
S3C2800

32-BIT RISC

MICROPROCESSOR

USER'S MANUAL

Revision 1.1

Important Notice

The information in this publication has been
carefully checked and is believed to be entirely
accurate at the time of publication. Samsung
assumes no responsibility, however, for possible
errors or omissions, or for any consequences
resulting from the use of the information contained
herein.

Samsung reserves the right to make changes in its
products or product specifications with the intent to
improve function or design at any time and without
notice and is not required to update this
documentation to reflect such changes.

This publication does not convey to a purchaser of
semiconductor devices described herein any license
under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or
guarantee regarding the suitability of its products for
any particular purpose, nor does Samsung assume
any liability arising out of the application or use of
any product or circuit and specifically disclaims any
and all liability, including without limitation any
consequential or incidental damages.

"Typical" parameters can and do vary in different
applications. All operating parameters, including
"Typicals" must be validated for each customer
application by the customer's technical experts.

Samsung products are not designed, intended, or
authorized for use as components in systems
intended for surgical implant into the body, for other
applications intended to support or sustain life, or for
any other application in which the failure of the
Samsung product could create a situation where
personal injury or death may occur.

Should the Buyer purchase or use a Samsung
product for any such unintended or unauthorized
application, the Buyer shall indemnify and hold
Samsung and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all
claims, costs, damages, expenses, and reasonable
attorney fees arising out of, either directly or
indirectly, any claim of personal injury or death that
may be associated with such unintended or
unauthorized use, even if such claim alleges that
Samsung was negligent regarding the design or
manufacture of said product.

S3C2800 32-Bit RISC Microprocessor
User's Manual, Revision 1.1
Publication Number: 21.1-S3-C2800-092002

 2002 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior
written consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-9001
certification (BSI Certificate No. FM24653). All semiconductor products are designed
and manufactured in accordance with the highest quality standards and objectives.

Samsung Electronics Co., Ltd.
San #24 Nongseo-Ri, Giheung- Eup
Yongin-City, Gyeonggi-Do, Korea
C.P.O. Box #37, Suwon 449-900

TEL: (82)-(031)-209-1934
FAX: (82)-(031)-209-1899

Home Page: http://www.samsungsemi.com

Printed in the Republic of Korea

S3C2800 MICROPROCESSOR iii

Table of Contents

Chapter 1 Product Overview

Introduction..1-1
Features ..1-2
Block Diagram ...1-4
Overview of the ARM920T...1-5
Pin Diagram (208-LQFP) ...1-6
Pin Assignments ..1-7

Signal Descriptions..1-14
S3C2800 Special Function Registers...1-18
Important Notes About S3C2800 Special Registers ...1-24

Chapter 2 Programmer's Model

About the Programmer's Model..2-1
The ARM9TDMI Programmers Model..2-1
The ARM920T Programmers Model ..2-2
Processor Operating States...2-3
Switching State ...2-3
Memory Formats ...2-4
Instruction Length..2-4
Data Types..2-4
Operating Modes...2-5
Registers ...2-5
The Program Status Registers...2-9
Exceptions ..2-12
Interrupt Latencies...2-16
Reset...2-17

ARM920T System Control Coprocessor (CP15) Register Map Summary ...2-18
Address In ARM920T ..2-19
Accessing CP15 Registers...2-19
Register 0: ID Code Register ...2-20
Register 0, Cache Type Register ...2-21
Register 1, Control Register...2-24
Register 2, Translation Table Base (TTB) Register ..2-25
Register 3, Domain Access Control Register ...2-26
Register 4, Reserved...2-26
Register 5, Fault Status Register ...2-27
Register 6, Fault Address Register ..2-27
Register 7, Cache Operations Register..2-28
Register 8, TLB Operations Register ...2-30
Register 9, Cache Lockdown Register ...2-31
Register 10, TLB Lockdown Register ...2-33
Registers 11, 12, and 14, Reserved...2-34
Register 13, FCSE Pid Register ..2-34
Register 15, Test Configuration Register ...2-36

iv S3C2800 MICROPROCESSOR

Table of Contents (Continued)

Chapter 3 Instruction Set

Instruction Set Summay.. 3-1
About the Instruction Cycle Summary ... 3-1
Instruction Cycle Times... 3-2

Multiplier Cycle Counts... 3-4
Interlocks .. 3-5
Format Summary.. 3-9

Instruction Summary... 3-10
The Condition Field... 3-11
Branch and Exchange (Bx) ... 3-12

Instruction Cycle Times .. 3-12
Assembler Syntax... 3-12
Using R15 as an Operand... 3-12

Branch And Branch With Link (B, Bl) .. 3-14
The Link Bit .. 3-14
Instruction Cycle Times .. 3-14
Assembler Syntax... 3-15

Data Processing.. 3-16
CPSR Flags.. 3-17
Shifts.. 3-18
Immediate Operand Rotates... 3-22
Writing to R15 .. 3-22
Using R15 as an Operand... 3-22
TEQ, TST, CMP and CMN Opcodes... 3-22
Instruction Cycle Times .. 3-22
Assembler Syntax... 3-23

PSR Transfer (MRS, MSR) ... 3-24
Operand Restrictions .. 3-24
Reserved Bits ... 3-26
Instruction Cycle Times .. 3-26
Assembly Syntax.. 3-27

Multiply and Multiply-Accumulate (MUL, MLA) .. 3-28
CPSR Flags.. 3-30
Instruction Cycle Times .. 3-30
Assembler Syntax... 3-30

Multiply Long and Multiply-Accumulate Long (MULL, MLAL)... 3-31
Operand Restrictions .. 3-32
CPSR Flags.. 3-32
Instruction Cycle Times .. 3-32
Assembler Syntax... 3-33

S3C2800 MICROPROCESSOR v

Table of Contents (Continued)

Chapter 3 Instruction Set (Continued)

Single Data Transfer (LDR, STR)...3-34
Offsets and Auto-Indexing ...3-35
Shifted Register Offset ..3-35
Bytes and Words...3-35
Use of R15 ..3-37
Restriction on the Use of Base Register...3-37
Data Aborts ...3-37
Instruction Cycle Times ...3-37
Assembler Syntax ...3-38

Halfword and Signed Data Transfer (LDRH/STRH/LDRSB/LDRSH)...3-40
Offsets and Auto-Indexing ...3-41
Halfword Load and Stores ...3-42
Signed Byte and Halfword Loads...3-42
Endianness and Byte/Halfword Selection...3-42
Use of R15 ..3-43
Data Aborts ...3-43
Instruction Cycle Times ...3-43
Assembler Syntax ...3-44

Block Data Transfer (LDM, STM)...3-46
The Register List ...3-46
Addressing Modes...3-47
Address Alignment ..3-47
Use of the S Bit ...3-49
Use of R15 as the Base...3-49
Inclusion of the Base in the Register List ...3-50
Data Aborts ...3-50
Instruction Cycle Times ...3-50
Assembler Syntax ...3-51

Single Data Swap (SWP)...3-53
Bytes And Words...3-53
Use of R15 ..3-54
Data Aborts ...3-54
Instruction Cycle Times ...3-54
Assembler Syntax ...3-54

Software Interrupt (SWI) ..3-55
Return from the Supervisor ...3-55
Comment Field..3-55
Instruction Cycle Times ...3-55
Assembler Syntax ...3-56

Coprocessor Data Operations (CDP) ...3-57
Coprocessor Instructions ...3-57
The Coprocessor Fields...3-57
Instruction Cycle Times ...3-58
Assembler Syntax ...3-58

vi S3C2800 MICROPROCESSOR

Table of Contents (Continued)

Chapter 3 Instruction Set (Continued)

Coprocessor Data Transfers (LDC, STC) .. 3-59
The Coprocessor Fields.. 3-59
Addressing Modes .. 3-60
Address Alignment ... 3-60
Use of R15 ... 3-60
Data Aborts .. 3-60
Instruction Cycle Times .. 3-60
Assembler Syntax... 3-61

Coprocessor Register Transfers (MRC, MCR)... 3-62
The Coprocessor Fields.. 3-62
Transfers to R15... 3-63
Transfers from R15... 3-63
Instruction Cycle Times .. 3-63
Assembler Syntax... 3-63

Undefined Instruction .. 3-64
Instruction Cycle Times .. 3-64
Assembler Syntax... 3-64

Instruction Set Examples .. 3-65
Using The Conditional Instructions.. 3-65
Pseudo-Random Binary Sequence Generator... 3-67
Multiplication by Constant Using the Barrel Shifter.. 3-68
Loading a Word From an Unknown Alignment.. 3-69

Thumb Instruction Set Format... 3-70
Format Summary ... 3-70
Opcode Summary .. 3-71

Format 1: Move Shifted .. 3-73
Operation ... 3-73
Instruction Cycle Times .. 3-73

Format 2: Add/Subtract... 3-74
Operation ... 3-74
Instruction Cycle Times .. 3-74

Format 3: Move/Compare/Add/Subtract Immediate .. 3-75
Operations.. 3-75
Instruction Cycle Times .. 3-75

Format 4: ALU Operations .. 3-76
Operation ... 3-76
Instruction Cycle Times .. 3-77

Format 5: Hi-Register Operations/Branch Exchange ... 3-78
Operation ... 3-78
Instruction Cycle Times .. 3-79
The Bx Instruction .. 3-79
Using R15 as an Operand... 3-80

Format 6: PC-Relative Load ... 3-81
Operation ... 3-81
Instruction Cycle Times .. 3-81

S3C2800 MICROPROCESSOR vii

Table of Contents (Continued)

Chapter 3 Instruction Set (Continued)

Format 7: Load/Store With Register Offset ..3-82
Operation ..3-83
Instruction Cycle Times ...3-83

Format 8: Load/Store Sign-Extended Byte/Halfword ..3-84
Operation ..3-84
Instruction Cycle Times ...3-85

Format 9: Load/Store With Immediate Offset...3-86
Operation ..3-87
Instruction Cycle Times ...3-87

Format 10: Load/Store Halfword ..3-88
Operation ..3-88
Instruction Cycle Times ...3-88

Format 11: Sp-Relative Load/Store..3-89
Operation ..3-89
Instruction Cycle Times ...3-89

Format 12: Load Address...3-90
Operation ..3-90
Instruction Cycle Times ...3-91

Format 13: Add Offset To Stack Pointer ..3-92
Operation ..3-92
Instruction Cycle Times ...3-92

Format 14: Push/Pop Registers ...3-93
Operation ..3-93
Instruction Cycle Times ...3-94

Format 15: Multiple Load/Store..3-95
Operation ..3-95
Instruction Cycle Times ...3-95

Format 16: Conditional Branch ..3-96
Operation ..3-97
Instruction Cycle Times ...3-97

Format 17: Software Interrupt ..3-98
Operation ..3-98
Instruction Cycle Times ...3-98

Format 18: Unconditional Branch...3-99
Operation ..3-99

Format 19: Long Branch With Link...3-100
Operation ..3-100
Instruction Cycle Times ...3-101

Instruction Set Examples ...3-102
Multiplication by a Constant Using Shifts and Adds ...3-102
General Purpose Signed Divide...3-103
Division by a Constant...3-105

viii S3C2800 MICROPROCESSOR

Table of Contents (Continued)

Chapter 4 Caches, Write Buffer, and Physical Address Tag(PA TAG) RAM

About the Caches and Write Buffer... 4-1
Instruction Cache (Icache) .. 4-2

Icache Organization.. 4-2
Enabling and Disabling the Icache.. 4-4
Icache Operation .. 4-4
Icache Replacement Algorithm... 4-5
Icache Lockdown.. 4-5

Dcache and Write Buffer... 4-7
Enabling and Disabling the Dcache and Write Buffer.. 4-8
Dcache and Write Buffer Operation .. 4-8
Dcache Organization .. 4-10
Dcache Replacement Algorithm ... 4-10
Swap Instructions ... 4-11
Dcache Lockdown .. 4-11

Cache Coherence ... 4-14
Cache Cleaning When Lockdown is in Use ... 4-16
Implementation Notes ... 4-16
Physical Address Tag RAM... 4-16
Drain Write Buffer... 4-17
Wait for Interrupt... 4-17

Chapter 5 Memory Management Unit

About the MMU... 5-1
Access Permissions and Domains .. 5-1
Translated Entries .. 5-2

MMU Program Accessible Registers ... 5-3
Address Translation .. 5-4

Translation Table Base... 5-4
Level One Fetch... 5-6
Level One Descriptor.. 5-7
Section Descriptor .. 5-8
Coarse Page Table Descriptor .. 5-9
Fine Page Table Descriptor .. 5-10
Translating Section References .. 5-11
Level Two Descriptor.. 5-12
Translating Large Page References.. 5-14
Translating Small Page References.. 5-15
Translating Tiny Page References.. 5-16
Subpages ... 5-17

MMU Faults and CPU Aborts .. 5-18
Fault Address and Fault Status Registers.. 5-19

Fault Status .. 5-19
Domain Access Control... 5-20
Fault Checking Sequence ... 5-21
External Aborts ... 5-24
Interaction of the MMU and Caches .. 5-24

S3C2800 MICROPROCESSOR ix

Table of Contents (Continued)

Chapter 6 Clock & Power Management

Overview ...6-1
Feature..6-1
Function Description ..6-2

Clock Generation...6-2
Maximum Bus Frequencies ...6-2
PLL (Phase Locked Loop) ...6-3
Clock Control Logic ...6-5
Power Management ..6-7

Reset Controller...6-9
Clock and Power Management Special Function Registers..6-10

PLL Control Register (PLLCON)..6-10
Clock Control Register (CLKCON)...6-12
Clock Slow Control Register (CLKSLOW)..6-13
Lock Time Count Register (LOCKTIME)..6-13
Software Reset Control Register (SWRCON) ..6-13
Reset Status Register (RSTSR)...6-14

Chapter 7 Memory Controller

Overview ...7-1
Memory Map ...7-2
Function Description ..7-3

Little-/Big-Endian Selection (For External Memory Only) ...7-3
Bank0 Bus Width (For Static Memory)...7-3
Memory Address Pin Connections...7-3
Sdram Bank Address Pin Connection ..7-4

ROM & SRAM Memory Interface Example ..7-5
DRAM MEMORY Interface Example ...7-8
SDRAM Memory Interface Example ..7-9
Static Memory Timing Diagram ...7-10

Read Timing for Static Memory ...7-10
Write Timing for Static Memory...7-11

Nwait Pin Operation...7-12
Dynamic Memory Timing Diagram...7-13
Memory Controller Special Funcion Registers..7-15

Endian Status Register (ENDIAN) ...7-15
Static Memory Bank Control Register (SMBCON0-SMBCON3) ...7-16
Dynamic Memory Refresh Control Register (REFRESH)...7-17
Dynamic Memory Timing Control Register (DMTMCON)...7-18
SDRAM Mode Register Set Register (MRSR)..7-19

x S3C2800 MICROPROCESSOR

Table of Contents (Continued)

Chapter 8 DMA

Overview .. 8-1
DMA Operation ... 8-2
DMA Request/Acknowledge Protocol .. 8-4

Service Mode ... 8-6
Dma Transfer Size ... 8-8

DMA Request Source Selection .. 8-9
DMA Special Function Registers... 8-10

DMA Initial Source Register (DISRCN) ... 8-10
DMA Initial Destination Register (DIDSTN) ... 8-11
DMA Control Register (DCONN)... 8-12
DMA Status Register (DSTATN)... 8-15
DMA Current Source Register (DCSRCN) .. 8-15
DMA Current Destination Register (DCDSTN) .. 8-15
DMA Mask Trigger Register (DMASKTRIGN) ... 8-16

Chapter 9 GPIO ports

Overview .. 9-1
Port Control Descriptions .. 9-4
GPIO Port Special Function Registers .. 9-5

Port A Control Registers (PCONA, PDATA, PUPA) .. 9-5
Port B Control Registers (PCONB, PDATB).. 9-6
Port C Control Registers (PCONC, PDATC, PUPC).. 9-7
Port D Control Registers (PCOND, PDATD, PUPD).. 9-8
Port E Control Registers (PCONE, PDATE, PUPE) .. 9-9
Port F Control Registers (PCONF, PDATF, PUPF)... 9-10
Extintr (External Interrupt Control Register) .. 9-11
Special Pull-Up Resistor Control Register(SPUCR) .. 9-12

Chapter 10 Timer

Overview .. 10-1
Feature ... 10-1
16-Bit Timer Operation ... 10-2

Prescaler & Divider... 10-2
DMA Request Mode ... 10-2
DMA Mode Configuration and DMA/Interrupt Operation.. 10-2

Timer Special Function Registers ... 10-4
Timer DMA Selection Register (TMDMASEL)... 10-4
Timer Control Register (TMCONN)... 10-4
Timer Data Register (TMDATAN) ... 10-5
Timer Count Register (TMCNTN) ... 10-5

S3C2800 MICROPROCESSOR xi

Table of Contents (Continued)

Chapter 11 UART

Overview ...11-1
Feature..11-1
Block Diagram ...11-2
Uart Operation ...11-3

Data Transmission...11-3
Data Reception..11-3
Auto Flow Control (AFC) ...11-4
Non Auto-Flow Control (Controlling NRTS and NCTS By S/W)..11-4
RS-232C Interface...11-4
Interrupt/DMA Request Generation..11-5
UART Error Status FIFO ...11-6
Baud-Rate Generation...11-7
Loop-Back Mode ...11-7
Break Condition...11-7
IR (Infra-Red) Mode ..11-8

UART Special Function Registers..11-10
UART Line Control Register (ULCONn)...11-10
UART Control Register (UCONn) ..11-11
UART FIFO Control Register (UFCONn) ...11-12
UART Modem Control Register (UMCONn)...11-12
UART Tx/Rx Status Register (UTRSTATn)..11-13
UART Error Status Register (UERSTATn) ...11-14
UART FIFO Status Register (UFSTATn) ...11-15
UART Modem Status Register (UMSTATn) ...11-16
UART Transmit Buffer Register (Holding Register & FIFO Register) (UTXHn).................................11-17
UART Receive Buffer Register (Holding Register & FIFO Register) (URXHn)11-17
UART Baud Rate Division Register (UBRDIVn)...11-18

Chapter 12 Interrupt Controller

Overview ...12-1
Interrupt Controller Operation ..12-2

Interrupt Mode...12-2
Interrupt Sources ...12-3
Interrupt Controller Sepcial Function Registers ..12-4

Interrupt Mask Register (INTMSK)...12-5

xii S3C2800 MICROPROCESSOR

Table of Contents (Continued)

Chapter 13 Remote Control Signal Receive

Overview .. 13-1
Remote Control Signal Receiver Block Operation ... 13-2

Noise Filter ... 13-2
8-Bit Couter Sampling Clock... 13-2

Remote Control Signal Receiver Special Function Registers .. 13-3
Remote Control Signal Receiver Control Register (RRCR) ... 13-3
FIFO Data Register (FIFOD) .. 13-3

Chapter 14 RTC (Real Time Clock)

Overview .. 14-1
Feature ... 14-1
Real Time Clock Operation... 14-2

Leap Year Generator .. 14-2
Read/Write Registers ... 14-2
Alarm Function ... 14-3
Tick Time Interrupt ... 14-3
Round Reset Function .. 14-3
32.768khz X-Tal Connection Example .. 14-3

Real Time Clock Special Function Registers... 14-4
Real Time Clock Control Register (RTCCON) .. 14-4
RTC Alarm Control Register (RTCALM) ... 14-5
ALARM Second Data Register (ALMSEC) .. 14-5
ALARM Min Data Register (ALMMIN)... 14-6
ALARM Hour Data Register (ALMHOUR) ... 14-6
ALARM Day Data Register (ALMDAY).. 14-6
ALARM Mon Data Register (ALMMON) .. 14-7
ALARM Year Data Register (ALMYEAR) .. 14-7
BCD Second Register (BCDSEC)... 14-7
BCD Min Register (BCDMIN).. 14-7
BCD Hour Register (BCDHOUR) .. 14-8
BCD Day Register (BCDDAY) .. 14-8
BCD Date Register (BCDDATE) ... 14-8
BCD Mon Register (BCDMON)... 14-8
BCD Year Register (BCDYEAR) ... 14-9
Tick Time Count Register (TICNT) ... 14-9
RTC Round Reset Register (RTCRST) ... 14-9

S3C2800 MICROPROCESSOR xiii

Table of Contents (Continued)

Chapter 15 Watchdog Timer

Overview ...15-1
Consideration of Debugging Environment..15-1

Watchdog Timer Operation..15-2
Watchdog Timer Special Function Registers ...15-3

Watchdog Timer Prescaler Value Register (WTPSCLR)..15-3
Watchdog Timer Control Register (WTCON)...15-3
Watchdog Timer Counter Register (WTCNT) ..15-4

Chapter 16 IIC-Bus Interface

Overview ...16-1
The IIC-Bus Operation ...16-3

The IIC-Bus Interface ..16-3
Start and Stop Conditions..16-3
Data Transfer Format ..16-4
ACK Signal Transmission..16-5
Read-Write Operation ...16-6
Bus Arbitration Procedures..16-6
Abort Conditions..16-6
Configuring The IIC-Bus ..16-6

Flowcharts of The Operations in Each Mode..16-7
IIC-Bus Interface Special Function Registers ...16-11

IIC-Bus Control Register (IICCONN)..16-11
IIC-Bus Control/Status Register (IICSTATN)..16-12
IIC-Bus Address Register (IICADDN)...16-13
IIC-Bus Transmit/Receive Data Shift Register (IICDSn)...16-13

xiv S3C2800 MICROPROCESSOR

Table of Contents (Continued)

Chapter 17 PCI-Bus Interface

Overview .. 17-1
Feature ... 17-2
Terminology of Register Groups ... 17-2
PCI Address Space Define.. 17-3
Access from AHB Bus or ARM CPU.. 17-4
Access from PCI Bus or other PCI Device .. 17-4
Base Address Bar ... 17-5
PCI Bus Functional Description... 17-6

PCI Bus Transfers .. 17-6
Size ff Base Address Bar Space ... 17-6
Address Translation Between PCI Bus and AHB Bus.. 17-7
Data Transfer Between PCI Bus and AHB Bus (External Memory) ... 17-11
PCI Interrupt Description .. 17-12

PCI Special Function Registers (PCI Configuration Registers) .. 17-13
PCI Vendor ID & Device ID Register (PCIVDIDR)... 17-15
PCI Status & Command Register (PCISCR) ... 17-15
PCI Class Code & Revision ID Register (PCICRIDR).. 17-19
PCI General Control Register (PCIGCONR) ... 17-20
PCI Base Address Registers (PCIBARN) .. 17-21
PCI Subsystem & Subsystem Vendor Id Register (PCISSVIDR) ... 17-21
PCI Capability Pointer Register (PCICPR) .. 17-22
PCI Miscellaneous Register (PCIMISCR).. 17-22
PCI Target Ready & Retry Timeout Register (PCITOR).. 17-23

BIF Special Function Registers (BIFSFR) ... 17-24
PCI Control and Status Register (PCICON) .. 17-25
PCI Command, Read Count & DAC Address Register (PCISET) .. 17-27
PCI Interrupt Enable Register (PCIINTEN) ... 17-28
PCI Interrupt Status & Pending Register (PCIINTST).. 17-29
PCI Interrupted Address Register (PCIINTAD).. 17-30
PCI Base Address Translation Register from AHB to PCI of Memory Cycle (PCIBATAPM) 17-30
PCI Base Address Translation Register from AHB to PCI of I/O Cycle (PCIBATAPI) 17-30
PCI Inta# Assert Control in Adaptor Mode (PCIBELAP) .. 17-31
PCI Base Address Translation from PCI to AHB of Memory Address Bar 0 (PCIBATPA0) 17-31
PCI Base Address Mask Register of Memory Address Bar 0 (PCIBAM0) .. 17-32
PCI Base Address Translation from PCI to AHB of Memory Address Bar 1 (PCIBATPA1) 17-32
PCI Base Address Mask Register of Memory Address Bar 1 (PCIBAM1) .. 17-33
PCI Base Address Translation from PCI to AHB of I/O Address Bar 2 (PCIBATPA2)...................... 17-33
PCI Base Address Mask Register of I/O Address Bar 2 (PCIBAM2).. 17-33

S3C2800 MICROPROCESSOR xv

Table of Contents (Continued)

Chapter 18 Electrical Data

Absolute Maximum Ratings ...18-1
Recommended Operating Conditions ..18-1
D.C. Electrical Characteristics..18-2
A.C. Electrical Characteristics..18-4

Chapter 19 Mechanical Data

Package Dimension...19-1

S3C2800 MICROPROCESSOR xvii

List of Figures

Figure Title Page
Number Number

1-1 S3C2800 Block Diagram ..1-4
1-2 ARM920T Functional Block Diagram..1-5
1-3 S3C2800 Pin Assignment (208-LQFP) ...1-6

2-1 Big-Endian Addresses of Bytes within Words..2-4
2-2 Little-Endian Addresses of Bytes whthin Words ..2-4
2-3 Register Organization in ARM State ...2-6
2-4 Register Organization in THUMB state ...2-7
2-5 Mapping of THUMB State Registers onto ARM State Registers..............................2-8
2-6 Program Status Register Format ..2-9
2-7 CP15 MRC and MCR Bit Pattern..2-20
2-8 Cache Type Register Format..2-21
2-9 Dsize and Isize Field Format ..2-21
2-10 Register 7 MVA Format ..2-29
2-11 Register 7 Index Format ...2-29
2-12 Register 8 MVA Format ..2-30
2-13 Register 9...2-32
2-14 Register 10...2-33
2-15 Register 13...2-34
2-16 Address Mapping using CP15 Register 13..2-35

3-1 Single load interlock timing...3-5
3-2 Tow cycle load interlock ...3-6
3-3 LDM interlock ...3-7
3-4 LDM dependent interlock..3-8
3-5 ARM Instruction Set Format ...3-9
3-6 Branch and Exchange Instructions..3-12
3-7 Branch Instructions...3-14
3-8 Data Processing Instructions ..3-16
3-9 ARM Shift Operations...3-18
3-10 Logical Shift Left ..3-18
3-11 Logical Shift Right ..3-19
3-12 Arithmetic Shift Right ...3-19
3-13 Rotate Right ...3-20
3-14 Rotate Right Extended ...3-20
3-15 PSR Transfer ...3-25
3-16 Multiply Instructions..3-28
3-17 Multiply Long Instructions ...3-31
3-18 Single Data Transfer Instructions..3-34
3-19 Little-Endian Offset Addressing ..3-36
3-20 Halfword and Signed Data Transfer with Register Offset ..3-40
3-21 Halfword and Signed Data Transfer with Immediate Offset and Auto-Indexing3-41
3-22 Block Data Transfer Instructions...3-46
3-23 Post-Increment Addressing...3-47

xviii S3C2800 MICROPROCESSOR

List of Figures (Continued)

Figure Title Page
Number Number

3-24 Pre-Increment Addressing ... 3-48
3-25 Post-Decrement Addressing .. 3-48
3-26 Pre-Decrement Addressing.. 3-49
3-27 Swap Instruction .. 3-53
3-28 Software Interrupt Instruction... 3-55
3-29 Coprocessor Data Operation Instruction .. 3-57
3-30 Coprocessor Data Transfer Instructions ... 3-59
3-31 Coprocessor Register Transfer Instructions.. 3-62
3-32 Undefined Instruction... 3-64
3-33 THUMB Instruction Set Formats .. 3-70
3-34 Format 1.. 3-73
3-35 Format 2.. 3-74
3-36 Format 3.. 3-75
3-37 Format 4.. 3-76
3-38 Format 5.. 3-78
3-39 Format 6.. 3-81
3-40 Format 7.. 3-82
3-41 Format 8.. 3-84
3-42 Format 9.. 3-86
3-43 Format 10.. 3-88
3-44 Format 11.. 3-89
3-45 Format 12.. 3-90
3-46 Format 13.. 3-92
3-47 Format 14.. 3-93
3-48 Format 15.. 3-95
3-49 Format 16.. 3-96
3-50 Format 17.. 3-98
3-51 Format 18.. 3-99
3-52 Format 19.. 3-100

S3C2800 MICROPROCESSOR xix

List of Figures (Continued)

Figure Title Page
Number Number

4-1 Addressing the 16KB ICache..4-3

5-1 Translation Table Base Register...5-4
5-2 Translating Page Tables...5-5
5-3 Accessing Translation Table Level One Descriptors ...5-6
5-4 Level One Descriptor..5-7
5-5 Section Descriptor ..5-8
5-6 Coarse Page Table Descriptor..5-9
5-7 Fine Page Table Descriptor ..5-10
5-8 Section Translation...5-11
5-9 Level Two Descriptor..5-12
5-10 Large Page Translation from a Coarse Page Table ..5-14
5-11 Small Page Translation from a Coarse Page Table ..5-15
5-12 Tiny Page Translation from a Fine Page Table...5-16
5-13 Domain Access Control Register Format ..5-20
5-14 Sequence for Checking Faults..5-21

6-1 Clock Generator Block Diagram ...6-3
6-2 PLL (Phase-Locked Loop) Block Diagram ..6-4
6-3 Power-On Reset Sequence ..6-6
6-4 Timing Diagram of Clock Change in NORMAL Mode ...6-6
6-5 The Timing Diagram in Slow Mode...6-8
6-6 Power Management State Machine ..6-8

7-1 Memory Map after Reset ..7-2
7-2 Memory Interface with 8bit ROM ..7-5
7-3 Memory Interface with 8bit ROM x 2 ..7-5
7-4 Memory Interface with 8bit ROM x 4 ..7-6
7-5 Memory Interface with 16bit ROM ..7-6
7-6 Memory Interface with 16bit SRAM ..7-7
7-7 Memory Interface with 16bit DRAM ..7-8
7-8 Memory Interface with 16bit DRAM x 2 ..7-8
7-9 Memory Interface with 16bit SDRAM (1Mb x 16bit x 4banks)7-9
7-10 Memory Interface with 16bit SDRAM (2Mb x 16bit x 4banks x 2ea)........................7-9
7-11 Static Memory READ Timing (Tacs=2,Tcos=2, Tacc=4, Toch=2, Tcah=2,ST=0)....7-10
7-12 Static Memory WRITE Timing (Tacs=2,Tcos=2,Tacc=4,Toch=2, Tcah=2, ST=0) ...7-11
7-13 External nWAIT Timing Diagram..7-12
7-14 DRAM Timing Diagram ..7-13
7-15 DRAM Refresh Timing Diagram ...7-13
7-16 SDRAM Timing Diagram ..7-14

8-1 DMA Controller Block Diagram...8-3
8-2 Basic DMA Timing Diagram ...8-4
8-3 Demand/Handshake Mode Comparison..8-5
8-4 Single Transfer in Single Service Mode..8-6
8-5 Sequential Transfer in Single Service Mode ...8-6
8-6 Whole Service Mode..8-7
8-7 Burst (4-unit) Transfer Size...8-8

xx S3C2800 MICROPROCESSOR

List of Figures (Continued)

Figure Title Page
Number Number

10-1 16-bit Timer Block Diagram ... 10-1
10-2 The Timer2 DMA mode operation.. 10-3

11-1 UART Block Diagram (with FIFO).. 11-2
11-2 UART AFC interface.. 11-4
11-3 The Case that UART Receives 5 Characters Including 2 Errors............................. 11-6
11-4 IrDA Function Block Diagram .. 11-8
11-5 Serial I/O Frame Timing Diagram (Normal UART)... 11-9
11-6 Infra-Red Transmit Mode Frame Timing Diagram.. 11-9
11-7 Infra-Red Receive Mode Frame Timing Diagram... 11-9
11-8 nCTS and Delta CTS Timing Diagram... 11-16

12-1 Interrupt Controller Block Diagram... 12-1

13-1 Remote Control Signal Receiver Block Diagram.. 13-1
13-2 Remote Control Signal Receiver Operation Timing.. 13-2

14-1 Real Time Clock Block Diagram .. 14-2
14-2 Main Oscillator Circuit Examples ... 14-3

15-1 Watchdog Timer Block Diagram.. 15-2

16-1 IIC-Bus Block Diagram .. 16-2
16-2 Start and Stop Condition.. 16-3
16-3 IIC-Bus Interface Data Format ... 16-4
16-4 Data Transfer on the IIC-Bus ... 16-5
16-5 Acknowledge on the IIC-Bus.. 16-5
16-6 Operations for Master/Transmitter Mode.. 16-7
16-7 Operations for Master/Receiver Mode ... 16-8
16-8 Operations for Slave/Transmitter Mode ... 16-9
16-9 Operations for Slave/Receiver Mode ... 16-10

17-1 PCI Controller Block Diagram.. 17-1
17-2 PCI Address Space Define .. 17-3
17-3 Determining the Size of Base Address Bar Space ... 17-6
17-4 Host Bridge Translation for Type0 Configuration PCI Address from AHB Address . 17-7
17-5 Host Bridge Translation for Type1 Configuration PCI Address from AHB Address . 17-8
17-6 Host Bridge Translation for Memory Space PCI Address from AHB Address 17-8
17-7 Host Bridge Translation for IO Space PCI Address from AHB Address 17-9
17-8 Comparison between PCI address and base address bar to check hit 17-10
17-9 Address Translation from PCI&CardBus Bus to AHB Bus 17-10
17-10 Data Transfer Between PCI Bus and AHB Bus .. 17-11
17-11 PCI Configuration Registers .. 17-13

S3C2800 MICROPROCESSOR xxi

List of Figures (Continued)

Figure Title Page
Number Number

18-1 XTAL0 Clock Timing...18-4
18-2 AHBCLK/CLKout/SDCLK Timing..18-4
18-3 Manual Reset and OM[1:0] Input Timing ..18-4
18-4 Power-On Oscillation Setting Timing ..18-5
18-5 ROM/SRAM Burst READ Timing(I)

(Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, ST=0, SDW=16bit)............................18-6
18-6 ROM/SRAM Burst READ Timing(II)

(Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, ST=1, SDW=16bit)............................18-7
18-7 ROM/SRAM READ Timing (I) (Tacs=2,Tcos=2, Tacc=4, Toch=2, Tcah=2,ST=0)...18-8
18-8 ROM/SRAM READ Timing (II)

(Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, ST=1)..18-9
18-9 ROM/SRAM WRITE Timing (I) (Tacs=2,Tcos=2,Tacc=4,Toch=2, Tcah=2, ST=0)..18-10
18-10 ROM/SRAM WRITE Timing (II)

(Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, ST=1)..18-11
18-11 Masked-ROM Single READ Timing (Tacs=2, Tcos=2, Tacc=8)18-12
18-12 External nWAIT READ Timing

(Tacs=0, Tcos=0, Tacc=6, Toch=0, Tcah=0, ST=0)..18-12
18-13 External nWAIT WRITE Timing

(Tacs=0, Tcos=0, Tacc=4, Toch=0, Tcah=0, ST=0)..18-13
18-14 DRAM (EDO) Burst READ Timing

(Trcd=2, Tcas=1, Tcp=1, Trp=3.5, MT=10, DW = 16bit) ...18-14
18-15 DRAM(FP) Single READ Timing (Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=01)..........18-15
18-16 DRAM(EDO) Single READ Timing (Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=10)18-16
18-17 DRAM CBR Refresh Timing (Tchr=4)...18-16
18-18 DRAM(EDO) Page Hit-Miss READ Timing

(Trcd=2, Tcas=2, Tcp=1, Trp=3.5, MT=10)...18-17
18-19 DRAM Self Refresh Timing ..18-18
18-20 DRAM(FP/EDO) Single Write Timing

(Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=01/10)..18-18
18-21 DRAM(FP/EDO) Page Hit-Miss Write Timing

(Trcd=2, Tcas=2, Tcp=1, Trp=3.5, MT=01/10)..18-19
18-22 SDRAM Single Burst READ Timing (Trp=2, Trcd=2, Tcl=2, DW=16bit).................18-20
18-23 SDRAM MRS Timing..18-21
18-24 SDRAM Single READ Timing(I) (Trp=2, Trcd=2, Tcl=2) ...18-22
18-25 SDRAM Single READ Timing(II) (Trp=2, Trcd=2, Tcl=3) ..18-23
18-26 SDRAM Auto Refresh Timing (Trp=2, Trc=4) ...18-24
18-27 SDRAM Page Hit-Miss READ Timing (Trp=2, Trcd=2, Tcl=2).................................18-25
18-28 SDRAM Self Refresh Timing (Trp=2, Trc=4) ..18-26
18-29 SDRAM Single Write Timing (Trp=2, Trcd=2)...18-27
18-30 SDRAM Page Hit-Miss Write Timing (Trp=2, Trcd=2, Tcl=2)..................................18-28
18-31 External DMA Timing (Handshake, Single transfer)..18-29
18-32 PCI output AC characteristics test circuits for 3.3V signaling18-29

19-1 208-LQFP-2828 Package Dimensions ...19-1

S3C2800 MICROPROCESSOR xxiii

List of Tables

Table Title Page
Number Number

1-1 Pin Assignment Description..1-7
1-2 208-Pin LQFP Pin Assignment ...1-8
1-3 S3C2800 Signal Descriptions ...1-14
1-4 S3C2800 Special Function Registers..1-18

2-1 ARM9TDMI Implementation option...1
2-2 PSR Mode Bit Values...11
2-3 Exception Entry/Exit ...13
2-4 Exception Vectors ..15
2-5 CP15 Abbreviations..18
2-6 Address Type in ARM920T...19
2-7 CP15 Abbreviations..19
2-8 Register 0, ID Code..20
2-9 Cache Type Register Format..22
2-10 Cache Size Encoding (M=0) ...22
2-11 Cache Associativity Encoding (M=0) ..23
2-12 Line Length Encoding...23
2-13 Control register 1 bit functions ..24
2-14 Clocking Modes..25
2-15 Register 2, Translation Table Base...25
2-16 Register 3, Domain Access Control ..26
2-17 Register 5, Fault status register ..27
2-18 Register 7, Function Descriptions ...28
2-19 Register 7, Cache Operations...29
2-20 Register 8, TLB Operations ..30
2-21 Register 9, Accessing the Cache Lockdown..32
2-22 Register 10, Accessing the TLB Lockdown ...33

3-1 Symbol Used in Tables...3-2
3-2 Instruction Cycle Bus Times ...3-3
3-3 Data Bus Instruction Times...3-4
3-4 The ARM Instruction Set ..3-10
3-5 Condition Code Summary ..3-11
3-6 ARM Data Processing Instructions..3-17
3-7 Incremental Cycle Times..3-22
3-8 Assembler Syntax Descriptions ..3-33
3-9 Addressing Mode Names..3-51
3-10 THUMB Instruction Set Opcodes..3-71
3-11 Summary of Format 1 Instructions..3-73
3-12 Summary of Format 2 Instructions..3-74
3-13 Summary of Format 3 Instructions..3-75
3-14 Summary of Format 4 Instructions..3-76
3-15 Summary of Format 5 Instructions..3-78
3-16 Summary of PC-Relative Load Instruction..3-81
3-17 Summary of Format 7 Instructions..3-83

xxiv S3C2800 MICROPROCESSOR

List of Tables (Continued)

Table Title Page
Number Number

3-18 Summary of format 8 instructions .. 3-84
3-19 Summary of Format 9 Instructions... 3-87
3-20 Halfword Data Transfer Instructions... 3-88
3-21 SP-Relative Load/Store Instructions .. 3-89
3-22 Load Address .. 3-90
3-23 The ADD SP Instruction... 3-92
3-24 PUSH and POP Instructions .. 3-93
3-25 The Multiple Load/Store Instructions.. 3-95
3-26 The Conditional Branch Instructions .. 3-97
3-27 The SWI Instruction... 3-98
3-28 Summary of Branch Instruction.. 3-99
3-29 The BL Instruction ... 3-101

4-1 DCache and write buffer configuration ... 4-9

5-1 CP15 Register Functions ... 5-3
5-2 Level One Descriptor Bits .. 5-7
5-3 Interpreting Level One Descriptor Bits [1:0] ... 5-8
5-4 Section Descriptor Bits .. 5-8
5-5 Coarse Page Table Descriptor Bits .. 5-9
5-6 Fine Page Table Descriptor Bits .. 5-10
5-7 Level Two Descriptor Bits .. 5-12
5-8 Interpreting Page Table Entry Bits [1:0] ... 5-13
5-9 Priority Encoding of Fault Status.. 5-19
5-10 Interpreting Access Control Bits in Domain Access Control Register...................... 5-20
5-11 Interpreting Access Permission (AP) Bits... 5-20

6-1 Maximum Bus Frequencies ... 6-2
6-2 Examples of Maximum Bus Frequency.. 6-2
6-3 Recommended Value of MDIV, PDIV, SDIV .. 6-10

7-1 SDRAM Bank Address Configuration (Example).. 7-4

8-1 Hardware DMA Sources .. 8-9
8-2 DMA Source selection ... 8-14

9-1 Port Configuration Overview.. 9-2

10-1 Example for Interval Timing .. 10-2

11-1 Maximum Baud-Rate for Each Input Clock .. 11-1
11-2 Interrupts In Connection With FIFO ... 11-5

S3C2800 MICROPROCESSOR xxv

List of Tables (Continued)

Table Title Page
Number Number

12-1 Interrupt Source & Corresponding Bit ...12-3

15-1 An Example of Watchdog Interval Time ..15-2

16-1 Example for Setting of the IICSCL..16-11

17-1 PCI Base Address Bar Type ...17-5
17-2 PCI Configuration Registers Overview ...17-14
17-3 BIF Special Function Registers Overview...17-24

18-1 Absolute Maximum Rating..18-1
18-2 Recommended Operating Conditions ...18-1
18-3 Normal I/O PAD D.C. Electrical Characteristics ..18-2
18-4 PCI I/O PAD D.C. Electrical Characteristics ...18-3
18-5 Clock Timing Constants..18-30
18-6 ROM/SRAM Bus Timing Constants ..18-30
18-7 DRAM Bus Timing Constants ...18-31
18-8 SDRAM Bus Timing Constants...18-31
18-9 DMA Controller Module Signal Timing Constants ...18-32
18-10 IIC BUS Controller Module Signal Timing...18-32
18-11 PCI BUS A.C. Electrical Characteristics ...18-33

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-1

1 PRODUCT OVERVIEW

INTRODUCTION

SAMSUNG's S3C2800 32-bit RISC microprocessor is designed to provide a cost-effective and high-performance
micro-controller solution for general applications. The S3C2800 features the following integrated on-chip support
to help design a system a low cost: 16KB I/D caches, 2-ch UART with handshake, 4-ch DMA, memory controller,
3-ch timer, GPIO (General-Purpose Input/Output) ports, RTC (Real Time Clock), 2-ch IIC-BUS interface, and a
built-in PLL for system clock.

Based on ARM920T core, the S3C2800 is developed using 0.18 um CMOS standard cells and a memory
compiler. Its simple, elegant, and fully static low-power design is particularly suitable for both cost-sensitive and
power-sensitive applications. The 32-bit ARM920T RISC processor core (220Mips @200MHz), designed by
Advanced RISC Machines, Ltd., provides architectural enhancements such as the Thumb de-compressor, a 32-
bit hardware multiplier, and an on-chip ICE debug support. Also, the S3C2800 features the Harvard BUS
architecture for efficient data/instruction transfers.

By integrating various common system peripherals, the S3C2800 minimizes the overall system cost and
eliminates the need to configure additional components. The integrated on-chip functions are summarized as
follows :

• PCI BUS interface (32-bit, up to 66MHz).

• 1.8V static ARM920T CPU core with 16KB I/D (Instruction/Data) cache. (Harvard bus architecture up to
200MHz).

• External memory controller. (FP/EDO/SDRAM control, Chip select logic).

• 4-ch general DMAs with external request pins.

• 2-ch UART with handshake (IRDA1.0, 16-byte FIFO), Modem Interface.

• 2-ch multi-master IIC-BUS controller.

• 3-ch 16-bit timer.

• 16-bit Watchdog timer.

• 44 general-purpose GPIO ports including 8 external interrupt source.

• Power management: Normal, Slow, and Idle modes.

• RTC with calendar function.

• On-chip PLL clock generator.

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-2

FEATURES

Architecture

• ARM920T CPU core supports the Thumb
instruction, ARM instruction, and core debug

• Enhanced multiplier, JTAG, and the embedded
ICE

• Support boundary scans

• Memory Management Unit (support virtual
memory)

• Internal AMBA bus architecture (AMBA 2.0,
AHB/APB)

• Maximum CPU clock frequency of
200MHz@1.8V

Memory Controller

• Little-/Big-endian support for external memory.

• Address space: 32Mbytes per each bank (Total
256Mbyte)

• Supports programmable 8/16/32-bit data bus
width for each memory bank

• Fixed bank start address for all (static memory
and dynamic memory banks)

• 8 memory banks
– 4 memory banks for static memory (ROM,
 SRAM, FLASH etc)
– 4 memory banks for dynamic memory (Fast
 Page, EDO, and Synchronous DRAM)

• Fully programmable access cycles for all static
memory banks

• Supports external wait signal to extend the bus
cycle

• Supports self-refresh mode in DRAM/SDRAM.

• Supports asymmetric/symmetric address of
DRAM

I/D (Instruction/Data) Cache Memory

• 64-way set-associative ICache (16KB) and
DCache (16KB)

• 8 words per line with one valid bit and 2 dirty
bits per line

• Pseudo-random or round-robin replacement
algorithm

• Write-through and Write-back cache operation.

• The write buffer can hold 16 words of data and 4
addresses

• Low voltage cache for reduced power
consumption

Clock & Power Manager

• The on-chip PLL generates the necessary clock
for the operation of MCU at maximum of
200MHz@1.8V

• Input frequency range: (Fin) = 6MHz – 10MHz.

• Output frequency range: (FCLK) = 20MHz –
200MHz

• Clock can be selectively provided to each
function block by software

• Power Down Mode: NORMAL, SLOW, and IDLE
mode

– NORMAL mode: Normal operating mode
– SLOW mode: Low frequency clock without
 PLL
– IDLE mode: Clock to CPU is disabled

PCI Bus Interface

• Embedded PCI Host Bridge

• 32-bit data bus at 66MHz

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-3

FEATURES (Continued)

Interrupt Controller

• 34 Interrupt sources.
(3 for Timers, 6 for UART, 8 for External
interrupts, 4 for DMA, 2 for RTC, 2 for IIC, 2 for
RCSR (Remote Control Signal Receiver), and 7
for PCI))

• Software polling Interrupt mode

• Selectable level- or edge-triggered external
interrupts source

• Programmable IRQ/FIQ for each interrupt
request

• Supports FIQ (Fast Interrupt Request) for very
urgent interrupt request

Timer

• 3-ch 16-bit Timer with DMA-based or interrupt-
based operation

Watchdog Timer

• 16-bit Watchdog Timer

RCSR (Remote Control Signal Receiver)

• 8-step FIFO

• FIFO interrupt is generated on full (8) step
overflow

RTC (Real Time Clock)

• Full clock feature: sec, min, hour, date, day,
week, month, and year

• 32.768 kHz input clock

• Alarm interrupt

• Time tick interrupt

GPIO (General-Purpose Input/Output) Ports

• 8 external interrupt ports

• 44 multiplexed input/output ports.

UART

• 2-channel UART with DMA-based or interrupt
based operation

• Supports 5-bit, 6-bit, 7-bit, or 8-bit serial data
transmit/receive

• Supports hardware handshaking during
transmit/receive operation

• Programmable baud rates (up to 230.4Kbps).

• Supports IrDA 1.0 (up to 115.2Kbps)

• Loop back mode for testing

• Program accessible 16-byte FIFO (2x16 byte
FIFO for transmit/receive data)

DMA Controller

• 4-channel general-purpose Direct Memory
Access controller without CPU intervention.

• Support memory to memory, memory to I/O and
I/O to I/O DMA operations of the following 6
types:

Software, 3 internal function blocks (UART0,
UART1, Timer), and 2 External requests

• Burst transfer mode to enhance the transfer rate
on the FPDRAM, EDODRAM and SDRAM

IIC-BUS Interface

• 2-ch Multi-Master IIC-Bus with interrupt-based
operation

• Serial, 8-bit oriented, bi-directional data
transfers at up to 100 Kbit/s in the standard
mode or up to 400 Kbit/s in the fast mode

Operating Voltage Range

• Core: 1.8 V 0.1 V/+0.15 V

• I/O: 3.3 V ± 0.3 V

Operating Frequency

• Up to 200 MHz.

Package

• 208-pin LQFP

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-4

BLOCK DIAGRAM

AHB to APB Bridge

2ch-IIC

2ch-IIC

2ch-IIC

2ch-IIC

Watch-dog

RTC

2ch-IICRMT Receive

Memory
Controller

PCI Bridge

4ch-GDMA
Arbiter/Decode

AMBA bus
Interface

A
S

B

ASB to AHB bus Bridge

A
H

B
 B

U
S

 32-bit

BUS Controller
Arbiter/Decode

Interrupt
Controller

Clock(PLL) &
Power Manage

2ch-IIC

GPIO

2ch-UART

3ch-Timers

AHB to APB Bridge

A
P

B
 B

U
S

 32-bit

Write
buffer

Write back
PA tag
RAM

Data cache

Data MMU

ARM9TDMI
Processor core

(Integral
EmbeddedICE)

External
coproc

interface

Instruction
cache

Instruction
MMU

C
P

15

W
B

P
A

[31:0]

D
P

A
[31:0]

D
V

A
[31:0]

D
D

[31:0]

ID
[31:0]

IP
A

[31:0]

IV
A

[31:0]

IV2A[31:0]DV2A[31:0]
JTAG

C
13

C
13

Figure 1-1. S3C2800 Block Diagram

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-5

OVERVIEW OF THE ARM920T

The ARM920T is a member of the ARM9 Thumb family of general-purpose microprocessors. The ARM920T is
targeted for embedded control applications where high-performance, small die size, and low-power are all
important. The ARM920T supports both the 32-bit ARM and 16-bit Thumb instruction sets, allowing the user to
trade off between high-performance and high code density. The ARM920T supports the ARM debug architecture
and includes logic to assist in both hardware and software. The ARM920T also includes support for coprocessors.

The ARM920T is a Harvard cache architecture processor. The instruction and data caches are of 16KB size with
an 8-word line length. The ARM920T implements an enhanced ARM Architecture V4 MMU to provide translation
and permission checks for instruction and data accesses.

The processor core within ARM920T is an ARM9TDMI, implemented using a five-stage pipeline consisting of
fetch, decode, execute, memory and write stages, and can be provided as a stand-alone core which can be
embedded into more complex devices.

The ARM920T interface to the rest of the system is via unified address and data buses. This interface is
compatible with the Advanced Microcontroller Bus Architecture (AMBA) bus scheme. For coprocessor support,
the instruction and data buses are exported along with simple handshaking signals. The ARM920T also has a
TrackingICE mode, which allows an approach similar to a conventional ICE mode of operation.

AMBA bus
Interface

A
S

B

Write
buffer

Write back
PA tag
RAM

Data cache

Data MMU

ARM9TDMI
Processor core

(Integral
EmbeddedICE)

External
coproc

interface

Instruction
cache

Instruction
MMU

C
P

15

W
B

P
A

[31:0]

D
P

A
[31:0]

D
V

A
[31:0]

D
D

[31:0]

ID
[31:0]

IP
A

[31:0]

IV
A

[31:0]

IV2A[31:0]DV2A[31:0]
JTAG

C
13

C
13

Figure 1-2. ARM920T Functional Block Diagram

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-6

PIN DIAGRAM (208-LQFP)

S3C2800X
208-LQFP

VSS3OP

VDD3OP
PCI_AD27
PCI_AD26
PCI_AD25
PCI_AD24

120
119
118
117

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

PCI_AD17
PCI_AD16
VSS3OP
PCI_C2/nBE2
PCI_nFRAME
PCI_nIRDY
VDD3OP
PCI_nTRDY

PCI_PAR
PCI_nSERR
PCI_nPERR
PCI_nLOCK
PCI_nSTOP
PCI_nDEVSEL

PCI_C1/nBE1
PCI_AD15
VSS3OP
PCI_AD14
PCI_AD13
PCI_AD12
PCI_AD11

PCI_AD6

PCI_AD9

PCI_C0/nBE0
VDD3OP
PCI_AD8

PCI_AD7

PCI_AD10

PCI_AD19

121
122
123
124
125
126
127
128

PCI_C3/nBE3
PCI_IDSEL
PCI_AD23
PCI_AD22
VDD
VSS
PCI_AD21
PCI_AD20

PCI_AD18

105
106
107
108
109
110
111
112
113
114
115
116

53 54 55 56 57 58 6059 6564636261 686766 747372717069 76 77 78 79 8075 868584838281 88 89 90 91 9287

nOE
nWE

41
42
43
44
45
46
47
48
49
50
51
52

VDD3OP
VSS3OP
DATA29
DATA30
DATA31

GPB6/nWAIT
GPB7/CLKout

GPC0
GPC1
GPC2

G
P

C
3/

E
N

D
IA

N
nT

R
S

T
TC

K
TM

S
TD

I
TD

O
IR

IN
G

P
D

0/
IIC

S
D

A
0

G
P

D
1/

IIC
S

C
LK

0
G

P
D

2/
IIC

S
D

A
1

G
P

D
6/

nC
TS

0
G

P
D

5/
Tx

D
0

G
P

D
4/

R
xD

0
G

P
D

3/
IIC

S
C

LK
1

G
P

D
7/

nR
TS

0
nR

E
S

E
T_

O
U

T
G

P
E

0/
R

xD
1

G
P

E
1/

Tx
D

1
G

P
E

2/
nC

TS
1

G
P

E
3/

nR
TS

1
V

D
D

V
S

S
G

P
E

4/
nX

D
R

E
Q

0
G

P
E

5/
nX

D
A

C
K

0
G

P
E

6/
nX

D
R

E
Q

1
G

P
E

7/
nX

D
A

C
K

1
G

P
F0

/E
X

TI
N

T0
G

P
F1

/E
X

TI
N

T1

1nSDCS2/nDRAS2/GPA4
nSDCS3/nDRAS3/GPA5

VDD3OP
VSS3OP

nDCAS0/GPA6
nDCAS1/GPA7

nDCAS2/nSDCAS/GPB0
nDCAS3/nSDRAS/GPB1

SDCKE
SDCLK

ADDR17
DATA17

nBE0/nWBE0/DQM0/GPB2
nBE1/nWBE1/DQM1/GPB3
nBE2/nWBE2/DQM2/GPB4
nBE3/nWBE3/DQM3/GPB5

DATA16
ADDR16

DATA18

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

19
7

19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

ADDR18
VDD3OP
VSS3OP
DATA19
ADDR19
DATA20
ADDR20

VDD
VSS

A
D

D
R

5

D
A

TA
7

A
D

D
R

7
D

A
TA

8
A

D
D

R
8

D
A

TA
9

A
D

D
R

9
V

D
D

V
S

S
D

A
TA

10
A

D
D

R
10

D
A

TA
11

A
D

D
R

11

V
S

S
3O

P

nS
D

C
S

1/
nD

R
A

S
1/

G
P

A
3

D
A

TA
15

nS
C

S
3/

G
P

A
2

nS
C

S
2/

G
P

A
1

nS
D

C
S

0/
nD

R
A

S
0

nS
C

S
0

A
D

D
R

13

A
D

D
R

12

A
D

D
R

14

V
D

D
3O

P

D
A

TA
12

D
A

TA
13

D
A

TA
14

A
D

D
R

15

nS
C

S
1/

G
P

A
0

ADDR23
DATA24

29
30
31
32
33
34
35
36
37
38
39
40

DATA21
ADDR21
DATA22
ADDR22
DATA23

ADDR24
DATA25
DATA26
DATA27
DATA28

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

17
7

17
8

17
9

18
0

D
A

TA
2

A
D

D
R

2
D

A
TA

3
A

D
D

R
3

V
D

D
3O

P
V

S
S

3O
P

D
A

TA
4

A
D

D
R

4
D

A
TA

5

D
A

TA
6

A
D

D
R

6
G

P
F2

/E
X

TI
N

T2
G

P
F3

/E
X

TI
N

T3
G

P
F4

/E
X

TI
N

T4
G

P
F5

/E
X

TI
N

T5
G

P
F6

/E
X

TI
N

T6
G

P
F7

/E
X

TI
N

T7
V

D
D

3O
P

V
S

S
3O

P
X

TA
L0

E
X

TA
L0

TE
S

T
nR

E
S

E
T

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
5

16
6

16
7

16
8

P
C

I_
A

D
5

V
S

S
3O

P
P

C
I_

A
D

4
P

C
I_

A
D

3
P

C
I_

A
D

2
P

C
I_

A
D

1
P

C
I_

A
D

0
P

C
I_

nI
N

TA
D

A
TA

0

D
A

TA
1

A
D

D
R

1

PCI_nREQ1
VSS3OP
PCI_nREQx2
PCI_nREQx3
PCI_AD31

X
TA

L1
E

X
TA

L1
O

M
0

O
M

1
A

V
D

D
P

LL
C

A
P

A
V

S
S

P
C

I_
nR

S
T

P
C

I_
C

LK
P

C
I_

nG
N

T1
P

C
I_

nG
N

Tx
2

P
C

I_
nG

N
Tx

3

989796959493 10
0

10
1

10
2

10
3

10
4

99

A
D

D
R

0

PCI_AD29
PCI_AD28

PCI_AD30

VDD/VSS : Internal 1.8V power
AVDD/AVSS : Analog 1.8V Power
VDD3OP/VSS3OP : I/O 3.3V power

Figure 1-3. S3C2800 Pin Assignment (208-LQFP)

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-7

PIN ASSIGNMENTS

Table 1-1. Pin Assignment Description

I/O Type Descriptions

vdd1ih, vss3I
vdd1ih_pci, vss3I_pci

1.8V power/ground for internal logic

vdd1t_abb, vss1t_abb 1.8V power/ground for analog circuitry

vdd3op, vss3op
vdd3op_pci, vss3op_pci

3.3V power/ground for external interface logic

poar50_abb 1.8V analog output (A capacitor is connected between the pin and analog ground)

phsoscm16 Oscillator cell width enable and feedback resistor (6 M – 40 MHz)

phsosck17 Oscillator cell width enable and feedback resistor (– 100 kHz)

Phis 3.3V interface LVCMOS schmitt trigger level input buffers

Phisu 3.3V interface LVCMOS schmitt trigger level input buffers with 100 KΩ pull-up
resistor.

phob8 3.3V LVCMOS normal output buffers, Io = 8 mA

phob8sm 3.3V LVCMOS normal output buffers with medium slew-rate, Io = 8 mA

phot8 3.3V LVCMOS tri-state output buffers, Io = 8 mA

phob12 3.3V LVCMOS normal output buffers, Io = 12 mA

phbsud4 3.3V open-drain bi-directional buffers with 100 KΩ pull-up resistor. Io=4mA

phbsu50cd4sm 3.3V bi-directional pad, LVCMOS schmitt trigger, open-drain, 50 KΩ pull-up
resistor with control, tri-state, Io = 4 mA

phbsu50ct8sm 3.3V bi-directional pad, LVCMOS schmitt trigger, 50 KΩ pull-up resistor with
control, tri-state, Io = 8 mA

phbsu50ct12sm 3.3V bi-directional pad, LVCMOS schmitt trigger, 50 KΩ pull-up resistor with
control, tri-state, Io = 12 mA

ptipci 3.3V input buffer

ptopci 3.3V output buffer with tri-state

ptbpci 3.3V bi-directional buffer with input and tri-state output

ptbdpci 3.3V bi-directional buffer with input and open-drain output, tri-state

NOTES:
1. ENDIAN value is latched only at the rising edge of nRESET: when nRESET is Low, the ENDIAN (GPC3) pin operates in

input mode; nRESET becomes High, the ENDIAN pin will automatically switch to output mode.
2. IICSDA, IICSCLK, PCI_nSERR, and PCI_nINTA pins are of open-drain type.
3. AI/AO means analog input/output.

