Feature Selection for Clustering

Manoranjan Dash and Huan Liu

School of Computing, National University of Singapore, Singapore.

Abstract. Clustering is an important data mining task. Data mining
often concerns large and high-dimensional data but unfortunately most
of the clustering algorithms in the literature are sensitive to largeness or
high-dimensionality or both. Different features affect clusters differently,
some are important for clusters while others may hinder the clustering
task. An efficient way of handling it is by selecting a subset of important
features. It helps in finding clusters efficiently, understanding the data
better and reducing data size for efficient storage, collection and process-
ing. The task of finding original important features for unsupervised data
is largely untouched. Traditional feature selection algorithms work only
for supervised data where class information is available. For unsuper-
vised data, without class information, often principal components (PCs)
are used, but PCs still require all features and they may be difficult to
understand. Our approach: first features are ranked according to their
importance on clustering and then a subset of important features are
selected. For large data we use a scalable method using sampling. Em-
pirical evaluation shows the effectiveness and scalability of our approach
for benchmark and synthetic data sets.

1 Introduction

Clustering is an important data mining task that groups similar objects together
[8,11,10,4,2]. Similarity between a pair of data points is due to different fea-
tures. If similarity is distance-based then for a pair of data points in a cluster
there exist at least a few features on which the points are close to each other.
Most clustering methods assume all features to be equally important for clus-
tering, or in other words they do not distinguish among different features. This
is one of the reasons why most clustering algorithms may not perform well in
the face of high-dimensional data. Another reason of the poor performance is
the inherent sparsity of data in high-dimensional space. In reality different fea-
tures have varying effects on clustering. An important feature helps in creating
clusters while an unimportant feature may not help in creating clusters and, in
contrary, it may affect the clustering algorithms adversely by blurring the clus-
ters. Unimportant features are noisy or irrelevant and can be removed to reduce
the data size for more efficient clustering. It also reduces the noise and helps in
data storage, collection, and processing.

As clustering is done on unsupervised data without class information, tra-
ditional feature selection algorithms for classification [6] do not work. Little

work has been done on feature selection for unsupervised data. Dimensional-
ity reduction or feature extraction methods (e.g., Principal Components Analy-
sis, Karhunen-Loeve transformation, or Singular Value Decomposition) are com-
monly used [8]. They have drawbacks such as: (1) it is difficult to understand the
data (and the found clusters) using the extracted features, and (2) the original
features remain as they are required to determine the extracted features.

Some recent works on clustering try to handle high-dimensionality by select-
ing important features. In [2] and later in [5] it is observed that dense regions may
be found in subspaces of high dimensional data. The algorithm called CLIQUE
in [2] divides each dimension into a user given divisions. It starts with finding
dense regions in 1-dimensional data and works upward to find k-dimensional
dense regions using candidate generation algorithm Apriori [3]. This approach is
different from the conventional clustering that partitions the whole data. In [1]
a new concept is presented called “projected clustering” to discover interesting
patterns in subspaces of high-dimensional data. It finds the clusters first and
then selects a subset of features for each cluster. It searches for the subset of
features by putting a restriction on the minimum and the maximum number of
features.

We address the problem of selecting a subset of important features for clus-
tering for the whole data and not just for clusters unlike in [1,2]. This helps
in knowing the important features before doing clustering and the clustering
task becomes more efficient and focused as only the important features can be
used. Finding the important original features for the whole data helps in under-
standing the data better unlike principal components. Data storage, collection
and processing tasks become more efficient and noise is reduced as the data is
pruned.

Our approach is a 2-step method: we first rank and then select a subset of
important features. Ranking of features is done according to their importance
on clustering. An entropy-based ranking measure is introduced. We then select
a subset of features using a criterion function for clustering that is invariant
with respect to different numbers of features. A novel scalable method based on
random sampling is introduced for large data commonly found in data mining
applications.

2 Importance of Features on Clustering

Notations used in the paper are as follows: X; is i'” data point, X;; is k'”
feature value of i*? point, Fy, is k** feature where i = 1..N and k = 1...N;
D;, s, and S, ;, are distance and similarity between points X;, and Xj,; x; is
jt* cluster where j = 1...c. We start by showing visually the effects of features
on clustering. In Figure 1(a,b,c) we show a synthetic data in (3,2,1)-d feature
spaces respectively. There are 75 points with 3 clusters in F'1-F'2 dimensions,
with each cluster having 25 points. Valuesin F'1 and F'2 features follow Gaussian
distribution within each of the 3 clusters while values in feature F'3 are uniformly
random. When we take 3 features the clusters are unclear and unnecessarily

complex (see Figure 1(a)), whereas no clusters can be found when we visualize
using only 1 feature F'1 (Figure 1(c)). Figure 1(b) with F'1-F2 features shows
3 well-formed clusters. Selecting features F'1 and F'2 reduces the dimensionality
of the data while forming well separated clusters.

