
Bu
ild

in
g 

an
d 

D
ep

lo
yi

ng
 F

le
x 

2 
A

pp
lic

at
io

ns

Ad
ob
e®  Fl

ex
™
 2



© 2006 Adobe Systems Incorporated. All rights reserved.

Building and Deploying Flex™ 2 Applications

If this guide is distributed with software that includes an end-user agreement, this guide, as well as the software described in it, is 
furnished under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any 
such license, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note 
that the content in this guide is protected under copyright law even if it is not distributed with software that includes an end-user 
license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be 
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability 
for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright 
law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright 
owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any 
actual organization.

Adobe, the Adobe logo, Flex, Flex Builder and Flash Player are either registered trademarks or trademarks of Adobe Systems 
Incorporated in the United States and/or other countries. ActiveX and Windows are either registered trademarks or trademarks of 
Microsoft Corporation in the United States and other countries. Linux is a registered trademark of Linus Torvalds. Macintosh is 
a trademark of Apple Computer, Inc., registered in the United States and other countries. Solaris is a registered trademark or 
trademark of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark of The Open 
Group. All other trademarks are the property of their respective owners. 

This product includes software developed by the Apache Software Foundation (http://www.apache.org/). Macromedia Flash 8 
video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights Reserved. http://
www.on2.com. This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/). 
Portions licensed from Nellymoser (www.nellymoser.com). Portions utilize Microsoft Windows Media Technologies. Copyright 
(c) 1999-2002 Microsoft Corporation. All Rights Reserved. Includes DVD creation technology used under license from Sonic 
Solutions.  Copyright 1996-2005 Sonic Solutions. All Rights Reserved. This Product includes code licensed from RSA Data 
Security. Portions copyright Right Hemisphere, Inc. This product includes software developed by the OpenSymphony Group 
(http://www.opensymphony.com/).

Sorenson™ Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA

Notice to U.S. government end users. The software and documentation are “Commercial Items,” as that term is defined at 48 
C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such 
terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. 
§§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software 
Documentation are being licensed to U.S. Government end users (a) only as Commercial items and (b) with only those rights as 
are granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright 
laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. 
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the 
provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 
through 60-60, 60-250 ,and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be 
incorporated by reference.

Part Number: 90069415 (12/06)



3

Contents

Chapter 1: About Flex Documentation . . . . . . . . . . . . . . . . . . . . . . . 7

PART 1: BUILDING AND DEPLOYING OVERVIEW

Chapter 2: Flex Application Development . . . . . . . . . . . . . . . . . . . 13

About building and deploying applications . . . . . . . . . . . . . . . . . . . . . . . . 13
About building applications for Flex 2 SDK . . . . . . . . . . . . . . . . . . . . . . 23
About building applications for Flex Data Services  . . . . . . . . . . . . . . . 26

Chapter 3: Flex Application Structure . . . . . . . . . . . . . . . . . . . . . . 31

Installation directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Development directory structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Compiling an application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Deployment directory structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 4: Applying Flex Security  . . . . . . . . . . . . . . . . . . . . . . . . . 51

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Loading assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Using J2EE authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Using RPC services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Using data services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
Making other connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Using SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Writing secure Flex applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Configuring client security settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Other resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 5: Optimizing Flex Applications . . . . . . . . . . . . . . . . . . . .87

About performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Improving client-side performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Improving server-side performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
Improving Flex Charting component performance . . . . . . . . . . . . . . . . 127



4

Chapter 6: Improving Startup Performance . . . . . . . . . . . . . . . . 131

About startup performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
About startup order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Using deferred creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Creating deferred components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Using ordered creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Using the callLater() method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Chapter 7: Building Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

About the Flex development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
About application files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

PART 2: BUILDING FLEX APPLICATIONS

Chapter 8: Flex 2 SDK and Flex Data Services Configuration . 161

About configuration files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
Flex 2 SDK configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Flex Data Services configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Flash Player configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Chapter 9: Using the Flex Compilers . . . . . . . . . . . . . . . . . . . . . . 179

About the Flex compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
About the command-line compilers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
About configuration files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
About option precedence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Using the application compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Using the component compiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Viewing errors and warnings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
About SWC files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
About manifest files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Chapter 10: Using Runtime Shared Libraries . . . . . . . . . . . . . . 233

About RSLs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233
Creating libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
Using RSLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
RSL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Chapter 11: Logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

About logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Using the debugger version of Flash Player  . . . . . . . . . . . . . . . . . . . . .247



5

Client-side logging and debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
Compiler logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Web-tier logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Chapter 12: Using the Command-Line Debugger . . . . . . . . . . . 269

About debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Invoking the command-line debugger . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Configuring the command-line debugger . . . . . . . . . . . . . . . . . . . . . . . 276
Using the command-line debugger commands. . . . . . . . . . . . . . . . . . 277

Chapter 13: Using ASDoc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

About the ASDoc tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Creating ASDoc comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Documenting ActionScript elements. . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Documenting MXML files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301
ASDoc tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301
Running the ASDoc tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Chapter 14: Creating Applications for Testing. . . . . . . . . . . . . . . 311

Tasks and techniques for testable applications overview . . . . . . . . . . 311
Compiling applications for testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312
Creating testable applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Writing the wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Understanding the automation framework . . . . . . . . . . . . . . . . . . . . . . .321
Instrumenting events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Instrumenting custom components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Instrumenting composite components  . . . . . . . . . . . . . . . . . . . . . . . . . 337
Example: Instrumenting the RandomWalk custom component  . . . 339

PART 3: DEPLOYING FLEX APPLICATIONS

Chapter 15: Deploying Flex Applications . . . . . . . . . . . . . . . . . . . 351

About deploying an application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
Deployment options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Compiling for deployment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Deployment checklist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Chapter 16: Creating a Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . 367

About the wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Creating a wrapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370



6

Adding features to the wrapper  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375
About the <object> and <embed> tags. . . . . . . . . . . . . . . . . . . . . . . . . . . .378
Requesting an MXML file without the wrapper. . . . . . . . . . . . . . . . . . .389

Chapter 17: Using Express Install . . . . . . . . . . . . . . . . . . . . . . . . . 391

About Express Install  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Editing your wrapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392
Configuring Express Install on Flex Data Services  . . . . . . . . . . . . . . .396
Alternatives to Express Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397

PART 4: CONFIGURING JRUN

Chapter 18: Configuring JRun. . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

About JRun application servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Starting and stopping JRun servers . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Adding and removing servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Configuring JRun servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Using the sniffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415



7

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

1
CHAPTER 1

About Flex Documentation

Building and Deploying Flex 2 Applications describes the process of building and deploying 
Adobe® Flex™ 2 applications. If you are using Adobe® Flex™ Data Services, this manual also 
includes a section that describes how to configure the integrated Adobe® JRun™ Application 
Server. 

Contents
Using this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Accessing the Flex documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Using this manual
This manual can help anyone who is developing Flex applications. However, this book is most 
useful if you have basic experience using Flex, or have read Getting Started with Flex 2. Getting 
Started with Flex 2 provides an introduction to Adobe® Flex™ 2 and helps you develop the 
basic knowledge that makes using this manual easier.

Building and Deploying Flex 2 Applications is divided into the following parts:

Part Description

Part 1, “Building and Deploying 
Overview”

Describes the basic process for building and 
deploying Flex applications. 

Part 2, “Building Flex Applications” Describes how to compile, debug, and text Flex 
applications. 

Part 3, “Deploying Flex Applications” Describes how to deploy Flex applications. 

Part 4, “Configuring JRun” Describes how to configure the integrated JRun 
Application Server for Flex Data Services.



8 About Flex Documentation

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Accessing the Flex documentation
The Flex documentation is designed to provide support for the complete spectrum of 
participants.

Documentation set
The Flex documentation set includes the following titles:

Viewing online documentation
All Flex documentation is available online in HTML and Adobe® Portable Document Format 
(PDF) files from the Adobe website. It is also available from the Adobe® Flex™ Builder™ Help 
menu.