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-8

Table 1-2. 208-Pin LQFP Pin Assignment

Pin # Pin Name Default
Function

I/O State @Initial I/O TYPE

1 nSDCS2/nDRAS2/GPA4 nSDCS2 O/IO phbsu50ct8sm

2 nSDCS3/nDRAS3/GPA5 nSDCS3 O/IO

3 VDD3OP VDD3OP P vdd3op

4 VSS3OP VSS3OP P vss3op

5 nDCAS0/GPA6 nDCAS0 O/IO phbsu50ct8sm

6 nDCAS1/GPA7 nDCAS1 O/IO

7 nDCAS2/nSDCAS/GPB0 nSDCAS O/IO

8 nDCAS3/nSDRAS/GPB1 nSDRAS O/IO

9 SDCKE SDCKE O phob8

10 SDCLK SDCLK O phob12

11 nBE0/nWBE0/DQM0/GPB2 DQM0 O/IO phbsu50ct8sm

12 nBE1/nWBE1/DQM1/GPB3 DQM1 O/IO

13 nBE2/nWBE2/DQM2/GPB4 DQM2 O/IO

14 nBE3/nWBE3/DQM3/GPB5 DQM3 O/IO

15 DATA16 DATA16 I/O phbsu50ct12sm

16 ADDR16 ADDR16 O phot8

17 DATA17 DATA17 I/O phbsu50ct12sm

18 ADDR17 ADDR17 O phot8

19 DATA18 DATA18 I/O phbsu50ct12sm

20 ADDR18 ADDR18 O phot8

21 VDD3OP VDD3OP P vdd3op

22 VSS3OP VSS3OP P vss3op

23 DATA19 DATA19 I/O phbsu50ct12sm

24 ADDR19 ADDR19 O phot8

25 DATA20 DATA20 I/O phbsu50ct12sm

26 ADDR20 ADDR20 O phot8

27 VDD VDD P vdd1ih

28 VSS VSS P vss3i

29 DATA21 DATA21 I/O phbsu50ct12sm

30 ADDR21 ADDR21 O phot8

31 DATA22 DATA22 I/O phbsu50ct12sm

32 ADDR22 ADDR22 O phot8

33 DATA23 DATA23 I/O phbsu50ct12sm

34 ADDR23 ADDR23 O phot8

35 DATA24 DATA24 I/O phbsu50ct12sm

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-9

Table 1-2. 208-Pin LQFP Pin Assignment (Continued)

Pin # Pin Name Default
Function

I/O State @Initial I/O TYPE

36 ADDR24 ADDR24 O phot8

37 DATA25 DATA25 I/O phbsu50ct12sm

38 DATA26 DATA26 I/O

39 DATA27 DATA27 I/O

40 DATA28 DATA28 I/O

41 VDD3OP VDD3OP P vdd3op

42 VSS3OP VSS3OP P vss3op

43 DATA29 DATA29 I/O phbsu50ct12sm

44 DATA30 DATA30 I/O

45 DATA31 DATA31 I/O

46 nOE nOE O phob8sm

47 nWE nWE O

48 GPB6/nWAIT GPB6 IO phbsu50ct8sm

49 GPB7/CLKout GPB7 IO

50 GPC0 GPC0 IO

51 GPC1 GPC1 IO

52 GPC2 GPC2 IO

53 GPC3/ENDIAN ENDIAN I(1)

54 nTRST nTRST I phis

55 TCK TCK I phis

56 TMS TMS I phis

57 TDI TDI I phis

58 TDO TDO O phot8

59 IRIN IRIN I phis

60 GPD0/IICSDA0 GPD0 IO(2) phbsu50cd4sm

61 GPD1/IICSCLK0 GPD1 IO(2)

62 GPD2/IICSDA1 GPD2 IO(2)

63 GPD3/IICSCLK1 GPD3 IO(2)

64 GPD4/RxD0 GPD4 IO phbsu50ct8sm

65 GPD5/TxD0 GPD5 IO

66 GPD6/nCTS0 GPD6 IO

67 GPD7/nRTS0 GPD7 IO

68 nRESET_OUT nRESET_OUT O phob8

69 GPE0/RxD1 GPE0 IO phbsu50ct8sm

70 GPE1/TxD1 GPE1 IO

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-10

Table 1-2. 208-Pin LQFP Pin Assignment (Continued)

Pin # Pin Name Default
Function

I/O State @Initial I/O TYPE

71 GPE2/nCTS1 GPE2 IO phbsu50ct8sm

72 GPE3/nRTS1 GPE3 IO

73 VDD VDD P vdd1ih

74 VSS VSS P vss3i

75 GPE4/nXDREQ0 GPE4 IO phbsu50ct8sm

76 GPE5/nXDACK0 GPE5 IO

77 GPE6/nXDREQ1 GPE6 IO

78 GPE7/nXDACK1 GPE7 IO

79 GPF0/EXTINT0 GPF0 IO

80 GPF1/EXTINT1 GPF1 IO

81 GPF2/EXTINT2 GPF2 IO

82 GPF3/EXTINT3 GPF3 IO

83 GPF4/EXTINT4 GPF4 IO

84 GPF5/EXTINT5 GPF5 IO

85 GPF6/EXTINT6 GPF6 IO

86 GPF7/EXTINT7 GPF7 IO

87 VDD3OP VDD3OP P vdd3op

88 VSS3OP VSS3OP P vss3op

89 XTAL0 XTAL0 AI(3) phsoscm16

90 EXTAL0 EXTAL0 AO(3)

91 TEST TEST I phis

92 nRESET nRESET I phisu

93 XTAL1 XTAL1 I phsosck17

94 EXTAL1 EXTAL1 O

95 OM0 OM0 I(1) phis

96 OM1 OM1 I(1)

97 AVDD AVDD P vdd1t_abb

98 PLLCAP PLLCAP AO(3) poar50_abb

99 AVSS AVSS P vss1t_abb/vbb1_abb

100 PCI_nRST PCI_nRST I ptipci

101 PCI_CLK PCI_CLK I

102 PCI_nGNT1 PCI_nGNT1 IO ptbpci

103 PCI_nGNTx2 PCI_nGNTx2 O ptopci

104 PCI_nGNTx3 PCI_nGNTx3 O

105 PCI_nREQ1 PCI_nREQ1 IO ptbpci

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-11

Table 1-2. 208-Pin LQFP Pin Assignment (Continued)

Pin # Pin Name Default
Function

I/O State @Initial I/O TYPE

106 VSS3OP VSS3OP P vss3op_pci

107 PCI_nREQx2 PCI_nREQx2 I ptipci

108 PCI_nREQx3 PCI_nREQx3 I

109 PCI_AD31 PCI_AD31 I/O ptbpci

110 PCI_AD30 PCI_AD30 I/O

111 PCI_AD29 PCI_AD29 I/O

112 PCI_AD28 PCI_AD28 I/O

113 VDD3OP VDD3OP P vdd3op_pci

114 PCI_AD27 PCI_AD27 I/O ptbpci

115 PCI_AD26 PCI_AD26 I/O

116 PCI_AD25 PCI_AD25 I/O

117 PCI_AD24 PCI_AD24 I/O

118 VSS3OP VSS3OP P vss3op_pci

119 PCI_C3/nBE3 PCI_C3/nBE3 I/O ptbpci

120 PCI_IDSEL PCI_IDSEL I ptipci

121 PCI_AD23 PCI_AD23 I/O ptbpci

122 PCI_AD22 PCI_AD22 I/O

123 VDD VDD P vdd1ih_pci

124 VSS VSS P vss3i_pci

125 PCI_AD21 PCI_AD21 I/O ptb_pci

126 PCI_AD20 PCI_AD20 I/O

127 PCI_AD19 PCI_AD19 I/O

128 PCI_AD18 PCI_AD18 I/O

129 PCI_AD17 PCI_AD17 I/O

130 PCI_AD16 PCI_AD16 I/O

131 VSS3OP VSS3OP P vss3op_pci

132 PCI_C2/nBE2 PCI_C2/nBE2 I/O ptbpci

133 PCI_nFRAME PCI_nFRAME I/O

134 PCI_nIRDY PCI_nIRDY I/O

135 VDD3OP VDD3OP P vdd3op_pci

136 PCI_nTRDY PCI_nTRDY I/O ptbpci

137 PCI_nDEVSEL PCI_nDEVSEL I/O

138 PCI_nSTOP PCI_nSTOP I/O

139 PCI_nLOCK PCI_nLOCK I ptipci

140 PCI_nPERR PCI_nPERR I/O ptbpci

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-12

Table 1-2. 208-Pin LQFP Pin Assignment (Continued)

Pin # Pin Name Default
Function

I/O State @Initial I/O TYPE

141 PCI_nSERR PCI_nSERR I/O(2) ptbdpci

142 PCI_PAR PCI_PAR I/O ptbpci

143 PCI_C1/nBE1 PCI_C1/nBE1 I/O

144 PCI_AD15 PCI_AD15 I/O

145 VSS3OP VSS3OP P vss3op_pci

146 PCI_AD14 PCI_AD14 I/O ptbpci

147 PCI_AD13 PCI_AD13 I/O

148 PCI_AD12 PCI_AD12 I/O

149 PCI_AD11 PCI_AD11 I/O

150 PCI_AD10 PCI_AD10 I/O

151 PCI_AD9 PCI_AD9 I/O

152 PCI_AD8 PCI_AD8 I/O

153 VDD3OP VDD3OP P vdd3op_pci

154 PCI_C0/nBE0 PCI_C0/nBE0 I/O ptbpci

155 PCI_AD7 PCI_AD7 I/O

156 PCI_AD6 PCI_AD6 I/O

157 PCI_AD5 PCI_AD5 I/O

158 VSS3OP VSS3OP P vss3op_pci

159 PCI_AD4 PCI_AD4 I/O ptbpci

160 PCI_AD3 PCI_AD3 I/O

161 PCI_AD2 PCI_AD2 I/O

162 PCI_AD1 PCI_AD1 I/O

163 PCI_AD0 PCI_AD0 I/O

164 PCI_nINTA PCI_nINTA I/O(2) phbsud4

165 DATA0 DATA0 I/O phbsu50ct12sm

166 ADDR0 ADDR0 O phot8

167 DATA1 DATA1 I/O phbsu50ct12sm

168 ADDR1 ADDR1 O phot8

169 DATA2 DATA2 I/O phbsu50ct12sm

170 ADDR2 ADDR2 O phot8

171 DATA3 DATA3 I/O phbsu50ct12sm

172 ADDR3 ADDR3 O phot8

173 VDD3OP VDD3OP P vdd3op

174 VSS3OP VSS3OP P vss3op

175 DATA4 DATA4 I/O phbsu50ct12sm

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-13

Table 1-2. 208-Pin LQFP Pin Assignment (Continued)

Pin # Pin Name Default
Function

I/O State @Initial I/O TYPE

176 ADDR4 ADDR4 O phot8

177 DATA5 DATA5 I/O phbsu50ct12sm

178 ADDR5 ADDR5 O phot8

179 DATA6 DATA6 I/O phbsu50ct12sm

180 ADDR6 ADDR6 O phot8

181 DATA7 DATA7 I/O phbsu50ct12sm

182 ADDR7 ADDR7 O phot8

183 DATA8 DATA8 I/O phbsu50ct12sm

184 ADDR8 ADDR8 O phot8

185 DATA9 DATA9 I/O phbsu50ct12sm

186 ADDR9 ADDR9 O phot8

187 VDD VDD P vdd1ih

188 VSS VSS P vss3i

189 DATA10 DATA10 I/O phbsu50ct12sm

190 ADDR10 ADDR10 O phot8

191 DATA11 DATA11 I/O phbsu50ct12sm

192 ADDR11 ADDR11 O phot8

193 VDD3OP VDD3OP P vdd3op

194 VSS3OP VSS3OP P vss3op

195 DATA12 DATA12 I/O phbsu50ct12sm

196 ADDR12 ADDR12 O phot8

197 DATA13 DATA13 I/O phbsu50ct12sm

198 ADDR13 ADDR13 O phot8

199 DATA14 DATA14 I/O phbsu50ct12sm

200 ADDR14 ADDR14 O phot8

201 DATA15 DATA15 I/O phbsu50ct12sm

202 ADDR15 ADDR15 O phot8

203 nSCS0 nSCS0 O phob8sm

204 nSCS1/GPA0 nSCS1 O/IO phbsu50ct8sm

205 nSCS2/GPA1 nSCS2 O/IO phbsu50ct8sm

206 nSCS3/GPA2 nSCS3 O/IO phbsu50ct8sm

207 nSDCS0/nDRAS0 nSDCS0 O phob8sm

208 nSDCS1/nDRAS1/GPA3 nSDCS1 O/IO phbsu50ct8sm

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-14

SIGNAL DESCRIPTIONS

Table 1-3. S3C2800 Signal Descriptions

Signal I/O Description

BUS CONTROLLER

OM[1:0] I OM [1:0] is used to determines the bus width of static memory bank0 (boot ROM).
The pull-up/down resistor determines the logic level.
00 = 8-bit 01 = 16-bit 10 = 32-bit 11 = Not used

ADDR[24:0] O ADDR [24:0] (Address Bus) outputs the memory address of the corresponding bank.

DATA[31:0] IO DATA [31:0] (Data Bus) inputs data during memory read and outputs data during
memory write. The bus width is programmable among 8/16/32-bit.

nSCS[3:0] O nSCS[3:0] (Static memory bank Select) are activated when the address of a static
memory is within the address region of each bank. The number of access cycles and
the bank size can be programmed.

nWE O nWE (Write Enable) indicates that the current bus cycle is a write cycle.

nWBE[3:0] O Write Byte Enable.

nBE[3:0] O 16-bit SRAM Byte Enable.

nWAIT I Request to prolong a current bus cycle. As long as nWAIT is Low, the current bus
cycle can’t be completed.

nOE O nOE (Output Enable) indicates that the current bus cycle is a read cycle.

ENDIAN I It determines whether or not the data type is Little-endian or Big-endian. The pull-
up/down resistor determines the logic level during the reset cycle.
ENDIAN value is latched only at the rising edge of nRESET: when nRESET is Low,
the ENDIAN (GPC3) pin operates in input mode; nRESET becomes High, the
ENDIAN pin will automatically switch to output mode.
0 = Little-endian 1 = Big-endian

DRAM/SDRAM

nDRAS[3:0] O Row Address Strobe.

nDCAS[3:0] O Column Address Strobe.

nSDRAS O SDRAM Row Address Strobe.

nSDCAS O SDRAM Column Address Strobe.

nSDCS[3:0] O SDRAM Chip Select.

DQM[3:0] O SDRAM Data Mask.

SDCLK O SDRAM Clock (SDCLK = HCLK).

SDCKE O SDRAM Clock Enable.

INTERRUPT CONTROL UNIT

EXTINT[7:0] I External Interrupt request.

DMA

nXDREQ[1:0] I External DMA request.

nXDACK[1:0] O External DMA acknowledge.

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-15

Table 1-3. S3C2800 Signal Descriptions (Continued)

Signal I/O Description

UART

RxD[1:0] I UART receives data input.

TxD[1:0] O UART transmits data output.

nCTS[1:0] I UART clear to send input signal.

nRTS[1:0] O UART request to send output signal.

IIC-BUS

IICSDA[1:0] IO IIC-bus data.

IICSCL[1:0] IO IIC-bus clock.

Remote Control Signal Input Interrupt

IRIN I Remote controller signal receive interrupt

GENERAL-PURPOSE I/O PORTs

GPx[7:0] x 5
GPC[3:0]

IO General-purpose input/output ports
(GPA[7:0], GPB[7:0], GPC[3:0], GPD[7:0] , GPE[7:0], GPF[7:0])

RESET & CLOCK

nRESET ST nRESET suspends any operation in progress and places S3C2800 into a known reset
state. For a reset, nRESET must be held to low level for at least 4 CPUCLK after the
processor power is stabilized.

nRESET_OUT O The nRESET_OUT pin is asserted during hardware reset(POR,nRESET), software
reset and watchdog reset.

XTAL0 AI Crystal Input for internal OSC circuit for system clock.
If it isn't used, XTAL0 has to be high level.

EXTAL0 AO Crystal output for internal OSC circuit for system clock. It is the inverted output of
XTAL0. If it isn't used, it has to be a floating pin.

PLLCAP AI Loop filter capacitor for system clocks PLL. (1uF)

XTAL1 AI 32 KHz crystal input for RTC.

EXTAL1 AO 32 KHz crystal output for RTC. It is the inverted output of XTAL1.

JTAG TEST LOGIC

nTRST I nTRST(TAP Controller Reset) resets the TAP controller at start.
If debugger is used, A 10K pull-up resistor has to be connected.
If debugger(black ICE) isn't used, nTRST pin has to be low level or low active pulse.

TMS I TMS (TAP Controller Mode Select) controls the sequence of the TAP controller's
states. A 10K pull-up resistor has to be connected to TMS pin.

TCK I TCK (TAP Controller Clock) provides the clock input for the JTAG logic.
A 10K pull-up resistor has to be connected to TCK pin.

TDI I TDI (TAP Controller Data Input) is the serial input for test instructions and data.
A 10K pull-up resistor has to be connected to TDI pin.

TDO O TDO (TAP Controller Data Output) is the serial output for test instructions and data.

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-16

Table 1-3. S3C2800 Signal Descriptions (Continued)

Signal I/O Description

POWER

VDD P S3C2800 core logic VDD (1.8 V).

VSS P S3C2800 core logic VSS.

AVDD P S3C2800 Analog logic (PLL loop filter) VDD(1.8V).

AVSS P S3C2800 Analog logic (PLL loop filter) VSS.

VDD3OP P S3C2800 GPIO port VDD (3.3 V).

VSS3OP P S3C2800 GPIO port VSS.

PCI-BUS

PCI_AD[31:0] I/O PCI Address/Data Bus. Multiplexed address and data bus.

PCI_C[3:0]/
nBE[3:0]

I/O PCI C (bus command) or Byte enables.

PCI_PAR I/O PCI-parity. Parity is even across PCI_AD[31:0] and PCI_C[3:0]/nBE[3:0]. PCI_PAR is
valid one cycle after either an address or data phase. The PCI device that drives
PCI_AD[31:0] is responsible for driving PCI_PAR on the next PCI bus clock.

PCI_nFRAME I/O PCI_nFRAME is driven by the current PCI bus master to indicate beginning and
duration of a PCI access.

PCI_nTRDY I/O The target of the current PCI transaction drives PCI_nTRDY. Assertion of
PCI_nTRDY indicates that the PCI target is ready to transfer data.

PCI_nIRDY I/O The current PCI bus master drives PCI_nIRDY. Assertion of PC_nIRDY
indicates that the PCI initiator is ready to transfer data.

PCI_nSTOP I/O The target of the current PCI transaction may assert PCI_nSTOP to indicate to the
requesting PCI master that it wants to end the current transaction.

PCI_nDEVSEL I/O The target of the current PCI transaction drives PCI_nDEVSEL. A PCI target
asserts PCI_nDEVSEL when it decodes an address and command encoding, and
claims the transaction.

PCI_IDSEL I PCI_IDSEL is used during configuration cycles to select the PCI slave interface for
configuration.

PCI_nPERR I/O PCI_nPERR is used for reporting data parity errors on PCI transactions.
PCI_nPERR is driven active by the device receiving PCI_AD[31:0],
PCI_C[3:0]/nBE[3:0], and PCI_PARITY, two PCI clocks following the data in which
bad parity is detected.

PCI_nSERR I/O PCI_nSERR is used for reporting address parity errors or catastrophic failures
detected by a PCI target.

PCI_nLOCK PCI_nLOCK indicates an atomic operation to a bridge that may require multiple
transactions to complet. When PCI_nLOCK is asserted, non-exclusive transactions
may proceed to a bridge that is not currently locked. A grant to start a transaction on
PCI does not guarantee a control of PCI_nLOCK. Locked transactions may be
initiated only by the host bridges.

PCI_nREQ1 I/O When internal arbiter is used, PCI_nREQ1 is input mode.
Or when external arbiter is used, PCI_nREQ1 is output mode.

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-17

Table 1-3. S3C2800 Signal Descriptions (Continued)

Signal I/O Description

PCI_nREQx[3:2] I PCI_nREQx[3:2] input when internal arbiter is used.
Request indicates to the arbiter that this agent desires use of the bus. This is a
point-to-point signal. Every master has its own PCI_nREQx, which must be
tri-stated, while PCI_nRST is asserted.

PCI_nGNT1 I/O When internal arbiter is used, PCI_nGNT1 is output mode.
Or when external arbiter is used, PCI_nGNT1 is input mode.

PCI_nGNTx[3:2] O PCI_nGNTx[3:2] output when internal arbiter is used.
Grant indicates to the agent that access to the bus has been granted. This is a
point-to-point signal. Every master has its own PCI_nGNTx, which must be ignored
while PCI-nRST is asserted.

PCI_CLK I PCI_CLK is used as the asynchronous PCI clock.

PCI_nRST O PCI specific reset

PCI_nINTA O PCI interrupt.

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-18

S3C2800 SPECIAL FUNCTION REGISTERS

Table 1-4. S3C2800 Special Function Registers

Register Name Address R/W Description Reset Value

 CLOCK & POWER MANAGEMENT

PLLCON 0x1000 0000 R/W PLL configuration register Undefined

CLKCON 0x1000 0004 R/W Clock control register 0x0000 17FC

CLKSLOW 0x1000 0008 R/W Slow clock control register 0x0000 0000

LOCKTIME 0x1000 000C R/W PLL lock time count register 0x0000 0FFF

SWRCON 0x1000 0010 W Software reset control register 0x0000 0000

RSTSR 0x1000 0014 R/W Reset status register 0x0000 0001

Reserved 0x1000 0018 –
0x1000 FFFF

Reserved

MEMORY CONTROLLER

ENDIAN 0x1001 0000 R Endian status register Undefined

SMBCON0 0x1001 0004 R/W Bank 0 control register for static memory 0x0000 00A2

SMBCON1 0x1001 0008 R/W Bank 1 control register for static memory 0x0000 00A2

SMBCON2 0x1001 000C R/W Bank 2 control register for static memory 0x0000 00A2

SMBCON3 0x1001 0010 R/W Bank 3 control register for static memory 0x0000 00A2

REFRESH 0x1001 0014 R/W DRAM/SDRAM refresh control register 0x00A4 0000

DMTMCON 0x1001 0018 R/W Timing control for dynamic memory 0x0002 0D50

MRSR 0x1001 001C R/W Mode register set register for SDRAM 0x0000 0030

Reserved 0x1001 0020 –
0x1001 FFFF

Reserved

INTERRUPT CONTROLLER

SRCPND 0x1002 0000 R/W Indicates the interrupt request status. 0x0000 0000

INTMOD 0x1002 0004 R/W Interrupt mode register 0x0000 0000

INTMSK 0x1002 0008 R/W Determines which interrupt source is
masked

0x0000 0000

IRQPND 0x1002 000C R IRQ interrupt service pending register 0x0000 0000

FIQPND 0x1002 0010 R FIQ interrupt service pending register 0x0000 0000

Reserved 0x1002 0014 –
0x1002 FFFF

Reserved

DMA CONTROLLER

DISRC0 0x1003 0000 R/W DMA 0 source initial register 0x0000 0000

DIDST0 0x1003 0004 R/W DMA 0 destination initial register 0x0000 0000

DCON0 0x1003 0008 R/W DMA 0 control register 0x0000 0000

DSTAT0 0x1003 000C R DMA 0 status register 0x0000 0000

DCSRC0 0x1003 0010 R DMA 0 current source register 0x0000 0000

DCDST0 0x1003 0014 R DMA 0 current destination register 0x0000 0000

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-19

Table 1-4. S3C2800 Special Function Registers (Continued)

Register Name Address R/W Description Reset Value

DMA CONTROLLER (Continued)

DMASKTRIG0 0x1003 0018 R/W DMA 0 mask trigger register 0x0000 0000

Reserved 0x1003 001C –
0x1003 FFFF

Reserved

DISRC1 0x1004 0000 R/W DMA 1 source initial register 0x0000 0000

DIDST1 0x1004 0004 R/W DMA 1 destination initial register 0x0000 0000

DCON1 0x1004 0008 R/W DMA 1 control register 0x0100 0000

DSTAT1 0x1004 000C R DMA 1 status register 0x0000 0000

DCSRC1 0x1004 0010 R DMA 1 current source register 0x0000 0000

DCDST1 0x1004 0014 R DMA 1 current destination register 0x0000 0000

DMASKTRIG1 0x1004 0018 R/W DMA 0 mask trigger register 0x0000 0000

Reserved 0x1004 001C –
0x1004 FFFF

Reserved

DISRC2 0x1005 0000 R/W DMA 2 source initial register 0x0000 0000

DIDST2 0x1005 0004 R/W DMA 2 destination initial register 0x0000 0000

DCON2 0x1005 0008 R/W DMA 2 control register 0x0200 0000

DSTAT2 0x1005 000C R DMA 2 status register 0x0000 0000

DCSRC2 0x1005 0010 R DMA 2 current source register 0x0000 0000

DCDST2 0x1005 0014 R DMA 2 current destination register 0x0000 0000

DMASKTRIG2 0x1005 0018 R/W DMA 0 mask trigger register 0x0000 0000

Reserved 0x1005 001C –
0x1005 FFFF

Reserved

DISRC3 0x1006 0000 R/W DMA 3 source initial register 0x0000 0000

DIDST3 0x1006 0004 R/W DMA 3 destination initial register 0x0000 0000

DCON3 0x1006 0008 R/W DMA 3 control register 0x0300 0000

DSTAT3 0x1006 000C R DMA 3 status register 0x0000 0000

DCSRC3 0x1006 0010 R DMA 3 current source register 0x0000 0000

DCDST3 0x1006 0014 R DMA 3 current destination register 0x0000 0000

DMASKTRIG3 0x1006 0018 R/W DMA 0 mask trigger register 0x0000 0000

Reserved 0x1006 001C –
0x1006 FFFF

Reserved

PCI-BUS (Configuration register)

CIVDIDR 0x1008 0000 R PCI vendor ID and device ID register 0x2800 144D

PCISCR 0x1008 0004 R/WC PCI status and command register 0x02B0 0000

PCICRIDR 0x1008 0008 R/W PCI class code and revision ID register 0x0D80 0001

PCIGCONR 0x1008 000C R/W PCI general control register 0x0000 0000

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-20

Table 1-4. S3C2800 Special Function Registers (Continued)

Register Name Address R/W Description Reset Value

PCI-BUS(Configuration register - Continued)

PCIBAR0 0x1008 0010 R/W Memory bar 0 size and location (of fast
decode)

0x0000 0008

PCIBAR1 0x1008 0014 R/W Memory bar 1 size and location (of medium
decode)

0x0000 0008

PCIBAR2 0x1008 0018 R/W I/O bar 2 size and location (of medium
decode)

0x0000 0001

PCISSVIDR 0x1008 002C R/W PCI subsystem and subsystem vendor ID
register

0x2800 144D

PCICPR 0x1008 0034 R PCI capability pointer register 0x0000 00DC

PCIMISCR 0x1008 003C R/W PCI miscellaneous register 0x0000 0000

PCITOR 0x1008 0040 R/W PCI target ready and retry timeout register 0x0000 8080

Reserved 0x1008 00E4
– 0x1008 00FF

Reserved

PCI-BUS (BIF Special Function Register)

PCICON 0x1008 0100 R/W PCI control and status register 0x0000 0010

PCISET 0x1008 0104 R/W PCI command, read count and DAC address
register

0x0000 0000

PCIINTEN 0x1008 0108 R/W PCI interrupt enable register 0x0000 0000

PCIINTST 0x1008 010C R/WC PCI interrupt statue and pending register 0x0000 0000

PCIINTAD 0X1008 0110 R PCI interrupted address register 0x0000 0000

PCIBATAPM 0x1008 0114 R/W PCI base address translation register from
AHB to PCI of memory cycle.

0x0000 0000

PCIBATAPI 0x1008 0118 R/W PCI base address translation register from
AHB to PCI of I/O cycle.

0x0000 0000

PCIBELAP 0x1008 0128 R/W PCI INTA# assert control register in adaptor
mode

0x0000 0000

PCIBATPA0 0x1008 0140 R/W PCI base address translation from PCI to AHB
of memory address bar 0.

0x0000 0000

PCIBAM0 0x1008 0144 R/W PCI base address mask register of memory
address bar 0.

0xFFFF 0000

PCIBAM1 0x1008 014C R/W PCI base address mask register of memory
address bar 1.

0xFFFF FE00

PCIBATPA2 0x1008 0150 R/W PCI base address translation register from PCI
to AHB bus of I/O address bar 2.

0x1008 0100

PCIBAM2 0x1008 0154 R PCI base address mask register of I/O address
bar 2.

0xFFFF FF00

 Reserved 0x1008 0158 –
0x100F FFFF

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-21

Table 1-4. S3C2800 Special Function Registers (Continued)

Register Name Address R/W Description Reset Value

GPIO PORT

PCONA 0x1010 0000 R/W Configures the pins of port A 0x0000 FFFF

PDATA 0x1010 0004 R/W The data register for port A Undefined

PUPA 0x1010 0008 R/W Pull-up resistor control register for port A 0x0000 0000

PCONB 0x1010 000C R/W Configures the pins of port B 0x0000 0FFF

PDATB 0x1010 0010 R/W The data register for port B Undefined

Reserved 0x1010 0014

PCONC 0x1010 0018 R/W Configures the pins of port C 0x0000 0000

PDATC 0x1010 001C R/W The data register for port C Undefined

PUPC 0x1010 0020 R/W Pull-up resistor control register for port C 0x0000 0000

PCOND 0x1010 0024 R/W Configures the pins of port D 0x0000 0000

PDATD 0x1010 0028 R/W The data register for port D Undefined

PUPD 0x1010 002C R/W Pull-up resistor control register for port D 0x0000 0000

PCONE 0x1010 0030 R/W Configures the pins of port E 0x0000 0000

PDATE 0x1010 0034 R/W The data register for port E Undefined

PUPE 0x1010 0038 R/W Pull-up resistor control register for port E 0x0000 0000

PCONF 0x1010 003C R/W Configures the pins of port F 0x0000 0000

PDATF 0x1010 0040 R/W The data register for port F Undefined

PUPF 0x1010 0044 R/W Pull-up resistor control register for port F 0x0000 0000

EXTINTR 0x1010 0048 R/W External Interrupt control register 0x0000 0000

SPUCR 0x1010004C R/W Special pull-up resistor control register for
DATA port

0x0000 0000

Reserved 0x1010 0050 –
0x1010 FFFF

Reserved

REMOTE CONTROL SIGNAL RECEIVER

RRCR 0x1011 0000 R/W Remote control signal receiver control
register

0x0000 0010

FIFOD 0x1011 0004 R FIFO Data register Undefined

Reserved 0x1011 0008 –
0x1011 FFFF

Reserved

WATCHDOG TIMER

WTPSCLR 0x1012 0000 R/W Watchdog timer prescaler value register 0x0000 0080

WTCON 0x1012 0004 R/W Watchdog timer control register 0x0000 0000

WTCNT 0x1012 0008 R Watchdog timer count register 0x0000 0000

Reserved 0x1012 000C –
0x1012 FFFF

Reserved

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-22

Table 1-4. S3C2800 Special Function Registers (Continued)

Register Name Address R/W Description Reset Value

TIMER

TMCON0 0x1013 0000 R/W Timer 0 control register 0x0000 0000

TMDATA0 0x1013 0004 R/W Timer 0 data register 0x0080 FFFF

TMCNT0 0x1013 0008 R Timer 0 count register 0x0000 FFFF

TMDMASEL 0x1013 000C R/W DMA or Interrupt mode selecton register 0x0000 0000

Reserved 0x1013 0010 –
0x1013 FFFF

Reserved

TMCON1 0x1014 0000 R/W Timer 1 control register 0x0000 0000

TMDATA1 0x1014 0004 R/W Timer 1 data register 0x0080 FFFF

TMCNT1 0x1014 0008 R Timer 1 count register 0x0000 FFFF

Reserved 0x1014 000C –
0x1014 FFFF

Reserved

TMCON2 0x1015 0000 R/W Timer 2 control register 0x0000 0000

TMDATA2 0x1015 0004 R/W Timer 2 data register 0x0080 FFFF

TMCNT2 0x1015 0008 R Timer 2 count register 0x0000 FFFF

Reserved 0x1015 000C –
0x1015 FFFF

Reserved

RTC

RTCCON 0x1016 0000 R/W RTC control register 0x0000 0000

RTCALM 0x1016 0004 R/W RTC alarm control register 0x0000 0000

ALMSEC 0x1016 0008 R/W Alarm second data register 0x0000 0000

ALMMIN 0x1016 000C R/W Alarm minute data register 0x0000 0000

ALMHOUR 0x1016 0010 R/W Alarm hour data register 0x0000 0000

ALMDAY 0x1016 0014 R/W Alarm day data register 0x0000 0001

ALMMON 0x1016 0018 R/W Alarm month data register 0x0000 0001

ALMYEAR 0x1016 001C R/W Alarm hour data register 0x0000 0000

BCDSEC 0x1016 0020 R/W BCD second register Undefined

BCDMIN 0x1016 0024 R/W BCD minute register Undefined

BCDHOUR 0x1016 0028 R/W BCD hour register Undefined

BCDDAY 0x1016 002C R/W BCD day register Undefined

BCDDATE 0x1016 0030 R/W BCD date register Undefined

BCDMON 0x1016 0034 R/W BCD month register Undefined

BCDYEAR 0x1016 0038 R/W BCD year register Undefined

Reserved 0x1016 003C Reserved

S3C2800 RISC MICROPROCESSOR PRODUCT OVERVIEW

1-23

Table 1-4. S3C2800 Special Function Registers(Continued)

Register Name Address R/W Description Reset Value

RTC (Continued)

TICNT 0x1016 0040 R/W Tick time count register 0x0000 0000

RTCRST 0x1016 0044 R/W RTC round reset register -0x0000 0000

Reserved 0x1016 0044 –
0x1016 FFFF

Reserved

UART

ULCON0 0x1017 0000 R/W UART 0 line control register 0x0000 0000

UCON0 0x1017 0004 R/W UART 0 control register 0x0000 0000

UFCON0 0x1017 0008 R/W UART 0 FIFO control register 0x0000 0000

UMCON0 0x1017 000C R/W UART 0 modem control register 0x0000 0000

UTRSTAT0 0x1017 0010 R UART 0 Tx/Rx status register 0x0000 0006

UERSTAT0 0x1017 0014 R UART 0 Rx error status register 0x0000 0000

UFSTAT0 0x1017 0018 R UART 0 FIFO status register 0x0000 0000

UMSTAT0 0x1017 001C R UART 0 modem status register 0x0000 0000

UTXH0 0x1017 0020(L)
0x1017 0023(B)

W
(by byte)

UART 0 transmit holding register Undefined

URXH0 0x1017 0024(L)
0x1017 0027(B)

R
(by byte)

UART 0 receive buffer register Undefined

UBRDIV0 0x1017 0028 R/W UART 0 baud rate divisior register 0x0000 001A

Reserved 0x1017 002C –
0x1017 FFFF

Reserved

ULCON1 0x1018 0000 R/W UART 1 line control register 0x0000 0000

UCON1 0x1018 0004 R/W UART 1 control register 0x0000 0000

UFCON1 0x1018 0008 R/W UART 1 FIFO control register 0x0000 0000

UMCON1 0x1018 000C R/W UART 1 modem control register 0x0000 0000

UTRSTAT1 0x1018 0010 R UART 1 Tx/Rx status register 0x0000 0006

UERSTAT1 0x1018 0014 R UART 1 Rx error status register 0x0000 0000

UFSTAT1 0x1018 0018 R UART 1 FIFO status register 0x0000 0000

UMSTAT1 0x1018 001C R UART 1 modem status register 0x0000 0000

UTXH1 0x1018 0020(L)
0x1018 0023(B)

W
(by byte)

UART 1 transmit holding register Undefined

URXH1 0x1018 0024(L)
0x1018 0027(B)

R
(by byte)

UART 1 receive buffer register Undefined

UBRDIV1 0x1018 0028 R/W UART 1 baud rate divisior register 0x0000 001A

Reserved 0x1018 002C –
0x1018 FFFF

Reserved

PRODUCT OVERVIEW S3C2800 RISC MICROPROCESSOR

1-24

Table 1-4. S3C2800 Special Function Registers(Continued)

Register Name Address R/W Description Reset Value

IIC-BUS

IICCON0 0x1019 0000 R/W IIC-Bus 0 control register 0x0000 0020

IICSTAT0 0x1019 0004 R/W IIC-Bus 0 control/status register 0x0000 0000

IICADD0 0x1019 0008 R/W IIC-Bus 0 address register Undefined

IICDS0 0x1019 000C R/W IIC-Bus 0 transmit/receive data shift register Undefined

Reserved 0x1019 0010 –
0x1019 FFFF

Reserved

IICCON1 0x101A 0000 R/W IIC-Bus 1 control register 0x0000 0020

IICSTAT1 0x101A 0004 R/W IIC-Bus 1 control/status register 0x0000 0000

IICADD1 0x101A 0008 R/W IIC-Bus 1 address register Undefined

IICDS1 0x101A 000C R/W IIC-Bus 1 transmit/receive data shift register Undefined

Reserved 0x101A 0010 –
0x101F FFFF

Reserved

Special Register : 0x1000 0000 ~ 0x101F FFFF (Total 2MByte)

IMPORTANT NOTES ABOUT S3C2800 SPECIAL REGISTERS

1. (L) indicates that Little-endian address has to be used: (B) indicates that Big-endian address has to be used.

2. All registers must be accessed in word unit for both Little-/Big-endian modes. That is, the special function
registers have to be accessed using either LDR/STR or int pointer (int *) type: LDRB/STRB (byte access),
char pointer (char *), LDRH/STRH (half-word access) or short int pointer (short int *) type must not be used
for the special function register access except for UART registers (UTXHn/URXHn).

3. It's very important that the UART registers(UTXHn/URXHn) are read/written by the specified access unit and
the address. Also, the endian mode used must be considered carefully for the register access.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-1

2 PROGRAMMER'S MODEL

ABOUT THE PROGRAMMER'S MODEL

ARM920T incorporates the ARM9TDMI Integer Core, which implements the ARMv4T Architecture. It executes
the ARM and Thumb instruction sets, and includes EmbeddedICE JTAG software debug features.

The programmer’s model of ARM920T is the programmer’s model of ARM9TDMI extended in the following ways:

• The system control coprocessor (CP15), which is integrated within ARM920T, provides additional registers
that are used to configure and control the caches, MMU, protection system, and clocking mode of ARM920T.

• The MMU page tables which reside in main memory describe the virtual to physical address mapping, access
permissions, and cache and write buffer configuration. These are created by the operating system software
and accessed automatically by the ARM920T MMU hardware whenever an access causes a TLB miss.

THE ARM9TDMI PROGRAMMERS MODEL

The ARM9TDMI processor core implements ARM Architecture v4T, and so executes the ARM 32-bit instruction
set and the compressed Thumb 16-bit instruction set.

The ARM v4T architecture specifies a small number of implementation options. The options selected in the
ARM9TDMI implementation are listed in the table below. For comparison, the options selected for the
ARM7TDMI implementation are also shown.

Table 2-1. ARM9TDMI Implementation option

Processor Core ARM Architecture Data Abort Model Values stored by direct STR, STRT, STM of PC

ARM7TDMI v4T Base updated Address of Inst + 12

ARM9TDMI v4T Base restored Address of Inst + 12

The ARM9TDMI is code compatible with the ARM7TDMI, with two exceptions:

• The ARM9TDMI implements the Base Restored Data Abort model, which significantly simplifies the software
data abort handler.

• The ARM9TDMI fully implements the instruction set extension space added to the ARM(32-bit) instruction
set in Architecture v4 and v4T.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-2

These differences are explained in more detail below.

Data abort model

The ARM9TDMI implements the Base Restored Data Abort Model, which differs from the Base updated data
abort model implemented by ARM7TDMI.

The difference in the Data Abort Model affects only a very small section of operating system code, the data abort
handler. It does not affect user code. With the Base Restored Data Abort Model, when a data abort exception
occurs during the execution of a memory access instruction, the base register is always restored by the processor
hardware to the value the register contained before the instruction was executed. This removes the need for the
data abort handler to ‘unwind’ any base register update which may have been specified by the aborted
instruction.

The Base Restored Data Abort Model significantly simplifies the software data abort handler.

Instruction set extension spaces

All ARM processors implement the undefined instruction space as one of the entry mechanisms for the
Undefined Instruction Exception. That is, ARM instructions with opcode[27:25]=0b011 and opcode[4]=1 are
UNDEFINED on all ARM processors including the ARM9TDMI and ARM7TDMI

ARM Architecture v4 and v4T also introduced a number of instruction set extension space to the ARM instruction
set. These are:

— arithmetic instruction extension space

— control instruction extension space

— coprocessor instruction extension space

— load/store instruction extension space

Instructions in these space are UNDEFINED (they cause an Undefined Instruction Exception). The ARM9TDMI
fully implements all the instruction set extension spaces defined in ARM Architecture v4T as UNDEFINED
instructions, allowing emulation of future instruction set additions.

THE ARM920T PROGRAMMERS MODEL

The ARM920T implements uses a five-stage pipeline design. These five stages are:

— instruction fetch (F)

— instruction decode (D)

— execute (E)

— data memory access (M)

— register write (W)

ARM implementations are fully interlocked, so that software will function identically across different
implementations without concern for pipeline effects. Interlock do affect instruction times. For example, the
following sequence suffers a single cycle penalty due to a load-use interlock on register r0:

LDR R0,[R7]
ADD R5,R0,R1

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-3

PROCESSOR OPERATING STATES

From the programmer's point of view, the ARM920T can be in one of two states:

• ARM state which executes 32-bit, word-aligned ARM instructions.

• THUMB state which can execute 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit 1
to select between alternate halfwords.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand
register. Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF,
ABORT, SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

• On execution of the BX instruction with the state bit clear in the operand register.

• On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is
placed in the exception mode's link register, and execution commences at the exception's vector address.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-4

MEMORY FORMATS

ARM920T views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first
stored word, bytes 4 to 7 the second and so on. ARM920T can treat words in memory as being stored either in
Big-Endian or Little-Endian format.

Big-Endian Format

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines
31 through 24.

31

8

4

0

23

9

5

1

10

6

2

11

7

3

8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

24 1516

Figure 2-1. Big-Endian Addresses of Bytes within Words

Little-Endian Format

In Little-Endian format, the lowest numbered byte in a word is considered the word's least significant byte, and
the highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines
7 through 0.

31 23 8 7 0

4

0

8

Higher Address

Lower Address

Word Address

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

24 1516

8

4

0

9

5

1

10

6

2

11

7

3

Figure 2-2. Little-Endian Addresses of Bytes whthin Words

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

DATA TYPES

ARM920T supports byte (8-bit), halfword (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-5

OPERATING MODES

ARM920T supports seven modes of operation:

• User (usr): The normal ARM program execution state

• FIQ (fiq): Designed to support a data transfer or channel process

• IRQ (irq): Used for general-purpose interrupt handling

• Supervisor (svc): Protected mode for the operating system

• Abort mode (abt): Entered after a data or instruction prefetch abort

• System (sys): A privileged user mode for the operating system

• Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception
processing. Most application programs will execute in User mode. The non-user modes' known as privileged
modes-are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM9TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are
general-purpose, and may be used to hold either data or address values. In addition to these, there is a
seventeenth register used to store status information.

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch and Link (BL)
instruction is executed. At all other times it may be treated as a general-purpose register. The
corresponding banked registers R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are similarly
used to hold the return values of R15 when interrupts and exceptions arise, or when Branch and
Link instructions are executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits [31:2] contain
the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags and the current
mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM state, many FIQ handlers do
not need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers
mapped to R13 and R14, allowing each of these modes to have a private stack pointer and link registers

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-6

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13
R14
R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_svc

R14_svc

R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R8_fiq

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_abt

R14_abt

R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_irq

R14_irq

R15 (PC)

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12
R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor IRQAbort Undefined

ARM State General Registers and Program Counter

ARM State Program Status Registers

CPSR CPSR
SPSR_fiq

CPSR
SPSR_irq

= banked register

CPSR
SPSR_und

CPSR
SPSR_abt

CPSR
SPSR_svc

Figure 2-3. Register Organization in ARM State

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-7

The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight
general registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR),
and the CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs)
for each privileged mode. This is shown in Figure 2-4.

R0
R1
R2
R3
R4
R5
R6
R7

LR
SP

PC

System & User FIQ Supervisor IRQAbort Undefined

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

CPSR CPSR
SPSR_fiq

CPSR
SPSR_svc

CPSR
SPSR_abt

CPSR
SPSR_irq

CPSR
SPSR_und

= banked register

LR_fiq

R0
R1
R2
R3
R4
R5
R6
R7
SP_fiq

PC
LR_svc

R0
R1
R2
R3
R4
R5
R6
R7
SP_svc

PC
LR_und

R0
R1
R2
R3
R4
R5
R6
R7
SP_und

PC
LR_fiq

R0
R1
R2
R3
R4
R5
R6
R7
SP_fiq

PC
LR_abt

R0
R1
R2
R3
R4
R5
R6
R7
SP_abt

PC

Figure 2-4. Register Organization in THUMB state

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-8

The Relationship Between ARM and THUMB State Registers

The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical

• THUMB state SP maps onto ARM state R13

• THUMB state LR maps onto ARM state R14

• The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5.

R0
R1
R2
R3
R4
R5
R6
R7

Stack Pointer (SP)
Link register (LR)

Program Counter (PC)
CPSR
SPSR

R0
R1
R2
R3
R4
R5
R6
R7

R9
R8

R10
R11
R12

Stack Pointer (R13)
Link register (R14)

Program Counter (R15)
CPSR
SPSR

Lo
-r

eg
is

te
rs

H
i-r

eg
is

te
rs

THUMB state ARM state

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-9

Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the
assembly language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi
register to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure
3-38 in Chapter 3 Instruction set.

THE PROGRAM STATUS REGISTERS

The ARM920T contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers. These register's functions are:

• Hold information about the most recently performed ALU operation

• Control the enabling and disabling of interrupts

• Set the processor operating mode

The arrangement of bits is shown in Figure 2-6.

31

Condition Code Flags

Overflow

N Z C V I F T M4 M3 M2 M1 M0

30 29 2728 26 25 24 23 8 7 6 5 4 3 2 1 0

(Reserved) Control Bits

Carry/Borrow/Extend
Zero
Negative/Less Than

Mode bits
State bit
FIQ disable
IRQ disable

~ ~
~ ~

Figure 2-6. Program Status Register Format

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-10

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-5 in Chapter 3 Instruction set for
details.

In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-50 in Chapter 3
Instruction set for details.

The Control Bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will
be changed when an exception arises. If the processor is operating in a privileged mode, they can also be
manipulated by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in THUMB
state, otherwise it is executing in ARM state. This is reflected on the TBIT external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this
happens, the processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
processor's operating mode, as shown in Table 2-2. Not all combinations of the mode bits
define a valid processor mode. Only those explicitly described shall be used. The user
should be aware that if any illegal value is programmed into the mode bits, M[4:0], then the
processor will enter an unrecoverable state. If this occurs, reset should be applied.

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR's flag or control bits,
you must ensure that these unused bits are not altered. Also, your program should not rely
on them containing specific values, since in future processors they may read as one or
zero.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-11

Table 2-2. PSR Mode Bit Values

M[4:0] Mode Visible THUMB state registers Visible ARM state registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq, R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc, R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt, R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und, R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

Reserved bits The remaining bits in the PSR's are reserved. When changing a PSR's flag or control bits,
you must ensure that these unused bits are not altered. Also, your program should not rely
on them containing specific values, since in future processors they may read as one or
zero.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-12

EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved
so that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order.
See Exception Priorities.

Action on Entering an Exception

When handling an exception, the ARM920T:

1. Preserves the address of the next instruction in the appropriate Link Register. If the exception has been
entered from ARM state, then the address of the next instruction is copied into the Link Register (that is,
current PC + 4 or PC + 8 depending on the exception. See Table 2-3 for details). If the exception has
been entered from THUMB state, then the value written into the Link Register is the current PC offset by a
value such that the program resumes from the correct place on return from the exception. This means that
the exception handler need not determine which state the exception was entered from. For example, in the
case of SWI, MOVS PC, R14_svc will always return to the next instruction regardless of whether the SWI
was executed in ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the
PC is loaded with the exception vector address.

Action on Leaving an Exception

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will vary depending on the
type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR
automatically sets the T bit to the value it held immediately prior to the exception.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-13

Exception Entry/Exit Summary

Table 2-3 summarizes the PC value preserved in the relevant R14 on exception entry, and the recommended
instruction for exiting the exception handler.

Table 2-3. Exception Entry/Exit

Return Instruction Previous State Notes

ARM R14_x THUMB R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA - - 4

NOTES:
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in
ARM state has sufficient private registers to remove the need for register saving (thus minimising the overhead
of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and
nIRQ are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can
affect the processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR's F flag (but note that this is not possible from User mode). If the F flag
is clear, ARM920T checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-14

IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signaled by the external
ABORT input. ARM920T checks for the abort exception during memory access cycles.

There are two types of abort:

• Prefetch abort: occurs during an instruction prefetch.

• Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be
aware of this.

• The swap instruction (SWP) is aborted as though it had not been executed.

• Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the
instruction would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is
prevented. All register overwriting is prevented after an abort is indicated, which means in particular that R15
(always the last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system
the processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the
Memory Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort,
make the requested data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-15

Software Interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or
Thumb):

MOV PC,R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM920T CPU core.

Undefined Instruction

When ARM920T comes across an instruction which it cannot handle, it takes the undefined instruction trap. This
mechanism may be used to extend either the THUMB or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM
or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors

The following table shows the exception vector addresses.

Table 2-4. Exception Vectors

Address Exception Mode in Entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software Interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-16

Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are
handled:

Highest priority:

1. Reset

2. Data abort

3. FIQ

4. IRQ

5. Prefetch abort

Lowest priority:

6. Undefined Instruction, Software interrupt.

Not All Exceptions Can Occur at Once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular
(non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR's F flag is clear), ARM920T
enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from FIQ will
cause the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection. The time for this exception entry should be added to
worst-case FIQ latency calculations.

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to
pass through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete
(Tldm, the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data
abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM920T will be executing the
instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is
therefore 28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz
processor clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher
priority and could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency
for FIQ or IRQ consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq.
This is 4 processor cycles.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-17

RESET

When the nRESET signal goes LOW, ARM920T abandons the executing instruction and then continues to fetch
instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM920T:

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value
of the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR's T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-18

ARM920T SYSTEM CONTROL COPROCESSOR (CP15) REGISTER MAP SUMMARY

CP15 defines 16 registers. The register map for CP15 is shown in Table 2-5.

Table 2-5. CP15 Abbreviations

Register Reads Writes

0 ID code (1) Unpredictable

0 Cache type (1) Unpredictable

1 Control Control

2 Translation table base Translation table base

3 Domain access control Domain access control

4 Unpredictable Unpredictable

5 Fault status (2) Fault status (2)

6 Fault address Fault address

7 Unpredictable Cache operations

8 Unpredictable TLB operations

9 Cache lock down (2) Cache lock down (2)

10 TLB lock down (2) TLB lock down (2)

11 Unpredictable Unpredictable

12 Unpredictable Unpredictable

13 PCSE PID PCSE PID

14 Unpredictable Unpredictable

15 Test configuration Test configuration

NOTES:
1. Register location 0 provides access to more than one register. The register accessed depends on the value of the

OPCODE_2 field. See the register description for details.
2. Separate registers for instruction and data. See the register description for details.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-19

ADDRESS IN ARM920T

Three distinct types of address exit in an ARM920T system

• Virtual address (VA).

• Modified Virtual Address (MVA).

• Physical Address (PA).

Below is an example of the address manipulation when the ARM9TDMI requests an instruction (see Figure 2-16)

1. The Instruction VA (IVA) is issued by ARM9TDMI.

2. This is translated by the ProcID to the instruction MVA (IMVA). It is the IMVA that the Instruction Cache
(ICache) and MMU see.

3. If the protection check carried out by the IMMU on the IMVA does not abort, and the IMVA tag is in the
ICache, the instruction data is returned to the ARM9TDMI.

4. If the ICache misses (the IMVA tag is not in the ICache), then the IMMU performs a translation to produce the
instruction PA (IPA). This address is given to the AMBA bus interface to perform an external access.

Table 2-6. Address Type in ARM920T

Domain ARM9TDMI Caches and TLBs AMBA bus

Address Virtual (VA) Modified Virtual (MVA) Physical (PA)

ACCESSING CP15 REGISTERS

The terms and abbreviations shown in Table 2-7 are used throughout this section.

Table 2-7. CP15 Abbreviations

Term Abbreviation Description

unpredictable UNP For reads, the data returned when reading from this location is
unpredictable; It can have any value. For writes, writing to this location
causes unpredictable behavior, or an unpredictable change in device
configuration.

should be zero SBZ When writing to this location, all bits of this field should be 0.

In all cases, reading from, or writing any data values to any CP15 registers, including those fields specified as
unpredictable or should be zero, does not cause any permanent damage.

All CP15 register bits that are defined and contain state, are set to zero by BnRES except the V bit in register 1,
which takes the value of macrocell input VINITHI when BnRES is asserted.

You can only access CP15 registers with MRC and MCR instructions in a privileged mode. The instruction bit
pattern of the MCR and MRC instructions is shown in Figure 2-7. The assembler for these instructions is:

MCR/MRC{cond} P15,opcode_1,Rd,CRn,CRm,opcode_2

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-20

31 19 1516

Cond

02028 27 26 25 24

1 1 1 0

23 21 12 11 10 9 8 7

1 1 1 1

5 4 3

1Lopcode_1 CRn Rd opcode_2 CRm

Figure 2-7. CP15 MRC and MCR Bit Pattern

Instructions CDP, LDC and STC, together with unprivileged MRC and MCR instructions to CP15, cause the
undefined instruction trap to be taken. The CRn field of MRC and MCR instructions specifies the coprocessor
register to access. The CRm field and opcode_2 field specify a particular action when addressing registers. The L
bit distinguishes between an MRC (L=1) and an MCR (L=0).

NOTE

Attempting to read from a non-readable register, or to write to a non-writable register cause unpredictable
results. The opcode_1, opcode_2 and CRm fields should be zero, except when the values specified are
used to select the desired operations, in all instructions that access CP15. Using other values results in
unpredictable behavior.

REGISTER 0: ID CODE REGISTER

This is a read-only register that returns a 32-bit device ID code.

You can access the ID code register by reading CP15 register 0 with the opcode_2 field set to any value other
than 1 (the CRm field should be zero when reading). For example:

MRC p15, 0, Rd, c0, c0, 0 ; returns ID register

The contents of the ID code are shown in Table 2-8.

Table 2-8. Register 0, ID Code

Register Bits Function Value

31:24 Implementer 0x41

23:20 Specification revision 0x1

19:16 Architecture (ARMv4T) 0x2

15:4 Part number 0x920

3:0 Layout revision Revision

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-21

REGISTER 0, CACHE TYPE REGISTER

This is a read-only register that contains information about the size and architecture of the caches, allowing
operating systems to establish how to perform such operations as cache cleaning and lockdown. All ARMv4T and
later cached processors contain this register, allowing RTOS vendors to produce future-proof versions of their
operating systems.

You can access the cache type register by reading CP15 register 0 with the opcode_2 field set to 1. For example:

MRC p15, 0, Rd, c0, c0, 1 ; returns cache details

The format of the cache type register is shown in Figure 2-8.

31 028 25 24

0 0 0 S

23 12 11

Dsize Isize

30 29

ctype

ctype
The ctype field dtermines the cache type.

S bit
Specifies whether the cache is a unified cache or separate instruction and
data caches.

Dsize
Specifies the size, line length, and associativity of the data cache.

Isize
Specifies the size, line length, and associativity of the instruction cache.

Figure 2-8. Cache Type Register Format

The Dsize and Isize fields in the cache type register have the same format. This is shown in Figure 2-9.

size The size field determines the cache size in conjunction with the M bit.

assoc The assoc field determines the cache associativity in conjunction with
the M bit.

M bit The multiplier bit. Determines the cache size and cache associativity
values in conjuctioin with the size and assoc fields.

len The len field determines the line length of the cache.

0

0 0 0

11

size

10 9 8 7 6 5 4 3 2 1

1223 22 21 20 19 18 17 16 15 14 13

assoc M len

Figure 2-9. Dsize and Isize Field Format

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-22

The register values for the ARM920T cache type register are listed in Table 2-9.

Table 2-9. Cache Type Register Format

Function Register Bits Value

Reserved [31:29] 0b000

ctype [28:25] 0b0110

S [24] 0b1 = Harvard cache

Dsize Reserved [23:21] 0b000

size [20:18] 0b101 = 16KB

assoc [17:15] 0b110 = 64-way

M [14] 0b0

len [13:12] 0b10 = 8 words per line (32 bytes)

Isize Reserved [11:9] 0b000

size [8:6] 0b101 = 16KB

assoc [5:3] 0b110 = 64-way

M [2] 0b0

len [1:0] 0b10 = 8 words per line (32 bytes)

Bits [28:25] indicate which major cache class the implementation falls into. 0x6 means that the cache provides:

— cache-clean-step operation
— cache-flush-step operation
— lockdown facilities

The size of the cache is determined by the size field and the M bit. The M bit is 0 for the data and instruction
caches. Bits [20:18] for the Data Cache (DCache) and bits [8:6] for the Instruction Cache (ICache) are the size
field. Table 2-10 shows the cache size encoding.

Table 2-10. Cache Size Encoding (M=0)

Size Field Cache Size

0b000 512B

0b001 1KB

0b010 2KB

0b011 4KB

0b100 8KB

0b101 16KB

0b110 32KB

0b111 64KB

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-23

The associativity of the cache is determined by the assoc field and the M bit. The M bit is 0 for the data and
instruction caches. Bits [17:15] for the DCache and bits [5:3] for the ICache are the assoc field. Table 2-11 shows
the cache associativity encoding.

Table 2-11. Cache Associativity Encoding (M=0)

assoc Field Associativity

0b000 Direct mapped

0b001 2-way

0b010 4-way

0b011 8-way

0b100 16-way

0b101 32-way

0b110 64-way

0b111 128-way

The line length of the cache is determined by the len field. Bits [13:12] for the DCache and bits [1:0] for the
ICache are the len field. Table 2-12 shows the line length encoding.

Table 2-12. Line Length Encoding

len Field Cache Line Length

00 2 words (8 bytes)

01 4 words (16 bytes)

10 8 words (32 bytes)

11 16 words (64 bytes)

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-24

REGISTER 1, CONTROL REGISTER

This register contains the control bits of the ARM920T. All reserved bits must either be written 0 or 1, as
indicated, or written using read-modify-write. The reserved bits have an unpredictable value when read. Use the
following instructions to read and write this register:

MRC p15, 0, Rd, c1, c0, 0 ; read control register

MCR p15, 0, Rd, c1, c0, 0 ; write control register

All defined control bits are set to 0 on reset, except the V bit. The V bit is set to 0 at reset if the VINTHI pin is
LOW, or 1 if the VINTHI pin is HIGH, The functions of the control bits are shown in Table 2-13.

Table 2-13. Control register 1 bit functions

Register bits Name Function Value

[31] iA bit Asynchronous clock select See table 2-14.

[30] nF bit notFastBus select See table 2-14.

[29:15] – Reserved Read = Unpredictable.
Write = Should be zero.

[14] RR bit Round robin replacement 0 = Random replacement.
1 = Round-robin replacement.

[13] V bit Base location of exception
registers

0 = Low address = 0x0000 0000.
1 = High address = 0xFFFF 0000.

[12] I bit ICache enable 0 = Icache disabled.
1 = Icache enabled.

[11:10] – Reserved Read = 00.

Write = 00.

[9] R bit ROM protection This bit modifies the MMU protection system. See
domain access control in chapter 5 Memory
Management Unit).

[8] S bit System protection This bit modifies the MMU protection system. See
domain access control in chapter 5 Memory
Management Unit).

[7] B bit Endiannes 0 = Little-endian operation.
1 = Big-endian operation.

[6:3] – Reserved Read = 1111.
Write = 1111.

[2] C bit DCache enable 0 = DCache disabled.
1 = DCache enabled.

[1] A bit Alignment fault enable Data address alignment fault checking.
0 = Fault checking disabled.
1 = Fault checking enabled.

[0] M bit MMU enable 0 = MMU disabled.
1 = MMU enabled.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-25

Register 1 bits [31:30] select the clocking mode of the ARM920T, as shown in Table 2-14.

Table 2-14. Clocking Modes

Clocking mode iA nF

FastBus mode 0 0

Synchronous 0 1

Reserved 1 0

Asynchronous 1 1

Enabling the MMU

You must take care with the address mapping of the code sequence used to enable the MMU (see Enabling the
MMU in chapter 5 Memory Management Unit).

See Enabling and disabling the ICache in chapter 4 Cache, Write Buffer, and Physical Address TAG (PA TAG)
RAM and Enabling and disabling the DCache and write buffer in chapter 4 Cache, Write Buffer, and Physical
Address TAG (PA TAG) RAM for the restrictions and the effects fo having caches enabled with the MMU
disabled.

REGISTER 2, TRANSLATION TABLE BASE (TTB) REGISTER

This is the Translation Table Base (TTB) register, for the currently active first-level translation table. The contents
of register 2 are shown in Table 2-15.

Reading from register 2 returns the pointer to the first-level translation table in bits [31:14]. Writing to register 2
updates the pointer to the first-level translation table from bits [31:14] of the written value.

Bits[13:0] should be zero when written, and are unpredictable when read.

Table 2-15. Register 2, Translation Table Base

Register bits Function

[31:14] Pointer to first-level translation table base. Read/write.

[13:0] Reserved:
Read = Unpredictable.
Write = Should be zero.

You can use the following instructions to access the TLB:

MRC p15, 0, Rd, c2, c0, 0 ; read TTB register

MCR p15, 0, Rd, c2, c0, 0 ; write TTB register

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-26

REGISTER 3, DOMAIN ACCESS CONTROL REGISTER

Register 3 is the read and write domain access control register, consisting of 16 2-bit fields. Each of these 2-bit
fields defines the access permissions for the domains shown in Table 2-16.

Table 2-16. Register 3, Domain Access Control

Register Bits Domain

[31:30] D15

[29:28] D14

[27:26] D13

[25:24] D12

[23:22] D11

[21:20] D10

[19:18] D9

[17:16] D8

[15:14] D7

[13:12] D6

[11:10] D5

[9:8] D4

[7:6] D3

[5:4] D2

[3:2] D1

[1:0] D0

The encoding of the two bit domain access permission field is given in Domain access control in chapter 5
Memory Management Unit. You can use the following instructions to access the domain access control register:

MRC p15, 0, Rd, c3, c0, 0 ; read domain 15:0 access permissions

MCR p15, 0, Rd, c3, c0, 0 ; write domain 15:0 access permissions

REGISTER 4, RESERVED

You must not access (read or write) this register because it causes unpredictable behavior.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-27

REGISTER 5, FAULT STATUS REGISTER

Register 5 is the fault status register (FSR). The FSR contains the source of the last data fault, indicating the
domain and type of access being attempted when the Data Abort occurred.

Table 2-17. Register 5, Fault status register

Register bits Description

[31:9] Read = Unpredictable
Write = Should be zero

[8] Read = 0
Write = Should be zero

[7:4] Domain being accessed when fault occurred (D15 – D0)

[3:0] Fault type

The fault type encoding is shown in Fault address and fault status registers on chapter 5 Memory Management
Unit.

The data FSR is defined in ARMv4T. Additionally, a pipelined prefetch FSR is available, for debug purpose only.
The pipeline matches that of the ARM9TDMI.

You can use the following instructions to access the data and prefetch FSR:

MRC p15, 0, Rd, c5, c0, 0 ; read data FSR value

MCR p15, 0, Rd, c5, c0, 0 ; write data FSR value

MRC p15, 0, Rd, c5, c0, 1 ; read prefetch FSR value

MCR p15, 0, Rd, c5, c0, 1 ; write prefetch FSR value

The ability to write to the FSR is useful for a debugger to restore the value of the FSR. You must write to the
register using the read-modify-write method. Birs [31:8] should be zero.

REGISTER 6, FAULT ADDRESS REGISTER

Register 6 is the fault address register (FAR). This contains the MVA of the access being attempted when the last
fault occurred. The FAR is only updated for data faults, not for prefetch faults. (You can fined the address for a
prefetch fault in R14.)

You can use the following instructions to access the FAR:

MRC p15, 0, Rd, c6, c0, 0 ; read FAR data

MCR p15, 0, Rd, c6, c0, 0 ; write FAR data

The ability to write to the FAR is provide to allow a debugger to restore a previous state.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-28

REGISTER 7, CACHE OPERATIONS REGISTER

Register 7 is a write-only register used to manage the ICache and Dcache.

