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Abstract

This paper is a comparative study of feature
selection methods in statistical learning of
text categorization. The focus is on aggres-
sive dimensionality reduction. Five meth-
ods were evaluated, including term selection
based on document frequency (DF), informa-
tion gain (IG), mutual information (MI), a
�2-test (CHI), and term strength (TS). We
found IG and CHI most e�ective in our ex-
periments. Using IG thresholding with a k-
nearest neighbor classi�er on the Reuters cor-
pus, removal of up to 98% removal of unique
terms actually yielded an improved classi�-
cation accuracy (measured by average preci-
sion). DF thresholding performed similarly.
Indeed we found strong correlations between
the DF, IG and CHI values of a term. This
suggests that DF thresholding, the simplest
method with the lowest cost in computation,
can be reliably used instead of IG or CHI
when the computation of these measures are
too expensive. TS compares favorably with
the other methods with up to 50% vocabulary
reduction but is not competitive at higher vo-
cabulary reduction levels. In contrast, MI
had relatively poor performance due to its
bias towards favoring rare terms, and its sen-
sitivity to probability estimation errors.

1 Introduction

Text categorization is the problem of automatically
assigning prede�ned categories to free text docu-
ments. While more and more textual information is
available online, e�ective retrieval is di�cult without
good indexing and summarization of document con-
tent. Documents categorization is one solution to
this problem. A growing number of statistical clas-
si�cation methods and machine learning techniques

have been applied to text categorization in recent
years, including multivariate regression models[8, 27],
nearest neighbor classi�cation[4, 23], Bayes proba-
bilistic approaches[20, 13], decision trees[13], neural
networks[21], symbolic rule learning[1, 16, 3] and in-
ductive learning algorithms[3, 12].

A major characteristic, or di�culty, of text catego-
rization problems is the high dimensionality of the
feature space. The native feature space consists of
the unique terms (words or phrases) that occur in
documents, which can be tens or hundreds of thou-
sands of terms for even a moderate-sized text collec-
tion. This is prohibitively high for many learning al-
gorithms. Few neural networks, for example, can han-
dle such a large number of input nodes. Bayes belief
models, as another example, will be computationally
intractable unless an independence assumption (often
not true) among features is imposed. It is highly de-
sirable to reduce the native space without sacri�cing
categorization accuracy. It is also desirable to achieve
such a goal automatically, i.e., no manual de�nition or
construction of features is required.

Automatic feature selection methods include the re-
moval of non-informative terms according to corpus
statistics, and the construction of new features which
combine lower level features (i.e., terms) into higher-
level orthogonal dimensions. Lewis &Ringuette[13]
used an information gain measure to aggressively re-
duce the document vocabulary in a naive Bayes model
and a decision-tree approach to binary classi�cation.
Wiener et al.[21, 19] used mutual information and a �2

statistic to select features for input to neural networks.
Yang [24] and Schutze et al. [19, 21, 19] used princi-
pal component analysis to �nd orthogonal dimensions
in the vector space of documents. Yang & Wilbur
[28] used document clustering techniques to estimate
probabilistic \term strength", and used it to reduce
the variables in linear regression and nearest neighbor
classi�cation. Moulinier et al. [16] used an induc-
tive learning algorithm to obtain features in disjunc-



tive normal form for news story categorization. Lang
[11] used a minimum description length principle to
select terms for Netnews categorization.

While many feature selection techniques have been
tried, thorough evaluations are rarely carried out for
large text categorization problems. This is due in part
to the fact that many learning algorithms do not scale
to a high-dimensional feature space. That is, if a clas-
si�er can only be tested on a small subset of the native
space, one cannot use it to evaluate the full range of
potential of feature selection methods. A recent theo-
retical comparison, for example, was based on the per-
formance of decision tree algorithms in solving prob-
lems with 6 to 180 features in the native space[10].
An analysis on this scale is distant from the realities
of text categorization.

