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ABSTRACT 

 

Our purpose was to construct an algorithm that generates Sudoku puzzles 

with varying difficulty, while also minimizing the complexity of algorithm. 

We formulate a method to produce Sudoku puzzles with unique solution; a 

solving algorithm is required to guarantee the uniqueness. Moreover, we 

focus upon defining a realistic metric of difficulty for Sudoku puzzles. 

Difficulty level of a Sudoku puzzle is defined to be the sum of complexity of 

each step involved in solving the puzzle using the solving algorithm. 

Then we introduce three different models—the Greedy Back-tracking Model, 

the Procedural Sudoker Model, and the Probabilistic Sudoker Model—which 

provide both the solving algorithm and a measurement of the difficulty of 

Sudoku puzzles. These three have trade-offs in terms of algorithmic 

complexity and reality; our conclusion is that the Procedural Sudoker Model 

is the most appropriate model to achieve our purpose, because it provides 

results both efficiently and realistically. Sample Sudoku puzzles of 

difficulties Easy, Medium, Hard, and Very Hard generated by our algorithm 

are provided. 

In addition to these works, we present an axiomatic formulation of Sudoku 

puzzle, which we use as the theoretical basis of the solving techniques in our 

Sudoker models. 
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What is Sudoku? 
Sudoku is a puzzle based on logical number placement. Though extremely simple a game, Sudoku puzzle 

solving often requires a considerable use of logic, and making it an interesting intellectual challenge. 

A Sudoku puzzle contains a 9×9 grid, partially filled with numbers from 1 to 9, which is again divided into 

nine sub-grids (called boxes) of the size 3×3. The one-and-only rule of this puzzle is to complete the grid with 

numbers from 1 to 9 so that each column, each row, and each box contain each digit (from 1 to 9) only once. (To 

be explained more precisely in the following section) Actually, the name of the game, Sudoku(数独), is the short 

for a Japanese phrase "Sūji wa dokushin ni kagiru (数字は独身に限る)", which can be translated as "the numbers 

must occur only once". [1] 

 

The modern puzzle was invented by an American architect, Howard Garns, in 1979 and published by Dell 

Magazines under the name "Number Place". It became popular in Japan in 1986, after it was published by 

Nikoli and given the name Sudoku. It became an international hit in 2005.  

Not only being an interesting puzzle, Sudoku has lots to offer for mathematicians. Mathematically, completed 

Sudoku puzzles are a type of Latin square, with an additional constraint on the contents of individual regions 

(boxes). The study of Latin squares goes back to Leonhard Euler’s paper “De quadratis magicis”, which 

contains a discussion about magic and Latin squares. [2] It has been proven that the total number of valid 

Sudoku grids is about 6.67×1027. [3] Even if the symmetry is considered, the total number is about 3.55×1012 [3]; 

simply put, you will never run out of puzzles to solve! 

 

Terminologies and Rules 
Here are some basic terminologies regarding Sudoku that we will use throughout the paper. Most of them are 

rather standard, borrowed from [4]. 

 Sudoku grid: A 9×9 grid of cells, on which the numbers from 1 to 9 is to be filled. (See Figure 2) 

 Column: The set of nine cells on a Sudoku grid lying on a vertical line. We enumerate the columns 

starting from the left; hence the 1st and the 9th columns refer to the leftmost and the rightmost columns, 

respectively. (See Figure 2) 

 Row: The set of nine cells on a Sudoku grid lying on a horizontal line. Rows are enumerated starting 

Figure 1 A Sudoku Puzzle
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from the top, so that the 1st and the 9th rows refer to the top and the bottom rows, respectively. (See 

Figure 2) 

 Box: One of the nine (disjoint) 3×3 sub-grids that make up the Sudoku grid. (See Figure 2) 

 (i,j)th Cell: The cell on the Sudoku grid lying on the ith column and the jth row. 

 Region: We shall refer columns, rows, and boxes as regions. 

 Candidates for the (i,j)th Cell, or Cand(i,j): The collection of numbers which the (i,j)th cell can 

possibly have. 

 
Figure 2 A Sudoku Grid 

 

A Sudoku puzzle is a Sudoku grid which is partially filled with numbers. The goal of a Sudoku puzzle is to 

fill the Sudoku grid with numbers from 1 to 9, observing the following simple rule: 

 The Sudoku Rule: Numbers from 1 to 9 must occur once and only once in each row, column, and box. 

