
Chapter 2. Chapter 2.
Combinational Logic CircuitsCombinational Logic Circuits

Mar., 2008

2CopyRight ® 2007 by hwany., All right reserved.

GoalGoalINDEX

기본적인 논리요소인 게이트에 대한 이해

회로 설계를 위한 수학적 기법과 회로를 효율적으로 설계하는 방법을 학습

최적화 방법과 카노맵에 대한 이해

논리 게이트 특성 이해

exclusive OR와 exclusive NOR 게이트 및 대수적 기법 소개

3CopyRight ® 2007 by hwany., All right reserved.

Overview

Part 1 – Gate Circuits and Boolean Equations
Binary Logic and Gates
Boolean Algebra
Standard Forms

Part 2 – Circuit Optimization
Two-Level Optimization
Map Manipulation
Practical Optimization (Espresso)
Multi-Level Circuit Optimization

Part 3 – Additional Gates and Circuits
Other Gate Types
Exclusive-OR Operator and Gates
High-Impedance Outputs

4CopyRight ® 2007 by hwany., All right reserved.

Combinational Logic Circuit

In digital circuit theory, Combinational Logic is a type of logic circuit
whose output is a pure function of the present input only. This is in
contrast to Sequential Logic, in which the output depends not only on the
present input but also on the history of the input.
In other words, Sequential Logic has memory while Combinational Logic
does not.
Combinational Logic is used in computer circuits to do Boolean algebra
on input signals and on stored data. Practical computer circuits normally
contain a mixture of combinational and sequential logic.

For example, the part of an arithmetic logic unit, or ALU, that does
mathematical calculations is constructed in accord with combinational logic,
although the ALU is controlled by a sequencer that is constructed in accord
with sequential logic.

5CopyRight ® 2007 by hwany., All right reserved.

1. 2진 논리와 게이트

2. Boolean Algebra

3. Standard Forms

4.

5.

6.

6CopyRight ® 2007 by hwany., All right reserved.

2.1 Binary Logic and Gate

Definition
Binary Logic is processing based on the binary numbering system

Binary variables take on one of two values

Logical operators operate on binary values and binary variables

Basic logical operators are the logic functions AND, OR and NOT

Logic gates implement logic functions

Boolean Algebra is a useful mathematical system for specifying
and transforming logic functions

We study Boolean algebra as a foundation for designing
and analyzing digital systems!

7CopyRight ® 2007 by hwany., All right reserved.

Binary Variables

Recall that the two binary values have different names:
True/False
On/Off
Yes/No
1/0

We use 1 and 0 to denote the two values.
Variable identifier examples:

A, B, y, z, or X1 for now
RESET, START_IT, or ADD1 later

8CopyRight ® 2007 by hwany., All right reserved.

Logical Operations

The three basic logical operations are:
AND is denoted by a dot (·).
OR is denoted by a plus (+).
NOT is denoted by an overbar (¯), a single quote mark
(') after, or (~) before the variable.

9CopyRight ® 2007 by hwany., All right reserved.

Examples:
Y = A × B is read “Y is equal to A AND B”
z = x + y is read “z is equal to x OR y”
X = A is read “X is equal to NOT A”

Note: The statement;
1+1=2(10) read “one plus one equals two”
is not the same as
1+1=1 read “1 or 1 equals 1”

Notation Examples

10CopyRight ® 2007 by hwany., All right reserved.

Operator Definitions

Operations are defined on the values “0” and “1” for each
operator;

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

10 =

01 =

11CopyRight ® 2007 by hwany., All right reserved.

Truth Tables

Truth table − a tabular listing of the values of a function for
all possible combinations of values on its arguments

Example: Truth tables for the basic logic operations:

010
001
111

000
Z=X · YYX

AND

110
101
111

000
Z=X + YYX

AND

01
10

Z=XX
NOT

12CopyRight ® 2007 by hwany., All right reserved.

Using Switches
For inputs:

logic 1 is switch closed
logic 0 is switch open

For outputs:
logic 1 is light on
logic 0 is light off

• NOT uses a switch such that:
logic 1 is switch open
logic 0 is switch closed

Logic Function Implementation

Switches in series AND

Switches in parallel OR

C
Normally-closed switch NOT

13CopyRight ® 2007 by hwany., All right reserved.