The focus in this paper is the evaluation and compar-
ison of feature selection methods in the reduction of a
high dimensional feature space in text categorization
problems. We use two classi�ers which have already
scaled to a target space with thousands or tens of thou-
sands of categories. We seek answers to the following
questions with empirical evidence:

� What are the strengths and weaknesses of existing
feature selection methods applied to text catego-
rization?

� To what extend can feature selection improve the
accuracy of a classi�er? How much of the doc-
ument vocabulary can be reduced without losing
useful information in category prediction?

Section 2 describes the term selection methods. Due
to space limitations, we will not include phrase selec-
tion (e.g.[3]) and approaches based on principal com-
ponent analysis[5, 24, 21, 19]. Section 3 describes the
classi�ers and the document corpus chosen for empiri-
cal validation. Section 4 presents the experiments and
the results. Section 5 discusses the major �ndings.
Section 6 summarizes the conclusions.

2 Feature Selection Methods

Five methods are included in this study, each of which
uses a term-goodness criterion thresholded to achieve
a desired degree of term elimination from the full vo-
cabulary of a document corpus. These criteria are:
document frequency (DF), information gain (IG), mu-
tual information (MI), a �2 statistic (CHI), and term
strength (TS).

2.1 Document frequency thresholding (DF)

Document frequency is the number of documents in
which a term occurs. We computed the document

frequency for each unique term in the training cor-
pus and removed from the feature space those terms
whose document frequency was less than some prede-
termined threshold. The basic assumption is that rare
terms are either non-informative for category predic-
tion, or not inuential in global performance. In either
case removal of rare terms reduces the dimensionality
of the feature space. Improvement in categorization
accuracy is also possible if rare terms happen to be
noise terms.

DF thresholding is the simplest technique for vocabu-
lary reduction. It easily scales to very large corpora,
with a computational complexity approximately lin-
ear in the number of training documents. However, it
is usually considered an ad hoc approach to improve
e�ciency, not a principled criterion for selecting pre-
dictive features. Also, DF is typically not used for
aggressive term removal because of a widely received
assumption in information retrieval. That is, low-DF
terms are assumed to be relatively informative and
therefore should not be removed aggressively. We will
re-examine this assumption with respect to text cate-
gorization tasks.

2.2 Information gain (IG)

Information gain is frequently employed as a term-
goodness criterion in the �eld of machine learning[17,
14]. It measures the number of bits of information
obtained for category prediction by knowing the pres-
ence or absence of a term in a document. Let fcig

m
i=1

denote the set of categories in the target space. The
information gain of term t is de�ned to be:

G(t) = �
Pm

i=1Pr(ci) logPr(ci)

+Pr(t)
Pm

i=1 Pr(cijt) logPr(cijt)

+Pr(�t)
Pm

i=1 Pr(cij�t) logPr(cij�t)

This de�nition is more general than the one employed
in binary classi�cation models[13, 16]. We use the
more general form because text categorization prob-
lems usually have a m-ary category space (where m

may be up to tens of thousands), and we need to mea-
sure the goodness of a term globally with respect to
all categories on average.

Given a training corpus, for each unique term we com-
puted the information gain, and removed from the fea-
ture space those terms whose information gain was less
than some predetermined threshold. The computation
includes the estimation of the conditional probabilities
of a category given a term, and the entropy computa-
tions in the de�nition. The probability estimation has
a time complexity of O(N ) and a space complexity of
O(V N ) where N is the number of training documents,
and V is the vocabulary size. The entropy computa-
tions has a time complexity of O(V m).