A completely filled Sudoku grid, obeying the Sudoku Rule, is called a solution to the Sudoku puzzle. A 

Sudoku puzzle must satisfy the following condition: 

 Existence and Uniqueness of Solution: There must be one and only one solution to a Sudoku puzzle. 

 

Statement of Purpose 
 Our Goal is to construct algorithms which pose Sudoku puzzles of varying difficulty level.  

 In achieving this goal, our First Priority is to define precisely the notion of ‘difficulty level’ of Sudoku 

puzzles, which most closely resembles how human Sudoku players would feel. 

 Our Second Priority is to minimize the complexity of the algorithm. 
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Figure 3 Flowchart of our approach 

An Overview of Our Approach 
Our basic strategy in generating a Sudoku puzzle of a given 

difficulty level is simple:  

First, we start with a completely filled Sudoku grid, and then  

Second, we erase numbers from the grid one by one until 

Third, we get a Sudoku puzzle of desired ‘difficulty’ (a term 

to be defined).  

 

Figure 3 is the flowchart describing our approach. The final 

product of this process will be a Sudoku puzzle of desired 

difficulty, which we shall refer to as the final Sudoku puzzle. 

Sudoku puzzles which occur during this process will be called 

intermediate.  

We now elaborate each step. 

 

Step 1. Generating a Completely Filled Sudoku Grid 
The reason why we start from a complete Sudoku grid is to ensure the existence of a solution for the final 

Sudoku puzzle. To generate a complete Sudoku grid, we used a simple back-tracking algorithm, using recursion. 

The following is the pseudo-code of the function fillCell(index); here grid[81] represents the 

Sudoku grid as an array of 81 values. Provoking fillCell(0) will generate a random complete Sudoku grid. 

 

 
 

Step 2. Erasing a number from the Sudoku grid 
Each time we erase a number from the Sudoku grid, we check if the resulting intermediate Sudoku puzzle has 

a unique solution. We achieve this by checking if any of the Sudoku puzzles obtained by filling in the erased cell 

with numbers other than the original one have a solution. (To solve a Sudoku puzzle, we use one of the models 

which we will describe below. In this instance, any model would suffice, as long as it can always solve Sudoku 

puzzles which have solution) If a solution exists in some case, then we write the original number back, and try 

to erase another number from the grid. The following theorem ensures the uniqueness of solution for Sudoku 

bool fillCell(index) : 
 if (index==81 ) : 

return true   // the grid has been filled 
 
  set numbers = {1..9}   // this list is filled with numbers  

1..9 in a random order  
 
  for (i=0 to 9) :  
    set grid[index] = numbers[i]  
 
    if(grid is valid) :  // is this Sudoku grid still valid?  
      if (fillGrid(index+1)) : // try to fill the next cell   
        return true  // 'true' means that the grid has been filled 
 
 return false    // there is something wrong, so rollback! 
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puzzles generated by our approach: 

 

Theorem. A Sudoku puzzle obtained by repeatedly applying Step 2 to a complete Sudoku grid has a unique 

solution. 

Proof. We proceed by induction. With none of the numbers erased, the Sudoku puzzle obviously has a unique 

solution. Suppose we have a Sudoku puzzle S, whose Sudoku grid is not necessarily complete, with a unique 

solution. Applying Step 2 (if possible) to S, a number n in a (i,j)th cell is erased, and we obtain another Sudoku 

puzzle S’. To prove that S’ has a unique solution, suppose the contrary. Then we have a solution which differs 

from the complete Sudoku grid we started with; let us call this D. Note that the number in the (i,j)th cell of D, 

which we shall call m, cannot be n; for then D becomes a solution of S while S was supposed to have a unique 

solution (namely, the one we began with). But then D is a solution to the Sudoku puzzle obtained by filling in 

the (i,j)th cell of S’ by m; this is contradictory to Step 2. Hence S’ has a unique solution.   □ 

 

Step 3. Checking if the Sudoku puzzle is of the desired difficulty 
To carry out this step, we first define a metric of difficulty of Sudoku puzzles. Using this metric, we measure 

how difficult the intermediate Sudoku puzzle is. If it is right of the desired difficulty, then this becomes our final 

Sudoku puzzle. However, if the difficulty of the intermediate Sudoku puzzle does not meet our demand, we 

need to improve the puzzle. If more cells can be erased via Step 2, we go back to Step 2; however, if no more 

cells are there to be erased (while guaranteeing uniqueness of solution), we go back to Step 1 and start the whole 

process all over again. 

