad encoders. This I-pulse occurs once
per revolution of the motor, which equates to 2.3 degrees of revolution on the
drive shaft. Once the analogue reading was within a certain parameter, the
algorithm could drive to the next index pulse. Care would have been necessary to
ensure that the thresholds decided upon did not have the error margin associated
with the pot across an I-pulse, if so, the robots joints could occasionally be out by
2.3 degrees. The fatal problem with this solution was the mounting of the pot.
The physical coupling methods were inconceivable on more than half of the joints

in the lower body.

The favoured solution, though still not easy to build, is an array of three optical
switches for each joint. One switch would be for the alignment of the joint, the

other two would act as limit switches at each extension of the motion.
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The switches would involve an Infra-Red LED shining through a tiny (perhaps
0.5mm) hole on one plane of a joint, and a corresponding hole on the other plane,
through which is a photosensitive device. The holes must be aligned such that no
LED can trigger the wrong sensor. However, for ease of wiring, it may be
desirable to keep the trigger holes close together. It is envisaged that the wiring
will involve a small PCB — drawing power from the controller board — containing
the photodiodes or phototransistors, as well as an amplifier, a comparator and a
logical OR gate. From this board the LEDS would be powered through a resistor
— either each 3mm LED on its own lead, or a PCB of all three SMD LEDs —

depending on each joint’s layout.
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Figure 26 - schematic of propsed opto-switch board

The connection to the controller boards is a 6-pin header including VCC and
ground to power the off-board circuitry. The output of the OR gate is connected
to the XINT2 pin, to trigger an interrupt in the DSP. The individual outputs of the
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comparators are connected to I/O pins so that the interrupt subroutine can
determine which switch triggered it, and the output of the alignment sensor is

connected through an amplifier to an ADC input.

The reason for the use of an on-board amplifier and the ADC is threefold. Firstly,
it solved a problem concerned with a lack of I/O pins. Secondly, much finer
tuning of a threshold can be achieved in the DSP than by tweaking a
potentiometer. Given the possibility of error due to different ambient light
conditions, the use of the index pulse of the quad encoders is used. Thirdly, if a
coupling method for a potentiometer is found, it can be integrated into the design
of this board without any hardware reworking. The amplifier may be biased to

have unity gain, and the potentiometer’s readings used to re-align the joints.

6.6- Choice of other chips and their interfaces

6.6.1-CAN

Very few options for 3.3V CAN transceivers are available. The only two found
were the MAX3053 and the TI SN65SHVD230. The MAX3053 was, at the time
of writing, only available from Maxim itself, therefore not considered. The
SN65HVD230 is fully compatible with the DSP chosen, and contains some
features that the previous transceiver didn’t. Most additional functionality is not
useful to this system (such as standby mode). The one additional possible use of
the device is high-speed mode. The current out of the Rs pin of the transceiver to
ground determines the slew rate of the output waveforms, selectable to help
overcome electromagnetic interference caused by the harmonics of fast rise times
(for more information, see datasheet in appendix D). A 10k resistor has been
placed there to achieve a 15V/us slew rate, though this can be by-passed with a
jumper to let the transceiver switch as fast as possible, with no internal limitation
on the switching rate. This can let the CAN bus operate at speeds up to
2Mbit/second. While at the moment, the bottleneck in the communication is in
the interface from CAN to the central computer, it is foreseeable that the interface

be upgraded, this high data rate on the CAN bus may then be used.
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6.6.2-SCI

Far more options were available on the SCI transceiver market for 3.3V devices.

The MAX3221 was chosen for its availability, small size, low price, and features.

The MAX3221 contains only one transmitter and receiver, which is all that is
necessary. It also features complex auto-shutdown internal circuitry, and the pins
to disable it, they have been connected to give the DSP complete control of the
transceiver’s state. Another pin ('INVALID) gives feedback to the DSP about the

SCI receiver’s input condition, whether it is receiving valid voltage levels.
6.6.3-Reset chip

The MAXS8I11 reset chip holds the reset line low for a specified time (150ms)
when triggered, it helps to ensure that the pin on the DSP is held long enough for
the DSP to react, and filters out de-bounce from the pushbutton. There was no
need to change from the cheap and effective MAXS811 which has been used on

both previous joint controllers.

6.7- Connectors

Standard locking IDC headers are used for all data connections. In cases in which
headers of the same size are used for different purposes (the optical switches and the
encoders connect to the board the same way) they have been made pin compatible, so that

no damage can be done to either circuitry if the wrong connector is plugged into it.

Power headers from JST, the same as those used to drive the motors on the 2001 design
have been chosen again, for both 42V power and motor connectors. They are required to
be ordered directly from JST, however they are very small, can handle the currents to be
drawn by the board and motors, and can be daisy chained. This means that only one pair

of power wires and a pair of CAN wires is necessary down each of GuRoo’s legs.

6.8- More Debug info

Other, simple additions to the new board design include:
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6.8.1-Dip switches

Each board has a 4-bit hardware selectable board ID. Each board must have a
unique ID number. This lets the board know which motors it is controlling, and
which CAN messages to pay attention to. Rather than the current system in
which each board must be given its own ID in software before being programmed,
the board number should be fixed to a board so that completely generic code may
be uploaded, regardless of the motors to be controlled. It is possible to specify
certain pages of the DSPs flash to not be overwritten during programming, and
the ID could be stored here. However, it was decided that DIP switches would
make board identification easily identifiable to human users of the system, and
that this would help with debugging by being able to very quickly ‘hot-swap’

boards.

6.8.2- Debug info

An entire byte may now be written to the LED display on the user edge of the
board. This will help tremendously in debugging and software development,
rather than the 3 LEDs available on the old system. Also included is a row of
headers, onto which an oscilloscope probe might be clipped. This can help in the

debugging of timing issues within the chip.

A ground clip was also supplied such that the user may safely ground the

oscilloscope probe.

A connection for a piezo-sounder has been included on a PWM output of the
DSP. This will allow the user to help debug information without the board being
visible. For example, while testing a walking gate, the controller can sound that it
is approaching its PWM limit, and the user can observe the effects of this,

knowing what the controller is doing.
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7- NEW SOFTWARE TO BE WRITTEN

The code for the new board has not been written. As much care has been taken during
the hardware design of the system to keep the software complexity to a minimum, to have
optimal speed at the lowest level. The functions, as they are intended to work, are
described below. In the methods that simply require correct registry addressing, the
registers necessary are described. When more complicated algorithms are required, flow

charts have been provided with an explanation.

7.1- Debug LEDS

Unfortunately, do to the configuration of the I/O ports on the TMS320LF2406a,
no entire 8-bit port is available to be used onto which a byte of debug LEDS can
be placed.

Instead, the first five bits of Port C, and bits 6 and 7 of Port B form the array. A
small routine must be written to map a character passed to it to the appropriate

pins.
7.2- Board ID

For the same reason as above, the pins routed to the DIP switches from which the

board will determine which motors it controls are not from the same place.

Retrieving the board number need only be a simple mask of those pins on which
the dip switches are connected to. This will integrate very simply in to the

existing code, by simply #defining the board as the masked variable.

