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Abstract

In this paper, we carry out the dynamics-based optimization of sagit-
tal gait cycles of a planar seven-link biped using the Pontryagin max-
imum principle. Special attention is devoted to the double-support
phase of the gait, during which the movement is subjected to severe
limiting conditions. In particular, due to the fact that the biped moves
as a closed kinematic chain, overactuation must be compatible with
double, non-sliding unilateral contacts with the supporting ground.
The closed chain is considered as open at front foot level. A full set
of joint coordinates is introduced to formulate a complete Hamil-
tonian dynamic model of the biped. Contact forces at the front foot
are considered as additional control variables of the stated optimal
control problem. This is restated as a state-unconstrained optimiza-
tion problem which is finally recast, using the Pontryagin maximum
principle, as a two-point boundary value problem. This final problem
is solved using a standard computing code. A gait sequence, com-
prising starting, cyclic, and stopping steps, is generated in the form
of a numerical simulation.

KEY WORDS—sagittal gait, gait optimization, Pontryagin
maximum principle

1. Introduction

Walking is an essentially unstable movement. It requires per-
fect coordination of joint actuating torques, together with ac-
curate control of ground reaction forces in order to ensure the
dynamic balance of the biped. Therefore, mastering such a
movement requires mastering its dynamics.

The most popular technique used to generate and control
a stable gait is based on the concept of “zero moment point”
(ZMP) presented in Vukobratovic et al. (1990). It was espe-
cially used in Hirai, Hirose, and Takenaka (1998), Fujimoto,
Obata, and Kawamura (1998), Inoue et al. (2000) and Löffler,
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Gienger, and Pfeiffer (2002) to control the gait of humanoid
robots walking on a level surface. The ZMP correlates the
motion dynamics with the normal contact forces exerted on
level ground. In this case, the normal forces are reducible to a
unique force applied to a point of the supporting surface where
their moment is zero. This point is the center of pressure (CoP)
which coincides with the ZMP. If the CoP–ZMP migrates to
the edge of the supporting surface (in fact the convex hull of
all supporting surfaces) the biped may be precariously bal-
anced and even lose its equilibrium. Thus, the ZMP criterion
is a rather simple and efficient means of controlling the gait
of a walking machine. However, this technique makes use of
a global dynamic model and does not allow the internal mo-
tion organization to be taken directly into account. A different
strategy, based on a control parameter optimization approach,
is presented in Kiriazov (2002). It allows for the adjusting of a
finite set of control parameters in order to satisfy output con-
ditions and minimize an energy cost. The method is applied
to the gait synthesis of a seven-link planar biped.

Another approach is to develop numerical motion gener-
ators for computing reference trajectories that are kinemati-
cally well organized and dynamically stable, respecting the
intrinsic dynamics of the biped. This idea results in extract-
ing, using an appropriate selecting criterion, a solution of the
motion equations fitting the biped capacities at best, as well
as satisfying kinematic and sthenic constraints that define a
feasible gait. In this way, a motion optimization problem is
stated whereby reference steps are generated by minimizing a
performance criterion on a double set of feasible control and
state variables. The movements generated, having improved
kinematics and dynamics, are anticipated to be easier to con-
trol and less energy-consuming.

Essentially two quite different methods have been devel-
oped to generate optimal gait trajectories. The most frequently
used approach is based on parametric optimization, whereas
the second comes within the framework of optimal control
theory. Parametric optimization techniques developed for the
purpose of motion optimization mostly rely on representing
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the joint trajectories or any equivalent set of variables as func-
tions of time defined by a finite set of discrete parameters to
be dealt with as optimization variables. The nonlinear opti-
mization problem that results can be solved by implementing
sequential quadratic programming algorithms, widely used
in the field of mathematical programming. Early attempts
to generate optimal steps of five-link bipeds using this ap-
proach were carried out in Beletskii and Chudinov (1977)
and Channon, Hopkins, and Pham (1992) using polynomial
functions defined over the whole range of time. The single-
support phase (SSP) only is considered, as in Chevallereau
and Aoustin (2001) and Plestan et al. (2003), where a sagittal
gait cycle consists of a swing phase ending with an instan-
taneous impact, this initiating the following step. In Muraro,
Chevallereau, and Aoustin (2003) a similar approach is used
to generate three different gaits of a quadruped considered as
three different bipeds by putting symmetric legs together. Un-
like for the above works, in Saidouni and Bessonnet (2003)
cubic splines connected at points uniformly distributed along
the motion time are used to generate complete optimal steps,
including a double-support phase (DSP). We can also mention
Martin and Bobrow (1999) where B-splines were used to ap-
proximate the joint trajectories of open kinematic chains. The
authors emphasized the need for using analytic gradients of
the cost functions and constraints. Accordingly, in Section 2
of this paper, we emphasize the need to use exact formula-
tion of Jacobians and gradients in order to cope with the stiff
numerical conditioning of the stated problems.

Parametric optimization is an efficient means for comput-
ing suboptimal trajectories. However, due to the fact that dis-
crete optimization variables are reduced to a finite number,
the complete fulfillment of constraints, defined over the whole
range of time, may be difficult to achieve. Besides, polyno-
mial functions may introduce undesirable oscillations of ap-
proximated functions (Visioli 2000) or jerky variations of the
same functions at connecting points (Saidouni and Bessonnet
2002).

In the second method, the optimization problem is consid-
ered as an optimal control problem to be dealt with using the
Pontryagin maximum principle (PMP). As shown in Besson-
net, Sardain, and Chessé (2002), a major interest in using
the PMP lies in its ability to account directly and exactly for
limitations and constraints affecting kinetic loads, actuating
inputs and contact forces. In a similar way, state constraints,
set in order to limit joint motions and avoid obstacles, can be
uniformly satisfied. However, the PMP is often perceived as
being computationally ineffective. It should be emphasized
that its computational effectiveness is revealed by employ-
ing Hamiltonian dynamic models (Bessonnet, Sardain, and
Chessé 2002).

A first attempt to generate optimal walk was formally car-
ried out using the PMP in Chow and Jacobson (1971). Re-
cently, in Rostami and Bessonnet (2001), the SSP of a planar
seven-link biped was optimized by considering a limited set of

independent joint coordinates. A complete cyclic step involv-
ing SSPs and DSPs of a footless five-link biped was generated
in Chessé and Bessonnet (2001).