(a) F1-F2-F3 . ®FLF2 o (QF1

Fig. 1. Effect of features on clustering.

In a single dimensional data set clusters can be formed if the single feature
takes values in separate ranges. In a multi-dimensional data set clusters can be
formed from combination of feature values although the single features by them-
selves alone may take uniform values. We have noted down 2 distinct scenarios
in the following.

Scenario 1: A single feature is important by itself only: Consider Figure 2(a)
where there are 2 features. Feature F'2 is uniformly distributed while F'1 takes
values in 2 separate ranges. It can be clearly seen that F'1 is more important for
creating clusters than F'2.

Scenario 2: Two features are necessarily important and any individual feature
is useless in defining clusters: Consider Figure 2(b) where there are 2 features.
Both F'1 and F2 are uniformly distributed. It can be clearly seen that both F'1
and F'2 are necessary for clustering and any one alone is useless.

(a) Scenario 1 (b) Scenario 2

thit
thit
trit
trit

+ +
- o

bhid
bhid
bhit
bhit

Fig. 2. Effects of features on clusters: scenario 1 shows effect of individual feature while
scenario 2 shows the combined effect of 2 features.

3 Entropy-based Feature Ranking

Consider each feature F; as a random variable while f; as its value. From entropy
theory we know that, entropy is:

E(F, .y Fru) = =325 205, PUf1y o fu) logp(fus oo, fur) where p(fi, ..., far)
is the probability or density at the point (f1, ..., far). If the probability is uni-
formly distributed we are most uncertain about the outcome, and entropy is
maximum. This will happen when the data points are uniformly distributed in
the feature space. On the other hand, when the data has well-formed clusters
the uncertainty is low and so also the entropy. As we do not have a priori infor-
mation about clusters, calculation of p(fi, ..., far) is not direct. But we can use
the following way to calculate entropy without any cluster information.
Entropy Measure: Usually in a real-world data there may be a few not very
well-formed clusters and some noise (points not belonging to any cluster prop-
erly). Two points belonging to the same cluster or 2 different clusters will con-
tribute to the total entropy less than if they were uniformly sepatated. Similarity
Si1 i, between 2 instances X;, and Xj, is high if the 2 instances are very close
and S;, i, is low if the 2 are far away. Entropy Fj;, ;, will be low if S;, ;, is ei-
ther low or high and Fj;, ;, will be high otherwise. The following mathematical
formulation is based on this idea.

Our similarity measure is applicable to both numeric and nominal data.
Similarity is based on distance, i.e., for numeric data we use Fuclidean dis-
tance while for nominal data we use Hamming distance. Mathematically simi-
larity for numeric data is given as: S, ;, = e"**Pi.iz where « is a parameter.
In a multi-dimensional space, distance D for numeric data is defined as:

. X _ M l‘llk—l‘l2k 2 1/2 . . th . . .
Diy iz = D k=1 (ras —mdnr)?]'/%- The interval in the £°" dimension is normal-

21,22

ized by dividing it by the maximum interval (mazy — ming) before calculating
the distance. If we plot similarity against distance, the curve will have a big-
ger curvature for a larger a. The insight is we assign a very high similarity for
points ‘very close’ together but assign a low similarity for points ‘not close’ or
‘far away’.

Similarity for nominal features is measured using the Hamming distance. The

M —_ .
Zk:l |x’1k_xl2k|

similarity between two data points is given as: S;, ;, = =*=t—Fr——— where
|zi,k = ®i,k| is 1if 2, equals z;,, and 0 otherwise. For data with both numeric
and nominal features, we can discretize numeric values first before applying our
measure. For two points X;, and X;,, entropy is: E = —S;, ;,logS;, i, — (1 —
Siyiz) log (1 — Si, ;) which assumes the maximum value of 1.0 for S;, ;, = 0.5,
and the minimum value of 0.0 for S;, ;, = 0.0 and S; = 1.0. For a data set
of N data points entropy is given as: £ = — Zf\f:l 2:5\27:1(52-172'2 x log S;, iy +
(1= Si,,i,) x log(l — S5, 5,)) where S;, ;, takes values in [0.0-1.0]. In this work,
a is calculated automatically by assigning 0.5 in Equation: S = e~**? at which
entropy is maximum; so we get: a = % where D is the average distance
among the data points.