7.3- Alignment

A completely new function must be written which the controller boards run to
initialise each joint to a set position each time. The optical switch system
described in the hardware section is what is discussed below.

Although the robot boots up from a theoretically unknown position every time
generally, he starts from the position in which he hangs naturally on the stand.

Care should be taken when deciding on the position of this alignment sensor, that
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it is placed a certain direction from where each joint is likely to start, though not

too far away. That way, the alignment procedure described below should allow

the robot to quickly align itself and be ready to operate.

Boot-up alignment

> Read ADC alignment value

Yes
threshold

reached?

drive in designated direction

No reached
limit?
Yes

/—)| drive in designated direction

increment number of index
pulses counted

number of

drive other way

index pulses =
set number

stop, and return to
main

The algorithm proposed involves first
reading the ADC value of the sensor,
comparing it to a threshold arbitrarily
set for each joint, then running a seek
pattern to find the switch if not already
aligned.  Each joint will have a
different seek pattern, dependant on
the estimated location of the switch.
For example, if it were only possible
to place the holes for the light 20
degrees in a certain direction from the
robot’s hanging position, then that
joint would initialise by driving in that
direction for, say, 25 degrees before
turning back. Another joint may have
its switch located very close to the
natural position of the joint, and so the
switch could be in either direction
from where it starts. In that case, the

joint should do a brief sweep in both

directions, always expanding its scope until the threshold of light is found.

Once the alignment point has been found, it is very unlikely that it itself is the

point that the joint should be initialised to, so the motor should drive to that point.

It is suggested that the index pulse of the quad encoders be used for this. They are

in a fixed position and as they only occur every 2.3 degrees, small errors in the

light sensors (due to changing ambient light conditions or small disturbances of

the sensor) will not change the alignment position of the joint.

7.4- read_enc() and read_curr()

read_enc() will simply return the TXCNT of the timer associated with that

quadrature decoder.
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read_curr() will operate exactly as before, simply reading the FIFO registers of
the ADC.

7.5- PWM

The new hardware configuration of the motor drive gives the programmer full
control of the MOSFETS. The user should be able to switch to any of the 4 states
described in section 2.4.2-Switching techniques, as well as be able to float the
motors. The full complementary PWM outputs of the DSP are routed to each leg
of the h-bridge. The disable pins of both driver chips are connected to an I/O pin
of the DSP.

After initial tests have been done to ensure the motors do indeed run cold, the
TxPR register should be able to be set to a much larger value, reducing the
switching frequency and increasing the resolution of PWM values. This would

eliminate the need for the feathering function and further optimise the code.

Implementing one-phase chopping is simple. The CMPRx register associated
with Leg B is set to 0, and the Leg A to the duty ratio of the desired power. To

drive in the other direction, these roles are swapped.

To do pure unipolar switching however, the duty ratios of the two legs need to be
calculated. The desired duty ratio desired should be divided by two, and
subtracted from 50% of the TxPR register before being applied to Leg B, then
added to 50% of TxPR for Leg A, and applying this number to that CMPRx
register. This will result in the same power into the motor as one-phase chopping,
but the power losses will be distributed among all of the FETs. Perfectly accurate

current sensing is not possible if doing unipolar switching.

If the motors need to be floated, then the pin disabling the MOSFET drivers
should be asserted in an external interrupt subroutine. The decoders will continue
to count while the motors are moved, which is desirable. The desired joint
positions of the motors should be moved with the decoder counts, otherwise when

returning from the subroutine the motor will drive back to where it was.
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8- BOARD LAYOUT AND PLACEMENT

With 2 motors being controlled per board, there will now be 8 boards to be placed
in the GuRoo. The boards were designed with this in mind, Figure 288. Their
shape is long, and thin, all short connections (to motors, encoders and opto-
switches) come out of the short sides of the board, and all longer connections and

interfacing hardware is along the front edge.

Interface Chips

Figure 27-general layout of new controller boards

The intended board locations

of the new controllers are:

e Two stacked in the bottom of each o= l ee— |
shin —_ l,a

¢ One along the inner thigh E
e Two in the stomach : ’ |

e The servo motor board will remain .

the same shape, and in the same ‘._ fl

place | —
['—=
.o..-- - ]I : e-oooo

Figure 29-Intended board locations of Controllers
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9- CONCLUSION OF PROJECT

The main goal for the humanoid team at the beginning of the year was to get GuRoo to

walk. This was achieved by April.

Specific to this thesis, the boards handed down from 2001 in an unknown state of
operation were brought to full functionality. In doing so, a complete familiarity with both
hardware and software specifics of that design was gained, and used to improve on the

current system.

While the new boards are yet to be built, their design is sound, having been based on the
old models. Modifications to the design shall make higher level development much more

effective, by not being limited by slow and inefficient hardware.
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10- FUTURE WORK

This project could go in a number of ways in years to come.

10.1- This design

To finish the implementation of the design in this thesis the following needs to be
completed:

e Currently, the PCB has not been completely routed. Components are in place, but the
connections between them have not been completed. It is hoped that this will be done
before the Innovation Expo, two weeks from the submission of this thesis, so that a
complete design may be handed on... to be built in 2003

e The design of a new servo motor controller board has not been completed. There is
no need for a new board, as the current model functions perfectly to specifications. A
new design could easily be completed, so that all processors in the robot are the same
model. The design of this board involves removing all motor drive circuitry from the
DC motor board, and replacing it with a 12V buffer chip (HEF40244). 8 independent
PWM channels should be routed to the inputs of this buffer. The schematic of the DC
motor controllers has been done in such a way that 8 of the 10 independent PWM
channels are free for this reason

e The boards must of course all be built and fully tested, and the software described in
Chapter 7 written.

e The alignment sensors must be constructed and mounted, as described in section 6.5.

10.2- The Next Generation

e If a new board were to be redesigned in the near future, a strong recommendation is
to use the yet-to-be-released TMS320F2810. The latest from TI the 150MHz DSP will
have a similar price-tag as the LF2406a’s chosen in this thesis. This simple upgrade
would simply involve changing the pin connections of the DSP and re-writing the
software. Another power supply rail will also be necessary for the 1.8V core. This chip
will eliminate any speed concerns as the control loop would most certainly be capable
of operating at full 20kHz, the limit if the PWM is cycled at this speed too.

10.3- Another Tack

e An FPGA implementation of the digital distributed control system, as discussed in
section 6.2, would be a great new design. If done properly, the same design could be
used in many control applications, including the RoboRoos wheeled robot soccer team
at UQ.
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/*****************************************************************************

* File: startup.c

* Aut hor: Adam Drury & Andrew Hood
* Project: Robot 1.0

* Created: 23 April 2002

*  Summary: Sets up TMS chi p.