2.3 Mutual information (MI)

Mutual information is a criterion commonly used in
statistical language modelling of word associations and
related applications [7, 2, 21]. If one considers the two-
way contingency table of a term t and a category c,
where A is the number of times t and c co-occur, B is
the number of time the t occurs without c, C is number
of times c occurs without t, and N is the total number
of documents, then the mutual information criterion
between t and c is de�ned to be

I(t; c) = log
Pr(t ^ c)

Pr(t)� Pr(c)

and is estimated using

I(t; c) � log
A �N

(A +C)� (A+ B)

I(t; c) has a natural value of zero if t and c are in-
dependent. To measure the goodness of a term in
a global feature selection, we combine the category-
speci�c scores of a term into two alternate ways:

Iavg(t) =

mX

i=1

Pr(ci)I(t; ci)

Imax(t) =
m

max
i=1

fI(t; ci)g

The MI computation has a time complexity ofO(V m),
similar to the IG computation.

A weakness of mutual information is that the score
is strongly inuenced by the marginal probabilities of
terms, as can be seen in this equivalent form:

I(t; c) = logPr(tjc)� logPr(t):

For terms with an equal conditional probability
Pr(tjc), rare terms will have a higher score than com-
mon terms. The scores, therefore, are not comparable
across terms of widely di�ering frequency.

2.4 �2 statistic (CHI)

The �2 statistic measures the lack of independence be-
tween t and c and can be compared to the �2 distribu-
tion with one degree of freedom to judge extremeness.
Using the two-way contingency table of a term t and
a category c, where A is the number of times t and c

co-occur, B is the number of time the t occurs with-
out c, C is the number of times c occurs without t, D
is the number of times neither c nor t occurs, and N

is the total number of documents, the term-goodness
measure is de�ned to be:

�2(t; c) =
N � (AD �CB)2

(A+ C)� (B +D)� (A+ B) � (C +D)
:

The �2 statistic has a natural value of zero if t and c are
independent. We computed for each category the �2

statistic between each unique term in a training corpus
and that category, and then combined the category-
speci�c scores of each term into two scores:

�2avg(t) =

mX

i=1

Pr(ci)�
2(t; ci)

�2max(t) =
m

max
i=1

f�2(t; ci)g

The computation of CHI scores has a quadratic com-
plexity, similar to MI and IG.

A major di�erence between CHI and MI is that �2 is
a normalized value, and hence �2 values are compa-
rable across terms for the same category. However,
this normalization breaks down (can no longer be ac-
curately compared to the �2 distribution) if any cell in
the contingency table is lightly populated, which is the
case for low frequency terms. Hence, the �2 statistic
is known not to be reliable for low-frequency terms[6].

2.5 Term strength (TS)

Term strength is originally proposed and evaluated by
Wilbur and Sirotkin [22] for vocabulary reduction in
text retrieval, and later applied by Yang and Wilbur
to text categorization [24, 28]. This method estimates
term importance based on how commonly a term is
likely to appear in \closely-related" documents. It uses
a training set of documents to derive document pairs
whose similarity (measured using the cosine value of
the two document vectors) is above a threshold. \Term
Strength" then is computed based on the estimated
conditional probability that a term occurs in the sec-
ond half of a pair of related documents given that it
occurs in the �rst half. Let x and y be an arbitrary
pair of distinct but related documents, and t be a term,
then the strength of the term is de�ned to be:

s(t) = Pr(t 2 yjt 2 x):

The term strength criterion is radically di�erent from
the ones mentioned earlier. It is based on docu-
ment clustering, assuming that documents with many
shared words are related, and that terms in the heav-
ily overlapping area of related documents are relatively
informative. This method is not task-speci�c, i.e., it
does not use information about term-category associ-
ations. In this sense, it is similar to the DF criterion,
but di�erent from the IG, MI and the �2 statistic.

A parameter in the TS calculation is the threshold on
document similarity values. That is, how close two
documents must be to be considered a related pair.
We use AREL, the average number of related docu-
ments per document in threshold tuning. That is, we



compute the similarity scores of all the documents in a
training set, try di�erent thresholds on the similarity
values of document pairs, and then choose the thresh-
old which results in a reasonable value of AREL. The
value of AREL is chosen experimentally, according to
how well it optimized the performance in the task. Ac-
cording to previous evaluations of retrieval and cate-
gorization on several document collections[22, 28], the
AREL values between 10 to 20 yield satisfactory per-
formance. The computation of TS is quadratic in the
number of training documents.

