
Bluetooth Hacking revisited

+

Kevin Finistere & Thierry Zoller

22C3 − 2006

Bluetooth – Please just turn it off

Turn off your BT please,Turn off your BT please,Turn off your BT please,Turn off your BT please,

,no really.

Yeah

The Goal of this Talk ?

� The Goal of this talk is not to:
� Build myths

� Show off – and not show how

� The Goal of this talk is to :
� Raise awareness

� Make risks (more) transparent

� Paradigm Shift – Bluetooth is not only for toys

� Show cool stuff…

What are we talking about today ?

� [0x00] – Introduction : What is Bluetooth ?
� Sorry this is required. Crash course..

� [0x01] – Get ready to rumble : Extending the Range
� Extending the range of Bluetooth devices

� Building automated reconnaissance and attack devices

� Bluetooth War driving (GPS, 360°Camera)

� [0x02] – Implementation issues : Bypassing Security
� Attacking drivers, Attacking applications

� Owning Bluetooth VNC style

� Attacking Internal Networks and pivoting

� Bluetooth Pin to Bluetooth Passkey

� [0x03] – Protocol/Specification issues : Ceci n’est pas une pipe
� Cracking the Pin and the Link-key (BTCrack)

� Key management, 8 bit Encryption, Collisions

� Tracking the un-trackeable

� Anti-Brute-forcing

� Random Number generators from hell

[0x00] Introduction

� Bluetooth - a few tidbits:
� Operates on the non-regulated ISM band : 2,4Ghz

� In general 79 Channels (Except France, Spain)

� Frequency Hopping (3200/sec, 1600/sec)

� Complete Framework with profiles and layers of protocols

� 1 Billionth BT device sold in November 2006 (source SIG)

� Goals : Least cost cable replacement, low power usage

[0x00] Introduction

� The foundation – Protocol Stack

Hardware

Software

Redfang – read_remote_name()

L2ping

[0x00] Introduction

� “Typical” Bluetooth Scenario

Inquiry

Inquiry response

Paging (FHS)

Link establishment

Discovers

Profiles

Bluetooth

Access Point

[0x00] Introduction

� Inquiry - First Contact

� Predefined Hopping sequence

� FHS same for all devices

� Pass Paging parameters during Inquiry stage

[0x00] Introduction

� Paging - Frequency Hopping Synchronization
� Slaves always sync to the Master

� Paging initialisation :

� Slaves hop 1 Channel/sec

� Master hops 3200 times/sec

� Paging

� Both hop 1600 times/sec

� Piconet agrees to a Sequence based on parts
of the BD_ADDR and Clock-offset of the master.
(Nice fingerprint by the way)

� FH is the reason you can not easily sniff BT traffic. You have to sync to the
Master (or use a Spectral Analyzer and reconstruct afterwards – Good luck)

[0x00] Introduction

� The Bluetooth Profiles
� Represent a group and defines mandatory options

� Prevent compatibility issues, modular approach to BT extensions

� Vertical representation of BT layer usage, handled through SDP

Object Push Profile

[0x00] Introduction

� Different Bluetooth modes
� Discoverable modes

� Discoverable :
Sends inquiry responses to all inquiries.

� Limited discoverable:
Visible for a certain period of time (Implementation bug: Sony Ericsson T60..)

� Non-Discoverable:
Never answers an inquiry scan (in theory)

� Pairing modes :
� Non-pairable mode :

Rejects every pairing request (LMP_not_accepted) (Implementation bug: Plantronic
Headset..)

� Pairable mode :
Will pair up-on request

[0x01] Get ready to rumble

� Extending the Range

[0x01] Get ready to rumble

� Long Distance - Datasets
� Antrum Lake, water reflection

guarantees longer ranges.

� 788 Meters

� An old Man stole my phone

during this test! I tracked

him with the yagi.

[0x01] Get ready to rumble

� Optimizing for Penetration (1)
� Integrated Linksys Dongle

� Integrated USB Cable

� Metal Parabola

� 10 * Zoom

� Laser (to be done)

� Experiment : Went through a building found the device on
the other side IN another building.

[0x01] Get ready to rumble

� Optimizing for Penetration (2)
� Bundling (Parabola)

� Higher penetration through walls

� Glass is your friend

� On board embedded device. (NSLU2)

� Autonomous scan and attack toolkit

� automatically scans

� may attack devices

� saves all the results

[0x01] Get ready to rumble

� PerimeterWatch – Bluetooth Wardriving
� Perl Script by KF

� Searches Bluetooth Devices

� Takes 360°pictures

� GPS coordinates

[0x02] Implementation bugs

� Implementation Bugs – Bypassing security

[0x02] Implementation bugs

� Menu du Jour :
� Eavesdropping on Laptops/Desktops

� Remotely controlling workstations

� Car Whisperer NG

� Owning internal Networks over Bluetooth

� Linkkey theft and abuse

� Widcomm Overflows
(Broadcom merger leaves lots of vuln users that can not patch) BTW
3.0.1.905 (../ attacks) and up to BTW 1.4.2.10 has overflows

[0x02] Implementation bugs

� Bluetooth PIN is really a Bluetooth Passkey
� Did you know ? A Bluetooth “Pin” can be more than digits…

� Not aware of any implementation, all use just digits

� Uses UTF8

� Max 16, UTF8 char may take some off

� Example :

� It’s like implementing NTLM with digits only….

