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Abstract
We present algorithms for recognizing human motion in monoc-

ular video sequences, based on discriminative Conditional Random
Field (CRF) and Maximum Entropy Markov Models (MEMM). Exist-
ing approaches to this problem typically use generative (joint) struc-
tures like the Hidden Markov Model (HMM). Therefore they have to
make simplifying, often unrealistic assumptions on the conditional
independence of observations given the motion class labels and can-
not accommodate overlapping features or long term contextual de-
pendencies in the observation sequence. In contrast, conditional
models like the CRFs seamlessly represent contextual dependencies,
support efficient, exact inference using dynamic programming, and
their parameters can be trained using convex optimization. We intro-
duce conditional graphical models as complementary tools for hu-
man motion recognition and present an extensive set of experiments
that show how these typically outperform HMMs in classifying not
only diverse human activities like walking, jumping, running, picking
or dancing, but also for discriminating among subtle motion styles
like normal walk and wander walk.

Keywords: Markov random fields, discriminative models, Hidden
Markov Models, human motion recognition, multiclass logistic re-
gression, feature selection, conditional models, optimization.

1 Introduction

Tracking and recognizing human motion in natural environ-
ments provides a basic infrastructure for the advancement of
several technologies that enable adaptive visual assistants for
intelligent human-computer interfaces or systems for enter-
tainment, surveillance and security. Tracking is complex due
to the large variability in the shape and articulation of the hu-
man body, the presence of clothing or fast motions. Highly
variable lighting conditions or occlusion from other people or
objects further complicate the problem.

Motion class recognition on the other hand is challenging
because human motion lacks a clear categorical structure: the
motion can be often classified into several categories simul-
taneously, because some activities have a natural composi-
tional (or concurrent) structure in terms of basic action units
(run and hand-wave, walk and shake hands while involved
in a conversation with somebody known) and because even
the transition between simple activities naturally has tempo-
ral segments of ambiguity and overlap.

Perhaps most importantly, similar motions can happen at
various timescales and because they often exhibit long-term
dependencies, context needs to be considered for correct clas-
sification. For instance, the motion class may be hard to pre-
dict at a particular point in time using only the previous state
and the current image observation alone, but may be less am-
biguous if several neighboring states or observations possibly
both backward and forward in time are considered. However,
this behavior would be hard to model using a Hidden Markov
Model (HMM) [20], where stringent independence assump-
tions among observations are required in order to ensure com-
putational tractability (notably, conditional independence of
observations given the class labels).

HMMs and more generally the class of stochastic gram-
mars, are generative models that define a joint probability dis-
tribution �
	���
���� over observations � and motion label se-
quences � , and use Bayes rule to compute �
	���� ��� . In order
to model the observation process and enumerate all possible
sequences of observations, generative models need to assume
them as being atomic and independent. Therefore they can’t
accommodate multiple overlapping features of the observa-
tion or long-range dependencies among observations at mul-
tiple time steps, because the inference problem for such mod-
els becomes intractable. Arguably, another inconvenient of
using generative models like HMMs stems from their indi-
rection: they use a joint model to solve a conditional problem
thus focusing on modeling the observations that at runtime are
fixed anyway. Even if the generative model were accurate,
this approach could be non-economical in cases where the
underlying generative model may be quite complex, but the
motion class conditioned on the observation (or the boundary
between classes) is nevertheless simple.

In this paper we advocate a complementary discriminative
approach to human motion recognition based on extensions
to Conditional Random Fields (CRF) [14] and Maximum En-
tropy Markov Models (MEMM) [16]. A CRF conditions on
the observation without modeling it, therefore it avoids inde-
pendence assumptions and can accommodate long range in-
teractions among observations at different timesteps. Our ap-
proach is based on non-locally defined, multiple features of
the observation, represented as log-linear models, that can be
seen as a generalization of logistic regression to account for
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correlations among successive class labels. Inference can be
performed efficiently using dynamic programming and train-
ing the parameters is based on a convex problem, with guar-
anteed global optimality. We demonstrate the algorithms on
the task of both recognizing broader classes of human mo-
tions like walking, running, jumping, conversation or danc-
ing, but also for finely discriminating among motion styles
like slow walk or wander walk. We compare against HMMs
and demonstrate that the conditional models can significantly
improve recognition performance in tests that use both fea-
tures extracted from 3d reconstructed joint angles, but also in
recognition experiments that use feature descriptors extracted
directly from image silhouettes.