3 Classi�ers and Data

3.1 Classi�ers

To assess the e�ectiveness of feature selection meth-
ods we used two di�erent m-ary classi�ers, a k-
nearest-neighbor classi�er (kNN)[23] and a regression
method named the Linear Least Squares Fit mapping
(LLSF)[27]. The input to both systems is a document
which is represented as a sparse vector of word weights,
and the output of these systems is a ranked list of cat-
egories with a con�dence score for each category.

Category ranking in kNN is based on the categories
assigned to the k nearest training documents to the in-
put. The categories of these neighbors are weighted us-
ing the similarity of each neighbor to the input, where
the similarity is measured by the cosine between the
two document vectors. If one category belongs to mul-
tiple neighbors, then the sum of the similarity scores
of these neighbors is the the weight of the category in
the output. Category ranking in the LLSF method is
based on a regression model using words in a docu-
ment to predict weights of categories. The regression
coe�cients are determined by solving a least squares
�t of the mapping from training documents to training
categories.

Several properties of kNN and LLSF make them suit-
able for our experiments:

1) Both systems are top-performing, state-of-the-art
classi�ers. In a recent evaluation of classi�cation
methods[26] on the Reuters newswire collection (next
section), the break-even point values were 85% for
both kNN and LLSF, outperforming all the other
systems evaluated on the same collection, including
symbolic rule learning by RIPPER (80%)[3], SWAP-
1 (79%)[1] and CHARADE (78%)[16], a decision ap-
proach using C4.5 (79%)[15], inductive learning by
Sleeping Experts (76%)[3], and a typical information
retrieval approach named Rocchio (75%)[3]. On an-
other variation of the Reuters collection where the
training set and the test set are partitioned di�erently,
kNN has a break-even point of 82% which is the same
as the result of neural networks[21], and LLSF has a

break-even point of 81%.

2) Both systems scale to large classi�cation problems.
By \large" we mean that both the input and the out-
put of a classi�er can have thousands of dimensions
or higher[25, 24]. We want to examine all the degrees
of feature selection, from no reduction (except remov-
ing standard stop words) to extremely aggressive re-
duction, and observe the e�ects on the accuracy of a
classi�er over the entire target space. For this exami-
nation, we need a scalable system.

3) Both kNN and LLSF are a m-ary classi�er provid-
ing a global ranking of categories given a document.
This allows a straight-forward global evaluation of per
document categorization performance, i.e., measuring
the goodness of category ranking given a document,
rather than per category performance as is standard
when applying binary classi�ers to the problem.

4) Both classi�ers are context sensitive in the sense
that no independence is assumed between either in-
put variables (terms) or output variables (categories).
LLSF, for example, optimizes the mapping from a doc-
ument to categories, and hence does not treat words
separately. Similarly, kNN treats a document as an
single point in a vector space. The context sensitivity
is in distinction to context-free methods based on ex-
plicit independence assumptions such as naive Bayes
classi�ers[13] and some other regression methods[8]).
A context-sensitive classi�er makes better use of the
information provided by features than a context-free
classi�er do, thus enabling a better observation on fea-
ture selection.

5)The two classi�ers di�er statistically. LLSF is based
on a linear parametric model; kNN is a non-parametric
and non-linear classi�er, that makes few assumptions
about the input data. Hence a evaluation using both
classi�ers should reduce the possibility of classi�er bias
in the results.

3.2 Data collections

We use two corpora for this study: the Reuters-22173
collection and the OHSUMED collection.