� BTCrack would a lot more time if this would be “correctly” implemented

0xC3 0x84 0x72 0x6c 0x69 0x63 0x68Ärlich

0x30 0x31 0x032 0x330123

BT handles User enters

[0x02] Implementation bugs

� CarWhisperer – Martin Herfurt
� Listen and Record Conversations

� Not that new, but what’s new :

� Works against Workstations
Example : Widcomm < BTW 4.0.1.1500 (No Pincode)

� Kevin did a real-time patch for it

� Remove the Class ID check

� Root Cause :
Paring mode, discoverable, hard coded Pin.

[0x02] Implementation bugs

� HidAttack - Owning Bluetooth VNC Style
� HID = Human Interface Device

� Requires 2 HID (PSM) endpoints to act

as server

� 2 implementations :

� Keyboard connects to the HID server

� HID server connects to the Keyboard

� You can control the Mouse and Keyboard HID just as you were in
front of the PC.

� Discovered by Collin Mulliner , fixed in hidd Bluez <2.25, Widcomm,
Toshiba not really tested. Yours?

� Code release today : www.mulliner.org/bluetooth/hidattack01.tar.gz

� Thanks Collin !

[0x02] Implementation bugs

� Demo - Owning internal networks
� Apple

� OSX 10.3 Tiger

� OSX 10.4 Jaguar
Vanilla, delayed release

� Windows
� Widcomm, Toshiba,

Bluesoil, others ?

� Pocket PC

� Kevin: Apple asked me to not tell 10.4 was shipping vulnerable
� OSX 10.3.9 patched, OSX 10.4 shipped vulnerable patched a month

after OSX 10.3.9

[0x02] Implementation bugs

� Demo – Remote Root over BT
� Vulnerability shown :

Directory Traversal in un-authenticated
Obexserver (Patched)

� Cause :
User input validated client-side (except btftp)

� ObexFTP server directory traversal exploit & malicious InputManager & local
root exploit = remote login tty over rfcomm = 0WNAGE

� Was possible on Windows and Pocket PC and everything that has Toshiba or
Broadcom & Widcomm (estimate 90%), and most probably others too. But we
choose a MAC, because…we can.

� Points are :
- Macs are NOT invulnerable (far from that) - You can own internal networks
over Bluetooth

[0x02] Implementation bugs

� Windows Widcomm - Buffer overflows

[0x02] Implementation bugs

� Windows Widcomm - Buffer overflows

� Vulnerable versions known to us :

� Widcomm Stack up to 3.x is vuln

� Widcomm BTStackServer 1.4.2 .10

� Widcomm BTStackServer 1.3.2 .7

� Widcomm Bluetooth Communication Software 1.4.1 .03

� HP IPAQ 2215

� HP IPAQ 5450

[0x03] Protocol issues

They are just
implementation

Bugs*

*This is supposed to be a joke

[0x03] Protocol issues

� Menu du Jour :
� Why the Pin is not that important

� Unit Keys

� How to find non discoverable devices

� Random Number generators that may be from Hell

� Link Keys

� Reconstructing them

� Abusing them

� Re-force Pairing, Corruption

� Denial of Service

[0x03] Protocol issues

� The PIN is not really that useful
� The link key is !

� Here’s why :
� Pairing mode required for PIN

� The LK is enough to authenticate

� Encryption (E0) calculated from

the LK

� We can authenticate against both
sides with the same key

� Protocol 1.2 Authentication :

[0x03] Protocol issues

� Unit keys
� Generated by the device when starting up
� Based on a PRNG that may come from hell
� Permanently saved and cannot be changed
� Only has one key

� Problem :

� The SIG clearly does not recommend it’s use.

A B

Step1

A C

Step2

[0x03] Protocol issues

� How to find nondiscoverable devices passively
� From the man himself: Joshua Wright

� We knew read_remote_name(), now l2ping.

� Target : BD_Addr : 48-bit

1. Sniff on a preset channel and wait for devices to hop by , capture
the Bluetooth Preamble, extract the cannel access code (which
is based on 24 bits of the BD_addr)

2. Extract Error Correction field (baseband header – CRC 10bit
field)

3. Assume the first 8 bits 00

4. Brute force the remaining: 8bits

00:11:9F:C5:F1:AE

[0x03] Specification issues

� Random Number Generators from Hell

� Specification is not very clear about what to achieve or how to
achieve it

� The specification reads :

Each device has a pseudo-random number generator. Pseudo-random
numbers are used for many purposes within the security functions − for
instance, for the challenge-response scheme, for generating authentication and
encryption keys, etc.