The main objective of this work is to solve the constrained-
dynamics problem which arises during the DSP of gait, a
planar biped having human-like feet being considered. Gen-
erating this crucial phase of gait will help in the creation
of walking sequences involving starting, cyclic, decelerat-
ing, and stopping steps. Furthermore, generating SSPs with-
out impact at heel-touch will ensure the continuity of veloci-
ties throughout any gait sequence. Such an objective is aimed
at providing the local controller of the robot with reference
movements that are well coordinated, dynamically efficient,
and low on energy consumption.

The present paper extends and deepens the study presented
in Bessonnet, Chessé, and Sardain (2002). The presentation
is focused on the DSP. During this, the locomotion system
works as a planar seven-bar mechanism subjected to unilateral
contacts with its supporting base. The basic idea consists of
freeing a ground–foot contact in order, first, to deal with a full
set of configuration variables and, second, to consider contact
forces as additional actuating control variables giving direct
control over their limiting values.

In Section 2, the kinematic model of the seven-link pla-
nar model of the biped robot BIP described in Sardain, Ros-
tami, and Bessonnet (1998) and Espiau and Sardain (2000) is
thoroughly detailed. In Section 3, attention is focused on the
constrained Hamiltonian dynamic model to be dealt with in
the DSP, during which the biped moves as a closed kinematic
chain. Constraints defining a feasible step are formulated in
Section 4. In Section 5, a constrained optimization problem is
recast as a state-unconstrained optimal control problem. Ap-
plying the PMP in Section 6 allows the latter problem to be
solved as a two-point boundary value problem. Section 7 is
devoted to the presentation of numerical simulations includ-
ing generations of starting, cyclic, decelerating, and stopping
steps. Conclusions and prospects are formulated in Section 8.

2. Kinematic Model of the Planar Biped

In this section, the walking cycle of sagittal human-like gait
is described mainly for the purpose of dynamic modeling. We
can recall that, for orthopedists, the typical walk cycle is the
stride which refers to the motion cycle of either locomotion
limb. Conventionally, it goes from the foot strike of one limb
to the next foot strike of the same limb (Sutherland, Kauf-
man, and Moitoza 1994). In human locomotion, this kine-
matic scheme is perfectly appropriate for analyzing normal
and pathological walking, considering either limb during its
own cycle. A different scheme is needed to accomplish the
dynamic modeling of the gait. In this case, since the simulta-
neous driving effects of both legs must be taken into account,
the gait has to be considered as a sequence of steps. Steps can
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be executed in quite varied ways, while showing kinematic
features which are fundamentally the same. In particular, any
step is the result of linking two successive phases, kinemati-
cally quite different (Figure 1).

• The SSP, during which the locomotion system moves
as an open tree-like kinematic chain. This motion has
the greater amplitude. It goes from toe-off to heel-touch
of the foot of the swing leg.

• The DSP, during which the locomotion system is kine-
matically closed, and overactuated. It goes from heel-
touch of the front foot to toe-off of the rear foot. It can
be considered as a movement of propulsion and equi-
librium recovery. Its amplitude is less than the SSP.

It must be emphasized that the notion of closed kinemat-
ics needs to take very restricting conditions into account for
stating and dealing with dynamic models of mechanical sys-
tems having kinematic loops. These conditions are even more
constraining when considering closure statements due to uni-
lateral contacts. This is the situation in the case of the double
support of gait.

The kinematic configuration of the biped may change dur-
ing each of both above phases. In particular, the DSP com-
prises an initial heel rocker movement of the front foot fol-
lowed by foot-flat contact. The latter subphase results in the
loss of one degree of freedom with respect to the initial con-
figuration. On the other hand, in Figure 1, the whole SSP is
represented with flat contact of the stance foot. This kine-
matic choice may be considered as suitable for a mechanical
biped. However, during human gait, the stance foot rotates

about its metatarsal axis before toeing-off. This additional
joint motion generates a subphase whose kinematic configu-
ration introduces one further degree of freedom. In this case,
the joint configuration of the planar biped model changes from
six degrees of freedom to seven.

By contrast, the presence of a kinematic loop results in the
reduction of the number of degrees of freedom of the loco-
motion system: two and three degrees of freedom are lost in
the sagittal model before and after the front foot is flat on the
ground, three and six, respectively, for a three-dimensional
biped, assuming that heel contact acts as a single point on the
ground before the foot becomes flat. This double cut in the
number of degrees of freedom could suggest that the configu-
ration variables should be reduced to a set of independent joint
coordinates. Such a transformation would require expressing
the remaining joint coordinates as functions of independent
ones.As the total number of joint coordinates is large, this op-
eration would be quite involved. Furthermore, it would lead to
impractical formulations of motion equations. To avoid such
intricacy, we need to model the biped as an open kinematic
chain during the DSP.

In the course of the sequence of events SSP–DSP shown in
Figure 1, the tip of the foot located in middle position (point
Bi

1) is a fixed fulcrum about which the foot rotates (or does
not rotate in the case of the beginning of SSP) with respect
to the ground. It is then practical to consider this central foot
as the proximal linkL1 of the planar biped, and to describe
the joint motions successively (as indicated in Figure 1) for
the other foot, now labeledL7 and considered as the distal
link. Then the same set of joint coordinates (consisting, for
instance, of absolute joint rotations defined as indicated in
Figure 1) may be used to describe both SS and DS phases.
Note that the complementary sequence DSP–SSP would not
allow such a common description of the two step phases.

In the above kinematic description, it is assumed that the
kinematic loop formed by the locomotion system during the
DSP is cut at the level of ground contact of the front foot,
labeledLf6 in Figure 1. In this way, in both phases, the same
nq-order coordinate-vector, defined as

q = (q1, ..., qnq )
T , qi ≡ θi , i � nq , nq = 7, (1)

will be used to formulate the motion equations of the biped.
The step cycle is characterized by limiting postural config-

urations identified in Figure 1 by the superscripts “i” stand-
ing for initial (configuration), “t” for transition (between SSP
and DSP), and “f ” for final. The first coordinateq1 will be
assumed to remain constant during the SSP, namely

t ∈ [t i , t t ] , q1(t) = π − β, (2)

while in the DSP, the vectorq in eq. (1) is subjected to clo-
sure constraints that can be written as (see Figure 1 for the
notations)
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t ∈ [t t , t f ] ,
{
C1(q(t)) ≡ Oi

1A
t

6 · X0 − L+ � = 0 , (3)
C2(q(t)) ≡ Oi

1A
t

6 ·Y0 = 0, (4)

∈ [t t + ε, tf ] , C3(q(t)) ≡ φ(q(t)) = 0. (5)

In eq. (2),β is the angle of the foot triangle at the tip Bi6
(Figure 2).

