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Abstract

This paper presents a virtual humanoid robot plat-
form (V-HRP for short) on which we can develop the
identical controller for a virtual humanoid robot and
its real counterpart. The unification of the controllers
for the virtual and real robot has been realized by in-
troducing software adapters for two robots respectively
and employing ART-Linux on which real-time process-
ing is available at the user level. Thanks to the uni-
fication, the controllers can share softwares with the
dynamics simulator of V-HRP, including the parame-
ter parser, kinematics and dynamics computations and
the collision detector. This feature can make the de-
velopment of the controllers more efficient and the de-
veloped controllers more reliable.

1 Introduction

In order to prevent the possible damages of a robot
and its working environment during the development
process of its controllers, the controllers must be ex-
amined on a simulator of the robot first and then
applied to move the real robot. The verification of
the controllers for humanoid robots is more crucial,
since the robot may tip over when it loses the bal-
ance. However, the porting of the controller is not
straightforward if the run-time environment for the
virtual and real robots are significantly different, and
the non-trivial porting may induce troubles when it is
applied to the real robot.

This paper presents a virtual humanoid robot plat-
form (V-HRP for short) on which we can develop the
identical controller for a virtual humanoid robot and
its real counterpart. This concept is illustrated in
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Body in the Virtual World

Simulated by V-HRP Body in the Real World

Figure 1: Shared controller for virtual and real robots

Fig.1. The unification of the controllers for the vir-
tual and real robot has been realized by introducing
software adapters for two robots respectively and em-
ploying ART-Linux on which real-time processing is
available at the user level. Thanks to the unification,
the controllers can share softwares with the dynam-
ics simulator of V-HRP[1] developed in METI’s Hu-
manoid Robotics Project (HRP for short)[2], includ-
ing the parameter parser, kinematics and dynamics
computations and the collision detector.

This feature can make the development of the con-
trollers more efficient and the developed controllers
more reliable. Besides, it becomes easier to feedback
the experimental results for the improvements of the
dynamics simulator when the run-time environments
of the controllers are identical.

This paper is organized as follows. Section 2
overviews V-HRP and humanoid robot HRP-1S de-
veloped by Honda R&D as the real counterpart. Sec-



tion 3 shows how the controllers for the virtual and
real robot is unified. Section 4 presents a realtime col-
lision detector for humanoid robots as an example of
shared codes in the controller. Section 5 concludes the
paper.

2 Virtual and Real Humanoid Robots
2.1 Virtual Humanoid Robot Platform

2.1.1 Overview of V-HRP

V-HRP is a software platform to develop software for
humanoid robots including the controllers and has the
following features.

e It can simulate the dynamics of structure-varying
kinematic chains between open chains and closed
ones like humanoid robots|3].

e It can detect the collision between robots and
their working environment including other robots
very fast and precisely on which the forward dy-
namics of the objects are computed.

e It can simulate the fields of vision of the robots,
force/torque sensors and gradient sensors accord-
ing to the simulated motions. We call the sim-
ulations sensor simulations. The sensor simula-
tions are essential to develop the controllers of the
robots.

e It is implemented as a distributed object sys-
tem on CORBA(Common Object Request Bro-
ker Architecture){4]. A user can implement a con-
troller using an arbitrary language on an arbitrary
operating system if it has a CORBA binding.

2.1.2 Configuration of V-HRP

V-HRP consists of five kinds of CORBA servers and
theses servers can be distributed on the Internet and
executed in parallel. Each server can be replaced with
another implementation if it has the same interface
defined by IDL (Interface Definition Language). Us-
ing the language independency feature of CORBA,
ModelParser and OnlineViewer are implemented us-
ing Java and Java3D, other servers are implemented
using C++. The functions of each server are as fol-
lows.

ModelParser This server loads a VRML file describ-
ing the geometric models and dynamics parame-
ters of robots and their working environment, and
provides these data to other servers.

CollisionChecker The interference between two sets
of triangles is inspected, and the position, normal
vector and the depth of each intersecting point
are found. RAPIDI5] is enhanced to this end.

Dynamics The forward dynamics of the robots are
computed.