Example: Logic Using Switches

Light is on (L = 1) for
L(A, B, C, D) =

and off (L = 0), otherwise.
Useful model for relay circuits and for CMOS gate circuits,
the foundation of current digital logic technology

Logic Function Implementation (Continued)

B
A

D

C

A · ((B · C) + D) = ABC + AD

14CopyRight ® 2007 by hwany., All right reserved.

Logic Gates

In the earliest computers, switches were opened and closed by magnetic
fields produced by energizing coils in relays. The switches in turn opened
and closed the current paths.
Later, vacuum tubes that open and close current paths lectronically
replaced relays.
Today, transistors are used as electronic switches that open and close
current paths
A logic gate performs a logical operation on one or more logic
inputs and produces a single logic output. Because the output is
also a logic-level value, an output of one logic gate can connect to
the input of one or more other logic gates. The logic normally
performed is Boolean logic and is most commonly found in digital
circuits. Logic gates are primarily implemented electronically using
diodes or transistors

Optional: Chapter 6 – Part 1: The Design Space

15CopyRight ® 2007 by hwany., All right reserved.

Example of Logic gate

16CopyRight ® 2007 by hwany., All right reserved.

Logic Gate Symbols and Behavior

Logic gates have special symbols:

And waveform behavior in time as follows:

17CopyRight ® 2007 by hwany., All right reserved.

Gate Delay

In actual physical gates, if one or more input changes causes the output to
change, the output change does not occur instantaneously.
The delay between an input change(s) and the resulting output change is
the gate delay denoted by tG:

tG tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

18CopyRight ® 2007 by hwany., All right reserved.

Logic Diagrams and Expressions

Boolean equations, truth tables and logic diagrams describe
the same function!
Truth tables are unique; expressions and logic diagrams are
not. This gives flexibility in implementing functions.

X

Y F

Z

Logic Diagram

Equation

ZYX F +=

Truth Table

11 1 1
11 1 0
11 0 1
11 0 0
00 1 1
00 1 0
10 0 1
00 0 0

X Y Z ZYX F ×+=

19CopyRight ® 2007 by hwany., All right reserved.

2. 부울 대수

3. Standard Forms

4.

5.

6.

1. Binary Logic and Gate

20CopyRight ® 2007 by hwany., All right reserved.

2.2 Boolean Algebra

Boolean Algebra is an algebra dealing with binary variables
and logic operations

Variables are designated by letters of the alphabet
3 basic logic operations are AND, OR and NOT (complementaiton)

Boolean Expression is an algebraic expression formed by using
binary variable, constants 0 and 1, the logic operation symbols and
parenthese

Boolean Function can be described by a Boolean equation consisting
of a binary variable identifying the function followed by an equals sign
and a Boolean expression (함수를나타내는 2진출력변수, 그다음에등호, 등호
다음에는 2진입력변수 0,1을사용하여형태를이루는대수적표현으로구성된다 ?)

Boolean function is a function of the form f : Bk → B, where B = {0, 1} is a
boolean domain and k is a nonnegative integer

21CopyRight ® 2007 by hwany., All right reserved.

2.2 Boolean Algebra

An algebraic structure defined on a set of at least two
elements, B, together with three binary operators (denoted +,
· and)
Most basic identities of Boolean algebra

22CopyRight ® 2007 by hwany., All right reserved.

Some Properties of Identities & the Algebra

If the meaning is unambiguous, we leave out the symbol “·”
The identities above are organized into pairs. These pairs have names as
follows:

1-4 Existence of 0 and 1 5-6 Idempotence
7-8 Existence of complement 9 Involution
10-11 Commutative Laws 12-13 Associative Laws
14-15 Distributive Laws 16-17 DeMorgan’s Laws

The dual of an algebraic expression is obtained by
interchanging + and · and interchanging 0’s and 1’s.
The identities appear in dual pairs. When there is only one identity on a
line the identity is self-dual, i. e., the dual expression = the original
expression.
DeMorgan’s theorem can be illustrated by means of truth tables that
assign all the possible binary values to X and Y (see Page 61, Table2-4).
DeMorgan’s theorem can be extended to three or more variables (see
Page 62).

