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Abstract

In this paper, we carry out the dynamics-based optimi zation of sagit-
tal gait cyclesof aplanar seven-link biped using the Pontryagin max-
imum principle. Special attention is devoted to the double-support
phase of the gait, during which the movement is subjected to severe
limiting conditions. In particular, dueto thefact that the biped moves
as a closed kinematic chain, overactuation must be compatible with
double, non-dliding unilateral contacts with the supporting ground.
The closed chain is considered as open at front foot level. A full set
of joint coordinates is introduced to formulate a complete Hamil-
tonian dynamic model of the biped. Contact forces at the front foot
are considered as additional control variables of the stated optimal
control problem. Thisisrestated as a state-unconstrained optimiza-
tion problem which isfinally recast, using the Pontryagin maximum
principle, asatwo-point boundary value problem. Thisfinal problem
is solved using a standard computing code. A gait sequence, com-
prising starting, cyclic, and stopping steps, is generated in the form
of a numerical simulation.

KEY WORDS—sagittal gait, gait optimization, Pontryagin

maximum principle

1. Introduction

Optimal Gait
Synthesis of a
Seven-Link
Planar Biped

Gienger, and Pfeiffer (2002) to control the gait of humanoid
robots walking on a level surface. The ZMP correlates the
motion dynamics with the normal contact forces exerted on
level ground. In this case, the normal forces are reducible to a
unique force applied to a point of the supporting surface where
theirmomentis zero. This pointis the center of pressure (CoP)
which coincides with the ZMP. If the CoP—ZMP migrates to
the edge of the supporting surface (in fact the convex hull of
all supporting surfaces) the biped may be precariously bal-
anced and even lose its equilibrium. Thus, the ZMP criterion
is a rather simple and efficient means of controlling the gait
of a walking machine. However, this technique makes use of
a global dynamic model and does not allow the internal mo-
tion organization to be taken directly into account. A different
strategy, based on a control parameter optimization approach,
is presented in Kiriazov (2002). It allows for the adjusting of a
finite set of control parameters in order to satisfy output con-
ditions and minimize an energy cost. The method is applied
to the gait synthesis of a seven-link planar biped.

Another approach is to develop numerical motion gener-
ators for computing reference trajectories that are kinemati-
cally well organized and dynamically stable, respecting the
intrinsic dynamics of the biped. This idea results in extract-
ing, using an appropriate selecting criterion, a solution of the
motion equations fitting the biped capacities at best, as well

Walking is an essentially unstable movement. It requires pegis satisfying kinematic and sthenic constraints that define a
fect coordination of joint actuating torques, together with adeasible gait. In this way, a motion optimization problem is
curate control of ground reaction forces in order to ensure tis¢ated whereby reference steps are generated by minimizing a
dynamic balance of the biped. Therefore, mastering suchparformance criterion on a double set of feasible control and

movement requires mastering its dynamics.

state variables. The movements generated, having improved

The most popular technique used to generate and contkihematics and dynamics, are anticipated to be easier to con-
a stable gait is based on the concept of “zero moment poirtfol and less energy-consuming.

(ZMP) presented in Vukobratovic et al. (1990). It was espe- Essentially two quite different methods have been devel-
cially used in Hirai, Hirose, and Takenaka (1998), Fujimotopped to generate optimal gait trajectories. The most frequently
Obata, and Kawamura (1998), Inoue et al. (2000) and Lofflarsed approach is based on parametric optimization, whereas
the second comes within the framework of optimal control
theory. Parametric optimization techniques developed for the
purpose of motion optimization mostly rely on representing
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the joint trajectories or any equivalent set of variables as funsidependent joint coordinates. A complete cyclic step involv-
tions of time defined by a finite set of discrete parameters tog SSPs and DSPs of a footless five-link biped was generated
be dealt with as optimization variables. The nonlinear optin Chessé and Bessonnet (2001).
mization problem that results can be solved by implementing The main objective of this work is to solve the constrained-
sequential quadratic programming algorithms, widely usetlynamics problem which arises during the DSP of gait, a
in the field of mathematical programming. Early attemptplanar biped having human-like feet being considered. Gen-
to generate optimal steps of five-link bipeds using this agrating this crucial phase of gait will help in the creation
proach were carried out in Beletskii and Chudinov (1977f walking sequences involving starting, cyclic, decelerat-
and Channon, Hopkins, and Pham (1992) using polynomielg, and stopping steps. Furthermore, generating SSPs with-
functions defined over the whole range of time. The singlesut impact at heel-touch will ensure the continuity of veloci-
support phase (SSP) only is considered, as in Chevallerds throughout any gait sequence. Such an objective is aimed
and Aoustin (2001) and Plestan et al. (2003), where a sagittl providing the local controller of the robot with reference
gait cycle consists of a swing phase ending with an instamovements that are well coordinated, dynamically efficient,
taneous impact, this initiating the following step. In Muraroand low on energy consumption.
Chevallereau, and Aoustin (2003) a similar approach is used The present paper extends and deepens the study presented
to generate three different gaits of a quadruped consideredimBessonnet, Chessé, and Sardain (2002). The presentation
three different bipeds by putting symmetric legs together. Uns focused on the DSP. During this, the locomotion system
like for the above works, in Saidouni and Bessonnet (2008)orks as a planar seven-bar mechanism subjected to unilateral
cubic splines connected at points uniformly distributed alongpontacts with its supporting base. The basic idea consists of
the motion time are used to generate complete optimal stefigeing a ground—foot contact in order, first, to deal with a full
including a double-support phase (DSP). We can also mentieat of configuration variables and, second, to consider contact
Martin and Bobrow (1999) where B-splines were used to afierces as additional actuating control variables giving direct
proximate the joint trajectories of open kinematic chains. Theontrol over their limiting values.
authors emphasized the need for using analytic gradients ofIn Section 2, the kinematic model of the seven-link pla-
the cost functions and constraints. Accordingly, in Section 2ar model of the biped robot BIP described in Sardain, Ros-
of this paper, we emphasize the need to use exact formutami, and Bessonnet (1998) and Espiau and Sardain (2000) is
tion of Jacobians and gradients in order to cope with the stiffioroughly detailed. In Section 3, attention is focused on the
numerical conditioning of the stated problems. constrained Hamiltonian dynamic model to be dealt with in
Parametric optimization is an efficient means for computhe DSP, during which the biped moves as a closed kinematic
ing suboptimal trajectories. However, due to the fact that dighain. Constraints defining a feasible step are formulated in
crete optimization variables are reduced to a finite numbesgection 4. In Section 5, a constrained optimization problem is
the complete fulfillment of constraints, defined over the wholeecast as a state-unconstrained optimal control problem. Ap-
range of time, may be difficult to achieve. Besides, polyngplying the PMP in Section 6 allows the latter problem to be
mial functions may introduce undesirable oscillations of agsolved as a two-point boundary value problem. Section 7 is
proximated functions (Visioli 2000) or jerky variations of thedevoted to the presentation of numerical simulations includ-
same functions at connecting points (Saidouni and Bessonitgg generations of starting, cyclic, decelerating, and stopping
2002). steps. Conclusions and prospects are formulated in Section 8.
In the second method, the optimization problem is consid-
ered as an optimal control problem to be dealt with using the
Pontryagin maximum principle (PMP). As shown in Besson2. Kinematic Model of the Planar Biped
net, Sardain, and Chessé (2002), a major interest in using
the PMP lies in its ability to account directly and exactly foln this section, the walking cycle of sagittal human-like gait
limitations and constraints affecting kinetic loads, actuating described mainly for the purpose of dynamic modeling. We
inputs and contact forces. In a similar way, state constraintsan recall that, for orthopedists, the typical walk cycle is the
set in order to limit joint motions and avoid obstacles, can bstride which refers to the motion cycle of either locomotion
uniformly satisfied. However, the PMP is often perceived dimb. Conventionally, it goes from the foot strike of one limb
being computationally ineffective. It should be emphasizet the next foot strike of the same limb (Sutherland, Kauf-
that its computational effectiveness is revealed by employaan, and Moitoza 1994). In human locomotion, this kine-
ing Hamiltonian dynamic models (Bessonnet, Sardain, amdatic scheme is perfectly appropriate for analyzing normal
Chessé 2002). and pathological walking, considering either limb during its
A first attempt to generate optimal walk was formally carewn cycle. A different scheme is needed to accomplish the
ried out using the PMP in Chow and Jacobson (1971). Rdynamic modeling of the gait. In this case, since the simulta-
cently, in Rostami and Bessonnet (2001), the SSP of a planagous driving effects of both legs must be taken into account,
seven-link biped was optimized by considering a limited set ¢dhe gait has to be considered as a sequence of steps. Steps can
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about its metatarsal axis before toeing-off. This additional
joint motion generates a subphase whose kinematic configu-
ration introduces one further degree of freedom. In this case,
the joint configuration of the planar biped model changes from
six degrees of freedom to seven.