The cache operations provided by register 7 are described in Table 2-18.

Table 2-18. Register 7, Function Descriptions

Functions Description

Invalidate cache Invalidates all cache data, including any dirty data.(NOTE) Use with
caution.

Invalidate single entry using MVA Invalidates a single cache line, discarding any dirty data. (NOTE) Use with
caution.

Clean D single entry using either
index or MVA

Writes the specified cache line to main memory, if the line is marked
valid and dirty, and marks the line as not dirty. a The valid bit is
unchanged.

Clean and invalidate D entry using
either index or MVA

Writes the specified cache line to main memory, if the line is marked
valid and dirty. (NOTE) The line is marked not valid.

Prefetch cache line Performs an ICache lookup of the specified MVA.

If the cache misses, and the region is cacheable, a line fill is performed.

NOTE: Dirty data is data that has been modified in the cache but not yet written to main memory.

The function of each cache operation is selected by the opcode_2 and CRm fields in the MCR instruction used to
write CP15 register 7. Writing other opcode_2 or CRm values is unpredictable.

Reading from CP15 register 7 is unpredictable.

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-29

Table 2-19 shows instructions that you can use to perform cache operations with register 7.

Table 2-19. Register 7, Cache Operations

Function Data Instruction

Invalidate ICache and DCaches SBZ MCR p15, 0, Rd, c7, c7, 0

Invalidate ICache SBZ MCR p15, 0, Rd, c7, c5, 0

Invalidate I single entry (using MVA) MVA format MCR p15, 0, Rd, c7, c5, 1

Prefetch ICache line (using MVA) MVA format MCR p15, 0, Rd, c7, c13, 1

Invalidate DCache SBZ MCR p15, 0, Rd, c7, c6, 0

Invalidate DCache single entry (using MVA) MVA format MCR p15, 0, Rd, c7, c6, 1

Clean DCache single entry (using MVA) MVA format MCR p15, 0, Rd, c7, c10, 1

Clean and invalidate DCache entry (using MVA) MVA format MCR p15, 0, Rd, c7, c14, 1

Clean DCache single entry (using index) Index format MCR p15, 0, Rd, c7, c10, 2

Clean and invalidate DCache entry (using index) Index format MCR p15, 0, Rd, c7, c14, 2

Drain write buffer (1) SBZ MCR p15, 0, Rd, c7, c10, 4

Wait for interrupt (2) SBZ MCR p15, 0, Rd, c7, c0, 4

NOTES:
1. Stops execution until the write buffer has drained.
2. Stops execution in a LOW power state until an interrupt occurs.

The operations that you can carry out on a single cache line identify the line using the data passed in the MCR
instruction. The data is interrupted using one of the formats shown in Figure 2-10 or Figure 2-11.

31 05 4

SBZModified virtual address

Figure 2-10. Register 7 MVA Format

31

Index

026 25 8 7 5 4

Seg SBZSBZ

Figure 2-11. Register 7 Index Format

The use of register 7 is described in Chapter 4 Caches, Write Buffer, and Physical Address TAG (PA TAG) RAM.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-30

REGISTER 8, TLB OPERATIONS REGISTER

Register 8 is a write-only register used to manage the Translation Lookaside Buffers (TLBs), the instruction TLB,
and the data TLB.

Five TLB operations are defined and you can select the function to be performed with the opcode_2 and CRm
fields in the MCR instruction used to write CP15 register 8. Writing other opcode_2 or CRm values is
unpredictable. Reading from CP15 register 8 is unpredictable.

Table 2-20 shows instructions that you can use to perform TLB operations using register 8.

Table 2-20. Register 8, TLB Operations

Function Data Instruction

Invalidate TLB(s) SBZ MCR p15,0,Rd,c8,c7,0

Invalidate I TLB SBZ MCR p15,0,Rd,c8,c5,0

Invalidate I TLB single entry (using MVA) MVA format MCR p15,0,Rd,c8,c5,1

Invalidate D TLB SBZ MCR p15,0,Rd,c8,c6,0

Invalidate D TLB single entry (using MVA) MVA format MCR p15,0,Rd,c8,c6,1

NOTE

These functions invalidate all the unpreserved entries in the TLB. Invalidate TLB single entry functions
invalidate any TLB entry corresponding to the MVA given in Rd, regardless of its preserved state. See
Register 10, TLB lockdown register.

Figure 2-12 shows the MVA format used for operations on single entry TLB lines using register 8.

31 010 9

SBZModified virtual address

Figure 2-12. Register 8 MVA Format

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-31

REGISTER 9, CACHE LOCKDOWN REGISTER

Register 9 is the cache lockdown register. The cache lockdown register is 0x0 on reset. The cache lockdown
register allows software to control which cache line in the ICache or DCache respectively is loaded for a linefill
and to prevent lines in the ICache or DCache from being evicted during a linefill, locking them into the cache.

There is a register for each of the ICache and DCache. The value of opcode_2 determines which cache register
to access:

opcode_2 = 0x0 accesses the DCache register

opcode_2 = 0x1 accesses the ICache register.

The Opcode_1 and CRm fields should be zero.

Reading CP15 register 9 returns the value of the cache lockdown register, which is the base pointer for all cache
segments.

NOTE

Only bits [31:26] are returned. Bits [25:0] are unpredictable.

Writing CP15 register 9 updates the cache lockdown register, both the base and the current victim pointer for all
cache segments. Bits [25:0] should be zero.

The victim counter specifies the cache line to be used as the victim for the next linefill. This is incremented using
either a random or round-robin replacement policy, determined by the state of the RR bit in register 1. The victim
counter generates values in the range (base to 63). This locks lines with index values in the range (0 to base-1).
If base = 0, there are no locked lines.

Writing to CP15 register 9 updates the base pointer and the current victim pointer. The next linefill uses, and then
increments, the victim pointer. The victim pointer continues incrementing on linefills, and wraps around to the
base pointer. For example, setting the base pointer to 0x3 prevents the victim pointer from selecting entries 0x0
to 0x2, locking them into the cache. shows how you can load a cache line into ICache line 0 and lock it down.

Example 2-1: Load a cache line into ICache line 0 and lock it down

MCR to CP15 register 9, opcode_2 = 0x1, Victim=Base=0x0

MCR I prefetch. Assuming the ICache misses, a linefill occurs to line 0.

MCR to CP15 register 9, opcode_2 = 0x1, Victim=Base=0x1

More ICache linefills now occur into lines 1-63.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-32

Example 2-2 shows how you can load a cache line into DCache line 0 and lock it down.

Example 2-2: Load a cache line into DCache line 0 and lock it down

MCR to CP15 register 9, opcode_2 = 0x0, Victim=Base=0x0

Data load (LDR/LDM). Assuming the DCache misses, a linefill occurs to line 0.

MCR to CP15 register 9, opcode_2 = 0x0, Victim=Base=0x1

More DCache linefills now occur into lines 1-63.

 NOTE

Writing CP15 register 9, with the CRm field set to b0001, updates the current victim pointer only for the
specified segment. Bits [31:26] specify the victim. Bits [7:5] specify the segment (for a 16KB cache). All
other bits should be zero. This encoding is intended for debug use. You are not recommended to use this
encoding.

Figure 2-13 shows the format of bits in register 9.

31 0

Index UNP/SBZ

26 25

Figure 2-13. Register 9

Table 2-21 shows the instructions you can use to access the cache lockdown register.

Table 2-21. Register 9, Accessing the Cache Lockdown

Function Data Instruction

Read DCache lockdown base Base MRC p15,0,Rd,c9,c0,0

Write DCache victim and lockdown base Victim=Base MCR p15,0,Rd,c9,c0,0

Read ICache lockdown baseBase Base MRC p15,0,Rd,c9,c0,1

Write ICache victim and lockdown base Victim=Base MCR p15,0,Rd,c9,c0,1

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-33

REGISTER 10, TLB LOCKDOWN REGISTER

Register 10 is the TLB lockdown register. The TLB lockdown register is 0x0 on reset. There is a TLB lockdown
register for each of the TLBs, the value of opcode_2 determines which TLB register to access:

opcode_2 = 0x0 accesses the D TLB register

opcode_2 = 0x1 accesses the I TLB register.

Reading CP15 register 10 returns the value of the TLB lockdown counter base register, the current victim
number, and the preserve bit (P bit). Bits [19:1] are unpredictable when read.

Writing CP15 register 10 updates the TLB lockdown counter base register, the current victim pointer, and the
state of the preserve bit. Bits [19:1] should be zero when written.

Table 2-22 shows the instructions you can use to access the TLB lockdown register.

Table 2-22. Register 10, Accessing the TLB Lockdown

Function Data Instruction

Read D TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,0

Write D TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,0

Read I TLB lockdown TLB lockdown MRC p15,0,Rd,c10,c0,1

Write I TLB lockdown TLB lockdown MCR p15,0,Rd,c10,c0,1

Figure 2-14 shows the format of bits in register 10.

31 0

Base SBZ/UNP

26 25 20 19

Victim

1

P

Figure 2-14. Register 10

The entries in the TLBs are replaced using a round-robin replacement policy. This is implemented using a victim
counter that counts from entry 0 up to 63, and then wraps back round to the base value and continues counting,
wrapping around to the base value from 63 each time.

There are two mechanisms available for ensuring entries are not removed from the TLB:

Locking an entry down prevents it from being selected for overwriting during a table walk. You can do this by
programming the base value to which the victim counter reloads. For example, if the bottom 3 entries (0-2) are to
be locked down, you must program the base counter to 3.

You can preserve an entry during an Invalidate All instruction. You can do this by ensuring the P bit is set when
the entry is loaded into the TLB. Examples that show how you can load a single entry into the I and D TLBs at
location 0, make it immune to Invalidate All, and lock it down are shown in Example 2-3 and Example 2-4.

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-34

Example 2-3: Load a single entry into I TLB location 0, make it immune to Invalidate All and lock it
down

MCR to CP15 register 10, opcode_2 = 0x1, Base Value = 0, Current Victim = 0, P = 1

MCR I prefetch. Assuming an I TLB miss occurs, then entry 0 is loaded.

MCR to CP15 register 10, opcode_2 = 0x1, Base Value = 1, Current Victim = 1, P = 0

Example 2-4: Load a single entry into D TLB location 0, make it immune to Invalidate All and lock it
down

MCR to CP15 register 10, opcode_2 = 0x0, Base Value = 0, Current Victim = 0, P = 1

Data load (LDR/LDM) or store (STR/STM). Assuming a D TLB miss occurs, then entry 0 is
loaded.

MCR to CP15 register 10, opcode_2 = 0x0, Base Value = 1, Current Victim = 1, P = 0

REGISTERS 11, 12, AND 14, RESERVED

Accessing (reading or writing) any of these registers causes unpredictable behavior.

REGISTER 13, FCSE PID REGISTER

Register 13 is the Fast Context Switch Extension (FCSE) Process Identifier (PID) register. The FCSE PID
register is 0x0 on reset.

Reading from CP15 register 13 returns the value of the FCSE PID. Writing CP15 register 13 updates the FCSE
PID to the value in bits [31:25]. Bits [24:0] should be zero.

Register 13 bit assignments are shown in Figure 2-15.

31 0

FCSE PID

2425 1

SBZ

Figure 2-15. Register 13

You can access register 13 using the following instructions:

MRC p15, 0, Rd, c13, c0, 0 ; read FCSE PID

MCR p15, 0, Rd, c13, c0, 0 ; write FCSE PID

S3C2800 RISC MICROPROCESSOR PROGRAMMER'S MODEL

2-35

Using the FCSE process identifier (FCSE PID)

Addresses issued by the ARM9TDMI core in the range 0 to 32MB are translated by CP15 register 13, the FCSE
PID register. Address A becomes A + (FCSE_PID x 32MB). It is this translated address that is seen by both the
caches and MMU. Addresses above 32MB undergo no translation. This is shown in Figure 2-16.

The FCSE_PID is a 7-bit field, enabling 128 x 32MB processes to be mapped.

 NOTE

If FCSE_PID is zero, as it is on reset, then there is a flat mapping between the ARM9TDMI and the
caches and MMU.

Virtual Address (VA)
Issued by ARM9TDMI

4GB

32MB

0
0

1

2

127

C13

64MB

32MB

0

4GB

Modified Virtual Address (MVA)
input to caches and MMU

Figure 2-16. Address Mapping using CP15 Register 13

PROGRAMMER'S MODEL S3C2800 RISC MICROPROCESSOR

2-36

Changing the FCSE PID, performing a fast context switch

To do a fast context switch, write to CP15 register 13. The contents of the caches and TLBs do not have to be
flushed after a fast context switch because they still hold valid address tags. The two instructions after the MCR
to write the FCSE_PID are fetched with the old FCSE_PID value:

{FCSE_PID = 0}

MOV r0, #1:SHL:25 ; Fetched with FCSE_PID = 0

MCR p15,0,r0,c13,c0,0 ; Fetched with FCSE_PID = 0

A1 ; Fetched with FCSE_PID = 0

A2 ; Fetched with FCSE_PID = 0

A3 ; Fetched with FCSE_PID = 1

REGISTER 15, TEST CONFIGURATION REGISTER

Register 15 is used for test purposes. Accessing (reading or writing) this register causes the ARM920T to have
unpredictable behavior.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-1

3 INSTRUCTIONS SET

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM9TDMI core.

The ARM920T implements uses a five-stage pipeline design. These five stages are:

— instruction fetch (F)

— instruction decode (D)

— execute (E)

— data memory access (M)

— register write (W)

ARM implementations are fully interlocked, so that software will function identically across different
implementations without concern for pipeline effects. Interlock do affect instruction times. For example, the
following sequence suffers a single cycle penalty due to a load-use interlock on register r0:

LDR R0,[R7]

ADD R5,R0,R1

ABOUT THE INSTRUCTION CYCLE SUMMARY

All signals quoted in this chapter are ARM9TDMI signals, and are internal to the ARM920T. In all cases it is
assumed that all accesses are from cached regions of memory.

If an instruction causes an external access, either when prefetching instructions or when accessing data, the
instruction takes more cycles to complete execution. The additional number of cycles is dependent on the system
implementation.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-2

INSTRUCTION CYCLE TIMES

Table 3-1 shows a key to the symbols used in tables in this section

Table 3-1. Symbol Used in Tables

Symbol Meaning

B The number of busy-wait states during coprocessor accesses

M Is in the range 0 to 3, depending on early termination

N The number of words transferred in an LDM/STM/LDC/STC

C Coprocessor register transfer (C-cycle)

I Internal cycle (I-cycle)

N Non-sequential cycle (N-cycle)

S Sequential cycle (S-cycle)

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-3

Table 3-2 summarize the ARM920T instruction cycle counts and bus activity when executing the ARM instruction
set.

Table 3-2. Instruction Cycle Bus Times

Instruction Cycle Instruction Bus Data Bus Comment

Data Op 1 1S 1I Normal case

Data Op 2 1S+1I 2I With register controlled shift

LDR 1 1S 1N Normal case, not loading PC

LDR 2 1S+1I 1N+1I Not loading PC and following instruction uses
loaded word (1 cycle load-use interlock)

LDR 3 1S+2I 1N+2I Loaded byte, halfword, or unaligned word used by
following instruction (2 cycle load-use interlock)

LDR 5 2S+2I+1N 1N+4I PC is destination register

STR 1 1S 1N All cases

LDM 2 1S+1I 1S+1I Loading 1 Register, not the PC

LDM N 1S+(n-1)I 1N+(n-1)S Loading n registers, n > 1, not loading the PC

LDM n+4 2S+1N+(n+1)I 1N+(n-1)S+4I Loading n registers including the PC, n > 0

STM 2 1S+1I 1N+1I Storing 1 Register

STM N 1S+(n-1)I 1N+(n-1)S Storing n registers, n > 1

SWP 2 1S+1I 2N Normal case

SWP 3 1S+2I 2N+1I Loaded byte used by following instruction

B, BL, BX 3 2S+1N 3I All cases

SWI, Undefined 3 2S+1N 3I All cases

CDP b+1 1S+bI (1+b)I All cases

LDC, STC b+n 1S+(b+n-1)I bI+1N+(n-1)S All cases

MCR b+1 1S+bI bI+1C All cases

MRC b+1 1S+bI bI+1C Normal case

MRC b+2 1S+(b+1)I (b+I)I+1C Following instruction uses transferred data

MUL, MLA 2+m 1S+(1+m)I (2+m)I All cases

SMULL,UMULL,
SMLAL,UMLAL

3+m 1S+(2+m)I (3+m)I All cases

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-4

Table 3-3 shows the instruction cycle times from the perspective of the data bus.

Table 3-3. Data Bus Instruction Times

Instruction Cycle time

LDR 1N

STR 1N

LDM, STM 1N+(n-1)S

SWP 1N+1S

LDC, STC 1N+(n-1)S

MCR, MRC 1C

MULTIPLIER CYCLE COUNTS

The number of cycles that a multiply instruction takes to complete depends on which instruction, and on the value
of the multiplier-operand. The multiplier-operand is the contents of the register specified by bits [11:8] of the ARM
multiply instructions, or bits [2:0] of the Thumb multiply instructions.

For ARM MUL, MLA, SMULL, SMLAL, and Thumb MUL, m is:

1. if bits [31:8] of the multiplier operand are all 0 or all 1

2. if bits [31:16] of the multiplier operand are all 0 or all 1

3. if bits [31:24] of the multiplier operand are all 0 or all 1

4. otherwise.

For ARM UMULL, UMLAL, m is:

1. if bits [31:8] of the multiplier operand are all 0

2. if bits [31:16] of the multiplier operand are all 0

3. if bits [31:24] of the multiplier operand are all 0

4. otherwise.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-5

INTERLOCKS

Pipeline interlocks occur when the data required for an instruction is not available due to the incomplete
execution of an earlier instruction. When an interlock occurs, instruction fetches stop on the instruction memory
interface of the ARM920T. Four examples are given in.

• Example 3-1

• Example 3-2

• Example 3-3

• • Example 3-4

Example 3-1: Single load interlock

In this example, the following code sequence is executed:

LDR R0, [R1]

ADD R2, R0, R1

The ADD instruction cannot start until the data is returned from the load. The ADD instruction therefore, has to
delay entering the Execute stage of the pipeline by one cycle. The behavior on the instruction memory interface
is shown in Figure 3-1.

IA[31:1]

InMREQ

GCLK

ID[31:0]

A+4

LDR

Fldr Dldr
Fadd

Eldr
Dadd

Mldr
Dadd

Wldr
Eadd

Madd Wadd

ADD

A+8 A+10 A+14A+C

Figure 3-1. Single load interlock timing

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-6

Example 3-2: Two cycle load interlock

In this example, the following code sequence is executed:

LDRB R0, [R1, #1]

ADD R2, R0, R1

Now, because a rotation must occur on the loaded data, there is a second interlock cycle. The behavior on the
instruction memory interface is shown in Figure 3-2.

IA[31:1]

InMREQ

GCLK

ID[31:0]

A+4

LDRB

Fldrb Dldrb
Fadd

Eldrb
Dadd

Mldrb
Dadd

Wldrb
Dadd

Eadd Madd

ADD

A+8 A+10 A+14

Wadd

A+C

Figure 3-2. Tow cycle load interlock

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-7

Example 3-3: ldm interlock

In this example, the following code sequence is executed:

LDM R12, {R1–R3}

ADD R2, R2, R1

The LDM takes three cycle to execute in the Memory stage of the pipeline. The ADD is therefore delayed until
the LDM begins its final memory fetch. The behavior on the instruction memory interface is shown in Figure 3-3.

IA[31:1]

InMREQ

GCLK

ID[31:0]

IA+4

LDM

Fldmb Dldmb
Fadd

Eldmb
Dadd

Mldmb
Dadd

Mldmb
Dadd

Mldmb
Eadd

Wldmb
Madd

ADD

IA+8 IA+10 IA+14

Wadd

IA+C

DA+4 DA+8DA

R1 R2 R3

DnMREQ

DA[31:0]

DD[31:0]

Figure 3-3. LDM interlock

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-8

Example 3-4: LDM Dependent Interlock

In this example, the following code sequence is executed:

LDM R12, {R1–R3}

ADD R4, R3, R1

The code is the same code as in example 3-3, but in this instance the ADD instruction uses R3. Due to the nature
of load multiples, the lowest register specified is transferred first, and the highest specified register last. Because
the ADD is dependent on R3, there must be another cycle of interlock while R3 is loaded. The behavior on the
instruction and data memory interface is shown in Figure 3-4.

IA[31:1]

InMREQ

GCLK

ID[31:0]

IA+4

LDM

Fldmb Dldmb
Fadd

Eldmb
Dadd

Mldmb
Dadd

Mldmb
Dadd

Mldmb
Dadd

Wldmb
Eadd

ADD

IA+8 IA+10 IA+14

Madd

IA+C

DA+4 DA+8DA

R1 R2 R3

DnMREQ

DA[31:0]

DD[31:0]

Wadd

Figure 3-4. LDM dependent interlock

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-9

FORMAT SUMMARY

The ARM instruction set formats are shown below.

Cond Rn Data/Processing/
PSR Transfer

0 0 I SOpcode

0 0 0 P U 0 W L

0 0 0 P U 1 W L

0 1 I P U B W L

0 1 I

1 0 0 P U B W L

11 11 1 1 11

1 0 L1

1 1 0 P U B W L

1 1 11

1 1 01

1 1 01 L

Rd

Rd

RnRdHi RdLo

Rn

Rn

Rn

Rn

Rd

Rd

Rd

Rn Register List

Rn

CRn

CRn

CRd

Rd

CP Opc

CP
Opc

Operand2

Rs

Rm

Rm

Rm

Rm

Rn

Rn

Rd

Offset Offset

CRd OffsetCP#

CP#

CP#

CP

CP

CRm

CRm

Ignored by processor

0

1

Offset

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0 0 0 0 00 A S

A SU10 0 00

0 0 0 0 0 01 B

1 00 010 0 0

1

1

1

1

1

1

0

0

0

0

H

H

0

0

0

0

S

S

1

1

1

0

1

1

1

0

0

1

0

0

1

0

0

1

0

0

1

Multiply

Multiply Long

Single Data Swap

Branch and Exchange

Halfword Data Transfer:
register offset

Halfword Data Transfer:
immendiate offset

Single Data Transfer

Undefined

Block Data Transfer

Branch

Coprocessor Register Transfer

Coprocessor Data Operation

Coprocessor Data Transfer

Software Interrupt

Offset

27 26 25 24 23 22 21 20 19 18 17 16 15 1314 12 11 1031 30 29 28 9 8 7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20 19 18 17 16 15 1314 12 11 1031 30 29 28 9 8 7 6 5 4 3 2 1 0

Figure 3-5. ARM Instruction Set Format

NOTE

Some instruction codes are not defined but they do not cause the Undefined instruction trap to be taken,
for instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as
their action may change in future ARM implementations.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-10

INSTRUCTION SUMMARY

Table 3-4. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND ANDo Rd: = Rn AND Op2

B Branch R15: = address

BIC Bit Clear Rd: = Rn AND NOT Op2

BL Branch with Link R14: = R15, R15: = address

BX Branch and Exchange R15: = Rn, T bit: = Rn[0]

CDP Coprocessor Data Processing (Coprocessor-specific)

CMN Compare Negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn - Op2

EOR Exclusive OR Rd: = (Rn AND NOT Op2) OR (Op2 AND NOT Rn)

LDC Load coprocessor from memory Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to coprocessor register cRn: = rRn {<op>cRm}

MLA Multiply Accumulate Rd: = (Rm × Rs) + Rn

MOV Move register or constant Rd: = Op2

MRC Move from coprocessor register to CPU register Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to register Rn: = PSR

MSR Move register to PSR status/flags PSR: = Rm

MUL Multiply Rd: = Rm × Rs

MVN Move negative register Rd: = 0 × FFFFFFFF EOR Op2

ORR OR Rd: = Rn OR Op2

RSB Reverse Subtract Rd: = Op2 - Rn

RSC Reverse Subtract with Carry Rd: = Op2 - Rn - 1 + Carry

SBC Subtract with Carry Rd: = Rn - Op2 - 1 + Carry

STC Store coprocessor register to memory address: = CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn - Op2

SWI Software Interrupt OS call

SWP Swap register with memory Rd: = [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-11

THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and
the instruction's condition field. This field (bits 31:28) determines the circumstances under which an instruction is
to be executed. If the state of the C, N, Z and V flags meets the conditions encoded by the field, the instruction is
executed, otherwise, it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the
instruction's mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal",
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: they are listed in Table 3-5. The sixteenth (1111) is
reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (suffix AL). This means the
instruction will always be executed regardless of the CPSR condition codes.

Table 3-5. Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-12

BRANCH AND EXCHANGE (BX)

This instruction is executed only if the condition is true. The various conditions are defined in Table 3-5.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter,
PC. The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits
the instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the
instruction stream would be decoded as ARM or THUMB instructions.

31 2427 19 15 8 7 0

00 0 1 10 0 0 11 1 1 11 1 1 11 1 1 00 0 1Cond Rn

28 16 111223 20 4 3

[3:0] Operand Register
If bit0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit0 of Rn =0, subsequent instructions decoded as ARM instructions

[31:28] Condition Field

Figure 3-6. Branch and Exchange Instructions

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequencial (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.
BX {cond} Rn
{cond} ; Two character condition mnemonic. See Table 3-5.
Rn ; is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, its behaviour is undefined.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-13

Examples

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
•
•
•
ADR R5, Back_to_ARM ; Generate branch target to word aligned address

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
•
•
•
ALIGN ; Align words
CODE32 ; Assemble subsequent codes as ARM instructions
Back_to_ARM

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-14

BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is executed only if the condition is true. The various conditions are defined Table 3-5. The
instruction encoding is shown in Figure 3-7, below.

31 2427

Cond Offset

28 23

[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition Field

25

101 L

0

Figure 3-7. Branch Instructions

Branch instructions contain a signed 2's complement 24-bit offset. This is shifted left two bits, sign extended to 32
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which was previously loaded into a
register. In this case, the PC should be manually saved in R14 if a Branch with Link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into
R14 is adjusted to allow for the prefetch, and it contains the address of the instruction following the branch and
link instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or LDM
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as
sequential (S-cycle) and internal (I-cycle).

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-15

ASSEMBLER SYNTAX

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} Used to request the Branch with Link form of the instruction. If absent, R14 will not
be

affected by the instruction.

{cond} A two-character mnemonic as shown in Table 3-5. If absent, AL (ALways) will be
used.

<expression> The destination. The assembler calculates the offset.

Examples

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.
BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result, then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 is held 0xFFFFFFFF.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-16

DATA PROCESSING

The data processing instruction is executed only if the condition is true. The conditions are defined in Table 3-5.
The instruction encoding is shown in Figure 3-8.

31 2427 19 15

Cond Operand2

28 16 111221

[15:12] Destination register
0 = Branch 1 = Branch with link

[19:16] 1st operand register
0 = Branch 1 = Branch with link

[20] Set condition codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation codes
0000 = AND-Rd: = Op1 AND Op2
0001 = EOR-Rd: = Op1 EOR Op2
0010 = SUB-Rd: = Op1-Op2
0011 = RSB-Rd: = Op2-Op1
0100 = ADD-Rd: = Op1+Op2
0101 = ADC-Rd: = Op1+Op2+C
0110 = SBC-Rd: = OP1-Op2+C-1
0111 = RSC-Rd: = Op2-Op1+C-1
1000 = TST-set condition codes on Op1 AND Op2
1001 = TEO-set condition codes on OP1 EOR Op2
1010 = CMP-set condition codes on Op1-Op2
1011 = SMN-set condition codes on Op1+Op2
1100 = ORR-Rd: = Op1 OR Op2
1101 = MOV-Rd: =Op2
1110 = BIC-Rd: = Op1 AND NOT Op2
1111 = MVN-Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an immediate value

[11:0] Operand 2 type selection

26 25

00 L

20

OpCode S Rn Rd

0

Rotate

Shift Rm

[3:0] 2nd operand register [11:4] Shift applied to Rm

311 04

811 07

Imm

[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to Imm

[31:28] Condition field

Figure 3-8. Data Processing Instructions

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-17

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8-bit immediate value (Imm) according to the
value of the I bit in the instruction. The condition codes in the CPSR may be maintained or updated as a result of
this instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and
to set the condition codes on the result and always have the S bit set. The instructions and their effects are listed
in Table 3-6.

CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR,
TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or
operands to produce the result. If the S bit is set (and Rd is not R15, see below), the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or maintained when the shift operation is
LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to the logical value of
bit 31 of the result.

Table 3-6. ARM Data Processing Instructions

Assembler Mnemonic OP Code Action
AND 0000 Operand1 AND operand2
EOR 0001 Operand1 EOR operand2
WUB 0010 Operand1 - operand2
RSB 0011 Operand2 operand1
ADD 0100 Operand1 + operand2
ADC 0101 Operand1 + operand2 + carry
SBC 0110 Operand1 - operand2 + carry - 1
RSC 0111 Operand2 - operand1 + carry - 1
TST 1000 As AND, but result is not written
TEQ 1001 As EOR, but result is not written
CMP 1010 As SUB, but result is not written
CMN 1011 As ADD, but result is not written
ORR 1100 Operand1 OR operand2
MOV 1101 Operand2 (operand1 is ignored)
BIC 1110 Operand1 AND NOT operand2 (Bit clear)
MVN 1111 NOT operand2 (operand1 is ignored)

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32-bit integer
(either unsigned or 2's complement signed, the two are equivalent). When the S bit is set (and Rd is not R15), the
V flag in the CPSR will be set if an overflow occurs in bit 31 of the result; this may be ignored if the operands
were considered unsigned, but there will be a warning of a possible error if the operands were 2's complement
signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result
was zero, and the N flag will be set to the value of bit 31 of the result (indicating a negative result if the operands
are considered to be 2's complement signed).

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-18

SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by
the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in an
immediate field in the instruction, or in the bottom byte of another register (other than R15). The encoding for the
different shift types is shown in Figure 3-9.

0

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:7] Shift amount
5 bit unsigned integer

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:8] Shift register
Shift amount specified in bottom-byte of Rs

456711

1

456711 8

0RS

Figure 3-9. ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5-bit field which may take any value from
0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do
not map into the result are discarded. The least significant bit discarded becomes the shifter carry output which
may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see above). For an
example, the effect of LSL #5 is shown in Figure 3-10.

31 27 26

Contents of Rm

Value of Operand 2

carry out

0

0

0000

Figure 3-10. Logical Shift Left

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of
Rm are used directly as the second operand. A logical shift right (LSR) is similar to this except that the
contents of Rm are moved to less significant positions in the result. LSR #5 has the effect shown in
Figure 3-11.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-19

31

Contents of Rm

Value of Operand 2

0

carry out

45

00000

Figure 3-11. Logical Shift Right

The form of the shift field expected to correspond to LSR #0 is used to encode LSR #32, which has a zero result
with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as logical shift left
zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm
instead of zeros. This contain the sign in 2's complement notation. For an example, ASR #5 is shown in Figure
3-12.

31

Contents of Rm

Value of Operand 2

0

carry out

4530

Figure 3-12. Arithmetic Shift Right

The form of the shift field expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is again used as the
carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all ones or all zeros,
according to the value of bit 31 of Rm.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-20

Rotate right (ROR) operations reuse the bits which "overshoot" in a logical shift right operation by reintroducing
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For an
example, ROR #5 is shown in Figure 3-13.

31

Contents of Rm

Value of Operand 2

0

carry out

45

Figure 3-13. Rotate Right

The form of the shift field expected to give ROR #0 is used to encode a special function of the barrel shifter,
rotate right extended (RRX). It enables rotating right by one bit position of the 33-bit quantity formed by
appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure 3-14.

31

Contents of Rm

Value of Operand 2

01

carry outC
in

Figure 3-14. Rotate Right Extended

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-21

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the
CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

1. LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2. LSL by more than 32 has result zero, carry out zero.

3. LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4. LSR by more than 32 has result zero, carry out zero.

5. ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6. ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7. ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause
the instruction to be a multiply or undefined instruction.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-22

IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4-bit unsigned integer which specifies a shift operation on the 8-bit
immediate value. This value is zero extended to 32 bits, subject to a rotate right by twice the value in the rotate
field. This enables many common constants to be generated, for example, all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags
as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the
CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to
the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR.
This form of instruction should not be used in User mode.

USING R15 AS AN OPERAND

If R15 (the PC) is used as an operand in a data processing instruction, the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift
amount the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An
assembler should always set the S flag for these instructions even if this is not specified in the
mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer
operations should be used instead.

The TEQP in the ARM9TDMI moves SPSR_<mode> to the CPSR if the processor is in a privileged mode and
does nothing in User mode.

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles as follows:

Table 3-7. Incremental Cycle Times

Processing Type Cycles

Normal data processing 1S

Data processing with register specified shift 1S + 1I

Data processing with PC written 2S + 1N

Data processing with register specified shift and PC written 2S + 1N +1I

NOTE: S, N, and I mean sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-23

ASSEMBLER SYNTAX

• • MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2>

• • CMP,CMN,TEQ,TST (instructions which do not produce a result).
<opcode>{cond} Rn,<Op2>

• • AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-5.

{S} Set condition codes if S is present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm Expressions evaluating to a register number.

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with
extend).

<shiftname>s ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same
code.)

Examples

ADDEQ R2,R4,R5 ; If the Z flag is set, make R2:=R4+R5
TEQS R4,#3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

; from SPSR_mode.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-24

PSR TRANSFER (MRS, MSR)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN, and CMP instructions without the S flag set. The encoding is shown in
Figure 3-15.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general
register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of
the specified register contents or 32-bit immediate values are written to the top four bits of the relevant PSR.

OPERAND RESTRICTIONS

• • In user mode, the control bits of the CPSR are protected from a change, so only the condition code flags of
the CPSR can be changed. In other (privileged) modes, the entire CPSR can be changed.

• • Note that the software must never change the state of the T bit in the CPSR, otherwise the processor would
enter an unpredictable state.

• • The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

• • You must not specify R15 as the source or destination register.

• Also, do not attempt to access an SPSR in User mode, since no such register exists.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-25

MRS (transfer register contents or immediate value to PSR flag bits only)

Cond Source operandPd 101001111

31 222728 11122123

I 1000

26 25 24 0

Cond 0000000000010 Pd 101001111

31 222728 11122123

Rm

MRS (transfer register contents to PSR)

4 3 0

Cond 00000000000000010 RdPs 001111

31 2227 1528 16 11122123

MRS (transfer PSR contents to a register)

0

[3:0] Source Register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[15:21] Destination Register

[19:16] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition Field

[3:0] Source Register
[11:4] Source operand is an immediate value

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to Imm

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = SPSR_<current mode>

[11:0] Source Operand

[31:28] Condition Field

00000000 Rm

11 4 3 0

Rotate Imm

11 08 7

Figure 3-15. PSR Transfer

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-26

RESERVED BITS

Only twelve bits of the PSR are defined in ARM9TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved
for use in future versions of the processor. Refer to Figure 2-6 in Cahpter 2 Programmer’s model for a full
description of the PSR bits.

To ensure the maximum compatibility between ARM9TDMI programs and future processors, the following rules
should be observed:

• The reserved bits should be preserved when changing the value in a PSR.

• Programs should not rely on specific values from the reserved bits when checking the PSR status, since they
may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction.

Examples

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag
bits without disturbing the control bits. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags regardless of their previous state
; (does not affect any control bits).

No attempt should be made to write an 8-bit immediate value into the whole PSR since such an operation cannot
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-27

ASSEMBLY SYNTAX

• • MRS - transfer PSR contents to a register
MRS{cond} Rd,<psr>

• • MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

• • MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags, respectively.

• • MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolize a 32-bit value of which the most significant four bits are written to the N,Z,C
and V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-5..

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms ous with
SPSR and SPSR_all)

<psrf> CPSR_flg or SPSR_flg

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit
field

to match the expression. If this is impossible, it will give an error.

Examples

In User mode, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA (set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5 (set Z,V; clear N,C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC (set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-28

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-16.

The multiply and multiply-accumulate instructions use an 8-bit Booth's algorithm to perform integer multiplication.

31 27 19 15

Cond

28 16 111221 20

S Rd Rn

[15:12][11:8][3:0] Operand Registers
[19:16] Destination Register

[20] Set Condition Code
0 = Do not after condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[31:28] Condition Field

22

1 0 0 1Rs RmA00 0 0 0 0

8 7 4 3 0

Figure 3-16. Multiply Instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set to zero for compatibility
with possible future upgrades to the instruction set.The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which
can save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands
which may be considered as signed (2's complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32-bit operands differ only in the upper 32 bits the
low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies.

For example, consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-29

If the Operands Are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as
0xFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an
operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-30

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero)
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle)
and internal (I-cycle), respectively.

m The number of 8-bit multiplier array cycles is required to complete the multiply, which is
controlled by the value of the multiplier operand specified by Rs. Available values are

as follows:

1 If bits [32:8] of the multiplier operand are all zero or all one.

2 If bits [32:16] of the multiplier operand are all zero or all one.

3 If bits [32:24] of the multiplier operand are all zero or all one.

4 In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs
MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} Two-character condition mnemonic. See Table 3-5..

{S} Set condition codes if S is present

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

Examples

MUL R1,R2,R3 ; R1: = R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1: = R2*R3+R4, Setting condition codes.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-31

MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL, MLAL)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-17.

The multiply long instructions perform integer multiplication on two 32-bit operands and produce 64-bit results.
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

31 27 19 15

Cond

28 16 11122123

U

20

S RdHi RdLo

[11:8][3:0] Operand Registers
[19:16][15:12] Source Destination Registers

[20] Set Condition Code
0 = Do not alter condition codes
1 = Set condition codes

[21] Accumulate
0 = Multiply only
1 = Multiply and accumulate

[22] Unsigned
0 = Unsigned
1 = Signed

[31:28] Condition Field

22

00 0 0 1 1 0 0 1Rs RmA

8 7 4 3 0

Figure 3-17. Multiply Long Instructions

The multiply forms (UMULL and SMULL) take two 32-bit numbers and multiply them to produce a 64-bit result of
the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64-bit result are written to RdLo, the upper 32 bits of the
result are written to RdHi.

The multiply-accumulate forms (UMLAL and SMLAL) take two 32-bit numbers, multiply them and add a 64-bit
number to produce a 64-bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower 32 bits of the 64-bit
number to add is read from RdLo. The upper 32 bits of the 64-bit number to add is read from RdHi. The lower 32
bits of the 64-bit result are written to RdLo. The upper 32 bits of the 64-bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an
unsigned 64-bit result. The SMULL and SMLAL instructions treat all of their operands as 2's-complement signed
numbers and write a 2's-complement signed 64-bit result.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-32

OPERAND RESTRICTIONS

•• R15 must not be used as an operand or as a destination register.

•• RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero).
Both the C and V flags are set to meaningless values.

INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8-bit multiplier
array cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified
by Rs.

Available values are as follows:

For Signed INSTRUCTIONS SMULL, SMLAL:

•• If bits [31:8] of the multiplier operand are all zero or all one.

•• If bits [31:16] of the multiplier operand are all zero or all one.

•• If bits [31:24] of the multiplier operand are all zero or all one.

•• In all other cases.

For Unsigned Instructions UMULL, UMLAL:

•• If bits [31:8] of the multiplier operand are all zero.

•• If bits [31:16] of the multiplier operand are all zero.

•• If bits [31:24] of the multiplier operand are all zero.

•• In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-33

ASSEMBLER SYNTAX

Table 3-8. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32 x 32 = 64

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32 x 32 = 64

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32 x 32 + 64 = 64

where:

{cond} Two-character condition mnemonic. See Table 3-5.

{S} Set condition codes if S is present

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

Examples

UMULL R1,R4,R2,R3 ; R4,R1: = R2*R3
UMLALS R1,R5,R2,R3 ; R5,R1: = R2*R3+R5,R1 also setting condition codes

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-34

SINGLE DATA TRANSFER (LDR, STR)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-18. The single data transfer instructions are used to load or store single
bytes or words of data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15 0

Cond

28 16 11122123

B

20

L Rn Rd

22

01 I P U OffsetW

26 2425

[11:0] Offset

[15:12] Source/Destination Registers

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Byte/Word Bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate Offset
0 = Offset is an immediate value

[31:28] Condition Field

Shift

Immediate

[11:0] Unsigned 12-bit immediate offset

11

11

Rm

[3:0] Offset register [11:4] Shift applied to Rm

0

4 3 0

Figure 3-18. Single Data Transfer Instructions

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-35

OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12-bit unsigned binary immediate value in the instruction, or a second
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed,
P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The only
use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user address in a system where the
memory management hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified
shift amounts are not available in this instruction class. See Figure 3-6.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM9TDMI register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM9TDMI core.
The two possible configurations are described below.

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros.
Please see Figure 2-2 in Chapter 2 Programmer’s model.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary
will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that
half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of
the register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-36

LDR from word aligned address

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

LDR from address offset by 2

A+3

A

A+2

A+1

memory

24

16

8

0

A

B

C

D

register

24

16

8

0

A

B

C

D

Figure 3-19. Little-Endian Offset Addressing

Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros.
Please see Figure 2-1 in Chapter 2 Programmer’s model.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte
occupies bits 15 through 8.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-37

USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember that it contains an address 8 bytes on from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the
instruction plus 12.

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the
abort handler starts. Sometimes it may be impossible to calculate the initial value.

Example

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory, the required data may be absent from main memory. The memory manager
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It
is up to the system software to resolve the cause of the problem, then the instruction can be restarted and the
original program continued.

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N and I
are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions
take 2N incremental cycles to execute.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-38

ASSEMBLER SYNTAX

where:

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-5.

{B} If B is present, then byte transfer, otherwise word transfer

{T} If T is present, the W bit will be set in a post-indexed instruction, forcing non-privileged
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is
specified or implied.

Rd An expression evaluating to a valid register number.

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will subtract 8
from the offset value to allow for ARM7TDMI pipelining. In this case, base write-back should
not be specified.

<Address>can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by <shift>

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the shift
amount by a register.

{!} Writes back the base register (set the W bit) if ! is present.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-39

Examples

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are registers)
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-40

HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-20.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

31 27 19 15

Cond

28 16 11122123

0

20

L Rn Rd

[3:0] Offset Register

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U 0000W

2425

1 RmS H 1

8 7 6 5 4 3 0

Figure 3-20. Halfword and Signed Data Transfer with Register Offset

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-41

31 27 19 15

Cond

28 16 11122123

1

20

L Rn Rd

[3:0] Immediate Offset (Low Nibble)

[6][5] S H
 0 0 = SWP instruction
 0 1 = Unsigned halfword
 1 1 = Signed byte
 1 1 = Signed halfword

[11:8] Immediate Offset (High Nibble)

[15:12] Source/Destination Register

[19:16] Base Register

[20] Load/Store
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset bofore transfer

[31:28] Condition Field

22

000 P U OffsetW

2425

1 OffsetS H 1

8 7 6 5 4 3 0

Figure 3-21. Halfword and Signed Data Transfer with Immediate Offset and Auto-Indexing

OFFSETS AND AUTO-INDEXING

The offset from the base may be either an 8-bit unsigned binary immediate value in the instruction, or a second
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, so that bit
11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The write-
back bit should not be set high (W=1) when post-indexed addressing is selected.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-42

HALFWORD LOAD AND STORES

Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM9TDMI register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S=1, the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the
destination register are set to the value of bit 7, the sign bit.

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16
of the destination register are set to the value of bit 15, the sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see Figure 2-2 in Chapter 2 Programmer's model.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH, the ARM9TDMI will
load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register. For
unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH), the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned. If bit 0 of the address is HIGH, this will cause unpredictable
behaviour.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-43

Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a
word boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with
the sign bit, bit 7 of the byte. Please see Figure 2-1 in Chapter 2 Programmer's model.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on
a word boundary and on data bus inputs 15 through to 0 if it is a halfword boundary, (A[1]=1). The supplied
address should always be on a halfword boundary. If bit 0 of the supplied address is HIGH, the ARM9TDMI will
load an unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register. For
unsigned half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words
(LDRSH), the top 16 bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data.
Note that the address must be halfword aligned. If bit 0 of the address is HIGH, this will cause unpredictable
behaviour.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register, you must remember that it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address
of the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a
system which uses virtual memory, the required data may be absent from the main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be restarted
and the original program continues.

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I. LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles.
S,N and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STRH
instructions take 2N incremental cycles to execute.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-44

ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-5..

H Transfer halfword quantity

SB Load sign-extended byte (Only valid for LDR)

SH Load sign-extended halfword (Only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression. This
will be a PC relative, pre-indexed address. If the address is out of range, an error will be
generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM9TDMI pipelining. In this case,
base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-45

Examples

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the halfword address
; contained in R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign-extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign-extended contents

; of the halfword address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED-HERE-8)]; Store the halfword in R5 at address FRED
FRED

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-46

BLOCK DATA TRANSFER (LDM, STM)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-22.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or down
memory, and they are very efficient instructions for saving or restoring context, or for moving large blocks of data
around main memory.

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also
transfer to and from the user bank, see below). The register list is a 16-bit field in the instruction, with each bit
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly, bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory, the stored value is the address of the STM instruction plus 12.

31 27 19 15

Cond

28 162123

S

20

L Rn

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] PSR & Force User Bit
0 = Do not load PSR or user mode
1 = Load PSR or force user mode

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset bofore transfer

[31:28] Condition Field

22

100 P U W

2425

Register list

24 0

Figure 3-22. Block Data Transfer Instructions

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-47

ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5, and R7 in the case where Rn=0x1000 and write back of the modified
base is required (W=1). Figure 3-23 ~ 3-26 shows the sequence of register transfers, the addresses used, and the
value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value
of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been
overwritten with the loaded value.

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the
memory system.

1 2

3 4

Rn R1

R1
R5

R1
R5
R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-23. Post-Increment Addressing

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-48

Rn

1

R1

R1

2

R5

3

R1
R5

4

R7Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-24. Pre-Increment Addressing

Rn

1

R1

R1

2

R5

3

R1
R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-25. Post-Decrement Addressing

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-49

Rn

1

R1

R1

2

R5

3

R1
R5

4

R7

Rn

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

0x100C

0x1000

0x0FF4

Figure 3-26. Pre-Decrement Addressing

USE OF THE S BIT

When the S bit is set in an LDM/STM instruction, its meaning depends on whether or not R15 is in the transfer list
and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode.

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is an LDM, SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode.
This is useful for saving the user state on process switches. Base write-back should not be used when this
mechanism is employed.

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back
should not be used when this mechanism is employed.

When the instruction is an LDM, care must be taken not to read from a banked register during the following cycle
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety).

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-50

INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During an
STM, the first register is written out at the start of the second cycle. An STM which includes storing the base, with
the base as the first register to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. An LDM will always overwrite the updated base if the
base is in the list.

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a
multiple register load or store, and must be recoverable if ARM9TDMI is to be used in a virtual memory system.

Abort during STM Instructions

If the abort occurs during a store multiple instruction, ARM9TDMI takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the modification of
the base register if write-back was specified, and this must be reversed by software (and the cause of the abort
resolved) before the instruction may be retried.

Aborts during LDM Instructions

When ARM9TDMI detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

• Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones
may have overwritten registers. The PC is always the last register to be written and so will always be
preserved.

• The base register is restored, to its modified value if write-back was requested. This ensures recoverability in
the case where the base register is also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any base
modification (and resolve the cause of the abort) before restarting the instruction.

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S, N,
and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.
STM instructions take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-51

ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} Two-character condition mnemonic. See Table 3-5.

Rn An expression evaluating to a valid register number

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}).

{!} If present requests write-back (W=1), otherwise W=0.

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user
 bank when in privileged mode.

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalence between the names and the
values of the bits in the instruction are shown in the following table 3-9.

Table 3-9. Addressing Mode Names

Name Stack Other L bit P bit U bit

Pre-Increment Load LDMED LDMIB 1 1 1

Post-Increment Load LDMFD LDMIA 1 0 1

Pre-Increment Load LDMEA LDMDB 1 1 0

Post-Increment Load LDMFA LDMDA 1 0 0

Pre-Increment Load STMFA STMIB 0 1 1

Post-Increment Load STMEA STMIA 0 0 1

Pre-Increment Load STMFD STMDB 0 1 0

Post-Increment Load STMED STMDA 0 0 0
FD, ED, FA, and EA define pre/post indexing and the up/down bit by referencing to the form of the stack
required. The F and E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before
storing to the stack. The A and D refer to whether the stack is ascending or descending. If ascending, an STM will
go up and an LDM down, if descending, vice versa.

IA, IB, DA, and DB allow control when an LDM/STM are not being used for stacks and simply mean Increment
After, Increment Before, Decrement After, and Decrement Before.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-52

Examples

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 ← (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 ← (SP), CPSR ← SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling
routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; Restore workspace and return.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-53

SINGLE DATA SWAP (SWP)

31 19 15

Cond

28 16 11122123

B

20

00 Rn Rd

[3:0] Source Register

[15:12] Destination Register

[19:16] Base Register

[22] Byte/Word Bit
0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition Field

22

00010 0000 Rm1001

27 8 7 4 3 0

Figure 3-27. Swap Instruction

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-27.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This
instruction is implemented as a memory read followed by a memory write which are “locked” together (the
processor cannot be interrupted until both operations are completed, and the memory manager is warned to treat
them as inseparable). This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents
of the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the
old memory contents in the destination register (Rd). The same register may be specified as both the source and
destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory
manager that they are locked together, and should be allowed to complete without interruption. This is important
in multi-processor systems where the swap instruction is the only indivisible instruction which may be used to
implement semaphores; control of the memory must not be removed from a processor while it is performing a
locked operation.

BYTES AND WORDS

This instruction class may be used to swap an byte (B=1) or a word (B=0) between an ARM9TDMI register and
memory. The SWP instruction is implemented as a LDR followed by an STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little-Endian
configuration applies to the SWP instruction.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-54

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in an SWP instruction.

DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can
flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in
either case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem,
then the instruction can be restarted and the original program continues.

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S, N, and I are defined as sequential
(S-cycle), non-sequential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} Two-character condition mnemonic. See Table 3-5.

{B} If B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn Expressions evaluating to valid register numbers

Examples

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-55

SOFTWARE INTERRUPT (SWI)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-28 below.

31 2427

1111Cond Comment Field (Ignored by Processor)

28 23

[31:28] Condition Field

0

Figure 3-28. Software Interrupt Instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed
value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external
memory management hardware) from modification by the user, a fully protected operating system may be
constructed.

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within
itself, it must first save a copy of the return address and SPSR.

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry
points for routines which perform the various supervisor functions.

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as
sequential (S-cycle) and non-sequential (N-cycle).

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-56

ASSEMBLER SYNTAX

SWI{cond} <expression>

{cond} Two-character condition mnemonic, Table 3-5.

<expression> Evaluated and placed in the comment field (which is ignored by ARM9TDMI).

Examples

SWI ReadC ; Get next character from read stream.
SWI WriteI+"k” ; Output a "k" to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
• • •
Zero EQU 0

ReadC EQU 256
WriteI EQU 512

Supervisor ; SWI has routine required in bits 8-23 and data (if any) in
; bits 0–7. Assume R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0-7.
• • •
LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,

; restoring processor mode and flags.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-57

COPROCESSOR DATA OPERATIONS (CDP)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-29.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to ARM9TDMI, and it will not wait for the operation to complete. The coprocessor could
contain a queue of such instructions awaiting execution, and their execution can overlap other activity, allowing
the coprocessor and ARM9TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The S3C2800, unlike some other ARM-based processors, does not have an external coprocessor interface. It
does not have an on-chip coprocessor also.

So then all coprocessor instructions will cause the undefinded instruction trap to be taken on the S3C2800. These
coprocessor instructions can be emulated by the undefined trap handler. Even though an external coprocessor
can not be connected to the S3C2800, the coprocessor instructions are still described here in full for
completeness. (Remember that any external coprocessor described in this section is a software emulation.)

31 2427 19 15

Cond CRm

28 16 111223 20

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register

[19:16] Coprocessor operand register

[23:20] Coprocessor operation code

[31:28] Condition Field

0CpCp#CRdCRn1110 CP Opc

8 7 5 4 3 0

Figure 3-29. Coprocessor Data Operation Instruction

THE COPROCESSOR FIELDS

Only bit 4 and bits 24 to 31 are significant to ARM9TDMI. The remaining bits are used by coprocessors. The
above field names are used by convention, and particular coprocessors may redefine the use of all fields as
appropriate except CP#. The CP# field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-58

INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent
in the coprocessor busy-wait loop.

S and I are defined as sequential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} Two-character condition mnemonic. See Table 3-5.

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

Examples

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set, request coproc 2 to do operation 5 (type 2)
; on CR2 and CR3, and put the result in CR1.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-59

COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-30.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessor’s registers directly to
memory. ARM9TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts
the data and controls the number of words transferred.

[7:0] Unsigned 8 Bit Immediate Offset

[11:8] Coprocessor Number

[15:12] Coprocessor Source/Destination Register

[19:16] Base Register

[20] Load/Store Bit
0 = Store to memory
1 = Load from memory

[21] Write-back Bit
0 = No write-back
1 = Write address into base

[22] Transfer Length

[23] Up/Down Bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post Indexing Bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition Field

31 27 19 15

Cond

28 16 11122123

N

20

L Rn CRd

22

110 P U CP#W

2425

Offset

8 7 0

Figure 3-30. Coprocessor Data Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will respond only if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more
than one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance
N=0 could select the transfer of a single register, and N=1 could select the transfer of all the registers for context
switching.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-60

ADDRESSING MODES

ARM9TDMI is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that
the immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are
12 bits wide and specify byte offsets for single data transfers.

The 8-bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old
value of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of
the W bit, unlike LDR and STR, which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address
one word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each
subsequent transfer.

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on
A[1:0] and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not
be specified.

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly
responsible for ensuring that the data transfer can be restarted after the cause of the abort is resolved, and must
ensure that any subsequent action it undertakes can be repeated when the instruction is retried.

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where:

n The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop.

S, N, and I are defined as sequential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-61

ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC Load from memory to coprocessor

STC Store from coprocessor to memory

{L} When present, perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} Two character condition mnemonic. See Table 3-5..

p# The unique number of the required coprocessor

cd An expression evaluating to a valid coprocessor register number that is placed in the
CRd field

<Address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a
corrected immediate offset to address the location given by evaluating the expression.
This will be a PC relative, pre-indexed address. If the address is out of range, an error
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:
[Rn],<#expression offset of <expression> bytes
{!} write back the base register (set the W bit) if ! is present
Rn is an expression evaluating to a valid

ARM9TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM9TDMI pipelining.

Examples

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler
will adjust the offset appropriately.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-62

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction encoding is shown in Figure 3-31.

This class of instruction is used to communicate information directly between ARM9TDMI and a coprocessor. An
example of a coprocessor to ARM9TDMI register transfer (MRC) instruction would be a FIX of a floating point
value held in a coprocessor, where the floating point number is converted into a 32-bit integer within the
coprocessor, and the result is then transferred to ARM9TDMI register. A FLOAT of a 32-bit value in ARM9TDMI
register into a floating point value within the coprocessor illustrates the use of ARM9TDMI register to coprocessor
transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor into the
ARM9TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

31 27 19 15

Cond

28 16 11122123 20

L CRn Rd

[3:0] Coprocessor Operand Register

[7:5] Coprocessor Information

[11:8] Coprocessor Number

[15:12] ARM Source/Destination Register

[19:16] Coprocessor Source/Destination Register

[20] Load/Store Bit
0 = Store to coprocessor
1 = Load from coprocessor

[21] Coprocessor Operation Mode

[31:28] Condition Field

1110 CP Opc CP#

24

CRm1CP

8 7 5 4 3 0

Figure 3-31. Coprocessor Register Transfer Instructions

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.

The CP Opc, CRn, CP, and CRm fields are used only by the coprocessor, and the interpretation presented here
is derived from convention only. Other interpretations are allowed where the coprocessor functionality is
incompatible with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation
the coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the
transferred information, and CRm is a second coprocessor register which may be involved in some way which
depends on the particular operation specified.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-63

TRANSFERS TO R15

When a coprocessor register transfer to ARM9TDMI has R15 as the destination, bits 31, 30, 29, and 28 of the
transferred word are copied into the N, Z, C, and V flags, respectively. The other bits of the transferred word are
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM9TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as sequential
(S-cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S +
bI +1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop.

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC Move from coprocessor to ARM9TDMI register (L=1)

MCR Move from ARM9TDMI register to coprocessor (L=0)

{cond} Two-character condition mnemonic. See Table 3-5

p# The unique number of the required coprocessor

<expression1> Evaluated to a constant and placed in the CP Opc field

Rd An expression evaluating to a valid ARM9TDMI register number

cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field

Examples

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-64

UNDEFINED INSTRUCTION

The instruction is executed only if the condition is true. The various conditions are defined in Table 3-5. The
instruction format is shown in Figure 3-32.

31 27

Cond

28 25 24

011 xxxxxxxxxxxxxxxxxxxx 1 xxxx

5 4 3 0

Figure 3-32. Undefined Instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may
be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N, and I are defined as sequential (S-cycle), non-sequential
(N-cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified
use, suitable mnemonics will be added to the assembler. Until then, this instruction must not be used.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-65

INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM9TDMI instructions can combine to give efficient
codes. None of these methods saves a great deal of execution time (although they may save some), mostly they
just save codes.

USING THE CONDITIONAL INSTRUCTIONS

Using Conditional instruction for Logical OR

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5, or 6 (Run Time)

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,#” ”-1 ; Range test
MOVLS Rc,#”.” ; IF Rc<= "" OR Rc=ASCII(127)

; THEN Rc:= "."

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-66

Division and Remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C library
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide
routine is as follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Detection in the ARM9TDMI

1. Overflow in unsigned multiply with a 32-bit result

UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32-bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32-bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-67

5. Overflow in unsigned multiply accumulate with a 64-bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64-bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since an
overflow does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the
sequence of a 32-bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles
before repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic algorithm is
newbit: = bit 33 or bit 20, shift left the 33-bit number and put in newbit at the bottom; this operation is performed
for all the newbits needed (i.e. 32-bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32-bits),
; Rb (1 bit in Rb lsb), uses Rc.

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33-bit rotate right
ADC Rb,Rb,Rb ; Carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)

 EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-68

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1. If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5*9 = 45

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-69

LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-70

THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the
ARM9TDMI core. As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the
16-bit format instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using
the Thumb instructions.

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

Move Shifted register

00

0

0 0 0

0 0 0

0 0 0

1

0

0

0 1 0

0

0

0

0

0

1

11

1

1

1

1

00

0 0 0

1

1

1

1

11

1

1

0

L

0

1

1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

0 0 0

0

1 1

1 1

0 0

10

0

L

1 0 R

1 1 0

1 0 SP

1 L

L

S

H

0

0

1 B L

0 1 H

0 1 B

0 0 1

1 1 I Op

Op

Op

Op

Op

L 0

S 1

Offset5 Rs Rd

Rn/offset3

Rd

Rs Rd

Offset8

Rs

Rd/Hd

Rd

H1 H2 Rs/Hs

Rd

Word8

Rd

RbRo

Ro Rb

Rd

Offset5 Rb Rd

Rb RdOffset5

Rd

Rd

Word8

Word8

SWord7

Rb

Cond

Rlist

Rlist

Softset8

Value8

Offset11

Offset

Add/subtract

Move/compare/add/
subtract immediate

ALU operations

Hi regiter operations
/branch exchange

PC-relative load

Load/store with register
offset

Load/store with immediate
offset

Load/store sign-extended
byte/halfword

Load/store halfword

SP-relative load/store

Load address

Add offset to stack pointer

Push/pop register

Multiple load/store

Conditional branch

Software interrupt

Unconditional branch

Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 3-33. THUMB Instruction Set Formats

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-71

OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction
please refer to the sections listed in the right-most column.

Table 3-10. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

ADC Add with Carry 4 – 4

ADD Add 4 – 4 (1)

AND AND 4 – 4

ASR Arithmetic Shift Right 4 – 4

B Unconditional branch 4 – –

Bxx Conditional branch 4 – –

BIC Bit Clear 4 – 4

BL Branch and Link – – –

BX Branch and Exchange 4 4 –

CMN Compare Negative 4 – 4

CMP Compare 4 4 4

EOR EOR 4 – 4

LDMIA Load multiple 4 – –

LDR Load word 4 – –

LDRB Load byte 4 – –

LDRH Load halfword 4 – –

LSL Logical Shift Left 4 – 4

LDSB Load sign-extended byte 4 – –

LDSH Load sign-extended halfword 4 – –

LSR Logical Shift Right 4 – 4

MOV Move register 4 4 4 (2)

MUL Multiply 4 – 4

MVN Move Negative register 4 – 4

ADC Add with Carry 4 – 4

ADD Add 4 – 4 (1)

AND AND 4 – 4

ASR Arithmetic Shift Right 4 – 4

B Unconditional branch 4 – –

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-72

Table 3-10. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition
Codes Set

Bxx Conditional branch 4 – –

BIC Bit Clear 4 – 4

BL Branch and Link – – –

BX Branch and Exchange 4 4 –

CMN Compare Negative 4 – 4

CMP Compare 4 4 4

EOR EOR 4 – 4

LDMIA Load multiple 4 – –

NOTES:
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-73

FORMAT 1: MOVE SHIFTED

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[10:6] Immediate Vale

[12:11] Opcode
0 = LSL
1 = LSR
2 = ASR

Offset5

6 5 3 2

Rd0 0

13 12 11

Op Rs

Figure 3-34. Format 1

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in
Table 3-11.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-11. Summary of Format 1 Instructions

OP THUMB Assembler ARM Equipment Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL #Offset5 Shift Rs left by a 5-bit immediate value and
store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR #Offset5 Perform logical shift right on Rs by a 5-bit
immediate value and store the result in Rd.