To effectively carry out Step 3, it is crucial to achieve our First Priority; to state it again, we need to define 

precisely the notion of ‘difficulty level’ of Sudoku puzzles, which most closely resembles how human Sudoku 

players would feel. The obstacles we must overcome when evaluating difficulty of a Sudoku puzzle is as follows: 

 Requirement 1: Design a model emulating a human Sudoku player, and 

 Requirement 2: See how ‘difficult’ it is for that model to solve the given Sudoku puzzle.  

Actually, Requirement 2 is not so hard a problem, for it only involves analyzing the steps the model used; 

the more intricate and numerous the steps, the more difficult the Sudoku puzzle is. Hence, accomplishing the 

First Priority is largely reduced to achieving Requirement 1:  

 
Next three sections describe three models we set up, successively more sophisticated and closer to an actual 

Sudoku player. 

 

Model 1. The Greedy Back-tracking Model 
Model Description 

This is the most elementary of the three models, in the sense that it is easiest to implement on computer. The 

underlying idea is short and simple: 

 
We consecutively guess the value of each cell, until we finally get the whole puzzle right 

Designing a model which solves Sudoku puzzles, in a way as close as possible to a human Sudoku player
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We obviously want to make plausible guesses; therefore we always make a guess in the cell which has the 

least number of possible values (or candidates) so far. (Hence the adjective ‘Greedy’) Each guess will eliminate 

candidates in other cells, according to the Sudoku Rule. Of course, some guess may lead to a dead-end, in 

which some cells have no candidates at all. This proves that the guess was wrong, so we back-track to the point 

where we made that incorrect guess, and take another shot. (Hence the name ‘Back-tracking Model’) This 

process is repeated until the Sudoku puzzle is correctly completed. More precise implementation of the Greedy 

Back-tracking Model is provided below, in the form of pseudo-code. 

 

 
 

Defining Difficulty 
As we can see above, the solve() function works recursively, and is called each time we guess a value. 

Intuitively, the more guesses we have to make, the harder the Sudoku puzzle is; hence it will make sense to 

make the following definition: 

 The difficulty of a Sudoku puzzle is the total number the total number of times we had to provoke 

the solve() function it took to solve the puzzle. 

 

Model 2. The Procedural Sudoker Model 
Model Description 

This is a model which employs more non-trivial techniques to solve Sudoku puzzles, rather than just guessing 

all the way. We chose those techniques which are often used when an actual Sudoku player is solving a Sudoku 

puzzle. The following is the list of the techniques (we mostly followed the terminology of [4]) 

 Technique 1. Single Position 

 Technique 2. Single Candidate 

 Technique 3. Candidate Line 

 Technique 4. Multiple Lines 

 Technique 5. Naked Pairs/Triples 

 Technique 6. Hidden Pairs/Triples 

 Technique 7. X-Wings 

bool solve() : 
  if(the puzzle is solved) : 
    return true  // the puzzle is solved! 
 
find a cell with the smallest number of candidates 
(if there are multiple such cells, repeat the following for each cell) 

 
  for(each candidate of the found cell) : 
    save current status 
    put in the candidate in the cell 

if(solve()) :  // if the above guess leads to a solution, 
return true  // return true 

    else : 
      restore status  // if not, come back and guess again 
 
  return false   // the whole guess was wrong, so roll back! 
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 Technique 8. Swordfish 

 Technique 9. Guessing 

(For detailed description of each of these techniques, see [4])  

The list above is roughly in the order of increasing complexity. The model is ‘procedural’ in the sense that it 

always applies the simplest technique (that is, one that is nearest to the top in the above list) available. Figure 2 

below is the flowchart which describes how this model proceeds. 

 

 

Figure 4 Flowchart describing Model 2 

 

Defining Difficulty 
Recall that in this model, different techniques have varying degree of complexity. Thus, in contrast with Model 

1, not only the number of steps used, but also the intricacy of technique used at each step must be considered to 

measure the level of difficulty of Sudoku puzzles. Therefore, in this case, it is reasonable to make the following 

definitions: 

 The difficulty score of a technique is a number which indicates how complex the technique is. 

