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Abstract

Human motion analysis is a recent topic of interest among the computer vision and video processing community. Research in this area is

motivated by its wide range of applications such as surveillance and monitoring systems. In this paper we describe a system for recognition of

various human actions from compressed video based on motion history information. We introduce the notion of quantifying the motion

involved, through what we call Motion Flow History (MFH). The encoded motion information readily available in the compressed MPEG

stream is used to construct the coarse Motion History Image (MHI) and the corresponding MFH. The features extracted from the static MHI

and MFH compactly characterize the spatio-temporal and motion vector information of the action. Since the features are extracted from the

partially decoded sparse motion data, the computational load is minimized to a great extent. The extracted features are used to train the KNN,

Neural network, SVM and the Bayes classifiers for recognizing a set of seven human actions. The performance of each feature set with

respect to various classifiers are analyzed.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Event detection and human action recognition have

gained more interest of late, among video processing

community because they find various applications in

automatic surveillance, monitoring systems [2], video

indexing and retrieval, robot motion, human–computer

interaction and segmentation [28,30]. One of the

important applications of human action recognition is

the automatic indexing of video sequences, while most of

the multimedia documents available nowadays are in

the MPEG [21] compressed form, to facilitate easy

storage and transmission, majority of the existing

techniques for human action recognition are pixel domain

based [35,8,27,5,32,13,1,26] which are computationally

very expensive. Hence, it would be efficient if the

classification is performed in the MPEG

compressed domain without having to completely decode

the bit-stream and subsequently perform classification in

the pixel domain. This calls for techniques, which can use

information available in the compressed domain such as

motion vectors and DCT coefficients.

In the recent past, we reported a technique for

recognizing human actions from compressed video using

Hidden Markov Model (HMM) [3], where the time-series

features used for training the HMM are directly extracted

from the motion vectors corresponding to each frame of the

video. Though this approach has proven its ability to

classify the video sequences, the extracted time series

features are not suitable for other efficient classifiers such as

K-nearest neighbors (KNN), Neural networks, SVM and

Bayes.

In this paper we propose a technique for building coarse

Motion History Image (MHI) and Motion Flow History

(MFH) from the compressed video and extract features from
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these static motion history information for characterizing

human actions. The MHI gives the temporal information of

the motion at the image plane, whereas the MFH quantifies

the motion at the image plane. The features extracted from

MHI and MFH were used to train KNN, Bayes, Neural

Network and SVM classifiers for recognizing a set of seven

human actions. The encoded motion information available

in the MPEG video is exploited for constructing the coarse

MHI and MFH. These MHI and MFH represent the human

action in a very compact manner. Though the motion

information extracted from each frame of the compressed

video is very sparse, they are sufficient to construct the MHI

and MFH for representing the actions.

This work is motivated by a technique proposed by Davis

and Bobick [11] where a view-based approach is used to

recognize actions. They have presented a method for

recognition of temporal templates. A temporal template is

a static image where the value at each point is a function of

the motion properties at the corresponding spatial location

in an image sequence. The actions were represented by the

cumulative motion images called Motion Energy Image

(MEI) and MHI. MEI indicates where the motion has

occurred in the image plane, whereas MHI indicates the

recency of motion using intensity. For recognition, the Hu

moments [16], obtained from the templates are known to

yield reasonable shape discrimination in a translation and

scale invariant manner. Extracted Hu moments are matched

using a nearest neighbor approach against the examples of

given motions already learned. This work was extended by

Rosales [27] using various classification approaches

like KNN and Bayes with dimensionality-reduced represen-

tation of actions.

This paper is organized as follows: Section 2 gives a brief

description of the related work from the literature. Section 3

describes the basics of MPEG video compression and the

overview of the proposed work. Section 4 explains about the

construction of MHI and MFH. Feature extraction pro-

cedures are explained in Section 5. Section 6 presents the

classification results. The performance of feature set is

analyzed and compared in Section 7. Section 8 concludes

the paper.