Book Description

Getting Started with Flex 2 Contains an overview of Flex features and 
application development procedures. 

Flex 2 Developer’s Guide Describes how to develop your dynamic web 
applications.

Building and Deploying Flex 2 
Applications

Describes how to build and deploy Flex 
applications.

Creating and Extending Flex 2 
Components

Describes how to create and extend Flex 
components.

Migrating Applications to Flex 2 Provides an overview of the migration process, as 
well as detailed descriptions of changes in Flex and 
ActionScript.

Using Flex Builder 2 Contains comprehensive information about all 
Adobe® Flex™ Builder™ 2 features, for every level of 
Flex Builder users.

Adobe Flex 2 Language Reference Provides descriptions, syntax, usage, and code 
examples for the Flex API.

http://www.adobe.com/go/flex_documentation


Typographical conventions 9

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Typographical conventions
The following typographical conventions are used in this book:

■ Italic font indicates a value that should be replaced (for example, in a folder path).
■ Code font indicates code.
■ Code font italic indicates a parameter.
■ Boldface font indicates a verbatim entry. 



10 About Flex Documentation

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta



11

1
PART 1

Building and Deploying 
Overview

This part describes the basic process for building and deploying Flex 
applications. 

The following topics are included:
Chapter 2: Flex Application Development . . . . . . . . . . . . . . . . . . . . 13

Chapter 3: Flex Application Structure . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4: Applying Flex Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5: Optimizing Flex Applications. . . . . . . . . . . . . . . . . . . . . . 87

Chapter 6: Improving Startup Performance . . . . . . . . . . . . . . . . . . 131





13

2
CHAPTER 2

Flex Application 
Development

You can divide the process of creating a Flex application into five phases: design, configure, 
build, deploy, and secure. This topic contains an overview of these phases, and describes these 
phases for both Adobe Flex 2 SDK and for Flex Data Services.

Contents
About building and deploying applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

About building applications for Flex 2 SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

About building applications for Flex Data Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

About building and deploying 
applications
It is difficult to define the exact process that all Flex developers use to build and deploy 
applications. However, the process typically involves five distinct phases:

1. Design

2. Configure

3. Build

4. Deploy

5. Secure

The following sections contain an overview of these general phases of development, and 
describe how each phase applies to the development of an application for Flex 2 SDK and for 
Flex Data Services.



14 Flex Application Development

Design phase
In the design phase, you make basic decisions about how to write code for reusability, how 
your application interacts with its environment, how your application accesses application 
resources, and many other decisions. In the design phase, also define your development and 
deployment environments, including the directory structure of your application.

Although these design decisions specify how your application interacts with its environment, 
you also have architectural issues to decide. For example, you might choose to develop your 
application based on a particular design pattern, such as Model-View-Controller (MVC).

About design patterns
One common starting point of the design phase is to identify one or more design patterns 
relevant for your application. A design pattern describes a solution to a common 
programming problem or scenario. Although the design pattern might give you insight into 
how to approach an application design, it does not necessarily define how to write code for 
that solution. 

Many types of design patterns have been catalogued and documented. For example, the 
Functional design pattern specifies that each module of your application performs a single 
action, with little or no side effects for the other modules in your application. The design 
pattern does not specify what a module is, commonly though it corresponds to a class or 
method. 

About MVC
The goal of the Model-View-Controller (MVC) architecture is that by creating components 
with a well-defined and limited scope in your application, you increase the reusability of the 
components and improve the maintainability of the overall system. Using the MVC 
architecture, you can partition your system into three categories of components: 

Model components Encapsulates data and behaviors related to the data processed by the 
application. The model might represent an address, the contents of a shopping cart, or the 
description of a product. 

View components Defines your application’s user interface, and the user’s view of 
application data. The view might contain a form for entering an address, a DataGrid control 
for showing the contents of a shopping cart, or an image of a product. 

Controller components Handles data interconnectivity in your application. The 
Controller provides application management and the business logic of the application. The 
Controller does not necessarily have any knowledge of the View or the Model.



About building and deploying applications 15

For example, with the MVC design, you could implement a data-entry form that has three 
distinct pieces:

■ The model consists of XML data files or the remote data service calls to hold the form 
data.

■ The view is the presentation of any data and display of all user interface elements.
■ The controller contains logic that manipulates the model and sends the model to the view. 

The promise of the MVC architecture is that by creating components with a well-defined and 
limited scope, you increase the reusability of these components and improve the 
maintainability of the overall system. In addition, you can modify components without 
affecting the entire system.

Although you can consider a Flex application as part of the View in a distributed MVC 
architecture, you can use Flex to implement the entire MVC architecture on the client. A Flex 
application has its own view components that define the user interface, model components 
that represent data, and controller components that communicate with back-end systems. 

About Struts
Struts is an open-source framework that facilitates the development of web applications based 
on Java servlets and other related technologies. Because it provides a solution to many of the 
common problems that developers face when building these applications, Struts has been 
widely adopted in a large variety of development efforts, from small projects to large-scale 
enterprise applications.

Struts is based on a Model-View-Controller (MVC) architecture, with a focus on the 
controller part of the MVC architecture. In addition, it provides JSP tag libraries to help you 
create the view in a traditional JSP/HTML environment.



16 Flex Application Development

Configure phase
Before you write your first line of application code, or before you deploy an application, you 
must ensure that you configure your environment correctly. Configuration is a broad term 
and encompasses several different tasks. 

For example, you must configure your development and deployment environments to ensure 
that your application can access the required resources and data services. If your application 
requires access to a web service, ensure that your application has the correct access rights to 
the web service. If you application runs outside a firewall, ensure that it can access resources 
inside the firewall.

Before you can begin to develop an application for Flex Data Services, you must first deploy 
the Flex Data Services web application on your J2EE application server or servlet container. 
As part of this configuration, you define how the application references the services provides 
by Flex Data Services.

The following sections contain an overview of configuration tasks.

About run-time configuration
Most run-time configuration has to do with configuring access to remote data services, such 
as web services. For example, during application development, you run your application 
behind a firewall, where the application has access to all necessary resources and data services. 
However, when you deploy the application, you must ensure that an executing application 
can still access the necessary resources when the application runs outside of the firewall. 

One configuration issue for Flex 2 SDK applications is the placement of a crossdomain.xml 
file. For security, by default Flash Player does not allow an application to access a remote data 
service from a domain other than the domain from which the application was served. 
Therefore, a server that hosts a data service must be in the same domain as the server hosting 
your application, or the remote server must define a crossdomain.xml file. A crossdomain.xml 
file is an XML file that provides a way for a server to indicate that its data and documents are 
available to SWF files served from specific domains, or from all domains. By default, place the 
crossdomain.xml at the root directory of the server that is serving the data.

Flex 2 SDK does not include a server-side proxy for handling data service requests. Therefore, 
you must ensure that you configure data services for direct access by your application, or make 
data service requests through your own proxy server. Note that Flex Data Services does 
include an integrated server-side proxy. 



About building and deploying applications 17

About Flex Data Services configuration
When using Flex Data Services, you must perform additional configuration beyond what is 
required for a Flex 2 SDK application. Flex Data Services contains many services that you 
configure in preparation for building and deploying a Flex Data Services application. For 
example, you might have to configure the Flex Proxy Service, Remoting Service, Message 
Service, or Data Management Service. The primary mechanism for configuring Flex Data 
Services are configuration files under the WEB-INF/flex directory of the Flex Data Services 
web application. 

Build phase
Building your application is an iterative process that includes three main tasks:

1. Compile

2. Debug

3. Test

This section contains an overview of these three tasks.

About compiling
Compiling your application converts your application files and assets into a single SWF file. 
During compilation, you set compiler options to enable accessibility, enable debug 
information in the output, set library paths, and set other options. You can configure the 
compiler as part of configuring your project in Flex Builder, by using command-line 
arguments to the compiler, or by setting options in a configuration file. 



18 Flex Application Development

When you compile your application, the Flex compiler creates a single SWF file from all of 
the application files (Adobe® MXML™, AS, RSL, SWC, and asset files), as the following 
example shows:

Flex provides two compilers: mxmlc and compc. You can use the compc and mxmlc compilers 
from within Flex Builder or from a command line. If you have Flex Data Services, you can 
open the mxmlc compiler in response to an HTTP request to an MXML file. 

