Public Beta 1

Flex Tutorials

Public Beta 1

Trademarks

1 Step RoboPDE ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flash Video Encoder, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder,
Macromedia, MXML, RoboEngine, RoboHelp, Robolnfo, RoboPDE Roundtrip, Roundtrip HTML, Shockwave, SoundEdit,
Studio MX, UltraDev, and WebHelp are either registered trademarks or trademarks of Adobe Systems Incorporated and may be
registered in the United States or in other jurisdictions including internationally. Other product names, logos, designs, titles,
words, or phrases mentioned within this publication may be trademarks, service marks, or trade names of Adobe Systems
Incorporated or other entities and may be registered in certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Adobe Systems Incorporated, and Adobe
Systems Incorporated is not responsible for the content on any linked site. If you access a third-party website mentioned in this
guide, then you do so at your own risk. Adobe Systems Incorporated provides these links only as a convenience, and the inclusion
of the link does not imply that Adobe Systems Incorporated endorses or accepts any responsibility for the content on those third-
party sites.

© 2006 Adobe Systems Incorporated. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Adobe Systems Incorporated. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software
with which this manual was provided may print out one copy of this manual from an electronic version of this manual for
the sole purpose of such owner or authorized user learning to use such software, provided that no part of this manual may
be printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management:

Writing:

Editing:

Production Management:
Media Design and Production:

Special thanks to

First Edition: January 2006

Adobe Systems Incorporated
601 Townsend St.
San Francisco, CA 94103

Public Beta 1

Contents

Introduction i i it 7
Chapter 1: Basic: CreateaProject 9
Chapter 2: Basic: Build an Application 13
Setup your project.o e 13
Learn about buildingin FlexBuilder. 14
Build and runan application........... i 15
Chapter 3: Design: Create a Constraint-based Layout 19
Setupyourproject. 19
Learn about constraint-based layoutsinFlex 20
Insert and positionthecomponents............................. 20
Define the layoutconstraints 28
Chapter 4: Design: Use View States and Transitions.......... 33
Setup your project.o 34
Designthebasestateci i 34
Designaviewstatecc i 37
Define how users switch to theviewstate 40
Createatransition i 42
Chapter 5: Design:UseBehaviorsccvvvuunn. 45
Setupyourproject....... ... 46
Createabehavior........ i 46
Invoke an effect from a different component..................... 48
Createacompositeeffect 50
Chapter 6: Design: Use List-based Form Controls........... 53
Setup your project.o e 54
Insert and position formcontrols. 54
Populatethelist i 57
Associate values tolistitems.......... oL 59

Public Beta 1

Chapter 7: Design: Create a Custom Component............. 61
Setup your project e 62
Create a test file for the custom component 62
Create the custom componentfile............... 64
Design the layout of the custom component...................... 67
Define an event listener for the custom component 68
Use the customcomponentcc i, 70
Chapter 8: Data: Retrieve and DisplayData................. 73
Setupyourproject ... 74
Review your access to remotedatasources...................... 74
Insert and position the blog readercontrols. 75
Inserta HTTPServicecomponent............................... 78
Populate a DataGridcontrol 80
Displayaselecteditem.......... 82
Createadynamiclink 83
Chapter 9: Data: Use Web Services. 85
Setupyourproject ... 86
Review your access to remote datasources...................... 86
Review the APl documentation 87
Insert and positioncontrols............ i 87
Insert a WebServicecomponent, 90
Populate the DataGridcomponent 91
Createadynamiclink......... i i 93
Chapter 10: Programming: Use an Event Listener............ 95
Setupyourproject ... 96
Createasimpleuserinterface 96
Writeaneventlistener 98
Register the event listenerwithMXML. 99
Register the event listener with ActionScript 100
Chapter 11: Enterprise: Use the Data Service 103
Beforeyoubegin......... ... 103
Build a distributed application with the ActionScript object adapter 104

Configure a Data Service destination. 104

Createanew MXMLfile 105

Createtheuserinterface........... 105

Import the required ActionScriptclasses...................... 106

Createvariables. 106

Public Beta 1

Initialize the application 106
SEeNA NOtES ..ot e 107
Handlereturneddata it 108
Handledatachangesciiiiiiiii i, 108
Verify that yourcodeiscorrect...............ot 108
Run the completed notes application 109
Build a distributed application with the Java adapter............... m
CreateanewMXMLfile...... m
Createtheuserinterfaceo, 112
Import the required ActionScriptclasses...................... 12
Createvariables i 113
Bind the ArrayCollection object to the DataGrid 13
Fill the ArrayCollection object withdata....................... 14
Verify that your codeiscorrect............................... 15
Run the completed contact application 16
View the server-side Data Service destination................. 117
View theassemblerclass..............coiiiiiii .. 119
Viewthesyncmethod. 120
Chapter 12: Enterprise: Use ColdFusion
Event Gateway Adapterc.ciiiiiiiiiiiiia. 123
Set up your development environment L. 123
Create the Flex application............. 125
Create the ColdFusion application.............................. 126
Testtheapplication i 127

Public Beta 1

Public Beta 1 Public Beta 1 Public Beta 1 Public Beta

Introduction

This book includes several step-by-step tutorials designed to teach you the fundamentals of
Flex, including how to create rich user interfaces with contraint-based layouts and view states,
and how to access data. By completing these hands-on lessons, you'll not only quickly acquire
the basics, you'll also learn how to use Adobe Flex Builder 2, the Eclipse-based, integrated
development environment for Flex.

The lessons are targeted toward beginner to intermediate-level developers who want to get up
to speed quickly. Each lesson focuses on a specific Flex feature or topic and takes
approximately 10-20 minutes to complete, depending on your experience.

This book is not a comprehensive manual detailing all the features of Adobe Flex. For in-
depth information about Flex, see the full documentation in Flex Builder help or on the

Adobe Labs website at http://labs.adobe.com.

http://labs.adobe.com

Public Beta 1 Public Beta 1 Public Beta 1 Public Beta

8 Introduction

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 8

Basic: Create a Project

This lesson introduces you to the concept of projects in Adobe Flex Builder 2 and shows you
how to create projects. In Flex Builder, all Flex applications are contained within projects.
Before building a Flex application in Flex Builder, you must create a project. When you create
a project in Flex Builder, a mainapplication file is created for you. You can add resources to a
project, such as custom MXML component files, ActionScript files, and other assets that
make up your Flex application.
1. Start Flex Builder and select File > New > Flex Project from the main menu.
If you have the plug-in version of Flex Builder and you have a non-Flex-Builder
perspective open in Eclipse, select New > Other > Flex > Flex Project.

The New Flex Project wizard appears.

73 New Flex Project

Create a Flex project
Specify whether the project will be using Flex Enterprize Services. B

Will this project be using Flex Enterprise Services?

" Yes, but T want Flex Builder to compile my application locally.

" Yes, and I want to compile my application on the server when the page is viewed.

= Back I Mext = I Einish | Cancel |

The wizard guides you through the steps of creating a project.

95

Public Beta 1 Public Beta 1 Public Beta 1 Public

2. Because you won’t be using a Flex server in this tutorial, select the No option and click

Next.

The next screen asks you to specify the name of the project and the location to store its

files.
3. In the Project Name text box, enter Lessons.
This is the name of your project. When you create a project, Flex Builder generates a main

Flex application file based on the project name. Because a main application file uses the
same name, you can’t use spaces or special characters for the project name.

4. In the Project Location text box, make sure the location for your project files is as follows:
C:\Documents and Settings\your_user_name\My Documents\Flex\Lessons
Flex Builder will create this folder for you.
The default location for new projects is the Flex folder in the My Documents folder.

5. Ensure that the Main Application File text box specifies Lessons.mxml.
This option determines which MXML file in your project is the main application file
when compiling.

The New Flex Project wizard should look as follows:

3 New Flex Project

Create a Flex project
Specify the location of the files in the new praject.

Project name: | Lessons
Project location: | C:\Documents and Settings'myusername My Documents'\Flex\Lesson Browse...
Main application file: | Lessons. mxm Browse...

L

< Back Next > | Finish | Cancel

96 Basic: Create a Project

Public Beta 1 Public Beta 1 Public Beta 1 Public

6. Click Finish.

Flex Builder creates a new project and displays it in the Navigator view.

T Navigator 23 =0
= <)=='=> =
= @ Lessans
+-[= bin

+-[= html-template
@ Lessons, mxml

The New Flex Project wizard automatically generates project configuration files, the
output (bin) folder where your compiled SWF file will be placed, and the main
application file, Lessons.mxml.

In this lesson, you learned how to create a project in Flex Builder. To learn more about
projects, see Chapter 5, “Working with Projects,” on page 51.

97

Public Beta 1 Public Beta 1 Public Beta 1 Public

98 Basic: Create a Project

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 9

Basic: Build an Application

This lesson shows you how to build and run a Flex application in Adobe Flex Builder.

In this tutorial, you'll complete the following tasks:

SetUp YOUr Project. . ..o 99
Learn about buildingin FlexBuilder. o i i 100
Buildand runanapplication. 101

Set up your project

Before you begin this lesson, perform the following tasks:

m Ifnotalready done, create the Lessons project in Flex Builder. See “Basic: Create a Project”
on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

) Flex Development - Lessons.mxml - Macromedia Flex Builder 2
File Edit Source Mavigate Search Bafi==# Run Modify Window Help

Open Proiect
Ie-Hel&E -0 P00
5. Navigator &3 =8
3 Build All Ctrl4B
1 = =
¢ B% Build Project =

= b Lessons Build Working Set L4

R =d Clean...

...... a Lessons.mxml w

ProlS‘Srﬁes

99

Public Beta 1 Public Beta 1 Public Beta 1 Public
_earn about building in Flex Builder

Before you build an application in Flex Builder, it’s helpful to review some key concepts.

By default, the standalone configuration of Flex Builder automatically builds—or compiles—
the application when you add a file to the project or when you save a project file after editing
it in Flex Builder. Automatic builds are disabled by default in the plug-in configuration of
Flex Builder, but you can enable this option by selecting Project > Build Automatically.

After building an application, Flex Builder places the resulting Flash file (SWF) into the bin
folder, which is the default folder in which compiled files are placed.

"a Navigator X =08
e
= <)===>
= @ Lessons
S =

@ Lessons.html

Lessons.swf

@ Lessons-debug.html

Lessons-debug.swf
@ Lessons, mxml

Flex Builder also generates an HTML wrapper file for the SWF file, in case you want to run
the SWF in a web browser.

The Flash Player 8.5 browser plug-in is required to run Flex 2 applications in a browser.

310N

When you create a project, Flex Builder creates a main application file and names it based on
the project name. An application file is an MXML file with an <mx:Application> parent tag.
Your project can have several application files, but the main application file is the file Flex
Builder compiles into the application SWF file during builds. You can designate another
application file as the main application file to be built, but it’s good practice to have only one
application file per project.

Now that you understand the basic concepts of building applications in Flex Builder, you can
create a small application in Flex Builder, and then build and run it.

For more information about how projects are built, see “Understanding how projects are
built” in the “Building Projects” chapter of Using Flex Builder 2.

100 Basic: Build an Application

Public Beta 1 Public Beta 1 Public Beta 1 Public
Build and run an application

When automatic builds are enabled, Flex Builder automatically builds your application when
you add a file to the project or when you save a project file after editing it in Flex Builder.

The steps in this section assume you created the Lessons project and that automatic builds are
¥
enabled. For more information, see “Set up your project” on page 99.

1. Double-click the Lessons.mxml file to open it in Flex Builder.

2. Switch to the editor’s Code mode by clicking the Code button in the document toolbar.

A QuickStart.meml X

42| Code § 4] Design c
<? version="1.0" ern
< plicat,ic:n xmlns:

<mx:Canvas width="

Flex Builder inserted the following code in the Lessons.mxml file when it created it:

<?xml version="1.0" encoding="utf-8"7>

<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
lTayout="absolute">

</mx:Application>

3. Enter the following tag between the opening and closing <mx:Application> tags:

<mx:Label text="Welcome to Flex!" mouseDownEffect="WipeRight" x="20"
y="20" />

This tag inserts and positions a Label control in the layout.

=| | You can preview the control by clicking the Design button in the document toolbar
T (see the image in step 2).

4. Save the file.

Flex Builder automatically builds the application when you save a file. You can monitor
the build progress with the indicator at the bottom-right corner of the window.
Otherwise, you can keep working.

Building workspace: (0%) (1] [N=n

Build and run an application 101

Public Beta 1 Public Beta 1 Public Beta 1 Public

5. After the build is complete, click the Run button in the toolbar to start the application.

™) Flex Development - Lessons.mxml - Macror
File Edit Source Mavigate Search Project Run

Iog-Helm % - Qi+
5. Navigator S@l = [Run Lessans

: -4}|<«=:{>VE|C0deE
ﬁLessons <?xml

A browser opens and runs the application.

kStart - Mozilla Firefox
Miew Go Bookmarks Tools Help

N L T [T - a—

The browser must have Flash Player 8.5 installed to run the application. You have
the option of installing this version of Flash Player in selected browsers when you
install Flex Builder. To switch to a browser with Flash Player 8.5, select Window >
Preferences > General > Web Browser.

310N

6. Click the “Welcome to Flex!” text to see the WipeRight effect.

To learn more about effects, do the lesson in Chapter 13, “Design: Use Behaviors,” on
page 133, or see Chapter 22, “Using Behaviors” in Developing Flex Applications.

102 Basic: Build an Application

Public Beta 1 Public Beta 1 Public Beta 1 Public

You can deploy your application to a web server by uploading the SWF file generated by Flex
Builder. You can also upload its HTML wrapper file (Lessons.html) to run the SWF in a web
browser. The files are located in the bin folder.

“a- Navigator X =0
Bg~
= @ Lessons
=172 bin
@ Lessons.html

(@ Lessorlydebug.himl
Lessons-debug.swf
@ Lessons, mxml

In this lesson, you learned how to build and run a Flex application in Flex Builder. To learn
more about this topic, see “Building Projects” on page 189.

Build and run an application 103

Public Beta 1 Public Beta 1 Public Beta 1 Public

104 Basic: Build an Application

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER M

Design: Create a

Constraint-based Layout

This lesson shows you how to create a constraint-based layout with Adobe Flex Builder. A
constraint-based layout ensures that the components in your user interface adjust
automatically when a user resizes the application window.

In this tutorial, you’ll complete the following tasks:

St UP YOUI PrOJECt. . ottt e e 107
Learn about constraint-based layoutsinFlex 108
Insert and positionthe components............. i i 108
Definethe layout constraints. i 116

Set up your project

Before you begin this lesson, perform the following tasks:

m Ifnotalready done, create the Lessons project in Flex Builder. See “Basic: Create a Project”
on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

€1 Flex Development - Lessons.mxml - Macromedia Flex Builder 2
File Edit Source MNavigate Search Bag==# Run Modify Window Help

In-Bal@E#%-0q N
5. Navigator &3 =8
=< (54 Build Al Ctrl+B
¢ B% Build Project =
= - Lessons Build Working Set 4
o ? bin Clean...
o a Lessons. maml Build Automatically
Prolgsrﬁes

107

Public Beta 1 Public Beta 1 Public Beta 1 Public

Learn about constraint-based layouts in
Flex

When a user resizes a Flex application window, you want the components in your layout to
adjust automatically. A constraint-based layout adjusts the size and position of components
when the user resizes the application window.

To create a constraint-based layout, you must use a container with a Tayout property set to
absolute (Tayout="absolute"). This property gives you the flexibility of positioning and
sizing components with absolute positioning while also providing you with the ability to set
constraints that stretch and move the components when the container is resized.

The Canvas container does not require the Tayout="absolute" property because its
layout is absolute by default.

For example, if you want a TextInput text box to stretch when the user makes the application
window wider, you can anchor the control to the left and right edges of the container so that
the width of the text box is set by the width of the window.

In Flex, all constraints are set relative to the edges of the container. They cannot be set relative

to other controls.

Now that you understand the basic concepts, you can create a simple layout and define layout
constraints for it in Flex Builder.

Insert and position the components

The first step in creating a constraint-based layout is to position the components in a
container with a Tayout property set to absolute. This property allows you to drag and
position components anywhere in the container. For pixel-point accuracy, you can set x and y
coordinates.

In this section, you insert and position the controls of a simple feedback form.

1. With your Lessons project selected in the Navigator view, select File > New > MXML
Application and create an application file called Layout.mxml.

By default, Flex Builder includes the Tayout="absolute" property in the Application
tag.

For the purpose of these short tutorials, several application files are used in a single
Flex Builder project. However, it’s good practice to have only one MXML application
file per project.

310N

108 Design: Create a Constraint-based Layout

Public Beta 1 Public Beta 1 Public Beta 1 Public

2. Designate the Layout.mxml file as the default file to be compiled by right-clicking the file

in the Navigator view and selecting Application Management > Set As Default Application

from the context menu.

- Mavigator X

£

= 0 Lessons
+- 2= bin

2l Events, mxml
:
3| Lessons.mxn
LoginBox.mx
3] Main. mxml

EE Outline &2

<> @

< » Application

Events_dick.mxml

=0 Layout.mxml &%

= & 7 |MCDC|E @Design‘

E
<?xml wversion="1.0" encoding
“<mx:Application xmlns:mx="ht

</mx:Application>
New 4
Open

Open With 4

Copy

B [

¢ Delete
Move...
Rename

£ Import...
3 Export...

& | Refresh

Team 3
Compare With 4
Replace With 4
Add to application list
_ e
Properties T b

Insert and position the components

109

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. In the editor’s Design mode, add a Label and TextInput control to the Layout.mxml file
by dragging them from the Components view (Window > Show View > Components).

=

Outline

+- [Layout -

+- (2 Navigators

—|-- &= Controls
() Button
,7‘ CheckBox
W ColarPicker
EF' ComboBox
[DataGrid
DateChooser
B[DateField
&~ Hslider
Horizontallist
|Z| Image
A

Lirk!

= Lt

|E_] Loader L
NumericStepper

o PopUpButton

o PopUpMenuButton

& ProgressBar

[®] RadioButton

,E_E| RadioButtonGroup
RichTextEditor v

4. Use the pointer to position the Label and TextInput controls side-by-side about 60 pixels
(two centimeters)from the top of the container.

10 Design: Create a Constraint-based Layout

Public Beta 1 Public Beta 1 Public Beta 1 Public

5.