23CopyRight ® 2007 by hwany., All right reserved.

Unless it happens to be self-dual, the dual of an expression does not
equal the expression itself.

Example: F = (A + C) · B + 0
dual F = (A · C) + B · 1 = A · C + B

Example: G = X · Y + (W + Z)
dual G =

Example: H = A · B + A · C + B · C
dual H =

Are any of these functions self-dual?

Some Properties of Identities & the Algebra (Continued)

24CopyRight ® 2007 by hwany., All right reserved.

Boolean Operator Precedence

The order of evaluation in a Boolean expression is:

1. Parentheses
2. NOT
3. AND
4. OR

Consequence: Parentheses appear around OR expressions

Example: F = A(B + C)(C + D)

25CopyRight ® 2007 by hwany., All right reserved.

Example 1: Boolean Algebraic Proof

A + A·B = A (Absorption Theorem)
Proof)

Steps Justification (identity or theorem)
A + A·B
= A · 1 + A · B X = X · 1
= A · (1 + B) X · Y + X · Z = X ·(Y + Z) (Distributive Law)

= A · 1 1 + X = 1
= A X · 1 = X

Our primary reason for doing proofs is to learn:
Careful and efficient use of the identities and theorems of Boolean algebra, and
How to choose the appropriate identity or theorem to apply to make forward
progress, irrespective of the application.

Page. 64

26CopyRight ® 2007 by hwany., All right reserved.

AB + AC + BC = AB + AC (Consensus Theorem)

Proof)
Steps Justification (identity or theorem)
AB + AC + BC
= AB + AC + 1 · BC ?
= AB +AC + (A + A) · BC ?
=

Example 2: Boolean Algebraic Proofs Page. 64

27CopyRight ® 2007 by hwany., All right reserved.

Example 3: Boolean Algebraic Proofs

(X+Y) Z + X Y = Y (X+Z)

Proof
Steps Justification (identity or theorem)
(X+Y) Z + X Y

=

28CopyRight ® 2007 by hwany., All right reserved.

Useful Theorems

x×y + x×y = y (x+y)(x+y) = y Minimization

x+x·y = x x·(x+y) = x Absorption

x+x×y=x+y x×(x+y)=x×ySimplification

x×y + x·z + y·z = x·y + x·z Consensus

(x+y) ·(x+z) ·(y+z) = (x+y) ·(x+z)

x+y = x·y x·y = x+y DeMorgan’s Law

29CopyRight ® 2007 by hwany., All right reserved.

x×y + x×y = y (x+y)(x+y) = y

Proof of Simplification

30CopyRight ® 2007 by hwany., All right reserved.

Proof of DeMorgan’s Laws

x+y = x·y x·y = x+y

31CopyRight ® 2007 by hwany., All right reserved.

Boolean Function Evaluation

x y z F1 F2 F3 F4
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 1
1 1 1 0 1

zxyxF4
xzyxzyxF3

xF2
xyF1

+=
+=

=
= z

yz+
y+

32CopyRight ® 2007 by hwany., All right reserved.

Expression Simplification

An application of Boolean algebra
Simplify to contain the smallest number of literals
(complemented and uncomplemented variables):

= AB + ABCD + A C D + A C D + A B D
= AB + AB(CD) + A C (D + D) + A B D
= AB + A C + A B D
= B(A + AD) +AC
= B (A + D) + A C : 5 literals

++++ DCBADCADBADCABA

33CopyRight ® 2007 by hwany., All right reserved.

Simpler expression reduces both the number of gates in the
circuit and the numbers of inputs to the gates.

Boolean algebra is a useful tool for simplifying digital circuits

Two circuits implement the same function, but the one with
fewer gates and/or fewer gate inputs is preferable because it
requires fewer components.

3 terms (항)
8 literals (문자)

2 terms
4 literals

34CopyRight ® 2007 by hwany., All right reserved.