By contrast, the presence of a kinematic loop results in the
reduction of the number of degrees of freedom of the loco-
motion system: two and three degrees of freedom are lost in
the sagittal model before and after the front foot is flat on the
ground, three and six, respectively, for a three-dimensional
biped, assuming that heel contact acts as a single point on the
ground before the foot becomes flat. This double cut in the
number of degrees of freedom could suggest that the configu-
ration variables should be reduced to a set of independent joint
coordinates. Such a transformation would require expressing
B Al O10i1Bid] =d] Aj B/ X, the remaining joint coordinates as functions of independent

ones. As the total number of joint coordinates is large, this op-
Fig. 1. Cyclic step of a planar seven-link biped; equalitiesration would be quite involved. Furthermore, it would lead to
L' = |BiBi| = L' = | B{B{| define the step length. impractical formulations of motion equations. To avoid such
intricacy, we need to model the biped as an open kinematic
chain during the DSP.

In the course of the sequence of events SSP-DSP shown in

b di : ied hile showing ki Figure 1, the tip of the foot located in middle position (point
e executed In quite varied ways, while showing |nemat|gf) is a fixed fulcrum about which the foot rotates (or does

features which are fundamentally the same. In particular, aﬂ%t rotate in the case of the beginning of SSP) with respect

steilp s the égf?ult of IiFn_king tXVO successive phases, kinemaH)- the ground. It is then practical to consider this central foot
cally quite different (Figure 1). as the proximal linkL, of the planar biped, and to describe

the joint motions successively (as indicated in Figure 1) for

* The SSP, during Wh'ch the chomo.tlon system_movet%e other foot, now labeled, and considered as the distal
as an open tree-like kinematic chain. This motion haﬁ,

. nk. Then the same set of joint coordinates (consisting, for
the greater amplitude. It goes from toe-off to heel-touc - . . o .
. Instance, of absolute joint rotations defined as indicated in
of the foot of the swing leg.

Figure 1) may be used to describe both SS and DS phases.
« The DSP, during which the locomotion system is kinelNote that the complementary sequence DSP—SSP would not

matically closed, and overactuated. It goes from heedl/low such a common description of the two step phases.
touch of the front foot to toe-off of the rear foot. It can !N the above kinematic description, it is assumed that the

be considered as a movement of propulsion and eqdfin€matic loop formed by the locomotion system during the
librium recovery. Its amplitude is less than the SSP. DSP is cut at the level of ground contact of the front foot,
labeledZ{ in Figure 1. In this way, in both phases, the same
It must be emphasized that the notion of closed kinematt;-order coordinate-vector, defined as
ics needs to take very restricting conditions into account for
stating and dealing with dynamic models of mechanical sys-  d = (g1, ... 4s,)", ¢ =6, i <ng, n,= 7, (1)
tems having kinematic loops. These conditions are even more
constraining when considering closure statements due to uwidl be used to formulate the motion equations of the biped.
lateral contacts. This is the situation in the case of the double The step cycle is characterized by limiting postural config-
support of gait. urations identified in Figure 1 by the superscriptsstand-
The kinematic configuration of the biped may change duing for initial (configuration), #” for transition (between SSP
ing each of both above phases. In particular, the DSP comnrd DSP), and f” for final. The first coordinatey; will be
prises an initial heel rocker movement of the front foot folassumed to remain constant during the SSP, namely
lowed by foot-flat contact. The latter subphase results in the
loss of one degree of freedom with respect to the initial con- telt, '], qu(t) =7 — B, (2)
figuration. On the other hand, in Figure 1, the whole SSP is
represented with flat contact of the stance foot. This kinevhile in the DSP, the vectay in eq. (1) is subjected to clo-
matic choice may be considered as suitable for a mechanisalre constraints that can be written as (see Figure 1 for the
biped. However, during human gait, the stance foot rotate®tations)
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the two step phases. Nevertheless, the approach described be-
low leads to a less constrained problem that is also simpler to
formulate.