ConstraintsC1 andC2 in eqs. (3) and (4) specify the Carte-
sian coordinates of the contact pointAt

6 of the heel of the front
foot. In eq. (3),L and� denote the step and foot lengths, re-
spectively. In eq. (5),φ represents the inclination angle of the
front foot with the ground;ε is a short duration, after which
the front foot remains flat on the ground, as specified by the
constraintC3.

In the following, constraints such as eqs. (3), (4), and
(5) will be put together in the vector-valued functionCh de-
fined as

Ch(q) = (C1(q), ..., Cnh(q))
T , (6)

wherenh is the number of closure (or holonomic) constraints
(nh = 2 or 3, above).

Moreover, the Jacobian matrix

���(q) = ∂Ch/∂q (7)

is used in the next section for deriving the Lagrange equation
of motion.

Another approach could be used to describe the closed
kinematics of the biped. Some authors, such as Azevedo,
Poignet, and Espiau (2002), Chevallereau and Aoustin (2001)
and Saidouni and Bessonnet (2003), cut all ground contacts
and consider the biped as a free system in the two-dimensional
Cartesian space. The Cartesian coordinates of the hip point are
added to the seven joint coordinates to describe the biped mo-
tions. Two or three further closure conditions formulated at
the rear foot level are added to the above constraints (2)–(5).
The main interest of this description lies in the fact that it al-
lows the formulation of motion equations to be identical for

the two step phases. Nevertheless, the approach described be-
low leads to a less constrained problem that is also simpler to
formulate.

Absolute joint coordinates defined in Figure 1 lead to
the formulation of a concise dynamic model. No three-
dimensional model of the biped would benefit from this sim-
pler description. In this case, introducing a set of relative
joint coordinates, defined for instance using the well-known
Denavit–Hartenberg construction, becomes necessary.

3. Constrained Dynamic Model

As we want to formulate motion equations using a full set of
dependent configuration variables, this approach will result
in proposing a constrained dynamic model. Moreover, as we
intend to implement the PMP, a state equation formulated in
state space form is required. Special attention is devoted to
both the above dynamic modeling aspects in the following
subsections.

3.1. Basic Dynamic Formulation

As stated in Section 2, in both motion phases the biped is as-
sumed to be an open kinematic chain, the front foot contact
being explicitly specified through closure constraints. This
kinematic description results in stating a Lagrangian dynamic
model with Lagrange multipliers, subjected to geometric clo-
sure conditions, i.e., holonomic constraints. Lagrange equa-
tions may be formulated as the generalnq-vector equation

M (q)q̈ + C(q, q̇)+ G(q) = D (q, q̇)+ Bτττ +���T (q)λλλ,
(8)

whereM is the biped mass-matrix,C contains centrifugal
and Coriolis inertia terms,G and D represent gravity and
dissipative terms, respectively,τττ is thenq-vector of actuating
joint torques, defined asτττ = (0, τ2, ..., τnq )

T (τ1 = 0 means
that, unlike the human foot, the tip of the foot is not actuated),
λλλ is the Lagrangenh-vector multiplier associated to holonomic
constraintsCh, andB is a matrix that depends on the choice
of joint coordinates.

Equation (8) is the basic dynamic model we need to begin
with. In fact, this equation cannot be dissociated from con-
straints (6) (or, equivalently, constraints (3)–(5)). This double
system of relationships is a set of differential-algebraic equa-
tions. As discussed in Chessé and Bessonnet (2001) it needs
to be especially adapted for implementing the PMP. With this
aim in view, a first requirement is to restate the Lagrange
equations in Hamiltonian form.

3.2. Hamiltonian Dynamic Model

Hamiltonian formalism is not in widespread use in the field
of multibody system dynamics. Nevertheless, as shown in
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Bessonnet, Sardain, and Chessé (2002), a dynamic state equa-
tion formulated in Hamiltonian canonic variables has a math-
ematical structure that is perfectly appropriate for implement-
ing the PMP, that is to say for deriving the necessary optimality
conditions stated by the maximum principle itself.

The reader is referred to Bessonnet, Sardain, and Chessé
(2002) for specific statements related to Hamiltonian dynamic
equations. In brief, we can recall that they are derived from
the Lagrange equations by means of a change of variables that
consists of substituting the conjugate momentump = ∂T /∂q̇
(the Legendre transformation, whereT is the kinetic energy
of the mechanical system) for the Lagrangian velocityq̇. Then
it can be shown (Bessonnet, Sardain, and Chessé 2002) that
the Lagrangian vector-equation (8) splits up into twonq-order
subsystems solved in the Hamiltonian phase velocities(q̇, ṗ)
as follows{

q̇ = M−1(q)p ≡ g(q,p),

ṗ = 1/2gTM ,qg − G(q)+ D(q,g(q,p))+BτBτBτ +���T (q)λλλ,
(9)

whereM ,q ≡ ∂M/∂q.
At this point, two types of variables must be identified, as

follows.

• The state variables of the controlled mechanical system,
which are simply the Hamiltonian phase variables (or
canonic variables)q andp that we put together in the
2nq-vectorx such asxT = (qT ,pT ).