Complementing Functions

Use DeMorgan's Theorem to complement a function:
1. Interchange AND and OR operators
2. Complement each constant value and literal
Example: Complement F = xyz + xyz

F = (x + y + z)(x + y + z)
Example: Complement G = (a + bc)d + e

G =

Page. 65

35CopyRight ® 2007 by hwany., All right reserved.

3. 표준 형태

4.

5.

6.

1. Binary Logic and Gate

2. Boolean Algebra

36CopyRight ® 2007 by hwany., All right reserved.

Overview – Canonical Forms

What are Canonical (규범적인, 표준적인) Forms?
Minterms and Maxterms
Index Representation of Minterms and Maxterms
Sum-of-Minterm (SOM) Representations
Product-of-Maxterm (POM) Representations
Representation of Complements of Functions
Conversions between Representations

37CopyRight ® 2007 by hwany., All right reserved.

Canonical Forms

It is useful to specify Boolean functions in a form that:
Allows comparison for equality.
Has a correspondence to the truth tables

Canonical Forms in common usage:
Sum of Minterms (SOM)
Product of Maxterms (POM)

Canonical form (정규형)은함수의항이최소항의합(sum of minterm)이나최
대항의곱(product of maxterm)으로표현되는식

Standard form (표준형) 은함수의각항이곱의합(sum of product, SOP)이나
합의곱(product of sum, POS) 형태로표현되는식

38CopyRight ® 2007 by hwany., All right reserved.

In Boolean algebra, any Boolean function can be expressed in a
canonical form using the dual concepts of minterms and maxterms. All
logical functions are expressible in canonical form, both as a "sum of
minterms" and as a "product of maxterms". This allows for greater
analysis into the simplification of these functions, which is of great
importance in the minimization of digital circuits.
Generally, in mathematics, a canonical form (often called normal form
or standard form) of an object is a standard way of presenting that object.

A Boolean function expressed as a disjunction (OR) of minterms is
commonly known as a "sum of products" or "SoP". Thus it is a
disjunctive normal form in which only minterms are allowed as
summands. Its De Morgan dual is a "product of sums" or "PoS" , which
is a function expressed as a conjunction (AND) of maxterms.

39CopyRight ® 2007 by hwany., All right reserved.

Standard Forms

Standard Forms
facilitate the simplification procedures for Boolean expressions
in some cases, may result in more desirable expressions for
implementing logic circuits
(표준형태는부울표현식에대한단순화의절차를쉽게하고, 경우에따

라논리회로구현을위한바람직한표현식을만들어낼수도있다)

contains product terms and sun terms
Product term; XYZ
Sum term X+Y+Z

In Boolean algebra, the words “product” and “sum” do not imply
arithmetic operations; instead, they specify the logical operations AND
and OR, respectively

Page. 66

40CopyRight ® 2007 by hwany., All right reserved.

Minterm

Minterm is AND terms with every variable present in either true or
complemented form.
(모든변수가보수나보수가아닌상태로정확히한번나타나는논리곱항)
Given that each binary variable may appear normal (e.g., x) or
complemented (e.g., x), there are 2n minterms for n variables.
Example: Two variables (X and Y) produce
2 x 2 = 4 combinations: (2개의변수 X, Y에대한 4개의최소항)

(both normal)

(X normal, Y complemented)

(X complemented, Y normal)

(both complemented)

Thus, there are four minterms of two variables.
Example, 8 minterms for 3 variables (Page 67, Table2-6).

YX
XY

YX
YX

41CopyRight ® 2007 by hwany., All right reserved.

Maxterm

Maxterm is OR terms with every variable in true or complemented form.
(보수나보수가아닌상태의모든변수를포함하는논리합항)
Given that each binary variable may appear normal (e.g., x) or
complemented (e.g., x), there are 2n maxterms for n variables.
Example: Two variables (X and Y) produce
2 x 2 = 4 combinations:

(both normal)

(x normal, y complemented)

(x complemented, y normal)

(both complemented)

Example: 8 maxterms for 3 variables (Page 68, Table 2-7)

YX +

YX +

YX +

YX +

42CopyRight ® 2007 by hwany., All right reserved.