Controller This server is the controller of a robot,
which is usually developed by the users of V-HRP.

OnlineViewer The simulation results are visualized
by 3D graphics and recorded.

2,13 Description of Models

The models of robots and their working environment
are described by VRMLI7 format that is extended for
a humanoid animation by h-anim working group(6}.
The extended version is called h-anim format, which
includes the definitions of geometry, kinematics and
dynamics parameters required for the dynamics com-
putation. An example of h-anim format is as follows.

/
DEF HRP1 Humanoid {
humanoidBody [

DEF WAIST Joint {
jointType "free"
translatisn 0,00

on

rotati o010
children [
DEF BODY Segment {
mass 0.5
momentsOf Inertia [1 0 0
010
00 1]
children [

Inline {url "shape.wrl"}

DEF LEG_JOINTO Joint {
L jointType "rotate"

J
Here, Humanoid node expresses the whole body of a
humanoid robot, Joint node defines the type of a
joint, and Segment node describes the parameters of a
link, including the mass, the moments of inertia, and
the center of the mass.

2.1.4 Execution of The Simulation

Using the servers, the forward dynamics of the robots
are computed in the following procedure. The total
control flow is shown in Fig.2.

Setting up of the simulation environment (1)
ModelParser reads a VRML file via HTTP pro-
tocol. The kinematics and dynamics parameters
are sent to DynamicsServer and the geometric
model is to CollisionChecker.
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Figure 2: V-HRP Overview

Execution of the dynamics simulation
(2) Controller reads the outputs of the
simulated sensors while communicating with
DynamicsServer. (3) Let Controller and
DynamicsServer execute the computations. Note
that these computations can be run in parallel.
The outputs of Controller are the torques of the
actuators, and those of DynamicsServer are the
updated states of the robot. (4) While the for-
ward dynamics is computed, CollisionChecker
is called to find the position, normal vector, and
the depth of each intersecting point. (5) After
these computations, let Controller send the con-
trol outputs to DynamicsServer. (6) Controller
sends the outputs to DynamicsServer.

Visualization and recording (7) Acquire the cur-
rent states of the world from DynamicsServer.
(8) Send them to OnlineViewer which visualizes
the simulated world and records it.

2.1.5 Performance Evaluation

In order to evaluate the performance of V-HRP, biped
locomotion of a humanoid robot is simulated. The
sample humanoid robot has 6DOF arms, 6DOF legs,
3DOF waist, 2DOF neck and 29DOF in total. The
interference between every links of the humanoid and
the ground is checked and the interference between
a foot link and the ground always occurs during
the simulation. The specifications of the used com-
puter include CPU:Intel PentiumlIIl 933MHz, Mem-
ory:512MB, and OS:Linux-2.2.17. The computation
time except the visualization is 25[ms] per the unit
integration time, which is usually set around 1 [ms].

2.2 Humanoid Robot HRP-1S
The conﬁgufation of the controller hardware of hu-

manoid robot HRP-1S is shown in Fig.3. The real-
time controller runs on a CPU board in the backpack

Wireless LAN
2Mbps

Figure 3: Controller hardware of HRP-1S

of HRP-1S, whose operating system is ART-Linux[7].
ART-Linux enables the execution of realtime processes
at the user level, while RT-Linux|8] realizes it only at
the kernel level. Thanks to this feature of ART-Linux,
users can implement realtime applications as if they
are non-realtime ones. This is the first key to realize
the identical controller for the virtual and real robot.

Using the optical fiber network connecting the pair
of the reflective memory mounted on the backpack and
the PC outside the robot, the internal states of the
robot can be monitored at the PC in realtime.