Within this specification, the requirements placed on the random
numbers used are non-repeating and randomly generated

For example, a non-repeating value could be the output of a counter that
is unlikely to repeat during the lifetime of the authentication key, or a
date/time stamp.

[0x03] Specification issues

� Random Number Generators from Hell

� Remember the Clock inside each Device ?

� Remember that we can get the clock-offset with an simple non-authenticated
inquiry ?

� RND do not look very random, had no time left to investigate fully, looks
horrible.

� They don’t trust it themselves :
The reason for using the output of and not directly

choosing a random number as the key*, is to avoid

possible problems with degraded randomness due

to a poor implementation of the random number

generator within the device.

*What a great idea that would have been…

[0x03] Protocol issues

� Introducing BTCrack
� First presented at Hack.lu 2006

� Released for 23C3

� Cracks PIN and Link key

� Requires values from a Pairing sniff

� Imports CVS Data

Available for download here now:
http://www.nruns.com/security_tools.php

[0x03] Protocol issues

� History
� Ollie Whitehouse - 2003

� Presents weaknesses of the pairing process and how it may be used
crack the PIN

� Shaked and Wool - 2005
� Implemented and optimised the attack

� Found ways to re-initiate pairing

� Thierry Zoller – 2006
� Win32 implementation, first public release

� Tremendous help from somebody that will recognize himself

[0x03] Protocol issues

� Speed - Dual-Core P4-2GHZ

� BTcrack v0.3 (Hack.lu)
� 22.000 keys per second

� BTcrack v0.5
� 47.000 keys per second

� BTcrack v1.0
� Thanks to Eric Sesterhenn

� Optimised for caching,
cleaning code, static funcs,
removing Junk

� ICC

� 185.000 keys per second

Results :

• 4 digit pin : 0.035 seconds

• 5 digit pin : 0.108 seconds

• 6 digit pin : 4.312 seconds

• 9 digit pin : 1318 seconds

[0x03] Protocol issues

� BT Crack – Behind the scenes (1)

Step1Step1Step1Step1
Generates (RAND)
K = E22(RAND, PIN, PIN_LEN)

Device A Device B

StepStepStepStep1111
K = E22(RAND, PIN, PIN_LEN)

Rand

Step2Step2Step2Step2
Generates (RANDA)
CA = RANDA xor K

Step2Step2Step2Step2
Generates (RANDB)
CB = RANDB xor K

CA

CB

Step3Step3Step3Step3
RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Step3Step3Step3Step3
RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Step4Step4Step4Step4
SRESA =
E1(CH_RANDA,ADDRB,LKAB)

Step4Step4Step4Step4
SRESB =
E1(CH_RANDA,ADDRB,LKAB)

CH_RANDA

SRESB
Step5Step5Step5Step5
SRESA = SRESB

E22 = Connection key
E21 = Device key

[0x03] Protocol issues

� BT Crack – Behind the scenes
Pin =-1;

Do

{
PIN++;
CR_K=E22(RAND, PIN, length(PIN));

CR_RANDA = CA xor CR_K;
CR_RANDB = CB xor CR_K;

CR_LKA = E21 (CR_RANDA, ADDRA);
CR_LKB = E21 (CR_RANDB, ADDRB);

CR_LKAB = CR_LKA xor CR_LKB;

CR_SRES = (CH_RAND, ADDRB, CR_LKAB);

}

while (CR_SRES == SRES)

� Right : Shaked and Wool logic
� Top : Pseudo code by Tomasz Rybicki

Hackin9 04/2005

[0x03] Protocol issues

� BT Crack – Demo

[0x03] Protocol issues

� Link keys – What can I do with them ?
� Authenticated to both devices Master & Slave with the same link key

� Dump them from any Linux, Mac, Windows machine

� Create a encrypted stealth channel, plant the linkkey

� You can decrypt encrypted traffic with the linkkey

� How to force repairing ?
� Shaked and Wool proposed:

� Injection of LMP_Not_Accepted spoofing the Master

� Before the master sends Au_rand, inject In_rand to the slave

� Before the master sends Au_rand, inject random SRES messages

� We propose :
� Use bdaddr to change the Bd_Addr to a member, connect to the master

with a unknown linkkey.

[0x04] Kick-Out

� Sooooo now we have :
� A quick and reliable way to get the BD_ADDR

� A way to crack the Pin and the keys

� What's left ?

� The sniffer. It regularly costs around 13.000$ you can get it on
eBay sometimes for a 1/10 of the amount.

� Assignment : Go and make one for everybody.

[0x04] Kick-Out

� Things to Remember :
� Bluetooth might be a risk for your Company

� Risk assessment is rather complex

� Don’t accept every file you are being send, just click NO.

� Disable Bluetooth if not required

� Pair in “secure” places (SIG Recommendations)

� Don’t use Unit Keys

� Hold your Bluetooth vendor accountable for vulnerabilities

� Delete your pairings

� Use BT 2.0 and “Simple Paring”