You use mxmlc to compile MXML, ActionScript, SWC, and RSL files into a single SWF file. 
After your application is compiled and deployed on your web or application server, a user can 
make an HTTP request to download and play the SWF file on their computer. 

You use compc to create resources that you use to create the application. For example, you can 
compile components, classes, and other files into SWC files or into RSLs, and then statically 
or dynamically link these libraries to your application. 

For more information, see Chapter 9, “Using the Flex Compilers,” on page 179.

<..>

<..>

ActionScript 
classes

SWC and RSL files

*.AS

*.AS

*.AS
*.SWF

RSL files

ClientWeb serverCompiler/LinkerCustom 
componentsmain.mxml

Use <mx:Script> 
to write, import, 
or include 
ActionScript

*.MXML

*.AS

*.MXML

<mx:Application>

*.AS



About building and deploying applications 19

About debugging an application
Flex provides several tools that you use to debug your application, including the following:

You can run Flex applications in two different versions of Adobe® Flash® Player 9: the standard 
version, which the general public uses, and the debugger version, which application 
developers use to debug their applications during the development process.

Flash Player You can run Flex applications in two different versions of Flash Player: the 
standard version, which the general public uses, and the debugger version, which application 
developers use to debug their applications during the development process. 

Flex Builder visual debugger The Flex Builder debugger allows you to run and debug 
applications. You can use the debugger to set and manage breakpoints; control application 
execution by suspending, resuming, and terminating the application; step into and over the 
code; watch variables; evaluate expressions; and so on. 

Flex Command-line debugger A command line version of the debugger that you can use 
outside of Flex Builder.

For more information, see Chapter 12, “Using the Command-Line Debugger,” on page 269.

About testing an application
Due to the size, complexity, and large amounts of data handled by applications, maintaining 
the quality of a large software application can be difficult. To help with this task, you can use 
automated testing tools that test and validate application behavior without human 
intervention.

Deploy phase
When you deploy your application, you make it available to customers. Typically, you deploy 
the application as a SWF file on a web server so that users can access it by using an HTTP 
request to the SWF file.

When you deploy the application’s SWF file, you must also deploy all of the assets required by 
the application. For example, if the application requires access to video or image files, or to 
XML data files, you must make sure to deploy those assets as well. If the application uses an 
RSL, you must also deploy the RSL.

Deploying assets may not necessarily be as simple as copying the assets to a location on your 
web server. Flash Player has built-in security features that controls the access of application 
assets at run time. 

This section contains an overview of the deployment phase. For more information, see 
Chapter 15, “Deploying Flex Applications,” on page 351.



20 Flex Application Development

What happens during a request to a SWF file 
When a customer requests the SWF file, the web server or application server returns the SWF 
file to the client computer. The SWF file then runs locally on the client.

In some cases, a request to a Flex SWF file can cause multiple requests to multiple SWF files. 
For example, if your application uses Runtime Shared Libraries (RSLs), the web server or 
application server returns an RSL as a SWC file to the client along with the application SWF 
file. If your application uses the Flex history manager, a request to the application returns the 
application SWF file and the history manager’s SWF file. 

Server-side caching 

Your web server or application server typically caches the SWF file on the first request, and 
then serves the cached file on subsequent requests. You configure server-side caching by using 
the options available in your web server or application server. 

Client-side caching

The SWF file returned to the client is typically cached by the customer’s browser on first 
request. Depending on the browser configuration, the SWF file typically remains in the cache 
until the browser closes. When the browser reopens, the next request to the SWF file must 
reload it from the server. 

Integrating Flex applications with your web application
To incorporate a Flex application into a website, you typically embed the SWF file in an 
HTML, JSP, Adobe® ColdFusion®, or other type of web page. The page that embeds the SWF 
file is known as the wrapper.

A wrapper consists of an <object> tag and an <embed> tag that format the SWF file on the 
page, define data object locations, and pass run-time variables to the SWF file. In addition, 
the wrapper can include support for history management and Flash Player version detection 
and deployment. 

When you compile an application with Flex Builder, it automatically creates a wrapper file for 
you in the bin directory associated with the Flex Builder project. You can copy the contents of 
the wrapper file into your HTML pages to reference the SWF file. The Flex Data Services 
compiler also generates the wrapper for you. 

You can edit the wrapper to manipulate how Flex appears in the browser. You can also add 
JavaScript or other logic in the page to communicate with Flex or generate customized pages.

When using the mxmlc command-line compiler, you must write the wrapper yourself. For 
more information, see Chapter 16, “Creating a Wrapper,” on page 367. 



About building and deploying applications 21

Secure phase
Security is not necessarily a phase of the application development process, but is an issue that 
you should take into consideration during the entire development process. That is, you do not 
configure, build, test, and deploy an application, and then define the security issues. Rather, 
you take security into consideration during all phases. 

Building security into your application often takes two main efforts:

■ Using the security features built into Flash Player
■ Building security into your application
■ Securing Flex Data Services

Flash Player has several security features built into it, including sandbox security, that you can 
take advantage of because you are building applications for Flash Player. 

But, Flash Player security is not enough for many application requirements. For example, 
your application may require the user to log in, or perform authentication in some other way, 
before accessing data services. When you must handle security issues beyond those built into 
Flash Player, design them into your application from the initial design phase, test them during 
the compile phase, and verify them during the deploy phase.

For more information on security, see Chapter 4, “Applying Flex Security,” on page 51.

About the security model
The Flex security model protects both the client and the server. Consider the following 
general aspects of security when you deploy Flex applications:

■ Flash Player operating in a sandbox on the client
■ Authorizing and authenticating users who access a server’s resources

Flash Player runs inside a security sandbox that prevents the client from being hijacked by 
malicious application code. This sandbox prevents a user from running a Flex application that 
can access system files and perform other tasks.

Flex Data Services is a J2EE application, so it supports working with the web application 
security of any J2EE application server. You use J2EE authentication and authorization 
techniques to prevent unauthorized users from accessing your applications. The Flex Data 
Services application includes several built-in security mechanisms that let you control access 
to web services, HTTP services, and Java classes such as EJBs.



22 Flex Application Development

Flash Player security 
Flash Player has an extensive list of features that ensure Flash content is secure, including the 
following:

■ Uses the encryption capabilities of SSL in the browser to encrypt all communications 
between a Flash application and the server

■ Includes an extensive sandbox security system that limits transfer of information that 
might pose a risk to security or privacy

■ Does not allow applications to read data from the local drive, except for SharedObjects 
that were created by that domain

■ Does not allow writing any data to the disk except for data that is encapsulated in 
SharedObjects

■ Does not allow web content to read any data from a server that is not from the same 
domain, unless that server explicitly allows access

■ Enables the user to disable the storage of information for any domain
■ Does not allow data to be sent from a camera or microphone unless the user gives 

permission



About building applications for Flex 2 SDK 23

About building applications for Flex 2 
SDK
The section “About building and deploying applications” on page 13 described the five basic 
phases that you use to develop a Flex application: design, configure, build, deploy, and secure. 
This section describes the five phases of development specifically for Flex 2 SDK.

The following example shows a typical development environment for a Flex 2 SDK 
application:

In this example, application development happens in an environment that is behind a 
firewall, and you deploy your application SWF file on webserver.example.com. To run the 
application, you make a request to it from a computer that is also within the firewall. The 
executing SWF file can access resources on any other server as necessary. In the development 
environment, the SWF file can directly access web services, or it can access them through a 
proxy server. 

webserver.example.com

Proxy Server

Application server

appserver.example.com

Web services server

finance.example.com

Web  server

HTTP/SOAP

Flash Player running 
Flex applications on 
client machine



24 Flex Application Development

The following example shows a typical deployment environment for a Flex 2 SDK 
application: 

In this example, the customer requests the application SWF file from webserver.example.com, 
the server returns the SWF file to the customer, and the SWF file plays. The executing SWF 
file must be able to access the necessary resources from outside the firewall. 

