Chapter 2.
. Combinational Logic Circuits

Part I1. Circuit Optimization
Mar., 2008
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Overview

& Part 1 — Gate Circuits and Boolean Equations
+  Binary Logic and Gates
+  Boolean Algebra
+  Standard Forms

4 Part 2 — Circuit Optimization
+  Two-Level Optimization
+  Map Manipulation
+  Practical Optimization (Espresso)
+  Multi-Level Circuit Optimization

& Part 3 — Additional Gates and Circuits
+  Other Gate Types
+  Exclusive-OR Operator and Gates
+  High-Impedance Outputs
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Circuit Optimization
® Goal: To obtain the simplest implementation for a given
function

% Optimization is a more formal approach to simplification that
is performed using a specific procedure or algorithm

(In computing, optimization is the process of modifying a system to make some aspect
of it work more efficiently or use fewer resources. For instance, a computer
program may be optimized so that it executes more rapidly, or is capable of
operating with less memory storage or other resources, or draw less power)

% Optimization requires a cost criterion to measure the
simplicity of a circuit

% Distinct cost criteria we will use:
+ Literal cost (L)

¢ Gate input cost (G)
+  Gate input cost with NOTs (GN)
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Literal Cost

% Literal — a variable or its complement

% Literal Cost (2X}H| &) — the number of literal appearances in a
Boolean expression corresponding to the logic circuit diagram

& Examples:
+ F=BD+ABC+ACD L=8
+ F=BD+ABC+ABD + ABC L=

¢+ F=(A+B)A+D)B+C+D)B+C+D) L=
¢+ Which solution is best?
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Gate Input Cost

% Gate input cost (A|0] E Q! 24H|-&) - the number of inputs to the gates
in the implementation corresponding exactly to the given equation or
equations. (G - inverters not counted, GN - inverters counted)

% For SOP and POS equations, it can be found from the
equation(s) by finding the sum of:
+ all literal appearances
(LIEfLHE 2 2Xt)
¢ the number of terms excluding single literal terms (G) and
(R S| 2At2 T YE SE52 Melst 252l )
+ optionally, the number of distinct complemented single literals (GN)

(MEiR o2 Qs WAE CHel RS0l )
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& Example: (Page 73)
+ G=ABCD+ABCD L=8, G=10, GN=14
¢+ G'=(A+B)(B+C)(C+D)D+A) L=8  G=12, GN=16
o EXHH| & (Literal Cost)2 ZX| 2t A|0| E Q= H| & (Gate Input Cost)0f|A| G
JtG’HELCE &2 22 =0t
o HO|E YH| &2 =2|2 29| 730 AL El= EMX|AEHQ MMl 50
H|2 sl +X[0|22 $iXfo| =2| AHOM £E2 £ 7|=0| =ct.

& Example:
+ F=BD+ABC+ACD G=8 GN=11
+ F=BD+ABC+ABD +ABC G=, OGN=
. F=(A+§)(A+D)(B+C+5)(§+6+D) G=, OGN=

¢+ Which solution is best?
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Cost Criteria (continued)

¢ L (Literal Count) counts the AND inputs and the single literal OR input
¢ G (Gate Input Count) adds the remaining OR gate inputs
¢ GN (Gate Input Count with NOTSs) adds the inverter inputs
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Cost Criteria (continued)

& Example 2: A
F=ABC+ABC &1
& L=6, G=8, GN=11 ==

F'=(A+C)B+C)A+B)
& L=6, G=9, GN=12

&  Same function and
Same literal cost

% But first circuit (F) has

&  Select it!

A
B
€
better gate input count and
better gate input count with NOTs D \
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Boolean Function Optimization

% Minimizing the gate input (or literal) cost of a (a set of) Boolean
equation(s) reduces circuit cost.

& We choose gate input cost.

& Boolean Algebra and graphical techniques are tools to minimize cost
criteria values.

&  Some important questions:
When do we stop trying to reduce the cost?
Do we know when we have a minimum cost?

& Treat optimum or near-optimum cost functions for two-level (SOP and
POS) circuits first.

& Introduce a graphical technique using Karnaugh maps (K-maps, for short)
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© Karnaugh Map

The Karnaugh map, also known as a Veitch diagram (K-map or KV-map
for short), is a tool to facilitate management of Boolean algebraic
expressions. A Karnaugh map is unique in that only one variable changes
value between squares; in other words, the rows and columns are ordered
according to the principles of Gray code.

Size of Map

+ InaKarnaugh map with n variables, a Boolean term mentioning k of them will
have a corresponding rectangle of area 2" . Common sized maps are of 2
variables which is a 2x2 map; 3 variables which is a 2x4 map; and 4 variables
which is a 4x4 map.