In the Flex Properties view, expand both the General and the Layout categories of

properties.

-

T

— | |You may need to collapse the States view to see the Layout category.

Options for setting the general and layout properties appear.

ZE Flex Properties X =

Alzvmﬁ

mu:TextInput

¥ General

Id: |

Text: |

Editable hd

Max Chars: |

Is Password: hd

Change: |

b Style

¥ Layout

Width: | Height: |

¥: | 147 v: &3
Anchors:

If you see a table of properties instead of the previous view, click the View As Form button

in the view’s toolbar.

[
== 1z g
&)
mx:TextInput
Property | value |
fontweight
highlightCalor
lineHeight

Insert and position the components

m

Public Beta 1 Public Beta 1 Public Beta 1 Public

6. Seclect the Label control in the layout and set the following Label properties in the Flex
Properties view:
» Text: Email
s X:20
n Y:60
7. Select the TextInput control in the layout and set the following TextInput properties:
 X:90
= Y:60
= Width: 300
8. Switch to the editor’s Source mode by clicking the Code button in the document toolbar.

The Layout.mxml file should contain the following MXML code:

<?xml version="1.0" encoding="utf-8"7>

<mx:Application xmIins:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
Tayout="absolute">
<mx:Label x="20" y="60" text="Email"/>
<mx:TextInput x="90" y="60" width="300"/>

</mx:Application>

12 Design: Create a Constraint-based Layout

Public Beta 1 Public Beta 1 Public Beta 1 Public

9. Insert the remaining Flex controls by entering the following additional tags after the
<mx:TextInputd tag:

<mx:Label x="20" y="90" text="Comments"/>

<mx:TextArea x="90" y="90" width="300" />

<mx:Button x="330" y="150" Tabel="Send"/>

You can preview the layout by clicking the Design button in the toolbar. The layout
should look similar to the following:

10. Save the file.

Flex Builder compiles the application.

Insert and position the components 13

Public Beta 1 Public Beta 1 Public Beta 1 Public

11. Click the Run button in the toolbar.

A browser opens and runs your small Flex application.

yout - Mozilla Firefox

File Edit WVew Go Bookmarks Tools Help

@ D 80 DLrermvoeld

The browser must have Flash Player 8.5 installed to run the application. You have
the option of installing this version of the Player in selected browsers when you install
Flex Builder. To switch to a browser with Flash Player 8.5, select Window >
Preferences > General > Web Browser.

310N

M4 Design: Create a Constraint-based Layout

Public Beta 1 Public Beta 1 Public Beta 1 Public

12. Drag the edges of the browser window to make the application bigger and smaller.
The components maintain their position relative to the left and top edges of the window,
but they don’t stretch or compress as you resize the browser window. For example, if you
make the window too narrow, the Send button disappears, and the TextInput and

TextArea controls are clipped.

7 Layout - Mozilla Firefox
File Edit W¥ew Go Bookmarks Tools Help ::}

& »- FO0AQDP=E |

g When content is clipped, Flex automatically provides users with a vertical or
H horizontal scrollbar to access the content.

The next step is to set layout constraints for the controls so that they adjust when the user

resizes the application window.

Insert and position the components 15

Public Beta 1 Public Beta 1 Public Beta 1 Public
Define the layout constraints

After positioning the components in your layout, you define layout constraints so that the
components adjust when a user resizes the application window.

1. In the editor’s Design mode, select the TextInput control (the text box for the e-mail

address).

2. In the Flex Properties view, ensure that the Layout category of properties is expanded.
The Layout category contains options for setting anchors.

ZE Flex Properties X =

myx:TextInput

,alzvn:uﬁ

b General
b Style
¥ Layout

Width: | 300 Height: |

x: |90 v: |60
Anchors:

r r r

gl

3. Define the layout constraints for the TextInput control by selecting the left and right
anchor check boxes in the view, and then specifying 90 as the distance to maintain from
the left window edge and 60 as the distance to maintain from the right edge, as follows:

v r v
-
-
-
-~ -~
50 &0

The two check boxes anchor the TextInput control to the left and right edges of the

window. The numbers associated with the text boxes specify how far from the edges (in
pixels) to anchor the controls.

16 Design: Create a Constraint-based Layout

Public Beta 1 Public Beta 1 Public Beta 1 Public

The left edge anchor is necessary to fix the control in place so that it stretches or
compresses when the user resizes the application horizontally. Without the left anchor to
hold it in place, the control would slide to the left or right.

These constraints are expressed as follows in the MXML code:

<mx:TextInput y="60">
<mx:layoutConstraints>
<mx:Anchor left="90" right="60"/>
</mx:layoutConstraints>
</mx:TextInput>
4. In the editor’s Design mode, select the TextArea control in the layout and, in the Flex
Properties view, select the four corner check boxes and specify the following distances to

maintain from the edges:

m Left: 90
| Rjght: 60
s Top: 90

s Bottom: 190

The Layout category in the Flex Properties view for the TextArea control should look as

follows:
v I~ v
§ 50

v
I
v ¢ 190

-— —>

30 60

5. Select the Button control in the layout and, in the Flex Properties view, click the right and
bottom anchor check boxes, and specify 60 as the distance to maintain from the right edge
and 150 as the distance to maintain from the bottom edge, as follows:

™~ ™~ v
-
-
4 g 150
L

60

Define the layout constraints n7z

Public Beta 1 Public Beta 1 Public Beta 1 Public

The two check boxes anchor the Button control to the right and bottom edges. With no
anchors to fix the control to the left and top edges, the control moves horizontally or
vertically as the user resizes the application.

6. Save the file, wait until Flex Builder finishes compiling the application, and then click the
Run button in the toolbar.

A browser opens and runs your small Flex application.

efox

fle Edt Vew Go Bookmarks Tooks Help

@ - E:‘} - @ @ @‘ |D ﬁ\a:,’ﬂc:fDommams%Zuar.‘fl D o |@,

7. Drag the edges of the browser window to make the application bigger and smaller.
For example, if you make the window narrower, the Send button moves to the left and the
TextInput and TextArea text boxes become narrower.

efox
View Go Bockmarks Took Help

PR LI 1E T aa—

18 Design: Create a Constraint-based Layout

Public Beta 1 Public Beta 1 Public Beta 1 Public

If you make the browser window wider, the Send button moves to the right and the
TextInput and TextArea text boxes become wider.

ockmarks Tools Help

G- - g8 @ | C flesffcs ocuments#20and%a0settings cnadeauMy%2000cun | @ 6o [[CL

If you make the window taller, the Send button moves down and the TextArea becomes

taller.

Fle Edit View Go Bookmarks Tooks Help

G- - g8 @ |0 fessrcmocumentssa] @ so [IGL

Define the layout constraints 19

Public Beta 1 Public Beta 1 Public Beta 1 Public

In this lesson, you learned how to create a constraint-based layout with Flex Builder. The
following table summarizes the anchors to set for obtaining certain layout effects when the
user resizes the application window.

Effect Anchors
Maintain the component’s position and size None

Move the component horizontally Right

Move the component vertically Bottom

Move the component both horizontally and Right + Bottom
vertically

Resize the component horizontally Left + Right
Resize the component vertically Top + Bottom

Resize the component both horizontally and Left + Right + Top + Bottom
vertically

Center the component horizontally Horizontal center

Center the component vertically Vertical center

To learn more about this topic, see “Laying out your user interface” on page 114.

120 Design: Create a Constraint-based Layout

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 12

Design: Use View States

and Transitions

You can use view states and transitions in Flex to create richer, more interactive user
experiences. For example, you can use view states to create a user interface that changes its
appearance based on the task the user is performing.

A view state is a named layout that you define for a single MXML application or component.
You can define several view states for an application or component, and switch from one view
state to another depending on the user’s actions. View states allow you to dynamically change
the user interface in response to users actions or progressively reveal more information based
on the context.

A transition is one or more effects grouped together to play when a view state changes. The
purpose of a transition is to smooth the visual change from one state to the next.

This lesson shows you how to use view states and transitions to create a user interface that

reveals more information when users request it.

In this lesson, you'll complete the following tasks:

St UP YOUI PrOJECt. . ottt e e 122
Designthebasestate i i 122
Designaviewstate ... e 125
Define how users switchtotheviewstate 128
Create atransition 130

121

Public Beta 1 Public Beta 1 Public Beta 1 Public
Set up your project

Before you begin this lesson, ensure that you perform the following tasks:

m Ifyou have not already done so, create the Lessons project in Flex Builder. See “Basic:
Create a Project” on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

@ Flex Development - Lessons.mxml - Macromedia Flex Builder 2

File Edit Source MNavigate Search Q=8 Run Modify Window Help
L=<j M 010 ﬁ e 0 7
TS Navigator 22 =0
a1g Build Al Ctrl+8 p—
<== — oy
== Build Project Stz
= @ Lessons Build Working Set »
? bin Clean... —
a Lessons.mml Build Automatically
Prorties
I

Design the base state

Before you can use view states, you must design the base state of the application or
component. The base state is the default layout of the application or custom component.

In this section, you insert and position the controls of a simple search form to create the base
state.

1. With your Lessons project selected in the Navigator view, select File > New > MXML
Application and create an application file called ViewStates.mxml.

For the purpose of these lessons, several application files are used in a single Flex
Builder project. However, it’s good practice to have only one MXML application file
per project.

310N

2. Designate the ViewStates.mxml file as the default file to be compiled by right-clicking the
file in the Navigator view and selecting Application Management > Set As Default

Application from the context menu.

122 Design: Use View States and Transitions

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. In the editor’s Design mode, add the following controls to the ViewStates.mxml file by
dragging them from the Components view (Window > Show View > Components):

n Label
n TextInput
m Button
= Link
4. Select the Label control in the layout and set the following Label properties in the Flex
Properties view:
n Text: Search
n X:20
x Y:70

5. Select the TextInput control and set the following TextInput properties in the Flex
Properties view:

s X:20
n Y:90
6. Seclect the Button control and set the following Button properties in the Flex Properties
view:
n Label: Go
= X:185
= Y:90

7. Select the Link control and set the following Link properties in the Flex Properties view:
n Label: Advanced Options
n X:20
s Y: 120

The layout should look similar to the following:

Design the base state 123

Public Beta 1 Public Beta 1 Public Beta 1 Public

8. Switch to the editor’s Source mode by clicking the Code button in the document toolbar.

The ViewStates.mxml file should contain the following MXML code:

<?xml version="1.0" encoding="utf-8"7>
<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
layout="absolute"><<Update URL (macromedia.com)?-1s>>
<mx:Label x="20" y="70" text="Search"/>
<mx:TextInput x="20" y="90"/>
<mx:Button x="185" y="90" label="Go"/>
<mx:Link x="20" y="120" label="Advanced Options"/>
</mx:Application>

9. Save the file, wait until Flex Builder compiles the application, and click the Run button in
the toolbar.

A browser opens and runs the application.

3 ViewStates - Mozilla Firefox

File Edit W¥ew Go Bookmarks Tools Help

G- -& @ Q[0 e 0w [G

The browser must have Flash Player 8.5 installed to run the application. You have
the option of installing this version of Flash Player in selected browsers when you
install Flex Builder. To switch to a browser with Flash Player 8.5, select Window »
Preferences > General > Web Browser.

124 Design: Use View States and Transitions

Public Beta 1 Public Beta 1 Public Beta 1 Public
Design a view state

The sample application provides a simple search mechanism that meets the needs of most
users. However, some users might prefer to have more search options. You can use view states
to provide these options on request.

1. In the editor’s Design mode, click the New State button in the States view (Window >
Show View > States).

[| <Base state > (start)

The New State dialog box appears.

2 New State

Name: |

Based on: |<Base state> j
[Set as start state

oK | Cancel |

2. Enter Advanced in the Name text box and click OK.

The new state appears in the States view.

-] (4| <Base state = (start)

-QP

Design a view state 125

Public Beta 1 Public Beta 1 Public Beta 1 Public

You can use the layout tools in Flex Builder to make changes to the appearance of the new
state. You can modify, add, or delete components. As you work, the changes describing the
new state are recorded in the MXML code.

3. In the editor’s Design mode,insert a VBox container below the Advanced Search link, and
then set the following VBox properties in the Flex Properties view:

n ID: myVBox
s Width: 140
» Height: 80

s X:20

= Y:160

4. Drag three CheckBox controls into the VBox container.
The VBox container automatically aligns the controls vertically.

5. Select the first CheckBox control in the VBox container and enter Exact phrase as the value
of its Label property in the Flex Properties view.

6. Select the second CheckBox control and enter Case sensitive as the value of its Label
property.

7. Select the third CheckBox control and enter Regular expression as the value of its Label
property.
The layout should look similar to the following:

126 Design: Use View States and Transitions

Public Beta 1 Public Beta 1 Public Beta 1 Public

8. Switch to the editor’s Source modeby clicking the Code button in the document toolbar.

Flex Builder inserted the following <mx:states> tag after the opening
<mx:Application> tag

<mx:states>
<mx:State name="Advanced">
<mx:AddChild position="lastChild">
<mx:VBox width="140" height="80" x="20" y="160" id="myVBox">
<mx:CheckBox label="Regular expression"/>
<mx:CheckBox Tabel="Case sensitive"/>
<mx:CheckBox Tabel="Exact phrase"/>
</mx:VBox>
</mx:AddChild>
</mx:State>
{/mx:states>

9. Save the file, wait until Flex Builder compiles the application, and click Run in the toolbar.

A browser opens and runs the application.

3 ViewStates - Mozilla Firefox

File Edit W¥ew Go Bookmarks Tools Help

@ - - & @ B0 sencma ¥ O e [C

Your application does not display the controls you inserted in the new view state. Flex
applications display the base state by default. You must define how users switch view
states, typically by clicking specific controls.

Design a view state 127

Public Beta 1 Public Beta 1 Public Beta 1 Public
Define how users switch to the view state

In your application, you want to display the check boxes in the new view state when the user
clicks the Link control labelled Advanced Options. When the user clicks the link a second
time, you want to hide the check boxes.

1. In the code editor’s Design view, select the base state in the list in the States view.

{5 States X =0

= |
IQIA nced

You want to define a click event handler for the Link control that is part of the base state.
Therefore, you need to change the focus of the editor’s Design mode to the base state.
When you select a state in the States view, Flex Builder displays what that state looks like.
Therefore, when you select the base state in this step, Flex Builder hides the three
CheckBox controls you defined for the Advanced view state.

2. Select the Link control in the layout and specify the following c11ck property in the Flex

Properties view:

currentState='Advanced'

ZE Flex Properties X E=47 70
mx:Link
¥ General ”

1d: |

Label: | Advanced Options

Click: | currentState="Advanced'
I,
} Style le

The c1ick property specifies that when the user clicks the Link control, the application
should switch the current state to the view state called Advanced. This view state displays
three additional check boxes.

Next, hide the check boxes when the user clicks the Link control a second time. You can
do this by restoring the base state when the user clicks the link in the Advanced view state.

3. In the States view, select the Advanced state.

128 Design: Use View States and Transitions

Public Beta 1 Public Beta 1 Public Beta 1 Public

4. Select the Link control in the layout of the Advanced view state and specify the following
click property in the Flex Properties view:

currentState=""
Specify an empty string (two single quotes," ') as the value of currentState. An empty

string specifies the base state, so that when the user clicks the Link control while in the
Advanced view state, the base state is restored.

5. Save the file, wait until Flex Builder finishes compiling the application, and click the Run
button in the toolbar.
A browser opens and runs the application.

6. Click the Link control to view the advanced search options.

The application displays the three check boxes you defined in the Advanced view state.
The check boxes appear to jump into existence.

7 ViewStates - Mozilla Firefox
File Edit WView Go Bookmarks Tools Help

G- -8 0 W0t ¥ O o Gl

7. Click the Link control again to restore the base state, which hides the advanced search
options.

Define how users switch to the view state 129

Public Beta 1 Public Beta 1 Public Beta 1 Public
Create a transition

When you change the view states in your application, the check boxes immediately appear on
the screen. You decide to eliminate this jumpiness by defining a Flex transition that uses the
WipeDown and Dissolve effects to make the check boxes appear more gradually.

1. In the editor’s Source mode, define a new Transition object and the view state change that
triggers it by adding the <mx:transitions> tag immediately following the closing
<mx:states> tag, as shown in the following example:

{mx:transitions>
<mx:Transition id="myTransition" fromState="*" toState="Advanced">
</mx:Transition>
<{/mx:transitions>
You define one Transition object called myTransition for your application. You can define
more than one transition in the <mx:transitions> tag.

You also specify that you want the transition to be performed when the application
changes from any view state (fromState="*") to the view state called Advanced
(toState="Advanced"). The value "*" is a wildcard character specifying any view state.

2. Specify the targeted component for the transition, and how you want the effects to play—
simultaneously or sequentially—Dby entering the following <mx:Parallel> tag between
the <mx:Transition> tags (in bold):
<mx:Transition id="myTransition" fromState="*" toState="Advanced">

<mx:Parallel target="{myVBox}">

</mx:Parallel>
</mx:Transition>

The targeted component for the transition is the VBox container named myVBox.

You should define two effects for your transition—a WipeDown effect and a Dissolve
effect—and you want them to play simultaneously. Therefore, you use the
<mx:Parallel> tag. If you wanted the effects to play sequentially, you would use the
<mx:Sequence> tag instead. In that case, the second effect would not start until the first
effect finished playing.

3. Specify the effects to play when the view state changes by entering the following
<mx:WipeDown> and <mx:Dissolve> tags between the <mx:Parallel> tags (in bold):

<mx:Parallel target="{myVBox}">
<mx:WipeDown duration="2000"/>
<mx:Dissolve alphaFrom="0.0" alphaTo="1.0" color="0x99CCCC"
duration="2000"/>

</mx:Parallel>

130 Design: Use View States and Transitions

Public Beta 1 Public Beta 1 Public Beta 1 Public

You want to play two effects, a WipeDown effect that causes the targeted container to
appear from top to bottom over a period of 2000 milliseconds, or 2 seconds, and a
Dissolve effect that causes an opaque rectangle covering the container to gradually become
transparent in 2 seconds.