2. Related work

In this section we will give a brief description of works

related to human motion and gesture recognition.

The recognition of human motion can be broadly classified

into the following two: (i) state-space based and (ii) template

matching based approaches.

2.1. State-space based approaches

State-space approach uses time-series features obtained

from the image sequences for recognition. The widely used

state-space model for activity recognition is HMM due to its

success in the speech community. The first attempt to use

HMM for activity recognition is done by Yamato et al. [35],

where discrete HMMs are used for recognition of six tennis

strokes. In their approach time sequential images expressing

human actions are transformed to an image feature vector

sequence by extracting mesh [33] feature vector from each

image. The mesh features are extracted from a binarized

image obtained after subtracting the background image

from original image by applying a suitable threshold.

The drawbacks of this method are that it is sensitive to

position displacement, noise, and also exhibits poor

performance if the training and test subjects are different.

The gesture recognition work by Darrell and Pentland [9]

uses time-warping technique for recognition which is

closely related to HMM. On similar lines, dynamic time

warping is used in Ref. [6] to match an input signal to a

deterministic sequence of states. Starner and Pentland [31]

used HMMs to recognize a limited vocabulary of

American Sign Language (ASL) sentences. Here, they

used a view based approach with a single camera to extract

two-dimensional (2D) features as input to HMMs.

In the work by Bregler [8], this classification problem has

been approached from a statistical view point. For each

pixel in the image, the spatio-temporal image gradient and

the color values are represented as random variables.

Then the blob hypothesis is used wherein each blob is

represented with a probability distribution over coherent

motion, color and spatial support regions.

Recently Ivanov and Bobick [17] proposed a method,

which combines statistical techniques used for detecting

primitive component of an activity with syntactic

recognition of process structure. In this approach the

recognition problem is divided into two levels: (i) the

lower level detection of primitive components of activity

followed by (ii) the syntactic recognition of the primitive

features using a stochastic context-free grammar parsing

mechanism. Another HMM based human activity

recognition method is reported by Psarrou et al. [25]. Here

the recognition is based on learning prior and continuous

propagation of density models of behavior patterns. Ng et al.

[22] proposed a real-time gesture recognition system

incorporating hand posture and hand motion. The recog-

nition is done with HMM and recurrent neural networks

(RNN).

There are few works reported in literature which use

neural networks for gesture recognition [19,7]. Boehm et al.

[7] used Kohonen Feature Maps (KFM) [18] for recognizing

dynamic gestures. Oliver et al. [23] proposed a system for

modeling and recognizing human behaviors in a visual

surveillance task. This system segments the moving objects

from the background and a kalman filter tracks the object’s

features such as location, coarse shape, color and velocity.

These features are used for modeling the behavior patterns

through training HMMs and coupled HMMs (CHMM),

which are used for classifying the perceived behaviors.

Based on the above-mentioned work Madabhushi
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and Aggarwal [20] presented a system for recognition of

human action by tracking the head of the subject in an image

sequence. The difference in centroids of the head over

successive frames form their feature vector. The human

actions are modeled based on the mean and covariance of

the feature vector. Here detection and segmentation of the

head is done manually.

Apart from the above mentioned pixel domain state-

space based approaches, recently we have proposed a

technique for recognizing human actions using HMM in

compressed domain framework [3]. Here the time series

features from the MPEG video are extracted from the

readily available motion vectors of each inter coded frame.

Totally seven actions were considered for recognition

(walk, run, jump, bend up, bend down, twist right and

twist left). A discrete HMM for each action is trained with

the corresponding MPEG video sequences. The recognition

of a given action is achieved by feeding the test sequence to

all the trained HMMs and employing a likelihood-based

measure. The performance of the system for three types of

motion-based features were compared.

