	Movement Method

	 void
	setAhead(double distance) 
          Sets the robot to move ahead (forward) by distance measured in pixels when the next execution takes place.

	 void
	setBack(double distance) 
          Sets the robot to move back by distance measured in pixels when the next execution takes place.

	 double
	getDistanceRemaining() 
          Returns the distance remaining in the robot's current move measured in pixels.

	 void
	setStop() 
          This call is identical to Robot.stop(), but returns immediately, and will not execute until you call execute() or take an action that executes.

	 void
	setStop(boolean overwrite) 
          This call is identical to Robot.stop(boolean), but returns immediately, and will not execute until you call execute() or take an action that executes.

	 void
	setResume() 
          Sets the robot to resume the movement stopped by stop() or setStop(), if any.

	 void
	setMaxVelocity(double newMaxVelocity) 
          Sets the maximum velocity of the robot measured in pixels/turn if the robot should move slower than Rules.MAX_VELOCITY (8 pixels/turn).

	 void
	setMaxTurnRate(double newMaxTurnRate) 
          Sets the maximum turn rate of the robot measured in degrees if the robot should turn slower than Rules.MAX_TURN_RATE (10 degress/turn).

	 void
	setTurnLeft(double degrees) 
          Sets the robot's body to turn left by degrees when the next execution takes place.

	 void
	setTurnRight(double degrees) 
          Sets the robot's body to turn right by degrees when the next execution takes place.

	 double
	getTurnRemaining() 
          Returns the angle remaining in the robots's turn, in degrees.

	Radar Method

	 boolean
	isAdjustRadarForGunTurn() 
          Checks if the radar is set to adjust for the gun turning, i.e. to turn independent from the gun's turn.

	 boolean
	isAdjustRadarForRobotTurn() 
          Checks if the radar is set to adjust for the robot turning, i.e. to turn independent from the robot's body turn.

	 void
	setTurnRadarLeft(double degrees) 
          Sets the robot's radar to turn left by degrees when the next execution takes place.

	 void
	setTurnRadarRight(double degrees) 
          Sets the robot's radar to turn right by degrees when the next execution takes place.

	 double
	getRadarTurnRemaining() 
          Returns the angle remaining in the radar's turn, in degrees.

	Gun Method

	 void
	setFire(double power) 
          Sets the gun to fire a bullet when the next execution takes place.

	 Bullet
	setFireBullet(double power) 
          Sets the gun to fire a bullet when the next execution takes place.

	 void
	setTurnGunLeft(double degrees) 
          Sets the robot's gun to turn left by degrees when the next execution takes place.

	 void
	setTurnGunRight(double degrees) 
          Sets the robot's gun to turn right by degrees when the next execution takes place.

	 double
	getGunTurnRemaining() 
          Returns the angle remaining in the gun's turn, in degrees.

	 boolean
	isAdjustGunForRobotTurn() 
          Checks if the gun is set to adjust for the robot turning, i.e. to turn independent from the robot's body turn.

	Event

	Bullet Event

	 Vector
<BulletHitBulletEvent>
	getBulletHitBulletEvents() 
          Returns a vector containing all BulletHitBulletEvents currently in the robot's queue.

	 Vector
<BulletHitEvent>
	getBulletHitEvents() 
          Returns a vector containing all BulletHitEvents currently in the robot's queue.

	 Vector
<BulletMissedEvent>
	getBulletMissedEvents() 
          Returns a vector containing all BulletMissedEvents currently in the robot's queue.

	 Vector
<HitByBulletEvent>
	getHitByBulletEvents() 
          Returns a vector containing all HitByBulletEvents currently in the robot's queue.

	Hit Event

	 Vector
<HitRobotEvent>
	getHitRobotEvents() 
          Returns a vector containing all HitRobotEvents currently in the robot's queue.

	 Vector
<HitWallEvent>
	getHitWallEvents() 
          Returns a vector containing all HitWallEvents currently in the robot's queue.

	Enemy Robot Event

	 Vector
<RobotDeathEvent>
	getRobotDeathEvents() 
          Returns a vector containing all RobotDeathEvents currently in the robot's queue.

	 Vector
<ScannedRobotEvent>
	getScannedRobotEvents() 
          Returns a vector containing all ScannedRobotEvents currently in the robot's queue.

	
Custom Event

	 void
	addCustomEvent(Condition condition) 
          Registers a custom event to be called when a condition is met.

	 void
	removeCustomEvent(Condition condition) 
          Removes a custom event (specified by condition).

	 void
	onCustomEvent(CustomEvent event) 
          This method is called when a custom condition is met.

	Etc

	 void
	onDeath(DeathEvent event) 
          This method is called if your robot dies.

	 void
	onSkippedTurn(SkippedTurnEvent event) 
          This method is called if the robot is using too much time between actions.

	 int
	getEventPriority(String eventClass) 
          Returns the current priority of a class of events.

	 void
	setEventPriority(String eventClass, int priority) 
          Sets the priority of a class of events.

	 void
	clearAllEvents() 
          Clears out any pending events immediately.

	 Vector
<Event>
	getAllEvents() 
          Returns a vector containing all events currently in the robot's queue.

	 void
	setInterruptible(boolean interruptible) 
          Call this during an event handler to allow new events of the same priority to restart the event handler.

	 void
	setInterruptible(boolean interruptible) 
          Call this during an event handler to allow new events of the same priority to restart the event handler.

	Etc

	 void
	execute() 
          Executes any pending actions, or continues executing actions that are in process.

	 File
	getDataFile(String filename) 
          Returns a file in your data directory that you can write to using RobocodeFileOutputStream or RobocodeFileWriter.

	 File
	getDataDirectory() 
          Returns a file representing a data directory for the robot, which can be written to using RobocodeFileOutputStream or RobocodeFileWriter.

	 long
	getDataQuotaAvailable() 
          Returns the data quota available in your data directory, i.e. the amount of bytes left in the data directory for the robot.

	 void
	waitFor(Condition condition) 
          Does not return until a Condition.test() returns true.