Design phase
With Flex 2 SDK, one of your first design decisions might be to choose a design pattern that 
fits your application requirements. That design pattern might have implications on how you 
structure your development environment, determine the external data services that your 
application must access, and define how you integrate your Flex application into a larger web 
application.

webserver.example.com

Proxy Server

Application server

appserver.example.com

Web services server

finance.example.com

Web  server

Flash Player running 
Flex applications on 
client machine

HTTP/SOAP

Firewall/Router/DNS server



About building applications for Flex 2 SDK 25

Configure phase
For run-time configuration, you ensure that your executing SWF file can access the necessary 
resources including asset files (such as image files) and external data services. If you access a 
resource on a domain other than the domain from which the SWF file is served, you must 
define a crossdomain.xml file on the target server, or make the request through a proxy server. 

Build phase
To build an application for Flex 2 SDK, you define a directory structure on your development 
system for application files, and define the location of application assets. You then compile, 
debug, and test your application. 

The compile-time configuration for a Flex 2 SDK application is primarily a process of setting 
compiler options to define the location of SWC and RSLs, to create a SWF file with debug 
information, or to set additional compiler options. When compiling applications, you 
compile your application into a single SWF file, and then deploy the SWF file to a web server 
or application server for testing. 

Deploy phase
With Flex 2 SDK, you deploy your application SWF file on your web server or application 
server. Users then access the deployed SWF file by making an HTTP request in the form:
http://hostname/path/filename.swf

If you embed your SWF file in an HTML or other type of web page using a wrapper, users 
request the wrapper page. The request to the wrapper page causes the web server or 
application server to return the SWF file along with the wrapper page. 

Secure phase
Security issues for Flex 2 SDK applications often have to do with how the application accesses 
external resources. For example, you might require a user to log in to access resources, or you 
might want the application to be able to access external data services that implement some 
other form of access control. 



26 Flex Application Development

About building applications for Flex Data 
Services
Flex Data Services includes all of the functionality of Flex 2 SDK, and adds the Flex Message 
Service, the RPC services, and the Flex Data Management Service. When you develop 
applications using Flex Data Services, you perform many of the same actions that you do 
when building applications for Flex 2 SDK. For more information on Flex 2 SDK, see “About 
building applications for Flex 2 SDK” on page 23. 

Because of the added functionality of Flex Data Services, you also perform additional tasks as 
part of developing an application. This section describes the five phases of development 
specifically for Flex Data Services.

The following example shows a typical development environment of a Flex Data Services 
application:

Notice that this example shows the Flex Data Services application making a request to 
appserver.example.com, the J2EE server of servlet container hosting Flex Data Services. Since 
Flex Data Services contains a proxy server so you can use it to proxy requests for external 
resources. This example also shows Flex Data Services application using the AMF protocol, 
which is not available with the Flex 2 SDK.

webserver.example.com

Flex Data Services

Application server

appserver.example.com

Web services server

finance.example.com

Web  server

HTTP / SOAP / AMF

Flash Player running 
Flex applications on 
client machine



About building applications for Flex Data Services 27

The following example shows a typical deployment environment of a Flex Data Services 
application:

Before using Flex Data Services
Before you can begin developing an application for Flex Data Services, you must deploy the 
Flex Data Services web application on your development server. 

When you install Flex Data Services, you are given the option of installing the integrated 
JRun 4 J2EE application server to host Flex Data Services. Alternatively, you can install Flex 
Data Services without installing JRun4. In this case, you deploy the Flex Data Services web 
application on your J2EE application server or servlet container before you begin to develop 
your application. 

N
O

T
E

Flex Data Services includes JRun's web server as its default web server. This web server 
is not meant to be used as a production server. It is for development purposes only.

webserver.example.com

Flex Data Services

Application server

appserver.example.com

Web services server

finance.example.com

Web  server

HTTP / SOAP / AMF

Firewall/Router/DNS server

Flash Player running 
Flex applications on 
client machine



28 Flex Application Development

The following example shows the directory structure of the deployed web application for Flex 
Data Services: 

To access the services provided by Flex Data Services, you only need to know the URL and 
port number associated with the context root directory of the deployed web application. For 
example, if you install Flex Data Services with the integrated JRun4 application server, the 
context root has the following URL: 
http://localhost:8700/flex/

Design phase
The design phase for a Flex Data Services application can be similar to the process for a Flex 2 
SDK application. However, Flex Data Services applications are typically larger and more 
complex than applications developed using Flex 2 SDK, and require a more complex design. 

Much of the design complexity of a Flex Data Services application has to do with using its 
remote data services. For example, one characteristic of a Flex Data Services application is its 
ability to use the Flex Messaging service to enable participation in Java Message Service (JMS) 
messaging. Or, your application might be required to send messages to a ColdFusion 
Component (CFC) page using the ColdFusion Event Gateway Adapter.

Because of the complexities of Flex Data Services applications, the design phase of application 
development can take longer and be more involved than for a Flex 2 SDK application.

J2EE appplication server 
root directory

WEB-INF

flex

SERVER-INF



About building applications for Flex Data Services 29

Configure phase
The configure phase for a Flex Data Services application includes the same tasks as for Flex 2 
SDK, plus the additional configuration steps for the services provided by Flex Data Services. 
After deploying the Flex Data Services web application, you must configure the data services, 
and other services, for your development and deployment environments. 

Build phase
When developing applications with Flex Data Services, you can compile them in the same 
way that you compile them using Flex 2 SDK. That means you can use the compiler built 
into Flex Builder, or the command-line compiler supplied with Flex 2 SDK. In this scenario, 
your source code and other application assets are typically stored in a directory structure 
outside of your J2EE application server or servlet container. To run the application, you copy 
the compiled SWF file to your J2EE application server or servlet container. 

You can also decide to develop your application in the directory structure of the Flex Data 
Services web application deployed on your J2EE server or servlet container, or in a separate 
web application directory structure. In this scenario, you use the integrated web compiler 
built into Flex Data Services to compile your application.

The web compiler compiles your application in response to an HTTP request to the main 
MXML file in your application, meaning the MXML file that contains the 
<mx:Application> tag. To do so, you deploy your application as MXML, ActionScript, and 
SWC files under the web root directory of your application server. When a user requests the 
main MXML file for the first time, the request triggers the compilation. After the initial 
compilation, the resultant SWF file is cached by Flex Data Services and returned in response 
to future requests.

Deploy phase
You have two options for how to deploy your Flex Data Services application: you can compile 
and deploy a single SWF file, or you can deploy your application as a collection of MXML 
and ActionScript files. In the second scenario, you use the integrated web compiler built into 
Flex Data Services to compile your application upon an HTTP request. In most cases, you 
deploy your application as a SWF file so that you are not putting source code on your 
deployment server. 

After you decide how to deploy your application, you can package your application as a J2EE 
web application, meaning as a WAR file, and deploy the WAR fie on your J2EE application 
server or servlet container. 



30 Flex Application Development

Secure phase
The increased design complexity of Flex Data Services applications over Flex 2 SDK 
applications means that you also have increased security issues. Much of the functionality of 
Flex Data Services is concerned with accessing remote data services, and you have to consider 
security whenever you allow an application to access remote data.

For example, Flex Data Services transports messages to and from service destinations over 
message channels that are part of the Flex messaging system. You can restrict access to a 
privileged group of users by applying a security constraint in a destination definition in the 
Flex services configuration file. A security constraint ensures that a user is authenticated, by 
using custom or basic authentication, before accessing the destination. 

For more information on security, see Chapter 4, “Applying Flex Security,” on page 51.



31

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

3
CHAPTER 3

Flex Application Structure

One of your first tasks when developing a Flex application is to set up your development 
directory structure. As part of setting up this directory structure, you must decide how to 
organize your application assets, how to share assets across applications, and how to configure 
the compiler to create your application SWF file.

This topic describes the Flex installation, development, and deployment directory structures, 
and how to use options to the Flex compiler to create your application SWF file based on the 
directory structure. 