2.2. Template matching based approaches

One of the earlier works using this approach is found in

the work done by Polana and Nelson [24], where the flow

information is used as feature. They compute the optical

flow fields [15] between consecutive frames and divide each

frame into a spatial grid and sum the motion magnitude to

get the high dimension feature. Here they assume that the

human motion is periodic. The final recognition is

performed using nearest neighbor algorithm. Davis

and Bobick [11,5] presented a real-time approach for

representing human motion using compact MHIs in pixel

domain. Here, the recognition of 18 aerobic exercises was

achieved by statistically matching the higher order moment

based feature extracted from the MHI. The limitations of the

above method are related to the ‘global image’ feature

calculations and specific label based recognition.

To overcome these limitations the author extended the

previous approach with a mechanism to compute dense

local motion vector field directly from the MHI for

describing the movement [10]. For obtaining the dense

motion, the MHI is represented at various pyramid levels to

tackle multiple speeds of motion. These hierarchical MHIs

are not directly created from the original MHI, but through

the pyramid representation of the silhouette images.

This indirect way of generating MHI pyramid increases

the computational load. The resulting motion is character-

ized by a polar histogram of motion orientation. Rosales

[27] use these motion energy and MHIs [11] for obtaining

the spatial location and the temporal properties of human

actions from raw video sequences. From these motion

energy and MHIs, a set of Hu-moment [16] features that are

invariant to translation, rotation and scaling are generated.

Using principal component analysis, the dimension of

the Hu-moment space is reduced in a statistically optimal

way. The recognition performances were evaluated for the

following three classifiers namely KNN, Gaussian and

mixtures of Gaussian. All the above mentioned techniques

process the data in the pixel domain, which is

computationally very expensive.

3. System overview

The objective of our work is to rapidly process the video

stored in MPEG format, without full-frame decompression,

for recognizing human actions. Here we are using the

motion vector data, which is easily extractable from

the MPEG video bit-stream for our recognition task.

Though we have used MPEG-1 video, our algorithm is

easily extendable to MPEG-2 or the recent MPEG-4 video

streams. To begin with, we briefly describe the relevant

parts of MPEG video compression standard.

The MPEG-1 video defines three types of coded pictures

namely: intracoded (I-frames); predicted (P-frames); and

bidirectionally predicted (B-frames). These pictures are

organized into sequences of groups of pictures (GOP) in

MPEG video streams. A GOP must start with an I-frame,

followed by any number of P- and B-frames. The I- and

P-frames are referred as anchor frames. The B-frames

appear between each pair of consecutive anchor frames in

the GOP and before the I-frame of the next GOP. Fig. 1

shows the typical GOP structure that is used in our work

with 12 frames in a GOP.

Each frame of the video is divided into non-overlapping

macroblocks. For video coding in 4:2:0 format [29], each

macroblock consists of six 8 £ 8 pixel blocks: four

luminance ðYÞ blocks and two chrominance ðCb;CrÞ blocks.

Each macroblock is either intra coded or inter coded.

An I-frame is completely intra coded. Here every 8 £ 8 pixel

block in the macroblock is transformed to frequency domain

using the discrete cosine transformation (DCT).

The resulting 64 DCT coefficients are then quantized

(lossy) and entropy (run length and Huffman, lossless)

encoded to achieve compression. Since coding of I-frame

does not refer to any other video frames, it can be decoded

independently and thus provides access points for fast

random access to the compressed video.

Fig. 1. A typical MPEG GOP structure.
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Each P-frame is predictively encoded with reference to

its previous anchor frame (i.e. previous I- or P-frame).

For each macroblock (16 £ 16 pixel block) in P-frame, a

local region in the anchor frame is searched for a good

match in terms of difference in intensity. If a good match is

found, the macroblock is represented by a motion vector to

the position of the match together with the DCT encoding of

the residue (i.e. difference) between the macroblock and its

match. The DCT coefficients of the residue are quantized

and entropy coded while the motion vector is differentially

and entropy coded with respect to its neighboring motion

vector. This is known as forward motion compensation, and

such macroblocks are referred as intercoded macroblocks.