A W2 i
[ 1 AB n
-

2 variable map 3 wvariable map 4 variable map

cb
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Karnaugh Maps (K-map)

& A K-map is a collection of squares
Each square represents a minterm

The collection of squares is a graphical representation of a
Boolean function (Any Boolean function can be expressed as s Sum of
Minterms)

Adjacent squares differ in the value of one variable

Alternative algebraic expressions for the same function are derived by
recognizing patterns of squares

2| EE JY0|ZEZ LIEHH M-S0 T2 270 Y = M2 LIESI0l 52
ZHEfREA|ZIC

& The K-map can be viewed as
A reorganized version of the truth table

A topologically-warped Venn diagram as used to visualize sets in
algebra of sets (#iCtojoj a2 e 2H&st o2 £ 4 UL}
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& Venn Diagram
are illustrations used in the branch of mathematics known as set theory.
They show all of the possible mathematical or logical relationships between
sets (groups of things). They normally consist of overlapping circles.
MEZ CHE TBHE Af0|2] ZAE BoiF7| ot O3
For instance, in a two-set Venn diagram, one circle may represent the group
of all wooden objects, while another circle may represent the set of all
tables.

AMB

Some Uses of K-Maps

% Provide a means for:
Finding optimum or near optimum
+ SOP and POS standard forms, and
+ two-level AND/OR and OR/AND circuit implementations
for functions with small numbers of variables
Visualizing concepts related to manipulating Boolean expressions,
and
Demonstrating concepts used by computer-aided design programs
to simplify large circuits
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Two Variable Maps K-Map and Truth Tables
% A 2-variable Karnaugh Map: & The K-Map is just a different form of the truth table.
Note that minterm m, and minterm m, are y=0 | y=1 © Example — Two variable function:
ad_Jabclent and differ in the value of the m.= | m. = We choose a,b,c and d from the set {0,1} to implement a particular
V(_irlz?\ ey _ _ x=0 0— 1= function, F(x,y)
Similarly, minterm m, and minterm m, Xy %
differ in the x variable. y Function Table K-Map
Also, m; and my differ in the x variable as x=1 | M,=|M,= Input AlnGtn
well. Xy | Xy Values Value
Finally, m, and m, differ in the value of the y=0 y=1
variable y (xy) F(xy)
00 a x=0 a b
01 b x=1 C
10 c
11 d
15 CopyRight ® 2007 by hwany., All right reserved. 16
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K-Map Function Representation K-Map Function Representation

o Example: F(X,y) = X o Example: G(X,y) =X +Yy
F=x |y=0|y=1 G=xty |y=0[y=1
x=0 |0 [0 =0 [0 |m)
x=1 | |1 ) =1 |
& For function F(x,y), the two adjacent cells containing 1's can be & For G(x,y), two pairs of adjacent cells containing 1’s can be combined
combined using the Minimization Theorem: using the Minimization Theorem:
F(X,y)=Xy+Xy =X G(x,y)=Kxy+xy)+xy+xy)=x+y

Duplicate x y
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& 2-variable maps & Page77
Enter the function on the K-map Given F(x,y) as Table 2-9, I—
(KEHO| et=5 EA|SHD}) (1) Fot 18 Zt= 2 3liof Cislo] AN 18 BEASIT Two-Variable Function F(A, B)
Identify collections of squares on the map representing product 02 EA|SHK| Y=L} A B F
terms to be considered for the simplified expression (rectangles) F(A,B) = 3 m(0,1,3) > K2oj A 0,1,30f 0 0 i
(ZrefetE 2oM S flot0] Aafsole &S EAlStE A d S T sctst= 9 %|of 12 Qe ! 5 J
+  Goal is to find the fewest such rectangles (contain numbers of squares that are 1 1 1
powers of 2) that include or cover all of the wquares marked with 1s
o . SOPz =o{ & I,
Determine if any of the rectangles we have generated is not needed — B
to cover all of the 1s on the K-map F=A+AB IR
(TS AP E SO M K- A 2] 2= 15 HH S| RIS EQ8HA| pi2 Ar2t Jy [ ==
Y AFO) @) |
Read off thg sum-of-products expression, determining th_e 2t AFZFSOf SIS minterme AB + AB = B A [1 1]
corresponding product terms for the required rectangles in the map
(oM HorRls MZHERSE ST THES Tot0] T 8 B4 S _ _ @ l
) Finally, F=A+B *#2)
19 CopyRight ® 2007 by hwany., All right reserved. 20
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Three Variable Maps Alternative Map Labeling
& A three-variable K-map: & Map use largely involves:
Entering values into the map, and
yz=00 | yz=01 | yz=11 | yz=10 g P
Reading off product terms from the map.
x=0] m, m, ms m,
x=1| m, m; m, My % Alternate labelings are useful:
— z y
&  where each minterm corresponds to the product terms: Yy y 00 01 ‘ 11 10 )
yz=00 | yz=01 | yz=11 | yz=10 X110 |1 |3 |2 olo |1 |3 |2
x=0| Xyz | Xyz | Xyz | Xyz X4 [5 |7 |¢ X[14 5 |7 |6
x=1| XYz | xyz | xyz [ xyz Z| z |z —
&  Note that if the binary value for an index differs in one bit position,
the minterms are adjacent on the K-Map
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Example Functions
& Read off & By convention, we represent the minterms of F by a "1" in the map and
— ) . leave the minterms of F blank
2 I Ak =3
)_/)2;);? =8t (yoll &aels) o Example: y
,_H 0 1 3 2
x F(X,Y,2)=Zmn(2,3,4,5) 17
y y X 41 5 1 7 6
i 0 1 3 2 &  Example:
VA
x4 [5 |7 e G(a, b,c)=2n(3,4,6,7)
®  Learn the locations of the 8
z Z Z he locations of th y
H_j indices based on the variable 0 1 31 2
29} 72 =3t (20] ARG S) order shown (x, most significant
> z=1 and z, least significant) on the X 41 5 71 61
map boundaries
VA
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Combining Squares (rectangles) Example: Combining Squares