10 ASR Rd, Rs,
#Offset5

MOVS Rd, Rs, ASR #Offset5 Perform arithmetic shift right on Rs by a 5-bit
immediate value and store the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-74

FORMAT 2: ADD/SUBTRACT

15

0

14 10

[2:0] Destination Register

[5:3] Source Register

[8:6] Register/Immediate Vale

[9] Opcode
0 = ADD
1 = SUB

[10] Immediate Flag
0 = Register operand
1 = Immediate oerand

Rn/Offset3 Rd0 0

13 12 11

Op Rs

9 8

1 1 I

6 5 3 2 0

Figure 3-35. Format 2

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted
from a Lo register. The THUMB assembler syntax is shown in Table 3-12.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-12. Summary of Format 2 Instructions

OP I THUMB Assembler ARM Equipment Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs.
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs,
#Offset3

Add 3-bit immediate value to contents of
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs,
#Offset3

Subtract 3-bit immediate value from
contents of Rs. Place result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD R0, R3, R4 ; R0 := R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6 := R2 - 6 and set condition codes.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-75

FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

15 0

0

14 10

[7:0] Immediate Vale

[10:8] Source/Destination Register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

Offset8Rd0 0

13 12 11

Op

78

Figure 3-36. Format 3

OPERATION

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The
THUMB assembler syntax is shown in Table 3-13.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-13. Summary of Format 3 Instructions

OP THUMB Assembler ARM Equipment Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit immediate value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, #Offset8 Add 8-bit immediate value to contents of Rd and place
the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, #Offset8 Subtract 8-bit immediate value from contents of Rd and
place the result in Rd.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-13. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

MOV R0, #128 ; R0 := 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 - 62
ADD R1, #255 ; R1 := R1 + 255 and set condition codes
SUB R6, #145 ; R6 := R6 - 145 and set condition codes

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-76

FORMAT 4: ALU OPERATIONS

15 0

0

14 10

[2:0] Source/Destination Register

[5:3] Source Register 2

[9:6] Opcode

56 3

Rd0 0

13 12 11

Op Rs0 0 0

9 2

Figure 3-37. Format 4

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Table 3-14. Summary of Format 4 Instructions

OP THUMB Assembler ARM Equipment Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd := Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd := Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd - Rs - NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = - Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd - Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd := Rs * Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-77

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

EOR R3, R4 ; R3 := R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; Store the result in R5. Set condition codes ie R5 = - R3
CMP R2, R6 ; Set the condition codes on the result of R2 - R6
MUL R0, R7 ; R0 := R7 * R0 and set condition codes

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-78

FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

15 0

0

14 10

[2:0] Destination Register

[5:3] Source Register

[6] Hi Operand Flag 2

[7] Hi Operand Flag 1

[9:8] Opcode

6 5 3 2

Rd/Hd0 0

13 12 11

Op Rs/Hs0 0 0

9 8 7

H1 H2

Figure 3-38. Format 5

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-15.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op = 10 (MOV) is undefined, and should not
be used.

Table 3-15. Summary of Format 5 Instructions

Op H1 H2 THUMB assembler ARM equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a
register in the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a
register in the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7
with a register in the range 8-15. Set
the condition code flags on the result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-15
with a register in the range 0-7. Set the
condition code flags on the result.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-79

Table 3-15. Summary of Format 5 Instructions (Continued)

Op H1 H2 THUMB assembler ARM equivalent Action

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range
8-15. Set the condition code flags on
the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the
range 8-15 to a register in the range
0-7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the
range 0-7 to a register in the range
8-15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers
in the range 8-15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state
change) to address in a register in the
range 0-7.

11 0 1 BX Hs BX Hs Perform branch (plus optional state
change) to address in a register in the
range 8-15.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.

Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-80

Examples

Hi-Register Operations

ADD PC, R5 ; PC := PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes,
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

 •
•
ALIGN
CODE32
outofTHUMB ; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a
BX PC in THUMB state from a non-word aligned address will result in unpredictable execution.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-81

FORMAT 6: PC-RELATIVE LOAD

15 0

0

14 10

[7:0] Immediate Value

[10:8] Destination Register

Word 80 0

13 12 11

Rd0 0

8 7

Figure 3-39. Format 6

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB
assembler syntax is shown below.

Table 3-16. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 words, 1020 bytes) in
Imm to the current value of the PC. Load the
word from the resulting address into Rd.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0),
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than the address
of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB
instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-82

FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Byte/Word Flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 L B

9 8

Ro0

Figure 3-40. Format 7

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-83

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-17.

Table 3-17. Summary of Format 7 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by adding
together the value in Rb and the value in Ro.
Store the contents of Rd at the address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by adding
together the value in Rb and the value in Ro.
Store the byte value in Rd at the resulting
address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by adding
together the value in Rb and the value in Ro.
Load the contents of the address into Rd.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:

Calculate the source address by adding
together the value in Rb and the value in Ro.
Load the byte value at the resulting address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STR R3, [R2,R6] ; Store word in R3 at the address
; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 to R0.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-84

FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

[2:0] Destination Register

[5:3] Base Register

[8:6] Offset Register

[10] Sign-Extended Flag
0 = Operand not sing-extended
1 = Operand sing-extended

[11] H Flag

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb1 H S

9 8

Ro1

Figure 3-41. Format 8

OPERATION

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler
syntax is shown below.

Table 3-18. Summary of format 8 instructions

S H THUMB assembler ARM equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store halfword:

Add Ro to base address in Rb. Store bits
0-15 of Rd at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load halfword:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:

Add Ro to base address in Rb. Load bits
0-7 of Rd from the resulting address, and
set bits 8-31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended halfword:

Add Ro to base address in Rb. Load bits
0-15 of Rd from the resulting address,
and set bits 16-31 of Rd to bit 15.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-85

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword
; found at the address formed by adding R2 to R4.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-86

FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Offset Register

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

[12] Byte/Word Flad
0 = Transfer word quantity
1 = Transfer byte quantity

15 0

0

14 10 6 5 3 2

Rd1 1

13 12 11

RbB L Offset5

Figure 3-42. Format 9

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-87

OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit
offset. The THUMB assembler syntax is shown in Table 3-19.

Table 3-19. Summary of Format 9 Instructions

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the contents of Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by adding
together the value in Rb and Imm. Load
Rd from the address.

0 1 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by adding
together the value in Rb and Imm. Store
the byte value in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by adding
together the value in Rb and Imm. Load
the byte value at the address into Rd.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-88

FORMAT 10: LOAD/STORE HALFWORD

[2:0] Source/Destination Register

[5:3] Base Register

[10:6] Immediate Value

[11] Load/Store Flag
0 = Store to memory
1 = Load from memory

15 0

0

14 10 6 5 3 2

Rd1 0

13 12 11

Rb0 L Offset5

Figure 3-43. Format 10

OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-20.

Table 3-20. Halfword Data Transfer Instructions

L THUMB assembler ARM equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and store
bits 0–15 of Rd at the resulting address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load bits
0-15 from the resulting address into Rd and
set bits 16-31 to zero.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit 0 set to 0) since the assembler places
#Imm >> 1 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed by
; adding 4 to R7. Note that the THUMB opcode will contain
; 2 as the Offset5 value.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-89

FORMAT 11: SP-RELATIVE LOAD/STORE

[7:0] Immediate Value

[10:8] Destination Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 0

13 12 11

Word 81 L Rd

78

Figure 3-44. Format 11

OPERATION

The instructions in this group perform an SP-relative load or store. The THUMB assembler syntax is shown in the
following table.

Table 3-21. SP-Relative Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Store the contents of Rd at the
resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020
bytes) in Imm to the current value of the SP
(R7). Load the word from the resulting
address into Rd.

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0),
since the assembler places #Imm >> 2 in the Word8 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-90

FORMAT 12: LOAD ADDRESS

[7:0] 8-bit Unsigned Constant

[10:8] Destination Register

[11] Source
0 = PC
1 = SP

15 0

1

14 10

0 1

13 12 11

Word 80 SP Rd

78

Figure 3-45. Format 12

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the
resulting address into a register. The THUMB assembler syntax is shown in the following table.

Table 3-22. Load Address

SP THUMB assembler ARM equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value of the
program counter (PC) and load the result
into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value of the stack
pointer (SP) and load the result into Rd.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0)
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC
will be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-91

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD R2, PC, #572 ; R2 := PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6 := SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-92

FORMAT 13: ADD OFFSET TO STACK POINTER

[6:0] 7-bit Immediate Value

[7] Sign Flag
0 = Offset is positive
1 = Offset is negative

15 0

1

14 10

0 1

13 12 11

SWord 71 0 0

789 6

0 0 S

Figure 3-46. Format 13

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB
assembler syntax.

Table 3-23. The ADD SP Instruction

S THUMB assembler ARM equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, # -Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

NOTE: The offset specified by #Imm can be up to -/+ 508, but must be word-aligned (ie with bits 1:0 set to 0)
since the assembler converts #Imm to an 8-bit sign + magnitude number before placing it in field SWord7.

The condition codes are not set by this instruction.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 ; SP (R13) := SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S=1.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-93

FORMAT 14: PUSH/POP REGISTERS

[7:0] Register List

[8] PC/LR Bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

0 1

13 12 11

Rlist1 L 0

789

1 R

Figure 3-47. Format 14

OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-24.

NOTE

The stack is always assumed to be Full Descending.

Table 3-24. PUSH and POP Instructions

L R THUMB assembler ARM equivalent Action

0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by Rlist onto
the stack. Update the stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!,
{ Rlist, R14 }

Push the Link Register and the registers
specified by Rlist (if any) onto the stack.
Update the stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the registers
specified by Rlist. Update the stack
pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} Pop values off the stack and load into the
registers specified by Rlist. Pop the PC
off the stack. Update the stack pointer.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-94

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

PUSH {R0-R4,LR} ; Store R0,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-95

FORMAT 15: MULTIPLE LOAD/STORE

[7:0] Register List

[10:8] Base Register

[11] Load/Store Bit
0 = Store to memory
1 = Load from memory

15 0

1

14 10

1 0

13 12 11

Rlist0 L

78

RB

Figure 3-48. Format 15

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in
the following table.

Table 3-25. The Multiple Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by Rlist,
starting at the base address in Rb. Write
back the new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by Rlist, starting
at the base address in Rb. Write back the
new base address.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-25. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7
; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-96

FORMAT 16: CONDITIONAL BRANCH

[7:0] 8-bit Signed Immediate

[11:8] Condition

15 0

1

14

1 0

13 12 11

SOffset 81

78

Cond

Figure 3-49. Format 16

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-97

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition
codes. The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4
bytes) ahead of the current instruction.

The THUMB assembler syntax is shown in the following table.

Table 3-26. The Conditional Branch Instructions

Cond THUMB assembler ARM equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher or same)

0011 BCC label BCC label Branch if C clear (unsigned lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear (unsigned higher)

1001 BLS label BLS label Branch if C clear or Z set (unsigned lower or same)

1010 BGE label BGE label Branch if N set and V set, or N clear and V clear (greater or
equal)

1011 BLT label BLT label Branch if N set and V clear, or N clear and V set (less than)

1100 BGT label BGT label Branch if Z clear, and either N set and V set or N clear and
V clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V clear, or N clear and V set
(less than or equal)

 NOTES:
1. While label specifies a full 9-bit two’s complement address, this must always be halfword-aligned (ie with bit 0 set to 0)

since the assembler actually places label >> 1 in field SOffset8.
2. Cond = 1110 is undefined, and should not be used.

Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-26. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

CMP R0, #45 ; Branch to ’over’ if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
• ; the number of halfwords to offset.
•

over • ; Must be halfword aligned.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-98

FORMAT 17: SOFTWARE INTERRUPT

[7:0] Comment Field

15 0

1

14

1 0

13 12 11

Value 81

7810 9

1 1 1 1

Figure 3-50. Format 17

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

Table 3-27. The SWI Instruction

THUMB assembler ARM equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:
Move the address of the next instruction into LR,
move CPSR to SPSR, load the SWI vector address
(0x8) into the PC. Switch to ARM state and enter
SVC mode.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-27. The instruction cycle
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

Examples

SWI 18 ; Take the software interrupt exception.
; Enter Supervisor mode with 18 as the
; requested SWI number.

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-99

FORMAT 18: UNCONDITIONAL BRANCH

[10:0] Immediate Value

15 0

1

14

1 1

13 12 11

Offset110

10

0

Figure 3-51. Format 18

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current
instruction.

Table 3-28. Summary of Branch Instruction

THUMB assembler ARM equivalent Action

B label BAL label (halfword offset) Branch PC relative +/- Offset11 << 1, where label is
PC +/- 2048 bytes.

NOTE: The address specified by label is a full 12-bit two’s complement address,
but must always be halfword aligned (ie bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

Examples

here B here ; Branch onto itself. Assembles to 0xE7FE.
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
• ; Note that the THUMB opcode will contain the number of
•
• ; halfwords to offset.

jimmy • ; Must be halfword aligned.

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-100

FORMAT 19: LONG BRANCH WITH LINK

[10:0] Long Branch and Link Offset High/Low

[11] Low/High Offset Bit
0 = Offset high
1 = Offset low

15 0

1

14

1 1

13 12 11

Offset1

10

H

Figure 3-52. Format 19

OPERATION

This format specifies a long branch with link.

The assembler splits the 23-bit two’s complement half-word offset specifed by the label into two 11-bit halves,
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address
of the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead
of the current instruction

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-101

INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction.

Table 3-29. The BL Instruction

L THUMB assembler ARM equivalent Action

0 BL label none LR := PC + OffsetHigh << 12

1 temp := next instruction address

PC := LR + OffsetLow << 1
LR := temp | 1

Examples

BL faraway ; Unconditionally Branch to 'faraway'
next • ; and place following instruction

• ; address, ie ’next’, in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of halfwords to offset.

faraway • ; Must be Half-word aligned.
•

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-102

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ; MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62

(2..5) ; (2..5)
LSL Ra, Ra, #n ; MOV Ra, Ra, LSL #n

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-103

GENERAL PURPOSE SIGNED DIVIDE

This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0×FFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0×FFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend (R1 value). To do this shift
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l
MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the 'ones' value).

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-104

Now fixup the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = – 1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = – 1
SUB R1, R2
MOV pc, lr

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS a4, a1, #&80000000
RSBMI a1, a1, #0
EORS ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS a2, a2, #0

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS a3, a1
BEQ divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP a3, a2, LSR #1
MOVLS a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO s_loop

div_l
CMP a2, a3
ADC a4, a4, a4
SUBCS a2, a2, a3
TEQ a3, a1
MOVNE a3, a3, LSR #1
BNE s_loop2
MOV a1, a4
MOVS ip, ip, ASL #1
RSBCS a1, a1, #0
RSBMI a2, a2, #0
MOV pc, lr

S3C2800 RISC MICROPROCESSOR INSTRUCTION SET

3-105

DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and
ARM code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

MOV a2, a1
LSR a3, a1, #2
SUB a1, a3
LSR a3, a1, #4
ADD a1, a3
LSR a3, a1, #8
ADD a1, a3
LSR a3, a1, #16
ADD a1, a3
LSR a1, #3
ASL a3, a1, #2
ADD a3, a1
ASL a3, #1
SUB a2, a3
CMP a2, #10
BLT %FT0
ADD a1, #1
SUB a2, #10

0
MOV pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1,
; remainder in a2

SUB a2, a1, #10
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1
ADDPL a1, a1, #1
ADDMI a2, a2, #10
MOV pc, lr

INSTRUCTION SET S3C2800 RISC MICROPROCESSOR

3-106

NOTES

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-1

4 CACHES, WRITE BUFFER, and PHYSICAL

 ADDRESS TAG(PA TAG) RAM

ABOUT THE CACHES AND WRITE BUFFER

The ARM920T level-one memory system includes an instruction cache (ICache), a data cache (DCache), a write
buffer and a Physical Address (PA) TAG RAM to reduce the effect of main memory bandwidth and latency on
performance.

The ARM920T implements separate 16KB instruction and 16KB data caches (ICache and DCache).

The caches have the following features:

• Virtually-addressed 64-way associative cache.

• words per line (32 bytes per line) with one valid bit and two dirty bits per line, allowing half-line write-backs.

• Write-through and write-back cache operation (write-back caches are also known as copy back caches),
selected per memory region by the C and B bits in the MMU translation tables (for data cache only).

• Pseudo-random or round-robin replacement, selectable via RR bit in CP15 register 1.

• Low-power CAM-RAM implementation.

• Caches independently lockable with granularity of 1/64th of cache, which is 64 words (256 bytes).

• For compatibility with Microsoft WindowsCE, and to reduce interrupt latency, the physical address
corresponding to each data cache entry is stored in the PA TAG RAM for use during cache line write-backs,
in addition to the VA (virtual address) TAG stored in the cache CAMs. This means that the MMU is not
involved in cache write-back operations, removing the possibility of TLB misses related to the write-back
address.

• Cache maintenance operations to provide efficient cleaning of the entire data cache, and to provide efficient
cleaning and invalidation of small regions of virtual memory. The latter allows ICache coherency to be
efficiently maintained when small code changes occur, for example self-modifying code and changes to
exception vectors.

The write buffer:

• has a 16-word data buffer

• has a 4-address address buffer

• can be drained under software control, using a CP15 MCR instruction (see Drain write buffer on page 4-17).

The ARM920T can be drained under software control and the ARM920T put into a low-power state until an
interrupt occurs, using a CP15 MCR instruction (see Wait for interrupt on page 4-17).

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-2

INSTRUCTION CACHE (ICache)

The ARM920T includes a 16KB instruction cache. The ICache has 512 lines of 32 bytes (8 words), arranged as a
64-way set-associative cache and uses MVAs (modified virtual addresses), translated by CP15 register 13 (see
Address translation on page 5-4), from the ARM9TDMI core.

The ICache implements allocate-on-read-miss. Random or round-robin replacement can be selected under
software control using the RR bit (CP15 register 1, bit 14). Random replacement is selected at reset.

Instructions can also be locked in the ICache so that they cannot be overwritten by a linefill. This operates with a
granularity of 1/64th of the cache, which is 64 words (256 bytes).

All instruction accesses are subject to MMU permission and translation checks. Instruction fetches that are
aborted by the MMU do not cause linefills or instruction fetches to appear on the AMBA ASB interface

NOTE

For clarity, the I bit (bit 12 in CP15 register 1) is called the Icr bit throughout the following text. The C bit
from the MMU translation table descriptor corresponding to the address being accessed is called the Ctt
bit.

ICACHE ORGANIZATION

The ICache is organized as eight segments, each containing 64 lines, and each line cantaning eight words. The
position of the line within the segment is a number from 0 to 63. This is called the index. A line in the cache can
be uniquely identified by its segment and index. The index is independent of the MVA. The segment is selected
by bits [7:5] of the MVA.

Bits [4:2] of the MVA specify the word within a cache line that is accessed. For halfword operations. bit [1] of the
MVA sepcifies the halfword that is accessed within the word. For byte operations, bits [1:0] specify the byte within
the word that is accessed.

Bits [31:8] of the MVA of each cache line are called the TAG. The MVA TAG is stored in the cache, along with
the 8-words of data, when the line is loaded by a linefill.

Cache lookups compare bits [31:8] of the MVA of the access with the stored TAG to determine whether the
access is a hit or miss. The cache is therfore said to be virtually addresssed. The logical model of the 16KB
ICache is shown in Figure 4-1.

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-3

31

TAG Seg

12 04578Modified Virtual Address

Word Byte

 7

 SEG0

6
5

4
3

2
1

TAG W0 W7

CAM RAM

2KB RAM = 64 lines x 8 words

0 7

32

Decoder

7
0

C
ac

he
 li

ne
/in

de
x

SEG 0 select

RDATA[31:0]

0

63

Figure 4-1. Addressing the 16KB ICache

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-4

ENABLING AND DISABLING THE ICACHE

On reset, the ICache entries are all invalidated and the ICache is disabled.

You can enable the ICache by writing 1 to the Icr bit, and disable it by writing 0 to the Icr bit.

When the ICache is disabled, the cache contents are ignored and all instruction fetchs appear on the AMBA ASB
interface as separate nonsequential accesses.

The ICache is usually used with the MMU enabled, in this case the Ctt in the relevant MMU translation table
descriptor indicates whether an area of memory is cacheable.

If the cache is enabled after having been enabled, all cache contents are ignored. All instruction fetches appear
on the AMBA ASB interface as separate nonsequential accesses and the cache is not updated. If the cache is
subsequently re-enabled its contents are unchanged. If the contents are no longer coherent with main memory,
you must invalidate the ICache before you re-enable it (see Register 7, cache operations register on page 2-28).

If the cache is enabled with the MMU disabled, all instruction fetches are treated as cachable. No protection
checks are made, and the physical address is flat-mapped to the modified virtual address.

You can enable the MMU and ICache simultaneously by writing a 1 to the M bit, and a 1 to the Icr bit in CP15
register 1, with a single MCR instruction.

NOTE

ARM920T implements a nonsequential access on the AMBA ASB interface as an A-TRAN cycle followed
by an S-TRAN cycle. It does not produce N-TRAN cycles. A linefill appears as an A-TRAN cycle followed
by an S-TRAN cycle.

ICACHE OPERATION

If the ICache is disabled, each instruction fetch results in a separate nonsequential memory access on the AMBA
ASB interface, giving very low bus and memory performance. Therefore, you must enable the ICache as soon as
possible after reset.

If the ICache is enabled, an ICache lookup is performed for each instruction fetch regardless of the setting of the
Ctt bit in the relevant MMU translation table descriptor.

• If the required instruction is found in the cache, the lookup is called a cache hit. If the instruction fetch is a
cache hit and Ctt=1, indicating a cacheable region of memory, then the instruction is returned from the cache
to the ARM9TDMI CPU core.

• If the required instruction is not found in the cache, the lookup is called a cache miss. If it is a cache miss and
Ctt=1, then an eight-word linefill is performed, possibly replacing another entry. The entry to be replaced,
(called the victim), is chosen from the entries that are not locked, using either a random or round-robin
replacement policy. If Ctt=0, indicating a non-cacheable region of memory, then a single nonsequential
memory access appears on the AMBA ASB interface.

NOTE

If Ctt=0, indicating a non-cacheable region of memory, then the cache lookup results in a cache miss.
The only way that it can result in a cache hit is if software has changed the value of the Ctt bit in the
MMU translation table descriptor without invalidating the cache contents. This is a programming error.
The behavior in this case is architecturally unpredictable and varies between implementations.

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-5

ICACHE REPLACEMENT ALGORITHM

The ICache and DCache replacement algorithm is selected by the RR bit in the CP15 control register (CP15
register 1, bit 14). Random replacement is selected at reset. Setting the RR bit to 1 selects round-robin
replacement means that entries are replaced sequentially in each cache segment.

ICACHE LOCKDOWN

You can lock instructions into the ICache, causing the ICache to gurantee a hit, and provide optimum and
predictable excution time.

If you enable the ICache, an ICache lookup is performed for each instruction fetch. If the ICache misses and the
Ctt=1 than an eight-word linefill is performed. The entry to be replaced is selected by the victim pointer. You can
lock instructions into the ICache by controlling the victim pointer, and forcing prefetches to the ICache.

Yoy lock instructions in the ICache by first ensuring the code to be locked is not already in the cache. You can
ensure this by invalidating either the whole ICache or specific lines:

MCR p15, 0, Rd, c7, c5, 0 ; Invalidate ICache

MCR p15, 0, Rd, c7, c5, 1 ; Invalidate ICache line using MVA

You can use a short software routine to load the instructions into the ICache. The software routine must either be
noncacheable, or already in the ICache but not in an ICache line about to be overwritten. You must enable the
MMU to ensure that any TLB misses that occur while loading the instructions cause a page table walk.

The software routine operates by writing to CP15 register 9 to force the victim pointer to a specific ICache line
and by using the prefetch ICache line operation to force the ICache to perform a lookup. This misses, assuming
the code has been invalidated, and an 8-word linefill is performed loading the cache line into the entry specified
by the victim pointer. When all the instructions have been loaded, They are then locked by writing to CP15
register 9 to set the victim pointer base to be one higher than the last entry written. All further linefills now occur
in the range victim base to 63.

An example ICache lockdown routine is shown in Example 4-1. The example assumes that the number of cache
lines to be loaded is not known. The address does not have to be cache line or word-aligned but this is
recommended to ensure future compatibility.

NOTE

The prefetch ICache Line operation uses MVA formet, because address aliasing is not performed on the
address in Rd. It is advisable for the associated TLB entry to be locked into the TLB to avoid page table
walks during execution of the locked code.

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-6

Example 4-1 Icache Lockdown Routine

ADRL r0,start_address ; address pointer
ADRL r1,end_address
MOV r2,#lockdown_base<<26 ; victim pointer
MCR p15,0,r2,c9,c0,1 ; write ICache victim and lockdown base

loop
MCR p15,0,r0,c7,c13,1 ; Prefetch ICache line
ADD r0,r0,#32 ; increment address pointer to next

; ICache line

;; do we need to increment the victim pointer?
;; test for segment 0, and if so, increment the victim pointer
;; and write the ICache victim and lockdown base.

AND r3,r0,#0xE0 ; extract the segment bits from the
; address

CMP r3,#0x0 ; test for segment 0
ADDEQ r2,r2,#0x1<<26 ; if segment 0, increment victim pointer
MCREQ p15,0,r2,c9,c0,1 ; and write ICache victim and lockdown

; base

;; have we linefilled enough code?
;; test for the address pointer being less than or equal to the
;; end_address and if so, loop and perform another linefill

CMP r0,r1 ; test for less than or equal to
; end_address

BLE loop ; if not, loop

;; have we exited with r3 pointing to segment 0?
;; if so, the ICache victim and lockdown base has already been set to one
;; higher than the last entry written.
;; if not, increment the victim pointer and write the ICache victim and
;; lockdown base.

CMP r3,#0x0 ; test for segments 1 to 7
ADDNE r2,r2,#0x1<<26 ; if address is segment 1 to 7,
MCRNE p15,0,r2,c9,c0,1 ; write ICache victim and lockdown base

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-7

DCACHE AND WRITE BUFFER

The ARM920T includes a 16KB DCache (Data Cache) and a write buffer to reduce the effect of main memory
bandwidth and latency on data access performance. The DCache has 512 lines of 32 bytes (8-words), arranged
as a 64-way set-associative cache and uses MVAs (Modified Virtual Addresses) translated by CP15 register 13
(see Address translation on page 5-4) from the ARM9TDMI CPU core. The write buffer can hold up to 16 words
of data and four separate addresses. The operation of the DCache and the write buffer are closely connected.

The DCache supports write-through and write-back memory regions, controlled by the C and B bits in each
section and page descriptor within the MMU translation tables. For clarity, these bits are called Ctt and Btt in the
following text. For details see DCache and write buffer operation on page 4-8.

Each DCache line has two dirty bits, one for the first four words of the line, the other for the last four words, and a
single virtual TAG address and valid bit for the entire 8-word line. The physical address from which each line is
loaded is stored in the PA TAG RAM and is used when writing modified lines back to memory.

When a store hits in the DCache, if the memory region is write-back, the associated dirty bit is set marking the
appropriate half-line as being modified. If the cache line is replaced due to a linefill, or if the line is the target of a
DCache clean operation, the dirty bits are used to decide whether the whole, half, or none of the line is written
back to memory. The line is written back to the same physical address from which it was loaded, regardless of
any changes to the MMU translation tables.

The DCache implements allocate-on-read-miss. Random or round-robin replacement can be selected under
software control by the RR bit (CP15 register 1, bit 14). Random replacement is selected at reset. A linefill always
loads a complete 8-word line.

Data can also be locked in the DCache so that it cannot be overwritten by a linefill. This operates with a
granularity of 1/64th of the cache, which is 64 words (256 bytes).

All data accesses are subject to MMU permission and translation checks. Data accesses that are aborted by the
MMU do not cause linefills or data accesses to appear on the AMBA ASB interface.

For clarity, the C bit (bit 2 in CP15 register 1) is called the Ccr bit throughout the following text.

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-8

ENABLING AND DISABLING THE DCACHE AND WRITE BUFFER

On reset, the DCache entries are invalidated and the DCache is disabled, and the write buffer contents are
discarded.

There is no explicit write buffer enable bit implemented in ARM920T. The write buffer is used in the following
ways:

• • You can enable the DCache by writing 1 to the Ccr bit, and disabled it by writing 0 to the Ccr bit.

• • You must only enable the DCache when the MMU is enabled. This is because the MMU translation tables
define the cache and write buffer configuration for each memory region.

• If the DCache is disabled after having been enabled, the cache contents are ignored and all data accesses
appear on the AMBA ASB (Advanced System Bus) interface as separate nonsequential accesses and the
cache is not updated. If the cache is subsequently re-enabled its contents are unchanged. Depending on the
software system design, you might have to clean the cache after it is disabled, and invalidate it before you re-
enable it. See Cache coherence on page 4-14.

• You can enable or disable the MMU and DCache simultaneously with a single MCR that changes the M and
C bit in the control register (CP15 register 1).

DCACHE AND WRITE BUFFER OPERATION

The DCache and write buffer configuration of each memory region is controlled by the Ctt and Btt bits in each
section and page descriptor in the MMU translation tables. You can modify the configuration using the DCache
enable bit in the CP15 control register. This is called Ccr.

If the DCache is enabled, a DCache lookup is performed for each data access initiated by the ARM9TDMI CPU
core, regardless of the value of the Ctt bit in the relevant MMU translation table descriptor. If the required data is
not found, the loockup is called a cache miss. In this context a data access means any type of load (read), store
(write), or swap instruction, including LDR, LDRB, LDRH, LDM, LDC, STR, STRB, STRH, STC, SWP and
SWPB.

Accesses appear on the AMBA ASB interface in program order but the ARM9TDMI CPU core can continue
executing at full speed, reading instructions and data from the caches, and writing to the DCache and write
buffer, while buffered writes are being written to memory through the AMBA ASB interface.

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-9

Table4-1 describes the DCache and write buffer behavior for each type of memory configuration. Ctt AND Ccr
means the bitwise Boolean AND of Ctt with Ccr.

Table 4-1. DCache and Write Buffer Configuration

Ctt and Ccr Btt Data cache, write buffer and memory access behavior

0 (1) 0 Noncached, nonbuffered (NCNB).
Reads and writes are not cached. They always perform accesses on the AMBA ASB
interface. Writes are not buffered. The CPU halts until the write is completed on the
AMBA ASB interface.
Reads and writes can be externally aborted.
Cache hits never occur under normal operation. (2)

0 1 Noncached, buffered (NCB).
Reads and writes are not cached, and always perform accesses on the AMBA ASB
interface. Writes are placed in the write buffer and appear on the AMBA ASB interface.
The CPU continues execution as soon as the write is placed in the write buffer.
Reads can be externally aborted.
Writes can not be externally aborted.
Cache hits never occur under normal operation. (2)

1 0 Cached, write-through mode (WT).
Reads that hit in the cache read the data from the cache and do not perform an access
on the AMBA ASB interface.
Reads that miss in the cache cause a linefill.
Writes that hit in the cache update the cache.
All writes are placed in the write buffer and appear on the AMBA ASB interface.
The CPU continues execution as soon as the write is placed in the write buffer.
Reads and writes cannot be externally aborted.

1 1 Cached write-back mode (WB).
Reads that hit in the cache read the data from the cache and do not perform an AMBA
ASB interface access.
Reads that miss in the cache cause a linefill.
Writes that hit in the cache update the cache and mark the appropriate half of the cache
line as dirty, and do not cause an AMBA ASB interface access.
Writes that miss in the cache are placed in the write buffer and appear on the AMBA ASB
interface. The CPU continues execution as soon as the write is placed in the write buffer.
Cache write-backs are buffered.
Reads, Writes and write-backs cannot be externally aborted.

NOTES:
1. If the control register C bit (Ccr) is zero, it disables all lookups in the cache, while if the translation table descriptor C bit

(Ctt) is zero, it only stops new data being loaded into the cache. With Ccr = 1 and Ctt = 0 the cache is still searched on
every access to check whether the cache contains an entry for the data.

2. It is an operating system software error if a cache hit occurs when reading from, or writing to, a region of memory
marked as NCNB or NCB. The only way this can occur is if the operating system changes the value of the C and B bits
in a page table descriptor, while the cache contains data from the area of virtual memory controlled by that descriptor.
The cache and memory system behavior resulting from changing the page table descriptor in this way is unpredictable.
If the operating system has to change the C and B bits of a page table descriptor, it must ensure that the caches do not
contain any data controlled by that descriptor. In some circumstances, the operating system might have to clean and
flush the caches to ensure this.

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-10

A linefill performs an 8-word burst read from the AMBA ASB interface and places it as a new entry in the cache,
possibly replacing another line at the same location within the cache. The location that is replaced, called the
victim, is chosen from the entries that are not locked using either a random or round-robin replacement policy. If
the cache line being replaced is marked as dirty, indicating that it has been modified and that main memory has
not been updated to reflect the change, a cache writeback occurs.

Depending on whether one or both halves of the cache line are dirty, the write-back performs a 4 or 8-word
sequential burst write access on the AMBA ASB interface. The CPU can then continue while the write-back data is
written to memory over the AMBA ASB interface.

Load multiple (LDM) instructions accessing NCNB or NCB regions perform sequential bursts on the AMBA ASB
interface. Store multiple (STM) instructions accessing NCNB regions also perform sequential bursts on the AMBA
ASB interface.

The sequential burst is split into two bursts if it crosses a 1KB boundary. This is because the smallest MMU
protection and mapping size is 1KB, so the memory regions on each size of the 1KB boundary can have different
properties.

This means that sequential access generated by ARM920T do not cross a 1KB boundary, this can be exploited to
simplify memory interface design. For example, a simple page-mode DRAM controller can perform a page-mode
access for each sequential access, provided the DRAM page size is 1KB or larger.

See also Cache coherence on page 4-14.

DCACHE ORGANIZATION

The DCache is organized as eight segments, each containing 64 lines, and each line containing eight words. The
position of the line within the segment is a number from 0 to 63. This is called the index. A line in the cache can
be uniquely identified by its segment and index. The index is independent of the MVA. The segment is selected
by bits [7:5] of the MVA.

Bits [4:2] of the MVA specify which word within a cache line is accessed. For halfword operations, bit [1] of the
MVA specifies which halfword is accessed within the word. For byte operations, bits [1:0] specify which byte
within the word is accessed.

Bits [31:8] of the MVA of each cache line are called the TAG. The MVA TAG is stored in the cache, along with
the eight words of data, when the line is loaded by a linefill.

Cache lookups compare bits [31:8] of the MVA of the access with the stored TAG to determine whether the
access is a hit or miss. The cache is therefore said to be virtually addressed.

The DCache logical model is the same as for the ICache. See Figure 4-1 Addressing the 16KB ICache.

DCACHE REPLACEMENT ALGORITHM

The DCache and ICache replacement algorithm is selected by the RR bit in the CP15 Control register (CP15
register 1, bit 14). Random replacement is selected at reset. Setting the RR bit to 1 selects round-robin
replacement means that entries are replaced sequentially in each segment.

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-11

SWAP INSTRUCTIONS

Swap instruction (SWP or SWPB) behavior is dependent on whether the memory region is cacheable or
noncacheable.

Swap instructions to cacheable regions of memory are useful for implementing semaphores or other
synchronization primitives in multithreaded uniprocessor software systems.

Swap instructions to noncacheable memory regions are useful for synchronization between two bus masters in a
multi-master bus system. This can be two processors, or one processor and a DMA controller.

When a swap instruction accesses a cacheable region of memory (write-through or write-back), the DCache and
write buffer behavior will is the same as having a load followed by a store according to the normal rules
described. The BLOK pin is not asserted during the execution of the instruction. It is guaranteed that no interrupt
can occur between the load and store portions of the swap.

When a swap instruction accesses a noncacheable (NCB or NCNB) region of memory, the write buffer is drained,
and a single word or byte is read from the AMBA ASB interface. The write portion of the swap is then treated as
nonbufferable, regardless of the value of Btt, and the processor is stalled until the write is completed on the
AMBA ASB interface. The BLOK pin is asserted to indicate that you can treat the read and write as an atomic
operation on the bus.

Like all other data accesses, a swap to a noncacheable region that hits in the cache indicates a programming
error.

DCACHE LOCKDOWN

You can lock data into the DCache, causing the DCache to guarantee a hit, and provide optimum and predictable
execution time.

If you enable the DCache, a DCache lookup is performed for each load. If the DCache misses and the Ctt=1 then
an eight-word linefill is performed. The entry to be replaced is selected by the victim pointer. You can lock data
into the DCache by controlling the victim pointer, and forcing loads to the DCache.

You lock data in the DCache by first ensuring the data to be locked is not already in the cache. You can ensure
this by cleaning and invalidating eighter the whole DCache or specific lines. Example 4-2 shows DCache
invalidate and clean operations that you can perform to do this.

Example 4-2 Dcache Invalidate and Clean Operations

MCR p15, 0, Rd, c7, c6, 0 ; Invalidate DCache

MCR p15, 0, Rd, c7, c6, 1 ; Invalidate DCache single entry using MVA

MCR p15, 0, Rd, c7, c10, 1 ; Clean DCache single entry using MVA

MCR p15, 0, Rd, c7, c14, 1 ; Clean and Invalidate DCache single entry using MVA

MCR p15, 0, Rd, c7, c10, 2 ; Clean DCache single entry using Index

MCR p15, 0, Rd, c7, c14, 2 ; Clean and Invalidate DCache single entry using Index

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-12

Yoy can then use a short software routine to load the data into the DCache. You can locate the software routine
in a cachable region of memory providing it does not contain any loads or stores. You must enable the MMU.

The software routine operates by writing to CP15 register 9 to force the victim pointer to a specific DCache line
and by using an LDR or LDM to force the DCache to perform a lookup. This misses, assuming the data was
previously invalidated, and an eight-word linefill is performed loading the cache line into the entry specified by
the victim pointer. When all the data has been loaded, it is then locked by writing to CP15 register 9 to set the
victim pointer base to be one higher than the last entry written. All further linefills now occur in the range victim
base to 63.

An example DCache lockdown routine is shown in Example 4-3. The example assumes that the number of cache
lines to be loaded in not known. The address does not have cache line or word-aligned, although it is preferable
for future compatibility.

NOTE

The LDR or LDM uses VA format, because address aliasing is performed on the address.
It is advisable for the associated TLB entry to be locked into the TLB to avoid page table walks during
accesses of the locked data.

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-13

Example 4-3 Dcache Lockdown Routine

ADRL r0,start_address ; address pointer
ADRL r1,end_address
MOV r2,#lockdown_base<<26 ; victim pointer
MCR p15,0,r2,c9,c0,0 ; write DCache victim and lockdown

; base

loop

LDR r3,[r0],#32 ; load DCache line, increment to next
; DCache line

;; do we need to increment the victim pointer?
;; test for segment 0, and if so, increment the victim pointer and
;; write the ICache victim and lockdown base.

AND r3,r0,#0xE0 ; extract the segment bits from the
; address

CMP r3,#0x0 ; test for segment 0
ADDEQ r2,r2,#0x1<<26 ; if segment 0, increment victim pointer
MCREQ p15,0,r2,c9,c0,0 ; and write DCache victim and lockdown

; base

;; have we linefilled enough code?
;; test for the address pointer being less than or equal to the end_address
;; and if so, loop and perform another linefill

CMP r0,r1 ; test for less than or equal to
; end_address,

BLE loop ; if not, loop

;; have we exited with r3 pointing to segment 0?
;; if so, the ICache victim and lockdown base has already been set to one
;; higher than the last entry written.
;; if not, increment the victim pointer and write the ICache victim and
;; lockdown base.

CMP r3,#0x0 ; test for segments 1 to 7
ADDNE r2,r2,#0x1<<26 ; if address is segment 1 to 7,
MCRNE p15,0,r2,c9,c0,0 ; write DCache victim and lockdown

; base

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-14

CACHE COHERENCE

The ICache and DCache contain copies of information normally held in main memory. If these copies of memory
information get out of step with each other because one is updated and the others is not updated, they are said to
have become incoherent. If the DCache contains a line that has been modified by a store or swap instruction, and
the main memory has not been updated, the cache line is said to be dirty. Clean operations force the cache to
write dirty lines back to main memory. The ICache then has to be made coherent with a changed area of memory
after any changes to the instructions that appear at an MVA, and before the new instructions are executed.

On the ARM920T, software is responsible for maintaining coherence between main memory, the ICache, and the
DCache.

Register 7, cache operations register on page 2-28 describes facilities for invalidating the entire ICache or
individual ICache lines, and for cleaning and/or invalidating DCache lines, or for invalidating the entire DCache.

To clean the entire DCache efficiently, software must loop though each cache entry using the clean D single entry
(using index) operation or the clean and invalidate D entry (using index) operation. You must perform this using a
two-level nested loop going though each index value for each segment. See DCache organization on page 4-10.

Example 4-4 shows an example loop for two alternative DCache cleaning operation.

Example 4-4 Dcache Cleaning Loop

for seg = 0 to 7
for index = 0 to 63

Rd = {seg,index}

MCR p15,0,Rd,c7,c10,2 ; Clean DCache single
; entry (using index)

or

MCR p15,0,Rd,c7,c14,2 ; Clean and Invalidate
; DCache single entry
; (using index)

next index
next seg

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-15

DCache, ICache, and memory coherence is generally achieved by:

• cleaning the DCache to ensure memory is up to date with all changes

• invalidating the ICache to ensure that the ICache is forced to re-fetch instructions from memory.

Software can minimize the performance penalties of cleaning and invalidating caches by:

• Cleaning only small portions of the cache when only a small area of memory has to be made coherent, for
example, when updating an exception vector entry. Use Clean DCache single entry (using MVA) or Clean
and Invalidate DCache single entry (using MVA).

• Invalidating only small portions of the ICache when only a small number of instructions are modified, for
example, when updating an exception vector entry. Use Invalidate ICache single entry (using MVA).

• Not invalidating the ICache in situations where it is known that the modified area of memory cannot be in the
cache, for example, when mapping a new page into the currently running process.

Situations that necessitate cache cleaning and invalidating include:

• Writing instructions to a cacheable area of memory using STR or STM instructions, for example:

– self-modifying code

– JIT compilation

– copying code from another location

– downloading code using the EmbeddedICE JTAG debug features

– updating an exception vector entry.

• Another bus master, such as a DMA controller, modifying a cacheable area main memory.

• Turning the MMU on or off

• Changing the virtual-to-physical mappings or Ctt, or Btt, or protection information, in the MMU page tables.
The DCache must be cleaned, and both caches invalidated, before the cache and write buffer configuration
of an area of memory is changed by modifying Ctt or Btt in the MMU translation table descriptor. This is not
necessary if it is known that the caches cannot contain any entries from the area of memory whose
translation table descriptor is being modified.

• Turning the ICache or DCache on, if its contents are no longer coherent.

Changing the FCSE PID in CP15 register 13 does not change the contents of the cache or memory, and does not
affect the mapping between cache entries and physical memory locations. It only changes the mapping between
ARM9TDMI addresses and cache entries. This means that changing the FCSE PID does not lead to any
coherency issues. No cache cleaning or cache invalidation is required when the process FCSE PID is changed.

The software design must also consider that the pipelined design of the ARM9TDMI core means that it fetches
three instructions ahead of the current execution point. So, for example, the three instructions following an MCR
that invalidates the ICache, have already been read from the ICache before it is invalidated.

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-16

CACHE CLEANING WHEN LOCKDOWN IS IN USE

The clean DCache single entry (using index) and clean and invalidate DCache entry (using index) operations can
leave the victim pointer set to the index value used by the operation. In some circumstances, if DCache locking
is in use, this can leave the victim pointer in the locked region, leading to locked data being evicted from the
cache. You can move the victim pointer outside the locked region by implementing the cache loop, enclosed by
the reading and writing of the base and victim pointer:

MRC p15, 0, Rd, c9, c0, 0 ; Read D Cache Base into Rd
Index Clean or Index Clean and Invalidate loops
MCR p15, 0, Rd, c9, c0, 0 ; Write D Cache Base and Victim from Rd

Clean DCache single entry (using MVA) and clean and invalidate DCache entry (using MVA) operations do not
move the victim pointer, so you do not have to reposition the victim pointer after using these operations.

IMPLEMENTATION NOTES

This section describes the behavior of the ARM920T implementation in areas that are architecturally
unpredictable. For portability to other ARM implementations, software must not depend on this behavior.

A read from a noncacheable (NCB or NCNB) region that unexpectedly hits in the cache still reads the required
data from the AMBA ASB interface. The contents of the cache are ignored, and the cache contents are not
modified. This includes the read portion of a swap (SWP or SWPB) instruction.

A write to a noncacheable (NCB or NCNB) region that unexpectedly hits in the cache updates the cache and still
cause an access on the AMBA ASB interface. This includes the write portion of a swap instruction.

There are two test interfaces to both the DCache and ICache:

• debug interface

• • AMBA test interface.

PHYSICAL ADDRESS TAG RAM

The ARM920T implements a Physical Address (PA) TAG RAM in order to perform write-backs from the DCache.

A write-back occurs when dirty data, that is about to be overwritten by linefill data, comes from a memory region
that is marked as a write-back region. This data is written back to main memory to maintain memory coherency.

NOTE

Dirty data is data that has been modified in the cache, but not updated in main memory.

When a line is written into the data cache, the PA TAG is written into the PA TAG RAM. If this line has to be
written back to main memory, the PA TAG RAM is read and the physical address is used by the AMBA ASB
interface to perform the write-back.

The PA TAG RAM array for a 16KB DCache comprises eight segments x 64 rows per segment x 26 bits per row.
There are two test interfaces to the PA TAG RAM.

S3C2800 RISC MICROPROCESSOR CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM

4-17

DRAIN WRITE BUFFER

You can drain the write buffer under software control, so thar further instructions are not excuted until the write
buffer is drained, using the following methods:

• store to nonbufferable memory

• load from noncachable memory

• MCR drain write buffer:

MCR p15, 0, Rd, c7, c10, 4

The write buffer is also drained before forming the following less controllable activities, which you must consider
as implementation-defined:

• fetch from noncachable memory

• DCache linefill

• ICache linefill.

WAIT FOR INTERRUPT

You can place the ARM920T into a low power state by executing the CP15 MCR wait for interrupt:

MCR p15, 0, Rd, c7, c0, 4

Execution of this MCR causes the write buffer to drain and the ARM920T is put into a state where it will resume
execution of code after either an interrupt or a debug request. When the interrupt occurs the MCR instruction
completes and the FIQ or IRQ handler is entered as normal. The return link in R14_fiq or R14_irq contains the
address of the MCR instruction plus8, so that the normal instruction used for interrupt returns to the instruction
following the MCR:

SUBS pc, r14, #4

CACHES, WRITE BUFFER, and PHYSICAL ADDRESS TAG RAM S3C2800 RISC MICROPROCESSOR

4-18

NOTES

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-1

5 MEMORY MANAGEMENT UNIT

ABOUT THE MMU

ARM920T implements an enhanced ARM architecture v4 MMU to provide translation and access permission
checks for the instruction and data address ports of the ARM9TDMI. The MMU is controlled from a single set of
two-level page tables stored in main memory, that are enabled by the M bit in CP15 register 1, providing a single
address translation and protection scheme. You can independently lock and flush the instruction and data TLBs in
the MMU.

The MMU features are:

• standard ARMv4 MMU mapping sizes, domains, and access protection scheme

• mapping sizes are 1MB (sections), 64KB (large pages), 4KB (small pages), and 1KB (tiny pages)

• access permissions for sections

• access permissions for large pages and small pages can be specified separately for each quarter of the page
(these quarters are called subpages)

• domains implemented in hardware

• entry instruction TLB and 64 entry data TLB

• hardware page table walks

• round-robin replacement algorithm (also called cyclic)

• invalidate whole TLB, using CP15 register 8

• invalidate TLB entry, selected by MVA, using CP15 register 8

• independent lockdown of instruction TLB and data TLB, using CP15 register 10.

ACCESS PERMISSIONS AND DOMAINS

For large and small pages, access permissions are defined for each subpage (1KB for small pages, 16KB for
large pages). Sections and tiny pages have a single set of access permissions.

All regions of memory have an associated domain. A domain is the primary access control mechanism for a
region of memory. It defines the conditions necessary for an access to proceed. The domain determines if:

• the access permissions are used to qualify the access

• the access is unconditionally allowed to proceed

• the access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored.
There are 16 domains. These are configured using the domain access control register.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-2

TRANSLATED ENTRIES

Each TLB caches 64 translated entries. During CPU memory accesses, the TLB provides the protection
information to the access control logic.

If the TLB contains a translated entry for the MVA, the access control logic determines if access is permitted:

• if access is permitted and an off-chip access is required, the MMU outputs the appropriate physical address
corresponding to the MVA

• if access is permitted and an off-chip access is not required, the cache services the access

• if access is not permitted, the MMU signals the CPU core to abort.

If a TLB misses (it does not contain an entry for the VA) the translation table walk hardware is invoked to retrieve
the translation information from a translation table in physical memory. When retrieved, the translation
information is written into the TLB, possibly overwriting an existing value.

The entry to be written is chosen by cycling sequentially through the TLB locations. To enable use of TLB locking
features, you can specify the location to write using CP15 register 10, TLB lockdown.

When the MMU is turned off, as happens on reset, no address mapping occurs and all regions are marked as
noncachable and nonbufferable. See About the caches and write buffer on page 4-1.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-3

MMU PROGRAM ACCESSIBLE REGISTERS

Table 5-1 lists the CP15 registers that are used in conjunction with page table descriptors stored in memory to
determine the operation of the MMU.

Table 5-1. CP15 Register Functions

Register Number Bits Register description

Control register 1 M, A, S, R Contains bits to enable the MMU (M bit), enable data address
alignment checks (A bit), and to control the access protection
scheme (S bit and R bit).

Translation table
base register

2 [31:14] Holds the physical address of the base of the translation table
maintained in main memory. This base address must be on a
16KB boundary and is common to both TLBs.

Domain access
control register

3 [31:0] Comprises 16 2-bit fields. Each field defines the access control
attributes for one of 16 domains (D15-D0).

Fault status
register

5
(I and D)

[7:0] Indicates the cause of a Data or Prefetch Abort, and the domain
number of the aborted access, when an abort occurs. Bits 7:4
specify which of the 16 domains (D15-D0) was being accessed
when a fault occurred. Bits 3:0 indicate the type of access being
attempted. The value of all other bits is unpredictable. The
encoding of these bits is shown in Table 5-9 on page 5-19.

Fault address
register

6 (D) [31:0] Holds the VA associated with the access that caused the Data
Abort. See Table 5-9 on page 5-19 for details of the address
stored for each type of fault.
You can use ARM9TDMI register 14 to determine the VA
associated with a Prefetch Abort.

TLB operations
register

8 [31:0] You can write to this register to make the MMU perform TLB
maintenance operations. These are either invalidating all the
(unpreserved) entries in the TLB, or invalidating a specific entry.

TLB lockdown
register

10
(I and D)

[31:20] and 0 Allows specific page table entries to be locked into the TLB and
the TLB victim index to be read or written:
– opcode 2 = 0x0 accesses the D TLB lockdown register
– opcode 2 = 0x1 accesses the I TLB lockdown register.

Locking entries in the TLB guarantees that accesses to the locked
page or section can proceed without incurring the time penalty of
a TLB miss. This allows the execution latency for time-critical
pieces of code such as interrupt handlers to be minimized.

All the CP15 MMU registers, except register 8, contain state. You can read them using MRC instructions, and
write them using MCR instructions. Registers 5 and 6 are also written by the MMU during a Data Abort. Writing to
Register 8 causes the MMU to perform a TLB operation, to manipulate TLB entries. This register cannot be read.
The Instruction TLB (I TLB) and Data TLB (D TLB) both have a copy of register 10. The opcode_2 field in the
CP15 instruction is used to determine the one accessed.

CP15 is described in Chapter 2 Programmer's Model, with details of register formats and the coprocessor
instructions you can use to access them.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-4

ADDRESS TRANSLATION

The MMU translates VAs generated by the CPU core, and by CP15 register 13, into physical addresses to access
external memory. It also derives and checks the access permission, using a TLB.

The MMU table walking hardware is used to add entries to the TLB. The translation information, that comprises
both the address translation data and the access permission data, resides in a translation table located in physical
memory. The MMU provides the logic for you to traverse this translation table and load entries into the TLB.

There are one or two stages in the hardware table walking, and permission checking, process. The number of
stages depends on whether the address is marked as a section-mapped access or a page-mapped access.

There are three sizes of page-mapped accesses and one size of section-mapped access. The page-mapped
accesses are for:

• large pages

• small pages

• tiny pages.

The translation process always starts out in the same way, with a level one fetch. A section-mapped access
requires only a level one fetch, but a page-mapped access requires a subsequent level two fetch.

TRANSLATION TABLE BASE

The hardware translation process is initiated when the TLB does not contain a translation for the requested MVA.
The Translation Table Base (TTB) register points to the base address of a table in physical memory that contains
section or page descriptors, or both. The 14 low-order bits of the TTB register are set to zero on a read, and the
table must reside on a 16KB boundary. Figure 5-1 shows the format of the TTB register.

31 0

Translation table base

1314

Figure 5-1. Translation Table Base Register

The translation table has up to 4096 x 32-bit entries, each describing 1MB of virtual memory. This allows up to
4GB of virtual memory to be addressed. Figure 5-2 shows the table walk process.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-5

Translation
table

4096 entries

TTB base

Indexed by
modified
virtual
address
bits [31:20]

1MB

Invalid

Coarse page table
Coarse page
table base

Indexed by
modified
virtual
address
bits [19:12]

Fine page table
Final page
table base

Indexed by
modified
virtual
address
bits [19:10]

Large page
Large page base

Indexed by
modified
virtual
address
bits [15:0]

Small page
base

Indexed by
modified
virtual
address
bits [11:0]

Tiny page

1 KB

Tiny page base

Indexed by
modified
virtual
address
bits [9:0]

Level One Fetch

Section

Level Two Fetch

11

01

10

00

Section base

Index by modified virtual
address bits[19:0]

256 entries

11

10

01

00

16 KB subpage

16 KB subpage

16 KB subpage

16 KB subpage

64 KB

Small page

1 KB subpage

1 KB subpage

1 KB subpage

1 KB subpage

4 KB

Invalid

Invalid

1024 entries

11

10

01

00
Invalid

Figure 5-2. Translating Page Tables

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-6

LEVEL ONE FETCH

Bits [31:14] of the TTB register are concatenated with bits [31:20] of the MVA to produce a 30-bit address as
shown in Figure 5-3.

31 0

Table index

1920

Modified Virtual Address

0

31 0

Translation base

Translation Table Base

1314

31 0

Translation base

1314 12

0Table index

31 0

Level one descriptor

Figure 5-3. Accessing Translation Table Level One Descriptors

This address selects a 4-byte translation table entry. This is a level one descriptor for either a section or a page
table.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-7

LEVEL ONE DESCRIPTOR

The level one descriptor returned is either a section descriptor, a coarse page table descriptor, or a fine page
table descriptor, or is invalid. Figure 5-4 shows the format of a level one descriptor.

31 19 111220 8 4 3 010 9 5

Domain

0

Coarse page table base address

1APSection base address

1

0

12

10

01

11

C BDomain

DomainFine page table base address

Fault

Coarse page table

Section

Fine page table

1

Figure 5-4. Level One Descriptor

A section descriptor provides the base address of a 1MB block of memory.

The page table descriptors provide the base address of a page table that contains level two descriptors. There
are two sizes of page table:

• coarse page tables have 256 entries, splitting the 1MB that the table describes into 4KB blocks

• fine page tables have 1024 entries, splitting the 1MB that the table describes into 1KB blocks.

Level one descriptor bit assignments are shown in Table 5-2.

Table 5-2. Level One Descriptor Bits

Bits Description

Section Coarse Fine

[31:20] [31:10] [31:12] These bits form the corresponding bits of the physical address

[19:12] – – Should be zero

[11:10] – – Access permission bits. Domain access control on page 5-20 and Fault
checking sequence on page 5-21 show how to interpret the access permission
bits

[9] [9] [11:9] Should be zero

[8:5] [8:5] [8:5] Domain control bits

[4] [4] [4] Must be 1

[3:2] – – These bits, C and B, indicate whether the area of memory mapped by this
page is treated as write-back cacheable, write-through cacheable, noncached
buffered, or noncached nonbuffered

– [3:2] [3:2] Should be zero

[1:0] [1:0] [1:0] These bits indicate the page size and validity and are interpreted as shown in
Table 5-3

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-8

The two least significant bits of the level one descriptor indicate the descriptor type as shown in Table 5-3

Table 5-3. Interpreting Level One Descriptor Bits [1:0]

Value Meaning Description

0 0 Invalid Generates a section translation fault

0 1 Coarse page table Indicates that this is a coarse page table descriptor

1 0 Section Indicates that this is a section descriptor

1 1 Fine page table Indicates that this is a fine page table descriptor

SECTION DESCRIPTOR

A section descriptor provides the base address of a 1MB block of memory. Figure 5-5 shows the format of a
section descriptor.

31 819

Section base address Domain

1112 10 920 0145 3 2

S
B
Z

SBZ AP 1 C B 1 0

Figure 5-5. Section Descriptor

Section descriptor bit assignments are described in Table 5-4

Table 5-4. Section Descriptor Bits

Bits Description

[31:20] Form the corresponding bits of the physical address for a section

[19:12] Always written as 0

[11:10] (AP) Specify the access permissions for this section

[9] Always written as 0

[8:5] Specify one of the 16 possible domains (held in the domain access control register) that contain
the primary access controls

[4] Should be written as 1, for backward compatibility

[3:2] These bits (C and B) indicate whether the area of memory mapped by this section is treated as
write-back cacheable, write-through cacheable, noncached buffered, or noncached nonbuffered

[1:0] These bits must be 10 to indicate a section descriptor

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-9

COARSE PAGE TABLE DESCRIPTOR

A coarse page table descriptor provides the base address of a page table that contains level two descriptors for
either large page or small page accesses. Coarse page tables have 256 entries, splitting the 1MB that the table
describes into 4KB blocks. Figure 5-6 shows the format of a coarse page table descriptor.

31 8

Coarse page table base address Domain

10 9 0145 3 2

S
B
Z

1 SBZ 0 1

Figure 5-6. Coarse Page Table Descriptor

NOTE

If a coarse page table descriptor is returned from the level one fetch, a level two fetch is initiated.

 Coarse page table descriptor bit assignments are described in Table 5-5.

Table 5-5. Coarse Page Table Descriptor Bits

Bits Description

[31:10] These bits form the base for referencing the level two descriptor (the coarse page table index for
the entry is derived from the MVA)

[9] Always written as 0

[8:5] These bits specify one of the 16 possible domains (held in the domain access control registers)
that contain the primary access controls

[4] Always written as 1

[3:2] Always written as 0

[1:0] These bits must be 01 to indicate a coarse page table descriptor

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-10

FINE PAGE TABLE DESCRIPTOR

A fine page table descriptor provides the base address of a page table that contains level two descriptors for
large page, small page, or tiny page accesses. Fine page tables have 1024 entries, splitting the 1MB that the
table describes into 1KB blocks. Figure 5-7 shows the format of a fine page table descriptor.

31 8

Fine page table base address Domain

1112 9 0145 3 2

SBZ 1 SBZ 1 1

Figure 5-7. Fine Page Table Descriptor

NOTE

If a fine page table descriptor is returned from the level one fetch, a level two fetch is initiated.

 Fine page table descriptor bit assignments are described in Table 5-6.

Table 5-6. Fine Page Table Descriptor Bits

Bits Description

[31:12] These bits form the base for referencing the level two descriptor (the fine page table index for the
entry is derived from the MVA)

[11:9] Always written as 0

[8:5] These bits specify one of the 16 possible domains (held in the domain access control registers)
that contain the primary access controls

[4] Always written as 1

[3:2] Always written as 0

[1:0] These bits must be 11 to indicate a fine page table descriptor

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-11

TRANSLATING SECTION REFERENCES

Figure 5-8 shows the complete section translation sequence.

31 0

Table index

1920

Section index

0

31 0

Translation base

Translation table base

1314

31 0

Translation base

1314 12

0Table index

Section level one descriptor

0

31 0

Section base address

12

1Domain

3

B

4

C

5

1

12 11 10 9 8

AP

1920

31 0

Section base address

Physical address

1920

Section index

Figure 5-8. Section Translation

NOTE

You must check access permissions contained in the level one descriptor before generating the physical
address.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-12

LEVEL TWO DESCRIPTOR

If the level one fetch returns either a coarse page table descriptor or a fine page table descriptor, this provides
the base address of the page table to be used. The page table is then accessed and a level two descriptor is
returned. Figure 5-9 shows the format of level two descriptors.

31 1112 8 4 3 010 9 5

0

Large page base address

Small page base address

0

12

10

01

11

C B

Tiny page base address

Fault

Large page

Small page

Tiny page

ap0 C B

C B

ap0

ap

ap1

ap1

ap2

ap2

ap3

ap3

1516 67

Figure 5-9. Level Two Descriptor

A level two descriptor defines a tiny, a small, or a large page descriptor, or is invalid:

• a large page descriptor provides the base address of a 64KB block of memory

• a small page descriptor provides the base address of a 4KB block of memory

• a tiny page descriptor provides the base address of a 1KB block of memory.

Coarse page tables provide base addresses for either small or large pages. Large page descriptors must be
repeated in 16 consecutive entries. Small page descriptors must be repeated in each consecutive entry.

Fine page tables provide base addresses for large, small, or tiny pages. Large page descriptors must be repeated
in 64 consecutive entries. Small page descriptors must be repeated in four consecutive entries and tiny page
descriptors must be repeated in each consecutive entry.

Level two descriptor bit assignments are described in Table 5-7.

Table 5-7. Level Two Descriptor Bits

Bits Description

Large Small Tiny

[31:16] [31:12] [31:10] These bits form the corresponding bits of the physical address

[15:12] - [9:6] Should be zero

[11:4] [11:4] [5:4] Access permission bits. Domain access control and Fault checking sequence
show how to interpret the access permission bits

[3:2] [3:2] [3:2] These bits, C and B, indicate whether the area of memory mapped by this
page is treated as write-back cacheable, write-through cacheable, noncached
buffered, or noncached nonbuffered

[1:0] [1:0] [1:0] These bits indicate the page size and validity and are interpreted as shown in
Table 5-8

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-13

The two least significant bits of the level two descriptor indicate the descriptor type as shown in Table 5-8.

Table 5-8. Interpreting Page Table Entry Bits [1:0]

Value Meaning Description

0 0 Invalid Generates a page translation fault

0 1 Large page Indicates that this is a 64KB page

1 0 Small page Indicates that this is a 4KB page

1 1 Tiny page Indicates that this is a 1KB page

NOTE

Tiny pages do not support subpage permissions and therefore only have one set of access permission
bits.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-14

TRANSLATING LARGE PAGE REFERENCES

Figure 5-10 shows the complete translation sequence for a 64KB large page.