1.1 Related Work

The research devoted to human motion recognition is exten-
sive, accounting for its clear social and technological impor-
tance. We refer to [2, 9, 5] for comprehensive surveys and
here aim only at a brief literature overview. HMMs [20]
and their various extensions have been successfully used for
recognizing human motion based on both 2d observations
[26, 6, 7, 10] and 3d observations [29, 21]. Generative ap-
proaches to tracking and motion classification have also been
proposed by [4, 17], where the variation within each motion
class is represented as an auto-regressive process, or a lin-
ear dynamical system, whereas learning and inference are
based on Condensation and variational techniques, respec-
tively. Black & Jepson [3] model motion as a trajectory
through a state space spanned by optical flow fields and infer
the activity class based on propagating multiple hypotheses
using a Condensation filter. Fablet & Bouthemy [8] present
a powerful approach to recognition using multiscale Gibbs
models. Shi et al [22] employ a P-net and a discrete Conden-
sation algorithm in order to better take into account sequential
activities that include parallel streams of action.

We are not aware of conditional approaches previously ap-
plied to human motion recognition (temporal chains), but dis-
criminative models have been successfully demonstrated in
spatial inference, for the propose of detecting man-made or
natural structures in images [13, 11, 28, 18]. There is a rela-
tion between CRFs/MEMMs and the so-called ‘sliding win-
dow’ methods [19] that essentially predict the current state
label independently by considering a window centered at the
current observation. However such methods do not account
for correlations between neighboring, temporal state labels,
as common in motion recognition problems.

2 Conditional Random Fields

We work with graphical models with a linear chain structure,
as shown in fig. 1. These have discrete temporal states ��� ,
here discrete motion class labels �������
	�� 
�
 
������ 
���� , ���

��������� , prior �
	���� � , observations ��� , with �! #" 	�� �$�&% . For
notational compactness, we also consider joint states � � �	'� � 
(�*) 
������ 
(� � � or joint observations � � � 	'� � 
������ 
�� � � .
Sometimes we drop the subscript, i.e. �,+�� � and �-+.� � ,
for brevity.

Let /0� 	21 
�3 � be a graph and � being indexed by the
vertices of / , say �*4 . A pair 	���
���� is called a Condi-
tional Random Field (CRF) [14], if when conditioning on � ,
the variables �*4 obey the Markov property w.r.t. the graph:�
	'�*4�� ��
��,576�8 4:9 �;� �
	��<4 � ��
��>=@?�� , where A,4 is the set of
neighbors of node B and �>=�? is the joint vector of variables in
the subscript set. Let C 	�� 
 ��� be the set of maximal cliques
of / . Using the Hammersley Clifford theorem [12], the dis-
tribution over joint labels � given observations � and param-
eters D , can be written as an expansion:

�<E 	�� � ����� �F E 	����
G

H�IKJ7L#MON P�QSR
HE 	�� H 
�� H � (1)

where R
HE is the positive-valued potential function of clique� , and

F E 	���� is the observation dependent normalization:

F E 	������UT M
G

H�IKJ�LVMON P�QSR
HE 	�� H 
 � H � (2)

For a linear chain (first-order state dependency), the cliques
include pairs of neighboring states 	��*� 6 � 
(�W� � , whereas the
connectivity among observations is unrestricted, as these are
known and fixed (see fig. 1b). Therefore, arbitrary clique
structures that include complex observation dependencies do
not complicate inference. For a model with � timesteps, the
CRF in (1) can be rewritten in terms of exponentiated feature
functions X E , computed in terms of weighted sums over the
features of the cliques, c.f . (3) and (12):1

� E 	���� ���Y� �F E 	����[Z]\!^
_ +T �'`a� X E 	'�W��
��W� 6 � 
�����b (3)

F E 	������ T M Z�\c^
_ +T �'`a� X E 	'�<��
(�<� 6 � 
 ��� b (4)

Assuming a fully labeled training set 	 �ed 
 �-df� d `a�hgigig j , the
CRF parameters can be obtained by optimizing the condi-
tional log-likelihood:

k E � jT
d `a�cl#mKn �

E 	�� d � � d �Y� (5)

� jTd `a�
_ +T 4#`�� X E 	�� d� 
(� d� 6 � 
�� d �[o lVm�n

F E 	�� d �(b (6)

1We use a model with tied parameters p across all cliques, in order to
seamlessly handle models of arbitrary size, i.e., sequences of arbitrary length.