The completed <mx:transitions> tag should look as follows:

<mx:transitions>
<mx:Transition id="myTransition" fromState="*" toState="Advanced">
<mx:Parallel target="{myVBox}">
<mx:WipeDown duration="2000"/>
<mx:Dissolve alphaFrom="0.0" alphaTo="1.0" color="0x99CCCC"
duration="2000"/>
</mx:Parallel>
</mx:Transition>
</mx:transitions>
4. Save the file, wait until Flex Builder finishes compiling the application, and click the Run

button in the toolbar.
A browser opens and runs the application.
5. Click the Link control to view the advanced search options.

The WipeDown and Dissolve effects play simultaneously, causing the advanced search
options to appear gradually from top to bottom.
In this lesson, you used view states and transitions to create a more flexible user interface that
provides users with more options on request. To learn more, see Chapter 8, “Adding
Interactivity with View States and Transitions,” on page 139 and the following chapters in
Developing Flex Applications:
m Chapter 25, “Using View States”
m Chapter 26, “Using Transitions”

Create a transition 131

Public Beta 1 Public Beta 1 Public Beta 1 Public

132 Design: Use View States and Transitions

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 13

Design: Use Behaviors

Flex behaviors let you add animation and motion to your application in response to user or
programmatic action. A behavior is a combination of a #rigger paired with an effect. A trigger is
an action, such as a mouse click on a component, a component getting focus, or a component
becoming visible. An effect is a visible or audible change to the target component that occurs
over a period of time, measured in milliseconds. Examples of effects are fading, resizing, or
moving a component.

This lesson shows you how to add behaviors to a Flex user interface. It shows you how to use
MXML to create behaviors, how to invoke an effect from a different component, and how to
combine more than one effect to create a composite effect.

In this lesson, you'll complete the following tasks:

SetUp YOUr Project. 134
Createabehavior.o e 134
Invoke an effect from a differentcomponent........., 136
Createacomposite effect 138

133

Public Beta 1 Public Beta 1 Public Beta 1 Public
Set up your project

Before you begin this lesson, ensure that you perform the following tasks:

m Ifyou have not already done so, create the Lessons project in Flex Builder. See “Basic:
Create a Project” on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

@ Flex Development - Lessons.mxml - Macromedia Flex Builder 2

File Edit Source MNavigate Search Q=8 Run Modify Window Help
L=<j M 010 ﬁ e 0 7
TS Navigator 22 =0
a1g Build Al Ctrl+8 p—
<== — oy
== Build Project Stz
= @ Lessons Build Working Set »
? bin Clean... —
a Lessons.mml Build Automatically
Prorties
I

Create a behavior

You decide to create a behavior to make a button glow when a user clicks it. You want the

glow to be green, last one and a half seconds, and leave the button a pale green to indicate it

was clicked.

1. In the editor’s Source mode, define a Glow effect by entering the following tag after the
opening <mx:Application> tag:

<mx:Glow id="buttonGlow" color="0x99FF66" alphaFrom="1.0" alphaTo="0.3"
duration="1500"/>

The Glow effect starts fully opaque and gradually becomes more transparent—but not
fully transparent. A pale glow persists after the effect has played to indicate that the button
was clicked.

2. In the editor’s Design mode, drag a Button control from the Components panel into the
layout, and then set the following Button properties in the Properties view:
s ID: myButton
n Label: View
. X: 40
= Y:60

134 Design: Use Behaviors

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. In the Properties view, click the View by Category button on the toolbar to view the

properties as a table, and then locate the Effects category of properties.

= Flex Properties X =

,alzvn:uﬁ

() mx:Button

Property | Value

| A

+ Common

creationCompleteE
focusInEffect
focusQutEffect
hideEffect
mouseDownEffect
mouseQutEffect
mouseOverEffect
mouseUpEffect
moveEffect
resizeEffect
showEffect

Events

Other

Size

Styles

Uncategorized

+ # O E

- B N

This category lists the triggers for the Button control.

4. Assign your Glow effect to the mouseUpEffect trigger by entering the effect’s ID in curly

braces as the value of the trigger, as follows:

s mouseUpEffect: {buttonGlow}

The curly braces are necessary because you use data binding to assign the effects to their

triggers.

In the editor’s Source mode, the <mx:Button> tag should look as follows:

<mx:Button x="40" y="60" label="View" id="myButton"
mouseUpEffect="{buttonGlow}" />

5. Save the file.

Flex Builder compiles the application.

Create a behavior

135

Public Beta 1 Public Beta 1 Public Beta 1 Public

6. Click the Run button in the toolbar.

A browser opens and runs your small Flex application. Click the View button. It should
emit a green glow that gradually diminishes in intensity until it becomes a pale green.

‘A Behaviors - Microsoft Internet Explorer

File Edit View Favorites Tools Help

O~ © HRA®

3

&] Done 0 Internet

Invoke an effect from a different
component

Instead of component triggers, you can use Flex events to invoke effects. This ability lets you
have one component invoke an effect that plays for a different component. For example, you
can use a Button control’s click event to instruct a TextArea control to play a Fade effect.

When the user clicks your application’s View button, you want a Label component to appear
with blurry text that gradually comes into focus to reveal a series of numbers.
1. In the editor’s Design mode, drag a Label control from the Components panel into the
layout below the button, and then set the following Label properties in the Properties view:
s ID: myLabel
n Texu: 4815162342
. X:40
= Y:100
2. Switch to the editor’s Source mode and define your Blur effect by entering the following
tag after the <mx:Glow> tag:

<mx:Blur id="numbersBlur"
bTurYFrom="10.0" blurYTo="0.0"
blurXFrom="10.0" blurXTo="0.0"
duration="2000"/>

136 Design: Use Behaviors

Public Beta 1 Public Beta 1 Public Beta 1 Public

The tag properties specify the starting and ending amounts of vertical and horizontal blur.

. In the <mx:Blur> tag, specify the Label control called myLabel as the target of the effect
(in bold):
<mx:Blur id="numbersBlur" target="{mylLabel}"

blTurYFrom="10.0" blurYTo="0.0"

bTurXfFrom="10.0" blurXTo="0.0"
duration="2000"/>

You want the component called mylLabel to play the effect.

. In the <mx:Button> tag, specify the numbersBlur effect as the effect to play during a click

event (in bold):

<mx:Button id="myButton" x="40" y="60" label="View"
mouseUpEffect="{buttonGlow}" click="numbersBlur.play();"/>

When a user clicks the Button control, the application invokes the effect by calling the

effect’s play() method.

Because the numbersBlur effect targets the myLabel control, the application applies the
effect to the label, not the button.

. Hide the Label control from the user by setting its visible property to false in the
<mx:Label> tag, as follows (in bold):

<{mx:Label id="mylLabel" x="40" y="100" text="4 8 15 16 23 42"
visible="false" />

You don’t want to display the numbers until the user clicks the View button.

. Make the Label visible only when the user clicks the View button by programmatically
setting its visible property to true in the button’s click property, as follows (in bold):

<mx:Button id="myButton" x="40" y="60" Tabel="View"
mouseUpEffect="{buttonGlow}" click="numbersBlur.play();
myLabel.visible="true';"/>

When the user clicks the button, the blur effect starts playing and the Label becomes
visible.

The Behaviors.mxml file should contain the following MXML code:

<7xml version="1.0" encoding="utf-8"7>
<mx:Application xmlns:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
lTayout="absolute">

<mx:Glow id="buttonGlow" color="0x99FF66"
alphaFrom="1.0" alphaTo="0.3" duration="1500"/>
<mx:Blur id="numbersBlur" target="{mylLabel}"
bTurYFrom="10.0" blurYTo="0.0"
blurXFrom="10.0" blurXTo="0.0"
duration="2000"/>

Invoke an effect from a different component 137

Public Beta 1 Public Beta 1 Public Beta 1 Public

<mx:Button id="myButton" x="40" y="60" label="View"
mouseUpEffect="{buttonGlow}"
click="numbersBlur.play(); mylLabel.visible="true';"/>

<mx:Label id="mylLabel" x="40" y="100" text="4 8 15 16 23 42"
visible="false" />
</mx:Application>
7. Save the file.
Flex Builder compiles the application.
8. Click the Run button in the toolbar.

A browser opens and runs the application. Click the View button. The button emits a
green glow while a series of blurred numbers gradually comes into focus.

A Behaviors - Microsoft Internet Explorer |__||E||£|
: Fle Edt View Favorites Tools Help ar

00 A6 %

Create a composite effect

When the blurry Label component comes into focus when the user clicks the View button,
you would also like the component to gradually move down in the layout by 20 pixels. In
other words, you would like to combine your Blur effect with a Move effect.

Flex supports combining more than one effect to create a composite effect. You define a
composite effect with either the <mx:Parallel> or the <mx:Sequence> tag, depending on
whether you want the combined effects of the composite effect to play in parallel or
sequentially. For your application, you want the Blur and Move effects to play in parallel.

138 Design: Use Behaviors

Public Beta 1 Public Beta 1 Public Beta 1 Public

1. In the editor’s Source mode, start your composite effect by entering the following tag
before the <mx:Blur> tag:
<mx:Parallel id="BlurMoveShow">
<{/mx:Parallel>
The name of your parallel composite effect is BlurMoveShow.

2. Select the full <mx:BTur> tag in your code, and then cut and paste it between the opening
and closing <mx:Parallel> tags so that it becomes a child tag of the <mx:Parallel> tag.

3. Seclect the target="{mylLabel}" property in the <mx:Blur> tag, and then cut and paste it
into the opening <mx:Parallel> tag so that it becomes a property of the <mx:Parallel>
tag, as follows (in bold):
<mx:Parallel id="BlurMoveShow" target="{mylLabel}">

You want the composite effect to target the Label control called myLabel.
4. Define your new Move effect by entering the following tag after the <mx:Blur> tag:
<{mx:Move id="numbersMove" yBy="20" duration="2000" />

You want the Label control to move 20 pixels down in 2 seconds.

The completed <mx:Parallel> tag should look as follows:

<mx:Parallel id="BlurMoveShow" target="{mylLabel}">
<mx:Blur id="numbersBlur"
blurYFrom="10.0" blurYTo="0.0"
blurXFrom="10.0" blurXTo="0.0"
duration="2000"/>
<mx:Move id="numbersMove" yBy="20" duration="2000" />
</mx:Parallel>
5. Inthe <mx:Button> tag, change the effect to play in response to the click event by replacing
the numbersBlur effect with the BlurMoveShow composite effect, as follows (in bold):
<mx:Button id="myButton" x="40" y="60" label="View"
mouseUpEffect="{buttonGlow}" click="BlurMoveShow.play();
mylLabel.visible="true';"/>

6. Save the file.
Flex Builder compiles the application.
7. Click the Run button in the toolbar.
A browser opens and runs the application. Click the View button. The button emits a

green glow while a series of blurred numbers gradually comes into focus while moving 20

pixels down.

In this lesson, you learned how to use MXML to create behaviors, how to invoke an effect
from a different component, and how to combine more than one effect to create a composite

effect. To learn more, see Chapter 22, “Using Behaviors” in Developing Flex Applications.

Create a composite effect 139

Public Beta 1 Public Beta 1 Public Beta 1 Public

140 Design: Use Behaviors

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 14

Design: Use List-based

Form Controls

You can use list-based form controls such as a ComboBox, List, or HorizontalList in your Flex
applications. After inserting this kind of control, you must populate it with items to display
and values to submit for processing. In Flex, the controls are populated by data providers,
which are collections of objects similar to arrays.

This lesson shows you how to populate list-based form controls with items to display and
values to process.

In this lesson, you'll complete the following tasks:

St UP YOUI PrOJECt. . ottt e e 142
Insert and position formecontrols. 142
Populate the list e 145
Associate values to listitems. 147

141

Public Beta 1 Public Beta 1 Public Beta 1 Public
Set up your project

Before you begin this lesson, perform the following tasks:

m Ifyou haven’t already done so, create the Lessons project in Flex Builder. See “Basic:
Create a Project” on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

@ Flex Development - Lessons.mxml - Macromedia Flex Builder 2

File Edit Source MNavigate Search Q=8 Run Modify Window Help
L=<j M 010 ﬁ e 0 7
TS Navigator 22 =0
a1g Build Al Ctrl+8 p—
<== — oy
== Build Project Stz
= @ Lessons Build Working Set »
? bin Clean... —
a Lessons.mml Build Automatically
Prorties
I

Insert and position form controls

In this section, you create a simple form containing a ComboBox control and a submit
button.

1. With your Lessons project selected in the Navigator view, select File > New > MXML
Application and create an application file called ListControl. mxml.

For the purpose of these lessons, several application files are used in a single Flex
Builder project. However, it’s good practice to have only one MXML application file
per project.

310N

2. Designate the ListControl.mxml file as the default file to be compiled by right-clicking the
file in the Navigator view and selecting Application Management > Set As Default
Application from the context menu.

3. In the editor’s Design mode, add the following controls to the ListControl.mxml file by
dragging them from the Components view (Window > Show View > Components):

] Label
s ComboBox

s Button

142 Design: Use List-based Form Controls

Public Beta 1 Public Beta 1 Public Beta 1 Public

4. Select the Label control in the layout and set the following Label properties in the Flex
Properties view:
» Text: Rate customer service
n X:20
= Y:50

5. Select the ComboBox control and set the following ComboBox properties in the Flex
Properties view:

s ID: cbxRating

s X:20

n Y:80

The ComboBox control doesn't list any items. You populate the list later.

6. Seclect the Button control and set the following Button properties in the Flex Properties

view:

» Label: Send
n X: 140

= Y:80

The layout should look like the following in the editor’s Design mode:

Insert and position form controls 143

Public Beta 1 Public Beta 1 Public Beta 1 Public

7. Switch to the editor’s Source mode by clicking the Code button in the document toolbar.

The ListControl.mxml file should contain the following MXML code:

<?xml version="1.0" encoding="utf-8"7>
<mx:Application xmIns:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
layout="absolute">
<mx:Label x="20" y="50" text="Rate customer service"/>
<mx:ComboBox x="20" y="80" id="cbxRating"></mx:ComboBox>
<mx:Button x="140" y="80" label="Send"/>
</mx:Application>

8. Save the file, wait until Flex Builder finishes compiling the application, and then click the
Run button in the toolbar.

A browser opens and runs your small Flex application.

¥ List - Mozilla Firefox

File Edit Miew Go Bookmarks Tools Help

@ D & 0 D0 sens¥ 0w A

The browser must have Flash Player 8.5 installed to run the application. You have
the option of installing this version of Flash Player in selected browsers when you
install Flex Builder. To switch to a browser with Flash Player 8.5, select Window »
Preferences > General > Web Browser.

9. Click the ComboBox control in the browser.

The control doesn't list any items because you haven’t defined its data provider yet.

144 Design: Use List-based Form Controls

Public Beta 1 Public Beta 1 Public Beta 1 Public

Populate the list

You populate a list-based form control with the <mx:dataProvider> child tag. The

<mx:dataProvider> tag lets you specify list items in several ways. The simplest method is to

specify an array of strings, as follows.

1.

In the editor’s Source mode, enter the following code between the opening and closing

<mx:ComboBox> tag

<mx:dataProvider>
<mx:Array>
<mx:String>Satisfied</mx:String>
<mx:String>Neutral</mx:String>
<mx:String>Dissatisfied</mx:String>
</mx:Array>
</mx:dataProvider>

The code for ListControl.mxml should look as follows:
<7xml version="1.0" encoding="utf-8"7>

<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml" xmlIns="*"

lTayout="absolute">
<mx:Label x="20" y="50" text="Rate customer service"/>
<mx:ComboBox x="20" y="80" id="cbxRating">
<mx:dataProvider>
<mx:Array>
<mx:String>Satisfied</mx:String>
<mx:String>Neutral</mx:String>
<mx:String>Dissatisfied</mx:String>
</mx:Array>
</mx:dataProvider>
</mx:ComboBox>
<mx:Button x="140" y="80" label="Send"/>
</mx:Application>

Populate the list

145

Public Beta 1 Public Beta 1 Public Beta 1 Public

2. Save the file, wait until Flex Builder finishes compiling the application, and then click the
Run button in the toolbar.

A browser opens and runs the application.

3 List - Mozilla Firefox

File Edit Vew Go Bookmarks Tools Help

G- -8 0 Q[0 fenc ¥ 0 [[C

3. Click the ComboBox control to view the list of items.

If you want to access the value of the selected item in the ComboBox control, you can use
the following expression in your code:
cbxRating.value
In the example, the value property of the ComboBox control could contain the string
“Satisfied”, “Neutral”, or “Dissatisfied” depending on the user’s selection.

4. To test the control, insert the following tag after the <mx:Button> tag in the
ListControl.mxml file:
<mx:Label x="20" y="140" text="{cbxRating.valuel}" />
The expression inside the curly braces ({ }) is a binding expression that copies the value of
the ComboBox control’s value property, cbxRating.value, into the Label control’s text
property. In other words, the text property of the Label control is specified by the value
of the selected item in the ComboBox control.

5. Save the file, wait until Flex Builder finishes compiling, and run the application.

Select items in the ComboBox. The Label you inserted displays the string “Satisfied”,
“Neutral”, or “Dissatisfied” depending on your selection.

146 Design: Use List-based Form Controls

Public Beta 1 Public Beta 1 Public Beta 1 Public
Associate values to list items

You may want to associate values with list items in a form control, as with the SELECT form
element in HTML. For example, to generate reports and statistics you might want to associate
the value of 5 with Satisfied, 3 with Neutral, and 1 with Dissatisfied.

To do this, you populate the ComboBox control with an array of Object components. The
<mx:0bject> tag lets you define a Tabel property that contains the string to display in the
ComboBox, and a data property that contains the data that you want to associate with the
label.

1. In the editor’s Source mode, replace the three <mx:String> tags with the following
<mx:0bject> tags:

<mx:0bject Tabel="Satisfied" data="5"/>

<mx:0bject label="Neutral" data="3"/>

<mx:0bject label="Dissatisfied" data="1"/>

If you want to access the value of the selected item in the ComboBox control, you can use
the following expression in your code:

cbxRating.value

The value property contains the value of the selected item. When a data field is specified,
the value property refers to the data field, not the label field. In the example, the
cbxRating.value property could contain the values 5, 3, or 1 depending on the user’s
selection.

2. Save the file, wait until Flex Builder finishes compiling, and then run the application.

Select items in the ComboBox control in the browser. The testing Label you inserted in
the previous section displays the values 5, 3, or 1 depending on your selection.