Absolute joint coordinates defined in Figure 1 lead to
the formulation of a concise dynamic model. No three-
dimensional model of the biped would benefit from this sim-
pler description. In this case, introducing a set of relative
joint coordinates, defined for instance using the well-known
Denavit—Hartenberg construction, becomes necessary.

Fig. 2. Rear foot at toe-off, and front foot at heel-touch. ) )
3. Constrained Dynamic Model

As we want to formulate motion equations using a full set of

dependent configuration variables, this approach will result
in proposing a constrained dynamic model. Moreover, as we
intend to implement the PMP, a state equation formulated in

telt,t'], { gl(q(t)) = 81&3 '\);0 B é +¢=0, (i) state space form is required. Special attention is devoted to
2(A(0) = O Yo =0, @ poth the above dynamic modeling aspects in the following
el +et'1, C3q@) = ¢(qt)) = 0. (5) subsections.

In eq. (2),p is the angle of the foot triangle at the tig B 3.1. Basic Dynamic Formulation
(Figure 2).

Constraints"; andC, in egs. (3) and (4) specify the Carte-As stated in Section 2, i_n both _motior_l phases the biped is as-
sian coordinates of the contact poiritéf the heel of the front Sumed to be an open kinematic chain, the front foot contact
foot. In eq. (3),L and¢ denote the step and foot lengths, rebeing explicitly specified through closure constraints. This
spectively. In eq. (5) represents the inclination angle of thekinematic description results in stating a Lagrangian dynamic
front foot with the ground is a short duration, after which Mmodel with Lagrange multipliers, subjected to geometric clo-
the front foot remains flat on the ground, as specified by tifgire conditions, i.e., holonomic constraints. Lagrange equa-
constraintCs. tions may be formulated as the generglvector equation

In the following, constraints such as egs. (3), (4), and . . . ,

(5) will be put together in the vector-valued functi@ de- M@§+C@, 4 +G@=D(,q +Br+ (q)l,(g)
fined as

Ch(@) = (C1(q) C, (@) (6) whereM is the biped mass-matriXG contains centrifugal
P e T ’ and Coriolis inertia terms@ and D represent gravity and

wheren, is the number of closure (or holonomic) constraint§lissipative terms, respectivelyjs then,-vector of actuating

(n, = 2 or 3, above). joint torques, defined as = (0, 1, ..., 7,,)" (zs = 0 means
Moreover, the Jacobian matrix that, unlike the human foot, the tip of the foot is not actuated),
Aisthe Lagrange,-vector multiplier associated to holonomic
®(q) = aC"/dq (7) constraintsC", andB is a matrix that depends on the choice

of joint coordinates.

is used in the next section for deriving the Lagrange equation Equation (8) is the basic dynamic model we need to begin
of motion. with. In fact, this equation cannot be dissociated from con-

Another approach could be used to describe the closstraints (6) (or, equivalently, constraints (3)—(5)). This double
kinematics of the biped. Some authors, such as Azevedsystem of relationships is a set of differential-algebraic equa-
Poignet, and Espiau (2002), Chevallereau and Aoustin (20Qgns. As discussed in Chessé and Bessonnet (2001) it needs
and Saidouni and Bessonnet (2003), cut all ground contac¢tsbe especially adapted for implementing the PMP. With this
and consider the biped as a free system in the two-dimensioa@h in view, a first requirement is to restate the Lagrange
Cartesian space. The Cartesian coordinates of the hip point acgiations in Hamiltonian form.
added to the seven joint coordinates to describe the biped mo-
tions. Two or three further closure conditions formulated &} 5 Hamiltonian Dynamic Model
the rear foot level are added to the above constraints (2)—(5).
The main interest of this description lies in the fact that it alHamiltonian formalism is not in widespread use in the field
lows the formulation of motion equations to be identical foof multibody system dynamics. Nevertheless, as shown in



Bessonnet, Chessé and Sardain / Optimal Gait Synthesis 1063

Bessonnet, Sardain, and Chessé (2002), a dynamic state eqereB (x) = (B, ®7(x)).

tion fqrmulated in Ham?ltonian canonic var.iables has amath- goih state equations (12) and (13) have the required form to
_ematlcal structur_e thatis perfect_ly_ appropriate for 'mple_mer_‘ﬁ'nplement the PMP. We emphasize the fact that the Jacobian
mgth_e_PMP, that |stosayford_er|vmgthe nece_ssaryopnmall%atrix 39F/ax of F in eq. (13) must be derived exactly, in

conditions stated by the maximum principle itself. order to benefit from accurate computation of the associated

The reader is referred to Bessonnet, Sardain, and Cheggfein: system (45). This results from the implementation of
(2002) for specific statements related to Hamiltonian dynamﬂ:|e PMP. as shown below.

equations. In brief, we can recall that they are derived from

the Lagrange equations by means of a change of variables that

consists of substituting the conjugate momentug o7/0q 4. Defining a Feasible Step
(the Legendre transformation, whefFeis the kinetic energy
ofthe mechanical system) for the Lagrangian velogitfhen
it can be shown (Bessonnet, Sardain, and Chessé 2002)
the Lagrangian vector-equation (8) splits up into yeorder
subsystems solved in the Hamiltonian phase velodtiep)
as follows

Any feasible step obeys some specified conditions and limits
way we define a realistic gait which the biped will be able

to execute efficiently and control safely. Such specifications

defined on the step cycle may be instantaneous or continuous.

Also, they can apply to phase variables, as well as to control

4=M"Ymp=09a,p), inputs.