2



Figure 1: (a, Left) A generative Hidden Markov Model represents � 	'� � � � � � and � 	'� � � � � 6 � � and requires a probabilistic inversion
to compute �
	��-+ � � +
� using Bayes rule. Modeling long range dependencies among temporal observations is not tractable. (b,
Middle) A directed conditional model (e.g. a Maximum Entropy Markov Model) represents �
	'� � � �W� 6 � 
(%�� � or, more generally,
a locally normalized conditional distribution based on the previous state, and a past observation window of arbitrary size.
Shadowed nodes indicate that the model conditions on the observation without modeling it. But the local normalization may
face label-bias problems (see text). (c, Right) A Conditional Random Field accommodates arbitrary overlapping features of
the observation. Here we show a model based on a context of 3 observation timesteps, but the dependencies can be arbitrarily
long-range. Generally, the architecture does not rule out an on-line system, where long-range dependencies from the current
state can be restricted only towards past observations.

In practice, we often regularize the problem by optimizing
a penalized likelihood:

k E ��� E , either using soft (ridge)
feature selection:

� E � o � � D � � ) , or a more aggressive Jeffrey
prior:

� E � o l#mKn � � D � � .Likelihood maximization can be performed using a gradi-
ent ascent (e.g. BFGS [15]) method:

� k E� D � jTd `a�
_ +T �'` �

� X E 	'� d� 
(� d� 6 � 
 � d �� D o (7)

o T M �<E 	���� � d � +T �'` �
� X E 	'�<��
(�<� 6 � 
 � d �� D b (8)

For discrete-valued chain models with state dependencies
acting over a short range, the observation dependent normal-
ization can be computed efficiently by matrix / tensor mul-
tiplication. For a bigram model, we work with the matrix
of size ���.� , containing all possible assignments of pairs of
neighboring states to class labels:2

� � 	����Y�
	 Z]\!^ 	 X E 	'�<��
(�<� 6 � 
 ������� 
(�W��
��W� 6 � � � (9)

Then the observation dependent normalization factor can
be computed as:

F E 	����Y� _ +�
 �G
�'`a�

� � 	����(b�� ������� N � ����� (10)

where we have added two dummy start and stop states��� ������� %�� and �*+�
 � ������� � and the subscript indicates
the particular entry of the matrix product [14].

The conditional probability of a class label sequence is:

�*E 	�� � ���Y� � +�
 ��'`a� Z�\c^ 	�X E 	��W��
(�<� 6 � 
���� �F E 	���� (11)

2Longer range state interactions be accommodated, e.g., a trigram model
by working with a tensor of size  "! .

The potential functions at pairs of neighboring sites can be
chosen as:

X E 	'�<��
(�W� 6 � 
 �����$# E 	'�<��
���� � # E 	��W��
��W� 6 � � (12)

where #7E are linear models:

#7E 	'� � 
 �����
%
T�h`a�

& �(')� 	�� � 
 ��� (13)

# E 	��W��
(�<� 6 � ���
*
T + `a�

, +.-/+ 	'�<��
(�W� 6 � � (14)

with parameters D;� 	 	 & � 
 , + � 
0�e� �������"1 
32 � �������"4 � ,
to be estimated, and preset feature functions '/� 
 - + based on
conjunctions of simple rules. For instance, given a tempo-
ral context window of size 
65 � � (observations) around the
current observation, the combined observation-label feature
function is: ' � 	'�<��
������879	 �<�,��:;�#��� 6�< 	 B=� 
": � � 
�B �	���������% � 
�> �?	Vo@5 
A5B� , for a total of 1 � �C��	2
65 � ���D� %
feature functions ( 7 is the indicator function). Intuitively, the
features encode correlations among motion classes and com-
ponents of the observation vector forward or backward in
time. The features that model inter-label dependencies are:-/+ 	�E���
"E�� 6 � ���F7G	 �W���H: �JI �W� 6 � �$: ) � 
": � 
": ) � � , for a
total of 4
� � ) functions.