To submit data for processing, you must write a click event handler for the Button control
that calls a remote procedure to process the data. You can use remote-procedure-call (RPC)
service components to interact with a server through web services, remote object services (Java
objects), or HTTP requests. For more information, see Chapter 52, “Understanding RPC
Service Components” and Chapter 53, “Using RPC Components” in Developing Flex
Applications.

In this lesson, you inserted a list-based form control into your Flex application and provided
data to it. To learn more, see Chapter 12, “Using Data-Driven Controls” in Developing Flex
Applications.

You can also create a simple blog reader that retrieves data from an RSS feed and displays it.
For instructions, see “Data: Retrieve and Display Data” on page 163

Associate values to listitems 147

Public Beta 1 Public Beta 1 Public Beta 1 Public

148 Design: Use List-based Form Controls

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 15

Design: Create a

Custom Component

You can use custom MXML components in your project to promote code reuse, simplify the
process of building complex applications, and let other developers contribute to your project
For example, you can encapsulate the layout and logic of a login box in a custom MXML
component, and then use the custom component in several locations in your application.

This lesson shows you how to build an MXML component visually with Adobe Flex Builder.
The lesson also shows you how to insert the new custom component visually in other MXML

files.

Developing the user authentication logic for a login box component is outside the scope
of this lesson.

310N

In this lesson, you'll complete the following tasks:

St UP YOUI PrOJECt. . ottt e e e 150
Create a test file for the custom component. 150
Create the custom componentfile 152
Design the layout of the custom component 155
Define an event listener for the custom component.......................... 156
Use the custom component. i i 158

149

Public Beta 1 Public Beta 1 Public Beta 1 Public
Set up your project

Before you begin this lesson, ensure that you perform the following tasks:

m Ifyou have not already done so, create the Lessons project in Flex Builder. See “Basic:
Create a Project” on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

@ Flex Development - Lessons.mxml - Macromedia Flex Builder 2

File Edit Source MNavigate Search Q=8 Run Modify Window Help
L=<j M 010 ﬁ e 0 7
T Navigator 23 =0
a1g Build Al Ctrl+8 p—
<== — oy
== Build Project Stz
= @ Lessons Build Working Set »
? bin Clean... —
a Lessons.mml Build Automatically
Prorties
I

Create a test file for the custom
component

You decide to build a login box as a custom MXML component. Before you start, however,
you need to create an MXML application file to test it. An MXML application file is an
MXML file that contains the <mx:Application> root tag. You cant compile and run an
MXML component on its own; you must compile and run an MXML application file that

uses the component.
In this section, you create an MXML application file to test your custom component.

1. With your Lessons project selected in the Navigator view, select File > New > MXML
Application and create an application file called Main.mxml.

For the purpose of these lessons, several application files are used in a single Flex
Builder project. However, it’s good practice to have only one MXML application file
per project.

310N

2. Designate the Main.mxml file as the default file to be compiled by right-clicking the file in
the Navigator view and selecting Application Management > Set As Default Application
from the context menu.

150 Design: Create a Custom Component

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. In the editor’s Design mode, add a Panel container to the Main.mxml file by dragging it
from the Components view(Window > Show View > Components).

The Panel container is listed in the Layout category of components.

4. Select the Panel container in the Main.mxml file and set the following properties in the

Flex Properties view:

Title: Main Application Window
Width: 475

Height: 400

X: 20

Y: 30

The layout should look similar to the following:

5. Save the file.

Now you can build and test your custom component.

Create a test file for the custom component 151

Public Beta 1 Public Beta 1 Public Beta 1 Public
Create the custom component file

The first step to building a custom MXML component is to create the file. Most custom
components are derived from existing components. For your new login box component, you
decide to extend the MXML Panel component.

Before you begin, create a subfolder to store the custom component files for your application.

1. In the Navigator view, right-click the Lessons parent folder and select New > Folder from

the context menu.
The New Folder dialog box appears.
2. In the Folder Name text box, enter myComponents and click Finish.

Flex Builder creates a new subfolder called myComponents.

152 Design: Create a Custom Component

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. With the myComponents folder still selected in the Navigator view, select File > New >

MXML Component.

The New MXML Component dialog box appears with the Lessons/myComponents
folder set as the default folder for new custom components.

@ New MXML Component

New MXML component

Create a new MXML component inside a Flex project.

Enter or select the parent folder:

| Lessons/myComponents

= @ Lessons
2= .zettings
= bin
= himl-template
== myComponents

File name: ||

Base component: | Canvas -

I Cancel

4. In the File Name text box, enter LoginBox.
The filename also defines the component name.
5. In the Base Components pop-up menu, select Panel.

You want to extend the Panel component.

6. In the Layout pop-up menu, make sure Absolute is selected (it should be the default).

Create the custom component file

153

Public Beta 1 Public Beta 1 Public Beta 1 Public

7. Click Finish.

Flex Builder creates and saves the LoginBox.mxml file in the myComponents folder and
opens it in the MXML editor.

If you switch to the editor’s Design mode, the component also appears in the Custom
category of the Components view:

Outline =0
#- [Layout

+- [MNavigators

+- £ Controls

=& Custom

If you save a custom component file in the current project or in the classpath of the current
project, Flex Builder displays the component in the Components view so that you can rapidly
insert it in your applications.

The Components view only lists visible custom components (components that inherit
from UlIComponent). For more information, see the Flex ActionScript and MXML API
Reference.

310N

154 Design: Create a Custom Component

Public Beta 1 Public Beta 1 Public Beta 1 Public

Design the layout of the custom
component

The next step is to design the layout of the custom component. For your LoginBox
component, you want a layout that includes username and password text boxes, and a submit
button.

1. Make sure the LoginBox component is open in the editor’s Design mode.
2. Select the Panel and set the following properties in the MXML Properties view:
n Title: Member Login
» Width: 275
= Height: 150
. Insert two Label controls in the panel and align them vertically.

. Insert two TextInput controls to the right of the Label controls and align them vertically.

3

4

5. Select the first Label control and enter Username as the value of its Text property.
6. Select the second Label control and enter Password as the value of its Text property.
7. Select the first TextInput control and enter txtUID as the value of is ID property.

8

. Select the second TextInput control and enter txtPwd as the value of its ID property and
True as the value of its Is Password property.

©

. Insert a Button control below the second TextInput control and enter Login as the value
of its Label property.

10. Align and fine-tune the position of the controls so that the layout looks as follows:

Member Login

Usernarne | |

Passwaord | |

Login

Your code should look as follows (your coordinate values may vary):

<?xml version="1.0" encoding="utf-8"7>

<mx:Panel xmlins:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
Tayout="absolute" title="Member Login" width="275" height="150">
<{mx:Label x="8" y="20" text="Username"/>
<mx:Label x="14" y="50" text="Password"/>

Design the layout of the custom component 155

Public Beta 1 Public Beta 1 Public Beta 1 Public

<mx:TextInput x="78" y="18" id="txtUID"/>
<mx:TextInput x="78" y="48" id="txtPwd" password="true"/>
<mx:Button x="188" y="78" Tlabel="Login"/>

</mx:Panel>

11. Save your file.

Define an event listener for the custom
component

In some cases, you want the custom component to contain logic that can handle user actions.
For your LoginBox component, you want the component to validate the username and
password when the user clicks the Login button, and then submit the data for authentication.

This section describes how to define a simple event listener for the Login button. An event
listener is also known as an event handler. For a lesson on event listeners, see Chapter 19,

“Programming: Use an Event Listener,” on page 185.

I Developing the user authentication logic for the listener is outside the scope of this
lesson.

You also decide to modify a Label control to test that the event listener is being called

properly.

1. In the editor’s Design mode, insert a Label control in the space to the left of the Login
button, as follows:

Member Login

Uszernams | |

Passward | |

Label Login

2. Select the Label control and enter IblTest as the value of the Label’s ID property, and clear
the value of the Text property.

3. Select the Button control and enter handleLoginEvent() as the value of the control’s Click
property.
When the user clicks the button, you want to call the handleLoginEvent () function.

Next, you write the listener function.

156 Design: Create a Custom Component

Public Beta 1 Public Beta 1 Public Beta 1 Public

4.

5.

7.

Switch to the editor’s Source mode and place the insertion point immediately after the
opening <mx:Panel> tag.

Start typing <mx:Script> until the full tag is selected in the code hints, press Enter to insert
the tag in your code, and then type the closing angle bracket (>) to complete the tag.

Flex Builder enters an <mx:Script> script block that also includes a CDATA construct.

When using an <mx:Script> script block, you should wrap the contents in a CDATA
construct. This prevents the compiler from interpreting the contents of the script
block as XML, and allows the ActionScript to be properly generated.

310N

Enter the following code in the CDATA construct:

private function handleloginEvent():void {
1b1Test.text = "logging in...";
//Togin logic

}

In a real application, the handleloginEvent () function would reference or contain the
logic for validating and submitting the login entries for authentication. Developing the
logic for the handler is outside the scope of this lesson.

The keyword private sets the scope of the function: it’s only available within the
component. If you set the scope to public, then the function is available throughout your
code.

The keyword void specifies that the function returns nothing. All functions should define
a return type.

The code for the component should look as follows:

<7xml version="1.0" encoding="utf-8"7>
<mx:Panel xmlns:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
Tayout="absolute" title="Member Login" width="275" height="150">
<mx:Script>
<I[CDATAL
private function handleloginEvent():void {
Tb1Test.text = "logging in...";
//1ogin logic
}
11>
</mx:Script>
<mx:Label x="8" y="20" text="Username"/>
<mx:Label x="14" y="50" text="Password"/>
<mx:TextInput x="78" y="18" id="txtUID"/>
<mx:TextInput x="78" y="48" id="txtPwd" password="true"/>
<mx:Button x="188" y="78" label="Login" click="handlelLoginEvent()"/>
<mx:Label x="78" y="78" id="1bl1Test"/>
</mx:Panel>

Save the file.

Define an event listener for the custom component 157

Public Beta 1 Public Beta 1 Public Beta 1 Public
Use the custom component

The next step is to add the custom component to your MXML application file, and then to
compile and run the application file to test the component.

1. In the editor’s Design mode, switch to the Main.mxml file.

2. Locate the LoginBox component in the Custom category of the Components view.

Outline =0

#- (22 Layout
+-- (= Navigators
+-- [+ Controls

3. Drag the LoginBox component next to the right edge of the Panel in the layout.
Flex Builder inserts and renders the custom component in your layout like any other
component.

4. With the LoginBox component still selected in the layout, set the following properties in
the Properties view:

s X:500
= Y:30

Flex Builder displays the properties of the custom component in the Properties view like
any other component.

158 Design: Create a Custom Component

Public Beta 1 Public Beta 1 Public Beta 1 Public

The layout should look similar to the following:

Main Application

5. Switch to the editor’s Source mode by clicking the Code button in the document toolbar.

Flex Builder inserted the following code in your file (in bold):

<?xml version="1.0" encoding="utf-8"7>

<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
layout="absolute" xmlns:nsl="myComponents.*">
<mx:Panel x="20" y="30" width="475" height="400" layout="absolute"
title="Main Application Window">
</mx:Panel>
<nsl:LoginBox x="500" y="30">
</nsl:LoginBox>

</mx:Application>

When you dragged the custom component into the MXML file, Flex Builder defined a
new namespace called nsl, and then inserted an <ns1:LoginBox> tag after the
<mx:Panel> tag

Use the custom component 159

Public Beta 1 Public Beta 1 Public Beta 1 Public

6. Save the file, wait until Flex Builder compiles the application, and click Run in the toolbar.

A browser opens and runs the application.

2 Main - Microsoft Internet Explorer

! Fle Edit View Favorites Tools Help

@Batk Q B @ f,j *Fauwites [5] :'\%r

&] bone © Internet

The application displays the LoginBox component you inserted in the main application
file. You can reuse the same component in multiple MXML files.

Click the Login button to verify that the event listener is being called properly. The string
“logging in...” should appear to the left of the Login button.

In this lesson, you created a custom MXML component visually, and then used it in an
MXML application file. You designed the component’s layout and defined an event listener
for a control in the component. To learn more, see Chapter 10, “Creating Custom MXML
Components,” on page 159 and Chapter 7, “Creating Simple MXML Components” in
Creating and Extending Flex Components.

160 Design: Create a Custom Component

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 17

Data: Retrieve and

Display Data

To provide data to your application, Flex includes components designed specifically for
interacting with HTTP servers, web services, or remote object services (Java objects). These
components are called remote procedure call (RPC) service components.

In this lesson, you create a simple blog reader that retrieves recent posts and lets users read the
first few lines of the posts. You use an HTTPService component to retrieve data from an RSS

feed, and then you bind the data to a Label, DataGrid, TextArea, and Link control.

In this lesson, you'll complete the following tasks:

St UP YOUI PrOJECt. . ottt e e 164
Review your access toremotedatasources, 164
Insert and position the blogreadercontrols................................. 165
Insert a HTTPService component i 168
Populate a DataGrid control.t e 170
Display aselected item ... i 172
Createadynamic link i 173

163

Public Beta 1 Public Beta 1 Public Beta 1 Public
Set up your project

Before you begin this lesson, perform the following tasks:

m Ifyou have not already done so, create the Lessons project in Flex Builder. See “Basic:
Create a Project” on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

@ Flex Development - Lessons.mxml - Macromedia Flex Builder 2
File Edit Source MNavigate Search Q=8 Run Modify Window Help

|_=<j = o ﬁ T 0 7
T Navigator 23 =0
a1g Build Al Ctrl+8 —
<== — oy
== Build Project Stz
= @ Lessons Build Working Set 4
E& bin Clean... —
a Lessons. mal Build Automatically
Prorties

Review your access to remote data
sources

For security reasons, applications running in Flash Player on a client computer can only access

remote data sources if one of the following conditions is met:

m Your application’s compiled SWF file is in the same domain as the remote data source.

m You use a proxy and your SWF is on the same server as the proxy.
Flex Enterprise Services provides a complete proxy management system for Flex
applications. You can also create a simple proxy service using a web scripting language
such as ColdFusion, JSP, PHP, or ASP. For more information on creating your own proxy,
see the following TechNote on the Macromedia website at www.macromedia.com/go/
16520#proxy.

m A crossdomain.xml (cross-domain policy) file is installed on the web server hosting the
data source.
The crossdomain.xml file permits SWFs in other domains to access the data source. For
more information on configuring crossdomain.xml files, see the following TechNote on
the Macromedia website at www.macromedia.com/go/14213.

164 Data: Retrieve and Display Data

http://www.macromedia.com/go/16520#proxy
http://www.macromedia.com/go/16520#proxy
http://www.macromedia.com/go/14213

Public Beta 1 Public Beta 1 Public Beta 1 Public

The data sources used in this lesson are located in a domain that has a crossdomain.xml setup.

Therefore, Flash Player can access the remote data.

Insert and position the blog reader
controls

In this section, you create the layout of your blog-reader application.

1. With your Lessons project selected in the Navigator view, select File > New > MXML
Application and create an application file called BlogReader.mxml.

For the purpose of these lessons, several application files are used in a single Flex
Builder project. However, it’s good practice to have only one MXML application file
per project.

310N

2. Designate the BlogReader.mxml file as the default file to be compiled by right-clicking the
file in the Navigator view and selecting Application Management > Set As Default
Application from the context menu.

3. In the editor’s Design mode, add the following controls to the BlogReader.mxml file by
dragging them from the Components view (Window > Show View > Components):

m Label

s DataGrid
m TextArea
s Link

4. Use the mouse to arrange the controls in the layout in a vertical, left-aligned column.

5. Select the Label control and set the following properties in the Flex Properties view:

n Text: Blog
s X:20
= Y:50

6. Seclect the DataGrid control and set the following properties:
n Id: dgPosts

s X:20
= Y:80
s Width: 400

Insert and position the blog reader controls 165

Public Beta 1 Public Beta 1 Public Beta 1 Public

7. Select the TextArea control and set the following properties:

s X:20
s Y:245
s Width: 400

8. Seclect the Link control and set the following properties:
» Label: Read Full Post
s X:20
= Y:300
The layout should look like the following:

9. Switch to the editor’s Source mode by clicking the Code button in the document toolbar.
The BlogReader.mxml file should contain the following MXML code:

<?xml version="1.0" encoding="utf-8"7>
<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml" xmIns="*"
layout="absolute">
<mx:Label x="20" y="50" text="Blog"/>
<mx:DataGrid x="20" y="80" id="dgPosts" width="400">
<mx:columns>
<mx:DataGridColumn headerText="Column 1" columnName="coll"/>
<mx:DataGridColumn headerText="Column 2" columnName="col2"/>
</mx:columns>
</mx:DataGrid>
<mx:TextArea x="20" y="245" width="400" />

166 Data: Retrieve and Display Data

Public Beta 1 Public Beta 1 Public Beta 1 Public

<mx:Link x="20" y="300" label="Read Full Post" />
</mx:Application>

10. Save the file, wait until Flex Builder finishes compiling the application, and then click the
Run button in the toolbar to start the application.

™ Flex Development - BlogReader.mxml - Mac

File Edit Source Mavigate Search Project Run M

File Edit View

Column 2

The browser must have Flash Player 8.5 installed to run the application. You have
the option of installing this version of Flash Player in selected browsers when you
install Flex Builder. To switch to a browser with Flash Player 8.5, select Window »
Preferences > General > Web Browser.

The application doesn’t display any blog information yet.

Insert and position the blog reader controls 167

Public Beta 1 Public Beta 1 Public Beta 1 Public

The next step is to retrieve information about recent blog posts. You can use an RPC service
component called HTTPService to accomplish this task.

Insert a HT TPService component

For the blog reader in this lesson, you retrieve posts from Matt Chotin’s blog at http://
weblogs.macromedia.com/mchotin/ on the Macromedia website. Matt is a Principal Engineer
on the Flex team and writes about Flex in his blog.

You can use the HTTPService component to access the blog’s XML feed and retrieve
information about recent posts. The component lets you send an HTTP GET or POST
request, and then retrieve the data returned in the response.