• The control variables, which are the joint actuating
torques. However, the multiplierλλλ represents efforts to
be applied to the front foot in order to hold this foot in its
specified ground-contact position. Thus, it is possible
to add the components ofλλλ as complementary control
variables. In this way, we are able to exert direct con-
trol over the contact forces. These must obey specific
conditions, as stated in Section 4.3. Consequently, we
define the control vector on each phases by setting

t ∈ [t i , t t ] , ū(t) = τττ(t) (10)

t ∈ [t t , t f ] , u (t)T = ( τττ (t)T , λλλ(t)T ). (11)

Equations (9) may be then restated on the first interval of
time as the 2nq-order differential equation

t ∈ [t i , t t ], ẋ(t) = f̄ (x(t))+ B ū(t) ≡ F̄(x(t), ū(t)), (12)

while, on the second, we have to deal with the differential-
algebraic system

t ∈ [t t , t f ],




ẋ(t) = f (x(t))+ B∗(x(t))u (t)

≡ F (x(t),u (t)), (13)

Ch(x(t)) = 0, (14)

whereB∗(x) ≡ (B,���T (x)).
Both state equations (12) and (13) have the required form to

implement the PMP. We emphasize the fact that the Jacobian
matrix ∂F/∂x of F in eq. (13) must be derived exactly, in
order to benefit from accurate computation of the associated
adjoint system (45). This results from the implementation of
the PMP, as shown below.

4. Defining a Feasible Step

Any feasible step obeys some specified conditions and limits
the way we define a realistic gait which the biped will be able
to execute efficiently and control safely. Such specifications
defined on the step cycle may be instantaneous or continuous.
Also, they can apply to phase variables, as well as to control
inputs.

The first basic data to be introduced are the walk speeds,
V . The step length,L, may be specified or optimized versus
V . In any case, the step cycle timeT = t f − t i is defined by
the relationshipT = L/V . Moreover, settingTSS = t t − t i

andTDS = t f − t t , we consider that the DSP time represents
about 0.15%–0.25% of the cycle time as observed in human
walking, i.e.,

TDS = T − TSS = k T ,0.15 � k � 0.25.

4.1. Transition Constraints

These are instantaneous constraints that characterize or define
transition postural configurations between the step phases. In
Figure 1, the SSP–DSP cycle is depicted by three limiting
configurations identified using superscriptsi, t , andf , as al-
ready mentioned in Section 2. The step pattern is essentially
defined by feet and hip positions and velocities at transition
timest i , t t , andt f .

At initial time t i , the position and velocity of the tip Bi6 of
the rear foot at toe-off must satisfy

OBi

6 = −Li X0,V(B
i

6) = 0 (15)

whereLi is the initial step length, whileV is the velocity
vector.

It can be noted that many authors take into account heel-
strike and introduce an equation of impact at transition be-
tween successive steps (see, for example, Channon, Hopkins,
and Pham 1992; Chevallereau andAoustin 2001; Plestan et al.
2003). This means that velocities are discontinuous and sub-
jected to instantaneous jumps from one step to the other. Such
a condition implies that accelerations have infinite jumps. At
transition timet t , this situation is avoided here, since we spec-
ify, as advocated in Blajer and Schiehlen (1992), impactless
heel-touch at point At6 in order to prevent destabilizing effects
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on the motion control of the biped. Conditions to be satisfied
are similar to constraints (15), namely

OAt

6 = (Lf − �)X0, V(A t

6) = 0, (16)

whereLf is the final step length, and� is the foot length.
At final time t f , the front foot being considered as flat on

the ground, we must have

OOf

6 = OOi

6 + LfX0, V(Of

6 ) = 0. (17)

Projecting the above six vector-relationships on ortho-
normalized base vectorsX0 andY0 yields scalar relationships,
which we write formally as

k � ntc ,



Ci
k
(xL(t i)) = 0, (18)

Ct
k
(xL(t t )) = 0, (19)

C
f

k (xL(t
f )) = 0, (20)

wherexL is the vector of the Lagrange phase variables,xT
L

=
(qT , q̇T ), andntc is here equal to 4.

If the step is cyclic, firstLf = Li = L and, secondly,
xL(tf ) must be identified toxL(t i), given that the legs are
switched. Using the joint coordinate representation in Fig-
ure 1, correlations betweenxL(tf ) andxL(t i) result from ex-
changing initial and final coordinates as follows

q
f

1 = qi6 + γ + π , q
f

2 = qi5 + π , q
f

3 = qi4 + π

q
f

4 = qi3 − π , q
f

5 = qi2 − π , q
f

6 = −β − γ , q
f

7 = qi7
(21)

and swapping the joint velocities according to the scheme

k � 5 , q̇
f

k = q̇ i7−k , q̇
f

6 = 0 , q̇f7 = q̇ i7. (22)

Let us note that the relationships in eq. (22) appear sim-
ply as the derivatives of relationships (21). Moreover, in that
case, due to eqs. (21) and (22), constraints (20) are ipso facto
satisfied.

Further conditions must be added to constraints (18)–(20)
in order to ensure step feasibility. We have a choice between
two approaches. The first approach would be to limit the val-
ues of key factors such as position and velocity of hip joint,
inclination, and rotation rate of the trunk, and feet at toe-off
and heel-touch. Such an approach would allow the transition
statesxL(t i), xL(t t ), andxL(tf ) to be optimized while account-
ing for constraints (18)–(20). A simpler approach would be to
specify the above factors as follows (see Figures 1 and 2 for
notations and symbols)

k = i, t, f




OOk

4 ·X0 = Xk
4 , OOk

4 · Y0 = Y k4

V(Ok

4) ·X0 = V k
4X , V(Ok

4) · Y0 = V k
4Y

qk7
∼= π/2 , q̇k7 ∼= 0

(23)

qi6 = δi6 − γ − π , q̇i6 = ω i
6

qt6 = φt6 + α − π , q̇t6
∼= 0

q
f

1 = δ
f

1 , q̇
f

1 = ω
f

1

(24)

where quantities in the right-hand terms denote given values.
The symbol “∼=” means that these values might be slightly
different from indicated ones. Then, relationships (18)–(20)
can be solved inxL(t i), xL(t t ), andxL(tf ). In this way, tran-
sition states are known and considered as simple boundary
value conditions. In Section 7, numerical simulations are per-
formed using this approach.

4.2. State Constraints

As for any human movement or robot motion, joint trajec-
tories of walking machines must be subjected to a limited
range in order to avoid unfeasible movements, such as joint
counter-flexion, or ground and obstacle collisions. Such nec-
essary constraints cannot be omitted. They involve joint coor-
dinates and velocities considered throughout the cycle time.
Considering relative joint coordinates defined as (Figure 1)

ϕ1 = θ1, ϕi = θi − θi−1 , i = 2, ..., nq,

joint motion limitations and counter-flexing avoidance at knee
and ankle level must be taken into account by setting

t ∈ [t i , tf ] ,



ϕ min

5 � ϕ 5(t) � 0

−γ � ϕ 6(t) � 0

0 � ϕ 3(t) � ϕ max
3

. (25)

The first two double inequalities relate to the knee and
ankle of the swing leg. The third refers to the knee of the
stance leg, which becomes the rear leg during the DSP. We
can rewrite the six above inequalities in the generic form

t ∈ [t i , tf ] , CS

j
(x(t)) � 0 , j = 1, ...,6. (26)

Let us note that joint velocities could be moderated using
similar inequalities.