The first basic data to be introduced are the walk speeds,
p=19"M 49— G(@) +D(,9(q,p) + Bt + " (DA, v. The step lengthl., may be specified or optimized versus
(9)  Vv.Inany case, the step cycle tifie= 1/ — ' is defined by

the relationshigl’ = L/V. Moreover, settinglgs = t' — ¢

g\ndTDS =t/ —t', we consider that the DSP time represents

about 0.15%-0.25% of the cycle time as observed in human

walking, i.e.,

« The state variables of the controlled mechanical system,
which are simply the Hamiltonian phase variables (or
canonic variables) andp that we put together in the
2n,-vectorx such ax” = (97, p”).

whereM , = M /aq.
At this point, two types of variables must be identified, a:
follows.

TDS:T_TSSZkT,0.15<k<O.25.

* The control variables, which are the joint actuating4'1' Transition Constraints

torque;. However, the mu!tlpherrepresents_ effort; t(,) These are instantaneous constraints that characterize or define
be aPP"ed tothe frontfootin or'd.erto hold th's_’ footin ,'tstransition postural configurations between the step phases. In
specified ground-contact position. Thus, it is poss'blﬁigure 1, the SSP-DSP cycle is depicted by three limiting
to add the components &fas complementary control configurations identified using superscripts, and f, as al-

variables. In this way, we are able to exert direct CoNy, 54y mentioned in Section 2. The step pattern is essentially

trol over the contact forces. These must obey Specifigineq by feet and hip positions and velocities at transition
conditions, as stated in Section 4.3. Consequently, Weness 1 ands/

define the control vector on each phases by setting At intial time 1/, the position and velocity of the tip;Bf

teld ], () =z() (10) the rear foot at toe-off must satisfy

OB, = —-L' X, V(By) =0 15
rel '], u@)’ =’ A0, (11) ° o V(B (18)
where L’ is the initial step length, whil& is the velocity
Equations (9) may be then restated on the first interval @kctor.
time as the &,-order differential equation It can be noted that many authors take into account heel-
Do - _ _ _ strike and introduce an equation of impact at transition be-
telr r'l, X@) =1 (x®) +BU@) =FX®),0), (12) yeen successive steps (see, for example, Channon, Hopkins,
while, on the second, we have to deal with the differentia@Nd Pham 1992; Chevallereau and Aoustin 2001; Plestan et al.
algebraic system _2003). Thls means that _velocmes are discontinuous and sub-
jected to instantaneous jumps from one step to the other. Such
X(t) =f (x(@)) + B*X(#)) u () a condition implies that accelerations have infinite jumps. At
, _ transition time’, this situation is avoided here, since we spec-
relr, '], =F&x®,u ®), 13 ify, as advocated in Blajer and Schiehlen (1992), impactless
C"(x(t)) = 0, (14 heel-touch at point Ain order to prevent destabilizing effects
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on the motion control of the biped. Conditions to be satisfied G6=08—v —T, ¢=w;
are similar to constraints (15), namely gi=gLta—m, ¢L=0 (24)
OAL = (L' — £)X,, V(AL =0, (16) gl =68, ¢l = ol
whereL’ is the final step length, andis the foot length. where quantities in the right-hand terms denote given values.
At final time ¢/, the front foot being considered as flat onThe symbol =" means that these values might be slightly
the ground, we must have different from indicated ones. Then, relationships (18)—(20)
, _ _ can be solved ix, (t'), x, (t"), andx, (/). In this way, tran-
00, =00, + L'X,, V(Of) =0. (17) sition states are known and considered as simple boundary

o ) . i value conditions. In Section 7, numerical simulations are per-
Projecting the above six vector-relationships on orthGymeqd using this approach.

normalized base vectoXs andY, yields scalar relationships,

which we write formally as 42 State Consiraints

Ci(x. (1) =0, (18 As for any human movement or robot motion, joint trajec-

k<n,, Cil(x,(t") =0, (19) tories pf walking maghines mgst be subjected to a Iimi.te.d
; range in order to avoid unfeasible movements, such as joint
Ci (x.(t")) =0, (20)  counter-flexion, or ground and obstacle collisions. Such nec-

essary constraints cannot be omitted. They involve joint coor-
dinates and velocities considered throughout the cycle time.
Considering relative joint coordinates defined as (Figure 1)

wherex; is the vector of the Lagrange phase variabkés—=
(9", "), andn,. is here equal to 4.

If the step is cyclic, first./ = L' = L and, secondly,
X, (t) must be identified to, ('), given that the legs are O =0,0=6—6_,i=2..n,

switched. Using the joint coordinate representation in Fig- o ] ]
ure 1, correlations betweeq (/) andx, (') result from ex- Joint motion limitations and counter-flexing avoidance at knee

and ankle level must be taken into account by setting

- o - P <os(t) <0

Gl =gty -+, @ =g+, g =gt o SO TR

G=a—7, @ =g-7, @ =—B—v. 4 =4 relr, ', |~y <¢s <0 . (25)
@D 0< ps(t) < @™

3

and swapping the joint velocities according to the scheme  The first two double inequalities relate to the knee and
o > e 29 ankle of the swing leg. The third refers to the knee of the
k<S5, i =474 46 =0. ¢ =45 (22)  stance leg, which becomes the rear leg during the DSP. We

Let us note that the relationships in eq. (22) appear sirgan rewrite the six above inequalities in the generic form

ply as the derivatives of relationships (21). Moreover, in that telr, '], CSx) <0, j=1,..,6. (26)
case, due to egs. (21) and (22), constraints (20) are ipso facto
satisfied. Let us note that joint velocities could be moderated using
Further conditions must be added to constraints (18)—(26)milar inequalities.
in order to ensure step feasibility. We have a choice between Further constraints must be stated to enable swing foot
two approaches. The first approach would be to limit the va¢learance from the ground, and stepping over an obstacle, if
ues of key factors such as position and velocity of hip joinf)eeded. In Figure 3, bell-shaped curves are used to define ex-
inclination, and rotation rate of the trunk, and feet at toe-oflusion zones from which the foot must be removed upwards.
and heel-touch. Such an approach would allow the transition The lower curve may be used for specifying foot clearance,
states, ('), X, (¢'), andx, (/) to be optimized while account- and the upper one for obstacle avoidance. This approach was
ing for constraints (18)—(20). A simpler approach would be tfrst introduced in Rostami and Bessonnet (2001). Here, we
specify the above factors as follows (see Figures 1 and 2 fg€ a simpler algebraic description of the curve by considering

changing initial and final coordinates as follows

notations and symbols) the fourth-order polynomial function
2
00, - Xo = X%, OQ, - Y, = ¥} xelabl, fx)=h (x —a)(b—x)
(c—a)ib—oc)

k=i, t,f § V(O -Xo=Vk, VO Y, =V}
b0 gk wherea andb represent the abscissa of points situated be-
0 =7/2, 47 = tween, or coinciding with, the toe-off point;nd the heel-