1. In the editor’s Source mode, enter the following <mx:HTTPService> tag immediately after
the opening <mx:Application> tag:
<mx:HTTPService
id="feedRequest"
url="http://weblogs.macromedia.com/mchotin/index.xml"
useProxy="false"/>
The ur1 property specifies the location of the requested file, in this case the RSS feed of
Matt Chotin’s blog. You can find the link on the right-hand side of his blog.
The useProxy property specifies that you don’t want to use a proxy on a server. The
weblogs.macromedia.com domain where Matt’s blog is located has a crossdomain.xml
setup, so Flash Player can access the remote data sources on this server, including RSS
feeds. For more information, see “Review your access to remote data sources”
on page 164.
The next step is to prompt the application to send a request to the specified URL. You
decide to send the request automatically whenever the application starts, as follows.
2. Inthe <mx:Application> tag, add the following creationComplete property (in bold):
<mx:Application xmlns:mx="http://www.macromedia.com/2005/mxml" xmlns="*"

layout="absolute" creationComplete="feedRequest.send()" >

When your application is finished starting up, the HTTPService component’s send ()
method is called. The method makes an HT'TP GET or POST request to the specified
URL, and an HTTP response is returned. In this case, the RSS feed returns XML data.

Next, you want to check if the application is retrieving the RSS feed successfully. You can
do this by binding data to the Label control, as follows.

168 Data: Retrieve and Display Data

http://weblogs.macromedia.com/mchotin/
http://weblogs.macromedia.com/mchotin/

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. In the <mx:Label> tag, replace the value of the text property (“Blog”) with the following

binding expression (in bold):

<mx:Label x="20" y="50" text="{feedRequest.result.rss.channel.title}" />
This expression binds the title field to the Label control. The expression reflects the
structure of the XML. When XML is returned to a HTTPService component, the
component parses it into an ActionScript object named result. The structure of the result
object mirrors the structure of the XML document. To check the XML structure,
download the RSS feed’s XML file (http://weblogs.macromedia.com/mchotin/index.xml)

and open it in Internet Explorer.

\Documents and Settings\cnadeau\Desktoplindex.xml - Microsoft Internet Explorer El@‘g‘
.lJ_a

File Edit View Favorites Tools Help
Qu- O HEAG from © %

<?xml version="1.0" encoding="utf-8" ?>
- «rss version="2.0">
- <channel>
<title>Matt Chotin</title>
<link=http:/ /weblogs.macromedia.com/mchotin/ </link>
<description />
danguage ~en </language>
<copyright=Copyright 2005</copyright=
<lastBuildDate>Mon, 05 Sep 2005 20:10:04 -0800</lastBuildDate>
<generator=http:/ /www.movabletype.org/?v=3.16</generator>
<docs>http:/ /blogs.law.harvard.edu/tech/rss</docs>
- ditem>
<title>New Macromedia Blogger: Brian Deitte</title=>
<description>Brian Deitte is an engineer on the Flex team and a very smart
guy who worked on some of the "close-to-the-metal” features like SWCs
and the web service proxy in Flex 1.0 and 1.5. He's started his blog with
a...</description>

<link>http:/ /weblogs.macromedia.com/mchotin/archives/2005/09/new_macrom

<guid=http:/ /webl dia.com/mchotin/archives/2005/09/new_macron
<category>General</category>
<pubDate>Mon, 05 Sep 2005 20:10:04 -0800</pubDate=
<fitemz
- <item>
<title>MAX Mini-outline</title>
«description>1 was informed today that I've actually had a pretty good
number of people register for the Monday 9am session that I'm giving.
Are you all insane? At least I won't have to deal with a change in
timezones :-)...</description> ~
< | ¥

€] Done @ Internet

The general structure of the XML is as follows:

<rss>
<{channel>
<gtem>

Each node has child nodes containing data, including the “title” child node of the channel
node. The result object of the HTTPService component (feedRequest.result) reflects
this structure:

feedRequest.result.rss.channel.title

Insert a HTTPService component 169

Public Beta 1 Public Beta 1 Public Beta 1 Public

Your code should look as follows:

<?xml version="1.0" encoding="utf-8"7>
<mx:Application xmlns:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
layout="absolute" creationComplete="feedRequest.send()" >

<mx:HTTPService
id="feedRequest"
url="http://weblogs.macromedia.com/mchotin/index.xml"
useProxy="false"/>

<mx:Label x="20" y="50" text="{feedRequest.result.rss.channel.title}"/
>
<mx:DataGrid x="20" y="80" id="dgPosts" width="400">
<mx:columns>
<mx:DataGridColumn headerText="Column 1" columnName="coll"/>
<mx:DataGridColumn headerText="Column 2" columnName="col2"/>
</mx:columns>
</mx:DataGrid>
<mx:TextArea x="20" y="245" width="400" />
<mx:Link x="20" y="300" Tabel="Read Full Post" />
</mx:Application>

Save the file, wait until Flex Builder finishes compiling the application, and then click the
Run button in the toolbar to test the application.
A browser opens and runs the application. The blogs title, Matt Chotin, should appear in

the Label control, indicating that the application successfully retrieved data from the RSS
feed.

There may be a few seconds delay before the title appears while the application is
contacting the server.

310N

Populate a DataGrid control

Use the DataGrid control to display the titles of recent posts and the dates they were posted.

1. In the editor’s Source mode, enter the following dataProvider property in the
<mx:DataGrid> tag (in bold):
<mx:DataGrid x="20" y="80" id="dgPosts" width="400"
dataProvider="{feedRequest.result.rss.channel.item}" >
You want the XML node named item to provide data to the DataGrid control. This node
is repeated in the XML, so it will be repeated in the DataGrid.
170 Data: Retrieve and Display Data

Public Beta 1 Public Beta 1 Public Beta 1 Public

2. In the first <mx:DataGridColumn> tag, enter the following headerText and columnName

property values (in bold):
<mx:DataGridColumn headerText="Posts" columnName="title" />

You want the first column in the DataGrid control to display the titles of the posts. You do
this by identifying the field in the XML that contains the title data, and then entering this
field as the value of the coTumnName property. In the XML node specified in the
dataProvider property (item), the child node called title contains the information you
want.

. In the second <mx:DataGridColumn> tag, enter the following headerText, columnName
and width property values (in bold):

<mx:DataGridColumn headerText="Date" columnName="pubDate" width="150" />

You want the second column in the DataGrid to display the dates of the posts. In this case,
the field that contains the data is called pubDate.

The <mx:DataGrid> tag should look as follows:

<mx:DataGrid x="20" y="80" id="dgPosts" width="400"
dataProvider="{feedRequest.result.rss.channel.item}">
<mx:columns>
<mx:DataGridColumn headerText="Posts" columnName="title" />
<mx:DataGridColumn headerText="Date" columnName="pubDate"
width="150" />
</mx:columns>
</mx:DataGrid>

Populate a DataGrid control 17

Public Beta 1 Public Beta 1 Public Beta 1 Public

4. Save the file, wait until Flex Builder finishes compiling the application, and click the Run
button in the toolbar.

A browser opens and runs the application.

ickStart - Mozilla Firefox

File Edit WVew Go Bookmarks Tools Help

- - &) O [0 fesrcimoan ¥ © s [

Posts Date

New Macremedia Blogger: Brian Deitte Mon, 05 Sep 2005 20:10
MAX Mini-outline Maon, 29 Aug 2005 20:2

Flex and Flash Flayer 8 Mon, 08 Aug 2005 09:06
BElog Author Survey . 18 Jul 2005 15:38:¢

My blog has moved .03 Jul 2005 11:18:4

Whera be the posts? . 16 Jun 2005 22:54: | 4 |

Read weblogs.macromedia.com

Blog titles and dates should appear in the DataGrid control, confirming that the
application successfully retrieved data from the RSS feed and populated the control.

Display a selected item

When the user selects a post in the DataGrid control, you want the application to display the
first few lines of the post in the TextArea control. In the item node of the XML feed providing
data to the DataGrid control, this information is contained in a field called description.

1. In the editor’s Source mode, enter the following htm1Text propertyin the <mx:TextArea>
tag (in bold):
<mx:TextArea x="20" y="245" width="400"
html1Text="{dgPosts.selectedItem.description}" />
For each selected item in the DataGrid component (named dgPosts), the value of the
description field is used for the value of the htm1Text property. The htm1Text property
lets you display HTML formatted text.

172 Data: Retrieve and Display Data

Public Beta 1 Public Beta 1 Public Beta 1 Public

2. Save the file, wait until Flex Builder finishes compiling the application, and click the Run
button in the toolbar.

A browser opens and runs the application. Click items in the DataGrid control. The first
few lines of each post should appear in the TextArea control.

File Edit ¥ew Go Bookmarks Tools Help

TN L R L) —

Posts Date

New Macromedia Blogger: Brian Deitte Maon, 05 Sep 2005 20:10
MAX Mini-outline Mon, 29 Aug 20035 20:27
Flex and Flash Flayer 8 Mon, 08 Aug 20035 09:06

Blog Author Survey Mon, 18 Jul 2005 15:38:!

My bleg has moved % Sun, 03 Jul 2005 11:18:4

Whera be the posts? Thu, 16 Jun 2005 22:54;

Do you have a blog? Help Macromedia out and fill out this quick
survey! Survey...

Read weblogs.macromedia.com

Create a dynamic link

The RSS feed doesn’t provide the full text of the posts, but you still want users to be able to
read the posts if they’re interested. While the RSS feed doesn’t provide the information, it does
provide the URLs to individual posts. In the item node of the XML feed, this information is
contained in a field called link.

You decide to create a dynamic link that opens a browser and displays the full content of the
post selected in the DataGrid.

Create a dynamic link 173

Public Beta 1 Public Beta 1 Public Beta 1 Public

1. In the editor’s Source mode, enter the following c11ck propertyin the <mx:Link> tag (in
bold):
<mx:Link x="20" y="300" label="Read Full Post"

click="navigateToURL(new URLRequest(dgPosts.selectedItem.link));" />

The value of the link field of the selected item in the DataGrid control,
dgPosts.selectedItem.1ink, is specified in the argument to the navigateToURL()
method, which is called when the user clicks the Link control. The navigateToURL()
method loads a document from the specified URL in a new browser window.

The navigateToURL() method takes a URLRequest object as an argument, which in
turn takes a URL string as an argument.

310N

2. Save the file, wait until Flex Builder finishes compiling the application, and click the Run
button.

A browser opens and runs the application. Click an item in the DataGrid control and then
click the Read Full Post link. A new browser window should open and display the blog

page with the full post.

) Matt Chotin: MAX Mini-outline - Mozilla Firefox
Fle Edit View Go Bookmarks Tools Help Q

@ -5 - 80 @ [50" httpifweblogs.macromedia.comjchotin/archives/2005/08max_minio. | @ Go |[GL
Matt Chotin

¢ Flex and Flash Plaver 8 | Main | New Macromedia Blogger: Brizn Deitte

August 29, 2005

MAX Mini-outline

I ves informed today that I've actually had a pretty good number of people register for the Monday Sam sessi

I'm giving. Ars you all insane? At lsast T won't have to deal vith a changs in timazones :-) Thought you might ba
interestad in a super-rough sketch of the things I'll probably talk about. Nate that while the session hat it's
advanced I'd probably put it somevhere between intermediate and advanced since we'll be talling concepts much more
than code. You hopefully won't need to know Flex in great detail to get somathing out this.

The guiding theme of my talk is RIA architecture. Within that I'm heping te spend some time discussing (not
nacessarily in this order):

* What's a distributed application =nd how do you think abeut them?

s MVC, what's it mean, how doss it differ in the Flax world from an HTML/CF/1SP world?

In this lesson, you used an HTTPService component to retrieve data from an RSS feed, and
then you bound the data to a Label, DataGrid, TextArea, and Link control. To learn more, see
the following topics in Developing Flex Applications:

m Chapter 52, “Understanding RPC Service Components”

m Chapter 53, “Using RPC Components”

174 Data: Retrieve and Display Data

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 18

Data: Use Web Services

To provide data to your application, Flex includes components designed specifically for
interacting with web services, HT'TP servers, or remote object services (Java objects). These
components are called remote procedure call (RPC) service components.

In this lesson, you create a simple reporting application for a blog aggregator that lists the
most popular posts in the last 30 days. You decide to let the users determine the number of
posts to list. You use a WebService component to retrieve the data from a SOAP-based web
service provided by the blog aggregator site, and then you display the data in a DataGrid
control.

In this lesson, you'll complete the following tasks:

St UP YOUI PrOJECT . oottt ettt e e 176
Review your access toremotedatasources ...t 176
Review the APl documentation. ... 177
Insert and positioncontrols e 177
Insert a WebService component i 180
Populate the DataGrid component. i 181
Createadynamic link i 183

175

Public Beta 1 Public Beta 1 Public Beta 1 Public
Set up your project

Before you begin this lesson, perform the following tasks:

m Ifyou have not already done so, create the QuickStart project in Flex Builder. See “Basic:
Create a Project” on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

@ Flex Development - Lessons.mxml - Macromedia Flex Builder 2

File Edit Source MNavigate Search

LG8 Run Modify Window Help

|_=€j he] #}? T 0 7
‘T Navigator 23 =0
19 Build All Ctrl+8 —
<'|= - o1y
HS Build Project Stz
= @ Lessons Build Working Set 4
? bin Clean... —
a Lessons. mxml Build Automatically
Prorﬁes

Review your access to remote data
sources

For security reasons, applications running in Flash Player on client computers can only access

remote data sources if one of the following conditions is met:

m Your application’s compiled SWF file is in the same domain as the remote data source.

m You use a proxy and your SWF is on the same server as the proxy.
Flex Enterprise Services provides a complete proxy management system for Flex
applications. You can also create a simple proxy service using a web scripting language
such as ColdFusion, JSP, PHP, or ASP. For more information on creating your own proxy,
see the following TechNote on the Macromedia website at www.macromedia.com/go/
16520#proxy.

m A crossdomain.xml (cross-domain policy) file is installed on the web server hosting the
data source.
The crossdomain.xml file permits SWFs in other domains to access the data source. For
more information on configuring crossdomain.xml files, see the following TechNote on
the Macromedia website at www.macromedia.com/go/14213.

176 Data: Use Web Services

http://www.macromedia.com/go/16520#proxy
http://www.macromedia.com/go/16520#proxy
http://www.macromedia.com/go/14213

Public Beta 1 Public Beta 1 Public Beta 1 Public

The data sources used in this lesson are located in a domain that has a crossdomain.xml setup.

Therefore, Flash Player can access the remote data.

Review the APl documentation

The MXNA blog aggregator provides a number of web services for developers at http://
weblogs.macromedia.com/mxna/Developers.cfm. Before you start building your application,
you should review the API documentation for their web services to make sure a method exists
that can retrieve the information you want. The API documentation for the web services is
located at http://weblogs.macromedia.com/mxna/webservices/mxna2.heml.

The documentation describes a method called getMostPopularPosts. The method returns a
number of posts with the most clicks in the last 30 days. The number of posts returned
cannot exceed 50. For each post returned, the following information is provided: postld,
clicks, dateTimeAggregated, feedld, feedName, postTitle, postExcerpt, postLink.

The method takes two required numeric parameters:

m daysBack specifies the number of days you want to go back.

m limit specifies the total number of posts you want returned.

With this information, you can use a Flex component called WebService to consume this web
service and retrieve the data you want—a list of the most popular posts in the last 30 days.

Insert and position controls

In this section, you create the layout of your reporting application. You decide to use a
ComboBox control to let the users set the number of top posts to list, and a DataGrid to
display the top posts.

1. With your QuickStart project selected in the Navigator view, select File > New > MXML
Application and create an application file called Services.mxml.

For the purpose of these lessons, several application files are used in a single Flex
Builder project. However, it’s good practice to have only one MXML application file
per project.

310N

2. Designate the Services.mxml file as the default file to be compiled by right-clicking the file
in the Navigator view and selecting Application Management > Set As Default Application
from the context menu.

Insert and position controls 177

http://weblogs.macromedia.com/mxna/webservices/mxna2.html
http://weblogs.macromedia.com/mxna/Developers.cfm
http://weblogs.macromedia.com/mxna/Developers.cfm

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. Switch to the editor’s Design mode by clicking the Design button in the document toolbar,
and then drag the following controls to the Services.mxml file from the Components view:

m Label

s ComboBox
» DataGrid

s Link

4. Use the mouse to arrange the controls on the Canvas in a vertical, left-aligned column
similar to the following:

Column 1 Colurmn 2 Column 3

5. Select the Label control and enter Most Popular Posts as the value of its Text property in
the Flex Properties view.

6. Select the ComboBox control and enter cbxNumPosts as the value of its ID property.
The ComboBox control doesn’t list any items. You populate the list next.

7. Switch to the editor’s Source mode by clicking the Code button in the document toolbar,
and then enter the following code between the opening and closing <mx: ComboBox> tag:

<mx:0bject label="Top 5" data="5"/>
<mx:0bject Tabel="Top 10" data="10"/>
<mx:0bject label="Top 15" data="15"/>

178 Data: Use Web Services

Public Beta 1 Public Beta 1 Public Beta 1 Public

8. Switch back to the editor’s Design mode, select the DataGrid component, and specify the
following properties in the Flex Properties view:

n ID: dgTopPosts
n Width: 400

9. Select the Link control and enter Select an item and click here for full post as the value of
its Label property.

The layout should look like the following:

Column 1 Column 2 Column 3

10. Switch to the editor’s Source mode.

The Services.mxml file should contain the following MXML code (your coordinate values
may vary):
<?xml version="1.0" encoding="utf-8"7>
mx:Application xmIns:mx="http://www.macromedia.com/2005/mxm1" xmlns="*"
layout="absolute">
<mx:lLabel x="40" y="40" text="Most Popular Posts"/>
<mx:ComboBox x="40" y="65" id="chxNumPosts">
<mx:0bject label="Top 5" data="5"/>
<mx:0bject Tabel="Top 10" data="10"/>
<mx:0bject label="Top 15" data="15"/>
</mx:ComboBox>
<mx:DataGrid x="40" y="110" id="dgTopPosts" width="400">
<mx:columns>
<mx:DataGridColumn headerText="Column 1" columnName="coll"/>
<mx:DataGridColumn headerText="Column 2" columnName="col2"/>

Insert and position controls 179

Public Beta 1 Public Beta 1 Public Beta 1 Public

<mx:DataGridColumn headerText="Column 3" columnName="col3"/>
</mx:columns>
</mx:DataGrid>
<mx:Link x="40" y="285" Tabel="Select an item and click here for full
post"/>

</mx:Application>

The next step is to insert and configure a Flex component called WebService to your

application.

Insert a WebService component

You use the Flex WebService component to access a SOAP-based web service and retrieve
information about recent blog posts.