31 0

Table index

1920

Page index

0

31 0

Translation base

Translation table base

1314

31 0

Translation base

1314 12

0Table index

Level one descriptor

1

31 0

Coarse page table base address

12

0Domain

3510 9 8

31 0

Page base address

Physical address

Page index

16 15 12 11

L2 table index

Modified virtual address

0

31 0

Coarse page table base address

910 12

0

Level two descriptor

1

31 0

Page base address

12

0ap3

35

C

10 9 816 15 1112

ap2 ap1

7 6

B

16 15

ap0

1

L2 table index

4

4

Figure 5-10. Large Page Translation from a Coarse Page Table

Because the upper four bits of the page index and low-order four bits of the coarse page table index overlap,
each coarse page table entry for a large page must be duplicated 16 times (in consecutive memory locations) in
the coarse page table.

If a large page descriptor is included in a fine page table, the high-order six bits of the page index and low-order
six bits of the fine page table index overlap. Each fine page table entry for a large page must therefore be
duplicated 64 times.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-15

TRANSLATING SMALL PAGE REFERENCES

Figure 5-11 shows the complete translation sequence for a 4KB small page.

31 0

Table index

1920

Page index

0

31 0

Translation base

Translation table base

1314

31 0

Translation base

1314 12

0Table index

Level one descriptor

1

31 0

Coarse page table base address

12

0Domain

3510 9 8

31 0

Page base address

Physical address

Page index

12 11

L2 table index

Modified virtual address

0

31 0

Coarse page table base address

910 12

0

Level two descriptor

0

31 0

Page base address

12

1ap3

35

C

10 9 81112

ap2 ap1

7 6

Bap0

1

L2 table index

4

4

1112

Figure 5-11. Small Page Translation from a Coarse Page Table

If a small page descriptor is included in a fine page table, the upper two bits of the page index and low-order two
bits of the fine page table index overlap. Each fine page table entry for a small page must therefore be duplicated
four times.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-16

TRANSLATING TINY PAGE REFERENCES

Figure 5-12 shows the complete translation sequence for a 1KB tiny page.

31 0

Table index

1920

Page index

0

31 0

Translation base

Translation table base

1314

31 0

Translation base

1314 12

0Table index

Level one descriptor

1

31 0

Fine page table base address

12

1Domain

359 8

31 0

Page base address

Physical address

Page index

L2 table index

Modified virtual address

0

31 0

Fine page table base address

910 12

0

Level two descriptor

1

31 0

Page base address

12

1

35

C

10 9 6

Bap

1

L2 table index

4

4

10 9

12 11

10 9

Figure 5-12. Tiny Page Translation from a Fine Page Table

Page translation involves one additional step beyond that of a section translation. The level one descriptor is the
fine page table descriptor and this is used to point to the level one descriptor.

 NOTE

The domain specified in the level one description and access permissions specified in the level one
description together determine whether the access has permissions to proceed. See section Domain
access control on page 5-20 for details.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-17

SUBPAGES

You can define access permissions for subpages of small and large pages. If, during a page walk, a small or
large page has a non-identical subpage permission, only the subpage being accessed is written into the TLB. For
example, a 16KB (large page) subpage entry is written into the TLB if the subpage permission differs, and a
64KB entry is put in the TLB if the subpage permissions are identical.

When you use subpage permissions, and the page entry then has to be invalidated, you must invalidate all four
subpages separately.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-18

MMU FAULTS AND CPU ABORTS

The MMU generates an abort on the following types of faults:

• alignment faults (data accesses only)

• translation faults

• domain faults

• permission faults.

In addition, an external abort can be raised by the external system. This can happen only for access types that
have the core synchronized to the external system:

• noncachable loads

• nonbufferable writes.

Alignment fault checking is enabled by the A bit in CP15 register 1. Alignment fault checking is not affected by
whether or not the MMU is enabled. Translation, domain, and permission faults are only generated when the
MMU is enabled.

The access control mechanisms of the MMU detect the conditions that produce these faults. If a fault is detected
as a result of a memory access, the MMU aborts the access and signals the fault condition to the CPU core. The
MMU retains status and address information about faults generated by the data accesses in the fault status
register and fault address register (see Fault address and fault status registers on page 5-19). The MMU does not
retain status about faults generated by instruction fetches.

An access violation for a given memory access inhibits any corresponding external access, with an abort returned
to the CPU core.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-19

FAULT ADDRESS AND FAULT STATUS REGISTERS

On a Data Abort, the MMU places an encoded 4-bit value, FS[3:0], along with the 4-bit encoded domain number,
in the data FSR. Similarly, on a Prefetch Abort, in the prefetch FSR, intended for debug purposes only. In
addition, the MVA associated with the Data Abort is latched into the FAR. If an access violation simultaneously
generates more than one source of abort, they are encoded in the priority given in Table 5-9. The FAR is not
updated by faults caused by instruction prefetches.

FAULT STATUS

Table 5-9 describes the various access permissions and controls supported by the data MMU and details how
these are interpreted to generate faults.

Table 5-9. Priority Encoding of Fault Status

Priority Source Size Status Domain FAR

Highest Alignment – b00x1 Invalid MVA of access
causing abort

Translation Section
Page

b0101
b0111

Invalid
Valid

MVA of access
causing abort

Domain Section
Page

b1001
b1011

Valid
Valid

MVA of access
causing abort

Permission Section
Page

b1101
b1111

Valid
Valid

MVA of access
causing abort

Lowest External abort on noncachable nonbufferable
access or noncachable bufferable read

Section
Page

b1000
b1010

Valid
Valid

MVA of access
causing abort

NOTE

For data FSR only. Alignment faults can write either b0001 or b0011 into FS [3:0]. Invalid values in
domains 3:0 can occur because the fault is raised before a valid domain field has been read from a page
table descriptor. Any abort masked by the priority encoding can be regenerated by fixing the primary
abort and restarting the instruction.
For instruction FSR only. The same priority applies as for the data FSR, except that alignment faults
cannot occur, and external aborts apply only to noncachable reads.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-20

DOMAIN ACCESS CONTROL

MMU accesses are primarily controlled through the use of domains. There are 16 domains and each has a 2-bit
field to define access to it. Two types of user are supported, clients and managers. The domains are defined in
the domain access control register. Figure 5-13 shows how the 32 bits of the register are allocated to define the
16 2-bit domains.

31 19 1516 111221 20

2

8 7 4 3 0

5 412

26 25 24 23 10 9 5

1 0

2 1

6789

13141718

11 10

22

313

27282930

1415

6

Figure 5-13 Domain Access Control Register Format

Table 5-10 defines how the bits within each domain are interpreted to specify the access permissions.

Table 5-10. Interpreting Access Control Bits in Domain Access Control Register

Value Meaning Description

0 0 No access Any access generates a domain fault.

0 1 Client Accesses are checked against the access permission bits in the section or
page descriptor.

1 0 Reserved Reserved. Currently behaves like the no access mode.

1 1 Manager Accesses are not checked against the access permission bits so a
permission fault cannot be generated.

Table 5-11 shows how to interpret the Access Permission (AP) bits and how their interpretation is dependent on
the S and R bits (control register bits 8 and 9).

Table 5-11. Interpreting Access Permission (AP) Bits

AP S R Supervisor
Permissions

User
Permissions

Description

00 0 0 No access No access Any access generates a permission fault

00 1 0 Read-only No access Only Supervisor read permitted

00 0 1 Read-only Read-only Any write generates a permission fault

00 1 1 Reserved – –

01 x x Read/write No access Access allowed only in Supervisor mode

10 x x Read/write Read-only Writes in User mode cause permission fault

11 x x Read/write Read/write All access types permitted in both modes

xx 1 1 Reserved – –

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-21

FAULT CHECKING SEQUENCE

The sequence the MMU uses to check for access faults is different for sections and pages. The sequence for
both types of access is shown in Figure 5-14.

Modified virtual address

Check address alignment

Get level one descriptor

Section Page

Get page
table entry

Check domain status

Section Page

Client(01)Client(01)

Manager(11)

Check access
permissions

Check access
permissions

Physical address

Alignment
fault

Page
translation

fault

Page
domain

fault

Misaligned

Invalid

No access(00)
Reserved(10)

Page
permission

fault
Violation

Section
domain

fault

No access(00)
Reserved(10)

Section
permission

fault
Violation

Section
translation

fault
Invalid

Figure 5-14. Sequence for Checking Faults

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-22

The conditions that generate each of the faults are described in:

• Alignment fault

• Translation fault

• Domain fault

• Permission fault on page 5-23

Alignment Fault

If alignment fault is enabled (A bit in CP15 register 1 set), the MMU generates an alignment fault on any data
word access, if the address is not word-aligned, or on any halfword access, if the address is not halfword-aligned,
irrespective of whether the MMU is enabled or not. An alignment fault is not generated on any instruction fetch,
nor on any byte access.

 NOTE

If the access generates an alignment fault, the access sequence aborts without reference to more
permission checks.

Translation Fault

There are two types of translation fault:

Section A section translation fault is generated if the level one descriptor is marked as invalid. This
happens if bits [1:0] of the descriptor are both 0.

Page A page translation fault is generated if the level one descriptor is marked as invalid. This
happens if bits [1:0] of the descriptor are both 0.

Domain Fault

There are two types of domain fault:

Section The level one descriptor holds the 4-bit domain field, which selects one of the 16 2-bit domains
in the domain access control register. The two bits of the specified domain are then checked for
access permissions as described in Table 5-11. The domain is checked when the level one
descriptor is returned.

Page The level one descriptor holds the 4-bit domain field, which selects one of the 16 2-bit domains
in the domain access control register. The two bits of the specified domain are then checked for
access permissions as described in Table 5-11. The domain is checked when the level one
descriptor is returned.

If the specified access is either no access (00) or reserved (10) then either a section domain fault or page domain
fault occurs.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-23

Permission Fault

If the 2-bit domain field returns 01 (client) then access permissions are checked as follows:

Section If the level one descriptor defines a section-mapped access, the AP bits of the descriptor define
whether or not the access is allowed, according to Table 5-11. Their interpretation is dependent
on the setting of the S and R bits (control register bits 8 and 9). If the access is not allowed, a
section permission fault is generated.

Large page
or small
page

If the level one descriptor defines a page-mapped access and the level two descriptor is for a
large or small page, four access permission fields (ap3-ap0) are specified, each corresponding
to one quarter of the page. For small pages ap3 is selected by the top 1KB of the page and ap0
is selected by the bottom 1KB of the page. For large pages, ap3 is selected by the top 16KB of
the page and ap0 is selected by the bottom 16KB of the page. The selected AP bits are then
interpreted in exactly the same way as for a section (see Table 5-11). The only difference is that
the fault generated is a page permission fault.

Tiny page If the level one descriptor defines a page-mapped access and the level two descriptor is for a
tiny page, the AP bits of the level one descriptor define whether or not the access is allowed in
the same way as for a section. The fault generated is a page permission fault.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-24

EXTERNAL ABORTS

In addition to the MMU-generated aborts, the ARM920T can be externally aborted by the AMBA bus. This can be
used to flag an error on an external memory access. However, not all accesses can be aborted in this way and
the Bus Interface Unit (BIU) ignores external aborts that cannot be handled.

The following accesses can be aborted:

• noncached reads

• unbuffered writes

• read-lock-write sequence, to noncachable memory.

In the case of a read-lock-write (SWP) sequence, if the read aborts the write is always attempted.

INTERACTION OF THE MMU AND CACHES

The MMU is enabled and disabled using bit 0 of the CP15 control register as described in:

• Enabling the MMU

• Disabling the MMU.

Enabling the MMU

To enable the MMU:

1. Program the TTB and domain access control registers.

2. Program level 1 and level 2 page tables as required.

3. Enable the MMU by setting bit 0 in the control register.

You must take care if the translated address differs from the untranslated address because several instructions
following the enabling of the MMU might have been prefetched with the MMU off (using physical = VA - flat
translation).

In this case, enabling the MMU can be considered as a branch with delayed execution. A similar situation occurs
when the MMU is disabled. Consider the following code sequence:

MRC p15, 0, R1, c1, C0, 0: Read control rejection
ORR R1, #0x1
MCR p15,0,R1,C1, C0,0 ; Enable MMUS
Fetch Flat
Fetch Flat
Fetch Translated

You can enable the ICache and DCache simultaneously with the MMU using a single MCR instruction.

S3C2800 RISC MICROPROCESSOR MEMORY MANAGEMENT UNIT

5-25

Disabling the MMU

To disable the MMU, clear bit 0 in the control register. The data cache must be disabled prior to, or at the same
time as, the MMU is disabled by clearing bit 2 of the control register. See Enabling the MMU regarding prefetch
effects.

 NOTE

If the MMU is enabled, then disabled and subsequently re-enabled, the contents of the TLBs are
preserved. If these are now invalid, you must invalidate the TLBs before re-enabling the MMU. See
Register 8, TLB operations register on page 2-30.

MEMORY MANAGEMENT UNIT S3C2800 RISC MICROPROCESSOR

5-26

NOTES

S3C2800 RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

6-1

6 CLOCK & POWER MANAGEMENT

OVERVIEW

The clock & power management unit consists of clock control, power control and reset control.

The clock control logic in S3C2800 generates various system clock signals: FCLK for CPU, HCLK for the AHB
bus peripherals and PCLK for the APB bus peripherals. The clock control logic allows bypassing of PLL for slow
clock and connection/disconnection of the clock to each peripheral block by software, which results in power
reduction.

Also, S3C2800 has the power control logic to support various power management schemes for optimal power
consumption for a given application. The power management provides three power down modes: NORMAL
mode, SLOW mode, and IDLE mode.

In NORMAL mode clock is supplied to CPU as well as all peripherals in S3C2800. The power consumption will be
a maximum when all peripherals are turned on. Also, user is allowed to control supply of the clock to peripherals
by software. For example, if user does not need timer and DMA, user can disconnect the clock to timer and DMA
to reduce the power consumption.

The SLOW mode is a non-PLL mode. Only difference to NORMAL mode is that the SLOW mode uses the
external clock as a master clock in S3C2800 rather than the internal PLL clock. In this case, the power consumed
by PLL itself is eliminated, and the power consumption will depend on the frequency of the external clock.

The IDLE mode disconnects the clock to CPU core while maintaining the clock to all peripherals. By using this
IDLE mode, we can further reduce the power consumption by the CPU core. The wake-up from IDLE mode is
done by an interrupt request to CPU.

The reset controller in S3C2800 consists of three reset types: hardware reset, software reset and watchdog reset.
These types of reset are described in detail on page 6-9 Reset Controller.

FEATURE

• Input frequency range : 6MHz – 10MHz.

• Output frequency range : 20MHz – 200MHz.

• Programmable frequency divider

• Power management : Normal, Slow, and Idle.

• Reset controller : Hardware, Software, and Watchdog reset.

CLOCK & POWER MANAGEMENT S3C2800 RISC MICROPROCESSOR

6-2

FUNCTION DESCRIPTION

CLOCK GENERATION

Figure 6-1 shows a block diagram of the clock generator. An external crystal clock is connected to the oscillation
amplifier, and the PLL (Phase-Locked-Loop) converts the low input frequency into a high-frequency clock
required by S3C2800. The clock generator block also has a built-in logic to stabilize the clock frequency after
each system reset since the clock takes time before stabilized.

MAXIMUM BUS FREQUENCIES

Table 6-1 lists the maximum operating frequencies for the S3C2800. When selecting strap settings, make sure
that the bus divider ratios do not result in the bus frequencies that exceed these maximums.

Table 6-1. Maximum Bus Frequencies

Internal Bus Maximum
Frequency

Module on the Internal Bus Symbol

CPU 200MHz CPU Core, I/D cache, R/W Buffer, MMU FCLK

AHB 100MHz DMA,Interrupt,Clock & Power, PCI, Memory controller HCLK

APB 50MHz IIC, GPIO, UART, Timer, Remote Signal Receive, RTC,
Watchdog timer.

PCLK

Table 6-2. Examples of Maximum Bus Frequency

CPU Frequency(FCLK) AHB Frequency(HCLK) APB Frequency(PCLK)

200MHz 100MHz (= FCLK/2) 50MHz (= HCLK/2)

150MHz 75MHz (= FCLK/2) 37.5MHz (= HCLK/2)

100MHz 100MHz (= FCLK) 50MHz (= HCLK/2)

50MHz 50MHz (= FCLK) 50MHz (= HCLK)

S3C2800 RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

6-3

PWRDN
CPU
(FCLK)

PLL
CLOCK

CONTROL
LOGIC

Fin
OSC

XTAL0
EXTAL0

APB
(PCLK)

M
U
X1/2powerdown

CLKout
(GPB7)

AHB
(HCLK/SDCLK)

M
U
X

1/2

Figure 6-1. Clock Generator Block Diagram

NOTE: Until PLLCON register is configured for desired clock frequency by user, OSC clock (Fin) is supplied to the system.

PLL (PHASE LOCKED LOOP)

The PLL in the clock generator synchronizes the output signal with the input reference signal in terms of
frequency as well as phase. The PLL is composed of the following basic blocks (Figure 6-2 shows the PLL block
diagram): (a) the VCO(Voltage Controlled Oscillator) to generate the output frequency proportional to the input
DC voltage, (b) the divider P to divide the reference frequency by p, (c) the divider M to divide the VCO output
frequency by m which is input to PFD(Phase Frequency Detector), (d) the divider S to divide the VCO output
frequency by s which is Fpllo(the output frequency from PLL block), (e) a phase detector, (f) a charge pump, and
(g) a loop filter. The output clock frequency Fpllo is related to the reference input clock frequency Fin by the
following equation:

 Fpllo = (m * Fin) / (p * 2s)
 m = M (the value for divider M)+ 8, p = P(the value for divider P) + 2

The following sections describe the PLL operation that includes the phase detector, the charge pump, the VCO
(Voltage controlled oscillator), and the loop filter.

Phase Detector

The phase detector monitors the phase difference between the Fref (the reference frequency as shown in Fig. 6-
2) and Fvco (the output frequency from VCO and Divider M block), and generates a control signal(tracking
signal) when it detects the difference between reference frequency and output frequency.

CLOCK & POWER MANAGEMENT S3C2800 RISC MICROPROCESSOR

6-4

Charge Pump

The charge pump converts the phase detector control signal into a proportional charge across the external filter
that drives the VCO.

Loop Filter

The control signal that the phase detector generates for the charge pump, may generate large excursions(ripples)
each time the VCO output is compared to the system clock. To avoid overloading of the VCO, a low pass filter
samples and filters the high-frequency components out of the control signal. The filter typically is a single-pole
RC filter, consisting of a resistor and a capacitor.

A recommended capacitance in an external loop filter(Capacitance as shown in Figure 6-2) is 1µF.

Voltage Controlled Oscillator (VCO)

The output voltage from the loop filter drives the VCO, causing its oscillation frequency to increase or decrease
linearly as a function of variations in average voltage. When the VCO output matches the system clock in terms
of frequency as well as phase, the phase detector stops sending a control signal to the charge pump, which, in
turn, stabilizes the input voltage to the loop filter. The VCO frequency then remains constant, and the PLL
remains locked onto the system clock.

Usual Condition for PLL & Clock Generator

For proper operation of PLL, the following component value is recommended:

Loop filter capacitance 1 uF

External X-tal frequency 6 – 10 MHz

Divider
P

Loop Filter

Fin

M[7:0]

S[1:0]

PWRDN

PFD

Divider
M

P[5:0]

Fvco

PUMP

VCO

Divider
S

Fref

Fpllo

R

1µF

C

Internal

PLLCAP

External

Figure 6-2. PLL (Phase-Locked Loop) Block Diagram

S3C2800 RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

6-5

CLOCK CONTROL LOGIC

The clock control logic determines the clock source to be used, i.e., the PLL clock (Fpllo) or the direct OSC (Fin)
clock. When PLL is configured to new frequency value, the clock control logic disables the FCLK until PLL output
is stabilized using the PLL locking time. The clock control logic is also activated when the power-on reset and
wake-up from power-down mode.

PLL Lock Time

The lock-time is the minimum time required for PLL output is stabilized. The lock time should be a minimum of
200µs. After reset, the lock time is inserted automatically by internal logic with lock time count register. The lock
time is calculated as follows;

t_lock(the PLL lock time by hardware logic) = (1/ Fin) x n, (n = LOCKTIME register value)

Power-On Reset

Figure 6-3 shows the clock behavior during the power-on reset sequence. The crystal oscillator begins oscillation
within several milliseconds. When nRESET is released after the stabilization of OSC (Fin) clock, the PLL starts to
operate according to the default PLL configuration. However, PLL is commonly known to be unstable after power-
on reset, so Fin fed directly to FCLK instead of the Fpllo (PLL output) before the software newly configures the
PLLCON register.

The PLL begins the lockup sequence again toward the new frequency only after the software configures the PLL
with a new frequency. FCLK can be configured to be PLL output (Fpllo) immediately after lock time.

NOTE

The internal power-on reset circuit in S3C2800 is designed to be activated when the 1.8V core voltage
reaches a certain voltage level from Low 0V. Due to the filtering capacitance of power circuitry in the
CPU board, there will be a case when the current in the capacitors will not be fully discharged if the
power is turned on right after power-off. If this happens, the internal power-on reset circuit will not operate
properly. Therefore, it is recommended to use a RESET IC on nRESET pin of S3C2800 when designing
hardware.

CLOCK & POWER MANAGEMENT S3C2800 RISC MICROPROCESSOR

6-6

nRESET

VCO
output

CPU operates by
OSC (Fin) clock

Clock
Disable

lock time

FCLK is new frequency.

Power

PLL can operate after OM[1:0] is latched.

PLL is configured by S/W first time.

VCO is adapted to new clock frequency.

FCLK

...

...

...

OSC
(Fin)

Figure 6-3. Power-On Reset Sequence

Change PLL Settings in Normal Operation Mode

During the operation of S3C2800 in NORMAL mode, if users want to change the frequency by modifying PMS
value, the PLL lock time is automatically inserted. During the lock time, the clock will not be supplied to internal
blocks in S3C2800. The timing diagram is as follow.

PMS setting

PLL lock time

It changes to new PLL clock after
lock time automatically

Fpllo

FCLK

Figure 6-4. Timing Diagram of Clock Change in NORMAL Mode

S3C2800 RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

6-7

POWER MANAGEMENT

The power management block allows the control of the system clocks by software, for the reduction of power
consumption in S3C2800. These schemes are related to PLL, the clock control logic (FCLK, HCLK, PCLK), the
wake-up signal.

S3C2800 has three power-down modes. The following section describes each power managing mode. The
transition between the modes isn't allowed freely. For transitions among the modes, please refer to Figure 6-6.

NORMAL Mode

In NORMAL mode, All peripherals(UART, DMA, Timer, and so on) and the basic blocks(CPU core, bus controller,
memory controller, interrupt controller, and power management block) may operate fully. But, the clock to each
peripheral, except the basic blocks, can be stopped selectively by software to reduce power consumption.

IDLE Mode

In IDLE mode, the clock to CPU core is stopped except the bus controller, the memory controller, the interrupt
controller, and the power management block. If CLKCON[2] is set to 1, S3C2800 enters into IDLE mode after
some delay(Up to when the power control logic receives ACK signal from the CPU wrapper). To exit IDLE mode,
EXTINT[7:0], RTC alarm interrupt, or the other interrupts should be activated. (If users want to use EXTINT[7:0],
GPIO block has to be turned on before the activation).

INPORTANT NOTE

In order to use IDLE mode, the clock mode of ARM920T must be set for Asynchronous mode. If users
want to use either FastBus or Synchronous mode, ARM920T clock mode must be switched to
Asynchronous mode before entering IDLE mode, and then switched back to the previous mode (FastBus
or Synchronous mode) after the wake-up operation. In other words, make sure that ARM920T is
operating in Asynchronous mode prior to entering IDLE mode. The detailed information on ARM920T
clock mode can be found in ARM920T Technical Reference Manual. For more information on clock
mode setting, refer to Table 2-13 and Table2-14 on pages 2-24 to 2-25.

CLOCK & POWER MANAGEMENT S3C2800 RISC MICROPROCESSOR

6-8

SLOW Mode (non-PLL Mode)

In SLOW mode, the power consumption is decreased due to the slow system clock, and the power consumed by
PLL itself is also eliminated. The Fout is the frequency of divide_by_n of the inpue clock (Fin) without PLL. The
divider ratio is determined by SLOW_VAL in the CLKSLOW control register.

In SLOW mode, the PLL will be turned off to reduce the PLL power consumption. When PLL is turned off in
SLOW mode and users change the power mode from SLOW mode to NORMAL mode, the PLL needs clock
stabilization time (PLL lock time). This PLL stabilization time is automatically inserted by the internal logic with
lock time count register. The PLL stability time will take 200µs after PLL is turned on. During PLL lock time, the
FCLK is SLOW clock.

Users can change the frequency by enabling SLOW mode bit in CLKSLOW register. The SLOW clock is
generated during SLOW mode. The timing diagram is as follows.

SLOW_ BIT SLOW mode enable SLOW mode disable

Fpllo

Hardware lock time

FCLK

It changes to PLL clock
after lock time automatically

Devided
OSC clock

Figure 6-5. The Timing Diagram in Slow Mode

Power Management State Machine

NORMAL
(SLOW_BIT=0)

SLOW
(SLOW_BIT=1)

IDLE_BIT=1

All Interrupts

IDLE

Figure 6-6. Power Management State Machine

S3C2800 RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

6-9

RESET CONTROLLER

The reset controller manages the various reset sources in the S3C2800. For a programmer, two reset control
registers are provided: one used to invoke software reset and one to read the status showing why the processor is
reset after the reset sequence. After booting from the reset, software can examine the reset status register
(RSTSR) to determine which types of reset has caused the reset condition.

Three types of reset in the S3C2800 are described below:

Hardware Reset

Hardware reset is invoked when the nRESET pin is asserted, and all units in the S3C2800 are initialized to a
known state. Hardware reset is intended to be used for power-up only. Because the memory controller receives a
full reset, all dynamic memory(DRAM/SDRAM) contents will be lost during hardware reset.

The nRESET_OUT pin is asserted during hardware reset.

Software Reset

Software reset is invoked when the software reset (SWR) bit in the SWRCON is set by software. After the SWR
bit is set, the S3C2800 stays in reset state for 128 APB bus clocks (PCLK) and then is allowed to boot again.

The nRESET_OUT pin is asserted during software reset

Watchdog Reset

Watchdog reset is invoked when the watchdog enable bits in the WTCON[7:0] are set and the watchdog timer
counter (WTCNT) overflows. The reset sequence of watchdog initiated reset is identical to software reset. When
the WTCNT overflows, the S3C2800 stays in reset state for 128 APB bus clocks (PCLK) and then is allowed to
boot again.

The nRESET_OUT pin is asserted during watchdog reset.

CLOCK & POWER MANAGEMENT S3C2800 RISC MICROPROCESSOR

6-10

CLOCK AND POWER MANAGEMENT SPECIAL FUNCTION REGISTERS

PLL CONTROL REGISTER (PLLCON)

Fpllo = (m * Fin) / (p * 2s)
m = (MDIV + 8), p = (PDIV + 2), s = SDIV

Table 6-3. Recommended Value of MDIV, PDIV, SDIV

Fin 6 MHz 8 MHz 10 MHz

Fpllo MDIV PDIV SDIV MDIV PDIV SDIV MDIV PDIV SDIV

200 MHz 0x5c 1 0 0x5c 2 0 0x5c 3 0

190 MHz 0x57 1 0 0x57 2 0 0x57 3 0

180 MHz 0x52 1 0 0x52 2 0 0x52 3 0

170 MHz 0x4d 1 0 0x4d 2 0 0x4d 3 0

160 MHz 0x48 1 0 0x48 2 0 0x48 3 0

150 MHz 0x43 1 0 0x43 2 0 0x43 3 0

140 MHz 0x3e 1 0 0x3e 2 0 0x3e 3 0

130 MHz 0x39 1 0 0x39 2 0 0x39 3 0

120 MHz 0x34 1 0 0x34 2 0 0x34 3 0

110 MHz 0x2f 1 0 0x2f 2 0 0x2f 3 0

100 MHz 0x5c 1 1 0x5c 2 1 0x5c 3 1

90 MHz 0x52 1 1 0x52 2 1 0x52 3 1

80 MHz 0x48 1 1 0x48 2 1 0x48 3 1

70 MHz 0x3e 1 1 0x3e 2 1 0x3e 3 1

60 MHz 0x34 1 1 0x34 2 1 0x34 3 1

50 MHz 0x2a 1 1 0x2a 2 1 0x2a 3 1

40 MHz 0x20 1 1 0x20 2 1 0x20 3 1

30 MHz 0x34 1 2 0x34 2 2 0x34 3 2

20 MHz 0x20 1 2 0x20 2 2 0x20 3 2

NOTE: This value may be calculated using PLLSET.EXE utility from Samsung. This PLL is not guaranteed that the PMS
values are all zeros.

PLL Value Selection Guide (Must be)

1. (Fin/p) ≥ 2MHz , (p=PDIV + 2).

2. PDIV ≥ 1 ,(PDIV ≠ 0).

3. Fpllo * 2s ≤ 300MHz,

S3C2800 RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

6-11

Register Address R/W Description Reset Value

PLLCON 0x1000 0000 R/W PLL configuration Register Undefined

PLLCON Bit Description Initial State

MDIV [19:12] Main divider control Undefined

Reserved [11:10] Reserved 0

PDIV [9:4] Pre-divider control Undefined

Reserved [3:2] Reserved 00

SDIV [1:0] Post divider control Undefined

CLOCK & POWER MANAGEMENT S3C2800 RISC MICROPROCESSOR

6-12

CLOCK CONTROL REGISTER (CLKCON)

Register Address R/W Description Reset Value

CLKCON 0x1000 0004 R/W Clock control Register 0x0000 17FC

CLKCON Bit Description Initial State

PCLK [12] APB clock division ratio from AHB clock
0 = HCLK 1 = HCLK/2

1

HCLK [11] AHB clock division ratio from CPU clock
0 = FCLK 1 = FCLK/2

0

PCI [10] Controls FCLK into PCI block
0 = Disable, 1 = Enable

1

IIC1 [9] Controls PCLK into IIC0 block
0 = Disable, 1 = Enable

1

IIC0 [8] Controls PCLK into IIC1 block
0 = Disable, 1 = Enable

1

RTC [7] Controls PCLK into RTC control block.
Even if this bit is cleared to 0, RTC timer is alive.
0 = Disable, 1 = Enable

1

UART1 [6] Controls PCLK into UART1 block
0 = Disable, 1 = Enable

1

UART0 [5] Controls PCLK into UART0 block
0 = Disable, 1 = Enable

1

DMA2,3 [4] Controls HCLK into DMA channel 2,3 block
0 = Disable, 1 = Enable
(If DMA is turned off, the peripherals in the peripheral
bus may not be accessed)

1

DMA0,1 [3] Controls HCLK into DMA channel 0,1 block
0 = Disable, 1 = Enable
(If DMA is turned off, the peripherals in the peripheral
bus may not be accessed)

1

TIMER [2] Controls PCLK into TIMER block
0 = Disable, 1 = Enable

1

IDLE BIT [1] Enters IDLE mode. This bit cleared automatically by
wake-up.
0 = Disable, 1 = Transition to IDLE mode

0

Reserved [0] Reserved 0

S3C2800 RISC MICROPROCESSOR CLOCK & POWER MANAGEMENT

6-13

CLOCK SLOW CONTROL REGISTER (CLKSLOW)

Register Address R/W Description Reset Value

CLKSLOW 0x1000 0008 R/W Slow clock control register 0x0000 0000

CLKSLOW Bit Description Initial State

SLOW_BIT [4] Slow mode enable or Disable
0 : Disable SLOW mode (NORMAL mode)
 FCLK = Fpllo (PLL output)
1 : Enable SLOW mode (SLOW mode)
 FCLK = HCLK / (2 x SLOW_VAL), (SLOW_VAL > 0)
 FCLK = HCLK, (SLOW_VAL = 0)

0x0

SLOW_VAL [3:0] The divider value for slow clock when SLOW_BIT is on. 0x0

LOCK TIME COUNT REGISTER (LOCKTIME)

Register Address R/W Description Reset Value

LOCKTIME 0x1000 000C R/W PLL lock time count register 0x0000 0FFF

LOCKTIME Bit Description Initial State

LTIME CNT [11:0] PLL lock time count value 0xFFF

SOFTWARE RESET CONTROL REGISTER (SWRCON)

The software reset control register has a software reset bit, which when set, causes a reset of the S3C2800. The
software-reset bit (SWR) is located within the least significant bit of the write-only software reset register
(SWRCON). Writing a one to this bit causes all on-chip resources to reset but does not cause the PLL to go out
of lock. The software reset bit is self-clearing. It is automatically cleared to zero after a few system clock cycles
once it is set. Writing zero to the software reset bit has no effect. Care should be taken to restrict access to this
register by programming MMU permissions.

The following table shows the SWRCON.

Register Address R/W Description Reset Value

SWRCON 0x1000 0010 W Software reset control register 0x0000 0000

SWRCON Bit Description Initial State

SWR [0] Software reset.
0 = Do not invoke a software reset of the chip.
1 = Invoke a software reset of the chip.
This bit is self-clearing, and is automatically cleared
several system clock cycles after it has been set.

0

CLOCK & POWER MANAGEMENT S3C2800 RISC MICROPROCESSOR

6-14

RESET STATUS REGISTER (RSTSR)

To determine the last cause or causes of the reset, the CPU can refer to the reset status register (RSTSR). The
S3C2800 has three sources of reset:

• Hardware reset

• Software reset

• Watchdog reset

Each RSTSR status bit is set by a different source of reset, and can be cleared by setting a one of the other reset
status bits. Note that the hardware reset state of software and watchdog reset bit is zero.

The table below shows the status bits within RSTSR.

Register Address R/W Description Reset Value

RSTSR 0x1000 0014 R/W Reset status register 0x0000 0001

RSTSR Bit Description Initial State

WDR [2] Watchdog reset.(Read only)
0 = Watchdog reset has not occurred.
1 = Watchdog reset has occurred
This bit is cleared automatically when one of the other reset status bit is set.

0

SWR [1] Software reset.(Read only)
0 = Software reset has not occurred.
1 = Software reset has occurred
This bit is cleared automatically when one of the other reset status bit is set.

0

HWR [0] Hardware reset.(Read only)
0 = Hardware reset has not occurred.
1 = Hardware reset has occurred
This bit is cleared automatically when one of the other reset status bit is set.

1

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-1

7 MEMORY CONTROLLER

OVERVIEW

The S3C2800 memory controller provides the necessary memory control signals for external memory access.
Some of the main features include;

• Up to 100MHz interface (HCLK = SDCLK)

• Little-/Big-endian addressing mode support for external memory

• Up to 256MB of external memory space:

– Up to 128MB for Static Memory

– Up to 128MB for Dynamic Memory

• Programmable data width (8/16/32-bit) for all banks

• Total 8 memory banks:

– 4 memory banks for ROM, SRAM ,Flash

– 4 memory banks for FP/EDO/SDRAM etc

• Fixed memory bank start address

• Programmable access cycles for each static memory banks

• External wait for extending the bus cycles

• Supports self-refresh mode support for DRAM/SDRAM power-down mode

• Asymmetric or symmetric addressable DRAM support

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-2

MEMORY MAP

ROM/SRAM/FLASH SBnak 0
(Boot ROM)

0x0000 0000
32MByte

32MByte

32MByte

32MByte

32MByte

0x3FFF FFFF

1 GB
SA[29:0]
Accessible
Region

0x0400 0000

0x0200 0000

0x0600 0000

0x0800 0000

0x0A00 0000

0x0C00 0000

0x0E00 0000

0x1000 0000

ROM/SRAM/FLASH SBnak 1

ROM/SRAM/FLASH SBnak 2

ROM/SRAM/FLASH SBnak 3

DRAM/SDRAM DBnak 0

DRAM/SDRAM DBnak 1

DRAM/SDRAM DBnak 2

DRAM/SDRAM DBnak 3

Special Function Register

Reserved (PCI)
512MB

32MByte

32MByte

32MByte

2Mbyte
0x1020 0000

0x2000 0000
Reserved

Figure 7-1. Memory Map after Reset

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-3

FUNCTION DESCRIPTION

LITTLE-/BIG-ENDIAN SELECTION (FOR EXTERNAL MEMORY ONLY)

While nRESET is Low, the ENDIAN (GPC3) pin determines the endian mode of the external memory. If the
ENDIAN pin is connected to VSS with pull-down resistor, the Little-endian mode is selected. If the pin is
connected to VDD with a pull-up resistor, the Big-endian mode is selected.

ENDIAN Input @Reset ENDIAN Mode

0 Little-endian

1 Big-endian

BANK0 BUS WIDTH (FOR STATIC MEMORY)

The data bus width of boot ROM bank, BANK0, must be configured before the first access to ROM. The data bus
width a 8-, 16-, and 32-bit is determined by logic level of OM[1:0] at reset.

OM1 (Operating Mode 1) OM0 (Operating Mode 0) Booting ROM Data width

0 0 8-bit

0 1 16-bit

1 0 32-bit

1 1 Not used

MEMORY ADDRESS PIN CONNECTIONS

MEMORY ADDR. PIN S3C2800 ADDR.
@ 8-bit DATA BUS

S3C2800 ADDR.
@ 16-bit DATA BUS

S3C2800 ADDR.
@ 32-bit DATA BUS

A0 ADDR0 ADDR1 ADDR2

A1 ADDR1 ADDR2 ADDR3

A2 ADDR2 ADDR3 ADDR4

A3 ADDR3 ADDR4 ADDR5

.

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-4

SDRAM BANK ADDRESS PIN CONNECTION

Table 7-1. SDRAM Bank Address Configuration (Example)

Bank Size Bus Width Base Component Memory Configuration Bank Address

2MB x8 16Mb (1Mb x 8 x 2B) x 1 ADDR[20]

x16 (512Kb x 16 x 2B) x 1

4MB x8 16Mb (2Mb x 4 x 2B) x 2 ADDR[21]

x16 (1Mb x 8 x 2B) x 2

x32 (512Kb x 16 x 2B) x 2

8MB x16 16Mb (2Mb x 4 x 2B) x 4 ADDR[A22]

x32 (1Mb x 8 x 2B) x 4

x8 64Mb (4Mb x 8 x 2B) x 1 ADDR[A22]

x8 (2Mb x 8 x 4B) x 1 ADDR[22:21]

x16 (2Mb x 16 x 2B) x 1 ADDR[22]

x16 (1Mb x 16 x 4B) x 1 ADDR[22:21]

x32 (512Kb x 32 x 4B) x 1

16MB x32 16Mb (2Mb x 4 x 2B) x 8 ADDR[23]

x8 64Mb (8Mb x 4 x 2B) x 2 ADDR[23]

x8 (4Mb x 4 x 4B) x 2 ADDR[23:22]

x16 (4Mb x 8 x 2B) x 2 ADDR[23]

x16 (2Mb x 8 x 4B) x 2 ADDR[23:22]

x32 (2Mb x 16 x 2B) x 2 ADDR[23]

x32 (1Mb x 16 x 4B) x 2 ADDR[23:22]

x8 128Mb (4Mb x 8 x 4B) x 1 ADDR[23:22]

x16 (2Mb x 16 x 4B) x 1

32MB x16 64Mb (8Mb x 4 x 2B) x 4 ADDR[24]

x16 (4Mb x 4 x 4B) x 4 ADDR[24:23]

x32 (4Mb x 8 x 2B) x 4 ADDR[24]

x32 (2Mb x 8 x 4B) x 4 ADDR[24:23]

x16 128Mb (4Mb x 8 x 4B) x 2 ADDR[24:23]

x32 (2Mb x 16 x 4B) x 2

x8 256Mb (8Mb x 8 x 4B) x 1 ADDR[24:23]

x16 (4Mb x 16 x 4B) x 1

NOTE: MB=Mega Byte, Mb=Mega bits, Kb=Killo bits, B=Banks

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-5

ROM & SRAM MEMORY INTERFACE EXAMPLE

ADDR0 DATA0

nWE
nOE
nSCSn

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15

DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

Figure 7-2. Memory Interface with 8bit ROM

DATA0

nWBE0
nOE
nSCSn

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15

DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

ADDR16

DATA8

nWBE1
nOE
nSCSn

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

ADDR1
ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15

DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

ADDR16

Figure 7-3. Memory Interface with 8bit ROM x 2

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-6

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

DATA0

nWBE0
nOE
nSCSn

DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16
ADDR17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

DATA8

nWBE1
nOE
nSCSn

DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16
ADDR17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

DATA24

nWBE3
nOE
nSCSn

DATA25
DATA26
DATA27
DATA28

DATA30
DATA31

DATA29

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16
ADDR17

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

nWE
nOE
nCE

DATA16

nWBE2
nOE
nSCSn

DATA17
DATA18
DATA19
DATA20

DATA22
DATA23

DATA21

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16
ADDR17

Figure 7-4. Memory Interface with 8bit ROM x 4

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nWE
nOE
nCE

nWE
nOE
nSCSn

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16
ADDR17

ADDR1

ADDR18
ADDR19

DATA0
DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

DATA8
DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

Figure 7-5. Memory Interface with 16bit ROM

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nWE
nOE
nCS

nWE
nOE
nSCSn

nUB
nLB

nBE1
nBE0

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13
ADDR14
ADDR15
ADDR16

ADDR1 DATA0
DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

DATA8
DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

Figure 7-6. Memory Interface with 16bit SRAM

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-8

DRAM MEMORY INTERFACE EXAMPLE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nRAS
nLCAS
nUCAS
nWE
nOE

nDRAS0
nDCAS0
nDCAS1

nWE

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12

ADDR1 DATA0
DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

DATA8
DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

Figure 7-7. Memory Interface with 16bit DRAM

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nRAS
nLCAS
nUCAS
nWE
nOE

nDRAS0
nDCAS0
nDCAS1

nWE

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12

DATA0
DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

DATA8
DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

ADDR13

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

nRAS
nLCAS
nUCAS
nWE
nOE

nDRAS0
nDCAS2
nDCAS3

nWE

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12

DATA16
DATA17
DATA18
DATA19
DATA20

DATA22
DATA23

DATA21

DATA24
DATA25
DATA26
DATA27
DATA28

DATA30
DATA31

DATA29

ADDR13

Figure 7-8. Memory Interface with 16bit DRAM x 2

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-9

SDRAM MEMORY INTERFACE EXAMPLE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

BA0
BA1
LDQM
UDQM

ADDR21
ADDR22

DQM0
DQM1

SDCKE
SDCLK

SCKE
SCLK

nSDCS0
nSDRAS
nSDCAS
nWE

nSCS
nSRAS
nSCAS

nWE

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12

ADDR1 DATA0
DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

DATA8
DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

Figure 7-9. Memory Interface with 16bit SDRAM (1Mb x 16bit x 4banks)

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

BA0
BA1
LDQM
UDQM

ADDR23
ADDR24

DQM0
DQM1

SDCKE
SDCLK

SCKE
SCLK

nSDCS0
nSDRAS
nSDCAS
nWE

nSCS
nSRAS
nSCAS

nWE

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12

DATA0
DATA1
DATA2
DATA3
DATA4

DATA6
DATA7

DATA5

DATA8
DATA9
DATA10
DATA11
DATA12

DATA14
DATA15

DATA13

ADDR13

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15

BA0
BA1
LDQM
UDQM

ADDR23
ADDR24

DQM2
DQM3

SDCKE
SDCLK

SCKE
SCLK

nSDCS0
nSDRAS
nSDCAS
nWE

nSCS
nSRAS
nSCAS

nWE

ADDR2
ADDR3
ADDR4
ADDR5
ADDR6
ADDR7
ADDR8
ADDR9

ADDR10
ADDR11
ADDR12
ADDR13

DATA16
DATA17
DATA18
DATA19
DATA20

DATA22
DATA23

DATA21

DATA24
DATA25
DATA26
DATA27
DATA28

DATA30
DATA31

DATA29

Figure 7-10. Memory Interface with 16bit SDRAM (2Mb x 16bit x 4banks x 2ea)

NOTE : Please refer to Table 7-1 the Bank Address configurations of SDRAM.

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-10

STATIC MEMORY TIMING DIAGRAM

READ TIMING FOR STATIC MEMORY

HCLK

nSCSn
Tacs

nOE
Tcos

DATA

ADDR

nBEn

Toch

Tcah

Tacc

"1"

Figure 7-11. Static Memory READ Timing
(Tacs=2,Tcos=2, Tacc=4, Toch=2, Tcah=2,ST=0)

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-11

WRITE TIMING FOR STATIC MEMORY

HCLK

nSCSn
Tacc

nWE
Tcos

DATA

ADDR

nBEn

Toch

Tcah

Tacc

Tcos Toch

Figure 7-12. Static Memory WRITE Timing
(Tacs=2,Tcos=2,Tacc=4,Toch=2, Tcah=2, ST=0)

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-12

nWAIT PIN OPERATION

If the WAIT corresponding each memory bank is enabled, the nOE duration is prolonged by the external nWAIT
pin while the memory bank is active.

tRC

Tacs

Tcos

Tacc>2cycle

HCLK

ADDR

nSCSn

nOE

nWAIT

DATA(R)

Figure 7-13. External nWAIT Timing Diagram

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-13

DYNAMIC MEMORY TIMING DIAGRAM

HCLK

nDRAS

nWE/nOE

D[31:0](W)

ADDR Row Addr. Column Addr. Column Addr.

nDCAS

DATA(R)
@FP

DATA(R)
@EDO

Trp

Trcd
Tcas

Tcp
Tcas

Trp = 1-cycle
Trcd = 2-cycle

Tcas = 2-cycle
Tcp = 2-cycle

Figure 7-14. DRAM Timing Diagram

Tcsr

HCLK

nDRAS

nDCAS
Tchr

Tcsr = 1-cycle Tchr = 3-cycle

Figure 7-15. DRAM Refresh Timing Diagram

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-14

Row
Active

SDCLK

SDCKE

RA Ca Cb Cc Cd Ce

BA BA BA BA BA BABA

Da

Da

Db Dc Dd De

Db Dc Dd De

nSDCSn

nSDRAS

nSDCAS

ADDR

BA

A10/AP

DATA
(CL2)

DATA
(CL3)

nWE

DQM

RA

Trp

Trcd

Bank
Orecharge Write Read (CL=2, CL=3, BL=1)

Trp = 2-cycle Tcas = 2-cycle
Trcd = 2-cycle Tcp = 2-cycle

Figure 7-16. SDRAM Timing Diagram

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-15

MEMORY CONTROLLER SPECIAL FUNCION REGISTERS

ENDIAN STATUS REGISTER (ENDIAN)

Register Address R/W Description Reset Value

ENDIAN 0x1001 0000 R Endian mode control Undefined

ENDIAN Bit Description Initial state

ENDIAN [0] Indicate endian mode (read only)

0 = Little-endian 1 = Big-endian
The state is selected by ENDIAN (GPC3) pin

Undefined

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-16

STATIC MEMORY BANK CONTROL REGISTER (SMBCON0-SMBCON3)

These registers must be configured to enable static memory (ROM, SRAM, and Flash) for each bank. Boot ROM
must be attached to bank 0 if installed.

Register Address R/W Description Reset Value

 SMBCON0 0x1001 0004 R/W Bank 0 control register for static memory 0x0000 00A2

 SMBCON1 0x1001 0008 R/W Bank 1 control register for static memory 0x0000 00A2

 SMBCON2 0x1001 000C R/W Bank 2 control register for static memory 0x0000 00A2

 SMBCON3 0x1001 0010 R/W Bank 3 control register for static memory 0x0000 00A2

SMBCONn Bit Description Initial State

WS [20] Determines WAIT status
0 = WAIT disable 1 = WAIT enable

0

ST [19] Determines SRAM for using UB/LB
0 = Not used UB/LB 1 = Using UB/LB

0

Reserved [18:14] Reserved 0x0
Tacs [13:12] Address set-up time before nSCSn

00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

Tcos [11:10] Chip selection set-up time before nOE
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

Toch [9:8] Chip selection hold on time after nOE
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

Tacc [7:4] Access cycle
0000 = 1 clock 0001 = 2 clocks 0010 = 3 clocks
0011 = 4 clocks 0100 = 6 clocks 0101 = 7 clocks
0110 = 8 clocks 0111 = 9 clocks 1000 = 10 clocks
1001 = 12 clocks 1010 = 14 clocks
1011,11xx = Not used

1010

Tcah [3:2] Address holding time after nSCSn
00 = 0 clock 01 = 1 clock
10 = 2 clocks 11 = 4 clocks

00

SDW [1:0] Static memory data bus width
00 = 8-bit 01 = 16-bit
10 = 32-bit 11 = Not used

NOTE: Bank0 = Read only (in SMBCON0)
 (The states are selected by OM[1:0] pins)

10

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-17

DYNAMIC MEMORY REFRESH CONTROL REGISTER (REFRESH)

Register Address R/W Description Reset Value

 REFRESH 0x1001 0014 R/W DRAM/SDRAM refresh control register for
 bank0 – bank3.

0x00A4 0000

REFRESH Bit Description Initial state

REFEN [23] DRAM/SDRAM refresh enable

0 = Disable 1 = Enable (self or CBR/auto refresh)

1

REFMD [22] DRAM/SDRAM refresh mode

0 = CBR/Auto Refresh 1 = Self Refresh
In self-refresh time, the DRAM/SDRAM control signals are driven to
appropriate level.

0

Trp [21:20] DRAM/SDRAM RAS pre-charge time

DRAM :
00 =1.5 clocks 01 =2.5 clocks 10 = 3.5 clocks 11 =4.5 clocks

SDRAM :
00 = 2 clocks 01 = 3 clocks 1 0 = 4 clocks 11 = Not used

10

Reserved [19] Reserved 0

Trc [18:16] SDRAM RC minimum time

000 = 4 clocks 001 = 5 clocks 010 = 6 clocks
011 = 7 clocks 100 = 8 clocks 1xx = Not used

100

Reserved [15:14] Reserved 00

Tchr [13:12] CAS hold time (DRAM)

00 = 1 clock 01 = 2 clocks
10 = 3 clocks 11 = 4 clocks

00

Reserved [11] Reserved

Refresh Counter [10:0] DRAM/SDRAM refresh count value.
Refresh period = (211-refresh_count+1)/HCLK

Ex) If refresh period is 15.6 us and HCLK is 100MHz,
 the refresh count is as follows;
 refresh count = 211 + 1 – 100x15.6 = 489 (=0x1e9)

0x000

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-18

DYNAMIC MEMORY TIMING CONTROL REGISTER (DMTMCON)

Register Address R/W Description Reset Value

 DMTMCON 0x1001 0018 R/W Timing control for dynamic memory (bank0–bank3) 0x0002 0D50

DMTMCON Bit Description Initial state

DW [17:16] Dynamic memory bank (0–3) data bus width

00 = 8-bit 01 = 16-bit 10 = 32-bit 11 = Not used

10

Reserved [15:12] Reserved 0x0

MT [11:10] Dynamic memory type

00 = Reserved 01 = FP DRAM
10 = EDO DRAM 11 = SDRAM

11

Trcd
(DRAM)

[9:8] DRAM RAS to CAS delay

00 = 1 clock 01 = 2 clocks
10 = 3 clocks 11 = 4 clocks

01

Tcas
(DRAM)

[7:6] DRAM CAS pulse width

00 = 1 clock 01 = 2 clocks 10 = 3 clocks 1x = Not used

01

Tcp
(DRAM)

[5:4] DRAM CAS pre-charge

00 = 1 clock 01 = 2 clocks 10 = 3 clocks 1x = Not used

01

CAN/SCAN
DRAM/SDRAM

[3:2] DRAM/SDRAM column address number

DRAM :
00 = 8-bit 01 = 9-bit 10 = 10-bit 11 = 11-bit

SDRAM :
00 = 8-bit 01 = 9-bit 10 = 10-bit 11 = Not Used

00

Trcd
(SDRAM)

[1:0] SDRAM RAS to CAS Delay

00 = 2 clocks 01 = 3 clocks
1x = 4 clocks

00

S3C2800 RISC MICROPROCESSOR MEMORY CONTROLLER

7-19

SDRAM MODE REGISTER SET REGISTER (MRSR)

Register Address R/W Description Reset Value

MRSR 0x1001 001C R/W Mode register set register for SDRAM
bank 0 – bank 3.

0x0000 0030

MRSR Bit Description Initial state

WBL [9] Write burst length

0 = Burst (Fixed)

0

TM [8:7] Test mode

00 = Mode Register Set (Fixed)

00

CL [6:4] CAS latency

000 = 1 clock 001 = Not Used 010 = 2 clocks
011 = 3 clocks 1xx = Not used

011

BT [3] Burst type

0 = Sequential (Fixed)

0

BL [2:0] Burst length

000 = 1 (Fixed)

000

NOTE: MRSR register must not be reconfigured while the code is running on SDRAM.

Examples Programming of Memory Configuration

ldr r0,=SMRDATA
ldr r1,=SMBCON0 ;SMBCON0 Address
add r2, r0, #28 ;End address of SMRDATA (7*4)

0 ldr r3, [r0], #4
str r3, [r1], #4
cmp r2, r0
bne %B0

SMRDATA DATA

DCD 0x000100a1 ; SMBCON0 , Bus width=16-bit,Access time=14clocks
DCD 0x000100a2 ; SMBCON1 , Bus width=32-bit,Access time=14clocks
DCD 0x000100a2 ; SMBCON2 , Bus width=32-bit,Access time=14clocks
DCD 0x000100a2 ; SMBCON3 , Bus width=32-bit,Access time=14clocks
DCD 0x008301e9 ; REFRESH , Refresh=Enable,CBR/Auto refresh,Counter=0x1e9
DCD 0x00020d55 ; DMTMCON , Bus width=32-bit,Memory=SDRAM,Column addr=9-bit
DCD 0x00000030 ; MRSR , CAS latency=3clocks

MEMORY CONTROLLER S3C2800 RISC MICROPROCESSOR

7-20

NOTES

S3C2800 RISC MICROPROCESSOR DMA

8-1

8 DMA

OVERVIEW

S3C2800 supports four-channel DMA controller that is located between the system bus (AHB) and the peripheral
bus(APB). Each channel of DMA controller can perform data transfers between devices in the system bus and/or
peripheral bus with no restrictions. In other words, each channel can handle the following data transfers:

1. both source and destination are in the system bus (AHB)
(ex, Memory to Memory transfer)

2. source is in the system bus (AHB) while destination is in the peripheral bus (APB)
(ex, memory to an I/O device transfer)

3. source is in the peripheral bus (APB) while destination is in the system bus (AHB)
(ex, I/O device to memory transfer)

4. both source and destination are in the peripheral bus (APB)
(ex, I/O device to I/O device transfer)

The main advantage of DMA is that it allows the data transfer the data without CPU intervention. The DMA
operation can be requested by either software or hardware including external DMA source.

DMA S3C2800 RISC MICROPROCESSOR

8-2

DMA OPERATION

The details of DMA operation can be explained based-on the following 3-state FSM (finite state machine):

State-1. As an initial state, it waits for the DMA request. If it comes, go to state-2. At this state, DMA ACK and
INT REQ are high.

State-2. In this state, DMA ACK becomes low and current transfer counter (CURR_TC) is loaded from the
 DCON[19:0] register. Note that DMA ACK becomes low and remains low until it becomes high later.

State-3. In this state, the atomic operation of DMA handled by sub-FSM is initiated. The sub-FSM reads the data
 from the source address and then writes it to destination address. In this operation, data size(byte, half
 word, or word) and transfer size (single or burst) are considered. This operation is repeated until the
 current transfer counter(CURR_TCreaches 0 in the whole service mode, while performed only once in
 a single service mode. The main FSM (this FSM) counts down the CURR_TC when the sub-FSM
 finishes each atomic operation. In addition, this main FSM asserts the INT REQ signal when
 CURR_TC becomes 0 and the interrupt setting of DCON[[28] register is set to 1. In addition, the DMA
 ACK becomes high if one of the following conditions are met.

 1) CURR_TC becomes 0 in the whole service mode, or
 2) atomic operation finishes in the single service mode.

Note that in the single service mode, these three states of main FSM are performed once, then stops, and waits
for another DMA REQ. And if another DMA REQ occurs, all the three states are repeated. Therefore, DMA ACK
is asserted and then de-asserted for each atomic transfer. In contrast, in the whole service mode, main FSM
waits at state-3 until CURR_TC becomes 0. Therefore, DMA ACK is asserted during all the transfers and then de-
asserted when TC reaches 0.

However, INT REQ is asserted only if CURR_TC becomes 0 regardless of the service mode (single service
mode or whole service mode).

Figure 8-1 shows the internal diagram of a DMA block. The DMA acts as a bridge, which provides the interface
layer between AHB and APB. The main role of DMA is to transfer the data between external memory and internal
peripherals such as UART, Timer, etc, which are attached to APB. The Timer can also request DMA operation
with a specified time interval. Usually, CPU or other master device should access to external memory through
memory controller, which is attached to AHB. Please remind that the DMA is also a kind of master device. To
transfer the data from memory(peripheral devices) to peripheral devices(memory) attached to APB(AHB), we
should use the memory controller attached to AHB. Because the DMA is in the Bridge, which is an interface layer
between AHB and APB, it can transfer the data between two devices, which are attached to AHB as well as APB.

The DMA also provides a temporary buffer which allows multiple transfers to enhance the bus utilization as well
as transfer speed. Specifically, S3C2800 has a 4-word FIFO-type buffer to support the 4-word burst transfer
during DMA operation. For example, the DMA operation between memories can be done by a 4-word burst write
followed by a 4-word burst read.

S3C2800 RISC MICROPROCESSOR DMA

8-3

AHB
_Signals

DMA 0

DMA 3

DMA 2

DMA 1

AHB_State

Slave
Peripheral

Channel
Airbiter
DMA

Control

APB_Signals

Source
Selector

Source
Selector

Source
Selector

Source
Selector

nXDREQ 0
nXDREQ 1
UART 0

FIFO
(4-Word)

APB

A
H

B

UART 1

TIMER

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3

Figure 8-1. DMA Controller Block Diagram

DMA S3C2800 RISC MICROPROCESSOR

8-4

DMA REQUEST/ACKNOWLEDGE PROTOCOL

There are two types of DMA request/acknowledge protocol. Each type defines how DMA request and
acknowledge signals are related to these protocol.

Basic DMA Timing

The DMA service means paired reads and writes cycles during DMA operation, which is one DMA operation. The
Figure 8-2 shows the basic timing in the DMA operation.

nXDREQ

nXDACK

Read Cycle Write Cycle

Figure 8-2. Basic DMA Timing Diagram

S3C2800 RISC MICROPROCESSOR DMA

8-5

Demand/Handshake Mode Comparison – Related to the Protocol between nXDREQ and nXDACK

These are two different modes related to the protocol between nXDREQ and nXDACK. Fig. 8-3 shows the
differences between these two modes i.e., Demand and Handshake modes.

At the end of one transfer(Single/Burst transfer), DMA checks the state of double-synched nXDREQ.

Demand mode

— If nXDREQ remains asserted, the next transfer starts immediately. Otherwise it waits for nXDREQ to be
asserted.

Handshake mode

— If nXDREQ is deasserted, DMA deasserts nXDACK. Otherwise it waits until nXDREQ is deasserted.
Caution : nXDREQ has to be asserted(low) only after the deassertion(high) of nXDACK.

nXDREQ

nXDACK

Read Write

~ ~ ~ ~

1st Transfer 2nd Transfer

Read Write

~ ~ ~ ~

Demand Mode

nXDREQ

nXDACK
Read Write

~ ~ ~ ~

Handshake Mode

Figure 8-3. Demand/Handshake Mode Comparison

DMA S3C2800 RISC MICROPROCESSOR

8-6

SERVICE MODE

Single service Mode

The single service mode means that there is one DMA acknowledge cycles indicating DMA read and write cycle..

When the DMA request signal goes low, the bus controller indicates the bus allocation for the DMA operation by
lowering the DMA acknowledge signal if there is no higher priority bus request except this DMA request. During
the first low level period of the DMA acknowledge signal, a DMA read cycle will be initiated. After the DMA read
cycle, the next DMA write cycle follows.

The DMA ACK signal is de-asserted when the atomic operation (i.e., read followed by write operation) is finished.
The INT REQ signal is asserted only if current transfer counter (CURR_TC) becomes 0.

nDREQ

nDACK

Read Cycle Write Cycle

TC TC-1

Figure 8-4. Single Transfer in Single Service Mode

nDREQ

nDACK

TC 2 1 03

Read Write Read Write Read Write

DMA_INT

Figure 8-5. Sequential Transfer in Single Service Mode

S3C2800 RISC MICROPROCESSOR DMA

8-7

Whole Service Mode

The whole service mode means that the specified number of DMA operations, i.e., number of DMA operations
based on transfer count, will be initiated by a single activation of DMA request, and will proceed without further
activation of DMA requests. The below figure shows how the whole service mode proceeds. The nDACK signal
remains active until the end of whole DMA operations.

nDREQ

nDACK

TC TC-1 1 0TC

Read Write

DMA_INT

Read Write Read Write

Figure 8-6. Whole Service Mode

DMA S3C2800 RISC MICROPROCESSOR

8-8

DMA TRANSFER SIZE

There are tow types of DMA transfer size (Single transfer size, Burst transfer size). Unlike DMA
request/acknowledge protocol, the DMA transfer size defines the number of read/write per unit transfer as shown
in the following table.

DMA Transfer Size Read/Write

Single transfer 1 unit read, then 1 unit write

Burst transfer 4 unit burst read, then 4 unit burst write

NOTE: unit is Byte, Half Word, or Word.

Single Transfer Size

The single transfer mode means that the paired DMA read/write cycle is performed per each DMA request as
shown in Figure 8-4.

Burst (4-unit) Transfer Size

The burst (4 unit) transfer mode means that the successive 4-unit DMA read cycle is performed followed by the
successive 4-unit DMA write cycles.

nDREQ

nDACK

Read Read Read Read Write Write Write Write

Figure 8-7. Burst (4-unit) Transfer Size

S3C2800 RISC MICROPROCESSOR DMA

8-9

DMA REQUEST SOURCE SELECTION

Register DCONn[23] selects either software or hardware DMA request mode: if hardware request mode is set,
one of the source in Table 8-1 can be selected by register DCONn[25:24].
Note that if software request mode is selected, the selected hardware DMA source does not have any meaning.
The hardware DMA request source for each channel are as follows.