Algorithm to Rank Features: If the removal of feature Fy causes more dis-
order than the removal of feature Fy then F_p, > F_p, where E_p, and E_p,

1,22

1,22

are entropy after removing Fy and Fs respectively. In scenario 1 (Figure 2(a))
E_p, > E_p,. For scenario 2 (Figure 2(b)) we added one more feature F3 which
takes uniformaly random values and does not take part in forming the 2 clusters.
As expected we got E_p, > E_p, and E_p, > E_p,. Secenario 2 suggests that
our entropy measure works for dependent features also.

For ranking of features we can use E in the following way: Each feature
is removed in turn and E is calculated. If the removal of a feature results in
minimum F the feature is the least important; and vice versa. In the algorithm
CalcEnt(Fy) calculates E of the data after discarding feature Fj.

Algorithm (RANK):
P = E values for M features
For k =1to M
Py, = CalcEnt(Fg)
OutputRank(P)

Scalable Feature Ranking: Data mining generally concerns data with large
number of data points. For a large number of data points our ranking measure
may not be practical as it is (the complexity of RANK is O(M N?) if we take
the similarity measure between 2 points as unit). There are different approaches
available in the literature for handling large data sets for a given algorithm. Our
scalable method is based on random sampling. We observed that a reasonably
small random sample retains the original cluster information in most cases. This
phenomenon was also observed in [9] in their work on initialization of partitional
clustering algorithms. Notice that for entropy measure to work well the cluster
structure needs to be retained and it is largely independent of the number of
data points. So, random sampling is a good choice for scalability. The algorithm
is simple. Initially all features are ranked 0. Random samples are generated and
RANK is run over each sample to produce the rankings of features. The feature
rankings are added correspondingly. At the end of all random samples p (we
suggest the use of at least 35 samples as 35 is often considered the minimum
number of samples for large sample procedures [7]) we obtain the final rankings
of the features.
Algorithm for Scalable Ranking, SRANK
for all features Fy’s Overall Rank, OR; = 0
forl=1top
take a sample 1;
run RANK to find rankings R,
fork=1to M
OR, = ORy + le
output overall rankings OR

Selecting a Subset of Important Features:

A problem is how many features we should choose from a ranked list. A natural
expectation is that entropy would fall initially with removal of unimportant fea-
tures, but would stop falling at some point. This i1s not the case as the entropy

is not invariant with respect to different numbers of features. Hence we are left
with finding the different alternatives of selecting a subset of features: (1) If one
knows the number of important features required, just pick them starting with
the most important one, or (2) we can choose a clustering algorithm and choose
the subset that maximizes the clustering quality. The first option is not prac-
tical without any a priori knowledge. The second option is a wrapper method.
Wrapper method is a feature selection method that wraps around clustering
algorithm which is a standard way for supervised feature selection with a clas-
sification algorithm [12]. The difference is that in our case features are already
ranked according to their importance and so the task of searching through the
feature subset space of 2 is avoided. The idea is to run a clustering algorithm
on the selected features and choose the subset that produces best cluster quality.

We choose k-means clustering algorithm which is very popular and simple
to implement. Tt is iterative, provides results fast (converges fast to local max-
ima), has a time complexity of #Iter x |Data| * ¢ where #[Iter is is the num-
ber of iterations, |Data| is the size of the data (N x M), and ¢ is the number
of clusters. Once the clustering is done we need to measure the cluster qual-
ity. There are numerous criterion functions for clustering in literature to mea-
sure cluster quality. We select scattering criterion which is invariant under non-
singular transformation of data. Scattering Criteria: These criteria consider
the scatter matrices used in multiple discriminant analysis. Scatter matrix for
gth cluster: P; = ZX;EXJ' (Xi — m;)(X; — m;)" Within-cluster scatter matrix:
Py = 25:1 P; Between-cluster scatter matrix: Pg = 25:1
where m is the total mean vector and m; is the mean vector for j** cluster and
(X; — m;)" is the matrix transpose of the column vector (X; — m;). Among
different scattering criteria we briefly describe here an ‘Invariant Criterion’. One
Iinvariant criterion is: tr(PW_lpB) where tr 1s trace of a matrix which 1s the sum
of its diagonal elements. It is invariant under nonsingular linear transformations
of the data. It measures the ratio of between-cluster to within-cluster scatter.
The higher the tr(PW_IPB), the higher the ratio of between-cluster scatter to
within-cluster one and hence, and hence, the higher the cluster quality. We use
tr(PW_lPB) to compare the cluster quality for different subsets of important
features. The algorithm for selecting a subset of features is as follows:
Algorithm SELECT:

run RANK to get rankings Rg, k= 1..M
for k=1 to M
run K-means to find clusters using subset (Ry, ..., Rg)
calculate tr(Py Pp)
if stopping criterion satisfy break
In case of large data run SRANK instead of RANK. Tr(PVT,lPB) will increase
with the addition of features if the ratio of between-cluster to within-cluster
increases, otherwise it decreases or remains relatively unchanged. As is found
by the experiments, tr(PVT,IPB) increases initially and once all important fea-
tures are added, it either goes down or remains relatively unchanged for any
addition of unimportant features. The point at which tr(PVT,IPB) goes down or

(mj —m)(m; —m)*

remains unchanged is not difficult to detect visually, hence the stopping criterion
is manually decided.

4 Experiments

We empirically tested our feature selection method on different scenarios that
one may find in various data mining applications. First, tests are conducted on
benchmark and synthetic data sets to check the correctness of our claim that our
feature selection method can select correct features as we know well about these
data sets. Tests are then conducted on a large high-dimensional data to test
the performance of SRANK. We used a MATLAB random function to generate
synthetic data. For synthetic data sets a few features are chosen as important
and these features follow Gaussian distribution. Each cluster is of equal size if
not mentioned otherwise. Clusters are usually overlapping. Unimportant features
are added which take uniformly random values. Each data has 5% noisy data
points.

Benchmark and Synthetic Data: Three synthetic data sets are generated
with different numbers of clusters and features. Benchmark data sets (both nu-
meric and nominal) are selected from UCI machine-learning repository [13]. See
Table 1 for the details about data sets. We have chosen those data sets from
the repository for which prior information is available regarding importance of
features. Although for these benchmark data sets class information is available,
in our experiments we have removed the class labels. Parity3+43 has 3 relevant,
3 redundant, and 6 irrelevant features.

The results for ranking are shown in Table 1. Our method is able to rank
the important features in the top ranks for all data. For CorrAL our method
ranks feature F6 higher. F6 is correlated to the class label 75% of the data
points. This shows our ranking measure favors features that are correlated to
the class. Although for CorrAL this is not desired but for real-world data this
may be acceptable. For Parity3+3 ranking was correct although the redundant
features could not be detected. This can be removed if after selecting a subset
of features we check for redundancy between the features in pair. For a small
subset of selected features this may not be extermely prohibitive.

The results for selecting a subset of features are shown for the data sets with
a known number of clusters and numeric data. We use k-means and tr(Py _1PB)
to evaluate the subsets of important features. Initialization of k-means is done by
randomly choosing points from the data. Once a set of points are chosen for the
whole data the same set is used for different subsets of features. The results are
summarized in Figure 3. The X-axis of the plots is for number of most important
features and Y-axis is for tr(PVT,1 Pg) value for the corresponding subset of most
important features. For Iris data set trace value was the maximum for the two
most important features. For D3C, D4C and D6C data trace value increases with
addition of important features in a fast rate but slows down to almost a halt
after all the important features are added. For a practical application it will not

Data Set M |#Clusters/Classes|Important Features|Ranking (Descending Order)
Tris 13 3.4 {3,4},1,2

ChemicalPlant|5 |co 1,2,3 {3,1,2},4,5

Non-linear 4 |oco 1,2 {2,1},34

Parity3+3 [12]2 {1,73,42,83,43,9} |{9,3.8,2,7,1}.,4,10,...
CorrAL 6 |2 1,2,3,4 {3.,6,1,2,4} 5

Monk3 6 |2 2,4,5 {5,2,4},1,6,3

D3C 13 1,2 {2,1},4,3

D4C 154 1-5 {1,3,5,2,4},13,9,11,...

D6C 22|6 1-7 {3.,6,5,4,2,1,7},10,9,...

Table 1. Ranking of features: oo — Class is continuous, bold font is used to show the
correctness of the ranking.