(23)  touch point A. The functionf satisfies obviouslyf(a) =
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S(xa)
Ya
fx)[a b t
0 Bg At6 Ag TAB6

Fig. 4. System of two and three forces exerted on the front
foot, equivalent to the ground contact forces. The dotted-line
vector Ng_ is applied only after the foot is flat on the ground,
thengj = 0.

Fig. 3. Foot clearance and obstacle avoidance.

f®) =0, f(c) =nh, f'(@ = f'(b) =0,andf'(c) =0,
provided that = (a + b)/2. Thereforeh defines the maxi-
mum clearance height. This need only be a few centimeters for
walking on level ground. Foot clearance is considered to be
effective if the foot sole remains clear of the curve. Fulfillment
of this condition by sole ends A and B may be sufficientto . [t', ¢ +¢], No >0, ’ TAB | < fNa (30)
prevent any ground collision. Using the notations in Figure 3, ® ° °

such a condition is expressed by the set of inequalities

fxa)—ya <0, f(xg) —yg <0

wherex,, xz, y4, andy, must be formulated as functions of | TABG| < J(Na, + NB,)- (31)

the state variables, reduced here to the joint coordinates. Itis), egs. (30) and (31), positivity of normal forces means that
then possible to restate the above constraints in a form simil@e contact is unilateral. Non-sliding conditions are expressed
toeq. (21), i.e., by the remaining inequalities wheyedenotes a dry-friction
felf. '], CSxX(1) <0, j=7.8. 27 coefficient between the foot sole _and the ground.
et '], CSx)) j @7 " As suggested by eq. (11), if we Sty iy, hs) =
A third constraint formulated for the middle point of the(us, 4o, i10), cOnstraints equivalent to non-sliding conditions
sole might be added to improve the fulfillment of clearanct# €qgs. (30) and (31), in terms of complementary control vari-

Contact constraints to be fulfilled at front foot level are

telt'+e1t'],Na, >0, Ng_ >0,

condition. ablesu;, may be written as

. . toLt 0< I/tg(t)
4.3. Sthenic Constraints relt ' +el, { L us(D)] < Fuo() (32)
We use the term sthenic constraints (sthenic is from Greek
sthenos meaning “force”), for restrictions formulated on ac-
tive and passive interacting forces that are at work and at stake telt +et'], { 0 < uso(t) < Lus(t) (33)
in the kinematic chain. First, technological limitations of ac- lug()] < fus(r)

tuators need to keep actuating torques within limits such that Constraints similar to egs. (30) and (31) must be fulfilled

reld, '], v < @) (= u () <", i=2, ..,7  atstancefootlevelduringthe SSP, and at rear foot of the DSP.
(28)

Secondly, contact forces between the biped and the grouﬁd S_tatmg a State-Unconstrained
must satisfy unilaterality of contact together with non-sliding?Ptimal-Control Problem

conditions. Figure 4 shows a way of representing such forces

according to whether the foot exerts a single point contact gtating the dynamics-based optimization problem we have in

lies flat on the ground. mlnq mvolves_ all constraints formulate_d e_lbove, |nclu_d|_ng_ the
At front foot level, the equivalence between these force@ouon equat_lon. The performanc_e criterion to be minimized

and the Lagrange multipliers appearing in eq. (7), and corrls.the essential statement remaining to be formulated.

lated to closure constraints (3)—(5), is as follows

5.1. Performance Criterion

(A, X2, A3) = (Tag.. No + Np_. ¢ NR) (29)
b ABe TA B> 7Be Generating an optimal movement is fundamentally based on

whereNg = 0forz € [, 1" + ¢]. minimizing the amount of effort or energy required to create
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the motion. The energy criterion presents some disadvantage®. State-Unconstrained Optimal-Control Problem
First, resulting optimal actuating torques have discontinuo

variations of bang-zero-bang type (see, for example I_e\,ﬁealing directly with state inequality constraints such as

and Syrmos 1995). The consequences would be movemehts” (26) ;nd (t'27),l usmdg_t_the Pg/lP,tIead_s tot qluiegér;\./clﬂ\]/cfed
executed with repeated backlashes onthejointaxis.Thiscomﬂan'smoO optimal conditions (Pontryagin et al. , lotie

have destabilizing effects on the biped control. Secondly, d d Tlhotmlrﬁv 197?) tglat 'Tak?t the tgptlmal conLn_)I {)rqb—
to the abovementioned discontinuities, the problem is no g practically unsolvable. An alternative approach 1S to im-
éement a penalty technique. This resembles methods used

smooth and cannot be solved satisfactorily. A performan . . .
criterion, defined as the integral quadratic amount of drivingO solve mathematical programming p()jroblems. An exterior d
torquesr; and reaction forces;, represents a suitable choice enalty methohd, as,usegl n the_sse an B_essonnet_(zolo 1)an
for dealing with optimal dynamics of jointed multibody SyS_Bessonnet, Chesse, an S_ar an (2(.)0.2)’ IS easy t_o Imp e‘T‘e”t’
. ﬁgd proved to be computationally efficient. It consists of min-
imizing the integral amount of the constraints wherever they
are an infringement. To that end, let us group together in-
1 1 equality state constraints (26) and (27) in the vector-valued
Jss(0) = > / U()"'D;0 (¢)dt = E/r(t)TD,r(t)dt functionC3(x (¢)) such that

34) C*=(C{,...CJ)". (ns = 8).

double criterion (with notations from egs. (10) and (11))

4 1!