If good match cannot be found, the macroblock is

intracoded like the macroblocks of I-frame. Since the

residue of an intercoded macroblock can be coded with

fewer bits, it has better compression gain compared to the

intracoded macroblock. In our work the motion vectors

extracted from these P-frames are used for recognizing

human actions. The coding of P-frame is illustrated in Fig. 2.

To achieve further compression, B-frames are bidirection-

ally predictively encoded with forward and/or backward

motion compensation referenced to its closest past and/or

future I- and/or P-frames. Since B-frames are not used as

reference frames, they can accommodate more distortion,

and thus, higher compression gain compared to I- or

P-frames.

The overview of the proposed system is shown in Fig. 3.

First the motion vectors are extracted from the compressed

video by partially decoding the MPEG video bit-stream.

This partial decoding is far less expensive compared to the

full decoding. Since the sampling rate of the video is

normally very high (typically 25 frames/s) compared to

human motion dynamics, it is not necessary to extract

the motion vectors from all the frames. Hence we have used

only the motion vectors obtained from the predictive (P)

frames for constructing the coarse MHI and MFH. As

motion vectors are usually noisy, the coarse MHI and MFH

are constructed after removing the noisy motion vectors.

The constructed coarse MHI and MFH are at macroblock

resolution and not at pixel resolution. Hence the size of the

MHI and MFH are sixteen times smaller than the original

frame size i.e. 162 times smaller in terms of number of

pixels. In feature extraction phase, various features are

extracted from the constructed coarse MHI and MFH,

which hold the temporal and motion information of the

video sequence. The features based on projection profiles

and centroids are extracted from MHI. Affine features and

motion vector histogram based features are obtained from

the MFH. These features are finally fed to the classifiers such

as KNN, Neural network and Bayes for recognizing the

action.

4. Representation of action using MHI and MFH

Since we are interested in analyzing the motion occurring

in a given window of time, we need a method that allows us

to capture and represent motion directly from the video

sequence. Such static representations are called MEIs,

MHIs and MFH. They are functions of the observed motion

parameters at the corresponding spatial image location in

the video sequence.

MEI is basically a cumulative binary image with only

spatial, and no temporal details of the motion involved.

It answers the question ‘where did the motion occur?’.

MEI can be obtained by binarizing the MHI. The MHI is a

cumulative gray scale image incorporating the spatial as

well as the temporal information of the motion [11].

MHI points to, ‘where and when did the motion occur?’.

It does not convey any information about the direction and

magnitude of the motion. MFH gives the information about

the extent of the motion at each macroblock (‘where and

how much did the motion occur?’). In case of occlusion,

the old motion information is over-written by the new

reliable motion information.Fig. 2. Coding of P-frame.

Fig. 3. Overview of the proposed system.
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Since it is computationally very expensive to decode the

full video, we use the readily available encoded motion

information in MPEG bit-stream for constructing the coarse

MHI and MFH. The motion vectors not only indicate the

blocks under motion but also gives the information

regarding magnitude and direction of the block with respect

to the reference frame. The spurious motion vectors, which

do not belong to the moving object, are removed by

connected component analysis before constructing MFH

and MHI. To remove the spurious motion vectors, first a

binary image of the frame is generated from the motion

vector magnitude with a threshold of 0.5 to retain the

half-pel motion values. Then a simple morphological clean

operation is employed to remove isolated motion vectors

(1’s surrounded by 0’s).

The MFH is constructed from non-zero P-frame motion

vectors according to the following:

MFHdðk; lÞ ¼
mkl

d ðtÞ if Eðmkl
d ðtÞÞ , Tr

Mðmkl
d ðtÞÞ otherwise

(
ð1Þ

where Eðmkl
d ðtÞÞ ¼ kmkl

d ðtÞ2 medðmkl
d ðtÞ…mkl

d ðt2 aÞÞk2

and Mðmkl
d ðtÞÞ ¼ medðmkl

d ðtÞ…mkl
d ðt2 aÞÞ:

Here med refers to median filter, mkl
d ðtÞ can be horizontal

ðmxÞ component or vertical ðmyÞ component of motion

vector located at kth row and lth column in frame t and a

indicates the number of previous P-frames to be considered

for median filtering. Typical range of a is 3–5 for various

kinds of noise. Since the correlation of the frames decreases

with the temporal distance between them, it is not advisable

to increase the a value beyond 5. The function E checks

the reliability of the current motion vector with respect to

the past non-zero motion vectors at the same location

against a predefined threshold Tr: The purpose of this

threshold Tr is to check the reliability of each newly arriving

motion vector. Considering the human motion dynamics,

the motion vectors of current P-frame cannot change much

with respect to the neighboring P-frame motion vectors.

At the same time the threshold should not be too tight since

most of the recent motion vectors would then be ignored.

In our system the threshold Tr is set at 4 for generating

MFH. In other words, this threshold Tr makes sure that no

reliable motion vector of MFH will be replaced by a recent

noisy motion vector. Such spurious motion vectors are

replaced by the reliable median value.

The MHI is constructed as given by Eq. (2),

MHIðk; lÞ ¼
t if ðlmkl

x ðtÞlþ lmkl
y ðtÞlÞ – 0

0 otherwise

(
ð2Þ

Figs. 4 and 5 show the key frames of the bend-down and

twist-left actions and the corresponding coarse MHI and

MFH2. The coarse MHI and MFH of other actions are

shown in Fig. 6. The MHI is a function of the recency of

the motion at every macroblock. The brightness of the

macroblock is proportional to how recently the motion

occurred. The MFH describes the spatial distribution of

motion vectors over the video clip. In other words MFH

quantifies the motion at spatial locations through horizontal

and vertical components of the motion. The MHI, which has

spatio-temporal information but no motion vector infor-

mation, is complemented by the MFH. Thus MHI and MFH

together capture the temporal and motion vector ðmx;myÞ

information of the entire video sequence. The drawback of

this representation is that, self-occlusion or overlapping of

motion on the image plane may result in the loss of a part of

Fig. 4. (a) Key-frames of bend-down sequence and corresponding coarse (b) MHI (c) MFH.

2 Since the P-frames are predicted from the previous closest I or P-frame,

the direction of the motion vectors appear opposite to the actual motion.
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the motion information. However, it might be representative

enough for the considered human actions.

5. Feature extraction

Given the MHI and MFH of an action, it is essential to

extract some useful features for classification. We have

extracted features from MHI based on (i) Projection profiles

and (ii) Centroid. The MFH based features are (i) Affine

motion model; (ii) projected 1D feature and (iii) 2D polar

feature [3].

5.1. MHI features

Projection profile based feature. Let N be the number of

rows and M be the number of columns of MHI. Then the

vertical profile is given by the vector Pv of size N and

defined as Pv½i� ¼
PM

j¼1 MHI½i; j�: The horizontal profile is

represented by the vector Ph of size M and define as

Ph½j� ¼
PN

i¼1 MHI½i; j�: The features representing the

distribution of projection profile with respect to the centroid

are computed as

Fpp ¼

Xhc

i¼1

Ph½i�

XM
i¼hcþ1

Ph½i�

Xvc

i¼1

Pv½i�

XN
i¼vcþ1

Pv½i�

2
666664

3
777775 ð3Þ

where hc and vc are the horizontal and vertical centroids of

MEI. The above feature ðFppÞ indicates the bias of the

MHI along horizontal and vertical direction with respect to

the centroid of MEI. This indirectly conveys the

temporal information of motion along horizontal and

vertical direction.

Centroid based feature. This feature is computed as the

shift of centroids of MEI and MHI, which is given by the

2D vector

Fc ¼ ½MHIxc 2 MEIxc MHIyc 2 MEIyc � ð4Þ

The centroid of MHI differs from the centroid of MEI

because it is computed using the gray-level time stamp

values as weights in the summation. The above vector

indicates the approximate direction of the movement of

centroid for the corresponding action.