The Reuters news story collection is commonly used
corpora in text categorization research [13, 1, 21, 16, 3]
1. There are 21,450 documents in the full collection;
less than half of the documents have human assigned
topic labels. We used only those documents that had
at least one topic, divided randomly into a training
set of 9,610 and a test set of 3,662 documents. This
partition is similar to that employed in [1], but di�ers
from [13] who use the full collection including unla-

1A newly revised version, namely Reuters-21578, is

available through http://www.research.att.com/~lewis.



belled documents 2. The stories have a mean length
of 90.6 words with standard deviation 91.6. We con-
sidered the 92 categories that appear at least once in
the training set. These categories cover topics such
as commodities, interest rates, and foreign exchange.
While some documents have up to fourteen assigned
categories, the mean is only 1.24 categories per docu-
ment. The frequency of occurrence varies greatly from
category to category; earnings, for example, appears
in roughly 30% of the documents, while platinum is
assigned to only �ve training documents. There are
16,039 unique terms in the collection (after performing
inectional stemming, stop word removal, and conver-
sion to lower case).

OHSUMED is a bibliographical document collection3,
developed by William Hersh and colleagues at the
Oregon Health Sciences University. It is a subset
of the MEDLINE database[9], consisting of 348,566
references from 270 medical journals from the years
1987 to 1991. All of the references have titles, but
only 233,445 of them have abstracts. We refer to
the title plus abstract as a document. The docu-
ments were manually indexed using subject categories
(Medical Subject Headings, or MeSH) in the National
Library of Medicine. There are about 18,000 cate-
gories de�ned in MeSH, and 14,321 categories present
in the OHSUMED document collection. We used the
1990 documents as a training set and the 1991 docu-
ments as the test set in this study. There are 72,076
unique terms in the training set. The average length
of a document is 167 words. On average 12 cate-
gories are assigned to each document. In some sense
the OHSUMED corpus is more di�cult than Reuters
because the data are more \noisy". That is, the
word/category correspondences are more \fuzzy" in
OHSUMED. Consequently, the categorization is more
di�cult to learn for a classi�er.

4 Empirical Validation

4.1 Performance measures

We apply feature selection to documents in the pre-
processing of kNN and LLSF. The e�ectiveness of a
feature selection method is evaluated using the perfor-
mance of kNN and LLSF on the preprocessed docu-
ments. Since both kNN and LLSF score categories on
a per-document basis, we use the standard de�nition

2There has been a serious problem in using this collec-
tion for text categorization evaluation. That is, a large
proportion of the documents in the test set are incorrectly
unlabelled. This makes the evaluation results highly ques-
tionable or non-interpretable unless these unlabelled doc-
uments are discarded, as analyzed in [26].

3OHSUMED is available via anonymous ftp from
medir.ohsu.edu in the directory /pub/ohsumed.

of recall and precision as performance measures:

recall =
categories found and correct

total categories correct

precision =
categories found and correct

total categories found

where \categories found" means that the categories
are above a given score threshold. Given a document,
for recall thresholds of 0%, 10%, 20%, ... 100%, the
system assigns in decreasing score order as many cat-
egories as needed until a given recall is achieved, and
computes the precision value at that point[18]. The
resulting 11 point precision values are then averaged
to obtain a single-number measure of system perfor-
mance on that document. For a test set of documents,
the average precision values of individual documents
are further averaged to obtain a global measure of sys-
tem performance over the entire set. In the following,
unless otherwise speci�ed, we will use \precision" or
\AVGP" to refer to the 11-point average precision over
a set of test documents.

4.2 Experimental settings

Before applying feature selection to documents, we
removed the words in a standard stop word list[18].
Then each of the �ve feature selection methods was
evaluated with a number of di�erent term-removal
thresholds. At a high threshold, it is possible that
all the terms in a document are below the threshold.
To avoid removing all the terms from a document, we
added a meta rule to the process. That is, apply a
threshold to a document only if it results in a non-
empty document; otherwise, apply the closest thresh-
old which results in a non-empty document.