& By combining squares, we reduce number of literals in a product term, & Example: Let F= 2m(2,3,6,7)
reducing the literal cost, thereby reducing the other two cost criteria y
& On a3-variable K-Map: 5 : 5
+ Onesquare represents a minterm with three variables ! 1 1
+ Two adjacent squares represent a product term with two variables X |4 5 71 61
(1*2, 2*1)
<+ Four “adjacent” terms represent a product term with one variable Z
(14, 4*1, 2%2)
+  Eight “adjacent” terms is the function of all ones (no variables) = 1 & Applying the Minimization Theorem three times:
(2*4)

F(X,y,Z)=XYyz+Xyz+Xyz+xyz
=yz+yz
=Yy

&  Thus the four terms that form a 2 X 2 square correspond to the term "y".
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Three-Variable Maps Three-Variable Maps
¢ Reduced literal product terms for SOP standard forms correspond to % Topological warps of 3-variable K-maps that show all

rectangles on K-maps containing cell counts that are powers of 2.

& Rectangles of 2 cells represent 2 adjacent minterms; of 4 cells represent .V Di = Cvlind
4 minterms that form a “pairwise adjacent” ring. enn Diagram yhnder

& Rectangles can contain non-adjacent cells as illustrated by the “pairwise
adjacent” ring above.

adjacencies:

(1Y X D

\Y

w

GEaA
\~\\\e \

-
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Three-Variable Maps

Three-Variable Maps

& Example Shapes of 4-cell Rectangles:

_ y y
11|« ||G Biab
B

Z

N

(o]

yA

% Read off the product terms for the rectangles shown % Read off the product terms for the rectangles shown
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Three Variable Maps
K-Maps can be used to simplify Boolean functions by & Page 79~81, Example 2-5,6,7
systematic methods. Terms are selected to cover the
“1s”in the map. F(A,B,C) =Y m(0,1,2,3,4,5) = simplified F is ??
p
Example: Simplify F(X,y,z)=2n(1,2,3,5,7) G(AB,C) =3 m(0,24,5,6) >G??
H(AB,C) =¥ m(1,3,4,5,6) > H??
z\ y /xy
BC B BC B BC B
\ L I‘ A\ 00 01 11 10 A\ 00 01 11 10 A\ 00 01 11 10
1(111 oLl 71 (ﬁ” T 1T o ”|1 i
X 111 A{k Ol 1 A[l nli I A[]lll |1| T
I C « C
ya (a) (b) ()

F(X,y,2)= Z+XYy
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Three-Variable Map Simplification Four Variable Maps

& Use a K-map to find an optimum SOP equation for

Map and location of minterms:
F(X,Y,Z)=2m(0,1,2,4,6,7)

12 13 ...... ]_5 .......... 14 X
W=
Z
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Four Variable Terms

Four variable maps can have rectangles corresponding to:

Four-Variable Maps

& Example Shapes of Rectangles:

A single 1 = 4 variables, (i.e. Minterm)
Two 1s = 3 variables, : -

ol 3 I 2
Four 1s = 2 variables 1 3 2
Eight 1s = 1 variable, |

Sixteen 1s = zero variables (i.e. Constant "1") 4 5 5

=i

12 13 15[ 14| X

_ﬁ 9 11 (_TUI'
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Four-Variable Maps