5.2. MFH features

Three types of features are extracted from MFH. Since it

holds the entire history of spatial motion information,

many useful features are extracted from MFH.

Affine feature. Though it is difficult to capture some

complex motion, affine model gives a good approximation

to the actual optical flow of the planar surface under

orthographic projection [12]. An affine model requires six

basic flow fields as shown in Fig. 7. The affine parameters

are estimated by standard linear regression techniques.

The regression is applied separately on each motion vector

component since the x affine parameter depends only on

horizontal component of motion vector and y parameter

depends only on the vertical component of motion vector.

Let c ¼ ½c1…c6� be the 6D affine parameter vector. Then the

linear least squares estimate of c is given by:

cT ¼
X

PðpÞTPðpÞ
h i21

·
X

PTðpÞvðpÞ ð5Þ

where

PðpÞ ¼
1 x y 0 0 0

0 0 0 1 x y

" #

Fig. 5. (a) Key-frames of twist-left sequence and corresponding coarse (b) MHI (c) MFH.
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is the regressor and p ¼ ½ x y �T is the vector representing

the position of pixel in the image plane and vðpÞ is the

motion vector at location p (here the spatial location

of motion vectors are assigned to the center of the

corresponding macroblock).

Projected 1D feature. Here horizontal and vertical

components of the motion vectors are considered

separately. The histogram values are quantized into five

bins to cover the entire range in the following intervals:

½Min;28Þ; ½28;23Þ; ½23; 3�; ð3; 8�; ð8;Max�: The bins are

chosen in such a way so as to capture the low, medium

and higher speeds. The distance between the centers of

low and medium speeds are set apart by 5 pels

approximately. The motion vector magnitude exceeding

8 are considered as high speed.

2D polar feature. The angular direction and magnitude of

motion vectors are considered together to quantize the polar

plane into histogram bins. Each bin is defined by the angular

range as well as the magnitude (radius) range. Here angular

range is quantized into four intervals of length p=2 from 2p

to þp: The magnitude range is quantized into the following

intervals: ð0; 5�; ð5; 10�; ð10;Max�: This leads to a feature

vector of 12 dimension. Table 1 summarizes the features

used in our experiment.

6. Classification results and discussion

The following seven actions were considered for

recognition: walk, run, jump, bend up, bend down, twist

right and twist left. For collecting the database, each subject

was asked to perform each action many times in front of the

fixed camera inside the laboratory. The actions were

captured at the angle at which the camera could view the

motion with minimal occlusion. The subjects are given

freedom to perform the actions at their own pace at any

distance in front of the camera.

We have used four types of classifiers for recognizing the

action, namely Normalized KNN, Bayesian, Neural net-

work: Multi-Layer feed forward Perceptron (MLP) and

Support Vector Machines (SVM). As in the previous paper,

seven actions (walk, run, jump, bend down, bend up, twist

left and twist right) were considered for recognition. In our

experimental setup, we trained the system with 10 instances

of each action performed by four to five different subjects.

For testing, we have used at least five instances per action

with the subjects that are not used for training phase.

The total number of samples used for training is 70 (10

samples/action) and 51 samples for testing.

6.1. K-nearest neighbors classifier

The KNN algorithm simply selects k-closest samples

from the training data to the new instance and the class with

the highest number of votes is assigned to the test instance.

An advantage of this technique is due to its non-parametric

nature, because we do not make any assumptions on the

parametric form of the underlying distribution of classes. In

higher dimensional spaces these distributions may be often

erroneous. Even in situations where second order statistics

Fig. 6. (a) The coarse MHI and the corresponding (b) MFH of walk, jump,

run, bend-up and twist-right action.

Fig. 7. Affine flow model expressed as a linear sum of basis flows.
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cannot be reliably computed due to limited training data,

KNN performs very well, particularly in high dimensional

feature spaces and on atypical samples. Table 2 shows the

classification results of KNN classifier with all aforemen-

tioned features.