 The difficulty of a Sudoku puzzle is defined to be the sum of difficulty scores of techniques used at 

each step in the way of solving the puzzle. 

Difficulty scores were chosen based on empirical grounds, so that the resulting metric of difficulty seems the 

closest to how we perceive. The specific values for the difficulty scores of the techniques are given in the 
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following table: 

 

Table 1 Difficulty Scores of Techniques 

 

 

Model 3. The Probabilistic Sudoker Model 
Model Description 

Although Model 2, the Procedural Sudoker Model, constructs quite analogous an algorithm to that of a 

human Sudoku player, it is yet questionable whether a human Sudoku player really does play Sudoku following 

all the procedures. A more realistic alternative would be as follows: of numerously many ways to proceed with 

the puzzle, a human Sudoku player finds a configuration where a technique can be applied, namely, a 

characteristic spot. 

Spots to apply elementary techniques are relatively easier to detect compared to that of advanced techniques. 

Thus we can model the Probabilistic Sudoker with the following points in mind: 

 

 At each instance, the Probabilistic Sudoker detects a characteristic spot. 

 The (average) time taken to find the spot is proportional to the difficulty score of the respective 

technique. 

 The difficulty of a given Sudoku problem is determined by total amount of time taken to solve the 

puzzle. 

 

The following pseudo-code describes more concretely how we can implement this model: 

 

No Name Difficulty 

Score 

1 Single Position 10 

2 Single Candidate 10 

3 Candidate Line 30 

4 Multiple Lines 30 

5 Naked Pairs/Triples 30 

6 Hidden Pairs/Triples 40 

7 X-Wings 80 

8 Swordfish 120 

9 Guessing 50 

bool solve() : 
  until(the puzzle is solved) : 
     survey all possible characteristic spots 
      for (every moment): 
          detect one of the characteristic spots according to its probability
          if(detected): 
              apply strategy to the detected spot 
              break; 
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In order to implement this model, it is unavoidable to survey the all characteristic spots every step, which 

drastically intensify the complexity of the algorithm. We will have a more thorough discussion of this fact in the 

following section. 

 

Defining Difficulty 
Being the most realistic of our three models, the Probabilistic Sudoker Model is more like an emulation of an 

actual Sudoku player rather than just a solving algorithm. A plausible way for a human Sudoku player to 

determine the difficulty of a Sudoku puzzle would be to measure the time taken to solve it. With the 

Probabilistic Sudoker Model we can measure the solving time of the puzzle; therefore, we make a definition as 

follows: 

 The difficulty of a Sudoku puzzle is the total time elapsed to solve the Sudoku puzzle using the 

Probabilistic Sudoker Model. 

 

Comparison of the Models 
So far we have presented three different models which construct algorithms for solving Sudoku puzzles. All 

three models can be used for achieving our Goal, namely for generating puzzles of varying difficulty; however, 

each has different strengths and weaknesses. Our conclusion is that Model 1 is least realistic while 

computationally the fastest, whereas Model 3 is most realistic while computationally the slowest. Model 2 

shows moderate performance in both aspects. The diagram below summarizes it. 

 

Quite a few evidences support our conclusion. One of them is the correlation between the average solving 

time of actual Sudoku players and the difficulty computed according to each model. A hundred Sudoku puzzles, 

each with the average time it takes for a person to solve it, were obtained from [5].  We measured the difficulty 

of these puzzles by using our models and compared the results with the given data. The followings are the 

graphs and the computed correlation coefficients. 

Figure 5 Summary of the Tendency 
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The horizontal axis is the solving time of actual people and the vertical axis is the difficulty computed 

according to each model. Comparison of the correlation coefficients shows that the difficulty metric of Model 3 

has the strongest positive correlation with the solving time of actual people, and that of Model 1 has the weakest 

correlation. Loosely put, Model 3 reflects reality the best, while Model 1 does the worst job in this respect. 

Additional evidence is the different time complexities of the three models. Let us briefly analyze the time 

complexity of each algorithm. Model 1 is basically a back-tracking algorithm, so it has a non-polynomial worst-

case time complexity; however the execution time shows that its average-case time complexity is fast enough. In 

the algorithms of Model 1 and Model 2, finding characteristic spots is quite a difficult job for computers 

because it has to check all combinations of possible regions for each technique. The depth of iteration 

statements is at most 6 in our implementation. 