Then, setting
telt',t'], CTH(x(r)) = Max(0, C’(x(1)));

tf

1
Jps(U) = = / U(OD, U (1)di
2 CS+ _ (Cf+ CS+)T
If - 9 ccy nS 9

1 of we define the quadratic penalty functign such that
=5 / (T(@®)'D.7() +AM)'DAM)dr.  (35) Ys(X) = L[CF()]"DsCS (x). (36)

Moreover, we deal with state equality constraints (14) us-

Inegs. (34) and (35, andD;,, orequivalenthD; andD..,  ing 4 similar approach, by introducing the second penalty
are diagonal weighting matrices. Initially, only unity matrices,nction

are considered. Then, if we want the optimization process to _
give more (less) input to torques, or interacting forces , telt', '], Y(x(0) = 3[C,(x(t)]" D, Cy(x(1)).  (37)

the corresponding weighting coefficients will be set at val- In egs. (36) and (37]Ds andD, denote diagonal weighting

ues smaller (greater) than unity. The effect expected can OrH%'atrices. Both of the above functions will be minimized by
be revealed by carrying out numerical tests. Values betweSanidering the augmented criteria

0.5 and 2 could be sufficient for producing results showing
significant differences. i

Minimizing the quadratic values of actuating torques en- Jig(@) = Jgs(Q) + 1 / Ys(X(1)) dt (38)
sures their continuity. Moreover, the biped being essentially ’
subjected to gravity forces, such a criterion will favor upright
walking patterns which require little effort to support the biped o
weight. The quadratic term inis aimed at minimizing antag- .
onistic forces, especially sliding forces, which might appear Ips(U) = Jps(W) + / rs s (X)) + rivhn(x()1d (39)
in the locomotion system during the DSP. o

Bounds introduced in eq. (28) on control variabitgg <  whererg andr, are penalty factors. In theory, it can be shown
n, = 7) define, during the SSP, a set of feasible values, whichat penalty functions vanish through the minimization of the
is a parallelepiped in am,.-dimensional Euclidian space. We cost function when penalty factors tend towards infinity (Lele
will denote this feasible set d$. During the DSP, bounds and Jacobson 1969). In fact, reasonably high given values
(28) together with constraints (32) and (33) prescribed fawill enable the penalty functions to have negligible residual
complementary control variables,; = 1,(j < n,, n, = values. The reader is referred to the beginning of Section 7
2 or 3 define, in an(n, + n,)-dimensional Euclidian space, for numerical examples.
a set with polyhedral geometry which has right and oblique Atthis point, the state-unconstrained optimal-control prob-
faces. It is a time-dependent convex polytope in which them we intend to solve can be summarized as follows
above criterion (35) must be minimized. We will label this minimize Jz(0), (40)

feasible seU (¢), in which optimal controli has to be found g, r¢ great, el S
during the DSP. andr, great, minimizeJ 5,5 (W), (41

uel(t
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the PMP states that, if — (x(¢),u(z)) is a solution of
eqs. (42), (43), and (45), then a 2vector adjoint function

while satisfying the state equations t — w(t) exists such that — (x(z), u(r), w(z)) satisfies the

telr, '], x@t) = Fx@),u@)), (42) adjoint equation
. C W) = — T
telr, 1], X(t) = Fx(), u®), (43) pelr, ], W =—@H/9%)
together with either the boundary constraints = —(9F/0) W+ (IL/3x)" (46)
Ci(x.(t) =0 and the maximality condition of the Hamiltonian
k=1,...4 1 Ci(x.(t") =0 (44) T — Max
Ccl(x,(t") =0 el '], HX@), u @), wn) = Max HX(), v, w()).
or the boundary conditions (47)
X, (1) = xi Condition (47) plays a key role in dealing with the control
X, (1) = x’L ' (45) vectoru. It allowsu to be expressed, at every times a func-
X, (t1) = XL/ tion of both the state and the co-state vector variaklasd
— ML

w, that isu(r) = U(x(z), w(z)). Substituting this expression
In the latter case’, x., andx; denote given values. for u in state and co-state equations (43) and (46) yields the
As we want to optimize both step phases separately, the,-order differential system
above problem will be splitinto two independent optimization ]
problems set on the intervals of i@, '] and[#', /] of the relr 1], { X(@) = Fr(x(@0), w®) (48)
SSP and DSP of the gait, respectively. W(r) = G*(x(1), w())

' . in which the state variablex must satisfy the #, end
6. Solving a Two-Point Boundary Value Problem conditions

X)) =X

Xt = x/ (49)

The presentationis focused on the DSP which adds to the char- {
acteristics of the SSP, quite restrictive geometric and sthenic

closure conditions. Nevertheless, both problems as stateddiglrived from eq. (45)

egs. (40), (41) and (42), (43), each being completed with con- 1o 44 noint boundary value problem (48), (49) can be
ditions (44) or (45), are formally identical. Indeed, dncference§olved using existing algorithms. The numerical techniques
between the two problems, due to additional terms appearijg, \;se are described in Bessonnet. Sardain. and Chessé
in the second, expand when deriving necessary conditions(ri 02). The method involves solving the problem in two

optimality stated by the PMP. %ﬁlges. In the first stage, we are searching for a guess solution

The readgr Is referred to textbooks gnd monographs SUE implementing an easy-to-use shooting method described
as Pontryagin et al. (1962), loffe and Tihomirov (1979), an Bryson and Ho (1975), and based on the construction of a

Lewis and Syrmos (1995) for details concerning the formu""lfansition matrix algorithm. As this technique lacks numeri-

tion of the PMP. In. fapt, as the fingl op'gimal control prqble%al robustness, the problem is solved with null penalty factors

we have to deal with is unconstrained in the state, optlmalr% andr,, these giving rise to some stiff numerical condi-

conditions are forr]mally qwte_ easy to derive. ved in th tioning. In the second stage, the problem is solved iteratively
We assume t at cpnstramts (44) are solved in the Stg increasing values of; andr, using the routine DO2RAF