Further constraints must be stated to enable swing foot
clearance from the ground, and stepping over an obstacle, if
needed. In Figure 3, bell-shaped curves are used to define ex-
clusion zones from which the foot must be removed upwards.

The lower curve may be used for specifying foot clearance,
and the upper one for obstacle avoidance. This approach was
first introduced in Rostami and Bessonnet (2001). Here, we
use a simpler algebraic description of the curve by considering
the fourth-order polynomial function

x ∈ [a, b] , f (x) = h

(
(x − a)(b − x)

(c − a)(b − c)

)2

wherea andb represent the abscissa of points situated be-
tween, or coinciding with, the toe-off point Bi6 and the heel-
touch point At6. The functionf satisfies obviouslyf (a) =
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Fig. 3. Foot clearance and obstacle avoidance.

f (b) = 0, f (c) = h, f ′(a) = f ′(b) = 0, andf ′(c) = 0,
provided thatc = (a + b)/2. Therefore,h defines the maxi-
mum clearance height. This need only be a few centimeters for
walking on level ground. Foot clearance is considered to be
effective if the foot sole remains clear of the curve. Fulfillment
of this condition by sole ends A and B may be sufficient to
prevent any ground collision. Using the notations in Figure 3,
such a condition is expressed by the set of inequalities

f (xA)− yA � 0, f (xB)− yB � 0

wherexA, xB , yA, andyB must be formulated as functions of
the state variables, reduced here to the joint coordinates. It is
then possible to restate the above constraints in a form similar
to eq. (21), i.e.,

t ∈ [t i , t t ] , CS

j
(x(t)) � 0 , j = 7,8. (27)

A third constraint formulated for the middle point of the
sole might be added to improve the fulfillment of clearance
condition.

4.3. Sthenic Constraints

We use the term sthenic constraints (sthenic is from Greek
sthenos meaning “force”), for restrictions formulated on ac-
tive and passive interacting forces that are at work and at stake
in the kinematic chain. First, technological limitations of ac-
tuators need to keep actuating torques within limits such that

t ∈ [t i , tf ] , τmin
i

� τi(t) (≡ ui(t)) � τmax
i
, i = 2, ...,7.

(28)

Secondly, contact forces between the biped and the ground
must satisfy unilaterality of contact together with non-sliding
conditions. Figure 4 shows a way of representing such forces
according to whether the foot exerts a single point contact or
lies flat on the ground.

At front foot level, the equivalence between these forces
and the Lagrange multipliers appearing in eq. (7), and corre-
lated to closure constraints (3)–(5), is as follows

(λ1, λ2, λ3) = (TAB6
, NA6

+NB6
, �NB6

) (29)

whereNB6
= 0 for t ∈ [t t , t t + ε] .

6ABT

6BN
6AN

t
6O

t
6A

t
6B

t
6f

Fig. 4. System of two and three forces exerted on the front
foot, equivalent to the ground contact forces. The dotted-line
vector NB6

is applied only after the foot is flat on the ground,
thenφt6 = 0.

Contact constraints to be fulfilled at front foot level are

t ∈ [t t , t t + ε] , NA6
> 0 ,

∣∣ TAB6

∣∣ < fNA6
(30)

t ∈ [t t + ε, tf ] , NA6
> 0 , NB6

> 0,∣∣ TAB6

∣∣ < f (NA6
+NB6

). (31)

In eqs. (30) and (31), positivity of normal forces means that
the contact is unilateral. Non-sliding conditions are expressed
by the remaining inequalities wheref denotes a dry-friction
coefficient between the foot sole and the ground.

As suggested by eq. (11), if we set(λ1, λ2, λ3) =
(u8, u9, u10), constraints equivalent to non-sliding conditions
in eqs. (30) and (31), in terms of complementary control vari-
ablesui , may be written as

t ∈ [t t , t t + ε] ,
{

0< u9(t)

| u8(t)| < fu9(t)
(32)

t ∈ [t t + ε, tf ] ,
{

0< u10(t) < � u9(t)

| u8(t)| < f u9(t)
. (33)

Constraints similar to eqs. (30) and (31) must be fulfilled
at stance foot level during the SSP, and at rear foot of the DSP.

5. Stating a State-Unconstrained
Optimal-Control Problem

Stating the dynamics-based optimization problem we have in
mind involves all constraints formulated above, including the
motion equation. The performance criterion to be minimized
is the essential statement remaining to be formulated.

5.1. Performance Criterion

Generating an optimal movement is fundamentally based on
minimizing the amount of effort or energy required to create
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the motion.The energy criterion presents some disadvantages.
First, resulting optimal actuating torques have discontinuous
variations of bang-zero-bang type (see, for example, Lewis
and Syrmos 1995). The consequences would be movements
executed with repeated backlashes on the joint axis.This could
have destabilizing effects on the biped control. Secondly, due
to the abovementioned discontinuities, the problem is non-
smooth and cannot be solved satisfactorily. A performance
criterion, defined as the integral quadratic amount of driving
torquesτi and reaction forcesλj , represents a suitable choice
for dealing with optimal dynamics of jointed multibody sys-
tems which have closed kinematics. Thus, we consider the
double criterion (with notations from eqs. (10) and (11))

JSS(ū) = 1

2

t t∫
t i

ū(t)TDūū (t) dt ≡ 1

2

t t∫
t i

τττ (t)TDττττ (t) dt

(34)

JDS(u) = 1

2

tf∫
t t

u (t)Du u (t)dt

≡ 1

2

tf∫
t t

(τττ (t)TDττττ (t)+ λλλ(t)TDλλλλ(t)) dt. (35)

In eqs. (34) and (35),Dτ andDλ,or equivalentlyDū andDu,
are diagonal weighting matrices. Initially, only unity matrices
are considered. Then, if we want the optimization process to
give more (less) input to torquesτ i , or interacting forcesλj ,
the corresponding weighting coefficients will be set at val-
ues smaller (greater) than unity. The effect expected can only
be revealed by carrying out numerical tests. Values between
0.5 and 2 could be sufficient for producing results showing
significant differences.