Examples: Two variable minterms and maxterms.

The index above is important for describing which variables in the
terms are true and which are complemented.

Maxterms and Minterms

x + yx ym3 (11)

x + yx ym2 (10)

x + yx ym1 (01)

x + yx ym0 (00)

MaxtermMintermMIndex

43CopyRight ® 2007 by hwany., All right reserved.

Purpose of the Index

The index for the minterm or maxterm, expressed as a binary number,
is used to determine whether the variable is shown in the true form or
complemented form.
For Minterms:

“1” means the variable is “Not Complemented” and
“0” means the variable is “Complemented”

For Maxterms:
“0” means the variable is “Not Complemented” and
“1” means the variable is “Complemented”

44CopyRight ® 2007 by hwany., All right reserved.

Minterms and Maxterms for 3 variables (Page, 67 and 68)

45CopyRight ® 2007 by hwany., All right reserved.

Review: DeMorgan's Theorem
and

Two-variable example:
and

Thus, M2 is the complement of m2 and vice-versa.
Since DeMorgan's Theorem holds for n variables, the above
holds for terms of n variables
giving:

and
Thus, Mi is the complement of mi.

최소항은진리표에서항상 0값이아니면서 1의개수가최소인함수이고,
최대항은항상 1값이아니면서 1의개수가최대인함수이다.
(같은첨자에서최소항과최대항은보수관계)

Minterm and Maxterm Relationship

yxy·x += yxyx ×=+

yxM 2
+= yx·m 2

=

i
mM =

i ii
Mm =

Page. 68

46CopyRight ® 2007 by hwany., All right reserved.

Canonical Sum of Minterms

Any Boolean function can be expressed as a Sum of Minterms.
For the function table, the minterms used are the terms corresponding
to the 1's
For expressions, expand all terms first to explicitly list all minterms.
Do this by “ANDing” any term missing a variable v with a term
().
부울함수는함수에서 1이되는모든최소항의논리합을형성하여주어진
진리표에서수학적으로표현이가능 최소항의합

Example: Implement as a sum of minterms.
First expand terms:

Then distribute terms:

Express as sum of minterms: f = m3 + m2 + m0

yxxf +=

yxyxxyf ++=

v v +

yx)yy(xf ++=

Page. 68

47CopyRight ® 2007 by hwany., All right reserved.

In Table 2-8(a),
the Boolean function F is equal to 1 for 000, 010, 101 and 111.
These combinations correspond to minterms 0, 2, 5 and 7

By examining Table 2-8 and the truth table for these minterms in Table 2-6,
The function F can be expressed algebraically as the logical sum of the stated

minterms

F = XYZ + XYZ + XYZ + XYZ
= m0 + m2 + m5 + m7

F(X,Y,Z) = ∑ m(0,2,5,7)
where, ∑ stands for the logical sum

(Boolean OR) of the minterms

Page. 68

48CopyRight ® 2007 by hwany., All right reserved.

Consider the complement of a Boolean function F,
Binary values of F in Table 2-8(a) are obtained by chnging 1s to 0s, and 0s

and 1s in the values of F

F = XYZ + XYZ + XYZ + XYZ
= m1 + m3 + m4 + m6

F(X,Y,Z) = ∑ m(1,3,4,6)
* Minterms numbers for F are the ones missing from the list of the minterm

numbers of F.

Taking the complement of F to obtin F; see Page 69.
Then, F = (X+Y+Z) (X+Y+Z) (X+Y+Z) (X+Y+Z)

This shows the procedure for expressing a Boolean function as a product
of maxterms.

F(X,Y,Z) = ∏ M(1,3,4,6) ,
where ∏ denotes the logical product (Boolean AND) of the maxterms

whose numbers are listed in parentheses

49CopyRight ® 2007 by hwany., All right reserved.

A function that is NOT in the sum-of-minterms form can be converted to
that form using truth table.

E = Y + X Z
E(X,Y,Z) = ∑ m(0,1,2,4,5)
E(X,Y,Z) = ∑ m(3,6,7)

50CopyRight ® 2007 by hwany., All right reserved.

