

Software Development

An Introduction to JSP Standard Template Library (JSTL)

By Jeff Heaton

Introduction

The JSP Standard Template Library (JSTL) is a very new component released by Sun for
JSP programming. JSTL allows you to program your JSP pages using tags, rather than
the scriptlet code that most JSP programmers are already accustomed to. JSTL can do
nearly everything that regular JSP scriptlet code can do. You may be wondering why we
need yet another HTML generation programming language.

JSTL was introduced was to allow JSP programmers to program using tags rather than
Java code. To show why this is preferable, a quick example is in order. We will examine
a very simple JSP page that counts to ten. We will examine this page both as regular
scriptlet-based JSP, and then as JSTL. When the count to ten example is programmed
using scriptlet based JSP, the JSP page appears as follows.

<html>
 <head>
 <title>Count to 10 in JSP scriptlet</title>
 </head>
 <body>
<%
 for(int i=1;i<=10;i++)
{%>
<%=i%>

<%
}
%>
 </body>
</html>

As you can see from the preceding example, using scriptlet code produces page source
code the contains a mix of HTML tags and Java statements. There are several reasons
why this mixing of programming styles is not optimal.

The primary reason that it is not optimal to mix scriptlet and tag-based code is
readability. This readability apples both to humans and computers. JSTL allows the
human programmer to look at a program that consists entirely of HTML and HTML-like
tags.

The readability of JSP scriptlet code does not just apply to human beings. The mixing of
scriptlet and HTML code is also hard for computers to read. This is particularly true of

HTML authoring tools such as Someone's Dreamweaver and Microsoft FrontPage.
Currently, most HTML authoring tools will segregate JSP scriptlet code as non-editable
blocks. The HTML authoring tools usually do not modify the JSP scriptlet code directly.

The following code shows how the count to ten example would be written using JSTL. As
you can see, this code listing is much more constant, as only tags are used. HTML and
JSTL tags are mixed to produce the example.

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
 <head>
 <title>Count to 10 Example (using JSTL)</title>
 </head>

 <body>
 <c:forEach var="i" begin="1" end="10" step="1">
 <c:out value="${i}" />

 </c:forEach>
 </body>
</html>

When you examine the preceding source code, you can see that the JSP page consists
entirely of tags. The above code makes use of HTML tags such <head> and
. The
use of tags is not confined just to HTML tags. This code also makes use of JSTL tags
such as <c:forEach> and <c:out>. In this article you will be introduced to some of the
basics of JSTL.

Installing JSTL

To use JSTL, you must have a JSP 1.2 (or higher) container installed. One of the most
commonly used JSP containers is the Apache Tomcat Web server. You can obtain a
copy of Tomcat from http://jakarta.apache.org/tomcat/. Using Tomcat alone will allow
you to use regular JSP scriptlet code. To use JSTL, you must install JSTL into Tomcat.
JSTL can be obtained from the same source as Tomcat. The main URL for JSTL is
http://java.sun.com/products/jsp/jstl/. To use JSTL, you must unzip the distribution files
and install them into the correct locations within Tomcat.

To properly install JSTL for use with Tomcat, follow these three steps:

1. Copy the JSTL JAR files to Tomcat's lib directory.

If you are using Windows, the likely location of your lib directory is C:\Program
Files\Apache Tomcat 4.0\webapps\ROOT\WEB-INF\lib. There are a number
of JAR files included with the JSTL release. You should copy each of these JAR
files to the Tomcat JAR directory.

2. Copy the JSTL TLD files to Tomcat's web-inf directory.

The web-inf directory is likely at this location: C:\Program Files\Apache Tomcat
4.0\webapps\ROOT\WEB-INF. If you examine the JSTL distribution files, you
should notice eight files that end with the TLD extension. All eight files should be
copied to your web-inf directory.

3. Modify the web.xml file to include the TLD files.

Finally, you must modify your web.xml, and add an entry for all eight of the tag
libraries that you added. This consists of adding <taglib> directives inside the main
<web-app> directive. The entries you should add are listed here.

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/fmt</taglib-uri>
 <taglib-location>/WEB-INF/fmt.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/fmt-rt</taglib-uri>
 <taglib-location>/WEB-INF/fmt-rt.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/core</taglib-uri>
 <taglib-location>/WEB-INF/c.tld</taglib -location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/core-rt</taglib-uri>
 <taglib-location>/WEB-INF/c-rt.tld</taglib -location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/sql</taglib-uri>
 <taglib-location>/WEB-INF/sql.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/sql-rt</taglib-uri>
 <taglib-location>/WEB-INF/sql-rt.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/x</taglib-uri>
 <taglib-location>/WEB-INF/x.tld</taglib -location>
 </taglib>

 <taglib>
 <taglib-uri>http://java.sun.com/jstl/x-rt</taglib-uri>
 <taglib-location>/WEB-INF/x-rt.tld</taglib -location>
 </taglib>

After completing the preceding three steps, you are now ready to test your installation of
JSTL. This can be done by creating a JSP page that uses JSTL. A very simple example
would be the "count to ten" example shown before. You should place your JSP file inside
the Webroot directory (C:\Program Files\Apache Tomcat 4.0\webapps\ROOT). Once
the Tomcat server is started, you should now be able to browse to
http://127.0.0.1:8080/count.jsp to see your page.

If you do not have JSTL installed correctly, there will likely be no error message. If JSTL
is not interpreting your tags, they will be passed through directly to the Web browser.
The Web browser will interpret these tags as unknown HTML tags. Most browsers simply
ignore the unknown HTML tags.