6.2. Bayes classifier

The second classifier used is Bayes—a parametric

classifier that assumes normal distribution for class ðvÞ

conditional probability of feature vector x; PðxlviÞ: Though

Bayes classifier is optimal, the performance degrades if the

models used are erroneous. Since erroneous models degrade

classification performance, starting with the first feature, we

have added subsequent features only if they improved the

classification performance. Table 3 shows the performance

of Bayes classifier with only four selected features out of

total 32 features. The selected feature numbers are 1, 3, 6

and 9, i.e. three from the affine feature and one from MHI

centroid-based feature. With all the features Bayes classifier

gives a performance of 92.1% (see Table 8).

6.3. Neural network classifier

MLP is a supervised neural network. It can have multiple

inputs and outputs and multiple hidden layers with arbitrary

number of neurons (nodes). In our network, the commonly

used sigmoid function is used as the activation function for

nodes in the hidden layer. The MLP utilizes the back-

propagation (BP) algorithm for determining suitable

weights and biases of the network using supervised training

[14]. Table 4 shows the classification results obtained with

an MPL trained with two hidden layers with 15 neurons in

each layer using all the features.

6.4. SVM classifier

SVM [34] are powerful tools for data classification. SVM

is based on the idea of hyperplane classifier, that achieves

classification by a separating surface (linear or nonlinear) in

the input space of the data set. SVMs are modeled as

optimization problems with quadratic objective functions

and linear constraints. Tables 5 and 6 show the classification

Table 2

KNN classification result for k ¼ 3

Input class Result

Walk Run Jump BD BU TWL TWR Error

Walk 5 0 0 0 0 0 0 0

Run 0 7 0 0 0 0 0 0

Jump 0 0 7 0 0 0 0 0

BD 0 0 0 11 0 0 0 0

BU 0 0 0 0 8 1 0 1

TWL 0 0 0 0 0 6 0 0

TWR 0 0 0 0 0 0 6 0

Error 0 0 0 0 0 1 0 1

Table 3

Bayes classification result

Input class Result

Walk Run Jump BD BU TWL TWR Error

Walk 3 2 0 0 0 0 0 2

Run 0 7 0 0 0 0 0 0

Jump 0 0 7 0 0 0 0 0

BD 0 0 0 11 0 0 0 0

BU 0 0 0 0 9 0 0 0

TWL 0 0 0 0 0 6 0 0

TWR 0 0 0 0 0 1 5 1

Error 0 2 0 0 0 1 0 3

Table 4

Neural net classification result

Input class Result

Walk Run Jump BD BU TWL TWR Error

Walk 4 1 0 0 0 0 0 1

Run 0 7 0 0 0 0 0 0

Jump 0 0 7 0 0 0 0 0

BD 0 0 0 11 0 0 0 0

BU 0 0 0 0 9 0 0 0

TWL 0 0 0 0 0 6 0 0

TWR 0 0 0 0 0 0 6 0

Error 0 1 0 0 0 0 0 1

Table 5

Linear SVM classifier result

Input class Result

Walk Run Jump BD BU TWL TWR Error

Walk 5 0 0 0 0 0 0 0

Run 0 6 1 0 0 0 0 1

Jump 0 0 7 0 0 0 0 0

BD 0 0 0 11 0 0 0 0

BU 0 0 0 0 8 1 0 1

TWL 0 0 0 0 0 6 0 0

TWR 0 0 0 0 0 0 6 0

Error 0 0 1 0 0 1 0 2

Table 1

Features extracted from MHI and MFH

Feature Dimension

MHI based Proj. profile 2

Centroid 2

MFH based Affine 6

1D projected 10

2D polar 12

Total 32
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results of SVM classifier with linear kernel and radial-based

kernel.