Table 8-1. Hardware DMA Sources

Source 0 Source 1 Source 2 Source 3

Ch-0 nXDREQ0 nXDREQ1 UART0 UART1

Ch-1 nXDREQ0 nXDREQ1 UART0 UART1

Ch-2 nXDREQ0 nXDREQ1 UART0 TIMER

Ch-3 nXDREQ0 nXDREQ1 UART1 TIMER

NOTE: The PCI memory space can be accessed through the DMA channel 0 in S/W trigger mode. However, the burst
transfer size cannot be used.

The software trigger can be done by writing the SW-TRIG field as 1 in DMASKTRIGn register, i.e., the start of
DMA. Before the start of DMA, we should configure DMA-related parameter, for example source address,
destination address, transfer count and so on. Based-on these configuration, the DMA operation will start when
we write the SW_TRIG field as 1. In this case of software trigger, the DMA operations will continue as long as the
bust mastership is allocated to DMA master and as long as the DMA current transfer count (CURR_TC) reaches
to zero, i.e., the completion of DMA operation.

In DMA, there are five hardware request sources: nXDREQ0, nXDREQ1, UART0, UART,1and TIMER. The DMA
can also be initiated by software. The sources of DMA operation are selected by writing the
HWSRCSEL(bit[25:24]) field in DCONn register.

Here nXDREQ0 and nXDREQ1 represent two external source(External Devices).

DMA S3C2800 RISC MICROPROCESSOR

8-10

DMA SPECIAL FUNCTION REGISTERS

There are seven control registers for each DMA channel. (Since there are four channels, the total number of
control register is 28.)four of them control the DMA transfer, and other three show the status of DMA controller.
The details of those registers are given below.

DMA INITIAL SOURCE REGISTER (DISRCn)

Register Address R/W Description Reset Value

DISRC0 0x1003 0000 R/W DMA 0 Initial source register 0x0000 0000

DISRC1 0x1004 0000 R/W DMA 1 Initial source register 0x0000 0000

DISRC2 0x1005 0000 R/W DMA 2 Initial source register 0x0000 0000

DISRC3 0x1006 0000 R/W DMA 3 Initial source register 0x0000 0000

DISRCn Bit Description Initial State

S_LOC [31] Select the location of source.
0 = The source is in the system bus (AHB).
1 = The source is in the peripheral bus(APB).

0

S_INC [30] Select the source address increment.
0 = Increment 1 = Fixed(Not changed)
If it is 0, the address is increased by its data size after each
transfer in burst and single transfer mode.
If it is 1, the address is not changed after the transfer (In the
burst mode, address is increased during the burst transfer,
but the address is recovered to its first value after the
transfer).

0

S_ADDR [29:0] These bits are the base address (start address) of source
data to transfer. This value will be loaded into CURR_SRC
only if the CURR_TC is 0 and the DMA ACK is asserted.

0x0000 0000

S3C2800 RISC MICROPROCESSOR DMA

8-11

DMA INITIAL DESTINATION REGISTER (DIDSTn)

Register Address R/W Description Reset Value

DIDST0 0x1003 0004 R/W DMA 0 Initial destination register 0x0000 0000

DIDST1 0x1004 0004 R/W DMA 1 Initial destination register 0x0000 0000

DIDST2 0x1005 0004 R/W DMA 2 Initial destination register 0x0000 0000

DIDST3 0x1006 0004 R/W DMA 3 Initial destination register 0x0000 0000

DIDSTn Bit Description Initial State

D_LOC [31] Select the location of destination.
0 = The destination is in the system bus (AHB).
1 = The destination is in the peripheral bus(APB).

0

D_INC [30] Select the source address increment
0 = Increment 1 = Fixed(Not changed)
If it is 0, the address is increased by its data size after each
transfer in burst and single transfer mode
If it is 1, the address is not changed after the transfer (In the
burst mode, address is increased during the burst transfer,
but the address is recovered to its first value after the
transfer).

0

D_ADDR [29:0] These bits are the base address (start address) of destination
for the transfer. This value will be loaded into CURR_SRC
only if the CURR_TC is 0 and the DMA ACK is asserted.

0x0000 0000

DMA S3C2800 RISC MICROPROCESSOR

8-12

DMA CONTROL REGISTER (DCONn)

Register Address R/W Description Reset Value

DCON0 0x1003 0008 R/W DMA 0 control register 0x0000 0000

DCON1 0x1004 0008 R/W DMA 1 control register 0x0100 0000

DCON2 0x1005 0008 R/W DMA 2 control register 0x0200 0000

DCON3 0x1006 0008 R/W DMA 3 control register 0x0300 0000

DCONn Bit Description Initial State

DMD_HS [30] Select one between demand mode and handshake mode.
0 = demand mode is selected.
1 = handshake mode is selected.
In both modes, DMA controller starts its transfer and asserts
DACK for a given asserted DREQ. The difference between two
modes is whether it waits de-asserted DREQ or not. In
handshake mode, DMA controller waits fot the de-asserted
DREQ before starting a new transfer. if it sees the de-asserted
DREQ, it de-asserts DACK and waits for another asserted DREQ.
In contrast, in the demand mode, DMA controller does not wait
until the DREQ is de-asserted. It just de-asserted DACK and then
starts another transfer if DREQ is asserted.
We recommend using handshake mode for external DMA request
sources to prevent unintended starts of new transfers.

0

SYNC [29] Select DREQ/DACK synchronization.
0 = DREQ and DACK are synchronized to PCLK.
1 = DREQ and DACK are synchronized to HCLK.
Therefore, devices attached to AHB system bus, this bit has to 1,
while those devides attached to APB system should be set to 0.
For the devices attached to external system, user should select
this bit depending on whether the external system is
synchronized with AHB system or APB system.

0

INT [28] Enable/Disable the Interrupt.
0 = Interrupt is disabled .
1 = Interrupt is enabled
 Interrupt request is generated when all the transfer is
 done (i.e., CURR_TC becomes 0)..

0

TSZ [27] Selected the transfer size of an atomic transfer (i.e., transfer
performed at each time DMA owns the bus before releasing the
bus).
0 = a single transfer is performed.
1 = a burst transfer of length four is performed.

0

S3C2800 RISC MICROPROCESSOR DMA

8-13

DCONn Bit Description Initial State

SERVMODE [26] Select the service mode between single service mode and whole
service mode.
0 = Single service mode is selected in which after each
 atomic transfer (single or burst of length four) DMA stops
 and waits for another DMA request.
1 = Whole service mode is selected in which one request
 gets atomic transfers to be repeated until the transfer
 count reaches to 0. In this mode, additional request is not
 required.

0

HWSRCSEL [25:24] Select DMA request source for each DMA.
Refer to Table 8-2
This bits control the 4:1 MUX to select the DMA request source of
each DMA. These bits have meanings if and only if hardware
request mode is selected by DCONn[23].

Refer to
Table 8-2

SWHW_SEL [23] Select the DMA source between software and hardware request
mode.
0 = S/W request mode is selected and DMA is triggered by
 setting SW_TRIG bit of DMASKTRIGn control register.
1 = Hardware request is selected.
 DMA source selected by bit[25:24] is used to trigger the
 DMA operation.

NOTE: The PCI memory space can be accessed through the DMA
 channel 0 in software trigger mode. However, the burst
 transfer size cannot be used.

0

Auto_MASK_
ON_OFF

[22] Set the auto mask of the MASK_ON_OFF bit in DMASKTRIG
register.
0 = Auto mask off is not performed when a current value of
 transfer count becomes 0 (i.e., all the required transfers
 are performed).
1 = DMA channel(DMA REQ) is turned off when a current
 value of transfer count becomes 0. The channel on/off bit
 (DMASKTRIGn[1]) is set to 0 (DREQ off) to prevent
 unintended further start of new DAM operation.

0

DSZ [21:20] Data size to be transferred.
00 = Byte 01 = Half word
1x = Word

00

TC [19:0] Initial transfer count (or transfer beat)
Note that the actual number of bytes that are transferred is
computed by the following equation: DSZ x TSZ x TC, where
DSZ, TSZ, and TC represent data size (bit[21:20]), transfer size
(bit[27]), and initial transfer count, respectively.
This value will be loaded into CURR_TC only if the CURR_TC is
0 and the DMA ACK is 1.

0x0 0000

DMA S3C2800 RISC MICROPROCESSOR

8-14

Table 8-2. DMA Source selection

Register Bit Description Initial State

DCON0
(DMA 0)

[25:24] Selection of hardware DMA request for DMA channel 0
00 = nXDREQ0 01 = nXDREQ1
10 = UART0 11 = UART1

00

DCON1
(DMA 1)

Selection of hardware DMA request for DMA channel 1
00 = nXDREQ0 01 = nXDREQ1
10 = UART0 11 = UART1

01

DCON2
(DMA 2)

Selection of hardware DMA request for DMA channel 2
00 = nXDREQ0 01 = nXDREQ1
10 = UART0 11 = TIMER

10

DCON3
(DMA 3)

Selection of hardware DMA request for DMA channel 3
00 = nXDREQ0 01 = nXDREQ1
10 = UART1 11 = TIMER

11

NOTE: A DMA cannot use a DMA request source used by another DMA channel.
Ex) If the DMA channel 0 has been selected to UART0, DMA1,DMA2 and DMA3 cannot use UART0 as the request

 source.

S3C2800 RISC MICROPROCESSOR DMA

8-15

DMA STATUS REGISTER (DSTATn)

Register Address R/W Description Reset Value

DSTAT0 0x1003 000C R DMA 0 status register 0x0000 0000

DSTAT1 0x1004 000C R DMA 1 status register 0x0000 0000

DSTAT2 0x1005 000C R DMA 2 status register 0x0000 0000

DSTAT3 0x1006 000C R DMA 3 status register 0x0000 0000

DSTATn Bit Description Initial State

STAT [20] Status of the DMA controller.
0 = It indicates that DMA controller is ready for another DMA request.
1 = It indicates that DMA controller is busy for transfers.

0

CURR_TC [19:0] Current value of transfer counts.
Note that transfer count is initially set to the value of DCONn[19:0]
register and decreased by one at the end of every atomic transfer.

0x00 0000

DMA CURRENT SOURCE REGISTER (DCSRCn)

Register Address R/W Description Reset Value

DCSRC0 0x1003 0010 R DMA 0 current source register 0x0000 0000

DCSRC1 0x1004 0010 R DMA 1 current source register 0x0000 0000

DCSRC2 0x1005 0010 R DMA 2 current source register 0x0000 0000

DCSRC3 0x1006 0010 R DMA 3 current source register 0x0000 0000

DCSRCn Bit Description Initial State

CURR_SRC [29:0] Current source address for DMAn 0x0000 0000

DMA CURRENT DESTINATION REGISTER (DCDSTn)

Register Address R/W Description Reset Value

DCDST0 0x1003 0014 R DMA 0 current destination register 0x0000 0000

DCDST1 0x1004 0014 R DMA 1 current destination register 0x0000 0000

DCDST2 0x1005 0014 R DMA 2 current destination register 0x0000 0000

DCDST3 0x1006 0014 R DMA 3 current destination register 0x0000 0000

DCDSTn Bit Description Initial State

CURR_DST [29:0] Current destination address for DMAn 0x0000 0000

DMA S3C2800 RISC MICROPROCESSOR

8-16

DMA MASK TRIGGER REGISTER (DMASKTRIGn)

Register Address R/W Description Reset Value

DMASKTRIG0 0x1003 0018 R/W DMA 0 mask trigger register 0x0000 0000

DMASKTRIG1 0x1004 0018 R/W DMA 0 mask trigger register 0x0000 0000

DMASKTRIG2 0x1005 0018 R/W DMA 0 mask trigger register 0x0000 0000

DMASKTRIG3 0x1006 0018 R/W DMA 0 mask trigger register 0x0000 0000

DMASKTRIGn Bit Description Initial State

STOP [2] Stop the DMA operation.
1 = DMA stops as soon as the current atomic transfer ends. If
 there is no current running atomic transfer, DMA stops
 immediately. The CURR_TC will be 0.

NOTE: Due to possible current atomic transfer, “stop” may take
 several cycles. The finish of “stopping” operation (i.e., actual
 stop time) can be detected by waiting until the channel on/off
 bt(bit[1]) is set to off. This stop is “actual stop”.

0

MASK_
ON_OFF

[1] DMA mask on/off bit (This bit is depending on the DCONn[22]
register).
0 = Masked (DMA channel is turned off).
 The DMA request to this channel is ignored, the DMA
 controller is masked and not handled.

NOTE: User can’t write “0” (ignored).

1 = DMA channel is turned on and the DMA request is
 handled.
This bit is automatically set to 0 if we set the DCONn[22] bit to 1
and/or DMASKTRIGn[2] bit to 1 (stop). Note that when DCON[22]
bit is 1 , this bit becomes 0 when CURR_TC reaches 0. If the
STOP bit is 1, this bit becomes 0 as soon as the current atomic
transfer finishes.

0

SW_TRIG [0] Trigger the DMA channel in software request mode.
1 = it requests a DMA operation to this controller.
However, note that for this trigger to have effects software
request mode has to be selected (DCONn[23]) and
MASK_ON_OFF bit has to be set to 1. When DMA operation
starts, this bit is cleared automatically.

0

NOTE: You can freely change the values of DISRC register, DIDST registers, and TC field of DCON register. Those
changes take effect only after the finish of current transfer (i.e., when CURR_TC becomes 0). On the other hand,
any change made to other registers and/or fields takes immediate effect. Therefore, be careful in changing those
registers and fields.

S3C2800 RISC MICROPROCESSOR GPIO PORTS

9-1

9 GPIO PORTS

OVERVIEW

S3C2800 has 44 multi-functional GPIO (general-purpose input/output) port pins organized into six port groups:

• Five 8-bit input/output ports(A,B,D,E,F).

• One 4-bit input/output ports(C).

Each port can be easily configured by software to meet various system configuration and design requirements.
These multi-functional pins need to be properly configured before their use. If a multiplexed pin is not used as a
dedicated functional pin, this pin can be configured as GPIO ports.

The initial pin states, before pin configurations, are configured elegantly to avoid some problems.

GPIO PORTS S3C2800 RISC MICROPROCESSOR

9-2

Table 9-1. Port Configuration Overview

Port A Selectable Pin functions

Function 1 Function 2

GPA0 Input/output nSCS1

GPA1 Input/output nSCS2

GPA2 Input/output nSCS3

GPA3 Input/output nSDCS1/nDRAS1

GPA4 Input/output nSDCS2/nDRAS2

GPA5 Input/output nSDCS3/nDRAS3

GPA6 Input/output nDCAS0

GPA7 Input/output nDCAS1

Port B Selectable Pin functions

Function 1 Function 2

GPB0 Input/output nDCAS2/nSDCAS

GPB1 Input/output nDCAS3/nSDRAS

GPB2 Input/output nBE0/nWBE0/DQM0

GPB3 Input/output nBE1/nWBE1/DQM1

GPB4 Input/output nBE2/nWBE2/DQM2

GPB5 Input/output nBE3/nWBE3/DQM3

GPB6 Input/output nWAIT

GPB7 Input/output CLKout

Port C Selectable Pin functions

Function 1 Function 2

GPC0 Input/output -

GPC1 Input/output -

GPC2 Input/output -

GPC3 ENDIAN output only

NOTE: ENDIAN is used only when nRESET is Low.
Endian value is latched only at the rising edge of nRESET: when nRESET is Low, the ENDIAN(GPC3)
pin operates in input mode; nRESET becomes High, the ENDIAN pin will automatically switch to output mode.

S3C2800 RISC MICROPROCESSOR GPIO PORTS

9-3

Table 9-1. Port Configuration Overview (Continued)

Port D Selectable Pin functions

Function 1 Function 2

GPD0 Input/output IICSDA0

GPD1 Input/output IICSCLK0

GPD2 Input/output IICSDA1

GPD3 Input/output IICSCLK1

GPD4 Input/output RxD0

GPD5 Input/output TxD0

GPD6 Input/output nCTS0

GPD7 Input/output nRTS0

Port E Selectable Pin functions

Function 1 Function 2

GPE0 Input/output RxD1

GPE1 Input/output TxD1

GPE2 Input/output nCTS1

GPE3 Input/output nRTS1

GPE4 Input/output nXDREQ0

GPE5 Input/output nXDACK0

GPE6 Input/output nXDREQ1

GPE7 Input/output nXDACK1

Port E Selectable Pin functions

Function 1 Function 2

GPF0 Input/output EXTINT0

GPF1 Input/output EXTINT1

GPF2 Input/output EXTINT2

GPF3 Input/output EXTINT3

GPF4 Input/output EXTINT4

GPF5 Input/output EXTINT5

GPF6 Input/output EXTINT6

GPF7 Input/output EXTINT7

NOTES:
1. The underlined function name is selected just after a reset.
2. IICSDAn and IICSCLKn pins are open-drain pin. So, this pin needs pull-up resistors when used as output

port(GPD[3:0]).

GPIO PORTS S3C2800 RISC MICROPROCESSOR

9-4

PORT CONTROL DESCRIPTIONS

Port Configuration Register (PCONA – PCONF)

In S3C2800, most pins are multiplexed, and the PCONn (port control register) determines which function is used
for each pin.

If GPF0 – GPF7 is used for the wakeup signal in power down mode, these ports must be configured for interrupt
mode.

Port Data Register (PDATA – PDATF)

If Ports are configured as output ports, data can be written to the corresponding bit of PDATn. If Ports are
configured as input ports, the data can be read from the corresponding bit of PDATn.

Port Pull-Up Register (PUPA, PUPC-PUPF)

The port pull-up register controls the pull-up resistor enable/disable of each port group except port B. When the
corresponding bit is 0, the pull-up resistor of the pin is enabled. When 1, the pull-up resistor is disabled.

When the port pull-up resistors are enabled, they are effective only for input mode. In output mode, the pull-up
resistors are ineffective even if they are enabled.

External Interrupt Control Register

The 8 external interrupts support various trigger mode: the trigger mode can be configured as low-level trigger,
high-level trigger, falling-edge trigger, rising-edge trigger, and both edge trigger.

Because each external interrupt pin has an integrated digital noise filter, the interrupt controller can recognize the
request signal that lasts longer than 3 clocks.

S3C2800 RISC MICROPROCESSOR GPIO PORTS

9-5

GPIO PORT SPECIAL FUNCTION REGISTERS

PORT A CONTROL REGISTERS (PCONA, PDATA, PUPA)

Register Address R/W Description Reset Value

PCONA 0x1010 0000 R/W Configures the pins of port A 0x0000 FFFF

PDATA 0x1010 0004 R/W The data register for port A Undefined

PUPA 0x1010 0008 R/W Pull-up resistor control register for port A 0x0000 0000

PCONA Bit Description

GPA7 [15:14] 00 = Input 01 = Output
1x = nDCAS1

GPA6 [13:12] 00 = Input 01 = Output
1x = nDCAS0

GPA5 [11:10] 00 = Input 01 = Output
1x = nSDCS3/nDRAS3

GPA4 [9:8] 00 = Input 01 = Output
1x = nSDCS2/nDRAS2

GPA3 [7:6] 00 = Input 01 = Output
1x = nSDCS1/nDRAS1

GPA2 [5:4] 00 = Input 01 = Output
1x = nSCS3

GPA1 [3:2] 00 = Input 01 = Output
1x = nSCS2

GPA0 [1:0] 00 = Input 01 = Output
1x = nSCS1

PDATA Bit Description

GPA[7:0] [7:0] When the port is configured as output port, the pin state is the same as the
corresponding bit.
When the port is configured as functional pin, the undefined value will be read.

PUPA Bit Description

GPA[7:0] [7:0] 0: the pull-up resistor of the corresponding port pin is enabled.
1: the pull-up resistor is disabled.

GPIO PORTS S3C2800 RISC MICROPROCESSOR

9-6

PORT B CONTROL REGISTERS (PCONB, PDATB)

Register Address R/W Description Reset Value

PCONB 0x1010 000C R/W Configures the pins of port B 0x0000 0FFF

PDATB 0x1010 0010 R/W The data register for port B Undefined

PCONB Bit Description

GPB7 [15:14] 00 = Input 01 = Output
1x = AHBCLK out

GPB6 [13:12] 00 = Input 01 = Output
1x = nWAIT

GPB5 [11:10] 00 = Input 01 = Output
1x = nBE3/nWBE3/DQM3

GPB4 [9:8] 00 = Input 01 = Output
1x = nBE2/nWBE2/DQM2

GPB3 [7:6] 00 = Input 01 = Output
1x = nBE1/nWBE1/DQM1

GPB2 [5:4] 00 = Input 01 = Output
1x = nBE0/nWBE0/DQM0

GPB1 [3:2] 00 = Input 01 = Output
1x = nDCAS3/nSDRAS

GPB0 [1:0] 00 = Input 01 = Output
1x = nDCAS2/nSDCAS

PDATB Bit Description

GPB[7:0] [7:0] When the port is configured as output port, the pin state is the same as the
corresponding bit.
When the port is configured as functional pin, the undefined value will be read.

NOTE: Port B does not have built-in pull-up resistors.

S3C2800 RISC MICROPROCESSOR GPIO PORTS

9-7

PORT C CONTROL REGISTERS (PCONC, PDATC, PUPC)

Register Address R/W Description Reset Value

PCONC 0x1010 0018 R/W Configures the pins of port C 0x0000 0000

PDATC 0x1010 001C R/W The data register for port C Undefined

PUPC 0x1010 0020 R/W Pull-up resistor control register for port C 0x0000 0000

PCONC Bit Description

GPC3 [7:6] Read only.
0x = Input (ENDIAN)
1x = Output
ENDIAN is used only when nRESET is Low. Endian value is latched only at
the rising edge of nRESET: when nRESET is Low, the ENDIAN(GPC3) pin
operates in input mode; nRESET becomes High, the ENDIAN pin will
automatically switch to output mode.

GPC2 [5:4] 0x = Input
1x = Output

GPC1 [3:2] 0x = Input
1x = Output

GPC0 [1:0] 0x = Input
1x = Output

PDATC Bit Description

GPC[3:0] [3:0] When the port is configured as output port, the pin state is the same as the
corresponding bit.
When the port is configured as functional pin, the undefined value will be read.

PUPC Bit Description

GPC[2:0] [2:0] 0 : the pull-up resistor of the corresponding port pin is enabled.
1 : the pull-up resistor is disabled.
GPC3 does not have programmale pull-up resistor.

GPIO PORTS S3C2800 RISC MICROPROCESSOR

9-8

PORT D CONTROL REGISTERS (PCOND, PDATD, PUPD)

Register Address R/W Description Reset Value

PCOND 0x1010 0024 R/W Configures the pins of port D 0x0000 0000

PDATD 0x1010 0028 R/W The data register for port D Undefined

PUPD 0x1010 002C R/W Pull-up resistor control register for port D 0x0000 0000

PCOND Bit Description

GPD7 [15:14] 00 = Input 01 = Output
1x = nRTS0

GPD6 [13:12] 00 = Input 01 = Output
1x = nCTS0

GPD5 [11:10] 00 = Input 01 = Output
1x = TxD0

GPD4 [9:8] 00 = Input 01 = Output
1x = RxD0

GPD3 [7:6] 00 = Input 01 = Output
1x = IICSCLK1

GPD2 [5:4] 00 = Input 01 = Output
1x = IICSDA1

GPD1 [3:2] 00 = Input 01 = Output
1x = IICSCLK0

GPD0 [1:0] 00 = Input 01 = Output
1x = IICSDA0

PDATD Bit Description

GPD[7:0] [7:0] When the port is configured as output port, the pin state is the same as the
corresponding bit.
When the port is configured as functional pin, the undefined value will be read.

PUPD Bit Description

GPD[7:0] [7:0] 0: the pull-up resistor of the corresponding port pin is enabled.
1: the pull-up resistor is disabled.

S3C2800 RISC MICROPROCESSOR GPIO PORTS

9-9

PORT E CONTROL REGISTERS (PCONE, PDATE, PUPE)

Register Address R/W Description Reset Value

PCONE 0x1010 0030 R/W Configures the pins of port E 0x0000 0000

PDATE 0x1010 0034 R/W The data register for port E Undefined

PUPE 0x1010 0038 R/W Pull-up resistor control register for port E 0x0000 0000

PCONE Bit Description

GPE7 [15:14] 00 = Input 01 = Output
1x = nXDACK1

GPE6 [13:12] 00 = Input 01 = Output
1x = nXDREQ1

GPE5 [11:10] 00 = Input 01 = Output
1x = nXDACK0

GPE4 [9:8] 00 = Input 01 = Output
1x = nXDREQ0

GPE3 [7:6] 00 = Input 01 = Output
1x = nRTS1

GPE2 [5:4] 00 = Input 01 = Output
1x = nCTS1

GPE1 [3:2] 00 = Input 01 = Output
1x = TxD1

GPE0 [1:0] 00 = Input 01 = Output
1x = RxD1

PDATE Bit Description

GPE[7:0] [7:0] When the port is configured as an output port, the pin state is the same as the
corresponding bit.
When the port is configured as a functional pin, the undefined value will be read.

PUPE Bit Description

GPE[7:0] [7:0] 0: the pull-up resistor of the corresponding port pin is enabled.
1: the pull-up resistor is disabled.

GPIO PORTS S3C2800 RISC MICROPROCESSOR

9-10

PORT F CONTROL REGISTERS (PCONF, PDATF, PUPF)

If GPF0 - GPF7 are used for wake-up interrupt in the IDLE mode, the ports have to be set in external interrupt
mode before entering IDLE mode.

Register Address R/W Description Reset Value

PCONF 0x1010 003C R/W Configures the pins of port F 0x0000 0000

PDATF 0x1010 0040 R/W The data register for port F Undefined

PUPF 0x1010 0044 R/W Pull-up resistor control register for port F 0x0000 0000

PCONF Bit Description

GPF7 [15:14] 00 = Input 01 = Output
1x = EXTINT7

GPF6 [13:12] 00 = Input 01 = Output
1x = EXTINT6

GPF5 [11:10] 00 = Input 01 = Output
1x = EXTINT5

GPF4 [9:8] 00 = Input 01 = Output
1x = EXTINT4

GPF3 [7:6] 00 = Input 01 = Output
1x = EXTINT3

GPF2 [5:4] 00 = Input 01 = Output
1x = EXTINT2

GPF1 [3:2] 00 = Input 01 = Output
1x = EXTINT1

GPF0 [1:0] 00 = Input 01 = Output
1x = EXTINT0

PDATF Bit Description

GPF[7:0] [7:0] When the port is configured as an input port, the corresponding bit is the pin state.
When the port is configured as output port, the pin state is the same as the
corresponding bit.
When the port is configured as a functional pin, the undefined value will be read.

PUPF Bit Description

GPF[7:0] [7:0] 0: the pull-up resistor of the corresponding port pin is enabled.
1: the pull-up resistor is disabled.

S3C2800 RISC MICROPROCESSOR GPIO PORTS

9-11

EXTINTR (EXTERNAL INTERRUPT CONTROL REGISTER)

The EXTINTR register selects the trigger types among various level or edge trigger mode of the external
interrupt.

Register Address R/W Description Reset Value

EXTINTR 0x1010 0048 R/W External Interrupt control register 0x0000 0000

EXTINTR Bit Description

EXTINT7 [30:28] Trigger mode of the EXTINT7.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EXTINT6 [26:24] Trigger mode of the EXTINT6.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EXTINT5 [22:20] Trigger mode of the EXTINT5.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EXTINT4 [18:16] Trigger mode of the EXTINT4.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EXTINT3 [14:12] Trigger mode of the EXTINT3.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EXTINT2 [10:8] Trigger mode of the EXTINT2.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EXTINT1 [6:4] Trigger mode of the EXTINT1.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

EXTINT0 [2:0] Trigger mode of the EXTINT0.
000 = Low level interrupt 001 = High level interrupt
01x = Falling edge triggered 10x = Rising edge triggered
11x = Both edge triggered

NOTES:
1. Because each external interrupt pins has a digital filter, the interrupt controller can recognize a request signal that is

longer than 3 clocks.
2. If users want to change the trigger mode in the external interrupt mode, users are first required to switch the

corresponding pin to input mode and then change the trigger mode.

GPIO PORTS S3C2800 RISC MICROPROCESSOR

9-12

SPECIAL PULL-UP RESISTOR CONTROL REGISTER(SPUCR)

DATA[31:0] pin pull-up resistor can be controlled by SPUCR register.

When CPU does not require accesses to external memory for data (e.g., all required data resides in the cache),
the data bus DATA[31:0] becomes Hi-Z state and unnecessary power consumption will result. In this case,
enabling pull-up resistor of DATA[31:0] helps the reduction of power consumption. In particular, it is
recommended to enable the pull-up resistor for a great power reduction in IDLE mode when no data access is
necessary, However, the pull-up resistor should be turned off for normal data access operation in other cases.

Register Address R/W Description Reset Value

SPUCR 0x1010 004C R/W Special pull-up resistor control register for
DATA ports.

0x0000 0000

PCONG Bit Description

SPUCR1 [1] 0 = DATA[31:16] port pull-up resistor is enabled
1 = DATA[31:16] port pull-up resistor is disabled

SPUCR0 [0] 0 = DATA[15:0] port pull-up resistor is enabled
1 = DATA[15:0] port pull-up resistor is disabled

S3C2800 RISC MICROPROCESSOR TIMER

10-1

10 TIMER

OVERVIEW

The S3C2800 has three 16-bit timers, Timers 0, 1, 2, that operate in interval mode, interrupt-based or DMA-
based mode.

Each timer is composed of an 8-bit prescaler, a clock-divider (1/4, 1/8, 1/16, 1/32), and a 16-bit down-counter.
The programmable 8-bit prescaler divides the PCLK signal depending on the prescaler value in TMDATAn
register and the clock divider further divides the PCLK to generate the timer clock.

Each timer has its own 16-bit down-counter that is driven by the timer clock. When the down-counter occurs
underflow, the timer interrupt request is generated to inform the CPU that the timer has expired. When the timer
counter occurs underflow, the value of corresponding TMDATAn is automatically reloaded into the down-counter
to continue the next iteration. However, if the timer is stopped, by clearing the count enable bit of TMCONn while
the timer is running, the value of TMDATAn will not be reloaded into the counter.

FEATURE

• Three 16-bit timers with DMA-based or interrupt-based operation

• Three 8-bit prescalers and three 5-bit dividers

• Auto reload operation

• Maximum frequency source is 50MHz (PCLK)

PCLK 8-bit
Prescaler

1/4

1/8

1/16

1/32

M
U
X

16-bit Down counter
(TMCNTn)

Timer n Data Register
(TMDATAn)

Reload

TMDATAn[23:16] TMCONn[3:2] TMCONn[0] TMDMASEL[1:0]

n = 0, 1, 2

TnINT
or

TnDMA Req

TMCONn[1]

Underflow

Figure 10-1. 16-bit Timer Block Diagram

16-BIT TIMERS S3C2800 RISC MICROPROCESSOR

10-2

16-BIT TIMER OPERATION

PRESCALER & DIVIDER

Examples of timer clock frequency for various combination of prescaler and divider are given in Table 10-1.

Table 10-1. Example for Interval Timing

Divider settings Minimum resolution
(prescaler = 1)

Maximum resolution
(prescaler = 255)

Maximum interval
(TCNTBn = 65535)

1/4 (PCLK = 50 MHz) 0.16 us (6.25 MHz) 20.48 us (48.83 KHz) 1.342 sec

1/8 (PCLK = 50 MHz) 0.32 us (3.125 MHz) 40.96 us (24.42 KHz) 2.684 sec

1/16 (PCLK = 50 MHz) 0.64 us (1.563 MHz) 81.92 us (12.21 KHz) 5.368 sec

1/32 (PCLK = 50 MHz) 1.28 us (0.782 MHz) 163.84 us (6.11 KHz) 10.736 sec

DMA REQUEST MODE

The timer can generate DMA request at a specified time interval. The timer keeps DMA request signal low until
the timer receives the ACK signal. When receives the ACK signal, it makes the request signal inactive. In order
to use the timer in DMA mode, DMA mode bits (TMCONn register) must be set. Only one of the timer can
operate in DMA mode at a time, and others will operate in interrupt mode. If a timer is configured for DMA
request mode, the timer does not generate an interrupt request.

DMA MODE CONFIGURATION AND DMA/INTERRUPT OPERATION

DMA mode DMA request Timer0 INT Timer1 INT Timer2 INT

00 No select ON ON ON

01 Timer0 OFF ON ON

10 Timer1 ON OFF ON

11 Timer2 ON ON OFF

S3C2800 RISC MICROPROCESSOR 16-BIT TIMERS

10-3

PCLK

Timer2_Int_tmp

DMA mode

nDMA_ACK

nDMA_REQ

Timer2_Int

11

Figure 10-2. The Timer2 DMA mode operation

16-BIT TIMERS S3C2800 RISC MICROPROCESSOR

10-4

TIMER SPECIAL FUNCTION REGISTERS

TIMER DMA SELECTION REGISTER (TMDMASEL)

Register Address R/W Description Reset Value

TMDMASEL 0x1013 000C R/W DMA or Interrupt mode selecton register 0x0000 0000

TMDMASEL Bit Description Initial State

DMA mode [1:0] Select DMA request channel
00 = No select(All interrupt) 01 = Timer0
10 = Timer1 11 = Timer2

0

TIMER CONTROL REGISTER (TMCONn)

Timer input clock Frequency = APBCLK / {prescaler value+1} / {divider value}
{prescaler value} = 1–255 (TMDATAn[23:16])
{divider value} = 4, 8, 16, 32

Register Address R/W Description Reset Value

TMCON0 0x1013 0000 R/W Timer 0 control register 0x0000 0800

TMCON1 0x1014 0000 R/W Timer 1 control register 0x0000 0800

TMCON2 0x1015 0000 R/W Timer 2 control register 0x0000 0800

TMCONn Bit Description Initial State

MUX [3:2] Select MUX input
00 = 1/4 01 = 1/8
10 = 1/16 11 = 1/32

00

Interrupt/DMA
Enable

[1] Interrupt or DMA Enable
0 = Disable 1 = Enable

0

Count Enable [0] Timer down counter run or stop
0 = Stop 1 = Run
 This bit enables or disables timer. When the bit is set to “0”,
 the 16-bit down counter is clear to “0x0000”, and then it is
 stops.
 When set to “1”, the timer down-counter starts counting
 after reloading the timer data and pre-scaler value.
 The down-counter decrements itself by one on accepting
 every timer clock.

0

NOTE: When the Timer data or prescaler value need updating, first stop the timer counter.

S3C2800 RISC MICROPROCESSOR 16-BIT TIMERS

10-5

TIMER DATA REGISTER (TMDATAn)

The timer data registers, TMDATA0, TMDATA1, and TMDATA2, contain a value that specifies the time-out
period for each timer. The formula for calculating time-out period is (Timer data + 1) cycles.

Register Address R/W Description Reset Value

TMDATA0 0x1013 0004 R/W Timer 0 data register 0x0080 FFFF

TMDATA1 0x1014 0004 R/W Timer 1 data register 0x0080 FFFF

TMDATA2 0x1015 0004 R/W Timer 2 data register 0x0080 FFFF

TMDATAn Bit Description Initial State

Pre-scaler [23:16] These 8 bits determine prescaler value (1 – 255)
0 = not supported.

0x80

Timer data value [15:0] Timer data value
This field specifies the time-out period of the corresponding
timer. The time-out period is calculated as (Timer data + 1)
cycles. Therefore, a maximum time-out period of 65,536 cycles
is possible (when the timer data value is 0xffff). The minimum
time-out period (2 cycles) is obtained when the timer data
register field has the value 0x0001h.

0x0000 FFFF

TIMER COUNT REGISTER (TMCNTn)

The timer count registers, TMCNT0, TMCNT1, and TMCNT2, are 16-bit counters for timer 0, 1, and 2,
respectively. The value of timer count registers decrease on each time clock.

Register Address R/W Description Reset Value

TMCNT0 0x1013 0008 R Timer 0 count register 0x0000 FFFF

TMCNT1 0x1014 0008 R Timer 1 count register 0x0000 FFFF

TMCNT2 0x1015 0008 R Timer 2 count register 0x0000 FFFF

TMCNTn Bit Description Initial State

Timer count value [15:0] Timer down-counter
This field keeps the actual timer count value. When the timer is
enabled by setting TMCONn[0] = 1, timer data value in
TMDATAn register is loaded into this field and the down-
counting process begins. An interrupt is generated (if enabled)
and this filed is automatically re-loaded with timer data value
when the underflow occurs.

0x0000 FFFF

16-BIT TIMERS S3C2800 RISC MICROPROCESSOR

10-6

NOTES

S3C2800 RISC MICROPROCESSOR UART

11-1

11 UART

OVERVIEW

The S3C2800 UART (Universal Asynchronous Receiver and Transmitter) unit provides two independent serial
GPIO ports, each of which can operate in interrupt-based or DMA-based mode. The UART can generate an
interrupt or DMA request to transfer data between CPU and UART. It supports bit rates of up to 230.4Kbps. Each
UART channel contains two 16-byte FIFOs for receive and transmit.

The UART supports programmable baud-rates, infra-red (IR) transmit/receive, one or two stop bit insertion, 5-bit,
6-bit, 7-bit or 8-bit data and parity checking.

Each UART is composed of a baud-rate generator, transmitter, receiver and control unit, as shown in Figure11-
1. The baud-rate generator is clocked by PCLK.

FEATURE

• RxD0,TxD0,RxD1,TxD1 with DMA-based or interrupt-based operation

• UART 0 with IrDA 1.0 and 16-byte FIFO

• UART 1 with IrDA 1.0 and 16-byte FIFO

• Supports transmit/receive handshake

 Table 11-1. Maximum Baud-Rate for Each Input Clock

PCLK Baud-rate PCLK Baud-rate PCLK Baud-rate PCLK Baud-rate

50.0MHz 115.2Kbps 37.5MHz 230.4Kbps 25.0MHz 57.6Kbps 12.5MHz 38.4Kbps

47.5MHz 230.4Kbps 35.0MHz 115.2Kbps 22.5MHz 230.4Kbps 10.0MHz 57.6Kbps

45.0MHz 230.4Kbps 32.5MHz 230.4Kbps 20.0MHz 115.2Kbps 7.5MHz 230.4Kbps

42.5MHz 115.2Kbps 30.0MHz 230.4Kbps 17.5MHz 57.6Kbps 5.0MHz 38.4Kbps

40.0MHz 230.4Kbps 27.5MHz 115.2Kbps 15.0MHz 230.4Kbps

UART S3C2800 RISC MICROPROCESSOR

11-2

BLOCK DIAGRAM

Control
Unit

Transmit Shifter

Transmit FIFO Register
(16 Byte)

Transmitter

Receive FIFO Register
(16 Byte)

Receive Shifter

Receiver

Peripheral BUS

TXDn

Clock Source

RXDn

Transmit Buffer Register
(Transmit FIFO and Holding

Register)

Transmit Holding Register
(Non-FIFO mode only)

Receive Buffer Register
(Receive FIFO and Holding

Register)

Receive Holding Register
(Non-FIFO mode only)

Buad-rate
Generator

Figure 11-1. UART Block Diagram (with FIFO)

S3C2800 RISC MICROPROCESSOR UART

11-3

UART OPERATION

The following sections describe the UART operations such as data transmission, data reception, interrupt
generation, baud-rate generation, loopback mode, infra-red mode, and auto flow control.

DATA TRANSMISSION

The data frame for transmission is programmable. It consists of a start bit, 5 to 8 data bits, an optional parity bit
and 1 to 2 stop bits, which can be specified by the line control register (ULCONn). The transmitter can also
produce the break condition. The break condition forces the serial output to logic 0 state for one frame
transmission time. This block transmit break signal after the present transmissive word transmits perfectly. After
the break signal transmission, it continuously transmits data into the Tx FIFO (Tx holding register in the case of
Non-FIFO mode).

DATA RECEPTION

Like the transmission, the data frame for reception is also programmable. It consists of a start bit, 5 to 8 data bits,
an optional parity bit and 1 to 2 stop bits in the line control register (ULCONn). The receiver can detect overrun
error, parity error, frame error and break condition, each of which can set an error flag.

— The overrun error indicates that new data has overwritten the old data before the old data has been read.

— The parity error indicates that the receiver has detected an unexpected parity condition.

— The frame error indicates that the received data does not have a valid stop bit.

— The break condition indicates that the RxDn input is held in the logic 0 state for the duration longer than one
frame transmission time.

Receive time-out condition occurs when it does not receive data during the 3 word time frame (This interval
follows the setting of Word Length bit) and the Rx FIFO is not empty in the FIFO mode.

UART S3C2800 RISC MICROPROCESSOR

11-4

AUTO FLOW CONTROL(AFC)

S3C2800's UART supports auto flow control with nRTS and nCTS signals for UART to UART connection. On the
other hand, when connecting UART to a modem, it is recommended to disable auto flow control bit in UMCONn
register and control the signal of nRTS by software.

In AFC, nRTS is controlled by condition of the receiver and operation of transmitter is controlled by the nCTS
signal. The UART's transmitter transfers the data in FIFO only when nCTS signal is active(In AFC, nCTS means
that the other UART's FIFO is ready to receive data). Before the UART receives data, nRTS has to be activated
when its receive FIFO has a spare more than 2-byte and has to be inactivated when its receive FIFO has a spare
under 1-byte(In AFC, nRTS means that its own receive FIFO is ready to receive data).

RxD

nRTS

UART A

TxD

nCTS

UART B

TxD

nCTS

UART A

RxD

nRTS

UART B

Transmission case in
UART A

Reception case in
UART A

Figure 11-2. UART AFC interface

NON AUTO-FLOW CONTROL (CONTROLLING NRTS AND NCTS BY S/W)

Rx operation

1. Select receive mode (Interrupt or DMA mode)

2. Check the value of Rx FIFO count in UFSTATn register. If the value is less than 15, users have to set the
value of UMCONn[0] to '1'(activate nRTS), and if it is equal or larger than 15 users have to set the value to
'0'(inactivate nRTS).

3. Repeat item 2.

Tx operation

1. Select transmit mode (Interrupt or DMA mode)

2. Check the value of UMSTATn[0]. If the value is '1'(nCTS is activated), users write the data to Tx FIFO
register.

RS-232C INTERFACE

If users connect to modem interface (not a null modem), nRTS, nCTS, nDSR, nDTR, DCD and nRI signals are
needed. In this case, users have to control these signals using GPIO ports by software because the AFC does not
support the RS-232C interface.

S3C2800 RISC MICROPROCESSOR UART

11-5

INTERRUPT/DMA REQUEST GENERATION

Each UART has seven status(Tx/Rx/Error) signals: overrun error, parity error, frame error, break, receive buffer
data ready, transmit buffer empty, and transmit shifter empty, all of which are indicated by the corresponding
UART status register (UERSTATn /UTRSTATn).

The overrun error, parity error, frame error and break condition are referred to as the receive error status, each of
which can cause the receive error status interrupt request, if the Rx error status interrupt enable bit (UCONn[6]) is
set. When a Rx error status interrupt occurs, the types of Rx error can be identified by reading UERSTSTn.

When interrupt request mode is selected:

In the FIFO mode, and Rx/Tx interrupt is generated when the number of received/transmitted data reaches Rx/Tx
FIFO trigger level, respectively. On the other hand, and interrupt is generated on data receive in the Rx buffer
for Non-FIFO Rx mode and when Tx buffer becomes empty after transmitting the data for Non-FIFO Tx mode.

When DMA request mode is selected:

If the Rx/Tx mode in the control registers (UCONn) are selected as the DMA request mode, then DMA request is
generated instead of Rx or Tx interrupt in the situation mentioned above.

Table 11-2. Interrupts In Connection With FIFO

Type FIFO Mode Non-FIFO Mode

Rx interrupt Each time receive data reaches the trigger level of
receive FIFO, the Rx interrupt will be generated.
When the number of data in FIFO does not
reaches Rx FIFO trigger level and does not
receive data during 3 word time (This interval
follows the setting of word length bit), the Rx
interrupt will be generated (receive time out).

Each time receive data becomes full, the
receive holding register, generates an
interrupt.

Tx interrupt Each time transmit data reaches the trigger level
of transmit FIFO (Tx FIFO trigger level), the Tx
interrupt will be generated.

Each time transmit data become empty,
the transmit holding register generates
an interrupt.

Error interrupt Frame error, parity error, and break signal are
detected, and will generate an error interrupt.
When it gets to the top of the receive FIFO without
reading out data in it, the error interrupt will be
generated (overrun error).

All errors generate an error interrupt
immediately. However if another error
occurs at the same time, only one
interrupt is generated.

UART S3C2800 RISC MICROPROCESSOR

11-6

UART ERROR STATUS FIFO

UART has the status FIFO associated with the Rx FIFO register. The status FIFO indicates which data, among
FIFO registers, is received with an error. The error interrupt will be issued only when the data, which has an error,
is ready to read out. To clear the status FIFO, the URXHn, with an error and UERSTATn must be read out.

For example, it is assumed that the UART FIFO receives A, B, C, D, E characters sequentially and the frame
error occurs while receiving the 'B' , and the parity error occurs while receiving 'D'.

Although the actual UART error occurred, the error interrupt will not be generated because the character, which
was received with an error, has not been read yet. The error interrupt will occur when the character is read out.

Time Sequence flow Error interrupt Note

#0 When no character is read out –

#1 After A is read out The frame error(in B) interrupt occurs The 'B' has to be read out

#2 After B is read out –

#3 After C is read out The parity error(in D) interrupt occurs The 'D' has to be read out

#4 After D is read out –

#5 After E is read out –

-
-
-
-
-
-
-
-
-
-
-

'E'
'D'
'C'
'B'
'A'

RX-FIFO

break error parity error frame error

URXHn Error Status Generator Unit

STATUS-FIFO

Figure 11-3. The Case that UART Receives 5 Characters Including 2 Errors

S3C2800 RISC MICROPROCESSOR UART

11-7

BAUD-RATE GENERATION

Each UART's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the
baud-rate generator can be selected with the S3C2800's internal APB bus clock (PCLK). The baud-rate clock is
generated by dividing the source clock by 16 and a 16-bit divisor specified by the UART baud-rate divisor register
(UBRDIVn). The UBRDIVn can be determined as follows:

UBRDIVn = (round_off)(PCLK/(bps x 16)) -1

where the divisor should be from 1 to (216-1). For example, if the baud-rate is 230400 bps and PCLK is 50 MHz ,
UBRDIVn is:

UBRDIVn = (int)(50000000/(230400 x 16)+0.5) -1
 = (int)(13.6+0.5) -1
 = 14 -1 = 13

LOOP-BACK MODE

The S3C2800 UART provides a test mode referred to as the loopback mode, to aid in isolating faults in the
communication link. In this mode, the transmitted data is immediately received. This feature allows the processor
to verify the internal transmit and to receive the data path of each SIO channel. This mode can be selected by
setting the loopback-bit in the UART control register (UCONn).

BREAK CONDITION

The break is defined as a continuous low level signal for one frame transmission time on the transmit data output.

UART S3C2800 RISC MICROPROCESSOR

11-8

IR (INFRA-RED) MODE

The S3C2800 UART block supports infra-red (IR) transmission and reception, which can be selected by setting
the infra-red-mode bit in the UART line control register (ULCONn). The implementation of the mode is shown in
Figure 11-4.

In IR transmit mode, the transmit period is pulsed at a rate of 3/16, the normal serial transmit rate (when the
transmit data bit is zero); In IR receive mode, the receiver must detect the 3/16 pulsed period to recognize a zero
value (refer to the frame timing diagrams shown in Figure 11-6 and 11-7).

IrDA Tx
Encoder

0

1

0

1

IrDA Rx
Decoder

TxD

RxD

TxD

IRS

RxD

RE

UART
Block

Figure 11-4. IrDA Function Block Diagram

S3C2800 RISC MICROPROCESSOR UART

11-9

Start
Bit

Stop
Bit

Data Bits

SIO Frame

0 1 0 1 0 0 1 1 0 1

Figure 11-5. Serial I/O Frame Timing Diagram (Normal UART)

0

Start
Bit

Stop
Bit

Data Bits

IR Transmit Frame

Bit
Time Pulse Width = 3/16 Bit Frame

0 0 0 0 11111

Figure 11-6. Infra-Red Transmit Mode Frame Timing Diagram

0

Start
Bit

Stop
Bit

Data Bits

IR Receive Frame

0 0 0 0 11111

Figure 11-7. Infra-Red Receive Mode Frame Timing Diagram

UART S3C2800 RISC MICROPROCESSOR

11-10

UART SPECIAL FUNCTION REGISTERS

UART LINE CONTROL REGISTER (ULCONn)

There are two UART line control registers, ULCON0 and ULCON1 in the UART block.

Register Address R/W Description Reset Value

ULCON0 0x1017 0000 R/W UART 0 line control register 0x0000 0000

ULCON1 0x1018 0000 R/W UART 1 line control register 0x0000 0000

ULCONn Bit Description Initial State

Infra-Red Mode [7] The Infra-Red mode determines whether or not to use the
Infra-Red mode.
0 = Normal mode operation
1 = Infra-Red Tx/Rx mode

0

Parity Mode [6:4] The parity mode specifies how parity generation and checking
are to be performed during UART transmit and receive
operation.
0xx = No parity
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as 1
111 = Parity forced/checked as 0

000

Reserved [3] Reserved 0

Number of stop bit [2] The number of stop bits specifies how many stop bits are to
be used to signal end-of-frame.
0 = One stop bit per frame
1 = Two stop bit per frame

0

Word length [1:0] The word length indicates the number of data bits to be
transmitted or received per frame.
00 = 5-bits 01 = 6-bits
10 = 7-bits 11 = 8-bits

00

S3C2800 RISC MICROPROCESSOR UART

11-11

UART CONTROL REGISTER (UCONn)

There are two UART control registers, UCON0 and UCON1 in the UART block.

Register Address R/W Description Reset Value

UCON0 0x1017 0004 R/W UART 0 control register 0x0000 0000

UCON1 0x1018 0004 R/W UART 1 control register 0x0000 0000

UCONn Bit Description Initial State

Tx interrupt type [9] Interrupt request type
0 = Pulse (Interrupt is requested as soon as Tx buffer becomes
empty in Non-FIFO mode or Tx FIFO reaches trigger level in FIFO
mode)
1 = Level (Interrupt is requested while Tx buffer is empty in Non-
FIFO mode or Tx FIFO has been being in trigger level in FIFO
mode)

0

Rx interrupt type [8] Interrupt request type
0 = Pulse (Interrupt is requested the instant Rx buffer receives the
data in Non-FIFO mode or reaches Rx FIFO trigger level in FIFO
mode)
1 = Level (Interrupt is requested while Rx buffer is receiving data in
Non-FIFO mode or reaches Rx FIFO trigger level in FIFO mode)

0

Rx time out
interrupt

[7] Enable/Disable Rx time out interrupt when UART FIFO is enabled.
0 = Disable 1 = Enable

0

Rx error status
interrupt enable

[6] This bit enables the UART to generate an interrupt if an exception,
such as a break, frame error, parity error, or overrun error occurs
during a receive operation.
0 = Do not generate receive error status interrupt
1 = Generate receive error status interrupt

0

Loop-back mode [5] Setting loop-back bit to 1 causes the UART to enter loop-back
mode. This mode is provided for test purposes only.
0 = Normal operation 1 = Loop-back mode

0

Send break
signal

[4] Setting this bit causes the UART to send a break during 1 frame
time. This bit is auto-cleared after sending break signal.
0 = Normal transmit 1 = Send break signal

0

Transmit mode [3:2] These two bits determine which function is currently able to write Tx
data to the UART transmit holding register.
00 = Disable 01 = Interrupt request
1x = DMA request

00

Receive mode [1:0] These two bits determine which function is currently able to read
data from UART receive buffer register.
00 = Disable, 01 = Interrupt request
1x = DMA request

00

UART S3C2800 RISC MICROPROCESSOR

11-12

UART FIFO CONTROL REGISTER (UFCONn)

There are two UART FIFO control registers, UFCON0 and UFCON1 in the UART block.

Register Address R/W Description Reset Value

UFCON0 0x1017 0008 R/W UART 0 FIFO control register 0x0000 0000

UFCON1 0x1018 0008 R/W UART 1 FIFO control register 0x0000 0000

UFCONn Bit Description Initial State

Tx FIFO trigger level [7:6] These two bits determine trigger level of transmit FIFO.
00 = Empty 01 = 4-byte
10 = 8-byte 11 = 12-byte

00

Rx FIFO trigger level [5:4] These two bits determine trigger level of receive FIFO.
00 = 4-byte 01 = 8-byte
10 = 12-byte 11 = 16-byte

00

Reserved [3] 0

Tx FIFO reset [2] This bit is auto-cleared after resetting FIFO
0 = Normal 1 = Tx FIFO reset

0

Rx FIFO reset [1] This bit is auto-cleared after resetting FIFO
0 = Normal 1 = Rx FIFO reset

0

FIFO enable [0] 0 = FIFO disable 1 = FIFO mode 0

NOTE: When the UART does not get to FIFO trigger level and does not receive data during 3 word time in DMA receive
mode with FIFO, the Rx interrupt will be generated(receive time out), and users should have to check the FIFO
status and read out the rest.

UART MODEM CONTROL REGISTER (UMCONn)

There are two UART MODEM control registers, UMCON0 and UMCON1 in the UART block.

Register Address R/W Description Reset Value

UMCON0 0x1017 000C R/W UART 0 Modem control register 0x0000 0000

UMCON1 0x1018 000C R/W UART 1 Modem control register 0x0000 0000

UMCONn Bit Description Initial State

AFC(Auto Flow Control) [1] 0 = Disable 1 = Enable 0

Request to send [0] If AFC bit is enabled, this value will be ignored. In this case
the S3C2400 will control nRTS automatically.
If AFC bit is disabled, nRTS must be controlled by S/W.
0 = 'H' level(Inactivate nRTS)
1 = 'L' level(Activate nRTS)

0

S3C2800 RISC MICROPROCESSOR UART

11-13

UART TX/RX STATUS REGISTER (UTRSTATn)

There are two UART Tx/Rx status registers, UTRSTAT0 and UTRSTAT1 in the UART block.

Register Address R/W Description Reset Value

UTRSTAT0 0x1017 0010 R UART 0 Tx/Rx status register 0x0000 0006

UTRSTAT1 0x1018 0010 R UART 1 Tx/Rx status register 0x0000 0006

UTRSTATn Bit Description Initial State

Transmit shifter empty [2] This bit is automatically set to 1 when the transmit buffer
register has no valid data to transmit and the transmit shift
register is empty.
0 = Not empty
1 = Transmit holding and shift register empty

1

Transmit FIFO empty/
Transmit buffer empty

[1] This bit is automatically set to 1 when the transmit buffer
register is empty.
0 =The buffer register is not empty
1 = Empty
(In Non-FIFO mode, Interrupt or DMA is requested. In FIFO
mode, Interrupt or DMA is requested, when Tx FIFO trigger
level is set to 00 (Empty))
If the UART uses the FIFO, users should check Tx FIFO
count bits and Tx FIFO full bit in the UFSTAT register
instead of this bit.

1

Receive FIFO data ready/
Receive buffer data ready

[0] This bit is automatically set to 1 whenever the receive
buffer register contains valid data, received over the RXDn
port.
0 = Empty
1 = The buffer register has a received data
(In Non-FIFO mode, Interrupt or DMA is requested)
If the UART uses the FIFO, users should check Rx FIFO
Count bits and Rx FIFO Full bit in the UFSTAT register
instead of this bit.

0

UART S3C2800 RISC MICROPROCESSOR

11-14

UART ERROR STATUS REGISTER (UERSTATn)

There are two UART Rx error status registers, UERSTAT0 and UERSTAT1 in the UART block.

Register Address R/W Description Reset Value

UERSTAT0 0x1017 0014 R UART 0 Rx error status register 0x0000 0000

UERSTAT1 0x1018 0014 R UART 1 Rx error status register 0x0000 0000

UERSTATn Bit Description Initial State

Break detect [3] This bit is automatically set to 1 to indicate that a break signal
has been received.
0 = No break receive
1 = Break receive(Interrupt is requested)

0

Frame error [2] This bit is automatically set to 1 whenever a frame error occurs
during receive operation.
0 = No frame error during receive
1 = Frame error(Interrupt is requested)

0

Parity error [1] This bit is automatically set to 1 whenever a parity error occurs
during receive operation.
0 = No parity error during receive
1 = Parity error(Interrupt is requested)

0

Overrun error [0] This bit is automatically set to 1 whenever an overrun error
occurs during receive operation.
0 = No overrun error during receive
1 = Overrun error(Interrupt is requested)

0

NOTE: These bits (UERSATn[3:0]) are automatically cleared to 0 when you read the UART error status register.

S3C2800 RISC MICROPROCESSOR UART

11-15

UART FIFO STATUS REGISTER (UFSTATn)

There are two UART FIFO status registers, UFSTAT0 and UFSTAT1 in the UART block.

Register Address R/W Description Reset Value

UFSTAT0 0x1017 0018 R UART 0 FIFO status register 0x0000 0000

UFSTAT1 0x1018 0018 R UART 1 FIFO status register 0x0000 0000

UFSTATn Bit Description Initial State

Tx FIFO full [9] This bit is automatically set to 1 whenever transmit FIFO is
full during transmit operation
0 = 0-byte ≤ Tx FIFO data ≤ 15-byte
1 = Full

0

Rx FIFO full [8] This bit is automatically set to 1 whenever receive FIFO is
full during receive operation
0 = 0-byte ≤ Rx FIFO data ≤ 15-byte
1 = Full

0

Tx FIFO count [7:4] Number of data in Tx FIFO 0

Rx FIFO count [3:0] Number of data in Rx FIFO 0

UART S3C2800 RISC MICROPROCESSOR

11-16

UART MODEM STATUS REGISTER (UMSTATn)

There are two UART modem status register, UMSTAT0 and UMSTAT1 in the UART block.

Register Address R/W Description Reset Value

UMSTAT0 0x1017 001C R UART 0 Modem status register 0x0000 0000

UMSTAT1 0x1018 001C R UART 1 Modem status register 0x0000 0000

UMSTATn Bit Description Initial State

Delta CTS [1] This bit indicates that the nCTS input to S3C2800 has
changed state since the last time it was read by CPU.
(Refer to Fig. 11-8)
0 = Has not changed
1 = Has changed

0

Clear to send [0] 0 = CTS signal is not activated(nCTS pin is high)
1 = CTS signal is activated(nCTS pin is low)

0

nCTS

Delta CTS

Read_UMSTAT

Figure 11-8. nCTS and Delta CTS Timing Diagram

S3C2800 RISC MICROPROCESSOR UART

11-17

UART TRANSMIT BUFFER REGISTER (HOLDING REGISTER & FIFO REGISTER) (UTXHn)

UTXHn has an 8-bit data for transmission data.

Register Address R/W Description Reset Value

UTXH0 0x1017 0020(L)
0x1017 0023(B)

W
(by byte)

UART 0 transmit buffer register Undefined

UTXH1 0x1018 0020(L)
0x1018 0023(B)

W
(by byte)

UART 1 transmit buffer register Undefined

UTXHn Bit Description Initial State

TXDATAn [7:0] Transmit data for UARTn Undefined

NOTES:
1. (L) Indicates Little-endian mode
2. (B) Indicates Big-endian mode

UART RECEIVE BUFFER REGISTER (HOLDING REGISTER & FIFO REGISTER) (URXHn)

URXHn has an 8-bit data for received data.

Register Address R/W Description Reset Value

URXH0 0x1017 0024(L)
0x1017 0027(B)

R
(by byte)

UART 0 receive buffer register Undefined

URXH1 0x1018 0024(L)
0x1018 0027(B)

R
(by byte)

UART 1 receive buffer register Undefined

URXHn Bit Description Initial State

RXDATAn [7:0] Receive data for UARTn Undefined

NOTE: When an overrun error occurs, the URXHn must be read. If not, the next received data will also make an overrun
error, even though the overrun bit of USTATn had been cleared.
1. (L) Indicates Little-endian mode
2. (B) Indicates Big-endian mode

UART S3C2800 RISC MICROPROCESSOR

11-18

UART BAUD RATE DIVISION REGISTER (UBRDIVn)

The value stored in the baud-rate divisor register, UBRDIV, is used to determine the serial Tx/Rx clock rate (baud
rate) as follows:

UBRDIVn = (round_off)(PCLK / (bps x 16)) -1

where the divisor should be from 1 to (216-1).
For example1, if the baud-rate is 230.4Kbps and PCLK is 25MHz , UBRDIVn is:

UBRDIVn = (int)(25000000 / (230400 x 16)+0.5) -1
 = (int)(6.8+0.5) -1
 = 7 -1 = 6 (=0x6)

For example2, if the baud-rate is 115.2Kbps and PCLK is 25MHz , UBRDIVn is:

UBRDIVn = (int)(25000000 / (115200 x 16)+0.5) -1
 = (int)(13.6+0.5) -1
 = 14 -1 = 13 (=0xD)

Register Address R/W Description Reset Value

UBRDIV0 0x1017 0028 R/W UART 0 baud-rate divisior register 0 0x0000 000D

UBRDIV1 0x1018 0028 R/W UART 1 baud-rate divisior register 1 0x0000 000D

UBRDIVn Bit Description Initial State

UBRDIV [15:0] Baud rate division value
UBRDIVn >0

0x000D

S3C2800 RISC MICROPROCESSOR INTERUPT CONTROLLER

12-1

12 INTERRUPT CONTROLLER

OVERVIEW

The interrupt controller in S3C2800 manages the interrupt request from 28 sources. These interrupt sources can
be organized in two groups: the internal peripheral (such as the DMA, UART, PCI, IIC, etc.) and the external
interrupt request pins (such as EXTINT[7:0], IRIN, etc.). Note that the UART error and PCI interrupts are 'OR'ed
together to from and interrupt sources.

The role of the interrupt controller is to ask for the FIQ or IRQ interrupt request to the ARM920T core after the
arbitration process when there are multiple interrupt requests from internal peripherals and external interrupt
request pins.