Following the analysis of complexities of our models above, it is natural to expect that given a Sudoku puzzle 

Model 3 generally would take the longest time to solve it, and that Model 1 would require the least time. The 

following figure, which shows average time for solving the same set of a hundred Sudoku puzzles, supports our 

expectation:  

 

Figure 9 Average solving time for Models 1, 2, and 3 

 

The average time it took for Model 1 to solve the given problems was 6.21 ൈ 10ିସ s. The average time for 

Model 2 was 3.33 ൈ 10ିଷ s, and the average time for Model 3 was 0.984 s. This shows that Model 1 was 

about 1,500 times faster than Model 3, and Model 2 is about 300 times faster than Model 3. 

Figure 6 Model 1 
Correlation: 0.193 

Figure 7 Model 2 
Correlation: 0.568 

Figure 8 Model 3 
Correlation: 0.630 
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The final evidence for our conclusion is the following interesting example. The Sudoku puzzle below is 

introduced in Wikipedia as the “near worst case” puzzle for brute-force solver, which is just another name for 

back-tracking solving algorithm. [6]  

 

Solving this puzzle via different models yields an interesting result. Whereas this puzzle is solved in Model 

2 and Model 3 without any guessing, Model 1 had to make 6,045 back-tracks to solve it. (Compare this result 

with the fact that most of the conventional Sudoku puzzles are solved with less than 10 back-tracks) This 

example illustrates that a puzzle easy for men, plus Models 2 and 3, may be extremely difficult for Model 1. 

This buttresses our conclusion that Model 1 is the least realistic of all.  

 

Conclusions & Results 
From the results and discussions above, we know that Models 1, 2, and 3 mimic successively better an actual 

Sudoku player. Recall that the problem of achieving the First Priority has largely been reduced to finding a 

model which most closely resembles a human Sudoku player; in this respect, Model 3 seems to be the best fit. 

However, we must also take into account our Second Priority: to minimize the complexity of the algorithm. 

As we discussed earlier, analysis of complexities of the models shows that Model 3 has the highest complexity. 

In particular, Figure 9 indicates that given the data of a hundred conventional Sudoku puzzles, Model 1 and 

Model 2 performed 1,500 and 300 times faster than Model 3, respectively. Simply put, while it sure does 

closely follow a human Sudoku solver, Model 3 is just too slow. The best alternative is Model 2, which is both 

low in complexity and highly realistic. (Model 1 is not just realistic enough; recall what happened when Model 

1 tried to solve the puzzle in Figure 10) Hence we make our main conclusion: 

 
 

Therefore, we shall use Model 2 to complete our algorithm, which generates Sudoku puzzles of varying 

difficulty.  

Recall that the difficulty of a Sudoku puzzle is defined to be the sum of difficulty scores of techniques used to 

It is best to implement Model 2, the Procedural Sudoker Model, to make our difficulty level realistic and 

our overall algorithm less complex. 

Figure 10 The “Near-Worst” Puzzle for
Brute-force Solver 
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solve the puzzle. We divide the whole range of difficulty into four levels as follows: 

 Easy : ~600  

 Medium : 600~800  

 Hard : 800~1000  

 Very Hard : 1000~ 

These figures were chosen based on comparisons with the database of Sudoku puzzles from [5]. Now using 

our algorithm, we can make Sudoku puzzles of any desired difficulty. As an example, we include below Sudoku 

puzzles of various difficulty levels produced by our algorithm. For those who dare, enjoy! 

 

EASY: 

 

 

MEDIUM: 
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HARD: 

 

 

VERY HARD: 

 

Strengths and Weaknesses 
Strengths 

 We provided three different models, each appropriate for fast, balanced, and realistic applications. 

 All our works were based on mathematically and logically sound methodologies. 

 Metrics of difficulty of our models are extensible to a varying number of difficulty levels. 

 

Weaknesses 
 The logical basis for selecting difficulty scores of techniques (in Model 2) was rather weak, since we 

could not provide more than just an empirical justification. 

 Much larger database of puzzles, each with an average solving time of actual Sudoku players, is 

needed to strengthen our conclusions 

 

Possible Improvements 
Generalization to Grids of Other Sizes 

All of our models can easily be generalized to Sudoku grids of any other sizes. As an example, 4x4 and 16x16 

Sudoku grids are shown below. Since all models use fast back-tracking or polynomial time algorithms, varying 
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size of the grid affects no more than multiplication by a constant on the time complexities. 