Contents
Installation directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Development directory structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Compiling an application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Deployment directory structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Installation directory structure
Before you can begin to set up your application development environment, be familiar with 
the Flex installation directory structure. This section describes the installation directory 
structure for the following:

■ Flex 2 SDK
■ Flex Builder
■ Flex Data Services
■ Flex Charting components



32 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Flex 2 SDK installation directory structure
When you install Flex 2 SDK, the installer creates the following directory structure under the 
installation directory:

Flex Builder installation directory structure
Wen you install Flex Builder, you install Flex 2 SDK plus Flex Builder. The installer creates 
the following directory structure:

Directory Description

/bin Contains the executable files, such as the mxmlc and 
compc compilers.

/frameworks Contains configuration files, such as flex-config.xml and 
default.css. 

/frameworks/libs Contains the library SWC files. You use the files to 
compile your application.

/frameworks/locale Contains the localization resource files.

/frameworks/source Contains the Flex framework source code.

/frameworks/themes Contains the theme files that define the basic look and 
feel of all Flex components. 

/lib Contains JAR files.

/player Contains the different versions of Flash Player—the 
standard version and the debugger version. 

/resources Contains template HTML wrapper files.

/samples Contains sample applications.

Directory Description

Flex Builder 2 The top-level directory for Flex Builder.

/configuration A standard Eclipse folder that contains the config.ini file 
and error logs.

/features A standard Eclipse folder that contains the plug-ins 
corresponding to features of Flex Builder.

/Flex SDK 2 Contains the Flex 2 SDK, except for the Player 
directory. For a directory description, see “Flex 2 SDK 
installation directory structure” on page 32. 



Installation directory structure 33

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Flex Data Services installation directory structure
When you install Flex Data Services, the installer creates the following directory structure:

/jre Contains the Java Runtime Environment installed with 
Flex Builder used by default when you run the stand-
alone version of Flex Builder.

/Player Contains the different versions of Flash Player—the 
standard version and the debugger version. 

/plugins Contains the Eclipse plugins used by Flex Builder.

Directory Description

fds2 The top-level directory for Flex Data Services. This 
directory contains the WAR files that you use to deploy 
Flex Data Services on your J2EE server. 

/flex_sdk_2/bin Contains the executable files, such as the mxmlc and 
compc compilers.

/flex_sdk_2/frameworks Contains configuration files, such as flex-config.xml and 
default.css. 

/flex_sdk_2/frameworks/libs Contains the library SWC files. You use the files to 
compile your application.

/flex_sdk_2/frameworks/locale Contains Flex SDK localization resource files.

/flex_sdk_2/frameworks/locale-fds Contains Flex Data Services localization resource files.

/flex_sdk_2/frameworks/source Contains the Flex framework source code. 

/flex_sdk_2/frameworks/themes Contains the Flex theme files that define the basic look 
and feel of all Flex components. 

/flex_sdk_2/lib Contains the Flex Data Services JAR files.

/jrun4 If you choose to install JRun 4 with Flex Data Services, 
the directory that contains the JRun 4 application files. 

/resources Subdirectories contain the different versions of Flash 
Player (the standard version and the debugger version), 
templates for creating wrappers, configuration files, and 
security resources and assets. 

Directory Description



34 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Flex Charting Components installation directory 
structure
Flex Charting components are a set of components that you add to an existing installation of 
the Flex 2 SDK, Flex Builder, or Flex Data Services. 

When you install Flex Charting components, the installer automatically copies the necessary 
files, including charts.swc, to your Flex installation. If you choose not to copy the necessary 
files to your Flex installation during installation, you must perform that copy yourself. For 
more information, see the installation instructions. 

Development directory structure
This section describes how to set up the directory structure of your development 
environment. As part of this process, you define the directory location for application-specific 
assets, assets shared across applications, and the location of other application files and assets. 

Flex file types 
A Flex application consists of many different file types. The following sections describes the 
options that you must consider when deciding where to place each type of file. 

The following table describes the different Flex file types:

File format Extension Description

MXML .mxml Your application typically has one main application MXML file 
that contains the <mx:Application> tag, and one or more MXML 
files that implement your custom MXML components.

ActionScript .as A utility class, Flex custom component class, or other logic 
implemented as an ActionScript file.

SWC .swc A custom library file, or a custom component implemented as an 
MXML or ActionScript file, then packaged as a SWC file. 
A SWC file contains components that you package and reuse 
among multiple applications. The SWC file is then statically 
linked into your application at compile time when you create the 
application’s SWF file.

http://www.adobe.com/go/flex2_installation


Development directory structure 35

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

RSL .swc A custom library implemented as an MXML or ActionScript file, 
and then deployed as a Runtime Shared Library (RSL). An RSL 
is a stand-alone SWC file that is downloaded separately from 
your application’s SWF file, cached on the client computer for 
use with multiple application SWF files, and dynamically linked 
to your application. 

CSS file .css A text file template for creating a Cascading Style Sheets file. 

Assets .flv, .mp3, 
.jpg, .gif, 
.swf, .png, 
.svg, .xml, 
other

The assets required by your application, including image, skin, 
sound, and video files. 

File format Extension Description



36 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Flex 2 SDK directory structure
A typical Flex application consists of a main MXML file, the file that contains the 
<mx:Application> tag, one or more MXML files that implement custom MXML 
components, one or more ActionScript files that contains custom components and custom 
logic, and asset files. 

The following example shows an example of the directory structure of a simple Flex 
application:

This application consists of a root application directory and directories for different types of 
files. Everything required to compile and run the application is contained in the directory 
structure of the application. 

Flex Builder adds additional directories to the application that are not present for Flex 2 SDK 
applications:

.settings Contains the preference settings for your Flex Builder project

mainApp.mxml

PriceValidator.mxml

myValidators

AddressValidator.as

PriceFormatter.mxml

myFormatters

StringFormatter.as

logo.gif

assets

.settings (Flex Builder only)

bin (Flex Builder only)

html-template (Flex Builder only)

splashScreen.gif

appRoot



Development directory structure 37

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

bin  Contains the generated SWF file and wrapper file, and the generated debug SWF and 
debug wrapper files, if generated

html-template Contains additional files used by specific Flex features, such as the history 
manager and Flash Player detection files, used by Flex Builder to generate a wrapper for your 
SWF file.

There are no inherent restrictions in Flex for the location of the root directory of your 
application, so you can put it almost anywhere in the file system of your computer. If you are 
using Flex Builder, the default location of the application root directory in Microsoft 
Windows is My Documents\Flex Builder 2\project_name (for example, C:\Documents and 
Settings\userName\My Documents\Flex Builder 2\myFlexApp). 

Sharing assets among applications
Typically, you do not develop a single application in isolation from all other applications. Your 
application shares files and assets with other applications. 

The following example shows two Flex applications, appRoot1 and appRoot2. Each 
application has a directory for local assets, and can access shared assets from a directory 
outside of the application’s directory structure:

The location of the shared assets does not have to be at the same level as the root directories of 
the Flex applications. It only needs to be somewhere accessible by the applications at compile 
time.

appRoot1

localAssets

localAssets

appRoot2

sharedAssets

myApps



38 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

In the following example, you use the Image control in an MXML file in the appRoot1 
directory to access an asset from the shared assets directory: 
<?xml version="1.0"?>
<!-- apparch/EmbedExample.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
  <mx:Image id="loader1" source="@Embed(source='../assets/bird.gif')"/> 
</mx:Application>

Consideration for accessing application assets

One of the decisions that you must make when you create a Flex application is whether to 
load your assets at run time, or to embed the assets within the application’s SWF file. 

When you embed an asset, you compile it into your application’s SWF file. The advantage to 
embedding an asset is that it is included in the SWF file, and can be accessed faster than 
having to load it from a remote location at run time. The disadvantage of embedding is that 
your SWF file is larger than if you load the asset at run time. 

If you decide to access an asset at run time, you can load it from the local file system of the 
computer on which the SWF file runs, or you can access a remote asset, typically though an 
HTTP request over a network.

A SWF file can access one type of external asset: local or over a network; the SWF file cannot 
access both types. You determine the type of access allowed by the SWF file by using the use-
network flag when you compile your application. When you set the use-network flag to 
false, you can access assets in the local file system, but not over the network. The default 
value is true, which lets you access assets over the network, but not in the local file system. 