We also used the SMART system [18] for uni�ed pre-
processing followed feature selection, which includes
word stemming and weighting. We tried several term
weighting options (\ltc", \atc", \lnc" , \bnn" etc. in
SMART's notation) which combine the term frequency
(TF) measure and the Inverted Document Frequency
(IDF) measure in a variety of ways. The best results
(with using \ltc") are reported in the next section.

4.3 Primary results

Figure 1 displays the performance curves for kNN on
Reuters (9,610 training documents, and 3,662 test doc-
uments) after term selection using IG, DF, TS, MI and
CHI thresholding, respectively. We tested the two op-
tions, avg and max in MI and CHI, and the better
results are represented in the �gure.

Figure 2 displays the performance curves of LLSF on
Reuters. Since the training part of LLSF is rather re-
source consuming, we used an approximation of LLSF
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Figure 2. Average precision of LLSF vs. unique word count
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instead of the complete solution to save some com-
putation resources in the experiments. That is, we
computed only 200 largest singular values in solving
LLSF, although the best results (which is similar to
the performance of kNN) appeared with using 1000
singular values[24]. Nevertheless, this simpli�cation of
LLSF should not invalidate the examination of feature
selection which is the focus of the experiments.

An observation merges from the categorization results
of kNN and LLSF on Reuters. That is, IG, DF and
CHI thresholding have similar e�ects on the perfor-
mance of the classi�ers. All of them can eliminate
up to 90% or more of the unique terms with either
an improvement or no loss in categorization accuracy
(as measured by average precision). Using IG thresh-
olding, for example, the vocabulary is reduced from
16,039 terms to 321 (a 98% reduction), and the AVGP
of kNN is improved from 87.9% to 89.2%. CHI has
even better categorization results except that at ex-
tremely aggressive thresholds IG is better. TS has a
comparable performance with up-to 50% term removal
in kNN, and about 60% term removal in LLSF. With
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more aggressive thresholds, its performance declines
much faster than IG, CHI and DF. MI does not have
comparable performance to any of the other methods.

4.4 Correlations between DF, IG and CHI

The similar performance of IG, DF and CHI in term
selection is rather surprising because no such an obser-
vation has previously been reported. A natural ques-
tion therefore is whether these three corpus statistics
are correlated.

Figure 3 plots the values of DF and IG given a term in
the Reuters collection. Figure 4 plots the values of DF
and CHIavg correspondingly. Clearly there are indeed
very strong correlations between the DF, IG and CHI
values of a term. Figures 5 and 6 shows the results of a
cross-collection examination. A strong correlation be-
tween DF and IG is also observed in the OHSUMED
collection. The performance curves of kNN with DF
versus IG are identical on this collection. The obser-
vations on Reuters and on OHSUMED are highly con-
sistent. Given the very di�erent application domains
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of the two corpus, we are convinced that the observed
e�ects of DF and IG thresholding are general rather
than corpus-dependent.

5 Discussion

What are the reasons for good or bad performance of
feature selection in text categorization tasks? Table 1
compares the �ve criteria from several angles:

� favoring common terms or rare terms,

� task-sensitive (using category information) or
task-free,

� using term absence to predict the category prob-
ability, i.e., using the D-cell of the contingency
table, and

� the performance of kNN and LLSF on Reuters
and OHSUMED.

From Table 1, the methods with an \excellent" per-
formance share the same bias, i.e., scoring in favor of
common terms over rare terms. This bias is obviously
in the DF criterion. It is not necessarily true in IG or
CHI by de�nition: in theory, a common term can have
a zero-valued information gain or �2 score. However,
it is statistically true based on the strong correlations
between the DF, IG and CHI values. The MI method
has an opposite bias, as can be seen in the formula
I(t; c) = logPr(tjc)� logPr(t). This bias becomes ex-
treme when Pr(t) is near zero. TS does not have a
clear bias in this sense, i.e., both common and rare
terms can have high strength.