(a) Iris (b) D3C

21 ~ . ' - 20 —

1s [

16

14 |-

12 |-

10 |-

1 2 E a 1 2 E

#Most Important Features—> #Most Important Features—>

(c) D4C (d) D6C

20 60

1 2 = a4 s e 7 =8 o 10 11 12 13 14 as 1 2 3 4 5 6 7 8 © 10 11 12 13 14 15 16 17 18 19 20 21 22

#Most Important Features—> #Most Important Features—>

Fig. 3. tr(PV_V1 Pg) of Iris and Synthetic data.

be difficult to notice these trends, and hence selecting a subset of features can
be an easy task.

Large and High-Dimensional Data: We show the results of our feature selec-
tion on a synthetic large and high-dimensional data. The data has 100 features
(first 20 features are important and the next 80 features unimportant), 5 clus-
ters, each cluster created by Gaussian distribution, unimportant features take
uniformly random values. Each cluster has 20,000 points and the data has 5000
(approximately 5%) noisy data points. Sample sizes chosen are 0.25%, 0.50%
and 1.0%.

Results: For space constraint we have shown results of SRANK and SELECT
for 5 samples. SRANK results are shown in Table 2. The last row in Table 2 is
the over all rankings after 5 runs. In all the runs the 20 important features are
ranked at the top, and hence, they are ranked at the top in over all ranking as
well. SELECT results are shown in Figure 4 and Table 3. We have shown average
results for 5 sample runs for 0.25%. In Table 3 impurity is “number of misclassi-
fications not including the noise” . Notice that impurity is low or zero when only
important features are used and it grows with addition of unimportant features.
Tt further confirms our suspicion that k-means (and probably other clustering
algorithms) get confused with useless features and removing them can contribute
to the cluster quality. This result shows satisfactory scalability of SRANK and
SELECT.

5 Conclusion

We tested RANK over a real-world textual finance data. As many as 423 phrases
or words are used as features for each textual financial data taken on a daily basis
from reliable and standard sources such as Wall Stree Journal. The feature values
are the frequencies of the corresponding phrases in that day’s reports. After run-
ning RANK over this high-dimensional data we showed the results to a domain
expert. He was satisfied regarding the top rankings given to important phrases
such as: blue chip, property lost, banking retreat, etc. Efforts are on to use this
ranking for prediction purposes. Another application yet untested is Reuters text
categorization data which has hundereds of thousands of words as features. It
may be useful to pick up a few hundred words for further classification. We stud-
ied a number of related issues such as high-dimensional data, noisy data, large
data, redundant/correlated features, and hill-climbing vs. exhaustive. Handling
high dimensional data is a prominent desirable characteristic of our method.
Experiments show that in the face of high-dimensional data k-means algorithm
perform poorly, but removal of unimportant features significantly improved its
performance. OQur method is able to handle noisy data. To handle very large data
sets we used random samples. Our ranking measure works well consistently for

! As we have generated the data, the data points that group together in a cluster are
known and it enables us to find impurity after clustering. This may not be the case
for real-world data, and hence tr(PW_IPB) is more useful practically.

Sample Size

17,16,18,15,13,8,9,19,
2,11,1,4,3},63,25, ...

18,17,2,11,8,1,4,7,
9,5,12,10,20},55,23, ...

#Run 0.25% 0.50% | 1.0%

1 {15,5,20,14,9,12,2, {20,5,19,3,14,17,9, {15,19,3,16,13,10,9,5,
7,18,11,17,1,19,10,3, 2,11,10,13,1,16,7,4, 11,17,12,4,14,20,2,1,
6,16,8,4,13},42,57,... | 8,15,6,18,12},43,81,... 8,18,6,7},71,23,...

2 {5,6,14,20,7,10,12, {19,14,16,13,3,6,15, {12,13,7,6,4,1,19,3,

9,20,10,11,15,18,8,2,
14,17,16,5},42,29,...

Ranking|6,13,15,11,18,10,16,19,

2,8,1,7,3,4},23,98...

16,10,11,18,17,1,7,12,
20,4,5,9,6},45,37, ...

3 |{14,6,17,13,12,9,20,15,| {19,10,15,2,18,3,8, {9,4,5,2,16,14,1,3,
10,5,2,19,1,16,8,7, 13,16,7,17,14,12,5,11, |12,19,20,6,17,15,18,10,
11,3,18,4},29,92,... 20,9,4,1,6},68,39,... 13,7,8,11},71,92,...

4 {11,12,17,1,498,3, | {8,1,3,19,15,18,12,7,11, | {10,19,12,6,1,14 8,
5,18,16,2,6,19,14,13, | 2,4,20,10,13,5,14,17, |7,20,17,18,13,16,15,2,
7,20,15,10},32,77,... 6,9,16},44,83,... 4,11,5,3,9},26,70,...