Minimizing the quadratic values of actuating torques en-
sures their continuity. Moreover, the biped being essentially
subjected to gravity forces, such a criterion will favor upright
walking patterns which require little effort to support the biped
weight. The quadratic term inλ is aimed at minimizing antag-
onistic forces, especially sliding forces, which might appear
in the locomotion system during the DSP.

Bounds introduced in eq. (28) on control variablesτi(i �
nτ = 7) define, during the SSP, a set of feasible values, which
is a parallelepiped in annτ -dimensional Euclidian space. We
will denote this feasible set as̄U . During the DSP, bounds
(28) together with constraints (32) and (33) prescribed for
complementary control variablesu7+j ≡ λj(j � nλ, nλ =
2 or 3) define, in an(nτ + nλ)-dimensional Euclidian space,
a set with polyhedral geometry which has right and oblique
faces. It is a time-dependent convex polytope in which the
above criterion (35) must be minimized. We will label this
feasible setU(t), in which optimal controlu has to be found
during the DSP.

5.2. State-Unconstrained Optimal-Control Problem

Dealing directly with state inequality constraints such as
eqs. (26) and (27), using the PMP, leads to quite involved
non-smooth optimal conditions (Pontryagin et al. 1962; Ioffe
and Tihomirov 1979) that make the optimal control prob-
lem practically unsolvable. An alternative approach is to im-
plement a penalty technique. This resembles methods used
to solve mathematical programming problems. An exterior
penalty method, as used in Chessé and Bessonnet (2001) and
Bessonnet, Chessé, and Sardain (2002), is easy to implement,
and proved to be computationally efficient. It consists of min-
imizing the integral amount of the constraints wherever they
are an infringement. To that end, let us group together in-
equality state constraints (26) and (27) in the vector-valued
functionCS(x (t)) such that

CS = (CS

1 , ..., C
S

nS
)T , (nS � 8).

Then, setting

t ∈ [t i , tf ] , CS+
i
(x(t)) = Max(0, CS

i
(x(t))) ;

CS+ = (CS+
1 , ..., CS+

nS
)T ,

we define the quadratic penalty functionψS such that

ψS(x) = 1
2
[CS+(x)]TDSCS+(x). (36)

Moreover, we deal with state equality constraints (14) us-
ing a similar approach, by introducing the second penalty
function

t ∈ [t t , t f ] , ψh(x(t)) = 1
2
[Ch(x(t))]T Dh Ch(x(t)). (37)

In eqs. (36) and (37),DS andDh denote diagonal weighting
matrices. Both of the above functions will be minimized by
considering the augmented criteria

J ∗
SS
(ū) = JSS(ū)+ rS

tf∫
t i

ψS(x(t)) dt (38)

J ∗
DS
(u) = JDS(u)+

tf∫
t t

[rSψS(x(t))+ rhψh(x(t))] dt (39)

whererS andrh are penalty factors. In theory, it can be shown
that penalty functions vanish through the minimization of the
cost function when penalty factors tend towards infinity (Lele
and Jacobson 1969). In fact, reasonably high given values
will enable the penalty functions to have negligible residual
values. The reader is referred to the beginning of Section 7
for numerical examples.

At this point, the state-unconstrained optimal-control prob-
lem we intend to solve can be summarized as follows

for rS great,

{
minimize

ū∈Ū
J ∗
SS
(ū), (40)

andrh great, minimize
u∈U(t)

J ∗
DS
(u), (41)
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while satisfying the state equations

t ∈ [t i , t t ] , ẋ(t) = F̄(x(t), ū(t)), (42)

t ∈ [t t , t f ] , ẋ(t) = F(x(t),u(t)), (43)

together with either the boundary constraints

k = 1, ..., 4



Ci
k
(xL(t i)) = 0

Ct
k
(xL(t t )) = 0

C
f

k (xL(t
f )) = 0

(44)

or the boundary conditions


xL(t i) = xi
L

xL(t t ) = xt
L

xL(tf ) = xfL
. (45)

In the latter case,xi
L
, xt

L
, andxfL denote given values.

As we want to optimize both step phases separately, the
above problem will be split into two independent optimization
problems set on the intervals of time[t i , t t ] and[t t , t f ] of the
SSP and DSP of the gait, respectively.

6. Solving a Two-Point Boundary Value Problem

The presentation is focused on the DSP which adds to the char-
acteristics of the SSP, quite restrictive geometric and sthenic
closure conditions. Nevertheless, both problems as stated in
eqs. (40), (41) and (42), (43), each being completed with con-
ditions (44) or (45), are formally identical. Indeed, differences
between the two problems, due to additional terms appearing
in the second, expand when deriving necessary conditions of
optimality stated by the PMP.

The reader is referred to textbooks and monographs such
as Pontryagin et al. (1962), Ioffe and Tihomirov (1979), and
Lewis and Syrmos (1995) for details concerning the formula-
tion of the PMP. In fact, as the final optimal control problem
we have to deal with is unconstrained in the state, optimality
conditions are formally quite easy to derive.

We assume that constraints (44) are solved in the state
xL through relationships (21)–(24). Therefore, we take only
boundary conditions (44) into consideration. In this way, the
optimization problem to be solved consists of determining a
state vector-functiont → x(t) and a control vector-function
t → u(t) ∈ U(t) minimizing the augmented criterion (41),
while satisfying the state equation (43) together with the
boundary conditions (45).

Setting

L(x,u) = uTDuu + rSψS(x)+ rhψh(x)

for the Lagrangian of criterionJ ∗
DS

in eq. (39), and defining
the Hamiltonian function

w ∈ �nq , H(x, u, w) = wTF(x, u)− L(x, u),

the PMP states that, ift → (x(t),u(t)) is a solution of
eqs. (42), (43), and (45), then a 2nq-vector adjoint function
t → w(t) exists such thatt → (x(t),u(t),w(t)) satisfies the
adjoint equation

t ∈ [t t , t f ] , ẇ(t) = −(∂H/∂ x)T

≡ −(∂F/∂x)Tw + (∂L/∂x)T (46)

and the maximality condition of the Hamiltonian

t ∈ [t t , t f ] , H(x(t),u (t),w(t)) = Max
v∈U(t)

H(x(t), v,w(t)).