The JSTL Tag Libraries

JSTL is often spoken of as a single-tag library. JSTL is actually four tag libraries. These
tag libraries are summarized as follows.

l Core Tag Library— Contains tags that are essential to nearly any Web application.
Examples of core tag libraries include looping, expression evaluation, and basic
input and output.

l Formatting/Internationalization Tag Library— Contains tags that are used to and
parse data. Some of these tags will parse data, such as dates, differently based on
the current locale.

l Database Tag Library— Contains tags that can be used to access SQL databases.
These tags are normally used only to create prototype programs. This is because
most programs will not handle database access directly from JSP pages. Database
access should be embedded in EJBs that are accessed by the JSP pages.

l XML Tag Library— Contains tags that can be used to access XML elements.
Because XML is used in many Web applications, XML processing is an important
feature of JSTL.

In this article, we will only take a brief look at a few of the core tags. We will examine a
simple example that shows how to process data that a user enters into a form. Before
we examine this program, we must first see how JSTL handles expressions. Expression
handling in JSTL is accomplished by using the EL expression language, just as it is done
in JSP 2.0. In the next section, we will examine the EL expression language.

The EL Expression Language

One major component of JSP 2.0 is the new expression language named EL. EL is used
extensively in JSTL. However, it is important to remember that EL is a feature of JSP and
not of JSTL. JSP scriptlet code used with JSP 2.0 can contain EL expressions. The
following lines of code demonstrate using EL inside of JSP scriptlet code.

<p>
 Your total, including shipping is ${total+shipping}
</p>

As you can see form the preceding code, the values "total" and "shipping" are added and
displayed as the HTML is generated. These expressions can be used inside of JSTL tags
as well. One important requirement of JSTL 1.0 was that JSTL could be used with JSP
1.2. Because JSP 1.2 does not support EL, it is necessary to provide a few additional
JSTL tags that facilitate the use of EL. For example, if you wanted to use JSTL to display
the above expression, you would use the following code.

<p>
 Your total, including shipping is <c:out var="${total+shipping"/>
</p>

One of the requirements of JSTL was that it not require JSP 2.0 to run. By providing a tag
that is capable of displaying EL expressions, this requirement is met.

JSTL Example

We will now examine a simple example that uses JSTL. For this example, we will examine
a common procedure that is done by many Web applications. We will see how to POST a
form and process the results from that POST. A simple program that is capable of doing
this is shown below.

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<html>
 <head>
 <title>If with Body</title>
 </head>

 <body>
 <c:if test="${pageContext.request.method=='POST'}">
 <c:if test="${param.guess=='Java'}">You guessed it!

 </c:if>

 <c:if test="${param.guess!='Java'}">You are wrong

 </c:if>
 </c:if>

 <form method="post">Guess what computer language
 I am thinking of?
 <input type="text" name="guess" />

 <input type="submit" value="Try!" />

 </form>
 </body>
</html>

This simple Web page will display a form and ask the user to guess what computer
language the program is thinking of. Of course, the computer is thinking of "Java." This
page begins by checking to see if a POST was done. This allows both the form, and the
code that handles the form, to be placed on one single page. This is done with the
following JSTL if statement.

 <c:if test="${pageContext.request.method=='POST'}">

Here you can see that the <c:if> tag uses an EL expression to evaluate whether the
request method is POST. If data was posted to the page, the value that the user entered
for their guess is stored in a parameter named "guess". This is because "guess" was
specified as the name of the form input item. We must now check to see whether this
parameter is equal to the word "Java". This is done with the following <c:if> tag.

 <c:if test="${param.guess=='Java'}">

 You guessed it!
 </c:if>

As you can see, the body of the <c:if> tag is executed if the statement evaluates to true.
In this article, we began to examine the basics of how JSTL is installed and how it works.
There is much more to JSTL than the small example we examined in this article.

The core tags of JSTL also include tags for looping, iteration, and variable handling. By
using these tags, you can iterate through collections, access user session data, and
perform other core tasks that all Web applications perform. In addition to the core tag
library, the XML, database, and formatting tag libraries are also provided for more
advanced uses.

Conclusions

This article showed you some of the differences between the JSTL and standard JSP
scriptlet programming. As you can see, JSTL allows a more consistent programming
environment by allowing both HTML and procedural code to be expressed as tags. JSTL
and tag libraries represent a new method of programming Web pages.

JSTL does not provide everything that a programmer would need to create a full-featured
Web application. Further, some procedures that could be programmed in JSTL is often
best not programmed in JSTL. One perfect example of this is the database JSTL tags.
Except for very small Web applications, it is generally considered bad programming
practice to embed actual database commands into a JSP page. The proper location for
such program code is in Java beans and EJBs that will be used by your Web application.
For such routines, you may consider creating your own tag libraries. This way, your JSP
pages can use JSTL to perform basic programming procedures that are not unique to
your business. You should implement your own tag libraries to implement components,
which are unique to your business, which will be used by your Web application.

JSTL allows you to create a very consistent programming JSP-based application. This is
done not just through JSTL, but through a combination of JSTL, your own custom tag
libraries, and an underlying database. Understanding each of these components allows
you to deploy an effective Web application.

Author Bio

Jeff Heaton is the author of the upcoming JSTL: JSP Standard Tag Library (Sams, 2002).
Jeff works as a software designer for Reinsurance Group of America. Jeff has written
three books and numerous magazine articles about computer programming. Jeff may be
contacted through his Web site http://www.jeffheaton.com.

August 15, 2002

EarthWeb is a division of INT Media Group, Incorporated.
Copyright 2002 INT Media Group, Incorporated All Rights Reserved.

Legal Notices, ?A HREF="http://www.internet.com/corporate/reprints.html#Licensing" CLASS="foot">Licensing, Reprints
& Permissions, ?A HREF="http://www.internet.com/corporate/privacy/privacypolicy.html" CLASS="foot">Privacy Policy