5 {13,19,9,16,20,18,10, |{15,16,13,2,10,8,19,11,14,[{4,15,14,13,3,9,10,19,
6,8,4,12,5,15,14,17, 4,3,6,1,9,17,12,7, 1,7,8,12,5,18,2,16,
2,1,11,3,7},42,37, ... 20,18,5},37,24,... 17,6,20,11},74,53,...

OverAll] {12,5,9,14,20,17, {19,3,15,2,13 8,14, {19,4,12,13,10,1,3,

9,15,14,16,6,7,5,20,
2,17,8,18,11},62,54,...

Table 2. Ranking for 5 random samples of 3 different sizes

=20 30

10

ao s0 [Te)

#Most Important Features—>

7o

s0 s0

Fig.4. Average tr(PV_V1 Pg) of 5 samples of size 0.25% of a Large and High-Dimensional

Data.

|#MostlmpFea tr(Py' Pg) Impurity (%)|#MostlmpFea tr(Py;' Pg) Impurity (%)|

1 29.56 10.4 35 203.18 10.2
5 87.13 8.2 40 122.5 17.4
10 156.4 0.0 50 57.4 36.8
15 299.67 0.0 60 13.71 62.2
20 468.81 0.0 70 5.87 56.0
25 476.36 0.0 80 10.37 66.4
30 485.57 2.0 100 7.13 73.0

Table 3. Average tr(PV_V1 Pg) and Impurity of 5 samples of 0.25% of a large and high
dimensional Data

the different runs with different sizes of random samples. Our method only re-
quires the cluster structure be retained which a reasonably small random sample
is expected to maintain. We studied the issue of redundant/correlated features.
We did an experimental study of comparing our hill-climbing feature selection
method wis-a-vis exhaustive method. Hill-climbing method performed reliably
while consuming much less time.

Testing our feature selection method for clustering algorithms other than
k-means is an ongoing work. But as shown by the experiments over data sets
with known important features, it can be expected that our algorithm would
perform equally well for other clustering algorithms. Another area to explore is
subspace clustering (CLIQUE [2]) which is the task of finding dense regions in
subspaces of features instead of whole space. It can help find interesting data
hidden in subspaces of features where clusters may not be defined by all features.
A problem encountered in CLIQUE concerns scalability with respect to number
of features. Their experiments exhibited a quadratic behavior in the number
of features. It may be interesting to check the effectiveness of our approach
in reducing the dimensionality thereby making the search for subspace clusters
more efficient.

References

1. C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algo-
rithms for projected clustering. In Proceedings of ACM SIGMOD Conference on
Management of Data, pages 61-72, 1999.

2. R Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In Proceedings
of ACM SIGMOD Conference on Management of Data, 1998.

3. R Agrawal and R. Srikant. Fast algorithm for mining association rules. In Pro-
ceedings of the 20th VLDB Conference, Santiago, Chile, 1994.

4. P. S. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proceedings of the 4th International Conference on Knowledge Dis-
covery & Data Mining (KDD’98), pages 9-15, 1998.

5.

10.

11.

12.

13.

C. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining
numerical data. In Proceedings of Internationl Conference on Knowledge Discovery
and Data Mining (KDD’99), 1999.

M. Dash and H. Liu. Feature selection for classification. International Journal of
Intelligent Data Analysis, hitp://www.elsevier.com/locate/ida, 1(3), 1997.

J. L. Devore. Probability and Statistics for Engineering and Sciences. Duxbury
Press, 4th edition, 1995.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis, chapter
Unsupervised Learning and Clustering. John Wiley & Sons, 1973.

U. Fayyad, C. Reina, and P. S. Bradley. Initialization of iterative refinment cluster-
ing algorithms. In Proceedings of the 4th International Conference on Knowledge
Discovery & Data Mining (KDD’98), pages 194-198, 1998.

V. Ganti, J. Gehrke, and R. Ramakrishnan. CACTUS - clustering categorical
data using summaries. In Proceedings of International Conference on Knowledge
Discovery and Data Mining (KDD’99), 1999.

A. K. Jain and R. C. Dubes. Algorithm for Clustering Data, chapter Clustering
Methods and Algorithms. Prentice-Hall Advanced Reference Series, 1988.

R. Kohavi. Wrappers for performance enhancement and oblivious decision graphs.
PhD thesis, Department of Computer Science, Stanford University, Stanford, CA,
1995.

C. J. Merz and P. M. Murphy. UCI repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MILRepository.html, 1996.