3 Unification of The Controlleré

The controller must be implemented by exactly
same methods with the same signatures for the virtual
and real robots, to realize the unification of the con-
trollers; the following two requisites must be hold to
this end. (1) abstraction of the controller API where
the software body looks like the same as the hardware
body, and (2) a sychronizing mechanism that can ab-
sorb the difference between the speed of time in the
simulated and the real world.
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3.1 Hardware Abstraction

The first requisite is realized based on the plug-
in architecture [9], where application software is sep-
arated into two layers at the adapter level and the
counterpart beyond the adapter can be replaced. The
software architecture of simulated HRP-1S and the
real one is shown in Fig.4. The controller API of V-
HRP is not identical with that of Honda I/O board
shown in Fig.3. The unification of a controller is re-

Simuiation Phase
Simutated Body

1O library AP1

Figure 4: Software architecture of simulated and real
humanoid robot HRP-1S

alized by introducing the adapter whose API is the
abstracted controller API mentioned above. The em-
ulation adapter is layered on the controller API of
V-HRP which reads the outputs of the sensor simu-
lators and write the inputs of DynamicsServer, and
the hardware adapter is put on the API of Honda 1/0O
board of HRP-1S. The API of the adapters is identical
shown as follows.

class robot_adaptor

;{mblic:
virtual bool open(int argc, char *argv[l);
virtual bool close();
virtual bool read(robot_state *rs);
virtual bool write(motor_command *mc);

3.2 Sychronization Mechanism

Though various speedup techniques for the dynam-
ics simulation have been proposed to the present, but
it is still difficult to compute the forward dynamics
of robots with many degrees of the freedom includ-
ing the visualization in realtime. Generally speaking,

time goes by at a slower speed in the simulated world
than in the real world. Besides, the speed is not con-
stant in the virtual world due to the fluctuation of the
required computation time.

Therefore, the sychronization mechanism of the
controller must not be embedded in the main logic
of the controller, but in the hardware adapter. Then
the adapter can manage a change of the speed of time
by a sychronization mechanism.

Note that the outputs of the controller can not al-
ways be updated in time in the real world. So it is
possible that the controller fails to handle the robot
even when it has succeed to move the robot in the
virtual world.

3.3 Unified Controller makes The Devel-
opment Efficient by Code Sharing

The controller and the dynamics simulator can
share significant amount of codes. For example, col-
lision detection is one of major building block of the
simulator, and it is also essential in the controller to
avoid the self-collision of a moving humanoid robot.
It is needless to say that basic vector and matrix op-
erations are included both the simulator and the con-
troller. The parameters parser can also be shared.
The forward kinematics computation of robots are
common too. The unified controller makes the code
sharing easier, and therefore the development of the
controllers more efficient. Another good news of the
code sharing is that the controllers can be more reli-
able since the building blocks borrowed from the sim-
ulator has been already examined intensively by the
simulation.

However, there is a barrier to reuse the code in the
controller. That is, the servers like CollisionChecker
or DynamicsServer are implemented as CORBA
servers as shown in Fig.2. Though realtime functions
are included in the specifications of CORBA since ver-
sion 2.4 and we can find the implementations of the
functions, but the overhead of IIOP (Internet Inter-
Orb Protocol) used in CORBA is not small enough
for the controller which must update the outputs at a
few milli-seconds. This overhead can be bypassed by
the following architecture.

Let the servers like CollisionChecker or
DynamicsServer consist of two layers. The lower layer
is a normal library which is independent to CORBA,
and the higher layer wraps the library by CORBA in-
terface and converts the data structures between the
library and the interface. For example, these servers
call ModelParser through the ORB(Object Request
Broker) when reading a VRML file describing the pa-
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rameters of robots, but they access non-CORBA inter-
faces when they control the robots in realtime. The in-
ternal configuration of the controller is shown in Fig.5.

Figure 5: Internal configuration of the controller

3.4 Walking Experiment using Unified
Controller

A walking stabilizing controller is developed on
this software environment[10]. It controls body in-
clinations and ZMP using outputs of a gyrometer, an
accelerometer and force/torque sensors. The upper
graph of Fig.6 shows the ground reaction force mea-
sured by a force/torque sensor of the right leg while
the humanoid is walking 4 steps in the virtual world,
and the lower shows that in the real world. In both of
these cases, the humanoid can walk stably and gotten
reaction forces coincide sufficiently.
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Figure 6: Ground reaction force while walking

Fig.7 shows body inclinations around a roll axis and
a pitch axis while walking. These angles are estimated

by the kalman filter using outputs of a gyrometer and
an accelerometer.
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Figure 7: Body inclinations while walking

4 Realtime Collision Checker

A realtime collision checker is presented here as an
example of shared codes between the simulator and
the controller.