& Page 81~83, Example 2-8,9
F(A,B,C,D) =¥ m(0,1,2,4,5,6,8,9,10,12,13) > Fis??
G(ABCD)=ACD+AD+BC+CD+ABD 2G??
r e 1 ( )
4 ] ]

4 D { P]
\

L il D 174 10
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Four-Variable Map Simplification Four-Variable Map Simplification
F(W, X,Y,Z)=Zn(0, 2,4,5,6,7,8,10,13,15) F(W,X,Y,Z)=Zn(3,4,5,7,9,13,14,15)
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Systematic Simplification
= A Prime Implicant (%) is a product term obtained by combining the
maximum possible number of adjacent squares in the map into a rectangle
with the number of squares a power of 2.
(HOIlM 12 oot YA S0] AtZfH o HEf = Z|THor I A 2" =850
Tek 4= ALh
= A prime implicant is called an Essential Prime Implicant (2434 if
it is the only prime implicant that covers (includes) one or more minterms.
“ Prime Implicants and Essential Prime Implicants can be determined by
inspection of a K-Map.

= A set of prime implicants "covers all minterms™ if, for each minterm of the
function, at least one prime implicant in the set of prime implicants includes
the minterm.
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X [ I X [ [
Example of Prime Implicants Example of Prime Implicants
& Find ALL Prime Implicants © Page 84, Example 2-10
Find all prime implicants in Figure 2-13,
and then, write the simplified expression for function F
CcD ESSENTIAL Prime Implicants
_ C N C CcD c
BDy f ’ L e B D\ AE\ 00 01 11 10
\ “““““ s PPECEa v
T EE IERE
P T R'R 'S S > 01 _l
BD—— | 17|t BD—— | 1|1 )
B B o

(1|2 1)1 N ==
A N 10
= | 142 11|11

AB 2 f(14 . 1 D
D D +  Also, see example 2-11 on page 84
AD E C Minterms covered by single prime implicant
43 CopyRight ® 2007 by hwany., All right reserved. 44
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Identification of Essential Prime Implicants in the map

+ provides an additional tool which shows the terms that must
absolutely appear in every sum-of-products expression for a
function

eh=0fl Tk JH7H 2] Bhol o EH 0 A BEEA| LIELIOF St= S U745t
= S HAl

+ provides a partial structure for a more systematic method for
choosing patterns of prime implicants
(HAZIH ol HE|E MEist= Z0IM B S FAXQ LS 23t 5t

SEEoMol LS HS)
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Prime Implicant Practice

% Find all prime implicants for:

F(A,B,C,D) =2n(0,2,3,8,9,10,11,12,13,14,15)
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Another Example

& Find all prime implicants for:

G(A,B,C,D)=2x(0,2,3,4,7,12,13,14,15)

Hint: There are seven prime implicants!
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Five Variable or More K-Maps

& For five variable problems, we use two adjacent K-maps. It becomes
harder to visualize adjacent minterms for selecting Pls. You can extend
the problem to six variables by using four K-Maps.

V=0 V=1
Y Y

z z
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& 5and 6-variables K Map

e *
e i) o1 [i1§] 1)1} 110 11 101 0
w | ™ il my m; L) ™ ™y ™y
vy's| viow'ys | v [viorus | vieis | v | v |view's
a g g iy myps | my mgs | mpE [ mgs
wiar'y's’ | vieny's | ey | vierys' | vions' | v | vien's | s’
w
n| e " i ) ) my i s
woa'y's’ | mov's | woacve | worve | wons’ | s | ver | waons
v
o | mw [ mee mp= | mut | mpe mas | mas [ mapT
waey's’ | ok ys | weleye | woye | woe' | ot | weiots |t
¥
.
e _ x -
i on oL 111 10 1w 1 b 10
| me e e J— e [ e
wvieryy | wbieye e e | e [ivisne | vuiive | st | v
wn | e it myE mgt | oms | omws | omas s
vy | votryy | svise | wvisye | v | voees | vviens |sviems
o | e == mn mat | mes | mme | mae =
vy | wiorys | wwerys | wiwrde | wene | winons | sions | wisemst
oo | e f— = = P - [
wias ey | vy | sy | virye | o ey | weis | wtas s
w | me ma oy my mey mys
arys | mwwye | sworus | e v | moers | wasnys
| e mas | mur | mar [ mar [ e me
sy’ | ey | worye | amcie | wsne | anne | waes | s
u
| et ma mat mat | mes | mps | mes e
wisys | warys | wry | wirys | wiene | wios | wiens | wieys
o | mee e - | e | e mg .
T L wweys | wiwwews | wwrw | wwrye | wone | wions | wens |wens
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Don’t Care Condition

Sometimes a function table or map contains entries for which it is
known:

+  the input values for the minterm will never occur, or

+  the output value for the minterm is not used

In these cases, the output value need not be defined

Instead, the output value is defined as a “don't care”

& By placing “don't cares” (an “X” entry) in the function table or map, the
cost of the logic circuit may be lowered.