(47)

Condition (47) plays a key role in dealing with the control
vectoru. It allowsu to be expressed, at every timet , as a func-
tion of both the state and the co-state vector variablesx and
w, that isu(t) = U(x(t),w(t)). Substituting this expression
for u in state and co-state equations (43) and (46) yields the
4nq-order differential system

t ∈ [t t , t f ] ,
{

ẋ(t) = F∗(x(t),w(t))
ẇ(t) = G∗(x(t),w(t))

, (48)

in which the state variablex must satisfy the 4nq end
conditions {

x(t t ) = xt

x(tf ) = xf
(49)

derived from eq. (45).
The two-point boundary value problem (48), (49) can be

solved using existing algorithms. The numerical techniques
we use are described in Bessonnet, Sardain, and Chessé
(2002). The method involves solving the problem in two
stages. In the first stage, we are searching for a guess solution
by implementing an easy-to-use shooting method described
in Bryson and Ho (1975), and based on the construction of a
transition matrix algorithm. As this technique lacks numeri-
cal robustness, the problem is solved with null penalty factors
rS and rh, these giving rise to some stiff numerical condi-
tioning. In the second stage, the problem is solved iteratively
for increasing values ofrS andrh using the routine D02RAF
of the NAG FORTRAN Library, which implements a finite-
difference algorithm. This computing code is quite efficient,
and withstands sufficiently high values of penalty factors for
having non-significant final residual values of both penalty
functions.

7. Generating an Optimal Walking Sequence

In this section we present results concerning the construc-
tion of a walking sequence on level ground. This comprises
starting, cyclic, decelerating, and stopping steps. Computa-
tions were carried out on the basis of numerical data given in
Table 1. These data represent the mechanical characteristics
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Table 1. Mechanical Design Parameters of the Biped BIP (Figure 5)

Link Li L1 L2 L3 L4 L5 L6 L7

Lengthri (m) 0.188 0.410 0.410 0.410 0.410 0.290 0.146
Massmi (kg) 2.340 6.110 10.900 10.900 6.110 2.340 66.110
ai (m) 0.143 0.258 0.250 0.160 0.152 0.045 0.391
bi (m) 0.042 0.028 0.005 –0.005 –0.028 –0.042 0.029
Ii (m2kg) 0.100 0.690 1.310 1.020 0.720 0.070 18.990

Centers of gravity are defined by setting OiGi = aixi + biyi (Figure 1),xi = OiOi+1/ri , yi = z0 × xi . Ii refers to the moment
of inertia of link Li about Oi .

Fig. 5. The biped BIP and its locomotion system: 15 degrees
of freedom, 1.8 m, 107 kg (LMS, University of Poitiers, and
INRIA- R.A., France).

of the biped BIP (Figure 5) when considered to be moving
in its sagittal plane. A cyclic step is first presented because
its transition kinematic characteristics are required to define
starting and stopping steps.

Penalty factorsrS andrh introduced in eqs. (38) and (39)
were set at 150. It should be noted that the residual distance
from the position of pointAt6 computed on the basis of closure
constraints (3) and (4) to its assigned position never exceeds
0.3 mm.

7.1. Cyclic Step

A purely cyclic step is defined (as described in Section 4.1) by
conditions (18) and (19), together with the swapping relation-
ships (21) and (22) at the end of the cycle. Such conditions
need some complementary data. Walk speed is the most sig-
nificant one. In the simulation presented here, it is equal to
0.75 m s−1 (2.7 km h−1), which represents a fairly fast walk.
After a few numerical tests, the corresponding step length was
set at 0.5 m, while the motion time of the DSP was set at 0.25%
of the total cycle time.

A stick diagram of the optimal motion is shown in Figure 6.
The gait pattern has particular characteristics. First, the legs

(DSP) (SSP)

Fig. 6. Cyclic optimal step (sagittal DSP and SSP) of the
biped BIP.

are slightly flexed in order for the foot of the stance leg to
remain flat on the ground during the whole swing phase. Sec-
ondly, at the end of the swing phase, heel-touch takes place
without impact. These two specific features are expected to
ensure safer control of gait.

In Figure 7, actuating torques show few variations and re-
main at fairly moderate values (Tij is the torque exerted by
link Li (i = 2, . . . ,7) on linkLj(j = 1, . . . ,6)). Although
the ground contact conditions represent very restrictive con-
straints, time charts of ground interaction forces in Figure 8
show they are perfectly fulfilled. During both phases, all nor-
mal components of the contact forces are positive. Moreover,
normal components NB1 and NA6B6 (NA6B6 is a short no-
tation for NA6+NB6) during the double support, and normal
components NA6 and NB6 during the single support, cross
each other during their respective phases. This indicates that
there is a steady transfer of the biped weight forward. Note also
that the horizontal components, TAB1 and TAB6, never ex-
ceed 20% of normal ones. Therefore, little grip on the ground
is needed to avoid sliding. It can be seen also that, at the begin-
ning of the double support, the biped lifts its weight off the
ground. Conversely, at the beginning of the single support,
there is an increase in the normal supporting force as the hip
rises.

In Figure 9, note that the seventh joint velocity V(L6/gd),
referring to the rotation rate of link L6 versus the ground, is
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plotted during the single support in order to ensure its contin-
uation after the double support. However, in the former case,
this rotation rate has to be seen as the linear combination of
other joint velocities, i.e.,

V(L6/gd) = V(L6/L5) + V(L5/L4) + V(L4/L7) + V(L7/L3) +
V(L3/L2) + V(L2/L1) + V(L1/gd).

During the single support, V(L1/gd) = 0. Therefore, using
the notations in Figure 8, we arrive in the end at

V(L6/gd) = V(L2/L1) + V(L3/L2) + V(L7/L3) – V(L7/L4) –
V(L4/L5) – V(L5/L6).

Joint velocities are continuous at transition between both
phases. Nevertheless, the joint velocity at the ankle of the
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Fig. 9. Time charts of joint velocities.

front foot (labeled V(L2/L1)) has sharp transitional varia-
tions between double and single supports. Such variations are
transmitted to V(L6/gd) as defined above through the term
V(L2/L1).