*

****************************************************'k***********************/

#i ncl ude "f24x. h"

#i ncl ude "startup. h"

#i ncl ude "ioports.h"

#i ncl ude "..\ Conmmon\ board1. h"
#i ncl ude "can. h"

#i nclude "serial.h"

#define BOARD |ID 3
#def i ne NO_SERI AL

int count=0;

int i =0;

unsi gned int tinmestanp;
int BOARD;

extern int data[4];

int *p_id ;

int id[4];

/*all ows extra resolution for setting PWM val ues*/
extern int feather_count = O;
extern int counterl;

extern int counter?2;

extern int counter3;

extern int pwmhigh 1 ;
extern int pwmlow 1 ;

extern int pwmhigh 2 ;
extern int pwmlow 2 ;

extern int pwmhigh 3 ;
extern int pwmlow 3 ;

void main() {
int countl = O;

/*p_data = &data[0];*/

get _ID();

id[0] = BOARD ;
id[1] = BOARD ;
id[2] = BOARD ;
id[ 3] = BOARD ;
p_id = & d[0];
init_board();

can_transm t(p_id, (unsigned |ong)((BOARD |
er */
timestanp = O;
while(l) {
if (count >= 400) {

count = O;
feat her _count = 0;

bl _control ();

/* ti mest anp++;
/* data[0] = tinestanp;

/* Put actual velocities in CAN nail boxes */

/* tenp force data */

0x20) << 2));

/* transmt the board id nunb

[ * data[ 0] = 0x0123 ;

dat a[ 1] = 0x4567 ;

data[ 2] = Ox89AB ;

dat a[ 3] = OxCDEF ;
*/

CANMCR | = 0x0102 ; /* Request wite access to data field for RTR configed mai
| box 2*/

CANMBX2A = data[0];



CANVBX2B
CANMBX2C
CANMBX2D
CANMCR &= OxFEFD ;

oo
o
QD
—
2
A

/*

}

void get _I1D() {
/*sets BOARD variable to | D nunber
BOARD = BQOARD | D;

switch (BOARD) ({
case 1:
LEDON1;
br eak;
case 2.
LEDON2;
br eak;
case 3:
LEDON12;
br eak;
case 4.
LEDONS;
br eak;
case b5:
LEDON13;
br eak;
defaul t:
LEDCFF;
br eak;

}
void init_board() {

Clear CODR to allow transmt to occur */

stored in ?boot| oader ?*/

/*sets timer interrupt to go off every BOARD _DELAY seconds*/
/*sets up registers and other stuff*/

WDDI SABLE

EVI MRA = 0x0080;

I NT_DI SABLE

I MR = 0x0003;
PBDATDI R = OxFFFF;
OCRA = Ox1FDF;
OCRB = 0x02FC
sci setup();
adc_set up(
gqdec_setup
pwm set up(
canset up0l1
canset up5(
init_galns
init_pos();
| NT_ENABLE;

)

(

)

(
/* );
(
}

/*sets up the analog to digita
voi d adc_set up()

ADCTRL1
ADCTRL2

0xC900;
0x4000;

}

/ *decoder setup*/
voi d qdec_setup(){

8- 66
T2CNT 7-19
T2PR  7-14
T2CVWPR 7- 15
T2CON 8- 28
CAPCON 8-59

/

T2CNT = 0x0000;
T2PR = OXFFFF;
T2CMPR = Ox8FFF;

info

* % X ok X X X

Di rectiona

/* 00001111 11011011 */
/* setup |0 as CAN+/

converter*/

not affected by emul ation suspend
Up/ Down Count node



[] || ++4--mmmmm e Cl ock Prescalar = /1
Iy +------- Use own TENABLE bit
I 1 p+------- TENABLE - Enabl e Tiner
[ 11T ]+ Clock Source - QEP Circuit
| 111l |]]]++--- Register reload when counter is 0O
I TL11T 1T+ - TECMPR - enabl e tinmer conpare
[ 1L THI] ]+ SELTPRL - use own period register
[ LTLEL LELTELL ]
11011000 01110010 */
T2CON = 0xD872;
A R Clear all capture registers
R Enable QEP Circuit (bits 9, 7-4 ignored - *)
R T Di sbal e CAP3
[ R GP Tiner selection for cap3 = G Timer 2
| | +---------- GP Tiner selection for capl/2 = GP Timer 2 - *
| | [+--------- CAP3TOADC = no event
| []] ++------ CAP1 Edge Detection = Detect both edges -
| |I] ||++--- CAP2 Edge Detection = Detect both edges - *
| [l [I]|++- CAP3 Edge Detection = none
[ L LT
01100000 11110000 */
CAPCON = 0x60F0;
out port (WSGR, OxO0BFF);
}
voi d pwm set up(voi d)
{ .
* T1PR Timer 1 Period Register - 20Mhz/ T1PR - freq
*  CMPRX Conpar e Register x - duty
* OCRA 7-4 I/O Mux Control Register A - set pwm pins
* ACTR 8-37 Conpare Action Control Register active high
* DBTCON 8-41 Dead Band Tinmer Control Register - dead band
* COMCON 8-36 Conpare Control Register pwm
* T1CON 8- 28 GP Tiner Control Register (individual) - up, prescale
* GPTCON 8-30 GP Tinmer Control Register up, pol
*
/
/* Set period register for 100kHz = 20MHz/ 200 */
T1PR = 200
ACTR = 0x0999; /* 00001001 10011001 */
DBTCON = 0x02EQ; /* 00000010 11100000 */
CVPRL = 0x0000;
CVPR2 = 0x0000;
CVPR3 = 0x0000;
R R conpare enabl ed
I rel oad conpare register on underflow or period match
[ ][ +-------------- space vector not enabl ed
[ ++-------=----- action control register reload on underfl ow
[ 11 +----------- conpar e output pins enabl ed
[1111]]+-++++++++- reserved
ERERRRA AR
10100010 00000000 */
COMCON = 0xA200
[* At enul ati on control = not affected
e conti nuous up counting
R prescaler = 1
[]] +-------- Use own TENABLE bit
[1] | +------ enable T1
[1] |]++----- internal clock as source
[1] |]|]|++-- reload period on underflow or equa
[I1 |Il]l]]+- enable conpare operation
[11 [1l]1]]]+- not used in T1
ANRRARR
11010000 01000110 */
T1CON = 0xD046
/* R read only counting status
[+---mmmm e - read only counting status
|| ++---meema - - no adc event with tinmer 2
[ |]+-4-------- no adc event with tinmer 1
I 11 +------- conpar e output enable - enable
[l |Il || ++--- polarity timer 2 - active high



- polarity timer 1 - active high

/* interrupt service routine
* calls sepearte function if CANMB, CANER or Phantom error
*/
void c_intl(void){
/* sciout('Il");
*[if (PIVR == 0x0040) { /* test for CAN receive interrupt */
can_receive();
} else if (PIVR == 0x0041) { /* Can error */
CANI FR = 0x0078 ; /* clear error flag */
CANESR = OxFFFF ; /* clear error register */
} else if (PIVR == 0x0000) {} /* phantominterrupt */

| NT_ENABLE; /* re enable interrupts */
}

void c_int2 () {
/[*if timerl period interrupt occurs*/
if (PIVR == 0x0027) {
/*clear timerl period interrupt flag*/
EVI FRA = 0x0080;
count ++;

if (feather_count < counterl )
CWR1 = pwm high_1 ;

else if (feather_count >= counterl)
CWR1L = pwmlow 1 ;

if (feather_count < counter2 )
CWPR2 = pwm high 2 ;

else if (feather_count >= counter?2)
CWR2 = pwm | ow 2 ;

if (feather_count < counter3 )
CWPR3 = pwm hi gh_3 ;
el se if (feather_count >= counter3)
CWPR3 = pwm | ow 3 ;
f eat her _count ++
if (feather_count >= 16) {
feather _count = 0;
} else if (PIVR == 0x0000) {} /* phantominterrupt */