X, through reIaF|pnsh|ps (_21)_(24)'. Thergfore, we take °n|¥f the NAG FORTRAN Library, which implements a finite-

boundary conditions (44) into consideration. In this way, thail‘ference algorithm. This computing code is quite efficient,

optimization problem to be solved consists of determining &nd withstands sufficiently high values of penalty factors for

state vector-function — x(r) and a control vector-function . ing non-significant final residual values of both penalty
t — u(t) € U(t) minimizing the augmented criterion (41)’functi0ns

while satisfying the state equation (43) together with the

boundary conditions (45). ] ) _
Setting 7. Generating an Optimal Walking Sequence

L(x,u) = u"D,u + rsrs(X) + ¥, (X) In this section we present results concerning the construc-
tion of a walking sequence on level ground. This comprises
starting, cyclic, decelerating, and stopping steps. Computa-
tions were carried out on the basis of numerical data given in
we R, HXX u, w) =w F(X, u) — L(X, u, Table 1. These data represent the mechanical characteristics

for the Lagrangian of criteriod};, in eq. (39), and defining
the Hamiltonian function
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Table 1. Mechanical Design Parameters of the Biped BIP (Figure 5)

Link L, L, L, Ls L, Ls Le L,

Lengthr, (m) 0.188 0.410 0.410 0.410 0.410 0.290 0.146
Massm; (kg) 2.340 6.110 10.900 10.900 6.110 2.340 66.110
a; (m) 0.143 0.258 0.250 0.160 0.152 0.045 0.391
b; (M) 0.042 0.028 0.005 ~0.005 ~0.028 ~0.042 0.029
1, (mkg) 0.100 0.690 1.310 1.020 0.720 0.070 18.990

Centers of gravity are defined by setting3)= a,X; + b;y; (Figure 1),x; = O,0;1/r;, Y; = Zy x X;. I; refers to the moment
of inertia of link L; about Q.

Fig. 6. Cyclic optimal step (sagittal DSP and SSP) of the
biped BIP.

Fig. 5. The biped BIP and its locomotion system: 15 degrees
of freedom, 1.8 m, 107 kg (LMS, University of Poitiers, and
INRIA- R.A., France).

are slightly flexed in order for the foot of the stance leg to

remain flat on the ground during the whole swing phase. Sec-

ondly, at the end of the swing phase, heel-touch takes place
of the biped BIP (Figure 5) when considered to be movingithout impact. These two specific features are expected to
in its sagittal plane. A cyclic step is first presented becausmsure safer control of gait.
its transition kinematic characteristics are required to define In Figure 7, actuating torques show few variations and re-
starting and stopping steps. main at fairly moderate valuegy( is the torque exerted by

Penalty factors andr, introduced in egs. (38) and (39)link L, ( = 2,...,7)onlinkL;(j = 1,..., 6)). Although

were set at 150. It should be noted that the residual distanitee ground contact conditions represent very restrictive con-
from the position of point Acomputed on the basis of closurestraints, time charts of ground interaction forces in Figure 8
constraints (3) and (4) to its assigned position never exceestsow they are perfectly fulfilled. During both phases, all nor-

0.3 mm. mal components of the contact forces are positive. Moreover,
normal components NB1 and NA6B6 (NA6B6 is a short no-
7.1. Cyclic Step tation for NA6+NB6) during the double support, and normal

components NA6 and NB6 during the single support, cross

A purely cyclic step is defined (as described in Section 4.1) ach other during their respective phases. This indicates that
conditions (18) and (19), together with the swapping relatiorihere is a steady transfer of the biped weight forward. Note also
ships (21) and (22) at the end of the cycle. Such conditionsat the horizontal components, TAB1 and TABS6, never ex-
need some complementary data. Walk speed is the most siged 20% of normal ones. Therefore, little grip on the ground
nificant one. In the simulation presented here, it is equal e needed to avoid sliding. It can be seen also that, at the begin-
0.75 m st (2.7 km h'), which represents a fairly fast walk. ning of the double support, the biped lifts its weight off the
After a few numerical tests, the corresponding step length wgsound. Conversely, at the beginning of the single support,
setat 0.5 m, while the motion time of the DSP was set at 0.258ere is an increase in the normal supporting force as the hip
of the total cycle time. rises.

A stick diagram of the optimal motion is shown in Figure 6.  In Figure 9, note that the seventh joint velocity V(L6/gd),
The gait pattern has particular characteristics. First, the legsferring to the rotation rate of link L6 versus the ground, is
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front foot (labeled V(L2/L1)) has sharp transitional varia-
tions between double and single supports. Such variations are
transmitted to V(L6/gd) as defined above through the term
V(L2/L1).

7.2. Starting Step

At starting time, the biped is standing with its heels together. It
performs half a step forward (Figure 10). Its final state initiates
directly the cyclic step, described immediately above. Thus,
the specified walking velocity (0.75 nT% is reached at hip
level at the end of the step. This condition requires significant
actuating torques at ankle and knee level of the stance leg, as
shown in Figure 11. As a consequence, the stance foot exerts
a strong impulse on the ground at the beginning of the step
(Figure 12). As observed during the cyclic step, the crossed
variations of normal forces, labeled NA1 and NA2, indicate
thatthere is a quite regular transfer of the biped weight toward
the tip of the foot.

plotted during the single support in order to ensure its contin-
uation after the double support. However, in the former caséz3. Stopping Step

this rotation rate has to be seen as the linear combination

other joint velocities, i.e.,

V(L6/gd) = V(L6/L5) + V(L5/L4) + V(L4/L7) + V(L7/L3) +

V(L3/L2) + V(L2/L1) + V(L1/gd).

'Pr];e biped slackens its pace slightly during the double sup-
port (Figure 13) and stops at the end of the forward half sin-
gle support (Figure 14). Variations of joint actuating torques
(Figure 15) and ground contact forces (Figure 16) are quite
similar to their counterparts shown during the double support

During the single support, V(L1/gd) = 0. Therefore, usings ihe cyclic step.
the notations in Figure 8, we arrive in the end at

V(L6/gd) = V(L2/L1) + V(L3/L2) + V(L7/L3) — V(L7/L4) —
V(L4/L5) — V(L5/L6).