7.2. Starting Step

At starting time, the biped is standing with its heels together. It
performs half a step forward (Figure 10). Its final state initiates
directly the cyclic step, described immediately above. Thus,
the specified walking velocity (0.75 m s−1) is reached at hip
level at the end of the step. This condition requires significant
actuating torques at ankle and knee level of the stance leg, as
shown in Figure 11. As a consequence, the stance foot exerts
a strong impulse on the ground at the beginning of the step
(Figure 12). As observed during the cyclic step, the crossed
variations of normal forces, labeled NA1 and NA2, indicate
that there is a quite regular transfer of the biped weight toward
the tip of the foot.

7.3. Stopping Step

The biped slackens its pace slightly during the double sup-
port (Figure 13) and stops at the end of the forward half sin-
gle support (Figure 14). Variations of joint actuating torques
(Figure 15) and ground contact forces (Figure 16) are quite
similar to their counterparts shown during the double support
of the cyclic step.

The ending movement (Figure 14) is initiated using the
final state of the previous DSP, where hip velocity was set
at 0.65 m s−1 (reduced from 0.75). The biped stops with feet
put together flat on the ground. The deceleration is fast. Cor-
relatively, actuating torques exerted at ankle and knee of the
stance leg take important values at beginning and end of the
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Fig. 10. Starting step initiating a cyclic step.
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Fig. 11. Time charts of actuating torques.
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Fig. 12. Time charts of ground–foot contact forces.

Fig. 13. Decelerating DSP.

Fig. 14. Stopping SSP.
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movement (Figure 17). Similarly, the normal ground reaction
force (Figure 18) shows high values at the same moments as
above. We can see that the system of two forces NA1 and NA2
applied at the ends of the sole, and equivalent to uniformly
distributed normal interaction forces, ends with values close
to each other. This result shows that the biped is statically well
balanced after stopping.

The four motions described above are assembled in the
walking sequence shown in Figure 19. We can observe that
the trunk leans forward slightly, especially during the cyclic
and stopping steps.
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Fig. 18. Time charts of ground–foot contact forces.

Fig. 19. Optimal walking sequence comprising starting,
cyclic, and stopping steps.

7.4. Energetic Cost

The energy expended during each elementary movement was
computed using

E =
t2∫

t1

7∑
i=2

|ϕ̇i(t)τi(t)| dt

wheret1 andt2 are some initial and final times.
The energetic cost of the cyclic step amounts to 205.8 J

(96.3 J for the only DSP). The starting step requires 81.9 J.
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The stopping step needs 112.1 and 105.1 J during the dou-
ble support and single support, respectively. Thus, the total
amount of energy expended to create the walking sequence
shown in Figure 18 is equal to 504.9 J. In addition, the power
required to perform a steady walk generated on the basis of
the cyclic step, amounts to 307 W. The above energetic ex-
penditure is greater than its human counterpart during normal
gait. In fact, the gait generated is not really human-like. In
particular, the biped keeps its knees flexed in order to main-
tain its stance foot flat on the ground during swing phases. In
human gait, the heel of the stance foot lifts up before the end
of such phases, making the transition towards the next dou-
ble support smoother. Moreover, as heel-touch takes place
without impact, the biped must tightly control its swing leg
at the end of the single support. On the other hand, a good
means of lowering the energetic expenditure, and making the
movement smooth, would be to optimize the transition states
linking two successive phases. This is future work.

8. Concluding Remarks

Legged-locomotion systems perform as time-varying me-
chanical structures and obey quite restrictive constraints. In
this respect, two specific aspects of gait require particular
attention. First, there is the unilaterality of ground–foot con-
tacts, which affects the biped equilibrium and strictly limits
the set of feasible solutions. Secondly, during the DSP of
bipedal gait, the biped moves as a closed-loop kinematic sys-
tem. In that case, for any joint trajectories, there is a continuum
of solutions in terms of joint actuating torques. This indeter-
minacy could yield inappropriate distribution of actuating in-
puts in the locomotion system. It could then be the cause of
antagonistic forces exerted between legs. The most likely con-
sequence of this would be contact loss and sliding. The paper
is especially focused on this particular phase of gait. The ap-
proach developed involves opening the closed loop at ground
contact level in order to formulate a simple dynamic model
and to obtain direct control over the contact forces. Indeed,
the latter, especially horizontal grip forces, are considered as
complementary control variables. This helps the process of
finding optimal inputs directly compatible with non-sliding
conditions. Closure conditions are taken into account simply
through the minimization of a penalty function. In this way,
the problem stated for generating optimal DSPs is formally
quite similar to their SSP counterparts.

The approach presented may be completed considering
various aspects of the optimization problem. First, postural
configurations of the biped at transition between successive
phases could be optimized in order to obtain smoother and less
energy-consuming gait cycles. Secondly, dividing the SSP
into two subphases in order to allow the stance foot to rotate
about its tiptoe axis before heel-touch of the swing foot would
contribute to smooth the transition from single support to dou-

ble support. Thirdly, gait cycles could be globally optimized.
In this case, necessary optimality conditions stated using the
PMP would lead to anN -point boundary value problem with
N � 3.

Generating three-dimensional gait is not basically differ-
ent from generating sagittal gait. However, due to the greater
kinematic complexity, stating the optimization problem would
require a great deal of effort. Furthermore, solving algorithms
could be quite sensitive to this greater complexity. Neverthe-
less, lateral movements of three-dimensional bipeds have lim-
ited range with smooth variations during normal gait. For this
reason, the numerical conditioning of stated problems might
be only moderately modified.

Finally, a good challenge would be to generate optimal
steps using updated constraints at every time in order to ac-
count for external disturbances. In other words, the optimiza-
tion problem would be stated and solved at current timet

with updated constraints to generate the finishing step. Solv-
ing such a problem in real time, as is required, seems beyond
the reach of current algorithms and computers. However, if
constraint disturbances are not too stiff, the solution att+ δt
will be very close to the solution at timet . The latter could be
efficiently used to initiate and obtain a rapid numerical con-
vergence toward the new solution att+ δt, and so on. Such an
approach would be useful to generate and control unsteady
gait of biped robots walking in a fluctuating environment.
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