The excellent performance of DF, IG and CHI indi-
cates that common terms are indeed informative for
text categorization tasks. If signi�cant amounts of in-
formation were lost at high levels (e.g. 98%) of vo-
cabulary reduction it would not be possible for kNN
or LLSF to have improved categorization preformance.
To be more precise, in theory, IG measures the num-
ber of bits of information obtained by knowing the
presence or absence of a term in a document. The
strong DF-IF correlations means that common terms
are often informative, and vice versa (this statement
of course does not extend to stop words). This is con-
trary to a widely held belief in information retrieval
that common terms are non-informative. Our exper-
iments show that this assumption may not apply to
text categorization.

Another interesting point in Table 1 is that using cate-
gory information for feature selection does not seem to
be crucial for excellent performance. DF is task-free,
i.e., it does use category information present in the
training set, but has a performance similar to IG and
CHI which are task-sensitive. MI is task-sensitive, but
signi�cantly under-performs both TS and DF which
are task-free.

The poor performance of MI is also informative. Its
bias towards low frequency terms is known (Section
2), but whether or not this theoretical weakness will
cause signi�cant accuracy loss in text categorization
has not been empirically examined. Our experiments
quantitatively address this issue using a cross-method
comparison and a cross-classi�er validation. Beyond
this bias, MI seems to have a more serious prob-
lem in its sensitivity to probability estimation errors.
That is, the second term in the formula I(t; c) =
logPr(tjc) � logPr(t) makes the score extremely sen-
sitive to estimation errors when Pr(t) is near zero.

For theoretical interest, it is worth analyzing the dif-
ference between information gain and mutual informa-
tion. IG can be proven equivalent to:

G(t) =
X

X2ft;�tg

X

Y 2fcig

Pr(X;Y ) log
Pr(X;Y )

Pr(X)Pr(Y )



Table 1. Criteria and performance of feature selection methods in kNN & LLSF

Method DF IG CHI MI TS
favoring common terms Y Y Y N Y/N
using categories N Y Y Y N
using term absence N Y Y N N
performance in kNN/LLSF excellent excellent excellent poor ok

=

nX

i=1

Pr(t; ci)I(t; ci) +

nX

i=1

Pr(�t; ci)I(�t; ci)

These formulas show that information gain is the
weighted average of the mutual information I(t; c) and
I(�t; c), where the weights are the joint probabilities
Pr(t; c) and Pr(�t; c), respectively. So information gain
is also called average mutual information[7]. There are
two fundamental di�erences between IG and MI: 1)
IG makes a use of information about term absence in
the form of I(�t; c), while MI ignores such information;
and 2) IG normalizes the mutual information scores
using the joint probabilities while MI uses the non-
normalized scores.

6 Conclusion

This is an evaluation of feature selection methods in
dimensionality reduction for text categorization at all
the reduction levels of aggressiveness, from using the
full vocabulary (except stop words) as the feature
space, to removing 98% of the unique terms. We found
IG and CHI most e�ective in aggressive term removal
without losing categorization accuracy in our experi-
ments with kNN and LLSF. DF thresholding is found
comparable to the performance of IG and CHI with up
to 90% term removal, while TS is comparable with up
to 50-60% term removal. Mutual information has infe-
rior performance compared to the other methods due
to a bias favoring rare terms and a strong sensitivity
to probability estimation errors.

We discovered that the DF, IG and CHI scores of a
term are strongly correlated, revealing a previously
unknown fact about the importance of common terms
in text categorization. This suggests that that DF
thresholding is not just an ad hoc approach to im-
prove e�ciency (as it has been assumed in the liter-
ature of text categorization and retrieval), but a reli-
able measure for seleting informative features. It can
be used instead of IG or CHI when the computation
(quadratic) of these measures is too expensive. The
availability of a simple but e�ective means for aggres-
sive feature space reduction may signi�cantly ease the
application of more powerful and computationally in-
tensive learning methods, such as neural networks, to
very large text categorization problems which are oth-
erwise intractable.
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