
Peter Elsea 2004 1

Visualization of Audio
Visualization is a type of video synthesis that generates images from audio input. The
effects of this can be tedious or sublime.

In a typical approach, audio information is mapped to visual attributes of simple shapes.
This is possible with a few simple mechanisms that can be applied to a wide range of
images. It is possible to derive the following types of information from an audio signal:

• Amplitude. This is related to the loudness of the sound. To match perception of the
listener, amplitude must be averaged over a brief period. Slightly differing averaging
times can produce quite different effects.

• Frequency. This is related to the pitch of the music. Accurate pitch extraction is only
possible with simple sounds, but some degree of error is tolerable in most pitch to
image mappings.

• Waveform. This is one way of representing timbre. Waveforms may be drawn
directly on the screen, but aside from a general association between the size of the
waveform loops and loudness, it is difficult to link sound quality with a particular
waveform.

• Spectrum. Another representation of timbre, spectrum produces a set of values that
can control many visual parameters or objects. Spectrum displays can convey timbre
with some accuracy (after practice), and if detailed enough can suggest pitch.

The following image attributes can be controlled by simple values:

• Size.
• Color.
• Shape.
• Position.

Our visualization toolkit will use any of these types of audio information to control any
of the image attributes.

Amplitude analysis
Amplitude is easy to detect with the average~ object, which calculates the mean sample
value over a period determined by the argument (in ms). The update period should be
adjusted to fit the input signal. Low frequency material may fool average~ if the update
rate is too fast. 20 hz has a period of 50 ms. There's a sort of reverse Nyquist going on
here-- in order to accurately average out low frequency tones, you must capture the entire
thing, so low update rates are most accurate. Of course too low a rate will miss some
detail of transients. In any case, the screen refresh rate of 60 hz makes measuring any
quicker than every 30 ms pointless. In practice, updating 5 times a second is plenty .

Peter Elsea 2004 2

Average~ has three modes:
• Bipolar just gives the mean—for most signals, this is 0, as they run both negative

and positive.
• Absolute is the mean of the absolute values. For a sine wave with amplitude of

1.0 this will be 0.67.
• RMS is the root mean squared of the values, which follows the sensitivity of the

ear reasonably well. For a sine wave of amplitude 1.0 this will be 0.707.

Avg~ is a simpler version of average that only produces an output when banged. It is
limited to absolute response, but may be easier to synchronize with a video generator
since its output is a float rather than a signal.

Sometimes we want to convert the output of average~ to dB. In Max version 4.5 there
are both atodb and atodb~ objects. atodb~ works at signal rate and is appropriate for
building dsp processors such as compressors. Atodb will work for video synthesis, since
we only do a few calculations per frame. Both implement the famous dB formula, which
in an expr object is

20*log10($f1)
There is one problem with this expression: if the input is zero, the value returned by
log10 is not defined. When that happens, atodb will output -inf, which may mess up
processing somewhere down the patch. If we add 0.00001 to the output of average~
this problem is avoided, and we have the extra bonus of a predictable bottom to the range,
in this case -100 dB. Using 0.0001 as the fudge factor will give -80 as the low point,
which may be more useful.

Figure 1 shows a simple patch that uses the amplitude of a signal to control the size of a
picture. Jit.lcd will be the heart of most drawing, since it behaves much like a typical
bitmap display. Later we will look into the OpenGL environment. Jit.lcd is almost
identical to the plain lcd. The only significant difference is the lack of sprite support, but
since sprites just stored drawing commands, they won’t be missed much.

Figure 1. uses the drawpict feature of jit.lcd.. First, an image file is loaded into a matrix
named “face” with the importmovie command. This could be any type of image
recognized by QuickTime.

The number supplied by avg~ is used to set the arguments for drawpict. These arguments
indicate the horizontal coordinate of the top left corner, the vertical coordinate of the top
left corner, the width of the drawing and the height of the drawing.

The alpha layer is ignored by drawpict. With line drawings similar to the one shown, you
can make composite images by setting the penmode to 1 (or), but usually you will have
one jit.lcd per drawing and combine the outputs with other jitter techniques.