The ending movement (Figure 14) is initiated using the
final state of the previous DSP, where hip velocity was set
at 0.65 m st (reduced from 0.75). The biped stops with feet
put together flat on the ground. The deceleration is fast. Cor-

Joint velocities are continuous at transition between botkelatively, actuating torques exerted at ankle and knee of the
phases. Nevertheless, the joint velocity at the ankle of ttsance leg take important values at beginning and end of the
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Fig. 13. Decelerating DSP.
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movement (Figure 17). Similarly, the normal ground reactioZA' Energetic Cost

force (Figure 18) shows high values at the same momentsge energy expended during each elementary movement was
above. We can see that the system of two forces NA1 and NA3mputed using

applied at the ends of the sole, and equivalent to uniformly

distributed normal interaction forces, ends with values close 2 g
to each other. This result shows that the biped is statically well E = / Z l@: ()T (¢)| dt
balanced after stopping. i=2

n

The four motions described above are assembled in the
walking sequence shown in Figure 19. We can observe thaherer; andz, are some initial and final times.
the trunk leans forward slightly, especially during the cyclic The energetic cost of the cyclic step amounts to 205.8 J
and stopping steps. (96.3 J for the only DSP). The starting step requires 81.9 J.
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The stopping step needs 112.1 and 105.1 J during the ddalle support. Thirdly, gait cycles could be globally optimized.
ble support and single support, respectively. Thus, the totial this case, necessary optimality conditions stated using the
amount of energy expended to create the walking sequerfe®IP would lead to aiv-point boundary value problem with
shown in Figure 18 is equal to 504.9 J. In addition, the powe¥ > 3.
required to perform a steady walk generated on the basis of Generating three-dimensional gait is not basically differ-
the cyclic step, amounts to 307 W. The above energetic esnt from generating sagittal gait. However, due to the greater
penditure is greater than its human counterpart during normdhematic complexity, stating the optimization problemwould
gait. In fact, the gait generated is not really human-like. Inequire a great deal of effort. Furthermore, solving algorithms
particular, the biped keeps its knees flexed in order to maineuld be quite sensitive to this greater complexity. Neverthe-
tain its stance foot flat on the ground during swing phases. less, lateral movements of three-dimensional bipeds have lim-
human gait, the heel of the stance foot lifts up before the erigéd range with smooth variations during normal gait. For this
of such phases, making the transition towards the next dor¢ason, the numerical conditioning of stated problems might
ble support smoother. Moreover, as heel-touch takes plaise only moderately modified.
without impact, the biped must tightly control its swing leg Finally, a good challenge would be to generate optimal
at the end of the single support. On the other hand, a gosteps using updated constraints at every time in order to ac-
means of lowering the energetic expenditure, and making teunt for external disturbances. In other words, the optimiza-
movement smooth, would be to optimize the transition stat¢i®n problem would be stated and solved at current time
linking two successive phases. This is future work. with updated constraints to generate the finishing step. Solv-
ing such a problem in real time, as is required, seems beyond
the reach of current algorithms and computers. However, if
8. Concluding Remarks constraint disturbances are not too stiff, the solutiontait
will be very close to the solution at timieThe latter could be
Legged-locomotion systems perform as time-varying m@fficiently used to initiate and obtain a rapid numerical con-
chanical structures and obey quite restrictive constraints. Ygrgence toward the new solutiorvatst, and so on. Such an
this respect, two specific aspects of gait require particul@Pproach would be useful to generate and control unsteady
attention. First, there is the unilaterality of ground—foot congait of biped robots walking in a fluctuating environment.
tacts, which affects the biped equilibrium and strictly limits
the set of feasible solutions. Secondly, during the DSP ®eferences
bipedal gait, the biped moves as a closed-loop kinematic sys-
tem. Inthat case, for any joint trajectories, there is a continuufizevedo, C., Poignet, P., and Espiau, B. 2002. Moving horizon
of solutions in terms of joint actuating torques. This indeter- control for biped robots without reference trajectd?yo-
minacy could yield inappropriate distribution of actuating in- ~ ceedingsof thel EEE International Conferenceon Robotics
puts in the locomotion system. It could then be the cause of and Automation (ICRA), Seoul, Korea, pp. 2762-2767.
antagonistic forces exerted between legs. The most likely coReletskii, V.-V., and Chudinov, P.-S. 1977. Parametric opti-
sequence of this would be contact loss and sliding. The papermization in the problem of biped locomotioklechanics
is especially focused on this particular phase of gait. The ap- of Solids 12(1):25-35.
proach developed involves opening the closed loop at grouR@ssonnet, G., Chesseé, S., and Sardain, P. 2002. Generating
contact level in order to formulate a simple dynamic model optimal gait of a human-sized biped robBtoceedings of
and to obtain direct control over the contact forces. Indeed, theSthinternational Conference on Climbing andWalking
the latter, especially horizontal grip forces, are considered as Robots, Paris, France, pp. 717-724.
complementary control variables. This helps the process Bfssonnet, G., Sardain, P., and Chessé, S. 2002. Optimal mo-
finding optimal inputs directly compatible with non-sliding ~ tion synthesis — dynamic modeling and numerical solving
conditions. Closure conditions are taken into account simply aspectsMultibody System Dynamics 8:257-278.
through the minimization of a penalty function. In this wayBlajer, W., and Schiehlen, W. 1992. Walking without impacts
the problem stated for generating optimal DSPs is formally as a motion/force control problelASME Journal of Dy-
quite similar to their SSP counterparts. namic Systems, Measurement, and Control 114:660-665.
The approach presented may be completed consideriBgyson, A.E., and Ho, Y.C. 197%pplied Optimal Control,
various aspects of the optimization problem. First, postural Hemisphere, New York.
configurations of the biped at transition between successi@annon, P.-H., Hopkins, S.-H., and Pham, D.-T. 1992.
phases could be optimized in order to obtain smoother and lessDerivation of optimal walking motions for a bipedal walk-
energy-consuming gait cycles. Secondly, dividing the SSP ing robot.Robotica 10:165-172.
into two subphases in order to allow the stance foot to rotafehessé, S., and Bessonnet, G. 2001. Optimal dynamics of
about ts tiptoe axis before heel-touch of the swing footwould constrained multibody systems. Application to bipedal
contribute to smooth the transition from single support to dou- Walking synthesisProceedings of the IEEE International
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