CRFs are convenient because, as for HMMs, inference can
be performed efficiently using dynamic programming. Learn-
ing the model parameters leads to a convex problem with
guaranteed global optimality [14]. We solve this optimiza-
tion using a limited-memory variable-metric gradient ascent
(BFGS) method [15] that converges in a couple of hundred
iterations in most of our experiments (see fig. 4).

Directed Conditional Models. Maximum Entropy Markov
Models (MEMM): An alternative approach to conditional
modeling is to use a directed model [16] as shown in
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fig. 1b. This requires a locally normalized representation for�
	'� � � � � 6 � 
(� � � . Inference can be performed efficiently using a
dynamic programming procedure based on recursive Viterbi
steps: � � 	�� � � ����� I�� � � 6 � 	�� �	� � 	'� � ��
�
�� � � where � � 	�� �
computes the probability of being in state � at time � , given
the observation sequence up to time � . Similarly, the backward
procedure computes

, � as the probability of starting from state� at time � , given the observation sequence after time � as:, ��	'� 
 � � � � I�� � 	'� � � 
 
�� � ��� , � 
 � 	'� � . The conditional dis-
tribution � 	'�<� � �<� 6 � 
(��� � can be modeled as a log-linear model
expressed in terms of feature functions X E as in (12), (13) and
(14):

�
	��W� � �W� 6 � 
(��� ��� �F 	��W� 6 � 
(��� �[Z�\!^ 	�X E 	��W��
��W� 6 � 
(��� � � (15)

where
F 	'�<� 6 � 
(��� ��� � ��
 X E 	'�<��
(�W� 6 � 
�� � � .

It is worth noticing that CRFs solve a problem that ex-
ists in MEMMs [16, 14], called the label-bias problem. This
problem arises because such models are locally normalized.
(MEMMs still have a non-linear decision surface because the
local normalization depends on the state.) The per-state nor-
malization requirement implies that the current observation is
only able to select what successor state is selected, but not
the probability mass transfered to that state, causing biases
towards states with low-entropy transitions. In the limit, the
current observation is effectively ignored for states with sin-
gle outgoing transitions. In order to avoid this effect, a CRF
employs an undirected graphical model that defines a single
log-linear distribution over the joint vector of an entire class
label sequence given a particular observation sequence (thus
the model has a linear decision surface). By virtue of the
global normalization, entire state sequences are accounted for
at once, and this allows individual states to boost or damp the
probability mass transfered to their successive states.

3 Experiments

We run a variety of recognition experiments based on both 2d
features derived from image silhouettes and based on recon-
structed 3d human joint angles.

Training Set: To gather image training data, we use
Maya (Alias Wavefront), with realistically rendered computer
graphics human surface models that we animate using hu-
man motion capture [1]. This database is annotated by ac-
tivity class (with each individually sequence supplementary
sub-segmented by activity type) and this information can be
used to generate a labeled training set on which we perform
segmentation and classification. Our 3d human state represen-
tation is based on an articulated skeleton with spherical joints,
and has 56 d.o.f. including global translation. Our database
consists of 8000 samples that involve various human activities
including walking, running, turns, jumps, gestures in conver-
sations and dancing. Some insight into the structure of the

database is given in fig. 2, whereas image samples from our
motion test sequences are shown in fig. 3.
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Figure 2: Analysis of the degree of ambiguity in the motion
class labeling for our database, under moderate input (silhou-
ette) perturbations. We cluster the input silhouette feature
vectors into 80 clusters, count the number of different motion
labels that fall within each, and histogram those.

Image Features: We work with silhouettes that we obtain
using a combination of statistical background subtraction and
motion segmentation [25]. As image descriptors, we use 50-
dimensional histograms of combined shape context and pair-
wise edge features extracted at a variety of scales on the sil-
houette [25]. This representation is semi-local, rich and has
been effectively demonstrated in many applications, including
texture recognition or pose prediction. The representation is
based on overlapping features of the observation. Therefore
the elements of the silhouette feature vector are generally not
independent. However, due to its conditional structure, a CRF
flexibly accommodates this representation without modeling
assumption violations.