 

 

Introduction of a Parametric Binary Search Algorithm 
  It is possible to introduce a parametric binary search algorithm in the process of making a Sudoku puzzle of 

desired difficulty. Solvability of the puzzle can be quickly determined by the back-tracking algorithm (Model 1), 

and difficulty can be measured only at sparse points, where a parametric binary search is used. This approach 

change linear time complexity into logarithmic time complexity, effectively reducing the amount of calculations. 

 

Appendix . Axiomatic Theory of Sudoku 
In the appendix we provide justifications for the techniques that we implemented in Model 2 and Model 3. To 

provide rigor, we take an axiomatic approach toward the game of Sudoku. We start with basic definitions: 

 

Definitions.  

i. N is the set {1, 2, 3, 4, 5, 6, 7, 8, 9}, and ܩ ൌ ܰ ൈ ܰ (G symbolizes Grid) 

ii. A column is a set of the form ሼ݅ሽ ൈ ܰ, for ݅ א ܰ 

iii. A row is a set of the form ܰ ൈ ሼ݆ሽ, for ݆ א ܰ 

iv. A box is a set of the form ሼሺ݅, ݆ሻ|݅, ݆ א ܵ}, where ܵ ൌ ሼ1, 2, 3ሽ, ሼ4, 5, 6ሽ, or ሼ7,8,9ሽ. 

 

Let ܱ ؿ :߮ and ܩ ܱ ՜ ܰ (߮ is a function). The set ܱ represents the cells of the Sudoku puzzle which is 

filled from the beginning; ߮ሺ݅, ݆ሻ for ሺ݅, ݆ሻ א ܱ represents the number inside the ሺ݅, ݆ሻ௧௛ cell. 

The Sudoku Rule and the Existence and Uniqueness of Solution are expressed as the following axiom: 

 

Axiom. There exists one and only one function ߪ: ܩ ՜ ܰ such that  

i. ߪ|ܱ ൌ ߮ 

Figure 11 4x4 and 16x16 Sudoku grids 
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ii. ߪሺܴሻ ൌ ܰ for every region ܴ  

 

The following definition is often useful: 

 

Definition. A subset M of N such that ߪሺܵሻ ك  is called a set of candidates for S ܯ

 

The following lemma is the cornerstone for the whole axiomatic theory. 

 

Lemma. (1-1 Lemma) ߪ|ܴ ׷ ܴ ՜ ܰ is 1-1 correspondence for every region R 

Proof. Obviously, ߪ|ܴ is an onto function. If ߪ|ܴ is not one-to-one, then clearly #ሺߪ|ܴሻ ൏ #ܴ ൌ 9; however 

9 ൌ #ܰ ൌ #ሺߪ|ܴሻ ൌ #ܴ. This shows that ߪ|ܴ is one-to-one, too.     □ 

 

Now we justify the techniques we mentioned above, each under the name of a Theorem. 

 

Theorem. (Single Position) ߪሺ݅, ݆ሻ ൌ ݊ if for a region R containing (i, j), there exists a set of candidates 

ܿܽ݊݀ሺܴ\ሼሺ݅, ݆ሻሽሻ for ܴ\ሼሺ݅, ݆ሻሽ such that ݊ ב ܿܽ݊݀ሺܴ\ሼሺ݅, ݆ሻሽሻ 

Proof. If there exists a set of candidates ܿܽ݊݀ሺܴ\ሼሺ݅, ݆ሻሽሻ for ܴ\ሼሺ݅, ݆ሻሽ such that ݊ ב ܿܽ݊݀ሺܴ\ሼሺ݅, ݆ሻሽሻ 

where R is a region containing ሺ݅, ݆ሻ, then we have ݊ ב ,ݔሺܴ\ሼሺߪ ሻሽሻݕ ൌ ,ݔሺܴ\ሼሺܴ|ߪ ሺܴሻܴ|ߪ ሻሽሻ. Sinceݕ ൌ ܰ, 

 ݊ א ܰ, and ߪ|ܴ ׷ ܴ ՜ ܰ is an 1-1 correspondence by the 1-1 Lemma, we have ߪሺݔ, ሻݕ ൌ ݊.  □ 

  

Theorem. (Candidate Line) Let ܴଵ,  ܴଶ be regions. If there exists a set of candidates ݀݊ܽܥሺܴଵ\ ܴଶሻ of 

ܴଵ\ ܴଶ such that ݊ ב ݊ ሺܴଵ\ ܴଶሻ, then݀݊ܽܥ ב ݊ ሺܴଵ\ ܴଶሻ andߪ א ሺܴଵߪ ת  ܴଶሻ. 