Peter Elsea 2004 3

Figure 1. Amplitude controlling image size

Drawing directly to jit.lcd
Figure 2 does more complex drawing. It’s 64 circles drawn touching at the center of the
image. Any image that is radially symmetrical like this one is best drawn with polar
coordinates. The metro drives the whole process, starting with the amplitude
measurement and clearing the lcd.

The uzi generates 64 numbers, which are translated into angles (in radians) for the
poltocar object. The amplitude (scaled from the original values of > 1.0) is banged into

Peter Elsea 2004 4

the radius input of the poltocar, which produces an origin in Cartesian coordinates for
each circle.

Figure 2.

The arguments to frameoval are the rectangle that encloses the circle. To get these from
the origin and move to the center of the lcd, the arguments are calculated thus:

• Left is origin X + center X – radius
• Top is origin Y + center Y – radius
• Bottom is origin X + center X + radius

Peter Elsea 2004 5

• Right is origin Y + center Y + radius

The dynamics of this patch are pretty simple. The image expands as the music gets loud,
pretty much pulsing to a beat1. A more subtle effect is produced by keeping the circles
constant in size and moving the origins. Here’s a modification to the upper part of the
patch of figure 2:

Figure 3.

The automatic radius control has been removed and replaced by a user control.
The number of circles has been cut to 32. The amplitude measurements are now gathered
into a list, expanded into a retrograde (by lswap, giving an ordering of 0 1 2 3 2 1 0) and
via unlist used to give varied origins for the circles.
Results are shown in figure 4.

1 This can actually make some people sick if not used carefully.

Peter Elsea 2004 6

A B

C D

Figure 4.
These also appear to spin, because 7 measurements are used to produce the 32 circles. If
you look at 5C, you will notice a lone circle at the right side, where all the other outer
circle are in pairs. This anomaly precesses around the image.

We can add even more complexity by only clearing the jit.lcd every fourth time.

Figure 5.

This persistence effect can also be achieved with feedback. To find more about drawing
in LCD, look at the Max & Graphics tutorial.

Peter Elsea 2004 7

Color considerations in jit.lcd
We can add color to the frameoval message just by tacking rgb values to the arguments.
Figure 6 shows the principle of synchronizing the color change with the uzi so each circle
has a unique but stable color.

Figure 6. Adding color to jit.lcd drawing

The patch above the pack is the same as figure 2. The index value from the uzi has been
used to peek into a swatch object for a cheap conversion from hue to rgb color values.
The expression forces the index to repeat 0 to 15 four times and multiplies this by 8 to
increase the range of color change. That produces colors that balance through the image.
The number box allows tweaking the color range. Note that the background of jit.lcd has
been set to black with the message brgb 0 0 0.

It’s not a good idea to include graphic UI objects in jitter intensive patches if it can be
helped. Even if the object is in a closed window, it must be polled for possible updates
which takes a few clock cycles that may be needed elsewhere. If we accept the same
restriction used here (leaving saturation at 255 and luminance at 128) we can reduce the
process to a single matrix lookup:

Peter Elsea 2004 8

Figure 7.

The left side of figure 7 is in the master patch, and initializes the matrix colors with the
same values found in swatch. All that is needed to extract colors is the operation on the
right, which will be quite fast. (jit.hsl2rgb uses float values, so 1.0 is equivalent to 255 in
swatch.)

Mapping parameters like pitch to color is a philosophical point that has been debated for
ages. One common choice is to use blue for low values and red for high ones
(scientifically backwards, but emotionally satisfying). We can do that easily enough by
manipulating the pointer into the colors matrix, or we can design out own color space.
To understand how this is done, consider the color transition tables for swatch:

Figure 8.

Peter Elsea 2004 9

These three curves represent the values for red, green and blue as hue is increased from 0
to 255. There are seven2 inflection points, which correspond to the six primary and
secondary colors. The top and bottom of the graph are the boundary values of 0 or 255
for full saturation and half level. Other levels of saturation and luminance will change the
boundary values—saturation is the distance between boundaries and level is the average
of the two.

If we want to redesign the color space, all we need to do is move the corner points
around.

Figure 9.

In figure 9, hue (expressed as an angle in degrees) is used to read values from Linterp
objects for red, green, and blue. The numbers have been reversed and rotated so the
gamut will run from blue to violet. If we use a higher low boundary, the colors will
become pastels, and if we lower the top the colors will be darker.