1. In the editor’s Source mode, enter the following <mx:WebService> tag immediately after
the opening <mx:Application> tag:

<mx:WebService id="wsBlogAggr"
wsdl="http://weblogs.macromedia.com/mxna/webservices/mxnaZ.cfc?wsdl"
useProxy="false">

</mx:WebService>

The wsd1 property specifies the location of the WSDL file for the web service. This

information is found on the developers page at http://weblogs.macromedia.com/mxna/

Developers.cfm#web.

The useProxy property specifies that you don’t want to use a proxy on a server. For more

information, see “Review your access to remote data sources” on page 176.

2. Specify the parameters to pass to the web service method.
According to the API documentation, the getMostPopularPosts method takes the
following required parameters:
» daysBack specifies the number of days you want to go back.
= limit specifies the total number of rows you want returned.
To specify these parameters, enter the following tags between the opening and closing
<{mx:WebService> tags:

<mx:operation name="getMostPopularPosts">
<mx:request>
<daysBack>30</daysBack>
<limit>{cbxNumPosts.value}</1imit>
</mx:request>
</mx:operation>

The name property of an <mx:operation> tag must match the web service method name.

180 Data: Use Web Services

http://weblogs.macromedia.com/mxna/Developers.cfm#web
http://weblogs.macromedia.com/mxna/Developers.cfm#web

Public Beta 1 Public Beta 1 Public Beta 1 Public

You use a constant for the value of the daysBack parameter, but you bind the value of the
1imit parameter to the value of the selected item in the cbxNumPosts ComboBox
control. You want the user to specify the number of posts to list.

The next step is to prompt the application to call the web service method. You decide the
method should be called when the ComboBox control changes in response to the user
selecting an option.

3. Inthe <mx:ComboBox> tag, add the following change property (in bold):
<mx:ComboBox x="40" y="76" id="cbxNumPosts"

change="wsBlogAggr.getMostPopularPosts.send()">

When the user selects an option in the ComboBox control, the getMostPopularPosts
method of the wsBlogAggr WebService component is called. The method’s parameters are
specified in the WebService component's <mx:operation> tag. The 1imit parameter is
set at runtime depending on the option the user selects.

The application is ready to call the web service. The next step is to display the data returned
by the web service.

Populate the DataGrid component

You want to use the DataGrid control to display the data returned by the web service.
Specically, you want to display the titles of the most popular posts and the number of clicks
each has received.

1. In the editor’s Source mode, enter the following dataProvider property in the
<mx:DataGrid> tag (in bold):
<mx:DataGrid x="40" y="126" id="dgTopPosts" width="400"
dataProvider="{wsBlogAggr.getMostPopularPosts.result}">
You want to display the results of the web service’s getMostPopularPosts operation in the
DaraGrid control.

2. In the first <mx:DataGridColumn> tag, enter the following headerText and columnName
property values (in bold):

<mx:DataGridColumn headerText="Top Posts" columnName="postTitle" />

You want the first column in the DataGrid control to display the titles of the posts. You do
this by identifying the field returned by the web service operation that contains the title
data, and then entering the field name as the value of the columnName property. According
to the API documentation for the getMostPopularPosts method, the field called
postTitle contains the information you want.

Populate the DataGrid component 181

Public Beta 1 Public Beta 1 Public Beta 1 Public

3. In the second <mx:DataGridColumn> tag, enter the following headerText, columnName,
and width property values (in bold):

<mx:DataGridColumn headerText="Clicks" columnName="clicks" width="75" />

You want the second column in the DataGrid control to display the number of clicks for
each post during the last 30 days. According to the API documentation, the field that
contains the data is called c1icks.

4. Delete the third <mx:DataGridColumn> tag.
You don’t need a third column.

The <mx:DataGrid> tag should look as follows:

<mx:DataGrid x="40" y="110" id="dgTopPosts" width="400"
dataProvider="{wsBlogAggr.getMostPopularPosts.result}">
<mx:columns>
<mx:DataGridColumn headerText="Top Posts" columnName="postTitle"/>
<mx:DataGridColumn headerText="Clicks" columnName="clicks"
width="75"/>
</mx:columns>
</mx:DataGrid>
5. Save the file, wait until Flex Builder finishes compiling the application, and then click the

Run button in the toolbar to test the application.

A browser opens and runs the application. You find a problem in the application’s default
state: The ComboBox reads Top 5 but the DataGrid does not display any information.
The DataGrid should display the top five posts, but it doesn’t because your application
hasn’t called the web service yet. The application only calls it when the ComboBox
changes. Even if you click Top 5 in the ComboBox after the application starts, the call is
still not made because the selected item hasn’t changed.
To fix the problem, you decide to also call the web service immediately after the
application is created, as follows.

6. In the editor’s Source mode, enter the following creationComplete property in the
opening <mx:Application> tag (in bold):
<mx:Application xmlns:mx="http://www.macromedia.com/2005/mxml" xmlns="*"

layout="absolute"
creationComplete="wsBlogAggr.getMostPopularPosts.send()">

182 Data: Use Web Services

Public Beta 1 Public Beta 1 Public Beta 1 Public

7. Save the file and run the application.

Blog titles and click statistics should appear in the DataGrid control after the application
starts, confirming that the application successfully retrieved data from the web service and

populated the control.

3 Services - Microsoft Internet Explorer

: Fle Edit View Favorites Toos Help

Q B @ \{h *Favnmms @ B

Flash €: Firs Fire Fira!!!
Day tvo at Adobe (and why my email address is changine 370

contacting the server.

There may be a few seconds delay before the data appears while the application is
-
m

Select another option from the ComboBox control to display a longer list of posts.

Create a dynamic link

The web service doesn’t provide the full text of the posts, but you still want users to be able to
read the posts if they’re interested. While the web service doesn’t provide the information, it
does provide the URLs to individual posts. According to the API documentation for the
getMostPopularPosts method (see “Review the API documentation” on page 177), the
information is contained in a field called postLink.

You decide to create a dynamic link that opens a browser and displays the full content of the
post selected in the DataGrid control.

1. In the editor’s Source mode, enter the following c11ck property in the <mx: Link> tag (in
bold):

<mx:Link x="40" y="285" label="Select an item and click here for full
post"
click="navigateToURL(new
URLRequest(dgTopPosts.selectedItem.postLink));"™ />

Create a dynamic link 183

Public Beta 1 Public Beta 1 Public Beta 1 Public

The value of the link field of the selected item in the DataGrid control,
dgTopPosts.selectedItem.postLink, is specified in the argument to the
navigateToURL() method, which is called when the user clicks the Link control. The
navigateToURL() method loads a document from the specified URL in a new browser

window.

The navigateToURL() method takes a URLRequest object as an argument, which in
turn takes a URL string as an argument.

2. Save the file, wait until Flex Builder finishes compiling the application, and click the Run
button.

A browser opens and runs the application. Click an item in the DataGrid control and then
click the Link control. A new browser window should open and display the blog page with
the full post.

In this lesson, you used a WebService component to call and pass method parameters to a
SOAP-based web service. You then bound the data returned by the web service to a DataGrid
and a Link control. To learn more, see the following topics in Developing Flex Applications:

m Chapter 52, “Understanding RPC Service Components”

m “Explicit parameter passing with RemoteObject and WebService components”

m “Parameter binding with WebService components”

m “Setting properties for RemoteObject methods or WebService operations”

m “Handling service results”

m “Using features specific to WebService components”

184 Data: Use Web Services

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 19

Programming: Use an

Event Listener

When developing Flex applications, event handling is one of the most basic and important

tasks.

Events let you know when something happens within a Flex application. They can be
generated by user devices, such as the mouse and keyboard, or other external input, such as
the return of a web service call. Events are also triggered when changes happen in the
appearance or life cycle of a component, such as the creation or destruction of a component or
when the component is resized.

You can respond to these events in your code by using event listeners. Event listeners are the
functions or class methods that you write to respond to specific events. They are also referred
to as event handlers.

This lesson shows you how to use an event listener. It shows you how to write one for a
Button control, and then how to tie the event listener to the Button’s click event by using two
different methods.

In this lesson, you'll complete the following tasks:

St UP YOUI PrOJECT . ottt e e 186
Createasimpleuserinterface.......... 186
Write an event listener. 188
Register the event listenerwith MXML 189
Register the event listener with ActionScript......... 190

185

Public Beta 1 Public Beta 1 Public Beta 1 Public
Set up your project

Before you begin this lesson, ensure that you perform the following tasks:

m Ifyou have not already done so, create the Lessons project in Flex Builder. See “Basic:
Create a Project” on page 95.

m Ensure that the automatic build option is enabled in Flex Builder. This option is enabled
by default in the standalone configuration of Flex Builder but not in the plug-in
configuration. To enable it, select Project > Build Automatically.

@ Flex Development - Lessons.mxml - Macromedia Flex Builder 2
File Edit Source MNavigate Search Q=8 Run Modify Window Help

= bin

@ Lessons.mxml

Clean...
Build Automatically

Prorties

|_=<j = o ﬁ T 0 7
T Navigator 23 =0
a1g Build Al Ctrl+8 —
<== — oy
== Build Project Stz
= @ Lessons Build Working Set

Create a simple user interface

You decide to build a simple currency converter for your online store. You want the user to be
able to specify a dollar amount and click a button to get the equivalent amount in yen. The
first step is to design a simple user interface.

1. With your Lessons project selected in the Navigator view, select File > New > MXML
Application and create an application file called Events.mxml.

For the purpose of these lessons, several application files are used in a single Flex
Builder project. However, it’s good practice to have only one MXML application file
per project.

310N

2. Designate the Events.mxml file as the default file to be compiled by right-clicking the file
in the Navigator view and selecting Application Management > Set As Default Application
from the context menu.

3. In the editor’s Design mode, add two Label controls, a TextInput control, and a Button
control to the Events.mxml file by dragging them from the Components view (Window >
Show View > Components).

186 Programming: Use an Event Listener

Public Beta 1 Public Beta 1 Public Beta 1 Public

4. Arrange the controls so that they roughly match the following illustration:

5. Select the first Label control and enter Price in Dollars as the value of its Text property in
the Flex Properties view.

6. Seclect the TextInput control and enter txtPrice as the value of its ID property.
7. Select the Button control and set the following properties:
n ID: btnConvert
n Label: Convert to Yen
8. Select the second Label control (below the TextInput control) and do the following:
n Clear the value of its Text property.
» Enter IbIResults as the value of its ID property.

9. Fine-tune the position of the controls so that the layout looks as follows:

Create a simple user interface 187

Public Beta 1 Public Beta 1 Public Beta 1 Public

10. Switch to the editor’s Source modeand examine the code generated by Flex Builder.

Your code should look as follows (your coordinate values may vary):

<7xml version="1.0" encoding="utf-8"7>
<mx:Application xmins:mx="http://www.macromedia.com/2005/mxm]
Tayout="absolute">
<mx:lLabel x="31" y="60" text="Price in Dollars"/>
<mx:Label x="126" y="88" id="1blResults"/>
<mx:TextInput x="126" y="58" id="txtPrice"/>
<mx:Button x="294" y="58" label="Convert to Yen" id="btnConvert"/>
</mx:Application>

xmlns="*"

11. Save your file.

Write an event listener

Next, you write an event listener for the Convert to Yen button. You want the listener to
consist of an ActionScript function that can calculate and display a specified dollar price in
Yen.

1. Switch to the editor’s Source mode and place the insertion point immediately after the
opening <mx:Application> tag.

2. Start typing <mx:Script> until the full tag is selected in the code hints, hit Enter to insert
the tag in your code, and then type the closing angle bracket (>) to complete the tag.

Flex Builder enters an <mx:Script> script block that also includes a CDATA construct.

When using an <mx:Script> script block, you should wrap the contents in a CDATA
construct. This prevents the compiler from interpreting the contents of the script
block as XML, and allows the ActionScript to be properly generated.

310N

3. Enter or paste the following code in the CDATA construct:

public function convertCurrency():void {
var rate:Number = 120;
var price:Number = Number(txtPrice.text);
if (isNaN(price)) {

1bTResults.text = "Please enter a valid price."”;
} else {
price = price * rate;
1bTResults.text = "Price in Yen: ™ + String(price);

}
}

The keyword pub1ic sets the scope of the function. It’s available throughout your code.

The keyword void specifies that the function returns nothing. All functions should define
a return type.

188 Programming: Use an Event Listener

Public Beta 1 Public Beta 1 Public Beta 1 Public

The price entered by the user, txtPrice.text, is cast as a Number and then validated to
make sure the user entered a number. If the price is a number, the calculation is performed
and the result is cast back to a String for display in the IbIResults control.
In a real application, the value of the rate variable would be set at runtime by calling a web
service and retrieving the current exchange rate. As well, the result would be formatted as
a currency.

4. Save the file.

Register the event listener with MXML

After writing the event listener, you want to call it when the user clicks the Convert to Yen
button. When called, the listener performs the currency calculation and displays the results.
One way to register the listener is to specify it as the value of the c11ick property in the
<mx:Button> tag.

You can also use ActionScript to register the listener with the Button control, as described in
the section, “Register the event listener with ActionScript” on page 190.

1. In the editor’s Design mode, select the Button control and enter convertCurrency() as the
value of the control’s Click property.

[mx:Button

¥ General

1d: | btnConvert

Label: | Convert to Yen

Label Placement: hd
Icon: f

Click: | convertCurrency ()
N

} Style hg

When the user clicks the button, the button calls the convertCurrency () function.

Register the event listener with MXML 189

Public Beta 1 Public Beta 1 Public Beta 1 Public

2. Save the file, wait until Flex Builder compiles the application, and click Run in the toolbar.

A browser opens and runs the application.

A Events - Microsoft Internet Explorer

&] Done [| @ nternet

3. Enter a price and click the Convert to Yen button.

The Label control below the TextInput control displays the price in yen.

Register the event listener with
ActionScript

You can use ActionScript to register an event listener with the Button control. The

ActionScript code connects the listener to a specific control event, such as a mouse click.

When the control dispatches the event, your listener gets called.

1. Switch to the editor’s Source mode.

2. Delete the c1ick property and its value in the <mx:Button> tag.

3. Declare an Event object in the signature of your convertCurrency event listener as follows
(in bold):

public function convertCurrency(e:Event):void {

When a listener function is invoked, Flex implicitly creates an Event object for you and
passes it to the listener function. Therefore, it is best practice to declare an Event object in
the signature of your listener function. Accordingly, you declare an object of type Event
called e in the signature of the convertCurrency function.

190 Programming: Use an Event Listener

Public Beta 1 Public Beta 1 Public Beta 1 Public

4. Enter the following function immediately before the convertCurrency function in the
<mx:Scriptd> tag:
public function createlistener():void {

btnConvert.addEventListener(MouseEvent.CLICK, convertCurrency);

}
The statement in this function instructs the benConvert object to call the
convertCurrency () function when it “hears” the mouse click event. For more
information on the addEventListener method, click the method name in the code and
press F1.

The script block should look as follows:

<mx:Script>
<I[CDATAL
public function createlistener():void {
btnConvert.addEventlListener(Mousekvent.CLICK, convertCurrency);
}

public function convertCurrency(e:Event):void {
var rate:Number = 120;
var price:Number = Number(txtPrice.text);
if (isNaN(price)) {

1b1Results.text = "Please enter a valid price.";
b else {
price = price * rate;
1b1Results.text = "Price in Yen: " + String(price);

}
}
11>
</mx:Script>

5. In the <mx:Application> tag, enter the following property so that the
createlistener() function is called and the event listener is registered immediately after
the application is created:

creationComplete="createlListener()"

The <mx:Application> tag should look as follows:

<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml" xmlIns="*"
layout="absolute" creationComplete="createlistener()">

6. Save the file, wait until Flex Builder compiles the application, and click Run in the toolbar.
7. Enter a price and click the Convert to Yen button.

The Label control below the TextInput control displays the price in yen.

Register the event listener with ActionScript 191

Public Beta 1 Public Beta 1 Public Beta 1 Public

In this lesson, you wrote an event listener for a Button control, and then registered the listener
using two different methods. In the first method, you registered it by specifying it in the
click property in the Button control's MXML tag. In the second method, you registered the
listener by writing an ActionScript function that connected it to the Button’s click event. To
learn more, see Chapter 5, “Using Events” in Developing Flex Applications.

192 Programming: Use an Event Listener

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 21

Enterprise: Use the

Data Service

The Adobe Flex Data Service feature is a Flex Enterprise Services feature that spans the client,
network, and server tiers to provide distributed data in Flex applications. This tutorial
provides two lessons on using the Data Service. The first lesson uses the ActionScript object
Data Service adapter, which persists data in server memory and is useful for applications that
require transient distributed data that is not persisted to a data store.

The second lesson uses the Java Data Service adapter for working with data that is persisted to
a data store. The Java adapter passes data changes to methods available on an arbitrary Java
class, referred to as the Java assembler. This adapter lets Java developers employ the Data

Transfer Object (DTO) design pattern.

This tutorial provides the following lessons for building distributed applications that each use
the Data Service, which is part of Flex Enterprise Services:

Build a distributed application with the ActionScript object adapter 196
Build a distributed application with the Javaadapter........................ 203

Before you begin

Before you begin this tutorial, perform the following tasks:

m Ensure that you have installed the Flex 2 Beta 1 release and that you can run the
applications in the samples web application.

m Ensure that a tutorials directory was created in the samples web application when you
unzipped the tutorials.zip file on the Beta site. The directory should contain two MXML
files named completed1.mxml and completed2.mxml. If you don’t have a tutorials
directory, the use folder names option may not have been enabled when you extracted files

from the zip file.

195

Public Beta 1 Public Beta 1 Public Beta 1 Public

Build a distributed application with the
ActionScript object adapter

In this lesson, you create a simple distributed application for entering and displaying notes
that are shared among all clients. The application uses the ActionScript object Data Service
adapter to distribute text data to all clients. The ActionScript object adapter persists data in
server memory and is useful for applications that require transient data that is not persisted to
a permanent data store. Changes to data in one client are sent to the server-side data service
and automatically propagated to other clients.

In this lesson, you'll complete the following tasks:

Configure a Data Service destination 196
Createanew MXMLfile o i e 197
Createtheuserinterface.o e 197
Import the required ActionScriptclasses i ... 198
Createvariables i 198
Initialize the application. 198
SENA NOtES. . oottt 199
Handlereturned data. i e 200
Handledatachanges. i e 200
Verify that your codeiscorrect 200
Run the completed notes application 201

Configure a Data Service destination

In this section of the lesson, you define a server-side Data Service destination that uses the
ActionScript object adapter. This destination persists data in server memory and distributes
data to client applications.