I NT_ENABLE



/*****************************************************************************

* File: lowevel.c
* Aut hor: Andrew Hood
* Project: Robot 1.0

*  Created: 03/05/2002
*
*

Sunmary: Robot specific mirror functions of hunanoi d. cpp
****************************************************************************l

#i ncl ude "f24x. h"

#i ncl ude "ioports. h"

#i ncl ude "..\ Common\ humanoi d. h"
#include "..\Robot\| ow evel . h"

int counterl;
int counter?2;
int counter3;
int pwnhigh 1 ;
int pwmhigh_2 ;
i
i
i
i

extern int val ues[8];
unsi gned int read_enc(int k) {

/*returns current encoder reading in encoder counts*/
unsi gned i nt EXT_DATAL;
unsi gned i nt EXT_DATA2;
unsi gned i nt gdec_ext2;
unsi gned int gdec_ext3;

/* read in the high bytes into variabl e*/
i nport (0, &EXT_DATAl);

/* read in the |low bytes into variable */
i nport (1, &EXT_DATA2);

/* high byte into 16 bit variables, shift left 8 places for ext2*/

gqdec_ext3 = EXT_DATAL;
gdec_ext2 = EXT_DATAl << 8;
/* low byte into variables, shift right 8 places for ext3.*/
qdec_ext3 = (qdec_ext3 & OxFF00) | (EXT_DATA2 >> 8);
gdec_ext2 = (qdec_ext2 & OxFFO0) | (EXT_DATA2 & OxO00FF);
/* return appropriate value, depending on which notor is being driven*/
swi tch(k){
case O:
return T2CNT;
br eak;
case 1:
return gdec_ext 2;
br eak;
case 2:
return gdec_ext 3;
br eak;
}

/*reads current sensor and returns current in mA*/
unsi gned int read_curr(int k)

unsigned int current;
unsi gned int scal ed_current;

switch (k) {
case O:
ADCTRL1 = 0x6900; /* 6 sets the start conversion now bit, |ast*/
br eak; /* nunber specifies the h-bridge being read */
case 1:
ADCTRL1 = 0x6902;
br eak;
case 2.
ADCTRL1 = 0x6904;
br eak;
}



ADCTRL1 = ADCTRL1 | 0x0001 ; /* Start conversion */

/* bit seven is high when a conversion is being

perfornmed, and drops |low when it is finished */

whi | e((ADCTRL1 & 0x0080) == 0x0080);

current = ADCFI FOL >> 6; /* bottom 6 bytes of FIFOL are reserved */

scal ed_current = (current * 17) + 152; /* scal ed between 0 and 5000mA */
I* if (k == 2){
sciout('1");
sci out hex(scal ed_current);

/* if (scaled_current > CURRENT_LIMT){ /* if over, disable nmotor drivers */
/* PBDATDI R &= OxFFDF ;
telse {
PBDATDI R | = 0x0020 ;
}
*/

/* This nunber deternined experinentally result of ADC / 15.5 under static conditions*/
return scal ed_current;

/*

Sets PVWM duty cycle for notor k. Value passed ranges between -1600 to 1600
representing 100% backward to 100% f oward

*/

void set_PWMint k, int pwmduty) {

switch(k) {

case O:
counterl = pwnduty & OxO000F ;
pwm high_1 = (pwmduty >> 4) + 101 ;
pwn|ow 1 = (pwnmduty >> 4) + 100 ;
br eak;

case 1:
counter2 = pwmnduty & OxO000F ;
pwm high_ 2 = (pwnduty >> 4) + 101 ;
pwn | ow 2 = (pwmduty >> 4) + 100 ;
br eak;

case 2:
counter3 = pwn duty & OxO000F ;
pwm high_3 = (pwmduty >> 4) + 101 ;
pwn | ow 3 = (pwmduty >> 4) + 100 ;
br eak;

}

/* switch(k){

case O:
CWPRL = (unsigned int) (pwmduty + 100);
br eak;

case 1:
CWPR2 = (unsigned int) (pwmduty + 100);
br eak;

case 2:
CWPR3 = (unsigned int) (pwmduty + 100);
br eak;

P
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TMS320LF2407A, TMS320LF2406A, TMS320LF2403A, TMS320LF2402A
TMS320LC2406A, TMS320LC2404A, TMS320LC2402A

DSP CONTROLLERS

SPRS145G — JULY 2000 — REVISED FEBRUARY 2002

® High-Performance Static CMOS Technology
— 25-ns Instruction Cycle Time (40 MHz)
— 40-MIPS Performance
— Low-Power 3.3-V Design

® Based on TMS320C2xx DSP CPU Core
— Code-Compatible With F243/F241/C242
— Instruction Set and Module Compatible
With F240/C240

® Flash (LF) and ROM (LC) Device Options
— LF240xA: LF2407A, LF2406A,
LF2403A, LF2402A
— LC240xA: LC2406A, LC2404A, LC2402A
® On-Chip Memory
— Up to 32K Words x 16 Bits of Flash
EEPROM (4 Sectors) or ROM
— Programmable “Code-Security” Feature
for the On-Chip Flash/ROM
— Up to 2.5K Words x 16 Bits of
Data/Program RAM
— 544 Words of Dual-Access RAM
— Up to 2K Words of Single-Access RAM

® Boot ROM (LF240xA Devices)
— SCI/SPI Bootloader

® Up to Two Event-Manager (EV) Modules

(EVA and EVB), Each Includes:

— Two 16-Bit General-Purpose Timers

— Eight 16-Bit Pulse-Width Modulation
(PWM) Channels Which Enable:
— Three-Phase Inverter Control
— Center- or Edge-Alignment of PWM

Channels
— Emergency PWM Channel Shutdown
With External PDPINTX Pin

— Programmable Deadband (Deadtime)
Prevents Shoot-Through Faults

— Three Capture Units for Time-Stamping
of External Events

— Input Qualifier for Select Pins

— On-Chip Position Encoder Interface
Circuitry

— Synchronized A-to-D Conversion

— Designed for AC Induction, BLDC,
Switched Reluctance, and Stepper Motor
Control

— Applicable for Multiple Motor and/or
Converter Control

External Memory Interface (LF2407A)
— 192K Words x 16 Bits of Total Memory:
64K Program, 64K Data, 64K 1/0

Watchdog (WD) Timer Module

10-Bit Analog-to-Digital Converter (ADC)

— 8 or 16 Multiplexed Input Channels

— 375 ns or 500 ns MIN Conversion Time

— Selectable Twin 8-State Sequencers
Triggered by Two Event Managers

Controller Area Network (CAN) 2.0B Module
(LF2407A, 2406A, LF2403A)

Serial Communications Interface (SCI)

16-Bit Serial Peripheral Interface (SPI)
(LF2407A, 2406A, LC2404A, LF2403A)