The arbitration process is performed by Interrupt mode (IRQ or FIQ) and interrupt mask logic and the result is
written to the interrupt pending register (FIQ/IRQ) that can be read by the users in the interrupt service routine..

Interrupt Mode
Register

Interrupt Mask
Register

Interrupt Source
Pending Register

IRQ Interrupt
Pending Register

FIQ Interrupt
Pending Register

Interrupt
Source bit

Interrupt Enable
bit in each Module

FIQ Interrupt
to Processor

IRQ Interrupt
to Processor

Figure 12-1. Interrupt Controller Block Diagram

INTERUPT CONTROLLER S3C2800 RISC MICROPROCESSOR

12-2

INTERRUPT CONTROLLER OPERATION

F-BIT AND I-BIT OF PSR (PROGRAM STATUS REGISTER)

If the F-bit of PSR (program status register in ARM920T CPU) is set to 1, the CPU does not accept the FIQ (fast
interrupt request) from the interrupt controller. If I-bit of PSR (program status register in ARM920T CPU) is set to
1, the CPU does not accept the IRQ (interrupt request) from the interrupt controller. So, to enable the interrupt
reception, the F-bit or I-bit of PSR has to be cleared to 0 and also the corresponding bit of INTMSK has to be set
to 1.

INTERRUPT MODE

ARM920T has 2 types of interrupt mode, FIQ and IRQ. All the interrupt sources determine the mode of interrupt
to be used at interrupt request.

S3C2800 RISC MICROPROCESSOR INTERUPT CONTROLLER

12-3

INTERRUPT SOURCES

Interrupt controller supports 28 interrupt sources as shown in table 12-1. User can find out the interrupt source in
the interrupt service routine by reading the IRQPND & FIQPND register.

Table 12-1. Interrupt Source & Corresponding Bit

Corresponding bit Sources Descriptions

[28] INT_RTC RTC alarm interrupt

[27] INT_TICK RTC Time tick interrupt

[26] INT_FULL Remocon data FIFO full interrupt

[25] INT_RMT Remote control signal input interrupt

[24] INT_UERR1 UART 1 error Interrupt

[23] INT_UERR0 UART 0 error Interrupt

[22] INT_TxD1 UART1 transmit interrupt

[21] INT_TxD0 UART0 transmit interrupt

[20] INT_ RxD1 UART 1 receive interrupt

[19] INT_RxD0 UART 0 receive interrupt

[18] INT_IIC1 IIC 1 interrupt

[17] INT_ IIC0 IIC 0 interrupt

[16] INT_TIMER2 Timer 2 interrupt

[15] INT_TIMER1 Timer 1 interrupt

[14] INT_TIMER0 Timer 0 interrupt

[13] INT_DMA3 General DMA 3 interrupt

[12] INT_DMA2 General DMA 2 interrupt

[11] INT_DMA1 General DMA 1 interrupt

[10] INT_DMA0 General DMA 0 interrupt

[9] Reserved Reserved

[8] INT_PCI PCI interrupt (7 PCI interrupt source in PCI block)

[7] EXTINT7 External interrupt 7

[6] EXTINT6 External interrupt 6

[5] EXTINT5 External interrupt 5

[4] EXTINT4 External interrupt 4

[3] EXTINT3 External interrupt 3

[2] EXTINT2 External interrupt 2

[1] EXTINT1 External interrupt 1

[0] EXTINT0 External interrupt 0

INTERUPT CONTROLLER S3C2800 RISC MICROPROCESSOR

12-4

INTERRUPT CONTROLLER SEPCIAL FUNCTION REGISTERS

There are five control registers in the interrupt controller: source pending register (SRCPND), interrupt mode
register (INTMOD), mask register (INTMSK), and interrupt pending registers (IRQPND,FIQPND).

All the interrupt requests from the interrupt sources are first registered in the source pending register. They are
divided into two groups based on the interrupt mode register, i.e., one FIQ request and the remaining IRQ
requests. Masked interrupt source will not be set in the interrupt pending registers (IRQPND,FIQPND). The
details of each control registers are as follows.

INTERRUPT SOURCE PENDING REGISTER (SRCPND)

SRCPND register is composed of 28 bits, each of which is related to an interrupt source (Refer to Table 12-1).
Each bit is set to 1 if the corresponding interrupt source generates the interrupt request and waits for the interrupt
to be serviced. Note that each bit of SRCPND register is automatically set by the interrupt sources regardless of
the masking bits in the INTMSK register.

In the interrupt service routine for a specific interrupt source, the corresponding bit of SRCPND register has to be
cleared to get the interrupt request from the same source correctly. If you return from the ISR without clearing the
bit, interrupt controller operates as if another interrupt request comes in from the same source. In other words, if
a specific bit of SRCPND register is set to 1, it is always considered as a valid interrupt request waiting to be
serviced.

You can clear the specific bit of SRCPND register as follows: In the interrupt service routine for IRQ or FIQ, write
1 to SRCPND register. And then it automatically clears the interrupt pending registers (IRQPND,FIQPND).

Register Address R/W Description Reset Value

SRCPND 0x1002 0000 R/W Indicates the interrupt request status. 0x0000 0000

SRCPND Bit Description Initial State

EIN_xx
(Refer to Table 12-1)

[28:0] Indicates the interrupt request status
0 = Not requested, 1 = Requested
Bit [9] = Reserved

0x0000 0000

S3C2800 RISC MICROPROCESSOR INTERUPT CONTROLLER

12-5

INTERRUPT MODE REGISTER (INTMOD)

This register is composed of 28 bits, each of which is related to an interrupt source (Refer to Table 12-1). If a
specific bit is set to 1, the corresponding interrupt is processed in the FIQ (fast interrupt) mode. Otherwise, it is
processed in the IRQ mode (normal interrupt).

Note that at most only one interrupt source can be serviced in the FIQ mode in the interrupt controller. (You
should use the FIQ mode only for the urgent interrupt.) Thus, only one bit of INTMOD can be set to 1 at most.

Register Address R/W Description Reset Value

INTMOD 0x1002 0004 R/W Interrupt mode Register 0x0000 0000

INTMOD Bit Description Initial State

INT_xx
(Refer to Table 12-1)

[28:0] Interrupt mode Register
0 = IRQ mode 1 = FIQ mode
Bit [9] = Reserved

0x0000 0000

INTERRUPT MASK REGISTER (INTMSK)

Each of the 28 bits in the interrupt mask register is related to an interrupt source (Refer to Table 12-1). If you
clear a specific bit to 0, the interrupt request from the corresponding interrupt source is not serviced by the CPU.
(Note that even in such a case, the corresponding bit of SRCPND register is set to 1). If the mask bit is 0, the
interrupt request can be serviced.

Register Address R/W Description Reset Value

INTMSK 0x1002 0008 R/W Determines which interrupt source is masked. The
masked interrupt source will not be serviced.

0x0000 0000

INTMSK Bit Description Initial State

INT_xx
(Refer to Table 12-1)

[28:0] Determines which interrupt source is masked. The
masked interrupt source will not be serviced.
0 = Masked 1 = Service available
Bit [9] = Reserved

0x0000 0000

INTERUPT CONTROLLER S3C2800 RISC MICROPROCESSOR

12-6

IRQ/FIQ INTERRUPT PENDING REGISTER (IRQPND/FIQPND)

The IRQPND and the FIQPND contain one flag per interrupt (28 total) that indicates an interrupt request has
been made by a unit. Inside the interrupt service routine, the IRQPND and FIQPND are read to determine the
interrupt source.

Bits within the IRQPND and FIQPND are read only. Once an interrupt has been serviced, the handler clears the
pending bit in the interrupt service routine by writing 1 to the necessary bit in the source pending register
(SRCPND). Clearing the interrupt source pending bit in the interrupt service routine automatically clears the
corresponding bit in the IRQPND and FIQPND register.

This is a read-only register.

Register Address R/W Description Reset Value

IRQPND 0x1002 000C R IRQ interrupt service pending register 0x0000 0000

FIQPND 0x1002 0010 R FIQ interrupt service pending register 0x0000 0000

IRQPND/FIQPND Bit Description Initial State

INT_xx
(Refer to Table 12-1)

[28:0] IRQ/FIQ interrupt service pending register
0 = not requested 1 = requested now
Bit [9] = Reserved

0x0000 0000

IMPORTANT NOTE

To clear the IRQPND/FIQPND, the following two rules has to be obeyed.
1. The pending bit in source pending register (SRCPND) should have to clear by writing 1.
2. And then it is cleared the pending bit in interrupt pending register (IRQPND/FIQPND)
 automatically.

S3C2800 RISC MICROPROCESSOR REMOTE CONTROL SIGNAL RECEIVER

13-1

13 REMOTE CONTROL SIGNAL RECEIVER

OVERVIEW

The S3C2800 is capable of capturing and storing up to 8 remote control signals in 8-bit resolution. The remote
control signal receiver can detect the rising edge, falling edge or rising/falling edge of the remote control signal
and captures the width of the pulse edges. The minimum pulse width of the remote control signal should be
greater than (1/32768)*5 sec; otherwise, the remote control signal receiver may not capture the pulse width.
Figure 3-1 shows the components in this receiver block.

Data Bus

FIFO Interrupt
full(8)-step detect 8

8

Remote Control Signal
Receive Interrupt

Interrupt
Control Circuit

IRIN

32.768 Hz

8-BIT Counter
Capture

(RRCR[3:2])

(RRCR[1:0])

Noise
Elimination

Circuit

Polarity
Control

FIFO
8 Step

M
U
X

1
1/2
1/4
1/8

Figure 13-1. Remote Control Signal Receiver Block Diagram

REMOTE CONTROL SIGNAL RECEIVER S3C2800 RISC MICROPROCESSOR

13-2

REMOTE CONTROL SIGNAL RECEIVER BLOCK OPERATION

When the remote control signal is input to the IRIN pin, the current 8-bit counter value is written to FIFO at the
signal’s edge (Falling or Rising) and the counter is cleared to 0 and then the counter starts to count again until the
next edge of the signal is detected. Refer to Figure 13-2 for timing information of the counter value capture
process.
The S3C2800 remote control signal receiver block has eight 8-bit FIFO's–the FIFO full status flag (RRCR[5]) will
be set when all the FIFO's become full. The FIFO's will not be overwritten after the FIFO's have been filled even
if a remote control signal is detected. Thus, in order to prevent the loss of incoming remote control signal, users
are recommended to read the FIFO data out appropriate to ensure that the FIFO's does not continue to be full.

NOTE: The very first capture counter data in FIFO is meaningless because the first data is written to the FIFO at the first
edge of the incoming remote control signal. Therefore, care must be taken when programming the remote receiver
block.

NOISE FILTER

The S3C2800 remote control signal receiver block has a built-in 5-step noise filter, which operates 32768Hz, for
prevention of errors from noise. Therefore, the minimum pulse width of the remote control signal must be greater
than that of the filtering pulse of the noise filter. That is, a pulse width smaller than this is considered as noise and
is ignored. The filtering pulse width of the noise filter is ((1/32768)*5)sec(=152.6us).

8-BIT COUTER SAMPLING CLOCK

The 8-bit counter sampling clock can be selected by bit [3:2] in the RRCR register. This clock must be set such
that the error is minimum and overflow of the counter does not occur in consideration of the pulse width of the
remote signal. If the pulse width of the remote control signal is small but the sampling time is set too large, the
error will increases; on the other hand, if the pulse width is large but the sampling time is set too small, an
overflow occurs.

93 94 0 1 2 3 5 6 0 1 24 3 0 1

Counter Clock

Counter Value

Remote Control Signal

Write to FIFO

Clear Counter

FIFO Data 94 6 3

Figure 13-2. Remote Control Signal Receiver Operation Timing

S3C2800 RISC MICROPROCESSOR REMOTE CONTROL SIGNAL RECEIVER

13-3

REMOTE CONTROL SIGNAL RECEIVER SPECIAL FUNCTION REGISTERS

REMOTE CONTROL SIGNAL RECEIVER CONTROL REGISTER (RRCR)

Register Address R/W Description Reset Value

RRCR 0x1011 0000 R/W Remote signal receiver control register 0x0000 0010

RRCR Bit Description Initial State

Counter overflow status
flag

[8] Counter overflow status flag
0 = Not overflow 1 = Overflow

0

FIFO full (8)-step detect
interrupt

[7] Enable FIFO full (8)-step detect interrupt
0 = Disable the FIFO full interrupt
1 = Enable the FIFO full interrupt

0

Remote control signal
receive Interrupt

[6] Enable remote control signal receive interrupt
0 = Disable the interrupt
1 = Enable the interrupt

0

FIFO full status flag [5] FIFO full (8) status flag (Read only)
0 = Not full 1 = Full

0

FIFO empty status flag [4] FIFO empty status flag (Read only)
0 = Not empty 1 = Empty

1

Counter clock selection [3:2] 8-bit counter clock selection
00 = 32,768 Hz/1 01 = 32,768 Hz/2
10 = 32,768 Hz/4 11 = 32,768 Hz/8

00

Polarity control flag [1:0] Polarity control flag for remocon input interrupt
0x = Rising edge mode
10: Falling edge mode
11: Rising & Falling edge mode

00

NOTE: If all FIFOs are full, the next input data does not go into FIFO.

FIFO DATA REGISTER (FIFOD)

Register Address R/W Description Reset Value

FIFOD 0x1011 0004 R FIFO Data register Undefined

RRCR Bit Description Initial State

FIFO Data [7:0] FIFO Data (8-bit) Undifined

REMOTE CONTROL SIGNAL RECEIVER S3C2800 RISC MICROPROCESSOR

13-4

NOTES

S3C2800 RISC MICROPROCESSOR RTC (REAL TIME CLOCK)

14-1

14 RTC (REAL TIME CLOCK)

OVERVIEW

The RTC (Real Time Clock) unit provides the clock data to CPU in BCD (Binary Coded Decimal) format. The
clock data include second, minute, hour, date, day, month, and year. The RTC unit also supports an alarm
function and works with an external 32.768 kHz crystal.

FEATURE

• BCD number: second, minute, hour, date, day, month, year

• Leap year generator

• Alarm interrupt

• Year 2000 problem is removed.

• Supports millisecond tick time interrupt for RTOS kernel time tick.

• Round reset function

RTC (REAL TIME CLOCK) S3C2800 RISC MICROPROCESSOR

14-2

REAL TIME CLOCK OPERATION

215 Clock Divider

EXTAL

XTAL

Control Register

SEC MIN HOUR DATE DAY MON YEAR

Leap Year Generator

Alarm Generator

Reset Register

1 Hz

RTCCON RTCALM

RTCRST

Time Tick Generator
TIME TICKTICNT

128 Hz

ALMINT

Figure 14-1. Real Time Clock Block Diagram

LEAP YEAR GENERATOR

Based on data from BCDDAY, BCDMON, and BCDYEAR this block determines whether the last date of each
month is 28, 29, 30, or 31. This block considers the leap year to determine the last date of each month. Since an
8-bit counter can only represent 2 BCD digits, it cannot be determined whether 00 year is a leap year or not. For
example, it cannot distinguish between 1900 and 2000. Please note 1900 is not leap year while 2000 is leap year.
To solve this problem, the RTC block in S3C2800 has a hard-wired logic to support the leap year in 2000.
Therefore, two digits of 00 in S3C2800 represents the year 2000, not 1900.

READ/WRITE REGISTERS

Bit 0 of the RTCCON register must be set to high in order to write the BCD register in RTC block. When the CPU
loads the data in BCDSEC, BCDMIN, BCDHOUR, BCDDAY, BCDDATE, BCDMON, and BCDYEAR of the RTC
block, a one second deviation may exist because multiple registers are being loaded. For example, assuming the
current RTC data of 2059 (Year), 12 (Month), 31(Date), 23 (Hour) and 59 (Minute), there is no problem if CPU
loads the BCDSEC register and the value ranges from 1 to 59 (Second). However, if the loaded value is 0 sec.,
the year, month, date, hour, and minute may have been changed to 2060 (Year), 1 (Month), 1 (Date), 0 (Hour)
and 0 (Minute) because of the one second deviation. In this case, values of BCDYEAR to BCDSEC must be re-
loaded for correct value.

S3C2800 RISC MICROPROCESSOR RTC (REAL TIME CLOCK)

14-3

ALARM FUNCTION

The RTC can generates an alarm signal at a specified time when the alarm interrupt (ALMINT) is activated. The
RTC alarm register, RTCALM, determines the alarm enable/disable and the condition of the alarm time setting.

TICK TIME INTERRUPT

The RTC tick time is used for interrupt request. The TICNT register has an interrupt enable bit and the count
value for the interrupt. When the count value reaches '0', the tick time interrupt occurs at the following period.

Period = (n+1) / 128 second
 n: Tick time count value (1–127)

This RTC time tick may be used for RTOS(real time operating system) kernel time tick. If time tick is generated
by RTC time tick, the time related function of RTOS will always synchronized with real time.

ROUND RESET FUNCTION

The round boundary (30, 40, or 50 sec) of the second carry generation can be selected through RTC round reset
register, RTCRST[1:0]. The second value is rounded to zero when the round reset bit (RTCRST[2]) is set. For
example, when the current time is 23:37:47 and the round boundary is selected to be 40 sec, the round reset
changes the current time to 23:38:00.

32.768KHZ X-TAL CONNECTION EXAMPLE

The Figure 17-2 is an example circuit of the RTC unit oscillation at 32.768 kHz.

XTAL1

EXTAL1

32768 Hz

Figure 14-2. Main Oscillator Circuit Examples

RTC (REAL TIME CLOCK) S3C2800 RISC MICROPROCESSOR

14-4

REAL TIME CLOCK SPECIAL FUNCTION REGISTERS

REAL TIME CLOCK CONTROL REGISTER (RTCCON)

The RTCCON register is composed of RTCEN, which controls the read/write enable of the BCD registers,
CLKSEL, CNTSEL, and CLKRST.

RTCEN allows the control of read/write operation between the CPU and the RTC, so it should be set to 1 in an
RTC control routine to enable data read/write after a system reset. Also before power off, the RTCEN bit should
be cleared to 0 to prevent inadvertent writing into RTC registers.

Register Address R/W Description Reset Value

RTCCON 0x1016 0000 R/W RTC control register 0x0000 0000

RTCCON Bit Description Initial State

CLKRST [3] RTC clock count stop
0 = Run 1 = Stop

0

CNTSEL [2] BCD count select
0 = Merge BCD counters
1 = Reserved (Separate BCD counters)

0

CLKSEL [1] BCD clock select
0 = XTAL 1/215 divided clock
1 = Reserved (XTAL clock)

0

RTCEN [0] RTC control enable
0 = Disable 1 = Enable

NOTE: Only BCD time count and read operation can be
 performed.

0

S3C2800 RISC MICROPROCESSOR RTC (REAL TIME CLOCK)

14-5

RTC ALARM CONTROL REGISTER (RTCALM)

RTCALM register determines the alarm enable and the alarm time. Note that the RTCALM register generates the
alarm signal through ALMINT.

Register Address R/W Description Reset Value

RTCALM 0x1016 0004 R/W RTC alarm control register 0x0000 0000

RTCALM Bit Description Initial State

ALMEN [6] Alarm global enable
0 = Disable, 1 = Enable

0

YEAREN [5] Year alarm enable
0 = Disable, 1 = Enable

0

MONREN [4] Month alarm enable
0 = Disable, 1 = Enable

0

DAYEN [3] Day alarm enable
0 = Disable, 1 = Enable

0

HOUREN [2] Hour alarm enable
0 = Disable, 1 = Enable

0

MINEN [1] Minute alarm enable
0 = Disable, 1 = Enable

0

SECEN [0] Second alarm enable
0 = Disable, 1 = Enable

0

ALARM SECOND DATA REGISTER (ALMSEC)

Register Address R/W Description Reset Value

ALMSEC 0x1016 0008 R/W Alarm second data register 0x0000 0000

ALMSEC Bit Description Initial State

SECDATA [6:4] BCD value for alarm second
from 0 to 5 000

[3:0] from 0 to 9 0000

RTC (REAL TIME CLOCK) S3C2800 RISC MICROPROCESSOR

14-6

ALARM MIN DATA REGISTER (ALMMIN)

Register Address R/W Description Reset Value

ALMMIN 0x1016 000C R/W Alarm minute data register 0x0000 0000

ALMMIN Bit Description Initial State

MINDATA [6:4] BCD value for alarm minute
from 0 to 5 000

[3:0] from 0 to 9 0000

ALARM HOUR DATA REGISTER (ALMHOUR)

Register Address R/W Description Reset Value

ALMHOUR 0x1016 0010 R/W Alarm hour data register 0x0000 0000

ALMHOUR Bit Description Initial State

HOURDATA [5:4] BCD value for alarm hour
from 0 to 2 00

[3:0] from 0 to 9 0000

ALARM DAY DATA REGISTER (ALMDAY)

Register Address R/W Description Reset Value

ALMDAY 0x1016 0014 R/W Alarm day data register 0x0000 0001

ALMDAY Bit Description Initial State

DAYDATA [5:4] BCD value for alarm day, from 0 to 28, 29, 30, 31
from 0 to 3 00

[3:0] from 0 to 9 0001

S3C2800 RISC MICROPROCESSOR RTC (REAL TIME CLOCK)

14-7

ALARM MON DATA REGISTER (ALMMON)

Register Address R/W Description Reset Value

ALMMON 0x1016 0018 R/W Alarm month data register 0x0000 0001

ALMMON Bit Description Initial State

MONDATA [4] BCD value for alarm month
from 0 to 1 0

[3:0] from 0 to 9 0001

ALARM YEAR DATA REGISTER (ALMYEAR)

Register Address R/W Description Reset Value

ALMYEAR 0x1016 001C R/W Alarm hour data register 0x0000 0000

ALMYEAR Bit Description Initial State

YEARDATA [7:0] BCD value for year
from 00 to 99

0x00

BCD SECOND REGISTER (BCDSEC)

Register Address R/W Description Reset Value

BCDSEC 0x1016 0020 R/W BCD second register Undefined

BCDSEC Bit Description Initial State

SECDATA [6:4] BCD value for second
from 0 to 5 Undefined

[3:0] from 0 to 9 Undefined

BCD MIN REGISTER (BCDMIN)

Register Address R/W Description Reset Value

BCDMIN 0x1016 0024 R/W BCD minute register Undefined

BCDMIN Bit Description Initial State

MINDATA [6:4] BCD value for minute
from 0 to 5 Undefined

[3:0] from 0 to 9 Undefined

RTC (REAL TIME CLOCK) S3C2800 RISC MICROPROCESSOR

14-8

BCD HOUR REGISTER (BCDHOUR)

Register Address R/W Description Reset Value

BCDHOUR 0x1016 0028 R/W BCD hour register Undefined

BCDHOUR Bit Description Initial State

HOURDATA [5:4] BCD value for hour
from 0 to 2

Undefined

[3:0] from 0 to 9 Undefined

BCD DAY REGISTER (BCDDAY)

Register Address R/W Description Reset Value

BCDDAY 0x1016 002C R/W BCD day register Undefined

BCDDAY Bit Description Initial State

DAYDATA [5:4] BCD value for day
from 0 to 3

Undefined

[3:0] from 0 to 9 Undefined

BCD DATE REGISTER (BCDDATE)

Register Address R/W Description Reset Value

BCDDATE 0x1016 0030 R/W BCD date register Undefined

BCDDATE Bit Description Initial State

DATEDATA [2:0] BCD value for date
from 1 to 7

Undefined

BCD MON REGISTER (BCDMON)

Register Address R/W Description Reset Value

BCDMON 0x1016 0034 R/W BCD month register Undefined

BCDMON Bit Description Initial State

MONDATA [4] BCD value for month
from 0 to 1

Undefined

[3:0] from 0 to 9 Undefined

S3C2800 RISC MICROPROCESSOR RTC (REAL TIME CLOCK)

14-9

BCD YEAR REGISTER (BCDYEAR)

Register Address R/W Description Reset Value

BCDYEAR 0x1016 0038 R/W BCD year register Undefined

BCDYEAR Bit Description Initial State

YEARDATA [7:0] BCD value for year
from 00 to 99

Undefined

TICK TIME COUNT REGISTER (TICNT)

Register Address R/W Description Reset Value

TICNT 0x1016 0040 R/W Tick time count register 0x0000 0000

TICNT Bit Description Initial State

Tick INT Enable [7] Tick time interrupt enable
0 = disable 1 = enable

0

Tick Time Count [6:0] Tick time count value. (1–127) 000000

RTC ROUND RESET REGISTER (RTCRST)

This register allows control of the round reset function. The result of round reset function depends on the time
that the round second reset enable bit is set. If the round reset is enabled before the round boundary selected by
SECCR, only second reset occurs; if enabled past the round boundary, both second carry and reset occur.

For example, assume that the round boundary is selected to be 40 sec, (1) if the round reset is enabled at
23:37:35, the time changes to 23:37:00. (2) if enabled at 23:37:45, it changes to 23:38:00.

Register Address R/W Description Reset Value

RTCRST 0x1016 0044 R/W RTC round reset Register 0x0000 0000

RTCRST Bit Description Initial State

SRSTEN [2] Round second reset enable
0 = Disable, 1 = Enable
When this bit is set , it automatically will be cleared.

0-

SECCR [1:0] Round boundary for second carry generation.
00 = over than 30 sec
01 = over than 40 sec
1x = over than 50 sec

00

RTC (REAL TIME CLOCK) S3C2800 RISC MICROPROCESSOR

14-10

NOTES

S3C2800 RISC MICROPROCESSOR WATCHDOG TIMER

15-1

15 WATCHDOG TIMER

OVERVIEW

The S3C2800 watchdog timer is used to resume the controller operation when it had been disturbed by
malfunctions such as noise or system errors. The watchdog timer generates the reset signal for 128 PCLK cycles.

CONSIDERATION OF DEBUGGING ENVIRONMENT

When S3C2800 is in debug mode using Embedded ICE, the watchdog timer must not operate. The watchdog
timer can determine whether or not the current mode is the debug mode from the CPU core signal (DBGACK
signal). Once the DBGACK signal is asserted, the reset output of the watchdog timer isn't activated when the
watchdog timer expires.

WATCHDOG TIMER S3C2800 RISC MICROPROCESSOR

15-2

WATCHDOG TIMER OPERATION

The functional block diagram of the watchdog timer is shown in Figure 15-1. The watchdog timer uses internal
APB bus clock (PCLK) as its only source clock. To generate the corresponding watchdog timer clock, the PCLK
frequency is prescaled first, and the resulting frequency is divided again.

nRESET

WTCON[7:0]

Reset Signal
Generator

Overflow16-bit counter
(WTCNT)

PCLK 8-bit
Prescaler

1/8

1/16

1/32

1/64

M
U
X

Watchdog Control
(Write 0xA5 to disable)

RESET

WTCON[8]

Clear Clear &
STOP

Figure 15-1. Watchdog Timer Block Diagram

The prescaler value and the frequency division factor are specified in the watchdog timer control register,
WTCON. The valid prescaler values range from 1 to 28-1. The frequency division factor can be selected among
8, 16, 32, or 64. Use the following equation to calculate the watchdog timer reset interval time.

t_watchdog = (1/(PCLK / (Prescaler value + 1)/Division factor)) * 216 (16-bit counter)

Table 15-1. An Example of Watchdog Interval Time

Divider settings Minimum resolution
(prescaler = 1)

Maximum resolution
(prescaler = 255)

maximum interval
(WTCNT = 65535)

1/8 (PCLK = 50 MHz) 0.32 us (3.125 MHz) 40.96 us (24.42 kHz) 2.684 sec

1/16 (PCLK = 50 MHz) 0.64 us (1.563 MHz) 81.92 us (12.21 kHz) 5.368 sec

1/32 (PCLK = 50 MHz) 1.28 us (0.782 MHz) 163.84 us (6.11 kHz) 10.736 sec

1/64 (PCLK = 50 MHz) 2.56 us (0.391 MHz) 327.68 us (3.06 kHz) 21.472 sec

1/8 (PCLK = 37.5 MHz) 0.42 us (2.344 MHz) 54.61 us (18.31 kHz) 3.579 sec

1/16 (PCLK = 37.5 MHz) 0.84 us (1.172 MHz) 109.22 us (9.16 kHz) 7.158 sec

1/32 (PCLK = 37.5 MHz) 1.71 us (0.586 MHz) 218.44 us (4.58 kHz) 14.316 sec

1/64 (PCLK = 37.5 MHz) 3.41 us (0.293 MHz) 436.9 us (2.28 kHz) 28.63 sec

S3C2800 RISC MICROPROCESSOR WATCHDOG TIMER

15-3

WATCHDOG TIMER SPECIAL FUNCTION REGISTERS

WATCHDOG TIMER PRESCALER VALUE REGISTER (WTPSCLR)

The valid prescaler values range from 1 to 28-1

Register Address R/W Description Reset Value

WTPSCLR 0x1012 0000 R/W Watchdog timer prescaler value Register 0x0000 0080

WTPSCLR Bit Description Initial State

Pre-Scaler [7:0] 8-bit pre-scaler value (1 – 255)
0 = Not supported

0x80

NOTE: The Watchdog timer must be “Disabled” before changing the prescaler value. After the prescaler value is
set, the Watchdog timer can be “Enabled”.

WATCHDOG TIMER CONTROL REGISTER (WTCON)

Using the Watchdog Timer Control register, WTCON, you can enable/disable the watchdog timer, clear the
watchdog timer counter , select the clock signal from 4 different sources.
The watchdog timer is used to resume the S3C2800 restart on mal-function after power-on; if controller restart is
not desired, the watchdog timer should be disabled.

Register Address R/W Description Reset Value

WTCON 0x1012 0004 R/W Watchdog timer control Register 0x0000 0000

WTCON Bit Description Initial State

Clock select [11:10] This two bits determines the clock division factor.
00 = 1/8 01 = 1/16
10 = 1/32 11 = 1/64

00

Reserved [9] Reserved 0

Watchdog timer
counter clear

[8] Clear to watchdog timer count value
0 = No effect
1 = Clear to count value
When this bit is set, it clears the watchdog timer counter
(WTCNT) and clears itself too.

0

Watchdog timer
Enable

[7:0] This bit enables or disables the Watch-dog timer output for
reset signal.
1010 0101b = Disable the reset function of the watchdog
 timer. The 16-bit counter is clear to 0x0,
 and then it is stop.
Other Value = Assert reset signal of the S3C2800 at
 watchdog time out. The 16-bit counter
 starts counting from 0x0 again after re-load
 the prescaler value.

0x00

WATCHDOG TIMER S3C2800 RISC MICROPROCESSOR

15-4

WATCHDOG TIMER COUNTER REGISTER (WTCNT)

The watchdog timer counter register, WTCNT, contains the current count values of the watchdog timer during
normal operation.

Register Address R/W Description Reset Value

WTCNT 0x1012 0008 R Watchdog timer counter Register 0x0000 0000

WTCNT Bit Description Initial State

Count value [15:0] The current count value of the watchdog timer counter 0x0000

S3C2800 RISC MICROPROCESSOR IIC-BUS INTERFACE

16-1

16 IIC-BUS INTERFACE

OVERVIEW

The S3C2800 RISC microprocessor supports 2-channel multi-master IIC-bus serial interface. A dedicated bi-
directional serial data line (IICSDAn) and a serial clock line (IICSCLKn) carry information between bus masters
and peripheral devices connected to the IIC-bus.

In multi-master IIC-bus mode, multiple S3C2800 RISC microprocessor can receive or transmit serial data to or
from slave devices. The master S3C2800, which can initiate a data transfer over the IIC-bus, is responsible for
termination of the transfer. Standard bus arbitration procedure is employed in S3C2800 IIC_bus.

To control multi-master IIC-bus operations, values must be written to the following registers:

• Multi-master IIC-bus control register, IICCONn

• Multi-master IIC-bus control/status register, IICSTATn

• Multi-master IIC-bus Tx/Rx data shift register, IICDSn

• Multi-master IIC-bus address register, IICADDn

When the IIC-bus is free, the SDA and SCL lines should be both at high level. A high-to-low transition of SDA can
initiate a start condition. A low-to-high transition of SDA can initiate a stop condition while SCL remains steady at
high level.

The start and stop conditions can always be generated by the master devices. A 7-bit address value in the first
data byte, which is put onto the bus after the start condition has been initiated, determines the slave device which
the bus master device has selected. The 8th bit determines the direction of the transfer (read or write).

Every data byte put onto the SDA line should total eight bits. The number of bytes that can be sent or received
for each bus transfer is unlimited. Data is always sent from most-significant bit (MSB) first, and every byte should
be immediately followed by an acknowledge (ACK) bit.

IIC-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

16-2

PCLK

Address Register

IICSDA4-bit Prescaler

IIC-Bus Control Logic

IICSTATnIICCONn

Comparator

Shift Register

Shift Register
(IICDSn)

Data Bus

IICSLCK

Figure 16-1. IIC-Bus Block Diagram

S3C2800 RISC MICROPROCESSOR IIC-BUS INTERFACE

16-3

THE IIC-BUS OPERATION

THE IIC-BUS INTERFACE

 The S3C2800 IIC-bus interface supports four operation modes:

• Master transmitter mode

• Master receive mode

• Slave transmitter mode

• Slave receive mode

Functional relationships among these operating modes are described below.

START AND STOP CONDITIONS

When the IIC-bus interface is in inactive, it is usually in slave mode. In other word, the interface should be in
slave mode before detecting a start condition on the SDA line. (A Start condition is initiated with a high-to-low
transition of the SDA line while the clock signal of SCL is high) When the interface state is changed to the master
mode, a data transfer on the SDA line can be initiated and SCL (IIC clock) is generated.

A start condition initiates a one-byte serial data over the SDA line, and a stop condition terminate the data
transfer. A stop condition is a low-to-high transition of the SDA line while SCL is High. start and stop conditions
are always generated by the master. The IIC-bus is busy when a start condition is generated. A few clocks after
the stop condition, the IIC-bus becomes free again.

When a master initiates a start condition, it should send a slave address to notify the slave device. The one byte
of address field consist of a 7-bit address and a 1-bit transfer direction indicator (that is, write or read).
If bit 8 is 0, it indicates a write operation (transmit operation). If bit 8 is 1, it indicates a request for data read
(receive operation).

The master will finish the transfer operation by transmitting a stop condition. If the master wants to continue the
data transmission on the bus, it should generate another start condition as well as a slave address. In this way,
the read and write operation can be performed in various format.

SCL

SDA SDA

SCL

Start
Condition

Stop
Condition

Figure 16-2. Start and Stop Condition

IIC-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

16-4

DATA TRANSFER FORMAT

Every byte placed on the SDA line should be eight bits in length. The number of bytes which can be transmitted
per transfer is unlimited. The first byte following a start condition should have the address field. The address field
can be transmitted by the master when the IIC-bus is operating in master mode. Each byte should be followed by
an acknowledgement (ACK) bit. The MSB bit of the serial data and addresses are always sent first.

NOTES:
1. S: Start, rS: Repeat Start, P: Stop, A: Acknowledge
2. : From Master to Slave, : from Slave to Master

Write Mode Format with 7-bit Addresses

"0"
(Write) Data Transferred

(Data + Acknowledge)

S Slave Address 7bits R/W A PDATA(1Byte) A

Read Mode Format with 7-bit Addresses

"1"
(Read) Data Transferred

(Data + Acknowledge)

S Slave Address 7 bits R/W A PDATA A

Write Mode Format with 10-bit Addresses

"0"
(Write) Data Transferred

(Data + Acknowledge)

PDATA AS Slave Address
1st 7 bits R/W A Slave Address

2nd Byte A

11110XX

Read Mode Format with 10-bit Addresses

"1"
(Read)

S Slave Address
1st 7 bits

11110XX

R/W A Slave Address
2nd Byte A rS Slave Address

1st 7 Bits A

Data Transferred
(Data + Acknowledge)

PDATA AR/W

"1"
(Read)

Figure 16-3. IIC-Bus Interface Data Format

S3C2800 RISC MICROPROCESSOR IIC-BUS INTERFACE

16-5

SCL

Acknowledgement
Signal from Receiver

S

1 2 7 8 9 1 2 9

Acknowledgement
Signal from Receiver

MSB

ACK

Byte Complete, Interrupt
within Receiver

Clock line held low until the interrupt
pending bits are cleared.

SDA

Figure 16-4. Data Transfer on the IIC-Bus

ACK SIGNAL TRANSMISSION

To finish a one-byte transfer operation completely, the receiver should send an ACK bit to the transmitter. The
ACK pulse should occur at the ninth clock of the SCL line. Eight clocks are required for the one-byte data
transfer. The master should generate the clock pulse required to transmit the ACK bit.

The transmitter should release the SDA line by making the SDA line High when the ACK clock pulse is received.
The receiver should also drive the SDA line Low during the ACK clock pulse so that the SDA is Low during the
High period of the ninth SCL pulse.

The ACK bit transmit function can be enabled or disabled by software (IICSTATn). However, the ACK pulse on
the ninth clock of SCL is required to complete a one-byte data transfer operation.

Data Output by
Transmitter

Data Output by
Receiver

SCL from
Master

Start
Condition

Clock Pulse for
Acknowledgment

Clock to Output

987S 1 2

Figure 16-5. Acknowledge on the IIC-Bus

IIC-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

16-6

READ-WRITE OPERATION

In transmitter mode, after the data is transferred, the IIC-bus interface will wait until IICDSn (IIC-bus Data Shift
Register) is written with a new data. Until the new data is written, the SCL line will be held low. After the new data
is written to IICDSn register, the SCL line will be released. The S3C2800 should hold the interrupt to identify the
completion of current data transfer. After the CPU receives the interrupt request, it should write a new data into
IICDSn, again.

In receive mode, after the data is received, the IIC-bus interface will wait until IICDSn register is read. Until the
new data is read out, the SCL line will be held low. After the new data is read out from IICDSn register, the SCL
line will be released. The S3C2800 should hold the interrupt to identify the completion of the new data reception.
After the CPU receives the interrupt request, it should read the data from IICDS.

BUS ARBITRATION PROCEDURES

Arbitration takes place on the SDA line to prevent the contention on the bus between two masters. If a master
with a SDA high level detects another master with a SDA active low level, it will not initiate a data transfer
because the current level on the bus dose not correspond to its own. The arbitration procedure will be extended
until the SDA line will be High.

However when the masters simultaneously lower the SDA line, each master should evaluate whether or not the
mastership is allocated to itself. For the purpose of evaluation, each master should detect the address bits. While
each master generates the slaver address, it should also detect the address bit on the SDA line because the
lowering of SDA line is stronger than maintaining High on the line. For example, one master generates a Low as
first address bit, while the other master is maintaining High. In this case, both masters will detect Low on the bus
because Low is stronger than High even if first master is trying to maintain High on the line. When this happens,
Low (as the first bit of address) -generating master will get the mastership and High (as the first bit of address) -
generating master should withdraw the mastership. If both masters generate Low as the first bit of address, there
should be an arbitration for second address bit, again. This arbitration will continue to the end of last address bit.

ABORT CONDITIONS

If a slave receiver cannot acknowledge the confirmation of the slave address, it should hold the level of the SDA
line High. In this case, the master should generate a stop condition and to abort the transfer.

If a master receiver is involved in the aborted transfer, it should signal the end of the slave transmit operation by
canceling the generation of an ACK after the last data byte received from the slave. The slave transmitter should
then release the SDA to allow a master to generate a Stop condition.

CONFIGURING THE IIC-BUS

To control the frequency of the serial clock (SCL), the 4-bit prescaler value can be programmed in the IICCONn
register. The IIC-bus interface address is stored in the IIC-bus address register, IICADDn. (By default, the IIC-bus
interface address is an unknown value.)

S3C2800 RISC MICROPROCESSOR IIC-BUS INTERFACE

16-7

FLOWCHARTS OF THE OPERATIONS IN EACH MODE

The following steps must be executed before any IIC Tx/Rx operations.

1) Write own slave address on IICADDn register if needed.

2) Set IICCONn Register.
a) Enable interrupt
b) Define SCL period

3) Set IICSTATn to enable Serial Output.

Write slave address to
IICDSn

Write 0xF0(M/T Start) to
IICSTATn

The data of the IICDSn is
transmitted

ACK period and then
interrupt is pending

Write 0xD0(M/T Stop) to
IICSTATn

Write new data trasnmitted
to IICDSn

Stop?

Clear pending bit to
resume

The data of the IICDSn is
shifted to SDA

START

Master Tx mode has been
configured.

Clear Pending bit

Wait until the stop
condition takes effect.

END

Y

N

Figure 16-6. Operations for Master/Transmitter Mode

IIC-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

16-8

Write slave address to
IICDSn

Write 0xB0(M/R Start) to
IICSTATn

The data of the IICDSn(slave
address) is transmitted

ACK period and then
interrupt is pending

Write 0x90(M/R Stop) to
IICSTATn

Read a new data from
IICDSn

Stop?

Clear pending bit to
resume

SDA is shifted to IICDSn

START

Master Rx mode has been
configured.

Clear Pending bit

Wait until the stop
condition takes effect.

END

Y

N

Figure 16-7. Operations for Master/Receiver Mode

S3C2800 RISC MICROPROCESSOR IIC-BUS INTERFACE

16-9

IIC detects start signal. and, IICDSn
receives data.

IIC compares IICADDn and
IICDSn(the received slave address)

Write data to IICDSn

The IIC address match
interrupt is generated

Clear pending bit to
resume.

The data of the IICDSn
is shifted to SDA

START

Slave Tx mode has
been configured.

END

Matched?

N

Y

Stop?

Interrupt is pending

N

Y

Figure 16-8. Operations for Slave/Transmitter Mode

IIC-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

16-10

IIC detects start signal. and, IICDSn
receives data.

IIC compares IICADDn and
IICDSn(the received slave address)

Read IICDSn

The IIC address match
interrupt is generated

Clear pending bit to
resume.

SDA is shifted to
IICDSn

START

Slave Rx mode has
been configured.

END

Matched?

N

Y

Stop?

Interrupt is pending

N

Y

Figure 16-9. Operations for Slave/Receiver Mode

S3C2800 RISC MICROPROCESSOR IIC-BUS INTERFACE

16-11

IIC-BUS INTERFACE SPECIAL FUNCTION REGISTERS

IIC-BUS CONTROL REGISTER (IICCONn)

Register Address R/W Description Reset Value

IICCON0 0x1019 0000 R/W IIC-Bus 0 control register 0x0000 0020

IICCON1 0x101A 0000 R/W IIC-Bus 1 control register 0x0000 0020

IICCONn Bit Description Initial State

Acknowledge enable (1) [6] IIC-bus acknowledge enable bit
0=Disable ACK generation
1=Enable ACK generation
 In Tx mode, the IICSDA is free in the ack time
 In Rx mode, the IICSDA is Low in the ack time.

0

Tx clock source
selection

[5] Source clock of IIC-bus transmit clock prescaler
selection bit
0= IICCLK = APBCLK /16
1= IICCLK = APBCLK /256

1

Tx/Rx Interrupt enable [4] IIC-Bus Tx/Rx interrupt enable/disable bit
0=Disable interrupt, 1=Enable interrupt

0

Transmit clock value (2) [3:0] IIC-Bus transmit clock prescaler
IIC-Bus transmit clock frequency is determined by
this 4-bit prescaler value, according to the following
formula:
Tx clock = IICCLK/(IICCON[3:0]+1)

0x0

NOTES:
1. Interfacing EEPROM, the ACK generation may be disabled before reading the last data in order to generate the STOP
 condition in Rx mode.
2. IICCLK is determined by IICCON[5].
 Tx clock can vary by SCL transition time.

Table 16-1. Example for Setting of the IICSCL

IIC_SCL (KHz) APBCLK = 50MHz APBCLK = 37.5MHz

IICCON[5] IICCON[3:0] IICCON[5] IICCON[3:0]

100 (Real =73.2) – – 1=APBCLK/256 0x1=IICCLK/2

100 (Real = 97.7) 1=APBCLK/256 0x1=IICCLK/2 – –

400 (Real = 390.6) 0=APBCLK/16 0x7=IICCLK/8 0=APBCLK/16 0x5=IICCLK/6

IIC-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

16-12

IIC-BUS CONTROL/STATUS REGISTER (IICSTATn)

Register Address R/W Description Reset Value

IICSTAT0 0x1019 0004 R/W IIC-Bus 0 control/status register 0x0000 0000

IICSTAT1 0x101A 0004 R/W IIC-Bus 1 control/status register 0x0000 0000

IICSTATn Bit Description Initial State

Mode selection [7:6] IIC-bus master/slave Tx/Rx mode select bits:
00: Slave receive mode
01: Slave transmit mode
10: Master receive mode
11: Master transmit mode

0

Busy signal status/
START STOP condition

[5] IIC-Bus busy signal status bit:
0 = read) IIC-bus not busy. (IIC always senses BUS
 start/stop condition.)
 write) IIC-bus STOP signal generation
1 = read) IIC-bus busy
 write) IIC-bus START signal generation.
The data in IICDSn will be transferred automatically
just after the start signal. Also, the delay to check
the start condition is inserted automatically.

0

Serial output enable [4] IIC-bus data output enable/disable bit:
0=Disable Rx/Tx, 1=Enable Rx/Tx

0

Arbitration status flag [3] IIC-bus arbitration procedure status flag bit:
0 = Bus arbitration successful
1 = Bus arbitration failed during serial I/O

0

Address/Data field
classification bit

[2] IIC-bus Address/Data field classification bit
0 = When reset or START/STOP, or when the
 received data is in the data field.
1 = When received slave address matches to
 IICADDn register or general call.

0

Address zero status flag [1] IIC-bus address zero status flag bit:
0 = cleared when START/STOP condition was
 detected at the SDA/SCL line.
1 = Received slave address is 00000000b

0

Last-received bit status flag [0] IIC-bus last-received bit status flag bit
0 = Last-received bit is 0 (ACK was received)
1 = Last-receive bit is 1 (ACK was not received)

0

S3C2800 RISC MICROPROCESSOR IIC-BUS INTERFACE

16-13

IIC-BUS ADDRESS REGISTER (IICADDn)

Register Address R/W Description Reset Value

IICADD0 0x1019 0008 R/W IIC-Bus 0 address register Undefined

IICADD1 0x101A 0008 R/W IIC-Bus 1 address register Undefined

IICADDn Bit Description Initial State

Slave address [7:0] 7-bit slave address, latched from the IIC-bus:
When serial output enable=0 in the IICSTATn, IICADDn is
write-enabled. The IICADDn value can be read any time,
regardless of the current serial output enable bit (IICSTATn)
setting.
IICADDn is used only when the IIC mode is selected to slave
receive/transmit mode.
Slave address = [7:1]
Not mapped = [0]

Undefined

IIC-BUS TRANSMIT/RECEIVE DATA SHIFT REGISTER (IICDSn)

Register Address R/W Description Reset Value

IICDS0 0x1019 000C R/W IIC-Bus 0 transmit/receive data shift register Undefined

IICDS1 0x101A 000C R/W IIC-Bus 1 transmit/receive data shift register Undefined

IICDSn Bit Description Initial State

Data shift [7:0] 8-bit data shift register for IIC-bus Tx/Rx operation:
When serial output enable = 1 in the IICSTATn, IICDSn is
write-enabled. The IICDSn value can be read any time,
regardless of the current serial output enable bit (IICSTATn)
setting
NOTE: The bit[0] of the data, which is transferred just after
start condition, is determined by the mode selection bit. If the
mode selection bit is "receive", the bit will be 1 (read). If the
mode selection bit is "transmit", the bit will be 0 (write).

Undefined

IIC-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

16-14

NOTES

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-1

17 PCI-BUS INTERFACE

OVERVIEW

The PCI Controller is divided into two blocks as shown in Figure 17-1: BIF(AHB Bus Interface) and PCI (PCI bus
Interface). BIF block including BIF SFR (Special Function Register) operates in AHB clock domain and PCI block
including PCI configuration registers in PCI clock domain.

PCI (PCI I/F)BIF (AHB I/F)

A
H

B
 B

us
P

C
I B

us

PCI
Configuration

Register

AHB
Master I/F

AHB
Target I/F

BIF SFR

PCI target

FIFO
FIFO

PCI master

FIFO
FIFO

AHB
Control I/F

Figure 17-1. PCI Controller Block Diagram

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-2

FEATURE

• PCI master and target device

• 32-bit bus width and supports 33/66 MHz at 3.3V

• PCI Local Bus Specification Rev. 2.2 compliant

• System clock can run asynchronously to PCI clock

• Supports three base address decoding

1. Memory base address 0 : prefetchable, 16Bytes – 2GB programmable size

2. Memory base address 1 : prefetchable, 16Bytes – 2GB programmable size

3. I/O base address 2 : non-prefetchable, 256-byte fixed size

• Four independent 8-word deep FIFO

• Supports base address translation from PCI bus to AHB bus

• Supports noncontiguous byte enable transfer

• Supports target fast back-to-back cycle operation

• Supports target lock operation through PCI_nLOCK pin

• Supports PCI parity generation and check

• Supports 8-bit DAC (Dual Access Cycle) : 40-bit address space

• Little-endian type PCI interface

TERMINOLOGY OF REGISTER GROUPS

• PCI SFR (PCI Special Function Registers) : all PCI special function registers including BIF SFR and PCI
configuration registers

• BIF SFR (BIF Special Function Registers) : Registers in BIF block cannot be accessed by configuration cycle

• PCI configuration registers : PCI configuration header (can be accessed by configuration cycle)

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-3

PCI ADDRESS SPACE DEFINE

256Mbytes
Reserved

32Mbytes
I/O Space

32Mbytes
Reserved

32Mbytes
Configuration type 1
space

0x3FFF FFFF

0x3000 0000

0x2FFF FFFF

0x2E00 0000

0x2DFF FFFF

0x2C00 0000

0x2BFF FFFF

0x2A00 0000

0x29FF FFFF

0x2800 0000

0x27FF FFFF

0x2000 0000

128Mbytes
Memory Space

AHB Base address AHB[15:11] AD Pin

0x29FF F800
.....

0x2800 A800

0x2800 A000

0x2800 9800
0x2800 9000

0x2800 8800
0x2800 8000

0x2800 7800

0x2800 7000

0x2800 6800

0x2800 6000

0x2800 5800

0x2800 5000

0x2800 4800

0x2800 4000
0x2800 3800

0x2800 3000

0x2800 2800

0x2800 2000

0x2800 1800

0x2800 1000

0x2800 0800

0x2800 0000

0b11111
.....

0b10101

0b10100

0b10011
0b10010

0b10001
0b10000

0b01111

0b01110

0b01101

0b01100

0b01011

0b01010

0b01001

0b01000
0b00111

0b00110

0b00101

0b00100

0b00011

0b00010

0b00001

0b00000

Not used

Not used

31

30

29
28

27
26

25

24

23

22

21

20

19

18
17

16

15

14

13

12

11

Not used

32Mbytes
Configuration type 0
space

Figure 17-2. PCI Address Space Define

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-4

ACCESS FROM AHB BUS OR ARM CPU

PCI controller is accessed by ARM CPU using the following address region. BIF SFR is accessed without wait
states. But there is some latency in accessing PCI configuration registers. because PCI configuration registers
are updated based on the PCI clock.

AHB Memory Map :

0x1008 0000 – 0x1008 0043 : PCI configuration registers

0x1008 0100 – 0x1008 0157 : BIF SFR (Special Function Registers)

ACCESS FROM PCI BUS OR OTHER PCI DEVICE

PCI configuration registers are directly accessed by other PCI master through PCI configuration cycle. Using
configuration cycle, however, any other address space in PCI block cannot be accessed. Peripherals’ SFR and
external memory space must be accessed using memory or I/O cycle with proper address defined in base
address bar of PCI configuration registers. PCI SFR (BIF SFR and PCI configuration registers) can be also
accessed by this mechanism. (As a result, PCI configuration registers can be accessed using two methods.
However, read/write properties are different for two methods.)

At reset, Memory base address bar 1 and I/O base address bar 2 are mapped to BIF SFR region, but base
address bar 0, 1, or 2 can be re-programmed to map to any region on AHB bus.

Refer to PCI Functional Description for address translation.

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-5

BASE ADDRESS BAR

There are three base address bars in PCI configuration registers (10h~1Bh). These base address bars are used
for direct access from PCI bus to AHB bus.

Table 17-1. PCI Base Address Bar Type

Address Bar Memory base
address bar 0

Memory base
address bar 1

I/O base address
bar 2

PCI Configuration Register Address Offset 10h 14h 18h

PCI Access Cycle Memory Memory I/O

PCI Decoding Speed Fast/Medium Medium Medium

Prefetchable Property Yes Yes No

Size Property Programmable Programmable Fixed

Range of Size 16Bytes – 2GB 16Bytes – 2GB 256 Bytes

BIF SFR defining Size PCIBAM0 PCIBAM1 PCIBAM2 (R/O)

BFI SFR related Address Translation PCIBATPA0 PCIBATPA1 PCIBATPA2

Size at Reset 64Kbytes 512 Bytes 256 Bytes

Address Translation (Mapping) at Reset 0x0000 0000
(Bank 0)

0x1008 0000
(PCI & BIF SFR)

0x1008 0100
(BIF SFR)

On reset, memory base address bar 1 and I/O base address bar 2 are mapped to BIF SFR region and memory
base address bar 0 is mapped to other region (refer to PCI SFR reset value). However, the mapping can be
changed by re-initializing (re-mapping) destination address (PCIBATPAn registers) using serial-EEPROM data or
initialization program in flash memory. According to the PCI local bus spec. rev. 2.2, the size of each base
address bar should remain fixed after host/PCI reads it.

Prefetchable property of base address bars is fixed (cannot be changed). In case of PCI write operation, PCI
Controller will gather several data in FIFO and does a burst or single operation irrespective of prefetchable
property. On the other hand, PCI read operation requires many more cycles on PCI bus than PCI write operation.
If any master read from prefetchable regions, PCI Controller does burst read transfers (prefetching) repeatedly on
AHB bus irrespective of master’s read count. But if any master read from non-prefetchable region (indicated by
I/O bar 2), PCI Controller does only single read transfers repeatedly on AHB bus for each PCI cycle. In case of
PCI read operation, PCI Controller issues ‘retry’ to PCI bus until data is ready. Therefore, if mapping of
prefetchable memory base address translation registers (PCIBATPA0, PCIBATPA1) includes non-prefetchable
region such as SFR (for example, some peripheral’s SFR is not prefetchable), some data can be lost because
read operation may not complete before the next address is issued from master.

PCI base address registers (PCIBAR0,1,2) must be set to non-zero value because this registers do not support
PCI address 0.

Refer to PCIBATPA0, PCIBATPA1, PCIBATPA2, PCIBAM0, PCIBAM1, and PCIBAM2 in BIF SFR for
programming base address bar.

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-6

PCI BUS FUNCTIONAL DESCRIPTION

The following sections provide a functional description of the PCI BUS controller operations.

PCI BUS TRANSFERS

Refer to PCI Local Bus Specification Rev. 2.2 for information on PCI BUS transactions in detail.

SIZE OF BASE ADDRESS BAR SPACE

Base address bar 0, 1, and 2 registers are written through PCI bus from host/PCI bridge (host system software).
Software can determine the size of required address space by finding the implemented bit position and write the
start address of unique address space.

Since address space requirement can vary from applications to applications, the size of required address space
can be specified by PCIBAMn (n=0,1,2) registers. These three registers must be set before read by system
software and should remain unchanged once set.

The size of address space should be a power of 2 (2^k bytes) and aligned. According to PCI Local Bus Spec.
Rev. 2.2, the size of address space can be from 16 bytes to 2GB. Memory base address bar 0 and 1 are
programmable to this full range but I/O base address bar 2 is fixed to 256 bytes.

31 0

111...111 000...000

31 0

BA

31 0

BA[31:k]

k k-1

000...000

PCIBAMn

Write

Read

Base address bar n
(n=0,1,2) &

k k-1

34

Attr

If any BA is written to base address bar, lower bits [k-1:4] is read as 0 by being masked by
PCIBAMn. To determine the size of base address space, host system software write all 1s to base
address bar and read it again. Host sytem software can get to know the size by finding k.

 Size of Address Space = 2^k bytes
 PCI Spec. Rev. 2.2: 4<=k<=31 (16Bytes<=size<=2GB)

Figure 17-3. Determining the Size of Base Address Bar Space

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-7

ADDRESS TRANSLATION BETWEEN PCI BUS AND AHB BUS

• When PCICON [4]="1", automatically translates from the AHB bus address to the PCI bus space address

• When PCICON [4]="0", all PCI address translation has to be done manually using PCISET register.

When PCICON [04]="1", the method of automatic translation from the AHB bus address to the PCI bus address:

Configuration Space (Type 0)

Configuration space type 0 (configuration address) is “0x2800” in the AHB address [31:16] and the device is
selected by the device number (configuration address[15:11]). The function number (configuration address[10:8])
and register number (configuration address[7:2]) are transferred to the PCI address bus, as is.

Because the slave IDSEL# pin is connected to the host PCI bus address pin (AD11–) in a system with a PCI bus,
one of the PCI bus address 11–31 is compatible to S3C2800 device number (configuration address[15:11]).

For example, the read function for the AHB address is 0x28006810:

AHB[31:16] = 0x2800; select configuration type 0 space

AHB[15:11] = 0b01101; PCI address bus pin 23 asserts to low. The device which has the slave device's
IDSEL# pin connected to S3C2800 PCI address pin 23 is selected.

AHB[10:2] = 0x10; The register number 0x10 of the function number 0 is selected.

AHB[1:0] = Configuration type 0 address type.

1 07 210 815 1131 16

Device
Number

Function
Number

Register
Number 0 00x2800

0 0Only One "1"

1 010 231 11

AHB Address
(Config type 0)

PCI Address

Figure 17-4. Host Bridge Translation for Type0 Configuration PCI Address from AHB Address

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-8

Configuration Space (Type 1)

The PCI address for configuration type 1 space is translated to AHB address 0x2a00_0000 – 0x2bff_ffff, as
shown in Figure 17-5. Because AHB address[31:24] is translated to a reserved PCI address space, it is used as
an index to indicate configuration type1 space and does not affect the PCI address.

1 07 210 815 1131 24

Device
Number

Function
Number

Register
Number 0 00x2a ~ 0x2bAHB Address

(Config type 1)

PCI Address

23 16

BUS Number

1 07 210 815 1131 24 23 16

Device
Number

Function
Number

Register
Number 0 0Reserved BUS Number

Figure 17-5. Host Bridge Translation for Type1 Configuration PCI Address from AHB Address

Memory space and IO space (Address translation From AHB bus to PCI bus; Master mode)

Unlike the configuration space address translation, the memory space address translation must use the BIF
register PCIBATAPM. That is, when the address is read or written to the master as an AHB address 0x2000_0000
– 0x27ff_ffff , 5 bits in the AHB address[31:27] and the upper 5 bits in the PCIBATAPM register
(PCIBATAPM[31:27]) are exchanged to generate the PCI address.

31 27

0b00100AHB Address

PCI Address
(Memory Space)

26 0

PCIBATAPM[31:27]

AHB Address

31 27 26 0

AHB Address

Figure 17-6. Host Bridge Translation for Memory Space PCI Address from AHB Address

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-9

Unlike the configuration space address translation, the IO space address translation must use the BIF register
PCIBATAPI. That is, when the address is read or written to the Master as an AHB address 0x2000_0000 –
0x2fff_ffff, 7 bits in the AHB address[31:25] and the upper 7 bits in the PCIBATAPI register (PCIBATAPI[31:25])
are exchanged to generate the PCI address.

31 25

0b0010111AHB Address

PCI Address
(I/O Space)

24 0

PCIBATAPI[31:25]

AHB Address

31 25 24 0

AHB Address

 Figure 17-7. Host Bridge Translation for IO Space PCI Address from AHB Address

Memory Space and IO Space (Address Translation from PCI Bus to AHB Bus; Target Mode)

Address translation related PCI SFR for each base address bar include:

• Base address bar 0, 1, 2 of PCI configuration registers

• PCIBAM 0, 1, 2 of BIF SFR

• PCIBATPA 0, 1, 2 of BIF SFR

PCIBAMn registers are fixed value for the size of address space and effect the base address bar register and
PCIBATPAn registers. For the first time, AHB address is generated only when PCI address is in one of base
address bar space (“hit”). If PCI address is hit, AHB address is equal to PCI address which upper bits are
replaced with PCIBATPAn as follows;

AHB address = ((PCIBATPAn & PCIBAMn) | ((PCI address) & –PCIBAMn))

On the other hand, to get the PCI address for specified AHB address, following formulas are used.

PCIBATPAn = (AHB address) & PCIBAMn

PCI address = ((Base address bar) & PCIBAMn) | ((AHB address) & –PCIBAMn))

To access specified address on AHB bus, PCIBATPAn of BIF SFR must be set to point to that address. And then
that address can be accessed through PCI bus with PCI address which upper bits are replaced with base address
bar n.

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-10

31 0

111...111 000...000

31 0

pa

PCIBAMn

PCI Address (AD[31:0])

31 0

Hit Address pa[31:k] 000...000

31

baBase address bar n 000...000

If base address bar n is equal to hit address (ba==pa[31:k]),
it indicates that PCI address is hit and PCI&CardBus Target Controller
assert DEVSEL# on PCI bus.

Compare

&

k k-1

034

Attr

k k-1

k k-1

Figure 17-8. Comparison between PCI address and base address bar to check hit

AHB address are equal to PCI address that upper bits of PCI address
are replaced with PCIBATPAn. (k is defined by PCIBAMn)

31 0

111...111 000...000

k k-1

31 0

at

0

000...000

k k-1

31 034k k-1

ba 000...000 Attr

31 0

pu pl

k k-1

31 0

at[31:k] pl[k-1:0]

k k-1If hit (ba=pu) If hit

PCIBAMn

PCIBATPAn

Base address bar n

PCI Address (AD[31:0])

AHB Address (HADDR)

Figure 17-9. Address Translation from PCI&CardBus Bus to AHB Bus

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-11

DATA TRANSFER BETWEEN PCI BUS AND AHB BUS (EXTERNAL MEMORY)

The data transfer between PCI bus and AHB bus (e.g., S3C2800 external memory) is always performed in
Little_endian format regardless of the endian mode of S3C2800.

(1) When S3C2800 operates in Little-endian mode:

Both data transfers of CPU core to/from AHB bus and PCI to/from AHB bus are done in Little-endian format

(2) When S3C2800 operates in Big-endian mode:

Data transfer between CPU core and AHB bus is done in Big-endian format; On the other hand, PCI bus to/from
AHB bus transfer is done in Little-endian format.