Canonical Product of Maxterms

Any Boolean Function can be expressed as a Product of
Maxterms (POM).

For the function table, the maxterms used are the terms corresponding
to the 0's.
For an expression, expand all terms first to explicitly list all maxterms.
Do this by first applying the second distributive law , “ORing” terms
missing variable v with a term equal to and then applying
the distributive law again.

Example: Convert to product of maxterms:

Apply the distributive law:

Add missing variable z:

Express as POM: f = M2 · M3

yxx)z,y,x(f +=

yx)y(x1)y)(xx(xyxx +=+×=++=+

()zyx)zyx(zzyx ++++=×++

vv×

Page. 69

51CopyRight ® 2007 by hwany., All right reserved.

Function Complements

The complement of a function expressed as a sum of
minterms is constructed by selecting the minterms missing
in the sum-of-minterms canonical forms.
Alternatively, the complement of a function expressed by a
Sum of Minterms form is simply the Product of Maxterms
with the same indices.
Example: Given F(x,y,z) = ∑ m(1,3,5,7)
F(x,y,z) = ∑ m(0,2,4,6)
F(x,y,z) = ∏ M(1,3,5,7)

52CopyRight ® 2007 by hwany., All right reserved.

Conversion Between Forms

To convert between sum-of-minterms and product-of-maxterms
form (or vice-versa) we follow these steps:

Find the function complement by swapping terms in the list with terms
not in the list.
Change from products to sums, or vice versa.

Example:Given F as before: F(x,y,z) = ∑ m(1,3,5,7)
Form the Complement: F(x,y,z) = ∑ m(0,2,4,6)
Then use the other form with the same indices – this
forms the complement again, giving the other form of the
original function:

F(x,y,z) = ∏ M(0,2,4,6)

53CopyRight ® 2007 by hwany., All right reserved.

Standard Sum-of-Products (SOP) form: equations are written
as an OR of AND terms
Standard Product-of-Sums (POS) form: equations are written
as an AND of OR terms
Examples:

SOP:
POS:

These “mixed” forms are neither SOP nor POS

Standard Forms

C)(AC)B(A ++

BCBACBA ++

C·)CB(A·B)(A +++

B)(ACACBA ++

54CopyRight ® 2007 by hwany., All right reserved.

A sum of minterms form for n variables can be written down
directly from a truth table.

Implementation of this form is a two-level network of gates such that:
The first level consists of n-input AND gates, and
The second level is a single OR gate (with fewer than 2n inputs)

This form often can be simplified so that the corresponding
circuit is simpler.

Standard Sum-of-Products (SOP)

55CopyRight ® 2007 by hwany., All right reserved.

A Simplification Example:
F(A,B,C) = ∑ m(1,4,5,6,7)

Writing the minterm expression:
F = A B C + A B C + A B C + ABC + ABC

Simplifying:
F =

= BC + A

Simplified F contains 3 literals compared to 15 in minterm F

56CopyRight ® 2007 by hwany., All right reserved.

AND/OR Two-level Implementation of SOP Expression

The two implementations for F are shown below – it is quite
apparent which is simpler!

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

F

B
C

A

57CopyRight ® 2007 by hwany., All right reserved.

SOP and POS Observations

The previous examples show that:
Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or
other standard forms (SOP, POS) differ in complexity
Boolean algebra can be used to manipulate equations into simpler
forms.
Simpler equations lead to simpler two-level implementations

Questions:
How can we attain a “simplest” expression?
Is there only one minimum cost circuit?
The next part will deal with these issues.

58CopyRight ® 2007 by hwany., All right reserved.

Terms of Use

All (or portions) of this material © 2008 by Pearson Education, Inc.
Permission is given to incorporate this material or adaptations thereof
into classroom presentations and handouts to instructors in courses
adopting the latest edition of Logic and Computer Design Fundamentals
as the course textbook.
These materials or adaptations thereof are not to be sold or otherwise
offered for consideration.
This Terms of Use slide or page is to be included within the original
materials or any adaptations thereof.