4.1 Self-Collision Check of The Hu-
manoid Robot

When a humanoid robot is moving, it is desirable
that the self-collision between the links of the robot is
checked in realtime for enabling emergency stopping
of the robot.

Let N be the number of the links of a humanoid
robot. Then the number of pairs of the links is yCs,
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and the collision detection must be executed for xyC>
pairs. Taking into account that the interference be-
tween consecutive links does not occur since the mov-
able range of the joints are limited, we still need to
check NCy — (N — 1) pairs. This number of the com-
bination becomes 350 in the case of HRP-1S whose
N =29.

The average computation time for the collision de-
tection is about 10 [ms], when HRP-1S takes many
random posture. Here, the geometric model of HRP-
1S consists of about 10,000 polygons. This is not fast
enough, because the cycle of the controller is 5 [ms]
and we assume that its 20% can be assigned for the col-
lision inspection. From the above experiment, about
35 pairs can be checked in 1 [ms].

The other extreme approach is inspecting self inter-
ference for all possible postures in advance, and stor-
ing the results in a table. But this approach does not
work. Assume that the resolution of each joint is one
degree and that the movable range of each joint is 90
[deg]. Then the total number of the collision detection
is 90N~ (NyCo — (N — 1)). If the shape of a robot is
symmetric, symmetric postures can be omitted. But
the iteration number becomes 170 x 9028, which is too
big in practice. Besides, the lookup table should be
too big as well.

4.2 Hybrid Collision Check Approach

We propose a hybrid approach of the realtime al-
gorithm and the offline one.

Table 1 shows the number of colliding pairs between
a link of the left arm and the left leg according to the
joint angle of each joint. The joint angle increases from
the left to the right in each row of the table, and the
resolution of each joint is 11 degrees. Each cell shows
the number of colliding pairs when moving joints while
fixing the joint at certain joint angle. We can see that
no pair of the links of the left arm and the left leg
collides if the pitch joint of the shoulder is between
-85 degree(minimum joint angle) and 14 for arbitrary
combination of the remaining joint angles. The roll
joint of the shoulder also has the safe range. Examples
of the safe postures are shown in Fig.8, where the roll
joint takes 61 degree.

The hybrid approach is summarized as follows.

1. Check the self-collision at a rough resolution for
each joint, and try to find safe range for some
joint.

2. Re-check the self-collision at a fine resolution for
the same range found at the previous step.

Figure 8: Safe posture for the collision between the
arm and the leg in the same side

3. While keeping the joint of the arms within the
safe region, check the self-collision in realtime
only for the suspicious pairs.

In the case of HRP-1S, we need not check the collisions
between the arm and the leg in the same side if we keep
the pitch joint of the shoulder or the roll joint in the
safe range.

There is no significant safe range for the collision
between the left and right legs, but each roll link of
the hip and each pitch link of ankles are covered by
the other links and therefore need not be checked.

We assume that only legs are moving during walk-
ing, 16 pairs must be checked between the legs, 16
pairs between two links around the hands and the legs,
4 pairs between the main body and foot links, and 36
in total, which can be done in realtime. An example
posture while walking is shown in Fig.9. An experi-

Figure 9: Safe posture for walking

mental result is shown in Fig.10. The required time
is longest when the robot is standing, and decreases
while walking.
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Joint min<—Joint Angle—max

LLEG-HIP-Y 5556 ]¢6

LLEG-HIP-R 5|5|5]|5]|6

LLEG-HIP-P 6151414144 |4]41]4

LLEG-KNEE-P 6l{e6l6|6]6|6|6l6|6|6|6|6]|6]|e6

LARM-SHOULDER-P |[o|o|o{o|ofjofo]o|lo|2|2f2|5|6|6|5]|5]4]|4]4]4

LARM-SHOULDER-R | 6 | 6 [5}4|2|2|0|0]o0

LARM-SHOULDER-Y |6 | 55 |5 |5|5}|5f{5]|5|5]|s|5|5|5]|5|5{5|s5|5f(6]6|6|6]5]5

LARM-ELBOW-P 2{2|3|4|l6le|6lele|{6|l6]|6]s6

LARM-ELBOW-Y 6|e6|l6|l6lele|e6|6|6|le]|6|6]l6]6]|6|l6le6le6le]|le66le]s]s
Table 1: # of colliding pairs of the links
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Figure 10: Computation time for the self-collision
while walking