Pitch Driven Drawings
Pitch extraction is tricky business. There are a couple of third party pitch extractors like
fiddle~, but the best graphics results will happen when pitch is derived from Midi data.
Once pitch is known, mapping to graphic elements is very straightforward. Here is a
patcher that triggers a short animation with each note.

2 Six really, since it should be circlular.

Peter Elsea 2004 10

Figure 10.

This has many elements from figure 2. Drawing is triggered by the notein object. The
pitch and velocity are used to set the origin for the figure, with pitch mapped left to right
and velocity to height. Velocity also sets the target for a line, in a manner that should be
familiar from synthesis in MSP. The line sets the radius of the circle, which is drawn by
uzi and poltocar as before. The effect is a little explosion of dots that will be wider on
high velocity notes. Note that the uzi is turned on by receipt of a note and turned off
when the line hits its end. This makes the lcd go blank after the explosion is finished.

Peter Elsea 2004 11

To draw multiple notes at once, we use poly~.
The drawing mechanism is converted into a subpatch as in figure 11.

Figure 11.

Here the note data is treated exactly the same way, with the addition of a random color
that will be determined when the patcher is opened. The bangs from the metro in the
main patch are brought in via the ticks receive object. Note that the toggle used to gate
the ticks to uzi can also serve to provide busy status to thispoly~ .

Figure 12 shows the enclosing patch. There’s very little change here. The midinote
message to poly~ will trigger drawing from the first available subpatch.

Peter Elsea 2004 12

Figure 12.

Peter Elsea 2004 13

Drawing Waveforms
To show a waveform in a jitter window, we need a simple recording setup:

Figure 13.

The buffer named short will get 40 ms worth of signal every time a bang arrives from
some distant metro. The metro will be driving the jitter display:

Figure 14.

There are four distinct actions triggered by the metro in figure 14. First jit.lcd is cleared.
Then the contents of the makelines subpatcher (figure 15.) come into play. The uzi looks
(via peek~) at the first 360 samples in the buffer~ named short. These will range from
–1.0 to 1.0, so they are multiplied by 120.0 and added to 120 to fill the display. The
index of each sample and the modified value will be the endpoint of a lineto command.

Peter Elsea 2004 14

Note that the command is changed to moveto for the first sample. This suppresses a line
from the last sample on the right to the first on the left.

Once all of the drawing is done, the jit.lcd is banged to show up in the window, and then
the record~ is reset to grab the next chunk of waveform.

Figure 15.

A plain waveform is not really the most interesting thing to watch for long periods of
time. Some simple manipulations of the image are more artistically engaging. Figure 16
shows a version of makelines that draws the wave in a solid form:

Figure 16A.

Peter Elsea 2004 15

Figure 16B.

This can be made symmetrical by changing the way the uzi scans.

Figure 17A.

Figure 17B.

Figure 18 shows how to add a bit of color. The hue2RGB subpatcher is the same as figure
9, with a pack on the outputs.

Peter Elsea 2004 16

Figure 18A

Figure 18B

Polar waves

Polar display of waveforms provides an interesting alternative to the oscilloscope style.
The Makelines subpatcher is modified so index from the uzi is converted to radians. This
will provide the angle for a cartopol object and the value from peek~ will be modified to
give a radius.

Peter Elsea 2004 17

Figure 19
Since the peeked values have 60 added, the basic line with no signal is a circle. When
audio comes in we get rapidly changing butterfly shapes.

Figure 20

Peter Elsea 2004 18

Some additions will turn this into a solid shape with colors

Figure 21
Here’s the modified makelines patch:

Figure 22.

Peter Elsea 2004 19

X Y Waveforms
Two related but somewhat different waveforms (say a stereo pair) can be displayed in
the so-called XY format. One wave provides the X or width value and the other provides
the Y for height. The most famous examples of this are the Lissajous figures, which are
described in detail in the tutorial “The Art of Lissajous.”

To get an XY display, we first modify the recording patch to do stereo:

Figure 23.

We also change the display calculator to use the left channel instead of the uzi index for
the X value.

Figure 24.

Initial results are likely to be disappointing, as figure 25 suggests.