1. Ina text editor, open the flex-data-services.xml file located in the WEB_INF/flex directory
of the samples web application.

2. Directly above the text <destination id="contact">, make sure the following
destination definition exists. Create the destination definition if it isn’t there, and save the

file.

<destination id="notes">
<adapter ref="actionscript"/>
<properties>
<metadata>
<identity property="noteld"/>
</metadata>

196 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

</properties>
<{/destination>

3. If you modified the flex-data-services.xml file, restart the samples server if it is running.

Create a new MXML file

In your favorite MXML editor or text editor, create a text file that contains the following text
and save it as tutorial.mxml file in the tutorials directory of the samples web application:

<?xml version="1.0" 7>
<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml"
height="100%" width="100%">

</mx:Application>

Create the user interface

In this section, you create the TextArea control that will display editable text in the
application.

1. Create a TextArea control by adding the following MXML code after the beginning
<mx:Application> tag in the tutoriall.mxml file.

<mx:TextArea id="log" width="100%" height="100%"/>
<mx:Button Tabel="Send"/>
2. Save the file, and open the following URL in a browser window:

htep://localhost:port/samples/tutorials/tutorial 1.mxml

The following application appears in the browser window:

2 /tutorials/dschat/dschat1l.mxml - Microsoft Inte: =lal x|
File Edit View Favorites Tools Help |Links 2 @ b | ﬁ.

Address I@ http:Hlocalhost:8?DD,l’samples,l’tutorials,l’dschat,l’dschat]j Go

Build a distributed application with the ActionScript object adapter 197

Public Beta 1 Public Beta 1 Public Beta 1 Public

Import the required ActionScript classes

In this section, you create a script block and import a set of classes that you will use within the
script block.

1. Create a script block for ActionScript code directly below the <mx:Application> tagin
the tutoriall.mxml file:

<mx:Script>
<I[CDATAL

11>
</mx:Script>
2. Directly below the <! [CDATA[tag, add the following ActionScript import statements to
import the mx.data.DataService and mx.collections.ArrayCollection classes:

import mx.data.DataService;
import mx.data.events.*;
import mx.rpc.AsyncToken;
import mx.rpc.events.*;
import mx.messaging.events.*;
import mx.utils.ObjectProxy;

Create variables

In this section, you declare variables for objects that you will use within the script block.
Directly below the import statements in the script block, add the following variable
declarations:

private var ds:DataService;

public var noteObj:0bject = new Object();
public var getToken:AsyncToken;

pubTic var noteProxy:0bjectProxy;

Initialize the application

In this section, you write an event listener method that creates a DataService component and

calls the DataService component’s getItem() method, which retrieves the current note text.

1. Add the following method declaration directly under the variable declarations to create an
event listener:

public function initApp() {

}

198 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

2. Add the boldface text to the initApp () method to create a DataService component when
the initApp() method is called. The ds DataService component connects to the server-
side notes Data Service destination, which is specified in its one argument.

public function initApp()
{
ds = new DataService("Notes");

}

3. Add the boldface text to the initApp () method. This code adds a Result event listener to
the DataService component and sets initial values for the noteObj object’s noteId and
noteText properties. Italso sets the value of the getToken object to the AsyncToken object
returned by the DataService component’s getItem() method.

The ActionScript object adapter uses the noteld property as a unique identifier for each
noteObj object, and the noteText property contains the note text.

public function initApp()
{
ds = new DataService("notes");

ds.addEventListener(ResultEvent.RESULT, resultHandler);
ds.autoCommit = false;
noteObj.noteld = 1;
noteObj.noteText = "This is a test note.";
getToken = ds.getItem(noteObj, noteObj);
}
4. Add the boldface text to the <mx:Application> tag to call the initApp() method when
the contact application is initialized:

<mx:Application xmIns:mx="http://www.macromedia.com/2005/mxml"
creationComplete="1initApp()">

Send notes

In this section, you write an event listener method that sends text to the notes destination
when you click the Send button. you then assign that method to the click event of the Send
button.

1. Add the following code below the initApp() method in the script block:

private function sendMessage() {
noteProxy.noteText = log.text;
ds.commit();
}
2. Add the boldface text to the <mx:Button> tag to call the sendMessage () method when
the Send button is clicked:

<mx:Button label="Send" click="sendMessage();"/>

Build a distributed application with the ActionScript object adapter 199

Public Beta 1 Public Beta 1 Public Beta 1 Public

Handle returned data

In this section, you write an event listener method that handles data that the Data Service
returns to the client.

Add the following method just below the initApp() method:

pubTic function resultHandler(event:ResultEvent) f{
if (event.call == getToken)
{
noteProxy = 0ObjectProxy(event.result);
noteProxy.addEventListener(0ObjectEvent.CHANGE, changeHandler);
log.text = noteProxy.noteText;

}

In the resultHandler() method, event.call is the AsyncToken that the getItem()
method returns. Because the noteObj object is an anonymous object, the Data Service wraps
it in an ObjectProxy object and returns that object in the result event. Anonymous objects do
not implement the object change event, but ObjectProxy objects do. This is why noteProxy is
used instead of noteObj in the following code:

log.text = noteProxy.noteText

Handle data changes

In this section, you write an event listener method that handles changes to text in the 1og
TextArea control.

Add the following method just below the resultHandler() method. When the text in the
T0g TextArea control changes, noteProxy.noteText is set to the new value.

public function changeHandler(event:0bjectEvent) {
log.text = noteProxy.noteText;
}

Verify that your code is correct

Your code should match the following code example. Verify that the content is correct and
save the tutoriall.mxml file.

<mx:Application xmlns:mx="http://www.macromedia.com/2005/mxml"
height="100%" width="100%"
creationComplete="initApp();">

<mx:Script>
<I[CDATAL
import mx.data.DataService;
import mx.data.events.*;

200 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

import mx.rpc.AsyncToken;
import mx.rpc.events.*;
import mx.messaging.events.*;
import mx.utils.ObjectProxy;

private var ds:DataService;

public var noteObj:0bject = new Object();
public var getToken:AsyncToken;

public var noteProxy:0bjectProxy;

private function initApp() {
ds = new DataService("notes");
ds.addEventListener(ResultEvent.RESULT, resultHandler);
ds.autoCommit = false;

noteObj.noteld = 1;
noteObj.noteText = "This is a test note.";
getToken = ds.getItem(noteObj, noteObj);

}

private function sendMessage() {
noteProxy.noteText = Tog.text;
ds.commit();

}

public function resultHandler(event:ResultEvent) {
if (event.call == getToken)
{
noteProxy = 0ObjectProxy(event.result);
noteProxy.addEventListener(0ObjectEvent.CHANGE,
changeHandler);
log.text = noteProxy.noteText;
}
}

public function changeHandler(event:0bjectEvent) {
log.text = noteProxy.noteText;
}

11>
</mx:Script>
<mx:TextArea id="log" width="100%" height="100%"/>
<mx:Button label="Send" click="sendMessage();"/>
</mx:Application>

Run the completed notes application

In this section, you run the completed notes application in two browser windows to see

automatic updates in one window when data is changed in the other.

Build a distributed application with the ActionScript object adapter 201

Public Beta 1 Public Beta 1 Public Beta 1 Public

1. Open the following URL in two browser windows:

htep://localhost:port/samples/tutorials/tutorial 1.mxml

2. Make sure both instances of the application look like those in the following example. Resize
the browser windows so that you can see both instances of the application at the same time.

3 /tutorials/completed 10l x|

L 3 /tutorials/complete: i IEllil
File Edit View *|Lnks |@ - | aw

File Edit Wi *|Links | @ - | F

Address I@ http:,l',l'|0ca|h05t:S?DD,I'SEj Go Address I@ http:ﬁlocalhost:a?nj Go

Thiz iz a test note,

This is a test nota,

3. In one of the browser windows, type a new line of text in the text area and click the Send
button. Your change should update the application that is running in the other browser
window.

4. In the second window, type additional text and click the Send button. The change should
be appended to the text already displayed in the application that is running in the other
browser window.

In this lesson, you used the Data Service feature with the ActionScript object adapter to create

a distributed data application that automatically synchronized data among multiple clients

and a server-side data resource. You built the client-side part of the application, and took a

look at the server-side components of the application. To learn more, see the following topics

in Developing Flex Applications:

m Understanding the Flex Data Service Feature

m Distributing Data in Flex Applications

m Configuring the Data Service

202 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

Build a distributed application with the
Java adapter

In this lesson, you create a simple contact application that automatically retrieves contact
information from a database and displays it in a DataGrid component. Changes to data in
one client are sent to the server-side data service and automatically propagated to other
clients.

After building and running the client application, you learn how the server-side Data Service
enables the distribution and synchronization of data in the application.

In this tutorial, you'll complete the following tasks:

Createanew MXMLAfile e 203
Createtheuserinterface. e 204
Import the required ActionScriptclasses i, 204
Createvariables i 205
Bind the ArrayCollection object to the DataGrid............................ 205
Fill the ArrayCollection object withdata 206
Run the completed contact application............. i ... 208
View the server-side Data Service destination 209
View the assembler class e e 21
Viewthesyncmethod. i e 213

Create a new MXML file

In your MXML editor, create a text file that contains the following text and save it as
tutorial2.mxml file in the tutorials directory of the samples web application:

<?xml version="1.0" ?>
<mx:Application xmIns:mx="http://www.macromedia.com/2005/mxml">

</mx:Application>

Build a distributed application with the Java adapter 203

Public Beta 1 Public Beta 1 Public Beta 1 Public

Create the user interface

In this section, you create the editable DataGrid control that will display editable contact
information in the contact application.

1. Create a three-column editable DataGrid control by adding the following MXML code
after the beginning <mx:Application> tag in the tutorial2.mxml file. Set the editable
property of the first column to false.
<mx:DataGrid id="dg" editable="true">

<mx:columns>
<mx:DataGridColumn columnName="contactId" headerText="1d"
editable="false"/>
<mx:DataGridColumn columnName="firstName" headerText="First Name"/>
<mx:DataGridColumn columnName="lastName" headerText="Last Name"/>
</mx:columns>
</mx:DataGrid>

2. Save the file, and open the following URL in a browser window:
htep://localhost:port/samples/tutorials/tutorial2. mxml

The browser window should display the following application:

4 /tutorials /tutoriall_st _ o) x|

|File Edit Wiew Favorites Tools Help | ':f' |

First Name Last Name

Import the required ActionScript classes

In this section, you import the mx.collections.ArrayCollection and mx.data.DataService
classes so that you can create a DataService component and an ArrayCollection object. Later
in the tutorial, you will create a DataService component that requests data from a server-side
Data Service destination and fills an ArrayCollection object with that data.

204 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

1. Create a script block for ActionScript code directly above the <mx:DataGrid> tag in the

tutorial2.mxml file:
<mx:Script>
<I[CDATAL

11>
</mx:Script>

2. Directly below the <! [CDATAL tag, add the following ActionScript import statements to

import the mx.data.DataService and mx.collections.ArrayCollection classes:

import mx.data.DataService;
import mx.collections.ArrayCollection;

Create variables

In this section, you add variables for the ArrayCollection and DataService objects to the script

block.
1. Directly below the import statements in the script block, add the following variable
declarations for the ds and contacts variables:

public var ds:DataService;
pubTic var contacts:ArrayCollection;

2. Adda[Bindable] metadata tag directly above the contacts variable declaration:

[Bindablel
public var contacts:ArrayCollection;

The [Bindable] metadata tag indicates to the MXML compiler that contacts isa
bindable property. By making it a bindable property, you can bind it into the
dataProvider property of the DataGrid control and display data in the DataGrid

control.

Bind the ArrayCollection object to the DataGrid

In this section, you bind the contact ArrayCollection object to the DataGrid control’s
dataProvider property to fill the DataGrid control with data from the ArrayCollection
object.
1. Add the boldface text to the <mx:DataGrid> tag:

<mx:DataGrid id="dg" dataProvider="{contacts}" editable="true">

2. Save the tutorial2.mxml file.

Build a distributed application with the Java adapter

205

Public Beta 1 Public Beta 1 Public Beta 1 Public
Fill the ArrayCollection object with data

In this section, you write an event listener method that creates a DataService object and an
ArrayCollection object, and calls the DataService’s 111 () method to fill the ArrayCollection
with data.

1. Add the following method declaration directly under the variable declarations to create an
event listener:

public function initApp() {

}

2. Add the boldface text to the initApp() method to create a DataService component and an
ArrayCollection object when the initApp() method is called. The ds DataService
connects to the server-side contact Data Service destination, which is specified in its one

argument.

public function initApp()

{
contacts = new ArrayCollection();
ds = new DataService("contact");
ds.fill(contacts);

}

3. Add the boldface text to the initApp() method to call the DataService object’s fi11()
method when the initApp() method is called. The f111() method requests data from the
server-side Data Service destination and fills the contacts ArrayCollection with that data.
The DataService object manages all updates, additions, and deletions to the data in the
ArrayCollection.

public function initApp()

{
contacts = new ArrayCollection();
ds = new DataService("contact");
ds.fill(contacts);

}

4. Add the boldface text to the <mx:Application> tag to call the initApp() method when
the contact application is initialized:

<mx:Application xmIns:mx="http://www.macromedia.com/2005/mxml"
creationComplete="1initApp()">

206 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

Verify that your code is correct

Your code should match the following code example. Verify that the content is correct and
save the tutorial2.mxml file.

<?xml version="1.0" 7>
<mx:Application xmins:mx="http://www.macromedia.com/2005/mxml" >

<mx:Script>
<I[CDATAL
import mx.data.DataService;
import mx.collections.ArrayCollection;
pubTic var ds:DataService;

[Bindable]
pubTic var contacts:ArrayCollection;

public function initApp(){
contacts = new ArrayCollection();
ds = new DataService("contact");
ds.fill(contacts);
}
11>
</mx:Script>

<mx:DataGrid id="dg" dataProvider="{contacts}" editable="true">
<mx:columns>
<mx:DataGridColumn columnName="contactId" headerText="Id"
editable="false"/>
<mx:DataGridColumn columnName="firstName" headerText="First Name"
/>
<mx:DataGridColumn columnName="lastName" headerText="Last Name"/>
</mx:columns>
</mx:DataGrid>
</mx:Application>

Build a distributed application with the Java adapter 207

Public Beta 1 Public Beta 1 Public Beta 1 Public

Run the completed contact application

In this section, you run the completed contact application in two browser windows to see

automatic updates in one window when data changes in the other.

1. Open the following URL in two browser windows:
htep://localhost:port/samples/tutorials/tutorial2.mxml

2. Ensure both instances of the application look like the following example. Resize the
browser windows so that you can see both instances of the application at the same time.

3 /tutorials, tutoriall.mumil - Microsoft 10l =l
File Edit VWiew Favorites Tools Help #

| First Name | Last Name

Christopher Johnson

Jane Doe

Joe Johanszon
Srnith

Rodriguez

Brown

fcontact/tutorial_step4

File Edit View Favorites Tools Help r?

| First Name | Last Name

Christopher Johnson
Jane Doe
Joe Johanszon

Srnith

Rodriguez

Brown

3. In one of the browser windows, click a DataGrid cell in the First Name column, and
change the name.

4. Tab to the Last Name column of the DataGrid. Your change should automatically update
the application that is running in the other browser window. After each change, the
DataService component’s commit () method is automatically called to send the changed
data to the server-side Data Service.

The following sections explain some of the server-side functionality that enables data
distribution and synchronization in the tutorial2 application.

208 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

View the server-side Data Service destination

The tutorial2.mxml file contains a DataService component that takes the name of a server-
side Data Service destination named contact as an argument in its constructor. This
reference to the contact destination is the only thing the client application needs to
communicate with the destination. The contact destination is defined in the flex-data-
services.xml file in the WEB_INF/flex directory of the samples web application. The
following figure shows the XML code that defines the destination:

¢destination id="contact":

<adapter ref="java-dac" /> Reference to a Data Service
<properties> adapter configuration; this
<m.<3§322t?€y Lroperty="contact Id"/> destination uses the Java
irmetadetey object adapter
<network> Network -related settings

{zession—timeout >0< session-timsout »

{paging enabled="false" =ize="10" -

{throttle-inbound policy="ERROR" nax—-frequency="G500"->
<throttle—outbound policy="EEPLACE" maxz—frequency="500"-:

</network:
{ESETVEL >
taszsenbler:
‘{classrsanples . contact . Contactissenbler<- /class: Java<jassthatcarne§oui
¢singleton>true< singleton> data fill and synchronization
</assenbler: operations between client
) and server.
<fill-method
(namne:loadContacts< namne: Lhﬁapp“qgtornethocjon
<sfill-nethod: adapter class to get data.

<fill-method:
¢namne:loadContact=s<{ nan=>
<paramsrjava.lang. String<-parans>
< fill-method:
Mapping to method on
<sync-method> adapter class that
{namnsrsyncContacts{ - namns: synchrorﬂzesrnuhipe

{~sync-nethod > - t dat
{/EETVEL ¥ versions ot adata.

{sproperties>
¢ destination:]

Build a distributed application with the Java adapter 209

Public Beta 1 Public Beta 1 Public Beta 1 Public

The previous image calls out the following elements of the contact destination definition:

Destination section Description

adapter

network

assembler

fill-method

sync-method

References the Java object adapter configuration that the contact
destination uses. This is also defined in the flex-data-service.xml
file. The Java object adapter lets you interact with a Java object to
obtain data and commit data to a server-side data resource.

Contains settings for how data messages are passed between the
server-side Data Service and the client-side DataService
component. For example, the paging element specifies whether
data sent from the server to the client is chunked into smaller
subsets of data instead of being sent all at once.

Specifies the assembler class, which is the Java class that passes
data between a server-side data resource and the client-side
DataService component.

The assembler class is a custom class that you write. It is usually an
implementation of the Transfer Object Assembler design pattern,
which is described at http://java.sun.com/blueprints/
corej2eepatterns/Patterns/TransferObject.html.

Specifies a mapping to a fill method that is invoked when the client-
side DataService.fi11() method is called to fill an ArrayCollection
object. You can implement any number of methods as fill methods,
but they must be differentiated by the types of their parameters.
Each of these methods can accept an arbitrary number of
parameters of varying types. Based on the parameters that the
client-side DataService.fi11() method provides, the appropriate
fill method on the assembler class is invoked.