5 Conclusions

This paper presented a virtual humanoid robot
platform on which we can develop the identical con-
troller for a virtual humanoid robot and its real coun-
terpart. The results can be summarized as follows.

e The unification of the controllers for the virtual
and real robot has been realized by introducing
the adapters for two robots respectively with the
sychronization mechanism, and employing ART-
Linux on which real-time processing is available
at the user level.

e Thanks to the unification, the controllers can
share softwares with the dynamics simulator in-
cluding the parameter parser, kinematics and dy-
namics computations and the collision detector.

e This feature can make the development of the
controllers more efficient and the developed con-
trollers more reliable.

e A realtime collision checker for humanoid robots
has been developed as an example of the shared
code.

Acknowledgments

This research was supported by the Humanoid
Robotics Project of the Ministry of Economy, Trade

Technology Center.

References

(u

2

[3

4]
(5

[

(8]
&)

10]

Y .Nakamura, H.Hirukawa, K.Yamane, S.Kajita, K.Yokoi,
K.Tanie, M.G.Fujie, A.Takanishi, K.Fujiwara, F.Kanehiro,
T.Suehiro, N.Kita, Y Kita,
S.Hirai, F.Nagashima, Y.Murase, M.Inaba, and H.Inoue.
V-HRP:Virtual Humanoid Robot Platform. In Proc. of the
First IEEE-RAS International Conference on Humanoid
Robots, 2000.

Hirochika Inoue, Susumu Tachi, Kazuo Tanie, Kazuhito
Yokoi, Shigeoki Hirai, Hirohisa Hirukawa, Kazuo Hirai,
Shigeto Nakayama, Kazuya Sawada, Takashi Nishiyama,
Osamu Miki, Toshiyuki Itoko, Hajimu Inaba, and Masako
Sudo. HRP:Humanoid Robotics Project of MITI. In Proc.
of the First IEEE-RAS International Conference on Hu-
manotd Robots, 2000.

Katsu Yamane and Yoshihiko Nakamura. Dynamics com-
putation of structure-varying kinematic chains for motion
synthesis of humanoid. In Proc. of the 1999 IEEE Interna-
tional Conference on Robotics & Automation, pp. 714-721,
1999.

http://www.omg.org. Object Management Group.

S. Gottschalk, M. C. Lin, and D. Manocha. OBB-Tree:A
Hierarchical Structure for Rapid Interference Detection. In
Proc. of ACM Siggraph ’96, 1996.

http://www.h-anim.org/. HUMANOID ANIMATION
WORKING GROUP.

Youichi Ishiwata and Toshihiro Matsui. Development of
Linux which has Advanced Real-Time Processing Func-
tion. In Proc. 16th Annual Conference of Robotics Society
of Japan, pp. 355-356, 1998.

http://luz.cs.nmt.edu/"rtlinux. RT-Linuz. V. Yodaiken
and M.Barabanov.

Fumio Kanehiro, Masayuki Inaba, Hirochika Inoue, Hiro-
hisa Hirukawa, and Shigeoki Hirai. Developmental Soft-
ware Environment that is applicable to Small-size Hu-
manoids and Life-size Humanoids. In Proc. of the 2001
IEEE International Conference on Robotics € Automa-
tion, pp. 4084-4089, 2001.

Kazuhito Yokoi, Fumio Kanehiro, Kenji Kaneko, Kiyoshi
Fujiwara Shuji Kajita, and Hirohisa Hirukawa. A Honda
Humanoid Robot Controlled by AIST Software. In Proc.
of the IEEE-RAS International Conference on Humanoid
Robots, 2001.