We run several tests in order to compare the CRF model
described in � 2 with a HMM and a MEMM (see [24] for ad-
ditional experiments). The HMM we use is a fully ergodic
model based on Gaussian emission probabilities having full
covariance matrix for each state. The parameters of the model
(the emission probability density, the state transition matrix)
are learned from training data [20] using Maximum Likeli-
hood. We also learn a variety of CRFs that model long-range
dependencies between observations to various degrees, i.e.
windows 5 � 	�� 
�� 
�� � , meaning that we considered con-
texts of observations of size 0,3 and 7 centered at the cur-
rent observation.3 Fig. 4 gives some insight into the learning
procedure for CRFs and the distribution of estimated coef-
ficients for our feature functions. Training is more expen-
sive for CRFs, ranging from 30 minutes to several hours for

3For the experiments, we only consider baseline models, arguably, more
complex HMMs or CRFs can be used. Nevertheless, most of the technology
previously used to construct sophisticated HMMs including layering or left-
right models can be directly applied to build CRF counterparts (e.g. left-right
implementations can be obtained by setting some of the � parameters in (14)
to zero; one can build a separate left-right model for each motion class, etc.).
None of the models is thus disadvantaged by not using such features.
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Figure 3: Sample images (top row) and silhouettes (bottom row) of typical motions that are recognized: walking, running,
bending and picking, dancing, etc. Notice that the silhouettes are of average quality and potentially quite different from the
ones we trained on and which were artificially generated. Nevertheless, we observe that the recognition accuracy is usually
robust to these factors.

models having longer windows of observations (as opposed to
seconds for HMMs, or minutes for MEMMs), on a standard
desktop PC. Inference is about as fast for all models in the
order of seconds for sequences of several hundred frames.

Recognition Experiments based on 2d features: We test
our algorithms on both real data (table 2; we work with 7 mo-
tion labels, and we test on 1029 frames) and artificial data
(table 1; we work with 11 motion labels and we test on 2536
frames, and use a CRF with 5 � � ) and evaluate their recog-
nition performance not only w.r.t. broader classes of motion
like running, walking or dancing, but also w.r.t. to finer styles
like normal walk, wander walk or slow walk (tables 3,4,5; we
work with 4 motion labels, we test on 700 frames and use a
CRF with 5 � � ). It is noticeable that the CRF typically
outperforms the MEMM and the HMM in most test cases.

In table 2 we show an extensive set of experiments for dif-
ferent motion labels and models. The CRFs learned using
larger window contexts generally outperform the HMM, with
the exception of the jump, which the CRF confuses with the
motion of picking, or of grabbing something from the floor.
CRFs also show significantly better and stabler recognition
performance in the presence of larger variability w.r.t. the
training set (e.g. the test set denoted HWSW has input sil-
houettes that are significantly different from the ones on the
training set). It is also important to notice how increasing the
context of the current observation improves recognition and
changes the inferred distribution of class labels. In fig. 5 we
show how a larger observation context can improve recogni-
tion results by as much as � ��� .

In tables 3, 4 and 5, we analyze the recognition perfor-
mance w.r.t. viewpoint and finer motion differences. For the
experiments shown in table 3, we have selected a viewpoint
that is somewhat uninformative with respect to the motion.
As a consequence, the recognition rates are not high, often

the normal walk and the wander walk are confused.

NW WW SW R
CRF W=0 38.9 65 86.5 100
CRF W=3 100 45 100 100
MEMM 16.31 64.5 50.5 75
HMM 0 76.5 44.3 100

Table 3: Recognition accuracy for a ��� � viewpoint. NW /
WW / SW = Normal / Wander / Slow Walk; R = Run.

In table 4, the recognition is generally improved (the side
viewpoint appears quite informative in disambiguating run-
ning from anything else), but the MEMM and the HMM have
difficulty in accounting for long-range observation dependen-
cies that appear useful in discriminating different styles of
walking.