& “X”inside a square in the map indicates that we do not care whether the
value of 0 or 1 is assigned to the function for the particular minterm.
(FOloEE= 10| Zf 5 o W22 HBHYEE YESX| =Lt

& In choosing adjacent squares to simplify the function in a map, the don’t
care minterms may be used. (o] 45 Zt2ks5l7| Qlsl QS AtZHS M
EiSt=0| 210, don’t care mintermO| AF2E = UL}
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&  Page 88~89, Example 2-14

F(A,B,C,D) =¥ m(1,3,7,11,15) ; variable combinations that make the

function equal to 1

d(A,B,C,D) =3 m(0,2,5) ; don’t care minterms

(&)
AB\ 00

0001 can be combine with sequare 0011 -> to give a three-leteral term
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c D c
o 11 10 ,\B\ 0w ol
[x ][] x| wo| x |1
0 X 0 oLy o X
B B
oo 0 mlo |o
A
0 (1] 1] o) o (1]
D D
(A)F=CD+AB (b) F=CD + AD
51

o Example 1: A logic function having the binary codes for the
BCD digits as its inputs. Only the codes for 0 through 9 are
used. The six codes, 1010 through 1111 never occur, so the
output values for these codes are “x” to represent “don’t
cares.”
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Don't Cares in K-Maps

& Example 2: A circuit that represents a very common situation that occurs

in computer design has two distinct sets of input variables:

A, B, and C which take on all possible combinations, and

Y which takes on values 0 or 1.
and a single output Z. The circuit that receives the output Z observes it
only for combinations of A, B,and CsuchA=1andB=1o0rC=0,
otherwise ignoring it. Thus, Z is specified only for those combinations,
and for all other combinations of A, B, and C, Z is a don’t care.
Specifically, Z must be specified for AB + C =1, and is a don’t care for :

AB+C=(A+B)C=AC+BC=1

% Ultimately, each don’t care “x” entry may take on either a 0 or 1 value
in resulting solutions

& For example, an “x” may take on value “0” in an SOP solution and value
“1” in a POS solution, or vice-versa.

< Any minterm with value “x” need not be covered by a prime implicant.
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Example: BCD “5 or More”

& The map below gives a function F1(w,x,y,z) which is defined as "5 or
more" over BCD inputs. With the don't cares used for the 6 non-BCD

combinations:
y F1(w,Xy,z) =wW+Xz+Xy G=7
+ This is much lower in cost than F2 where the “don't
0101010 cares” were treated as ""0s."
0 1 3 2
1 1 _ _ __
e #x F2(wxyz)=wxz+wxy+wXy
r 12 \)Sra- Y G=12
w ll 1] X|X + For this particular function, cost G for the POS
2 < = solution for F,(w,x,y,z) is not changed by using the
don't cares.
z
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Product of Sums Example

%  Find the optimum POS solution:
F(A,B,C,D)=2%2n(3,9,11,12,13,14,15) +
>d (1,4,6)

Hint: Use F and complement it to get the result.
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Optimization Algorithm

% Find all prime implicants.
% Include all essential prime implicants in the solution

& Select a minimum cost set of non-essential prime implicants
to cover all minterms not yet covered:

Obtaining an optimum solution: See Reading Supplement - More on
Optimization

Obtaining a good simplified solution; Use the Selection Rule
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Prime Implicant Selection Rule

% Minimize the overlap among prime implicants as much as
possible. In particular, in the final solution, make sure that
each prime implicant selected includes at least one minterm
not included in any other prime implicant selected.

(F& Ao|e] F5S 7Hset of 2| A3}StCt OX| 9} Hofl M X0l & SiLfe| X|48S
oot § MR E 2} 0| CHE Fehofl ZRE[X| 24A) sliof BHCt)
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Page 85~86, Example 2-12
F(A,B,C,D) =3 m(0,1,2,4,5,10,11,13,15) ;

cD c
AER 00 01 11,10,

il | '—I E sl 3
| |15'--m_ ’
10 Imﬁ

F(AB,C,D) = ??

* AYMOR EAIE PIE ALREIX B3,

58
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