Comparing the results of the classifiers, the results

obtained by KNN, Neural Net and SVM (with RBF-kernel)

show excellent performance. Bayes classifier recognizes

most of the actions, but is relatively less successful in

discriminating between ‘walk’ and ‘run’ actions. This could

be due to the parametrization of the underlying feature

distribution. Moreover the Bayes result is obtained only

with the selected four features, whereas the other classifiers

use all features. Table 7 summarizes the recognition results

for various classifiers.

Consistency in results obtained using various classifiers,

proves the credibility of features used. The uniform results

obtained using SVM, KNN and Neural Nets points to the

fact that the system has very few outliers. It must be noted

that the performance of the Bayesian classifier is only

marginally lesser, in spite of drastically reducing the

number of features to only four, compared to 32 used in

the other cases. The deterioration in the performance of the

Bayesian classifier on using all features may be attributed to

‘curse of dimensionality’.

7. Performance analysis of features

In this section, we present the performance of each

feature set for various classifiers. Fig. 8 shows the

recognition performance of each feature with test and

training samples using the nearest neighbor criterion. The

individual performance of the first 10 or 11 features is

good on both, the test as well as the training samples.

Other features perform slightly better with test samples

compared to training samples. Here, the considered test

subjects are different from the training ones and the

subjects were given freedom to perform the action at their

own pace at any location in front of the camera. So the

features show invariance to translation, scale and speed of

action.

Table 8 shows the performance of each feature set for

various classifiers on test samples. For each of the

classifiers, different feature sets contribute in different

proportions. The 1D projected (11–20) and 2D polar

(21 – 32) features show good performance (around

85–90%) consistently. Affine features (1–6) show better

performance than the above two except for KNN

classifier with the feature dimension being only six.

Other features (projection profile and centroid) improve

the overall performance considerably in spite of their low

dimension. Though the MHI features: projection profile

and centroid individually perform inferior compared to

other features, they jointly perform well. The four MHI

Table 6

Classification result using non-linear SVM classifier with a radial based

kernel

Input class Result

Walk Run Jump BD BU TWL TWR Error

Walk 5 0 0 0 0 0 0 0

Run 0 7 0 0 0 0 0 0

Jump 0 0 7 0 0 0 0 0

BD 0 0 0 11 0 0 0 0

BU 0 0 0 0 8 1 0 1

TWL 0 0 0 0 0 6 0 0

TWR 0 0 0 0 0 0 6 0

Error 0 0 0 0 0 1 0 1

Table 7

Comparison of various classifiers

Classifier No. of features used Classification accuracy (%)

KNN ðk ¼ 3Þ 32 98.0

Neural Net 32 98.0

SVM (RBF-kernel) 32 98.0

Bayes 4 94.1

Fig. 8. Feature ranking on individual performance (a) with test samples (b) with training samples.
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features together give recognition accuracy of 82.35%

with nearest-neighbor classifier. Hence, MHI features are

indeed powerful in recognizing human actions.

The recognition results for the seven Hu moments

extracted from the coarse MHI were also tried with all the

classifiers. The Hu moment features do not perform well

with these four classifiers. With Hu moments the KNN

ðk ¼ 3Þ; Bayes, Neural Net and SVM (RBF-kernel)

classifiers give the recognition accuracy of 25.42%,

37.25%, 47.06% and 27.45%, respectively. The reason

could be that Hu moments may require the MHIs at pixel

resolution to capture the characteristics of the action.

8. Conclusion

In this paper, we have proposed a method for

constructing coarse MHI and MFH from compressed

MPEG video with minimal decoding. Various useful

features are extracted from the above mentioned motion

representations for human action recognition. We have

shown the recognition results for four classification

paradigms. The performance of these features is analyzed

and compared. Though the test instances are from entirely

different subjects other than those used for training the

classifiers, the results show excellent recognition accu-

racy. The KNN, Neural network (MLP) and SVM (RBF-

kernel) classifiers give the best classification accuracy of

98% and 1D projected and 2D polar features show

consistent performance with all the classifiers. Since the

data is handled at macroblock level, the computational

cost is extremely less compared to the pixel domain

processing.
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