NW WW SW R
CRF W=0 79.62 100 51 100
CRF W=3 100 100 100 100
MEMM 59.25 96.57 53 100
HMM 80 100 33 100

Table 4: Recognition accuracy for a side viewpoint. NW /
WW / SW = Normal / Wander / Slow Walk; R = Run.

In table 5, we show recognition results for motions seen
from a challenging frontal viewpoint. The wander walk tends
to be the easiest to discriminate, presumably because it pro-
duces informative sideways variations in the frontally pro-
jected silhouette. CRF’s contextual power helps improving
performance, which nevertheless remains low, as it often con-
fuses the normal and slow walks.
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Figure 4: (Left) plots the data conditional log-likelihood as per eq. (5), versus the iteration number for various observation
windows ( 5 � � 
������ 
 � ). Notice that all models converge equally fast, in about 100 iterations. (Middle) and (right) plots
show histograms of parameters D corresponding to 5 � � and 5 � � . Many parameters are small because we use a ridge
penalized likelihood. Notice an increase in the range of parameters for models that use a larger context.

C FR FWT JLT PD RLT SR SW SWF WF WS
CRF 72.8 100 100 100 100 100 100 100 100 100 100

MEMM 100 40 100 5.2 100 100 90.5 98.14 100 91.4 100
HMM 1.4 100 2.5 1.7 87.41 93.75 100 100 100 100 100

Table 1: Comparisons of recognition performance (percentage accuracy) for synthetically generated silhouette input features.
C = Conversation, FR = Run seen Frontally, FWT = Walk and Turn seen Frontally, JLT = Jogging and Left Turn, PD =
Professional Dance, RLT = Run and Turn Left,SR = Run seen from a Side, SW = Walk seen from a Side, SWF = Slow Walk
seen Frontally, SWS = Slow Walk seen from a Side, WF = Wander walk seen Frontally, WS = Wander walk seen from a Side.
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Figure 5: (Best viewed in color) The use of context in CRFs significantly improves the recognition performance (2d testing
on feature vectors based on silhouettes extracted from real images). Left plots shows the distribution over motion class labels
when we use only the current observation (i.e. no context 5 � � ) whereas the middle and right plots use contexts of size5 � � and 5 � � respectively (3 and and 7 observation timesteps centered at the current one). A HMM tested on the same
sequence entirely mis-classifies the complex walk (motion towards the camera, turning and walking back – with low accuracy
of about ��� ��� ), which is close to the performance of a CRF with no context (left plot).

Recognition based on reconstructed 3d joint angle fea-
tures: In table 6 we give motion recognition results based
on reconstructed 3d joint angle features [1], as opposed to
directly based on image silhouette features (we use various
motions for a total of 1200 frames for testing). We directly
use the human motion capture output as opposed to the 3d
reconstruction results from an algorithm like [25], because
often multiple 3d trajectories are plausible give an image se-
quence [23]. Therefore probabilistically correct recognition
in this context would be more complex, as a recognizer may

have to consider different 3d input hypotheses and not just
one. The CRFs based on larger contexts have generally better
performance than the HMM (see also fig. 6 and fig. 7), except
for conversations which are sometimes confused with dancing
(see fig. 6). This is not entirely surprising given that both of
these activities involve similar, ample arm movements. The
occasional drop in the performance of CRFs could be caused
by insufficient training data. MEMMs can outperform CRFs
in problems where their non-linear decision boundary is more
adequate than the linear CRF one.
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CW D1 D2 BPS LVSW HVSW JF
CRF 5 � � 100 37 100 100 100 100 16
CRF 5 � � 100 42 96 100 100 100 27
CRF 5 � � 100 56.44 90.8 100 100 100 28