Figure 17-10 shows how data is transfered among PCI bus, AHB bus and external memory.

3 2 1 0

31 0

byte enable

3 2 1 0

31 0

3 2 1 0

31 0

3 2 1 0 3 3 3 3 3

Address 0, 4-Byte

Address 3, 1-Byte

3 2 1 0 3 2 3 2 3 2

Address 2, 2-Byte

3 2 1 0 1 0 1 0 1 0

Address 0, 2-Byte

3 2 1 0 1 0 1 0

2 2 2 2
2 1 0

Address 0, 2-Byte

Address 0, 1-Byte

PCI BUS AHB BUS External Memory

Figure 17-10. Data Transfer Between PCI Bus and AHB Bus

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-12

PCI INTERRUPT DESCRIPTION

There are two types of interrupt support for PCI controller an internal ARM CPU interrupt via interrupt controller
and PCI interrupt through INTA# on PCI bus.

Internal ARM CPU Interrupt

The internal ARM CPU interrupt is controlled by PCIINTEN and PCIINTST register of BIF SFR. When each bit of
PCIINTEN and PCIINTST is set, internal interrupt will be asserted to interrupt controller. To clear the interrupt
pending in interrupt service routine, it can be cleared by writing 1 to corresponding bit of PCIINTST.

NOTE: To clear the PCI interrupt pending bit, the corresponding bit in the PCIINTST must be cleared first, and then the
corresponding bit in the SRCPND register must be cleared.

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-13

PCI SPECIAL FUNCTION REGISTERS (PCI CONFIGURATION REGISTERS)

As explained above, PCI SFR (PCI Special Function Registers) has BIF SFR and PCI configuration registers.

BIST

Vendor IDDevice ID
Status Register Command Register

Revision IDClass Code

Memory Base Address Bar 0

Doubleword Number

S3C2800X PCI Configuration Registers

00

01

02
03

04

05

06

07

08

09
10

11

12

13

14

15

16

31 24 23 16 15 8 7 0

Header Type

Memory Base Address Bar 1

I/O Base Address Bar 2

Reserved

00h

04h

08h
0Ch

10h

14h

18h

1Ch

20h

24h
28h

2Ch

30h

34h

38h

3Ch

40h

Reserved
Reserved

Subsystem ID Subsystem Vendor ID

Reserved
Capability Ptr.Reserved

Configuration Address

* Read data from not-allocated Addr. = 0

Reserved

Interrupt Pin Interrupt Line
Reserved

Cache Line SizeLatency Timer

Min_Gnt Max_Lat

TRDY TimeoutRetry Timeout

Reserved

Figure 17-11. PCI Configuration Registers

All configuration registers are described in : "PCI Local Bus Specification Revision 2.2".

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-14

Table 17-2. PCI Configuration Registers Overview

Offset Bits Name R/W Description Reset Value

AHB PCI

0x00 [15:0] Vendor ID R/O R/O Chip vendor identification 0x144D

[31:16] Device ID R/O R/O Chip device identification 0x2800

0x04 [15:0] Command Register R/W R/O Basic control register to perform PCI access 0x0000

[31:16] Status Register R/WC R/WC PCI bus-related status register 0x02B0

0x08 [7:0] Revision ID R/W R/O Identifies the revision number of the device 0x01

[31:8] Class Code R/W R/O Identifies the basic function of the device 0x0D8 0000

0x0C [7:0] Cache Line Size R/W R/W System cache line size 0x00

[15:8] Latency Timer R/W R/W Maximum clocks that master can own the bus 0x00

[23:16] Header Type R/O R/O Indicates a single or multi-function 0x00

[31:24] BIST R/O R/O Register for built-in self-test 0x00

0x10 [31:0] Memory Base
Address 0

R/W R/O Memory bar 0 size and location (of fast decode) 0x0000 0008

0x14 [31:0] Memory Base
Address 1

R/W R/O Memory bar 1 size and location (of medium
decode)

0x0000 0008

0x18 [31:0] I/O Base Address R/W R/O I/O bar size and location (of medium decode) 0x0000 0001

0x1C–
0x2B

Reserved Reserved

0x2C [15:0] Subsystem Vendor
ID

R/W R/O Add-in card or subsystem vendor identification 0x144D

[31:16] Subsystem ID R/W R/O Add-in card or subsystem identification 0x2800

0x30–
0x33

Reserved Reserved

0x34 [7:0] Capabilities Pointer R/O R/O Additional set of linked list registers 0xDC

[31:8] Reserved Reserved

0x38–
0x3B

Reserved Reserved

0x3C [7:0] Interrupt Line R/W R/O Interrupt request line routing information (IRQn) 0x00

[15:8] Interrupt Pin R/W R/O Interrupt request pin number (INTA#) 0x00

[23:16] Min_Gnt R/W R/O Minimum time of how long master needs burst
period

0x00

[31:24] Max_Lat R/W R/O Maximum time of how often device needs to
gain access

0x00

0x40 [7:0] TRDY Timeout R/W R/W Maximum time of master wait for TRDY# 0x80

[16:8] Retyr Timeout R/W R/W Maximum number of master retry 0x80

[31:17] Reserved Reserved

NOTE: R/O = Read-only, R/W = Read and Write, R/WC = Read and Write 1 to clear.

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-15

PCI VENDOR ID & DEVICE ID REGISTER (PCIVDIDR)

This register identifies the manufacture of the device and the particular device.

Register Address R/W Description Reset Value

PCIVDIDR 0x1008 0000 R PCI vendor ID and device ID register 0x2800 144D

PCIVDIDR Bit Description Initial State

DEVID [31:16] PCI device identification (Read-only)
This field identifies the particular device. This identifier is
allocated by the vendor.

0x2800

VENID [15:0] PCI vendor identification (Read-only)
This field identifies the manufacturer of the device.

0x144D

PCI STATUS & COMMAND REGISTER (PCISCR)

The Status register (PCISCR[31:16]) is used to record the status information of PCI bus related events. Reserved
bits are read-only and return zero when read. Reads to this register behave normally. Writes are slightly different
in that bits can be reset, but no set. A one bit is reset whenever the register is written, and the write data in the
corresponding bit location is a 1.

The Command register (PCISCR[15:0]) provide coarse control over a device’s ability to generate and respond to
PCI cycles. When this register is set to 0, the device is logically disconnected from the PCI bus for all accesses
except configuration accesses.

Register Address R/W Description Reset Value

PCISCR 0x1008 0004 R/W PCI status and command register 0x02B0 0000

PCISCR Bit Description Initial State

Detected Parity Error [31] Detected parity error status bit (Read or write-1-to-clear)
This bit set by a device whenever it detects a parity error,
regardless of the state of the parity error response bit
(PCISCR[6]). This bit is required to be set by the device
when any of the following conditions occurs:
1) The device’s parity checking logic detects an error in a
single address cycle or either address phase of a dual
address cycle.
2) The device’s parity checking logic detects a data parity
error and the device is the target of a write transaction.
3)The device’s parity checking logic detects a data parity
error and the device is the master of a read transaction.

0

Signaled System Error [30] Signaled system error bit (Read or write-1-to-clear)

This bit set whenever the device asserts SERR#.

0

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-16

PCISCR Bit Description Initial State

Received Master Abort [29] Received master abort bit (Read or write-1-to-clear)
This bit set by a master device whenever its transaction
(except for Special Cycle) is terminated with Master-Abort.

0

Received Target Abort [28] Received target abort bit (Read or write-1-to-clear)
This bit set by a master device whenever its transaction is
terminated with Target-Abort.

0

Signaled Target Abort [27] Signaled target abort bit (Read or write-1-to-clear)
This bit set by a target device whenever it
terminates a transaction with Target-Abort.

0

DEVSEL timing [26:25] DEVSEL# response timing bits (Read or write-1-to-clear)

These bits encode the timing of DEVSEL#. Three allowable
timings for assertion of DEVSEL#.

00 = fast timing 01 = medium timing
10 = slow timing 11 = reserved
It asserts DEVSEL# on the second clock after FRAME# is
assert by a PCI master attempting to access memory.
These bits are read-only and indicate the slowest time that a
device asserts DEVSEL# for any bus command except
Configuration Read and Configuration Write.

01

Master Data Parity Error [24] Master data parity error status bit (Read or write-1-to-clear)
If the parity response bit (PCISCR[6] is cleared, the master
not set this bit, even if the master detects a parity error or the
target asserts PERR#. Targets never set this bit. This bit is
only implemented by bus masters.
It is set when three conditions are met:

1) the bus agent asserted PERR# itself (on a read) or
observed PERR# asserted (on a write);

2) the agent setting the bit acted as the bus master for the
operation in which the error occurred;
3) the Parity Error Response bit (PCISCR[6]) is set.

0

Fast Back-to-Back
Capable

[23] Fast back to back capable bit (Read or write-1-to-clear)
This bit indicates whether or not the target is capable of
accepting fast back-to-back transactions when the
transactions are not to the same agent.
0 = Not capable the fast back-to-back transaction.
1 = Capable the fast back-to-back transaction.

1

Reserved [22] Reserved 0

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-17

PCISCR Bit Description Initial State

66MHz Capable [21] This bit indicates whether or not this device is capable of
running at 66 MHz. (Read or write-1-to-clear)

0 = Capable 33 MHz.

1 = capable 66 MHz.

1

Capabilities List [20] Capabilities list pointer bit (Read or write-1-to-clear)

This bit indicates whether or not this device implements the
pointer for a New Capabilities linked list at offset 34h.

0 = No available New Capabilities linked list.

1 = Available New Capabilities linked list.

1

Reserved [19:10] Reserved

Fast Back-to-Back Enable [9] Fast back-to-back write enable bit

This bit controls whether or not a master can do fast back-to-
back transactions to different devices. Initialization software
will set the bit if all targets are fast back-to-back capable.

0 = The master is allowed to generate fast back-to-back
transactions to the same agent.

1 = The master is allowed to generate fast back-to-back
transactions to different agents.

0

SERR# Enable [8] This bit is an enable bit for the SERR# driver.

0 = disables the SERR# driver.

1 = enables the SERR# driver.

Address parity errors are reported only if this bit and parity
error response bit (PCISCR[6]) are 1.

0

Stepping Control [7] This bit is used to control whether or not a device does
address/data stepping.

0 = Devices that never do stepping.

1 = Devices that always do stepping.

NOTE : S3C2800 does not support.

0

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-18

PCISCR Bit Description Initial State

Parity Error Response [6] This bit controls the device’s response to parity errors.
0 = The device sets its Detected Parity Error status bit
(PCISCR[31]) when an error is detected, but does not assert
PERR# and continues normal operation.

1 = The device must take its normal action when a parity
error is detected.

0

VGA Palette Snoop [5] This bit controls how VGA compatible and graphics devices
handle accesses to VGA palette registers.
0 = Disable palette snooping.
(The device should treat palette write accesses like all other
accesses.)
1 = Enable palette snooping.
(The device does not respond to palette register writes and
snoops the data.)

NOTE : S3C2800 does not support.

0

Memory Write and
Invalidate Enable

[4] This is an enable bit for using the Memory Write and
Invalidate command.
0 = Disable the command (Memory Write command is
used).
1 = Enable the memory write and invalidate command.

NOTE : S3C2800 does not support.

0

Special Cycle [3] Controls a device’s action on Special Cycle operations.
0 = Disable Special Cycle operations.
1 = Enable Special Cycle operations.

NOTE : S3C2800 does not support.

0

Bus Master [2] Controls a device’s ability to act as a master on the PCI bus.
0 = Disables the device from generating PCI accesses.
1 = Enable the device to behave as a bus master.

0

Memory space [1] Controls a device’s response to Memory Space accesses.
0 = Disable master to respond as a PCI memory target.
1 = Enable master to respond as a PCI memory target.
If this bit is "0", S3C2800 Memory Space cannot be
accessed by the other PCI device. S3C2800 memory space
is a type that is set in the Memory Base Address Register
PCIBAR0/1.

0

IO space [0] Controls a device’s response to I/O Space accesses.
0 = Disable master to respond as a PCI I/O target.
1 = Enable master to respond as a PCI I/O target.
If this bit is “0”,S3C2800 IO space cannot be accessed by
the other PCI device. S3C2800 IO space is a type that is set
in the IO Base Address Register PCIBAR2.

0

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-19

PCI CLASS CODE & REVISION ID REGISTER (PCICRIDR)

The Class Code register (PCICRIDR[31:8]) is read-only and is used to identify the generic function of the device
and, in some case, a specific register-level programming interface, The register is broken into three byte-size
fields. The upper byte is a base class code. The middle byte is a sub-class code. The lower byte identifies a
specific register-level programming interface.

Register Address R/W Description Reset Value

PCICRIDR 0x1008 0008 R/W PCI class code and revision ID register 0x0D80 0001

PCICRIDR Bit Description Initial State

BASCLS [31:24] Base class code bits
These bits indicate that it broadly classifies the type of function
the device performs.

0x0D

SUBCLS [23:16] Sub-class code bits
These bits indicate that it identifies more specifically the
function of device.

0x80

SRLPI [15:8] Specific register-level programming interface bits
These bits indicate that it identifies a specific register-level
programming interface so that device dependent software can
interact with the device.

0x00

REVID [7:0] Revision ID bits
These bits are used to specifies a device specific revision
identifier. The value is chosen by the vendor. Zero is
acceptable value.

0x01

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-20

PCI GENERAL CONTROL REGISTER (PCIGCONR)

Register Address R/W Description Reset Value

PCIGCONR 0x1008 000C R/W PCI general control register 0x0000 0000

PCIGCONR Bit Description Initial State

SUPBIST [31] BIST (Built-in Self Test) capable bit (Read-only)
0 = Not BIST capable
1 = Support BIST

NOTE: S3C2800 does not support.

0

STRBIST [30] BIST (Bulit-in Self Test) start bit (Read-only)
Write a 1 to invoke BIST. Device resets the bit when BIST is
complete. Software should fail the device if BIST is not
complete after 2 seconds.

NOTE: S3C2800 does not support..

0

– [29:28] Reserved 00

COMCODE [27:24] Completion code bits (Read-only)
Device-specific failure codes can be encoded in the non-zero
value.
0 = The device has passed its test.
Non zero values = The device failed.

NOTE: S3C2800 does not support.

0x0

HDTYPFUNC [23] Multi-function device select bit (Header Type) (Read-only)
0 = single function device
1 = multi function device

0

PREDHD [22:16] The layout of the 2nd part of predefined header bits. (Read-only)

0x00 = Type 00h configuration space header
0x01 = PCI-to-PCI bridges
Other values = Reserved

0x00

LATTIME [15:8] Latency timer bits
Maximum clocks that master can own the bus.
These bits specifies the value of the latency timer for this PCI
bus master in units of PCI bus clocks

0x00

CACHELSIZ [7:0] System Cache Line size bits
These bits specifies the system cache size in units of
DWORDs. These bits are used by master devices to
determine whether to use Read, Read Line, or Read Multiple
commands for accessing memory. A device may limit the
number of cache line size that it supports. If an unsupported
value is written to these bits, the device should behaves as if a
value of 0 was written.

NOTE: S3C2800 does not support.

0x00

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-21

PCI BASE ADDRESS REGISTERS (PCIBARn)

Register Address R/W Description Reset Value

PCIBAR0 0x1008 0010 R/W Memory bar 0 size and location (of fast decode) 0x0000 0008

PCIBAR1 0x1008 0014 R/W Memory bar 1 size and location (of medium decode) 0x0000 0008

PCIBAR2 0x1008 0018 R/W I/O bar 2 size and location (of medium decode) 0x0000 0001

PCIBARn Bit Description Initial State

BASEADDR [31:4] PCI base address bits 0x000 0000

ADPREFT [3] Prefetchable bit (In case of memory space) (Read-only)
0 = Non-prefetchable data
1 = Pre-fetchable data
In case of I/O space (PCIBAR2), this bit is used to base
address.

1
PCIBAR2 = 0

ADDRSPS [2:1] Base address space select bits (In case of memory space)
(Read-only)
00 = Base register is 32 bits wide and can be mapped
 anywhere in the 32-bit memory space.
10 = Base register is 64 bits wide and can be mapped
 anywhere in the 64-bit memory space. (Not supported)
Other values = Reserved
In case of I/O space (PCIBAR2), Bit 2 is used to base address
and Bit 1 is always 0.

00

ADMAPSEL [0] Address map select bit. (Read-only)
0 = Memory space indicator (PCIBAR0, PCIBAR1)
1 = I/O space indicator (PCIPAR2)

0
PCIBAR2 = 1

NOTE: PCI base address registers (PCIBAR0, 1, 2) must be set to non-zero value because this registers do not support
PCI address 0.

PCI SUBSYSTEM & SUBSYSTEM VENDOR ID REGISTER (PCISSVIDR)

This register is used to uniquely identify the expansion board or subsystem where the PCI device resides.

Register Address R/W Description Reset Value

PCISSVIDR 0x1008 002C R/W PCI subsystem and subsystem vendor ID register 0x2800 144D

PCISUBSYSIDR Bit Description Initial State

SUBSYSID [31:16] PCI subsystem ID bits.
These bits are used to uniquely identify the subsystem where
the PCI device resides.

0x2800

SUBSYSVENID [15:0] PCI subsystem vendor ID bits.
These bits are used to identify the vendor of the expansion
board or subsystem.

0x144D

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-22

PCI CAPABILITY POINTER REGISTER (PCICPR)

This register is used to point to a linked list of new capabilities implemented by this device. This register is only
valid if the “Capabilities List” bit (PCISCR[20]) in the Status Register is set.

Register Address R/W Description Reset Value

PCICPR 0x1008 0034 R PCI Capability pointer register 0x0000 00DC

CAPAPTR Bit Description Initial State

– [31:8] Reserved

CAPAPTR [7:0] Additional set of linked list bits (Read only)
This bits are used to pointer to a linked of new capabilities
implemented by this device. This bits is only valid if the
“Capabilities List” bit (PCISCR[20]) in the Status Register is set.

0xDC

PCI MISCELLANEOUS REGISTER (PCIMISCR)

Register Address R/W Description Reset Value

PCIMISCR 0x1008 003C R/W PCI miscelaneous register 0x0000 0000

PCIMISCR Bit Description Initial State
MAX_LAT [31:24] Maximum latency timer value bits

These bits specify how often the device needs to gain access to
PCI bus.
The value specifies a period of time in units of 0.25µs (at 33MHz).
Values of 0 indicate that the device has no major requirement for
the settings of the latency timers. Values should be chosen
assuming that the target does not insert any wait-states.

0x00

MIN_GNT [23:16] Minimum grant timer value bits
These bits specify how long a burst period the device needs
assuming a clock rate of 33MHz.
The value specifies a period of time in units of 0.25µs. Values of 0
indicate that the device has no major requirement for the settings
of the latency timers. Values should be chosen assuming that the
target does not insert any wait-states.

0x00

INT_PIN [15:8] Interrupt pin select bits
0x00 = No use interrupt pin 0x01 = INTA#
Other values = Reserved

0x00

INT_LINE [7:0] Interrupt line bits
The value of these bits tells which input of the system interrupt
controller the device’s interrupt pin is connected to. The device
itself does not use this value, rather it is used by device drivers
and operating systems. Device drivers and operating systems can
use this information to determine priority and vector information.
POST software will write the routing information into these bits as
it initializes and configures the system.

0x00

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-23

PCI TARGET READY & RETRY TIMEOUT REGISTER (PCITOR)

Register Address R/W Description Reset Value

PCITOR 0x1008 0040 R/W PCI target ready and retry timeout register 0x0000 8080

PCITOR Bit Description Initial State

RETRYTOUT [15:8] Maximum number of master retry attempt
The value specifies the number of times that the master performs
retry operation.

0x80

TRDYTOUT [7:0] Maximum time of master wait for TRDY#
The value specifies the number of PCI clocks the master waits for
TRDY#.

0x80

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-24

BIF SPECIAL FUNCTION REGISTERS (BIFSFR)

These registers cannot be accessed by PCI configuration cycle, but can be accessed from AHB bus or through
the base address bar from PCI bus.

Table 17-3. BIF Special Function Registers Overview

Offset Bits Name R/W Description Reset Value

AHB PCI

0x100 [15:0] PCICON (Control) R/W R/W PCI Control & Status Register (Control) 0x00B0

[23:16] Reserved 0x00

[31:24] PCICON (Status) R/O R/O PCI Control & Status Register (Status) 0x00

0x104 [7:0] PCISET (DAC) R/W R/W PCI Command, Read Count & DAC
Address Register (DAC)

0x00

[15:8] PCISET (RDC) R/W R/W PCI Command, Read Count & DAC
Address Register (RDC)

0x04

[19:16] PCISET (CMD) R/W R/W PCI Command, Read Count & DAC
Address Register (CMD)

0x0

0x108 [31:0] PCIINTEN R/W R/W PCI Interrupt Enable Register 0x0000 0000

0x10C [31:0] PCIINTST R/WC R/WC PCI Interrupt Status Register 0x0000 0000

0x110 [31:0] PCIINTAD R/O R/O PCI Interrupted Address Register 0x0000 0000

0x114 [31:0] PCIBATAPM R/W R/W Base Address Translation from AHB to
PCI of Memory Cycle

0x0000 0000

0x118 [31:0] PCIBATAPI R/W R/W Base Address Translation from AHB to
PCI of I/O Cycle

0x0000 0000

0x128 [31:0] PCIBELAP R/W R/W PCI INTA# Assert control register in
adaptor mode

0x0000 0000

0x140 [31:0] PCIBATPA0 R/W R/W Base Address Translation from PCI to
AHB of Memory Bar 0

0x0000 0000

0x144 [31:0] PCIBAM0 R/W R/W PCI Base Address Mask Register of
Memory Address Bar 0

0xFFFF 0000

0x148 [31:0] PCIBATPA1 R/W R/W Base Address Translation from PCI to
AHB of Memory Bar 1

0x1008 0000

0x14C [31:0] PCIBAM1 R/W R/W PCI Base Address Mask Register of
Memory Address Bar 1

0xFFFF FE00

0x150 [31:0] PCIBATPA2 R/W R/W Base Address Translation from PCI to
AHB of I/O Bar 2

0x1008 0100

0x154 [31:0] PCIBAM2 R/O R/O PCI Base Address Mask Register of I/O
Address Bar 2

0xFFFF FF00

NOTE: R/O = Read-only, R/W = Read and Write, R/WC = Read and Write 1 to clear.

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-25

PCI CONTROL AND STATUS REGISTER (PCICON)

All PCI SFR including PCICON register can be accessed from AHB bus or PCI bus in byte, half-word or word size
(and any byte enables from PCI bus).

Some bits are critical to PCI Controller’s operation and should not be controlled by illegal software.

Register Address R/W Description Reset Value

PCICON 0x1008 0100 R/W PCI control and status register 0x0000 0010

PCICON Bit Description Initial State

INT [31] Internal interrupt status bit (Read-only)
0 = No interrupt
1 = Internal interrupt occured
This bit indicates that one of the interrupts, enabled by the PCI
interrupt enable register (PCIINTEN), has been generated. This
bit is set or cleared by the PCI interrupt status and pending
register (PCIINTST[10:0]). PCIINTST[31:30] does not affect this
bit

0

Reserved [30] Reserved 0

MBS [29] PCI master interface busy (Read-only)
0 = Master interface idle
1 = Master interface busy
Indicate that PCI master block of PCI controller is busy.

0

TBS [28] PCI target interface busy (Read-only)
0 = Target interface idle
1 = Target interface busy
Indicate that the PCI target is busy.

0

CRS [27] ARM CPU reset status (Read-only)
0 = Normal operation
1 = Reset occured
Indicate whether ARM CPU has been reset.

0

Reserved [26:10] Reserved 0x0000

RDY [9] System read ready
0 = Force PCI target to retry to PCI read command
1 = Enable PCI target read operation
PCICON[8] bit of 0 forces PCI target to issue ‘retry’ for any
transaction. On the other hand, PCICON[[9] bit of 0 forces PCI
target to issue ‘retry’ only for memory (or I/O) read transaction.
In general, this bit may be set with same value as PCICON[8]
and can be cleared to suspend the response for PCI read
transaction after PCICON[8]=1.
This bit can be set or reset by ARM CPU.

0

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-26

PCICON Bit Description Initial State

CFD [8] Configuration done
0 = Configuration registers aren't yet set and force PCI target to
retry
1 = Initialization of configuration registers are done
This bit is 0 at reset and PCI block does not accept any PCI
transaction. PCI controller always issues 'retry' until this bit is set
to 1. For normal transactions, this bit should be set to 1.
This bit must be set to 1 by ARM CPU after all PCI SFR (PCI
configuration registers and BIF SFR) are properly set. This bit
can be set or reset by ARM CPU at any time.

0

Reserved [7:5] Reserved 000

ATS [4] Enable address translation to PCI
0 = Send address directly
1 = Enable address translation
This bit controls whether or not to automatically translate the
AHB address to the PCI address (In Master mode) and vice versa
(In Target mode) according to the PCI command. This bit affects
the configuration read/write, memory read/write and IO read/write
commands ,but all other commands are not supported, so the
user must manually translate the PCI address. However, must be
set to 1 for dual access cycle. .
S3C2800 allocated the AHB address 0x2000_0000 ~ 0x2fff_ffff
for the PCI address and these allocated spaces were divided
again into memory space (,0x2000_0000 ~ 0x27ff_ffff),
configuration type0 space (0x2800_0000 ~ 0x29ff_ffff),
configuration type1 space (0x2a00_0000 ~ 0x2bff_ffff), IO space
(0x2e00_0000 ~ 0x2fff_ffff), and special space (0x2c00_0000 ~
0x2dff_ffff). When PCICON [04]=”1”, the PCI addresses in the
AHB bus are translated to corresponding spaces in the PCI bus
address and loaded on the PCI bus. For example, if a read
command loads 0x2300_0000 address on the AHB bus, this is
recognized as an access to the PCI memory space, memory
space command and address are generated in the PCI bus.

1

Reserved [3:2] Reserved 0

ARB [1] Internal PCI arbiter enable
0 = Disable arbiter (when used external arbiter)
1 = Enable PCI arbiter (When used internal arbiter)

0

HST [0] Host/PCI bridge mode
0 = Adaptor (agent) mode
1 = Host/PCI bridge mode

0

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-27

PCI COMMAND, READ COUNT & DAC ADDRESS REGISTER (PCISET)

Register Address R/W Description Reset Value

PCISET 0x1008 0104 R/W PCI command, Read count and DAC address
register

0x0000 0000

PCISET Bit Description Initial State

CMD [19:17] PCI command when PCICON[4] = 0.
If automatic address generation is disabled (PCICON[4]=0), PCI
address must be generated manually. Bit 0 of the 4-bit PCI
command indicates read (0)/write (1), so this register sets the
command with the upper 3 bits (bit 3~bit1) and program
processes the read/ write.
The command supports the IO, memory and configuration
read/write normally in both master and target modes. DAC (Dual
Address Cycle) adds 8 bits in master mode to allow 40-bit
address but is not supported in target mode.

NOTE: S3C2800 PCI module does not support cache. Therefore
 cache-related commands are not supported.

0x0

Reserved [15:8] Reserved 0x00

DAC [7:0] PCI DAC upper 8 bit address
PCI DAC (Dual Address Cycle) upper 8 bit [39:32] address.
This bits should be all zero when normal SAC (Single Address
Cycle).
DAC function operates only when accessing the memory space.
The configuration space and IO space are not affected.

0x00

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-28

PCI INTERRUPT ENABLE REGISTER (PCIINTEN)

This PCIINTEN register controls masking of the internal ARM CPU interrupt. If each mask bit is 1, interrupt is
enabled, otherwise interrupt is disabled.

Register Address R/W Description Reset Value

PCIINTEN 0x1008 0108 R/W PCI interrupt enable register 0x0000 0000

PCIINTEN Bit Description Initial State
BAP [31] PCI INTA# assert operation enable in adaptor mode (PCICON[0]=0)

0=Disable interrupt
1=Enable interrupt

0

Reserved [30:11] Reserved
INA [10] PCI INTA# interrupt enable in host/PCI bridge mode

0=Disable interrupt
1=Enable interrupt
Interrupt enable of the PCI INTA# is asserted in host/PCI bridge mode.

0

SER [9] PCI SERR# interrupt enable in host/PCI bridge mode
0=Disable interrupt
1=Enable interrupt
Interrupt enable of the PCI SERR# is asserted in host/PCI bridge
mode.

0

Reserved [8:5] Reserved 0
TPE [4] PCI target parity error interrupt enable

0=Disable interrupt
1=Enable interrupt
Internal (AHB) interrupt enable of the PCI target parity error detected.

0

MPE [3] PCI master parity error interrupt enable
0=Disable interrupt
1=Enable interrupt
Internal (AHB) interrupt enable of the PCI master parity error detected.

0

MFE [2] PCI master fatal error interrupt enable
0=Disable interrupt
1=Enable interrupt
Internal (AHB) interrupt enable of the PCI master fatal error (master
abort / target abort) detected.

0

PRA [1] PCI reset asserted interrupt enable
0=Disable interrupt
1=Enable interrupt
Internal (AHB) interrupt enable of PCI reset asserted

0

PRD [0] PCI reset de-asserted interrupt enable
0=Disable interrupt
1=Enable interrupt
Internal (AHB) interrupt enable of PCI reset de-asserted

0

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-29

PCI INTERRUPT STATUS & PENDING REGISTER (PCIINTST)

Each PCIINTST register bit except [31:30] is masked by each PCIINTEN bit. If this masked value is not 0,
internal interrupt signal can be generated and transferred to interrupt controller. Otherwise, no interrupt signal is
generated. Each interrupt status (pending) bit is cleared by explicitly writing 1.

Register Address R/W Description Reset Value

PCIINTST 0x1008 010C R/WC PCI interrupt statue and pending register 0x0000 0000

PCIINTST Bit Description Initial State
WDE [31] PCI master fatal error is occurred on write operation (Read-only)

0 = PCI master fatal error is not occurred
1 = PCI master fatal error is occurred

0

RDE [30] PCI master fatal error is occurred on read operation (Read-only)
0 = PCI master fatal error is not occurred
1 = PCI master fatal error is occurred

0

Reserved [29:11] Reserved
INA [10] PCI INTA# is asserted in host/PCI bridge mode. (Read or write-1-

to-clear)
0 = it's not active
1 = it is activated (if read), clear (if write)

0

SER [9] PCI SERR# is asserted in host/PCI bridge mode (Read or write-
1-to-clear)
0 = it's not active
1 = it is activated (if read), clear (if write)

0

Reserved [8:5] Reserved
TPE [4] PCI target detects parity error (Read or write-1-to-clear)

0 = it's not active
1 = it is activated (if read), clear (if write)

0

MPE [3] PCI master detects parity error (Read or write-1-to-clear)
0 = it's not active
1 = it is activated (if read), clear (if write)

0

MFE [2] PCI master detects fatal error (master abort / target abort) (Read
or write-1-to-clear)
0 = it's not active
1 = it is activated (if read), clear (if write)

0

PRA [1] PCI reset is asserted (Read or write-1-to-clear)
0 = it's not active
1 = it is activated (if read), clear (if write)

0

PRD [0] PCI reset is deasserted (Read or write-1-to-clear)
0 = it's not active
1 = it is activated (if read), clear (if write)

0

NOTE: To clear the PCI interrupt pending bit, the corresponding bit in the PCIINTST must be cleared first, and then the
corresponding bit in the SRCPND register must be cleared.

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-30

PCI INTERRUPTED ADDRESS REGISTER (PCIINTAD)

Register Address R/W Description Reset Value

PCIINTAD 0X1008 0110 R PCI interrupted address register 0x0000 0000

PCIINTAD Bit Description Initial State

ADR [31:0] Interrupted address when PCIINTST [2] or PCIINTST [3] is
asserted. (Read-only)
This address register is set to AHB address requested when PCI
master detects master abort, target abort or parity error. And
PCIINTST [30], PCIINTST [31] is also set.

0x0000 0000

PCI BASE ADDRESS TRANSLATION REGISTER FROM AHB TO PCI OF MEMORY CYCLE (PCIBATAPM)

Register Address R/W Description Reset Value

PCIBATAPM 0x1008 0114 R/W PCI base address translation register from AHB to
PCI of memory cycle.

0x0000 0000

PCIBATAPM Bit Description Initial State

APM [31:27] PCI base address when memory space is accessed from AHB
bus. AHB address of 00100b (MSB of 0x2000 0000) is replaced
with these 5 bits for PCI memory address when PCICON[4] = 1.

00000b

Reserved [26:0] Reserved 0

PCI BASE ADDRESS TRANSLATION REGISTER FROM AHB TO PCI OF I/O CYCLE (PCIBATAPI)

Register Address R/W Description Reset Value

PCIBATAPI 0x1008 0118 R/W PCI base address translation register from AHB to
PCI of I/O cycle.

0x0000 0000

PCIBATAPI Bit Description Initial State

API [31:25] PCI base address when I/O space is accessed from AHB bus.
AHB address of 0010111b (MSB of 0x2E00 0000) is replaced
with these 7 bits for PCI I/O address when PCICON [4] = 1.

0x00

Reserved [24:0] Reserved 0

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-31

PCI INTA# ASSERT CONTROL IN ADAPTOR MODE (PCIBELAP)

Register Address R/W Description Reset Value

PCIBELAP 0x1008 0128 R/W PCI INT# Assert control register in adaptor mode 0x0000 0000

PCIBELAP Bit Description Initial State

LAP [31] PCI INTA# assert in adaptor mode.
0 = INTA# NOT asserted
1 = INTA# asserted

0

Reserved [30:0] Reserved 0

PCI BASE ADDRESS TRANSLATION FROM PCI TO AHB OF MEMORY ADDRESS BAR 0 (PCIBATPA0)

This register can be changed after PCICON [8] = 1.

Register Address R/W Description Reset Value

PCIBATPA0 0x1008 0140 R/W PCI base address translation from PCI to AHB
of memory address bar 0.

0x0000 0000

PCIBATPA0 Bit Description Initial State

PA0 [31:0] AHB base address when memory address bar 0 is hit.
Only upper n bits defined in PCIBAM0 is used.

0x0000 0000

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-32

PCI BASE ADDRESS MASK REGISTER OF MEMORY ADDRESS BAR 0 (PCIBAM0)

When software writes all 1s to memory base address bar 0 in PCI configuration registers, the value read back is
this PCIBAM0 value. PCI base address mask registers including this PCIBAM0 are used to define the base
address decoding range.

This register must be kept to same value after PCICON [8] = 1.

Register Address R/W Description Reset Value

PCIBAM0 0x1008 0144 R/W PCI base address mask register of memory
address bar 0.

0xFFFF 0000

PCIBAM0 Bit Description Initial State

AM0 [31:0] Base address mask of memory address bar 0.
This bits are used for indicating the size of the address region.
This mask register must be set before other PCI device access
the configuration register and cannot be changed after PCICON
[8] = 1. And this register value must be valid number
(111...111000...000b), otherwise the results are unkown.

0xFFFF 0000

PCI BASE ADDRESS TRANSLATION FROM PCI TO AHB OF MEMORY ADDRESS BAR 1 (PCIBATPA1)

Register Address R/W Description Reset Value

PCIBATPA1 0x1008 0148 R/W PCI base address translation register from PCI to
AHB bus of memory address bar 1.

0x1008 0000

PCIBATPA1 Bit Description Initial State

PA1 [31:0] AHB base address when memory address bar 1 is hit.
Only upper n bits defined in PCIBAM1 is used.

0x1008 0000

S3C2800 RISC MICROPROCESSOR PCI-BUS INTERFACE

17-33

PCI BASE ADDRESS MASK REGISTER OF MEMORY ADDRESS BAR 1 (PCIBAM1)

When software writes all 1s to memory base address bar 1 in PCI configuration registers, the value read back is
this PCIBAM1 value.

Register Address R/W Description Reset Value

PCIBAM1 0x1008 014C R/W PCI base address mask register of memory
address bar 1.

0xFFFF FE00

PCIBAM1 Bit Description Initial State

AM1 [31:0] Base address mask of memory address bar 1.
This bits are used for indicating the size of the address region.
This mask register must be set before other PCI device access
the configuration register and can not be changed after PCICON
[8] = 1. And this register value must be valid number
(111...111000...000b), otherwise it leads to unknown operation.

0xFFFF FE00

PCI BASE ADDRESS TRANSLATION FROM PCI TO AHB OF I/O ADDRESS BAR 2 (PCIBATPA2)

Register Address R/W Description Reset Value

PCIBATPA2 0x1008 0150 R/W PCI base address translation register from PCI
to AHB bus of I/O address bar 2.

0x1008 0100

PCIBATPA2 Bit Description Initial State

PA2 [31:8] AHB base address when I/O address bar 2 is hit.
Upper 24 bits are used for translation.
All 24 bits are used.

0x10 0801

Reserved [7:0] Reserved (Always 0). 0x00

PCI BASE ADDRESS MASK REGISTER OF I/O ADDRESS BAR 2 (PCIBAM2)

When software writes all 1s to I/O base address bar 2 in PCI & CardBus configuration registers, the value read
back is this PCIBAM2 value (FFFF_FF00h) indicating that 256 bytes of I/O address space are required.

Register Address R/W Description Reset Value

PCIBAM2 0x1008 0154 R PCI base address mask register of I/O address
bar 2.

0xFFFF FF00

PCIBAM2 Bit Description Initial State

AM2 [31:0] Base address mask of I/O address bar 2. (Read-only)
This bits are used for indicating the size of the address region.
This mask register is read-only and hardwired to 0xFFF_FF00.

0xFFFF FF00

PCI-BUS INTERFACE S3C2800 RISC MICROPROCESSOR

17-34

NOTES

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-1

18 ELECTRICAL DATA

ABSOLUTE MAXIMUM RATINGS

Table 18-1. Absolute Maximum Rating

Symbol Parameter Rating Unit
VDD 1.8V Core DC Supply Voltage 2.4 V

VDDP 3.3V I/O DC Supply Voltage 3.8 V

VIN DC Input Voltage 3.3 V Input buffer 3.8 V

VOUT DC Output Voltage 3.3 V Output buffer 3.8 V

Ilatch Latch-up Current ± 200 mA

TSTG Storage Temperature – 65 to 150 oC

RECOMMENDED OPERATING CONDITIONS

Table 18-2. Recommended Operating Conditions

Symbol Parameters Condition Min Type Max Unit
VDD 1.8V Core DC Supply Voltage Commercial 1.7 1.8 1.95 V

VDDP 3.3V I/O DC Supply Voltage Commercial 3.0 3.3 3.6 V

VIN DC Input Voltage 3.3V Input buffer 3.0 3.3 3.6 V

VOUT DC Output Voltage 3.3V Output buffer 3.0 3.3 3.6 V

TOPR Operating Temperature Commercial 0 70 oC

IDD Normal operating current (FCLK : HCLK : PCLK = 1: 1/2 : 1/4) mA

1.8V core supply current FCLK = 200MHz, VDD = 1.95V – 210 300

3.3V I/O supply current FCLK = 200MHz, VDDP = 3.6V – 75 110

IDD1 Idle mode current (FCLK : HCLK : PCLK = 1: 1/2 : 1/4) mA

1.8V core supply current FCLK = 200MHz, VDD = 1.95V – 75 110

3.3V I/O supply current FCLK = 200MHz, VDDP = 3.6V – 15 30

IDD2 Slow mode current (FCLK : HCLK : PCLK = 1: 1/2 : 1/2) mA

1.8V core supply current FCLK = 6MHz, VDD = 1.95V – 15 30

3.3V I/O supply current FCLK = 6MHz, VDDP = 3.6V – 5 10

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-2

D.C. ELECTRICAL CHARACTERISTICS

Table 18-3. Normal I/O PAD D.C. Electrical Characteristics

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TOPR = 0 to 70 °C)

Symbol Parameters Condition Min Type Max Unit

VIH High level input voltage V

LVCMOS interface 2.0

VIL Low level input voltage V

LVCMOS interface 0.8

VT Switching threshold 1.4 V

VT+ Schmitt trigger, positive-going threshold CMOS 2.0 V

VT- Schmitt trigger, negative-going threshold CMOS 0.8

IIH High level input current µA

Input buffer VIN = VDDP -10 10

IIL Low level input current µA

Input buffer VIN = VSS -10 10

Input buffer with pull-up -120 -66 -20

VOH High level output voltage V

Type B4 IOH = -4 mA 2.4

Type B8 IOH = -8 mA 2.4

Type B12 IOH = -12 mA 2.4

VOL Low level output voltage V

Type B4 IOL = 4 mA 0.4

Type B8 IOL = 8 mA 0.4

Type B12 IOL = 12 mA 0.4

CIN Input capacitance Any Input and
Bi-directional
Buffers

4 pF

COUT Output capacitance Any Output
Buffers

4 pF

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-3

Table 18-4. PCI I/O PAD D.C. Electrical Characteristics

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TOPR = 0 to 70 °C)

Symbol Parameters Condition Min Type Max Unit

VIH High level input voltage 0.47VDDP VDDP+0.5 V

VIL Low level input voltage -0.5 0.33VDDP V

II Input Leakage Current -10 10 µA

VOH High level output voltage IOH = -500 µA 0.9VDDP V

VOL Low level output voltage IOL = 1500 µA 0.1VDDP V

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-4

A.C. ELECTRICAL CHARACTERISTICS

1/2 VDD1/2 VDD

tXTALCYC

NOTE: The clock input from the XTAL0 pin.

Figure 18-1. XTAL0 Clock Timing

tHCLK2CLK

tHCLK2SDCLK

tSDCLK2CLK

SDCLK

HCLK
(internal)

CLKout
(HCLK)

Figure 18-2. AHBCLK/CLKout/SDCLK Timing

OSC
(Fin)

tMDRH

tRESW
nRESET

OM[1:0]

Figure 18-3. Manual Reset and OM[1:0] Input Timing

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-5

nRESET

OSC
(Fin)

VCO
output

CPU operates by OSC (Fin)
clock.

Clock
Disable

tLOCK

FCLK is new frequency.

Power

PLL can operate after OM[1:0] is latched.

PLL is configured by S/W first time.

VCO is adapted to new clock frequency.

FCLK

...

...

...

tRST2RUN

Figure 18-4. Power-On Oscillation Setting Timing

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-6

HCLK

nSCSn

tRAD

nOE

DATA

ADDR

nBEn

tRCD

tROD

tROD

tRCD

Tacc

tRAD tRAD tRAD tRAD tRAD tRAD tRAD tRAD

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

'1'

Figure 18-5. ROM/SRAM Burst READ Timing(I)
(Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, ST=0, SDW=16bit)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-7

HCLK

nSCSn

tRAD

nOE

DATA

ADDR

nBEn

tRCD

tROD
tROD

tRCD

tRBED tRBED

Tacc

tRAD tRAD tRAD tRAD tRAD tRAD tRAD tRAD

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

tRDS

tRDH

Figure 18-6. ROM/SRAM Burst READ Timing(II)
(Tacs=0, Tcos=0, Tacc=2, Toch=0, Tcah=0, ST=1, SDW=16bit)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-8

tRAD

Tacs

nOE
Tcos

DATA

ADDR

'1'

Toch

Tcah

tRCD

tROD

tRDS

tRDH

tROD

tRCD

tRAD

Tacc

HCLK

nSCSn

nBEn

Figure 18-7. ROM/SRAM READ Timing (I)
(Tacs=2,Tcos=2, Tacc=4, Toch=2, Tcah=2,ST=0)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-9

tRAD

Tacs

nOE
Tcos

DATA

ADDR

Toch

Tcah

tRCD

tROD

tRDS

tRDH

tROD

tRCD

tRAD

Tcos

Toch

tRBED tRBED

Tacc

nSCSn

nBEn

HCLK

Figure 18-8. ROM/SRAM READ Timing (II)
(Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, ST=1)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-10

tRAD

Tacs

nWE
Tcos

DATA

ADDR

Toch

Tcah

tRCD

tRWD

tRDD

tRWD

tRCD

tRAD

Tcos

Toch

tRWBED tRWBED

Tacc

tRDD

nSCSn

nBEn

Toch

HCLK

Figure 18-9. ROM/SRAM WRITE Timing (I)
(Tacs=2,Tcos=2,Tacc=4,Toch=2, Tcah=2, ST=0)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-11

tRAD

Tacs

nWE
Tcos

DATA

ADDR

Toch

Tcah

tRCD

tRWD

tRDD

tRWD

tRCD

tRAD

Tcos

Toch

tRBED tRBED

Tacc

tRDD

nSCSn

nBEn

Toch

HCLK

Figure 18-10. ROM/SRAM WRITE Timing (II)
(Tacs=2, Tcos=2, Tacc=4, Toch=2, Tcah=2, ST=1)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-12

HCLK

nSCSn

tRAD

Tacs

nOE
Tcos

DATA

ADDR

tRCD

tROD

tRDS

tRDH

tRAD

Tacc

Figure 18-11. Masked-ROM Single READ Timing (Tacs=2, Tcos=2, Tacc=8)

HCLK

nSCSn

nOE
Tacc = 6cycle

nWAIT

DATA

ADDR

Tacs

Tacs

delayed

tRC

NOTE : The status of nWait is checked at (Tacc-1) cycle.

sampling nWait

Figure 18-12. External nWAIT READ Timing
(Tacs=0, Tcos=0, Tacc=6, Toch=0, Tcah=0, ST=0)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-13

HCLK

nSCSn

nWE

DATA

ADDR

tRDD

tRDD

Tacc >= 2cycle

nWAIT

tWS
tWH

Figure 18-13. External nWAIT WRITE Timing
(Tacs=0, Tcos=0, Tacc=4, Toch=0, Tcah=0, ST=0)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-14

H
C

LK

nD
R

A
S

n

tD
A

D Tr
cd

nD
C

A
S

n

D
A

TA

A
D

D
R

nO
E

tD
R

D

tD
R

C
D

tD
D

S

tD
D

H

tD
O

D
Tc

p
Tc

as
Tc

p
Tc

as
Tc

p
Tc

as
Tc

p
Tc

as
Tc

p
Tc

as
Tc

p
Tc

as
Tc

p
Tc

as
Tc

p
Tc

as

Figure 18-14. DRAM (EDO) Burst READ Timing (Trcd=2, Tcas=1, Tcp=1, Trp=3.5, MT=10, DW = 16bit)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-15

HCLK

nDRASn

tDAD

Trcd

nDCASn

DATA

ADDR

nOE

Tcp

Trp

tDRD

tDRCD

tDDS

tDDH

tDRCD

tDRD

tDAD

TcastDOD

tDAD

tDOD

Figure 18-15. DRAM(FP) Single READ Timing (Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=01)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-16

HCLK

nDRASn

tDAD

Trcd

nDCASn

DATA

ADDR

nOE

Tcp

Trp

tDRD

tDRCD

tDDS

tDDH

tDRCD

tDRD

tDAD

TcastDOD

tDAD

tDOD

Figure 18-16. DRAM(EDO) Single READ Timing (Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=10)

HCLK

nDRASn

nDCASn

ADDR

nOE/nWE

Trp

tDRD

tDCCD tDCCD

tDRD

Tchr

'1'

Figure 18-17. DRAM CBR Refresh Timing (Tchr=4)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-17

H
C

LK

nD
R

A
S

n

tD
A

D Tr
cd

nD
C

A
S

n

D
A

TA

A
D

D
R

nO
E

Tc
p

Tr
p

tD
R

D

tD
R

C
D

tD
D

S

tD
D

H

tD
R

C
D

tD
R

D

tD
A

D

Tc
as

tD
O

D

tD
A

D

tD
R

C
D Tc

as

tD
R

C
D

tD
R

C
D

Tc
p

tD
A

D

tD
R

C
D

Tc
as

tD
R

D

tD
R

C
D

tD
A

D
tD

A
D

tD
A

D

tD
D

S

tD
D

H

tD
D

S

tD
D

H

Tr
cd

Figure 18-18. DRAM(EDO) Page Hit-Miss READ Timing (Trcd=2, Tcas=2, Tcp=1, Trp=3.5, MT=10)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-18

HCLK

nDRASn

nDCASn

ADDR

Trp

tDRD

tDCCD tDCCD

tDRD

Figure 18-19. DRAM Self Refresh Timing

HCLK

nDRASn

tDAD

Trcd

nDCASn

DATA

ADDR

nWE

Tcp

Trp

tDRD

tDWCD

tDDD tDDD

tDWCD

tDRD

tDAD

TcastDWD

tDAD

tDWD

Figure 18-20. DRAM(FP/EDO) Single Write Timing
(Trcd=3, Tcas=2, Tcp=1, Trp=4.5, MT=01/10)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-19

H
C

LK

nD
R

A
S

n

tD
A

D Tr
cd

nD
C

A
S

n

D
A

TA

A
D

D
R

nW
E

Tc
p

Tr
p

tD
R

D

tD
W

C
D

tD
D

D
tD

D
D

tD
W

C
D

tD
R

D

tD
A

D

Tc
as

tD
W

D

tD
A

D

tD
W

C
D Tc

as

tD
W

C
D

tD
W

C
D

Tc
p

tD
A

D

tD
W

C
D

Tc
as

tD
R

D

tD
W

C
D

tD
A

D
tD

A
D

tD
A

D

tD
D

D
tD

D
DTr

cd

Figure 18-21. DRAM(FP/EDO) Page Hit-Miss Write Timing (Trcd=2, Tcas=2, Tcp=1, Trp=3.5, MT=01/10)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-20

S
D

C
LK

nS
D

R
A

S

tS
A

D

Tr
p

nS
D

C
A

S

D
A

TA

A
D

D
R

/B
A

nB
E

n

tS
R

D

tS
D

S

tS
D

H

S
D

C
K

E

A
10

/A
P

nS
D

C
S

n

tS
C

S
D

nW
E

tS
A

D

tS
C

D

tS
W

D

'1
'

Tr
cd

tS
B

E
D

Tc
l

Figure 18-22. SDRAM Single Burst READ Timing (Trp=2, Trcd=2, Tcl=2, DW=16bit)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-21

SDCLK

nSDRAS

tSAD

nSDCAS

DATA

ADDR/BA

nBEn

tSRD

SDCKE

A10/AP

nSDCSn

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSAD

tSCSD

tSRD

'HZ'

'1'

tSWD

Figure 18-23. SDRAM MRS Timing

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-22

SDCLK

nSDRAS

tSAD

Trp

nSDCAS

DATA

ADDR/BA

nBEn

tSRD

tSDS

tSDH

SDCKE

A10/AP

nSDCSn

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSADtSAD

Trcd

tSCSD

tSRD

tSCSD

tSAD

tSAD

tSBED

Tcl

Figure 18-24. SDRAM Single READ Timing(I) (Trp=2, Trcd=2, Tcl=2)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-23

SDCLK

nSDRAS

tSAD

Trp

nSDCAS

DATA

ADDR/BA

nBEn

tSRD

tSDS

tSDH

SDCKE

A10/AP

nSDCSn

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSADtSAD

Trcd

tSCSD

tSRD

tSCSD

tSAD

tSAD

tSBED

Tcl

Figure 18-25. SDRAM Single READ Timing(II) (Trp=2, Trcd=2, Tcl=3)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-24

SDCLK

nSDRAS

tSAD

Trp

nSDCAS

DATA

ADDR/BA

nBEn

tSRD

SDCKE

A10/AP

nSDCSn

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSAD

tSCSD

tSRD

'1'

'1'

'HZ'

Trc

NOTE: Before executing auto/self refresh command, all banks must be idle state.

Figure 18-26. SDRAM Auto Refresh Timing (Trp=2, Trc=4)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-25

S
D

C
LK

nS
D

R
A

S

tS
A

D

Tr
p

nS
D

C
A

S

D
A

TA

A
D

D
R

/B
A

nB
E

n

tS
R

D

tS
D

S

tS
D

H

S
D

C
K

E

A
10

/A
P

nS
D

C
S

n

tS
C

S
D

nW
E

tS
A

D

tS
C

D

tS
W

D

'1
'

Tr
cd

tS
B

E
D

Tc
l

Tc
l

Tc
l

Figure 18-27. SDRAM Page Hit-Miss READ Timing (Trp=2, Trcd=2, Tcl=2)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-26

SDCLK

nSDRAS

tSAD

Trp

nSDCAS

DATA

ADDR/BA

nBEn

tSRD

SDCKE

A10/AP

nSDCSn

tSCSD

nWE

tSAD

tSCD

tSWD

tSAD

tSCSD

tSRD

'1'

'1'

'HZ'

Trc

tCKED

'HZ'

'1'

'1'

'1'

'1'

'1'

tCKED

NOTE: Before executing auto/self refresh command, all banks must be idle state.

Figure 18-28. SDRAM Self Refresh Timing (Trp=2, Trc=4)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-27

SDCLK

nSDRAS

tSAD

Trp

nSDCAS

DATA

ADDR/BA

nBEn

tSRD

tSDD

tSDD

SDCKE

A10/AP

nSDCSn

tSCSD

nWE

tSAD

tSCD

tSWD

'1'

tSADtSAD

Trcd

tSCSD

tSRD

tSCSD

tSAD

tSAD

tSBED

Figure 18-29. SDRAM Single Write Timing (Trp=2, Trcd=2)

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-28

S
D

C
LK

nS
D

R
A

S

tS
A

D

Tr
p

nS
D

C
A

S

D
A

TA

A
D

D
R

/B
A

nB
E

n

tS
R

D

tS
D

D

tS
D

D

S
D

C
K

E

A
10

/A
P

nS
D

C
S

n

tS
C

S
D

nW
E

tS
A

D

tS
C

D

tS
W

D

'1
'

Tr
cd

tS
B

E
D

Figure 18-30. SDRAM Page Hit-Miss Write Timing (Trp=2, Trcd=2, Tcl=2)

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-29

HCLK

tXRS

tXRS

tCADL

tCADH
tXAD

nXDREQn

nXDACKn

Read Write
Min. 3HCLK

Figure 18-31. External DMA Timing (Handshake, Single transfer)

Rise/Fall Time Propagation Delay

VDDP

VDDP

TN

EN

EN5V

PAD

50pF

A

<Output Buffer><Output Buffer>

VDDP

VDDP

TN

EN

EN5V

PAD

VDDP

1K

1K10pF

A

Tpzl Tpzh

<Output Buffer>

VDDP

VDDP

TN

EN

EN5V

PAD

VDDP

10K

50pF

A

<Output Buffer>

VDDP

VDDP

TN

EN

EN5V

PAD

10K50pF

A
VDDP

Figure 18-32. PCI output AC characteristics test circuits for 3.3V signaling

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-30

Table 18-5. Clock Timing Constants

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C, max/min = typ ± 30%)

Parameter Symbol Min Typ Max Unit

Crystal clock input frequency fXTAL 6 – 10 MHz

Crystal clock input cycle time tXTALCYC 100 – 166.7 ns

AHBCLK(internal) to CLKout tHCLK2CLK – 7.7 – ns

AHBCLK(internal) to SDCLK tHCLK2SDCLK – 2.8 – ns

SDCLK to CLKout tSDCLK2CLK – 4.9 – ns

Mode reset hold time TmDRH 3.0 – – ns

Reset assert time after clock stabilization tRESW 4 – – OSC (Fin)

Power-on oscillation setting time tLOCK – – 4096 OSC (Fin)

the interval before CPU runs after nRESET
is released.

TRST2RUN – 7 – OSC (Fin)

Table 18-6. ROM/SRAM Bus Timing Constants

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C)

Parameter Symbol Min Typ Max Unit

ROM/SRAM Address Delay tRAD – 13 – ns

ROM/SRAM Chip select Delay tRCD – 8 – ns

ROM/SRAM Output enable Delay tROD – 7 – ns

ROM/SRAM read Data Setup time. tRDS – 1 – ns

ROM/SRAM read Data Hold time. tRDH – 5 – ns

ROM/SRAM Byte Enable Delay tRBED – 8 – ns

ROM/SRAM Write Byte Enable Delay tRWBED – 8 – ns

ROM/SRAM output Data Delay tRDD – 8 – ns

ROM/SRAM external Wait Setup time tWS – 1 – ns

ROM/SRAM external Wait Hold time tWH – 5 – ns

ROM/SRAM Write enable Delay tRWD – 9 – ns

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-31

Table 18-7. DRAM Bus Timing Constants

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C)

Parameter Symbol Min Typ Max Unit

DRAM Address Delay tDAD – 9 – ns

DRAM Row active Delay tDRD – 14 – ns

DRAM Read Column active Delay tDRCD – 15 – ns

DRAM Output enable Delay tDOD – 14 – ns

DRAM read Data Setup time tDDS – 1 – ns

DRAM read Data Hold time tDDH – 5 – ns

DRAM Write Cas active Delay tDWCD – 15 – ns

DRAM Cbr Cas active Delay tDCCD – 9 – ns

DRAM Write enable Delay tDWD – 15 – ns

DRAM output Data Delay tDDD – 16 – ns

Table 18-8. SDRAM Bus Timing Constants

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C)

Parameter Symbol Min Typ Max Unit

SDRAM Address Delay tSAD – 5 – ns

SDRAM Chip Select Delay tSCSD – 4 – ns

SDRAM Row active Delay tSRD – 4 – ns

SDRAM Column active Delay tSCD – 4 – ns

SDRAM Byte Enable Delay tSBED – 4 – ns

SDRAM Write enable Delay tSWD – 4 – ns

SDRAM read Data Setup time tSDS – 4 – ns

SDRAM read Data Hold time tSDH – 0 – ns

SDRAM output Data Delay tSDD – 5 – ns

SDRAM Clock Eable Delay Tcked – 5 – ns

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-32

Table 18-9. DMA Controller Module Signal Timing Constants

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C)

Parameter Symbol Min Typ. Max Unit

External Request Setup tXRS – 9.3 – ns

Access to Ack Delay when Low transition tCADL – 6.8 – Ns

Access to Ack Delay when High transition tCADH – 6.6 – Ns

External Request Delay tXAD 2 – – HCLK

Table 18-10. IIC BUS Controller Module Signal Timing

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C)

Parameter Symbol Min Typ. Max Unit

SCL clock frequency fSCL – – std. 100
fast 400

kHz

SCL high level pulse width tSCLHIGH std. 4.0
fast 0.6

– – µs

SCL low level pulse width tSCLLOW std. 4.7
fast 1.3

– – µs

Bus free time between STOP and START tBUF std. 4.7
fast 1.3

– – µs

START hold time tSTARTS std. 4.0
fast 0.6

– – µs

SDA hold time tSDAH std. 0
fast 0

– std. - fast
0.9

µs

SDA setup time tSDAS std. 250
fast 100

– – ns

STOP setup time TstOPH std. 4.0
fast 0.6

– – µs

NOTE: Std. means Standard Mode and fast means Fast Mode.

S3C2800 RISC MICROPROCESSOR ELECTRICAL DATA

18-33

Table 18-11. PCI BUS A.C. Electrical Characteristics

(VDD = 1.8 V -0.1 V/+0.15 V, VDDP = 3.3 V ± 0.3 V, TA = 0 to 70 °C)

Parameter Symbol 3.3V Signaling (33MHz or 66MHz) Unit

Condition Min Typ. Max

Switching Current High IOH(AC) VOUT = 0.3VDDP -12VDDP mA

VOUT = 0.7VDDP -32VDDP

VOUT = 0.9VDDP -1.71VDDP

Switching Current Low IOL(AC) VOUT = 0.6VDDP 16VDDP mA

VOUT = 0.1VDDP 2.67VDDP

VOUT = 0.18VDDP 38VDDP

Low Clamp Current ICL -3 < VIN ≤ -1 -25+(VIN+1)
/0.015

mA

High Clamp Current ICH VDDP+1 ≤ VIN
< VDDP+4

25+(VIN
-VDDP_1)

/0.015

mA

Output Rise Time Tr PAD(0.3VDDP) to
PAD(0.6VDDP)
(refer to Figure 18-32)

1.0 4.0 V/ns

Output Fall Time Tf PAD(0.6VDDP) to
PAD(0.3VDDP)
(refer to Figure 18-32)

1.0 4.0 V/ns

Output Falling
Propagation delay

Tplh A(0.5VDDP) to
PAD(0.4VDDP)
(refer to Figure 18-32)

1.3 4.0 ns

Output Rising Propagation
delay

Tphl A(0.5VDDP) to
PAD(0.4VDDP)
(refer to Figure 18-32)

1.3 4.0 ns

Output Enable time Tpzl EN(0.5VDDP) to
PAD(0.4VDDP)
(refer to Figure 18-32)

2.0 4.0 ns

Output Enable time Tpzh EN(0.5VDDP) to
PAD(0.4VDDP)
(refer to Figure 18-32)

2.0 4.3 ns

Input Rising Propagation
delay

Tphl_in PAD(0.4VDDP) to
Y(0.5VDDP)
CL = 1pF

0.4 0.8 ns

Input Falling Propagation
delay

Tplh_in PAD(0.4VDDP) to
Y(0.5VDDP)
CL = 1pF

0.4 0.8 ns

ELECTRICAL DATA S3C2800 RISC MICROPROCESSOR

18-34

NOTES

S3C2800 RISC MICROPROCESSOR MECHANICAL DATA

19-1

19 MECHANICAL DATA

PACKAGE DIMENSIONS

208-LQFP-2828

#208

28.00 ± 0.20

30.00 ± 0.30

28
.0

0
±

0.
20

30
.0

0
±

0.
30

0.10 MAX

0.127+ 0.10
- 0.05

0~8

NOTE: Dimensions are in millimeters.

#1

0.
50

 ¡¾
0.

20

0.10 ± 0.05

1.40 ± 0.10

1.60 MAX

0.50 (1.25)

+ 0.10
- 0.050.20

0.08 MAX

Figure 19-1. 208-LQFP-2828 Package Dimensions

MECHANICAL DATA S3C2800 RISC MICROPROCESSOR

19-2

NOTES

	Front-Matter
	Table of Contents
	List of Figures
	List of Tables

	1 Product Overview
	2 Programmer's Model
	3 Instruction Set
	4 Caches,Write Buffer
	5 Memory Management Unit
	6 Clock & Power Management
	7 Memory Controller
	8 DMA
	9 GPIO Ports
	10 Timer
	11 UART
	12 Interrupt Controller
	13 Remote Control Signal Receiver
	14 RTC
	15 WatchDog Timer
	16 IIC Bus Interface
	17 PCI Bus Interface
	18 Electrical Data
	19 Mechanical Data