For more information on the use-network flag, see Chapter 9, “Using the Flex Compilers,” 
on page 179. For more information on embedding application assets, see Chapter 30, 
“Embedding Assets,” in Flex 2 Developer’s Guide.

Sharing MXML and ActionScript files among applications
You can build an entire Flex application in a single MXML file that contains both your 
MXML code and any supporting ActionScript code. As your application gets larger, your 
single file also grows in size and complexity. This type of application would soon become 
difficult to understand and debug, and very difficult for multiple developers to work on 
simultaneously.

Flex supports a component-based development model. You use the predefined components 
included with Flex to build your applications, and create components for your specific 
application requirements. You can create custom components using MXML or ActionScript.



Development directory structure 39

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Defining your own components has several benefits. One advantage is that components let 
you divide your applications into modules that you can develop and maintain separately. By 
implementing commonly used logic within custom components, you can also build a suite of 
reusable components that you can share among multiple Flex applications. 

The following example shows two Flex applications, appRoot1 and appRoot2. Each 
application has a subdirectory for local MXML and ActionScript components, and can also 
reference a library of shared components: 

appRoot1

myValidators

myFormatters

myValidators

appRoot2

myFormatters

sharedLibrary

sharedValidators

sharedFormatters

PriceValidator.mxml

AddressValidator.as

PriceFormatter.mxml

StringFormatter.as

SharedVal1.mxml

SharedVal2.as

SharedFormatter1.mxml

SharedFormatter2.as

my Apps



40 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

The Flex compiler uses the source path to determine the directories where it searches for 
MXML and ActionScript files. By default, the root directory of the application is included in 
the source path; therefore, a Flex application can access any MXML and ActionScript files in 
its main directory, or in a subdirectory. 

For shared MXML and ActionScript files that are outside of the application’s directory 
structure, you modify the source path to include the directories that the compiler searches for 
MXML and ActionScript files. The component search order in the source path is based on the 
order of the directories listed in the source path.

You can set the source path as part of configuring your project in Flex Builder, in the 
flex-config.xml file, or set it when you open the command-line compiler. In this example, you 
set the source path to: 
C:\myApps\sharedLibrary

To access a component in an MXML file, you specify a namespace definition that defines the 
directory location of the component relative to the source path. In the following example, an 
MXML file in the appRoot1 directory accesses an MXML component in the local directory 
structure, and in the directory containing the shared library of components:
<?xml version="1.0"?>
<!-- apparch/ComponentNamespaces.mxml -->
<mx:Application 
  xmlns:mx="http://www.adobe.com/2006/mxml" 
  xmlns:MyLocalComps="myFormatters.*" 
  xmlns:MySharedComps="sharedFormatters.*"
>

  <MyLocalComps:PriceFormatter/>

  <MySharedComps:SharedFormatter2/>
  
</mx:Application>

The MXML tag name for a custom component is composed of two parts: the namespace 
prefix, in this example MyLocalComps and MySharedComps, and the tag name. The 
namespace prefix tells Flex the directory in the source path that contains the file that 
implements the custom component. The tag name corresponds to the filename of the 
component, in this example PriceFormatter.mxml and SharedFormatter2.mxml.



Development directory structure 41

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Using a SWC file in a Flex 2 SDK application
A SWC file is a Flex library file that contains one or more components implemented in 
MXML or ActionScript. All Flex library files are shipped as SWC files in the frameworks/libs 
directory. This includes the following SWC files:

■ fds.swc
■ framework.swc
■ playerglobal.swc
■ rpc.swc

You can also create SWC files that you package and reuse among multiple applications. You 
typically use static linking with SWC files, which means the compiler includes all 
components, classes, and their dependencies in the application SWF file when you compile 
the application. For more information on static linking, see Chapter 10, “Using Runtime 
Shared Libraries,” on page 233.

By default, the Flex compiler includes all SWC files in the frameworks/libs directory when it 
compiles your application. For your custom SWC files, you use the lib-path option to the 
mxmlc compiler, or set the Library path in Flex Builder, to specify the location of the SWC 
file.

Using an RSL in a Flex 2 SDK application
One way to reduce the size of your application’s SWF file is by externalizing shared assets into 
stand-alone files that can be separately downloaded and cached on the client. These shared 
assets are loaded by any number of applications at run time, but must be transferred to the 
client only once. These shared files are known as Runtime Shared Libraries or RSLs.

An RSL is a stand-alone file that the client downloads separately from your application’s SWF 
file, and caches on the client computer for use with multiple application SWF files. Using an 
RSL reduces the resulting file size for your applications. The benefits increase as the number 
of applications that use the RSL increases. If you only have one application, putting 
components into RSLs does not reduce the aggregate download size, and may increase it.

You create an RSL as a SWC file that you package and reuse among multiple applications. To 
reference an RSL, you use the runtime-shared-libraries option for the command-line 
compiler, or Flex Builder. You typically use dynamic linking with RSLs, which means some 
classes used by an application are left in an external file that is loaded at run time. For more 
information on RSLs and dynamic linking, see Chapter 10, “Using Runtime Shared 
Libraries,” on page 233.



42 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Flex Data Services application directory structure
Before you can develop an application for Flex Data Services, you must deploy the Flex Data 
Services web application. You can deploy the web application on a J2EE application server or 
servlet container. 

The following example shows the directory structure of the Flex Data Services web 
application:

This image does not show the complete directory structure of the WEB-INF directory. The 
following table describes the complete directory structure in more detail:

Directory Description

/flex Contains the WEB-INF directory. This is the root 
directory for the Flex web application (named flex).
If you develop your application in the flex web application, 
this directory also includes all files that must be 
accessible by the user’s web browser, such as MXML 
files, JSPs, HTML pages, Cascading Style Sheets, 
images, and JavaScript files. You can place these files 
directly in the web application root directory or in arbitrary 
subdirectories that do not use the reserved name WEB-
INF.

/WEB-INF Contains the standard web application deployment 
descriptor (web.xml) that configures Flex. This directory 
might also contain a vendor-specific web application 
deployment descriptor.

/WEB-INF/classes Contains Java class files and configuration files.

/WEB-INF/flex Contains Flex configuration files.

/WEB-INF/flex/jars Contains the JAR files.

J2EE appplication server 
root directory

WEB-INF

flex

SERVER-INF



Development directory structure 43

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Options for developing a Flex Data Services application
When you develop applications for Flex Data Services, you have two choices for how you 
arrange the directory structure of your application:

■ Use the same directory layout as you do for Flex 2 SDK. In this case, you define the 
directory structure on your computer, compile the application into a SWF file, and then 
deploy it on the server that hosts Flex Data Services. For more information, see “Flex 2 
SDK directory structure” on page 36.

■ Define a directory structure on your J2EE server or servlet container, either a directory 
structure in its own web application or in the directory structure of the Flex Data Services 
web application. 

/WEB-INF/flex/libs Contains the SWC component file framework.swc, that 
contains the Flex application framework files, and other 
SWC files.

/WEB-INF/flex/locale Contains localization resource files.

/WEB-INF/flex/themes Contains the Flex theme files that define the basic look 
and feel of all Flex components. 

/WEB-INF/flex/user_classes Contains custom ActionScript classes, MXML 
components, and SWC files.

/WEB-INF/lib Contains Flex server code in JAR files. 

Directory Description



44 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

The following example shows an example of the directory structure of a Flex Data Services 
application within the Flex web application:

In this example, you define your application in the directory structure of the Flex Data 
Services web application. 

You can define each application in its own directory structure, with the local assets for the 
application below the application’s root directory. For assets shared across applications, such as 
image files, you can define a directory that is accessible by all applications.

You can place shared components such as MXML, ActionScript, and SWC files in the /WEB-
INF/flex/user_classes directory. This directory is included in the default source path for all 
applications. To use a different directory, ensure that you include it in the application’s source 
path. For more information on setting the source path, see Chapter 9, “Using the Flex 
Compilers,” on page 179. 