HMM 100 39 90 76 98.02 17 58

Table 2: Comparisons of recognition performance (percentage accuracy) for silhouettes extracted in real image sequences.
CW = Complex Walk of a person coming towards the camera, turning and walking back, D1 = classical Dancing, D2 =
modern Dancing, BPS = Bending and Picking seen from a Side, LVSW = Walking seen from a Side, silhouettes having Lower
Variability w.r.t. the training set, HVSW = Walking seen from a Side, silhouettes having significantly Higher Variability w.r.t.
the training set, JF = Jump Forward. The CRF with longer range dependencies generally does better, but seems to confuse the
jump with the pick-up. These motions indeed have similar parts, especially given that translation information is not used in the
silhouette representation (but an object centered coordinate system for features). Notice that CRF does significantly better in
the presence of larger variability w.r.t. the training set (e.g. HVSW), which has been also noticed in [14].
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Figure 6: (Best viewed in color) The distribution over class labels for recognition experiments based on 3d joint angle obser-
vations. Left plot shows motion class distributions for a conversation test set. Even a CRF that uses context partly confuses
conversation and dancing, presumably because both classes involve ample arm movements that are similar. Middle shows
recognition results for a dancing test sequence, based on a CRF with no context ( 5 � � ). Right shows how a CRF with
context 5 � � improves the recognition performance for dancing by ����� w.r.t. the CRF with no context ( 5 � � , middle).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Input Frame Number

P
ro

ba
bi

lit
y 

of
 M

ot
io

n

Classification Rate for Slow Walk Wander:100%

Run
Walk
Conversation
Slow Walk Wander
Running Left Turn
Dancing

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Input Frame Number

P
ro

ba
bi

lit
y 

of
 M

ot
io

n

Classification Rate for Run:100%

Run
Walk
Conversation
Slow Walk Wander
Running Left Turn
Dancing

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Input Frame Number

P
ro

ba
bi

lit
y 

of
 M

ot
io

n

Classification Rate for Walk:100%

Run
Walk
Conversation
Slow Walk Wander
Running Left Turn
Dancing

Figure 7: (Best viewed in color) Left plot shows increased recognition performance for a slow walk wander motion, here a
CRF with 5 � � improved recognition accuracy by ��� ��� w.r.t. to a a CRF with no context 5 ��� (see table 6). Middle and
right plots show good CRF recognition accuracy for running and walking.

4 Conclusions

We have presented a framework for human motion recog-
nition, that unlike existing generative approaches based on
HMM, is discriminative and based on Conditional Random
Fields and Maximum Entropy Markov Models. These com-
plement the popular HMMs and can be used in tandem with

them in recognition systems. By virtue of their conditional
structure, the models can accommodate arbitrary overlapping
features of the observation as well as long-term contextual
dependencies among observations at different timesteps. This
wouldn’t be possible in a HMM where strict independence as-
sumption among observations are required in order to ensure
tractability. Similarly to HMMs, inference in the conditional
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NW WW SW R
CRF W=0 30.5 100 100 22
CRF W=3 36.1 100 96 21.5
MEMM 34 91.5 96 16.25
HMM 14.51 80.60 81 0

Table 5: Recognition accuracy for a frontal viewpoint. NW /
WW / SW= Normal / Wander / Slow Walk; R = Run.

R W SWW RTL C D
CRF
�����

100 100 0 100 60 56.29
CRF
�����

100 100 100 100 50.40 100
MEMM 100 100 19.9 100 79.8 100
HMM 100 68.5 0 100 82.5 89

Table 6: Recognition accuracy based on 3d joint angle fea-
tures. R = Running, W = Walking, SWW = Slow Walk Wan-
dering, RTL = Run and Turn Left, C = Conversation, D =
Dancing. The accuracy of CRF with long-range dependen-
cies is generally better, however it seems to confuse conversa-
tion and dancing, as can be seen in fig. 6. This is not surpris-
ing given that both activities involve sometimes similar arm
movements. Notice also how the context helped boosting the
recognition performance for SWW in fig. 7.

models can be performed efficiently using dynamic program-
ming, whereas the training procedure for the parameters is
based on convex optimization. We have demonstrated the al-
gorithms for the recognition of a variety of human motions
including walking, running, bending or dancing where we
observed that CRFs significantly improved recognition per-
formance over MEMMs, that in turn, typically outperformed
competing HMMs.

Future Work: Inference and learning with CRFs provides
an avenue for many associated research problems. It would
be interesting to systematically investigate how long-range
should the observation dependency be for optimal recognition
performance, as well as recognition based on different selec-
tions of features. The number of possible feature combina-
tions can be large, so efficient methods for feature selection or
feature induction are necessary. In this work we use a model
with first order state dependency (a bigram) but it would be
interesting to study longer range state dependencies, e.g. tri-
grams. All these extensions are straightforward to include in
a CRF.
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