Phase-Locked-Loop (PLL)-Based Clock
Generation

Up to 40 Individually Programmable,
Multiplexed General-Purpose Input/Output
(GPIO) Pins

Up to Five External Interrupts (Power Drive
Protection, Reset, Two Maskable Interrupts)

Power Management:

— Three Power-Down Modes

— Ability to Power Down Each Peripheral
Independently

Real-Time JTAG-Compliant Scan-Based
Emulation, IEEE Standard 1149.1T (JTAG)

Development Tools Include:

— Texas Instruments (TI) ANSI C Compiler,
Assembler/Linker, and Code Composer
StudioO Debugger

— Evaluation Modules

— Scan-Based Self-Emulation (XDS5100)

— Broad Third-Party Digital Motor Control
Support

Package Options

144-Pin LQFP PGE (LF2407A)

100-Pin LQFP PZ (2406A, LC2404A)
64-Pin TQFP PAG (LF2403A, LC2402A)
64-Pin QFP PG (2402A)

Extended Temperature Options (A and S)
— A: —40°Cto 85°C

— S:—-40°Cto 125°C
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FEATURES

Wide Input Range: 7.4V to 60V

700mA Peak Switch Current Rating

Adaptive Switch Drive Maintains Efficiency at High
Load Without Pulse Skipping at Light Load

True Current Mode Control

100kHz Fixed Operating Frequency

Synchronizable to 250kHz

Low Supply Current in Shutdown: 30pA

Available in 8-Pin SO and PDIP Packages

APPLICATIONS

= Automotive DC/DC Converters

= Telecom 48V Step-Down Converters

= Cellular Phone Battery Charger Accessories
= |EEE 1394 Step-Down Converters

| l ’ \D LT1676

TECHNOLOGY

Wide Input Range,
High Efficiency, Step-Down
Switching Regulator

DESCRIPTION

The LT®1676 is a wide input range, high efficiency Buck
(step-down) switching regulator. The monolithic die in-
cludes all oscillator, control and protection circuitry. The
part can acceptinputvoltages as high as 60V and contains
an output switch rated at 700mA peak current. Current
mode control offers excellent dynamic input supply rejec-
tion and short-circuit protection.

The LT1676 contains several features to enhance effi-
ciency. The internal control circuitry is normally powered
via the V¢ pin, thereby minimizing power drawn directly
from the V|y supply (see Applications Information). The
action of the LT1676 switch circuitry is also load depen-
dent. At medium to high loads, the output switch circuitry
maintains high rise time for good efficiency. Atlightloads,
rise time is deliberately reduced to avoid pulse skipping
behavior.

The available SO-8 package and 100kHz switching fre-
quency allow for minimal PC board area requirements.

AT, LTC and LT are registered trademarks of Linear Technology Corporation.
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@ HARRIS HIP4081

80V/2.5A Peak, High Frequency

November 1996 Full Bridge FET Driver
Features Description

* Independently Drives 4 N-Channel FET in Half Bridge The HIP4081 is a high frequency, medium voltage Full

or Full Bridge Configurations Bridge N-Channel FET driver IC, available in 20 lead plastic

« Bootstrap Supply Max Voltage to 95V  pc SOIC and DIP packages. The HIP4081 can drive every pos-

« Drives 1000pF Load at IMHz in Free Air at 50 °C with  Sible switch combination except those which would cause a
shoot-through condition. The HIP4081 can switch at fre-
qguencies up to 1MHz andssssss is well suited to driving
Voice Coil Motors, high-frequency Class D audio amplifiers,
¢ On-Chip Charge-Pump and Bootstrap Upper Bias and power supplies.

Supplies

* DIS (Disable) Overrides Input Control

Rise and Fall Times of Typically 10ns
¢ User-Programmable Dead Time

For example, the HIP4081 can drive medium voltage brush

motors, and two HIP4081s can be used to drive high perfor-

* Input Logic Thresholds Compatible with 5V to 15V mance stepper motors, since the short minimum “on-time”
Logic Levels can provide fine micro-stepping capability.

* Very Low Power Consumption Short propagation delays of approximately 55ns maximizes

Applications control Iogp crossover frequencigs_ e_lnd c_iead-_times wh_ich

dium/ . i can be adjusted to near zero to minimize distortion, resulting
* Medium/Large Voice Coil Motors in rapid, precise control of the driven load.
« Full Bridge Power Supplies

A similar part, the HIP4080, includes an on-chip input com-
» Class D Audio Power Amplifiers part, ' b Inp

_ parator to create a PWM signal from an external triangle
* High Performance Motor Controls wave and to facilitate “hysteresis mode” switching.

* Noise Cancellation Systems See Application Note AN9325 for HIP4081, Harris Answer-

* Battery Powered Vehicles FAX, (407) 724-7800, document #99325. Harris web home
« Peripherals page: http://www.semi.harris.com
* UPS. Similar part HIP4081A includes undervoltage circuitry which
. . does not require the circuitry shown in Figure 30 of this data
Ordering Information sheet.
PART TEMP. PKG.

NUMBER RANGE (°C) PACKAGE NUMBER

HIP4081IP -40to 85 20 Lead Plastic DIP E20.3

HIP40811B -40 to 85 20 Lead Plastic SOIC | M20.3
Pinout

HIP4081
(PDIP, SOIC)
TOP VIEW
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CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. File Number 35567
Copyright © Harris Corporation 1996 1
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International
TGR Rectifier

PD - 94050A

IRFZ44VS
IRFZ44VL

®
e Advanced Process Technology HEXFET® Power MOSFET
e Ultra Low On-Resistance 5
e Dynamic dv/d'F Rating Vpss = 60V
e 175°C Operating Temperature
e Fast Switching A
e Rps(on) = 16.5mQ
e Fully Avalanche Rated A DS(on)
e Optimized for SMPS Applications I
Io = 55A
S
Description
Advanced HEXFET® Power MOSFETSs from International Rectifier utilize advanced
processing techniques to achieve extremely low on-resistance per silicon area.
This benefit, combined with the fast switching speed and ruggedized device
design that HEXFET power MOSFETS are well known for, provides the designer
with an extremely efficient and reliable device for use in a wide variety of \\\%
applications. \‘\‘ -
The D?Pak is a surface mount power package capable of accommodating die 9
sizes up to HEX-4. It provides the highest power capability and the lowest possible D-Pak TO-262
on-resistance in any existing surface mount package. The D2Pak is suitable for IRFZ44VS IRFZ44VL
high current applications because of its low internal connection resistance and
can dissipate up to 2.0W in a typical surface mount application.
The through-hole version (IRFZ44VL) is available for low-profile applications.
Absolute Maximum Ratings
Parameter Max. Units
Ip @ Tc = 25°C Continuous Drain Current, Vgs @ 10V 55
Ip @ Tc =100°C| Continuous Drain Current, Vg @ 10V 39 A
Iom Pulsed Drain Current ® 220
Pp @Tc = 25°C Power Dissipation 115 W
Linear Derating Factor 0.77 W/°C
Vas Gate-to-Source Voltage +20 \%
Eas Single Pulse Avalanche Energy®@ 115 mJ
laR Avalanche Current® 55 A
Ear Repetitive Avalanche Energy® 11 mJ
dv/dt Peak Diode Recovery dv/dt @ 45 V/ns
T, Operating Junction and -55 to + 175
Tste Storage Temperature Range °C
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Thermal Resistance
Parameter Typ. Max. Units
Reic Junction-to-Case —_— 1.3 °C/IW
Raja Junction-to-Ambient —_— 40
www.irf.com 1
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Distributed Control of Gait for a Humanoid Robot