J2EE appplication server 
root directory

flex

SERVER-INF

appRoot1

appRoot2

sharedAssets

WEB-INF



Development directory structure 45

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

The following example shows a more common approach to web application design. In this 
example, you develop your application in its own web application, outside of the Flex Data 
Services web application:

This configuration has the advantage of isolating your application files from the Flex Data 
Services web application so that you can package and distribute them separately. 

Using a SWC file in a Flex Data Services application
When you use SWC files in your Flex Data Services application, you have two choices for 
how you arrange the directory structure of your application:

■ Use the same directory layout as you do for Flex 2 SDK. In this case, you define the 
directory structure on your computer, and place your SWC files in a directory that you 
specify using the lib-path option to the compiler, or set the Library path in Flex Builder. 
For more information, see “Using a SWC file in a Flex 2 SDK application” on page 41.

■ If you define a directory structure on your J2EE server or servlet container, you can copy 
your SWC file to the flex_app_root/WEB-INF/flex/user_classes directory. You can also 
copy SWC files to a directory specified by the <library-path> child tag in the flex-
config.xml file. SWC files must be stored at the top level of the user_classes directory or 
the directory specified by the <library-path> element. 

J2EE appplication server 
root directory

flex

applications

WEB-INF

appRoot1

appRoot2

sharedAssets

SERVER-INF

WEB-INF



46 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Using an RSL in Flex Data Services application
For Flex Data Services, you specify the location of an RSL in the same way as you do for 
Flex 2 SDK. For more information, see “Using an RSL in a Flex 2 SDK application” 
on page 41. 

Compiling an application
Compiling your application converts your application files and assets into a single SWF file. 
During compilation, you set compiler options to enable accessibility, enable debug 
information in the output, set library paths, and set other options. You can configure the 
compiler as part of configuring your project in Flex Builder, by using command-line 
arguments to the compiler, or by setting options in a configuration file. 

FOr more information on compiling applications, see Chapter 9, “Using the Flex Compilers,” 
on page 179. 

About case sensitivity during a compile
The Flex compilers use a case-sensitive file lookup on all file systems. On case-insensitive file 
systems, such as the Macintosh and Windows file systems, the Flex compiler generates a case-
mismatch error when you use a component with the incorrect case. On case-sensitive file 
systems, such as the UNIX file system, the Flex compiler generates a component-not-found 
error when you use a component with the incorrect case. 

Compiling a Flex 2 SDK application
Flex 2 SDK includes two compilers, mxmlc and compc. You use mxmlc to compile MXML 
files, ActionScript files, SWC files, and RSLs into a single SWF file. After your application is 
compiled and deployed on your web or application server, a user can make an HTTP request 
to download and play the SWF file on their computer. You use the compc compiler to 
compile components, classes, and other files into SWC files or RSLs. 

To compile an application with Flex 2 SDK, you use the mxmlc compiler in the bin directory 
of your Flex 2 SDK directory. The most basic mxmlc example is one in which the MXML file 
for your application has no external dependencies (such as components in a SWC file or 
ActionScript classes). In this case, you open mxmlc from the command line and point it to 
your MXML file, as the following example shows:
$ mxmlc c:/myFiles/app.mxml



Compiling an application 47

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

The mxmlc compiler has many options that you can specify on the command line, or that you 
can set in the flex-config.xml file. For example, to disable warning messages, you set the 
warnings options to false, as the following example shows:
$ mxmlc -warnings=false c:/myFiles/app.mxml

You only specify the main application file, the file that contains the <mx:Application> tag, 
to the compiler. The compiler searches the default source path for any MXML and 
ActionScript files that your application references. If your application references MXML and 
ActionScript files in directories that are not included in the default source path, you can use 
the source-path option to add a directory to the source path, as the following example 
shows:
$ mxmlc -source-path path1 path2 path3 -- c:/myFiles/app.mxml

In this example, you specify a list of directories, separated by spaces, and terminate that list 
with --. 

Compiling an application that uses SWC files
Often, you use SWC files when compiling MXML files. You specify the SWC files in the 
compiler by using the library-path option. 

The following example adds two SWC files to the library-path when it compiles your 
application:
$ ./mxmlc -library-path+=c:/myLibraries/MyRotateEffect.swc 

c:/myLibraries/MyButtonSwc.swc -- c:/myFiles/app.mxml

Compiling an application that uses RSL 
To use an RSL in your application, use the runtime-shared-libraries compiler option. 
The following example compiles an application with an RSL at the command line:
$ mxmlc -runtime-shared-libraries+=c:/myRSLs/myCompRSL.swc 

c:/myFiles/app.mxml

Compiling a Flex Builder application
When you compile a project with Flex Builder, you open the Flex compilers from within Flex 
Builder itself, not from the command line. You can build your projects manually or let Flex 
Builder automatically compile them for you. In either case, the Flex Builder compiler creates 
the SWF application files, generates a wrapper, places the output files in the proper location, 
and alerts you to any errors encountered during compilation. You then run and debug your 
applications as needed.



48 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

If you must modify the default build settings, you have several options for controlling how 
your projects are built into applications. For example, you can set build preferences on 
individual projects or on all the projects in your workspace, modify the build output path, 
change the build order, and so on. You can also create custom build instructions using third-
party tools, such as Apache Ant. 

When your projects are built, automatically or manually, a release and debug version of your 
application SWF files are placed in the project output folder along with the wrapper. The 
debug version of your application contains debugging information and, therefore, is used 
when you debug your application. The standard version does not include the additional 
debugging information and is smaller. A wrapper file embeds the application SWF file and is 
used to run or debug your application in a web browser. 

Compiling a Flex Data Services application
If you have Flex Data Services, you can compile your applications in one of two ways: 

■ You can compile them in the same way that you compile them using Flex 2 SDK or Flex 
Builder. For more information, see “Compiling a Flex 2 SDK application” on page 46 and 
“Compiling a Flex Builder application” on page 47.

■ You can deploy your application as MXML, ActionScript, SWC, RSL, and assets files on 
your J2EE application server. When a user requests the main MXML file, typically using 
an HTTP request, the request triggers the compiler that is included in a deployed Flex 
Data Services web application. 
To configure the web tier compiler, you use the /WEB-INF/flex/flex-config.xml file. 
A request to an MXML file has the following form:
http://hostname/path/filename.mxml

Upon receiving an HTTP request for an MXML file, Flex performs the following steps:
a. Compiles the MXML file to produce a SWF file.
b. Caches the compiled SWF file on the server.
c. Returns the SWF file to the client within a wrapper page. 
d. Subsequent requests return the cached SWF file; they do not trigger a recompilation.

Deployment directory structure
When you deploy an application, ensure that the directory structure of the deployed 
application is correct. For Flex 2 SDK applications, the directory structure is typically very 
simple, while for Flex Data Services applications, it can be much more complicated.



Deployment directory structure 49

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta

Flex 2 SDK deployment directory structure
When you use Flex 2 SDK, you compile your application into a SWF file, and optionally one 
or more RSLs, that you deploy by copying to your web server. After you deploy the 
application, users can access it from the web server.

When you deploy your application, you also must be aware of how your application accesses 
its assets. If you embedded all of your application assets into the SWF file, you can deploy the 
application as a stand-alone SWF file.

However, if you decide to access assets at run time, the application requests assets during 
execution. You must ensure that you deploy all of the necessary assets, in the correct location, 
so that you can run the application correctly. 

Accessing an RSL at run time
If you compiled your application using an RSL, you must ensure that the RSL is also deployed 
to your web server, along with your application’s SWF file. The directory location of the RSL 
must match the directory location that you specified at compile time using the runtime-
shared-libraries option for the compiler. 

Flex Data Services deployment directory structure 
For Flex Data Services, you must ensure that you deploy any necessary assets on your 
deployment server, much in the same way as you deploy the assets for a Flex 2 SDK 
application. For more information, see “Flex 2 SDK deployment directory structure” 
on page 49. 

Before you can deploy your Flex Data Services application, ensure that you also deploy the 
Flex Data Services web application. 

You have several options for how you deploy a Flex Data Services application:

■ You can precompile your application into a SWF file and deploy it to your web server or 
application server, much like you do for Flex 2 SDK and Flex Builder.