Peter Elsea 2004 20

Figure 25.
This is the basic scribble. It’s quite dynamic, and will fill the screen sometimes, but with
most material will stick close to the diagonal, and ultimately becomes tedious. It can be
helped with coloring techniques and various jitter processes.

We can do better by using classic Lissajous figures for the basic shape. This is done by
adding a pair of cycles to the recording system.

Figure 26.

The frequency, amplitude and phase controls will be manipulated to generate the figures.
The left and right input signals are added to these and will turn the smooth curves of
Lissajous into something more wiggly.

Peter Elsea 2004 21

Figure 27A 1:1 with no audio 27B 1:1 , audio added to Y

27C 1:2 with audio added to Y 27D 5:1 with audio on X

The stills don’t really do these justice. With moderate amounts of audio added, the
Lissajous figures acquire extra depth and dynamic action.

Spectrum Driven Images
The spectrum of an audio signal can also be used to generate images. One approach is to
take a fast Fourier transform with the fft~ and put that into the same process that shows
waveforms.

Figure 28.

Peter Elsea 2004 22

This is right out of the fft~ help file. The cartopol~ converts the fft data into magnitude
and phase form. Note that we record the fft into the left channel of a very short buffer~
and the fft index into the right channel. Displaying this is very much like the XY
waveform technique. The left channel provides amplitude and the right channel assures
that the sample will be placed in the proper spot on the screen.

Figure 29.
A couple of things should be mentioned here. There are 530 samples in a 12 ms buffer~,
and the Uzi must look at all of them to get a complete display. In figure 29, the index is
multiplied by two (with the pensize for jit.lcd is set to 2x2) to spread the shape out a bit.
To see why this is desirable, look at figure 30 which shows the entire thing.

Figure 30
You can see there’s a little bit of action at each end, but the middle is a wasteland.
Everything above bin number 60 or so is always so close to 0 that it won’t show, and bins
above 256 are a reflection of the first half of the fft.3

3 If this is news to you, you may want to look at the Fourier Notes tutorial.

Peter Elsea 2004 23

Figure 31 shows the doctored version:

Figure 31A 31B
Version A is produced by the patcher shown in figure 29. Version B displays both ends
of the fft chopping out the middle. Figure 32 does this.

Figure 32.

Peter Elsea 2004 24

A radial display of the fft can be interesting:

Figure 33

Here is the patch that makes it happen:

Figure 34
The fft index is multiplied by 0.98171 which divides the circle into 64 spokes. This
means 8 different points of the fft will be combined on each spoke. The reflection points
will give the image a bit of symmetry.

Peter Elsea 2004 25

Deriving Spectra with a Filter Bank
An alternate approach to generating images from spectra of sounds is to use the fast fixed
filter bank. This gives an effect like the old analog color organs, where a set of band pass
filters would be used to power colored light bulbs. Here’s an ambitious example:

Figure 35.

The broad outlines of the process are show by the sub patchers—the incoming audio is
analyzed by a filter, and the filter output generates shapes that are drawn in the jit.lcd and
appear in the jit.pwindow.

This filter is daunting, but simple in concept:

Peter Elsea 2004 26

Figure 36.
The fffb~ object is working as a half octave filter in this example. The output of each
filter section is averaged over the frame period to give a value that will determine the size
of the associated object. The filter can have many more bands. I usually have 18. Ltocoll
will pack each value into a list after an index number that identifies the filter section.
These two item lists are used by the light organ subpatcher.

The light organ section contains a subpatch called places :

Figure 37 Lightorg Places subpatcher

This all calculates a center point and size for each object. The object is constructed in the
drawshapes subpatch, which could hold the code to draw anything. In this case, star
shapes are drawn by the patch in figure 38.

Peter Elsea 2004 27

Figure 38.

This calculates the five corners of a pentagram. The size value will arrive first, and is
used as the radius of the corner points. (The angles are preset. A fancier version would
allow the rotation of the images.) This index will be4 the next arrive, and is used to pick a
color. Finally the center coordinates turn up and get added to all five points. The
framepoly command is a convenient way to draw complicated shapes.

Further….
This is just the a sampler of visual effects that can be generated from live sounds. These
graphics are deliberately simple, but they can easily be expanded by replacing the
drawing modules. They are also excellent sources for jitter effects like rotated feedback.
After a bit of experimentation, you will quickly develop a library of your own techniques.