Gordon Wyeth, Damien Kee, Adam Drury, Andrew Hood
School of Information Technology and Electrical Engineering
University of Queensland
St. Lucia, Queensland, 4072
Australia

Abstract

This paper describes a walking gait for a
humanoid robot with a completely distributed
control system. The motion for the robot is
calculated in real time on a central controller,
and sent over CAN bus to the distributed control
system. The distributed control system loosely
follows the motion patterns from the central
controller, while also acting to maintain stability
and balance. There is no global feedback control
system, the system maintains its balance by the
interaction between central gait and “soft”
control of the actuators. The paper illustrates a
straight line walking gait and shows the
interaction between gait generation and the
control system. The analysis of the data shows
that successful walking can be achieved without
maintaining strict local joint control, and
without explicit global balance coordination.

1 Introduction

Humanoid robots typically require coordinated control of
a large number of joints. In most existing implementations
of humanoid robots, coordination is achieved by the use
of a central control computer that interfaces to all sensors
and actuators providing local control of joint positions
and torques as well as global control of balance and
posture. This paper describes a distributed approach to
control and coordination that provides local control of
position and torque at each joint in a fashion that
maintains global balance and posture.

1.1 Paper Overview

The paper first describes the GuRoo robot that forms the
basis for the later experiments. Details of the architecture
and design of the robot are followed by a description of
the computing system that supports the distributed control
system. The paper then describes the approach to
distributed control and provides details of gait generation,
including results gathered from a straight line walk.

2 The GuRoo Project

GuRoo is a 1.2 m tall, fully autonomous humanoid robot
designed and built in the University of Queensland
Robotics Laboratory [Wyeth, 2001]. The robot has a total
mass of 34 kg, including on-board power and
computation. GuRoo is currently capable of a number of

demonstration tasks including balancing, walking,
turning, crouching, shaking hands and waving. The robot
has performed live demonstrations of combinations of
these tasks at various robot displays.

The intended challenge task for the robot is to play
a game of soccer with or against human players or other
humanoid robots. To complete this challenge, the robot
must be able to move freely on its two legs. It requires a
vision sense that can detect the objects in a soccer game,
such as the ball, the players from both teams, the goals
and the boundaries. It must also be able to manipulate and
kick a ball with its feet, and be robust enough to deal with
contact with other players. Clearly, the robot must operate
in a completely autonomous fashion without support
harnesses or wiring tethers. These goals are yet to be
realised for the GuRoo project, but serve as inspiration for
the current work on the on-board vision system, and the
design of balance behaviours and dynamic gait control.

Figure 1: The GuRoo humanoid robot in its current form.

2.1 Architecture

GuRoo has been designed to replicate the human form, to
such an extent as conflicting factors of function, power,
weight, cost and manufacturability allow. Figure 2 shows
the degrees of freedom contained in each joint area of the
robot. In the cases where there are multiple degrees of
freedom (for example, the hip) the joints are implemented
sequentially through short links rather than as spherical
joints.



Figure 2: The location of the joints in GuRoo, indicating the
degrees of freedom in each joint.

Table 1 shows the mass distribution of GuRoo compared
to that of a human. The most notable exception is that the
shin and foot are much heavier in GuRoo than the human
counterpart, due to the mass of the powerful actuators
required in the ankle. The arms are significantly lighter
than the human counterpart, as they are significantly
inferior in power and do not have hands.

Table 1: Comparison of GuRoo mass distribution with human
mass distribution.

Body Component m(zilslsR((l):;) GuRoo Human

Head and Upper torso 9.2 27% 31%

Abdomen and Hips 9.8 29% 27%

Thigh 6.4 19% 20%

Shin and Foot 6.8 20% 12%

Arm 1.9 6% 10%
Total 34.1

The other notable point from Table 1 is the total mass of
the robot. A 1.2 m tall human would typically be a child
approaching his or her 7h birthday, with a 50" percentile
mass of 23 kg. A child with mass of 34 kg at the same age
would be in 99" percentile, indicating that GuRoo is
somewhat overweight.

2.2 Electro-Mechanical Design

The key element in driving the mechanical design has
been the choice of actuator. The robot has 23 joints in
total. The legs and abdomen contain 15 joints that are
required to produce significant mechanical power, most
generally with large torques and relatively low speeds.
The other 8 joints drive the head and neck assembly, and
the arms. The torque and speed requirements are
significantly less.

The 15 high power joints all use the same motor-
gearbox combination. The motor is a Maxon RE 36
wound for a nominal voltage of 32 V with a gearbox
reduction of 156:1. The maximum continuous generated
output torque is 10 Nm, with a maximum output speed of
51 RPM, or 5.3 rad/s. The thermal limits of the motor
permit intermittent output torque of up to 19 Nm. Each
motor is fitted with an optical encoder for position and
velocity feedback. The 8 low power joints are Hi-Tec RC
servo motors model HS705-MG. with rated output torque
to 1.4 Nm, at speeds of 5.2 rad/s. These have built-in
control and power electronics using a pulse width
modulated signal to indicate desired position.

The motors that drive the roll axis of the hip joints

are supplemented by springs with a spring constant of 1
Nm/degree. These springs serve to counteract the natural
tendency of the legs to collide, and help to generate the
swaying motion that is critical to the success of the
walking gait.

Power is provided by 2 x 1.5Ah 42V NiCd packs
for the high power motors, and 2 x 3Ah 7.2 V NiCd
battery packs for computing and servo operation. The
packs are chosen to give 20 minutes of continuous
operation. The drive power electronics is based on a
switch mode power stage, requiring only a single supply
rail and having an efficiency over 90%.

2.3 Sensing

The position feedback from the encoders on the high
power joints provides a count on every edge of both
quadrature channels. This provides 867 encoder counts
per degree of joint motion. In addition, each DSP can
measure the current to each motor, the bus voltage, and
the temperatures of the MOSFETSs and motors. Provision
has also been made for inertial and balance sensors, as
well as contact switches in the feet and in the joints.

3 Distributed Control Network

A distributed control network controls the robot, with a
central computing hub that sets the goals for the robot,
processes the sensor information, and provides
coordination targets for the joints. The joints have their
own control processors that act in groups to maintain
global stability, while also operating individually to
provide local motor control. The distributed system is
connected by a CAN network. In addition, the robot
requires various sensor amplifiers and power conversion
circuits.

3.1 Central Control

The central control of the robot derives from two
heterogeneous microprocessors that provide coordination
between joints, integrate sensor information, and process
the vision input. The primary component of the central
controller is an iPAQ pocket pc from Compaq. The iPAQ
features a 208 MHz StrongARM microcontroller, 32 Mb
of RAM and a 320 x 240 colour screen. The screen is
touch sensitive allowing stylus input of text and graphics.
The iPAQ in the GuRoo operates with Windows CE. As
well as the touch screen interface, the iPAQ is equipped
with a speaker and microphone, a joypad, and four push-
buttons. It has an infra-red interface for external
communication.