Proof. Since ߪሺܴଵ\ ܴଶሻ ؿ   ,ሺܴଵ\ ܴଶሻ݀݊ܽܥ

݊ ב ሺܴଵ\ ܴଶሻ݀݊ܽܥ  ֜  ݊ ב ሺܴଵ\ ܴଶሻߪ ൌ  .ଵሺܴଵ\ ܴଶሻܴ|ߪ

If ݊ ב ሺܴଵߪ ת  ܴଶሻ ൌ ଵሺܴଵܴ|ߪ ת  ܴଶሻ, then we must have ݊ א ଵ൫ܴଵ\ሺܴଵܴ|ߪ  ת  ܴଶሻ൯ ൌ  ଵሺܴଵ\ ܴଶሻ sinceܴ|ߪ

݊ א ଵሺܴଵሻܴ|ߪ ൌ ܰ and ߪ|ܴଵ ׷ ܴଵ ՜ ܰ is an 1-1 correspondence by 1-1 Lemma; this is a contradiction. Hence 

݊ א ሺܴଵߪ ת  ܴଶሻ.          □ 

 

Theorem. (Naked Pair, Triple, and Etc) Let ݀݊ܽܥሺܵሻ be a set of candidates for ܵ. For a region R, ܵ ك ܴ, if 

#ܵ ൌ ሺܵሻߪ ሺܵሻ, then݀݊ܽܥ# ൌ  .ሺܵሻ݀݊ܽܥ

Proof. If ߪሺܵሻ ് ሺܵሻߪ ,ሺܵሻ݀݊ܽܥ ൏ ሺܵሻߪ ሺܵሻ. Since݀݊ܽܥ ൌ ܴ|ߪ ሺܵሻ, S and N are finite sets, andܴ|ߪ ׷ ܴ ՜

ܰ is an 1-1 correspondence by the 1-1 Lemma, we have  #ߪሺܵሻ ൌ #ܵ ൌ  .ሺܵሻ; this is a contradiction݀݊ܽܥ#

Hence ߪሺܵሻ ൌ  □         .ሺܵሻ݀݊ܽܥ

 

Corollary. (Single Candidate theorem) Let ݀݊ܽܥሺܵሻ be a set of candidates for ܵ. For a region R, ܵ ك ܴ. If 

#ܵ ൌ ሺܵሻ݀݊ܽܥ# ൌ 1, then ߪሺܵሻ ൌ  .ሺܵሻ݀݊ܽܥ

 

Theorem. (Hidden Pair, Triple, and Etc) Let ܯ be a subset of ܰ ൌ ሼ1, … ,9ሽ. If there exists a set ݀݊ܽܥሺܴ\ܵሻ 

of candidates for ܴ\ܵ such that ݀݊ܽܥሺܴ\ܵሻ ת ܯ ൌ ܵ where R is a region and ,׎ ك ܴ, and if #S=#M, then 
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ሺܵሻߪ ൌ  ܯ

Proof. Since ߪሺܴ\ܵሻ ؿ   ,ሺܴ\ܵሻ݀݊ܽܥ

ሺܴ\ܵሻ݀݊ܽܥ ת ܯ ൌ ֜ ׎ ሺܴ\ܵሻߪ  ת ܯ ൌ ሺܴ\ܵሻܴ|ߪ ת ܯ ൌ  .׎

Since ߪ|ܴ ׷ ܴ ՜ ܰ is an 1-1 correspondence by the 1-1 Lemma, ߪ|ܴሺܴ\ܵሻ ׫ ሺܵሻܴ|ߪ ൌ ሺܴሻܴ|ߪ ൌ ܰ. Since 

ܯ ك ܰ and ߪ|ܴሺܴ\ܵሻ ת ܯ ൌ ܯ ,׎ ك ሺܵሻܴ|ߪ # ሺܵሻ. Note thatܴ|ߪ  ൌ #ܵ ൌ    Therefore it follows that .ܯ#

M= ߪ|ܴሺܵሻ ൌ  □         .ሺܵሻߪ
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