Specifies a method that accepts a list of data changes to allow
synchronization of data among multiple clients and the backend
data resource.

A sync method takes a single argument, which is a standard
java.util.List implementation that contains objects of type
flex.data.ChangeObject. Each ChangeObject object in the list
contains methods to access the application-specific changed
Object instance, as well as convenience methods for describing the
type of change and for accessing the changed data members.

210 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

View the assembler class

The contact destination uses the Java adapter. This is one of several types of Data Service
adapters that Flex Enterprise Services provides. As previously noted, the contact destination
specifies an assembler class, which is a custom Java class that gets data from a data resource

and handles the synchronization of data among clients and the data resource.

An assembler must have a zero-argument constructor. The assembler for this application is
instantiated as a singleton, which means there is only one instance of the class for the entire
web application. The singleton element in the assembler section of the destination specifies
that the assembler is a singleton. If you do not set the singleton value to true, a new
instance of the assembler is created for each client operation.

The destination specifies the methods of the assembler class that are invoked to get data and
synchronize multiple versions of data. In addition to those methods, the assembler class also
implements methods for getting individual data items, and creating, updating, and deleting
data items; these methods are implementations of methods in the flex.data.ChangeObject

interface.

The following example shows the source code of the contact application’s assembler class. This
class delegates the actual calls to a SQL database, to a data access object (DAO) called

ContactDAO. The source code for the ContactAssembler class and the ContacDAO class are
in the WEB_INF/src/samples/contact directory. The compiled classes are in the WEB_INF/

classes/samples/contact directory.

View the fill methods

A fill method of the assembler class is called as a result of the client-side DataService’s fi11()
method being called. The following code example shows the two methods that are specified as
fill methods in the contact destination definition. The methods have the same name but
different signatures, yet both return a List object that contains Contact objects. One method
takes no arguments, while the other takes a name of type String as an argument. One of the
methods is called, depending on whether or not the DataService.fi11() request from the
client specifies an argument of type String.

import flex.data.ChangeObject;
pubTic class ContactAssembler {

public List ToadContacts() {
System.out.println("x**xxkkxkaxrdkxrirxrixxx JoadContacts()");
ContactDAO dao = new ContactDAO();
return dao.getContacts();

}

public List ToadContacts(String name) {

Build a distributed application with the Java adapter 21

Public Beta 1 Public Beta 1 Public Beta 1 Public

ContactDAO dao =

new ContactDAO();

return dao.getContacts(name);

The following figure shows the flow of a fi11() method call from the client-side contact

application:

tutorial2.mxml
fill() method call

public Ifum:ticm initdpp() I
{

contacts = new ArrayCollectioni):
d= = new DataService("contact"):
ds.fill{contacts);

flex-data-service.xml
fill-method mapping

<fill-method:
<name SHANE >
«sfill-method:
«fill-method:
<namne:loadContacts< nanes:
{paramns:java.lang. String<-paramns:
< fill-method:

ContactAssembler.java
fill methods

public List IDadLDnta:ts(}I
1

Systemn.out . printlni” loadContact=s()");
ContactDA0 daoc = new ContactDAO():
return dao. getContacts();

public List [loadContacts(String nams) |
{

ContactDAD dao = new ContactDAO():
return dao. getContacts{name):

ContactDAO .java
getContacts()
method

public List[getlontacts tring nans] |

Arraylist list = new Arraylist();
Connection © = null;

try {

c = ConnectionHelper. getConnectioni);
Statement s = c.createStatement():
ResultSet rs = =, executeQuery("SELECT * FROM contact
WHERE first_name LIEE '%"+name+'%' OR last_name LIKE '%"+name+"%' ORDER BV first_name');
Contact contact:

while {rs. newt()) {
contact = new Contact();
contact setContactIdirs. getInt('contact_id"));
contact setFirstNane(rs getString("first_nans"));
contact setlastName(rs. getString(’last_nams"));
contact setAddress(rs getString('address"}));
contact setCity{rs.getString('city"));
contact zetZip(rs.getString{‘zip"));
contact setState(rs getString('state"))
contact setPhones(getPhones(contact . getContactId(), o))
list add(contact):

}

} catch (Exception e) {

&.printStackTracsi);

t finally {

try {
c.close();

} catch (S0LEzception e) {:
e.printStackTrace();

212 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

View the sync method

The sync method of an assembler class lets you handle data changes sent from client-side
DataService components. A sync method accepts one input parameter, which is a java.util. List
object that contains a list of data changes of type flex.data. ChangeObject. The list of changes
can include new data items, updates, and deletions.

Depending on whether a change is an add, update, or delete, the sync method calls the class’s
doCreate(), doUpdate(), or doDelete() method. The doCreate(), doUpdate(), and
doDeTete() methods are implementations of methods in the flex.data.ChangeObject

interface. These methods call methods on the ContactDAO object, which interacts with a
SQL database.

The following example shows the Java source code for the ContactAssember class’s sync
method:

import flex.data.ChangeObject;
public class ContactAssembler {

public List syncContacts(List changes) {
Iterator iterator = changes.iterator();
ChangeObject co;
while (iterator.hasNext()) {
co = (ChangeObject) iterator.next();
if (co.isCreate()) {
co = doCreate(co);
}
else if (co.isUpdate()) {
doUpdate(co);
}
else if (co.isDelete()) {
doDelete(co);
}
}
return changes;
}

The following example shows the assembler class’s doCreate(), doUpdate(), doDelete()
methods:

private ChangeObject doCreate(ChangeObject co) {
ContactDAO dao = new ContactDAO();
Contact contact = dao.create((Contact) co.getNewVersion());
co.setNewVersion(contact);
return co;
}

private void doUpdate(ChangeObject co) {
ContactDAO dao = new ContactDAO();
try

Build a distributed application with the Java adapter 213

Public Beta 1 Public Beta 1 Public Beta 1 Public

{
dao.update((Contact) co.getNewVersion(), (Contact)
co.getPreviousVersion());
}
catch (ItemNotFoundException e)
{
System.err.printIn("*** Throwing DataSyncException when trying to
update contact id=" + ((Contact) co.getNewVersion()).getContactId());
throw new DataSyncException(co);
}
}

private void doDelete(ChangeObject co) {
ContactDAO dao = new ContactDAO();
try |
dao.delete((Contact) co.getNewVersion(), (Contact)
co.getPreviousVersion());
}
catch (ItemNotFoundException e) {
System.err.printin("*** Throwing DataSyncException when trying to
delete contact id=" + ((Contact) co.getNewVersion()).getContactId());
throw new DataSyncException(co);
}
}

In this lesson, you used the Data Service feature with the Java adapter to create a distributed
data application that automatically synchronized data among multiple clients and a server-
side data resource. You built the client-side part of the application, and took a look at the
server-side components of the application. To learn more, see the following topics in
Developing Flex Applications:

m Chapter 58, “Understanding the Flex Data Service feature”

m Chapter 55, “Distributing Data in Flex Applications”

m Chapter 60, “Configuring the Data Service”

214 Enterprise: Use the Data Service

Public Beta 1 Public Beta 1 Public Beta 1 Public

CHAPTER 23

Enterprise: Use ColdFusion

Event Gateway Adapter

This tutorial shows you how to create a Flex application to send a message to a ColdFusion
application. The sample application does not take advantage of capabilities that are unique to
Adobe Flex, instead, it describes the communication with ColdFusion applications that the
ColdFusion Event Gateway Adapter enables.

To show the capabilities of the ColdFusion Event Gateway Adapter and the Flex Messaging
event gateway, the sample application lets you enter information in a form in a Flex
application. The Flex application sends the information through the ColdFusion Event
Gateway Adapter and Flex Messaging event gateway to the ColdFusion application. The
ColdFusion application then sends an e-mail message that contains the message to the
recipient specified in the Flex application.

In this tutorial, you'll complete the following tasks:

Set up your development environment 217
Create the Flex application. i e 219
Create the ColdFusion application......... ... 220
Testthe application e 221

Set up your development environment

The ColdFusion Event Gateway Adapter lets you create applications in which Flex Enterprise
Services 2 and Macromedia ColdFusion MX 7.1 from Adobe communicate. Flex Enterprise
Services 2 includes the ColdFusion Event Gateway Adapter. ColdFusion MX 7.1 includes the
Flex Messaging event gateway.

To complete this tutorial, you must have the following products installed:

m Flex Enterprise Services 2
m ColdFusion MX 7.1

217

Public Beta 1 Public Beta 1 Public Beta 1 Public

Start Flex Enterprise Services 2 and
ColdFusion MX 7.1

To set up your development environment, you must start Flex Enterprise Services 2 and
ColdFusion MX 7.1. This tutorial assumes that both Flex Enterprise Services 2 and
ColdFusion are running on localhost (127.0.0.1) on your local computer. Because of the way
the Remote Method Invocation (RM)I registry is created and maintained, Adobe
recommends that you start Flex Enterprise Services 2, and then start ColdFusion.

310N

The example ColdFusion application uses the cfmail tag. You must set up an e-mail
server in the ColdFusion MX Administrator before testing the application.

Enable the ColdFusion Event Gateway Adapter

To ensure that Flex Enterprise Services 2 recognizes the ColdFusion Event Gateway Adapter,

you edit the flex-message-service.xml file, which is located in the
C:\fes2\jrun4\server\default\samples\WEB-INF\flex directory. Uncomment the ColdFusion
Event Gateway Adapter definition and the Flex Messaging event gateway definition.

1. Open flex-message-service.xml in a text editor.

2. Add a close comment (-->) at the end of the line that starts with <!-- description of
message service configuration, so the line appears as follows:

<l-- description of message service configuration -->

3. Add an open comment (<!--) to the line that starts with //multiple destinations may
be specified, so the line appears as follows:

<I-- //multiple destinations may be specified

4. Save the file.

Create an instance of the Flex Messaging event
gateway

To be able to communicate with the ColdFusion application through the Flex Event Gateway,
you must create an instance of the gateway.

1. Create a blank file handleemail.cfc in the C:\CFusionMX7\wwwroot\flexgatewayexamples
directory. (The flexgatewayexamples directory does not already exist.)

2. Start the ColdFusion MX Administrator.

3. Select Event Gateways > Gateway Instances.

218 Enterprise: Use ColdFusion Event Gateway Adapter

Public Beta 1 Public Beta 1 Public Beta 1 Public

4. Enter Flex2CF2 as the Gateway ID.
5. Select Flex Messaging - Flex as the Gateway Type.

6. Specify C:\CFusionMX7\wwwroot\flexgatewayexamples\handleemail.cfc as the CFC

Path.

7. Specify {cfrootdir}/gateway/config/flex-test.cfg as the Configuration File.

8. Select Manual as the Startup Mode.
9. Click Add Gateway Instance.

Create the Flex application

The Flex application in this tutorial is a simple form in which you specify the elements of an

e-mail message, including the recipient, the sender, the subject, and the message body.

1. Create a blank file and enter the following code:

<?xml version="1.0"7>

<mx:Application xmlns:mx="http://www.macromedia.com/2005/mxml" xmlns="*"
layout="absolute"
creationComplete="initApp()">

<mx:Script>
<I[CDATATL
import mx.messaging.events.*;
import mx.messaging.Producer;
import mx.messaging.messages.Message;
import mx.messaging.AsyncMessage;

public var pro:mx.messaging.Producer;

private function initApp() {

pro

pro

pro

pro
}

= new mx.messaging.Producer();
.destination = "gatewayl";
.resendAttempts = 5;
.resendInterval = 5000;

public function sendMessage() {
private var msg:Message = new AsyncMessage();

msg.
msg.
msg.
msg.
msg.
msg.

headers.gatewayid = "Flex2CF2";

body = new Object();

body.emailto = emailto.text;
body.emailfrom = emailfrom.text;
body.emailsubject = emailsubject.text;
body.emailmessage = emailmessage.text;

Create the Flex application

219

Public Beta 1 Public Beta 1 Public Beta 1 Public

pro.send(msg) ;
}

115
</mx:Script>

<mx:TextInput x="103" y="13"

<mx:TextInput x="103" y="43"
>

<mx:TextInput x="103" y="73"
editable="true"/>

<mx:TextArea x="103" y="102"
editable="true"/>

width="291"
width="291"
width="291"
width="291"

id="emailto" editable="true"/>
id="emailfrom" editable="true"/

id="emailsubject"

height="236" id="emailmessage"

<mx:Label x="63" y="15" text="To:" textAlign="right"/>
<mx:Label x="37" y="103" text="Message:" textAlign="right"/>
<mx:Label x="52" y="45" text="From:"/>

<mx:Label x="37" y="75" text="Subject:"/>

<mx:Button x="402" y="13" label="Send" id="emailsend"

click="sendMessage();"/>

</mx:Application>

2. Save the file as flexemail2cf.mxml. in the
C:\fes2\jrun4\servers\default\samples\dataservice\waitlist folder.

Create the ColdFusion application

The ColdFusion application puts the information received from the Flex application in a

structure. It then sends an e-mail message by using elements of the structure.

A ColdFusion application can handle data sent from a Flex application in either the header or
the body of the message. The sample Flex application sends the data in the body of the
message. To create the ColdFusion application, you create a ColdFusion component.

1. Create a blank file and enter the following code:

<cfcomponent displayname="Send e-mail from Flex application"
hint="Handles message from Flex">

<l--- Handle the event from Flex. --->
<cffunction name="onIncomingMessage" returntype="any">
<cfargument name="event" type="struct" required="true">

<l--- Get the structure that holds the message object sent from Flex
{cfset messagebody = event.data.body>

<l--- Populate the structure. --->

220 Enterprise: Use ColdFusion Event Gateway Adapter

Public Beta 1 Public Beta 1 Public Beta 1 Public

{cfset mailfrom="4messagebody.emailfrom#">

<cfset mailto="4messagebody.emailtof">

<cfset mailsubject="{messagebody.emailsubject#">
{cfset mailmessage ="f#fmessagebody.emailmessages">

<l--- Send the e-mail. --->
<cfmail from="#mailfrom#"
to="#mailtof#"
subject="4mailsubjecti">
<cfoutput>ffmailmessages</cfoutput>
</cfmail>
</cffunction>
</cfcomponent>

2. Save the file handleemail.cfc as C:\CFusionMX7\wwwroot\flexgatewayexamples.

Test the application

To test the sample application, you must set up the testing environment, run the Flex
application, and then view your e-mail client to ensure that the application sent the e-mail
message successfully.

Set up the testing environment

Before testing the sample application, do the following:
m Ensure that Flex Enterprise Services 2 is running,.

m Ensure that ColdFusion is running.

= | | To view the messages, start ColdFusion in a console by goingto the CFusionMX7\bin
T directory and entering cfstart.

m Start the Flex2CF2 Flex Event Gateway instance.

To start the Flex2CF2 Flex Event Gateway instance:
1. Start the ColdFusion MX Administrator.

2. Select Event Gateways >Gateway Instances.

3. Click the Start button next to the Flex2CF2 gateway instance.

Test the application 221

Public Beta 1 Public Beta 1 Public Beta 1 Public

Run the application
To run the Flex application, you browse to the MXML file.

1.

o 0 W

Open the http://localhost:8700/samples/dataservice/waitlist/flexmail2cf. mxml file in a

browser.

Enter a valid e-mail address in the To text box. Ensure that the e-mail address is one whose
incoming e-mail you can check.

Enter the name of the sender in the From text box.
Enter the subject in the Subject text box.

Enter the message in the Message text area.

Click Send.

Check e-mail messages

To ensure that the application executed successfully, check the e-mail messages of the recipient

specified in the Flex application. There should be an e-mail message tsent from the sender,

with the subject and body hat you specified in the Flex application.

222 Enterprise: Use ColdFusion Event Gateway Adapter

	Contents
	Introduction
	Basic: Create a Project
	Basic: Build an Application
	Set up your project
	Learn about building in Flex Builder
	Build and run an application

	Design: Create a Constraint-based Layout
	Set up your project
	Learn about constraint-based layouts in Flex
	Insert and position the components
	Define the layout constraints

	Design: Use View States and Transitions
	Set up your project
	Design the base state
	Design a view state
	Define how users switch to the view state
	Create a transition

	Design: Use Behaviors
	Set up your project
	Create a behavior
	Invoke an effect from a different component
	Create a composite effect

	Design: Use List-based Form Controls
	Set up your project
	Insert and position form controls
	Populate the list
	Associate values to list items

	Design: Create a Custom Component
	Set up your project
	Create a test file for the custom component
	Create the custom component file
	Design the layout of the custom component
	Define an event listener for the custom component
	Use the custom component

	Data: Retrieve and Display Data
	Set up your project
	Review your access to remote data sources
	Insert and position the blog reader controls
	Insert a HTTPService component
	Populate a DataGrid control
	Display a selected item
	Create a dynamic link

	Data: Use Web Services
	Set up your project
	Review your access to remote data sources
	Review the API documentation
	Insert and position controls
	Insert a WebService component
	Populate the DataGrid component
	Create a dynamic link

	Programming: Use an Event Listener
	Set up your project
	Create a simple user interface
	Write an event listener
	Register the event listener with MXML
	Register the event listener with ActionScript

	Enterprise: Use the Data Service
	Before you begin
	Build a distributed application with the ActionScript object adapter
	Configure a Data Service destination
	Create a new MXML file
	Create the user interface
	Import the required ActionScript classes
	Create variables
	Initialize the application
	Send notes
	Handle returned data
	Handle data changes
	Verify that your code is correct
	Run the completed notes application

	Build a distributed application with the Java adapter
	Create a new MXML file
	Create the user interface
	Import the required ActionScript classes
	Create variables
	Bind the ArrayCollection object to the DataGrid
	Fill the ArrayCollection object with data
	Verify that your code is correct
	Run the completed contact application
	View the server-side Data Service destination
	View the assembler class
	View the fill methods

	View the sync method

	Enterprise: Use ColdFusion Event Gateway Adapter
	Set up your development environment
	Start Flex Enterprise Services 2 and ColdFusion MX 7.1
	Enable the ColdFusion Event Gateway Adapter
	Create an instance of the Flex Messaging event gateway

	Create the Flex application
	Create the ColdFusion application
	Test the application
	Set up the testing environment
	Run the application
	Check e-mail messages

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