The second component of the central hub is the
vision processing board. This board has been developed
for the ViperRoos robot soccer team [Chang, 2001] and
features a 200 MHz Hitachi Super-H SH4
microcontroller, an FPGA-based programmable camera
and bus adapter, 16 Mb of RAM, 8 Mb of flash ROM, and
512 kb of fast SRAM for video caching. The vision input
comes from a custom digital CMOS camera, based around
the OV7620 camera chip from OmniVision, which can
provide 640 x 480 images at up to 25 fps. The camera can
provide data in YUV or RGB formats, and can be
programmed to only send data from selected areas of the
sense region.
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Figure 3: Block diagram of the distributed control system.

The vision board has run video capture from the
CMOS camera and colour segmentation of various
scenes. It is not yet operational on the robot as the
interface to the 100 pin parallel peripheral bus on the
iPAQ is yet to be completed.
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3.2 Joint Controllers

The TMS320F24x series from Texas Instruments is a 32
bit DSP designed for motor control. It can operates at
20MHz, and can read the A/D converter, calculating a
PID control law, current limit, and generate the required
PWM output, in under 10 ps [Wyeth, 2000]. The
availability of the Control Area Network (CAN) module
in this series, along with bootloader programmable
internal Flash memory makes the device particularly
attractive for this application. In this application, the
TMS320F243 is used, which has an external bus that is
used for attaching additional sensor interfaces. Five
controller boards control the 15 high power motors, each
board controlling three motors. A sixth controller board
controls the eight RC servo motors.

3.3 Internal Network

The CAN bus is a highly reliable standard developed by
Robert Bosch GmbH for use in the automotive
environment. It is a multi-master system, with
sophisticated error checking and arbitration, so that any
high priority message will always get through first
without corruption by other messages. All data contained
in each packet (up to eight bytes) is also checked with a
Cyclic Redundancy Check (CRC) error-checking scheme
that can correct up to five random errors, and will be
automatically retransmitted if not correct. The network
operates at up to 1 Mbit/sec.

4 Software

The software consists of four main entities: the global
movement generation code, the local motor control, the

low-level code of the robot, and the simulator. The
software is organised to provide a standard interface to
both the low-level code on the robot and the simulator.
This means that the software developed in simulation can
be simply re-compiled to operate on the real robot.
Consequently, the robot needs a number of standard
interface calls that are used for both the robot and the
simulator. Figure 4 shows modularisation of the software,
and the common interfaces.
Robot Low Level Code / Simulator
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= B8 = 2 5§ 8 2
= o = 8 & o o
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& ° ¢ 8 & O &
v TSN { |
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Set Motor Read Gait
Position Control Trajectory Generation
CAN interrupt Timer interrupt CAN interrupt

RC joint 1_-__[ iPAQ
controller

DC joint controller x 5

Figure 4: Block diagram of common software modules and the
interface used to both the real robot and the simulator.

4.1 Gait Generation

The gait generation module is responsible for producing
realisable trajectories for the 23 joints so that the robot
can perform basic behaviours, such as standing on one
leg, crouching and walking. The most important
properties of the trajectories are that they are smooth and
that they can be linked together in smooth fashion.
Smoothness of motion implies less disturbance to the
control of other joints. Based on these criteria, all motor
trajectories are generated from a parameterised sinusoidal

curve as follows,
a):g(l—cos(z—mn M
T T

where o is the desired joint velocity, 0 is the total joint
angle to move and 7 is the period of that movement. A
normalised joint movement is shown in Figure 5.

Normalised Joint Trajectory

24 ——Angle
—— Velocity
1.5 4
1 4
0.5
O T T T T 1
0 0.2 0.4 0.6 0.8 1
time (sec)

Figure 5: The trajectory used for a total joint movement of 1
radian over a period of 1 second.



This velocity trajectory has the property of being
smooth in the sense that the joint acceleration starts and
finishes at zero, smoothly increasing to finite peaks. This
implies that the jerk (derivative of acceleration) also starts
at zero and reaches finite peaks. The trajectory contrasts
with  typical trajectories generated for robotic
manipulators, which typically focus on smoothness of the
end effector motion rather than smoothness at the joint.

Trajectories for each of the motors may be
coordinated by using the same beginning time for the
motion and specifying the same period for the trajectory.
Trajectories may be naturally linked as the velocities all
reach zero at the beginning and the end of a motion.
Section 5 will illustrate how trajectories may be
coordinated and linked to perform a walking operation.

4.2 Joint Controller Software

There are two types of joint controller boards used in the
robot — five controller boards control the fifteen high
power motors and one controller controls the eight low
power motors. The controller software for the low power
motors is a single interrupt routine that is triggered by the
arrival of a CAN packet addressed to the controller’s
mailbox. The routine reads the CAN mailbox for the
change in position sent by the gait generation routine. The
PWM duty cycle that controls the position of the RC
servos is varied accordingly.

The control loop for the high power controllers has
two interrupt routines. As for the low power controller, an
interrupt is executed upon receipt of trajectory data in the
CAN mailbox. The data is used to set the velocity
setpoints for the motor control routine. There is also a
periodic interrupt every 500 ps to run the motor control
software. The motor control routine compares the error
between velocity setpoint and the encoder reading and
generates a PWM value for the motor based on a
Proportional-Integral control law. The routine also checks
the motor current against the current limits, and adjusts
the PWM value to prevent over-current situations.

The PI control law on each joint has been hand
tuned to provide both good trajectory following for
typical velocity input profiles, and spring-damper model
impedance to torque disturbances from gravity and the
cross-coupling torques from other joints. The “soft”
response of this control law to disturbance prevents
torques being transmitted throughout the robot and helps
to maintain global stability. The disadvantage is that the
controller suffers from position error that must be
accounted in the gait generation software. Section 5
illustrates how this potential liability is turned to an asset
in the generation of a dynamically stable walk.

4.3 Low-level Code

The lowest level of code on the robot provides direct
access to the sensors and communication system. The
level of abstraction provided by function calls at this level
aids in the cross development of code between the
simulator and the real robot.

4.4 Simulator

The simulator is based on the DynaMechs project
[McMillan, 1995], with additions to simulate specific
features of the robot such as the DC motors and motor

drives, the RC servos, the sensors, the heterogeneous
processing environment and the CAN network. These
additions provide the same interface for the dynamic
graphical simulation as for the joint controller and gait
generation code. The parameters for the simulator are
derived from the CAD models and the data sheets from
known components. These parameters include the
modified Denavit-Hartenberg parameters that describe the
robot topology, the tensor matrices of the links and the
various motor and gearbox characteristics associated with
each joint. The surface data from the CAD model is also
imported to the simulator for the graphical display.

For the high power DC motor joints, the
simulator provides the programmer with readings from
the encoders and the current sensors, based on the
velocities and torques from the dynamic equations. In the
case of the RC servos, the simulator updates the position
of the joints based on a PD model with a limited slew rate.
The programmer must supply the simulator with PWM
values for the motors to provide the control. The
simulator provides fake interrupts to simulate the real
events that are the basis of the control software.

The simulator uses an integration step size of
500us and updates the graphical display every Sms of
simulated time. When running on 1.5 GHz Pentium 4
under Windows 2000, the simulation updates all 23 joints
at a very useable 40% of real time speed.

5 Walking

The robot can walk with a step rate of 1 Hz using a step
length of 100 mm. The walk is open-loop; there is no
feedback from the joint controllers to the gait generation
software. The lack of global feedback, combined with the
absence of a global balance sensor presents a substantial
challenge in walking algorithm design. The gait described
in this section forms a base for faster and more robust
walking with the augmentation of balance control.

5.1 Walking Algorithm

The robot uses a simplified version of a typical human
gait. In particular, it limits the swing of the legs to prevent
balance disturbance as this cannot be corrected without
global balance control. In order to minimise the
accelerations of the torso, head and arms (which make up
1/3 of the mass of the robot), the robot maintains a
constant relative position of the torso, such that the face of
the torso is always normal to the direction of travel. The
allowable roll of the torso is also limited. The stabilisation
of the torso also reduces disturbances from gravity to the
control of the leg joints.

Before walking, the robot loads each motor
against gravity by performing a slight squat that
introduces a 6 degree ankle pitch, with the knee and hip
pitch joints set to keep the torso upright. The initial
loading of the joints reduces the likelihood of backlash in
the gearheads.

The walking gait commences with a side-to-side
sway generated from the roll axes of the ankles and hips.
The sway frequency of 0.5 Hz is sympathetic with the
spring mass system formed by the ankle controllers with
the mass of robot. The sway sets up the pattern of weight
transfer from one foot to the other necessary to swing the
legs alternately to achieve walking. At each extreme of



the sway, the inertia of the upper body ensures the ZMP
(Zero Moment Point) of the robot lies within the support
polygon formed by the support foot, even thought the
centre of mass may not. This action places requires less
torque from the hip and ankle roll actuators, as the motion
due to gravity brings the robot away from the extreme of
each sway.

Once the sway is sufficient to leave no ground
reaction force on the non-supporting foot, the non-
supporting leg is lifted using the pitch axes of the hip,
knee and ankle. Between the lifting and lowering of the
non-supporting leg, each yaw axis motor twists, so that
the non-supporting leg swings forward to create the step.
When the swing leg contacts the ground, the robot is
dynamically stable, with the centre of mass over the
supporting foot in the frontal plane, but in front of the toes
in the saggital plane. The robot then swings across to the
other foot, repeating the sequence and progressing with
the walk.

5.2 Analysis of Results

The motion of the robot is best analysed by comparing the
desired velocity from the gait generation module to the
actual velocity at each joint. Figure 8 shows the
comparison for the velocities of the pitch motion of the
hip, knee and ankle. Figure 9 shows the roll of the hip and
ankle, while Figure 10 illustrates the yaw from the hip.
The graphs are initialised in the double support phase, at
the point when the robot is vertical, halfway through the
movement that transfers the centre of mass from the
supporting foot to the swing foot. Both legs are fully
extended and are in contact with the ground. The graphs
comprise one second of data, describing the right leg as it
moves from the double support phase, through the swing
phase back to the double support phase.

At the point ¢ = 0.25 s, the swing leg starts to lift
and loses contact with the ground. The support leg now
takes the weight of the whole robot. With the hip roll axis
of the swing leg no longer contributing to the support of
the robot, the spring located in this axis briefly dominates
the actual velocity causing the overdamped oscillation
seen at hip joint at this time.

Once the foot leaves the ground, it can no longer
be considered a fixed link. At this point, the ankle roll
motor switches from driving the leg from the foot, to
driving the foot from the leg. This large decrease in
relative inertia results in a brief increase in the magnitude
of the ankle roll velocity. The foot has a relatively low
inertia compared with the rest of the robot, and as such
the PI controller has little trouble following the desired

Figure 7: Frontal view of the walking process. The data in figs 9,10,11 start at the image 6 from the left, with the robot in a double

velocity until the foot again makes contact with the
ground. The robot reaches the extreme of each sway at ¢ =
0.5 s, where all motion in the roll plane ceases. The
swing leg is now theoretically fully lifted, although
Figure 8 indicates the knee and hip pitch do not reach
their desired positions until T=0.6s.
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Figure 6: This sequence of images captured 200 ms apart shows
the movement of the swing leg through a single step.

The actual joint velocity profile for each pitch
motor in the swing leg shows the effect of gravity and leg
inertia. The further the leg is actuated away from a
vertical position, the greater the influence of gravity. The
integral term in the PI controller seeks to eliminate steady
state error, and as such, dominates the actual velocity,
driving each pitch motor to its desired position. As the
motor does not reach the maximum desired velocity, it is
forced to lengthen the movement time to ensure the area
under each graph is the same. The low proportional term
results in the poor tracking of the desired velocity, but
allows the joint to better deal with external influences.

The comparison of the actual velocity with the
desired velocity for each pitch motor in the leg degrades
from the ankle to the knee to the hip. The ankle need only
accelerate the foot, whereas the knee must accelerate the
foot and lower leg. The hip pitch must accelerate the
entire leg during the swing phase.

The motion of the yaw axis as the swing leg is
lifted, propels the robot forward. When the yaw motion
occurs on the support leg, the momentum of the robot
causes the joint to overshoot its position. The swing leg is
then lowered placing the robot into a double support
phase. The friction of two feet against the ground and the
weight of the robot on the support leg, prevents the yaw
axis positional error from being resolved. This provides a
pre-loading of the joint that supports the motion of the
next of yaw swing phase.

support phase, with the left leg becoming the support leg and the right leg the swing leg.
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Figure 8: Velocities for the pitch axis of the hip, knee and ankle
of the right leg during its swing phase. The dotted line shows the
desired velocity, the solid line is the actual velocity.
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Figure 9: Velocities for the roll axis of the hip and ankle of the
right leg during its swing phase.
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Figure 10: Velocities for the yaw axis of the hip of the right leg
during its swing phase.

As the robot sways back to the other side, weight
is gradually released from the supporting foot, until the
torque acting on the joint overcomes the co-efficient of
friction between the foot and the floor. This is not
necessarily the point at which the swing leg loses contact
with the ground. By time the leg has resolved this error,
the joint is experiencing the yaw motion associated with
the swing leg twist. As a result, the area under the curve
for the hip yaw during the swing phase, is greater than the
desired area.

Contact with the ground is achieved at T=0.85s
and once made, the robot returns to the double support
phase of its gait. Both the hip and ankle of the swing leg
now assist the support leg roll motors to sway the robot
across to the other foot, and in the process gradually
switch the roles of the support and swing leg.

6 Conclusions

This paper has illustrated that a humanoid robot can walk
without the need for explicit global feedback, or tightly
controlled joint trajectories. By combining a group of
loosely coordinated control systems that use “soft” control
laws with smooth trajectory generation, the robot can use
the natural dynamics of its mechanical structure to move
through a gait pattern. The work in this paper shows
sound walking performance, that can only improve with
the augmentation of global inertial sensors and feedback
paths.
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