■ You can package your application as a J2EE web application, meaning as a WAR or EAR 
file, and deploy the WAR fie on your J2EE application server or servlet container. 

■ You can define your application within the directory structure of the Flex Data Services 
web application. You then deploy the web application on your J2EE application server or 
servlet container.

For more information, see Chapter 15, “Deploying Flex Applications,” on page 351.



50 Flex Application Structure

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta



51

4
CHAPTER 4

Applying Flex Security

This topic is intended for developers (including programmers and other authors) designing 
and publishing Flex applications, who are concerned with the security aspects of the 
applications they develop.

Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Loading assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Using J2EE authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Using RPC services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Using data services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Making other connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Using SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Writing secure Flex applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Configuring client security settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Other resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Introduction
Adobe Flash Player runs Flash applications (also referred to as SWF files). Flash content is 
delivered as a series of instructions in binary format to Flash Player over web protocols in the 
precisely described SWF (.swf ) file format. The SWF files themselves are typically hosted on a 
server and then downloaded to, and displayed on, the client computer when requested. Most 
of the content consists of binary ActionScript instructions. ActionScript is the ECMA 
standards-based scripting language that Flash uses that features APIs designed to allow the 
creation and manipulation of client-side user interface elements and for working with data.



52 Applying Flex Security

The Flex security model protects both client and the server. Consider the following two 
general aspects to security:

■ Authorization and authentication of users accessing a server’s resources
■ Flash Player operating in a sandbox on the client

Flex supports working with the web application security of any J2EE application server. In 
addition, precompiled Flex applications can integrate with the authentication and 
authorization scheme of any underlying server technology to prevent users from accessing 
your applications. The Flex framework also includes several built-in security mechanisms that 
let you control access to web services, HTTP services, and server-based resources such as EJBs.

Flash Player runs inside a security sandbox that prevents the client from being hijacked by 
malicious application code. 

Declarative compared to programmatic security
The two common approaches to security are declarative and programmatic. Often, declarative 
security is server based. Using the server’s configuration, you provide protection to a resource 
or set of resources. You use the container’s authentication and authorization schemes to 
protect that resource from unauthorized access. 

The declarative approach to security casts a wide net. Declarative security is implemented as a 
separate layer from the web components that it works with. You set up a security system, such 
as a set of file permissions or users, groups, and roles, and then you plug your application's 
authentication mechanism into that layer. 

With declarative security, either a user gains access to the resource or they do not. Usually the 
content cannot be customized based on roles. In an HTML-based application, the result is 
that users are denied access to certain pages. However, in a Flex environment, the typical 
result of declarative security is that the user is denied access to the entire application, since the 
application is seen as a single resource to the container.

Declarative security lets programmers who write web applications ignore the environment in 
which they write. Declarative security is typically set up and maintained by the deployer and 
not the developer of the application. Also, updates to the web application do not generally 
require a refactoring of the security model. 

Programmatic security gives the developer of the application more control over access to the 
application and its resources. Programmatic security can be much more detailed than 
declarative security. For example, a developer using programmatic security can allow or deny a 
user access to a particular component inside the application.



Introduction 53

Although programmatic security is typically configured by the developer of the application, it 
usually interacts with the same systems as declarative security, so the relationship between 
developer and deployer of the application must be cooperative when implementing 
programmatic security.

Declarative security is recommended over programmatic security for most applications 
because the design promotes code reuse, making it more maintainable. Furthermore, 
declarative security puts the responsibility of security into the hands of the people who 
specialize in its implementation; application programmers can concentrate on writing 
applications and people who deploy the applications in a specific environment can 
concentrate on enforcing security policies and take advantage of that context. 

Client security overview
When considering security issues, you cannot think of Flex applications as traditional web 
applications. Flex applications typically consist of a single monolithic SWF file that is loaded 
by the client once. Web applications, on the other hand, usually consist of many individual 
pages that are loaded one at a time. 

Most web applications access resources such as web services that are outside of the client. 
When a Flex application accesses an external resource, two factors apply:

■ Is the user authorized to access this resource?
■ Can the client load the resource, or is it prevented from loading the resource, because of 

its sandbox limitations?

The following basic security rules always apply by default:

■ Resources in the same security sandbox can always access each other.
■ SWF files in a remote sandbox can never access local files and data.

This section introduces you to security issues related to the client architecture that affect Flex 
applications.



54 Applying Flex Security

Flash Player security features
Much of Flash Player security is based on the domain of origin for loaded SWF files, media, 
and other assets. A SWF file from a specific Internet domain, such as www.example.com, can 
always access all data from that domain. These assets are put in the same security grouping, 
known as a security sandbox. For example, a SWF file can load SWF files, bitmaps, audio, 
text files, and any other asset from its own domain. Also, cross-scripting between two SWF 
files from the same domain is permitted, as long as both files are written using ActionScript 
3.0. Cross-scripting is the ability of one SWF file to use ActionScript to access the properties, 
methods, and objects in another SWF file. Cross-scripting is not supported between SWF 
files written using ActionScript 3.0 and files using previous versions of ActionScript; however, 
these files can communicate by using the LocalConnection class. 

Memory usage and disk storage protections

Flash Player includes security protections for disk data and memory usage on the client 
computer.

The only type of persistent storage is through the SharedObject class, which is embodied as a 
file in a directory whose name is related to that of the owning SWF file. A Flex application 
cannot typically write, modify, or delete any files on the client computer other than 
SharedObject data files, and it can only access SharedObject data files under the established 
settings per domain. 

Flash Player helps limit potential denial-of-service attacks involving disk space (and system 
memory) through its monitoring of the usage of SharedObject classes. Disk space is conserved 
through limits automatically set by Flash Player (the default is 100K of disk space for each 
domain). The author can set the Flash application to prompt the user for more disk space, or 
Flash Player automatically prompts the user if an attempt is made to store data that exceeds 
the limit. In either case, the disk space limit is enforced by Flash Player until the user gives 
explicit permission for an increased allotment for that domain.

Flash Player contains memory and processor safeguards that help prevent Flash applications 
from taking control of excess system resources for an indefinite period of time. For example, 
Flash Player can detect an application that is in an infinite loop and select it for termination 
by prompting the user. The resources that the application uses are immediately released when 
the application closes.

Flash Player uses a garbage collector engine. The processing of new allocation requests always 
first ensures that memory is cleared so that the new usage always obtains only clean memory 
and cannot view any previous data.



Introduction 55

Privacy

Privacy is an important aspect of overall security. Adobe products, including Flash Player, 
provide very little information that would reveal anything about a user (or their computer). 
Flash Player does not provide personal information about users (such as names, e-mail 
addresses, and phone numbers), or provide access to other sensitive information (such as 
credit card numbers or account information).

What Flash Player does provide is basically standardized hardware and software configuration 
information that authors might use to enhance the user experiences in the environment 
encountered. The same information is often available already from the operating system or 
web browser. 

Information about the client environment that is available to the Flex application includes:

■ User agent string, which typically identifies the embedding browser type and operating 
system of the client

■ System capabilities such as the language or the presence of an MP3 decoder (see the 
Capabilities class)

■ Presence of a camera and microphone
■ Keyboard and mouse input 

ActionScript also includes the ability to replace the contents of the client’s Clipboard by using 
the setClipboard() method of the System class. This method does not have a corresponding 
getClipboard() method, so protected data that might be stored in the Clipboard already is 
not accessible to Flash Player. 

About sandboxes
The sandbox type indicates the type of security zone in which the SWF file is operating. In 
Flash Player, all SWF files (and HTML files, for the purposes of SWF-to-HTML scripting) 
are placed into one of four types of sandbox:

remote All files from non-local URLs are placed in a remote sandbox. There are many such 
sandboxes, one for each Internet (or intranet) domain from which files are loaded. 

local-with-filesystem The default sandbox for local files. SWF files in this sandbox may 
not contact the Internet (or any servers) in any way—they may not access network endpoints 
with addresses such as HTTP URLs. 

local-with-networking SWF file in this sandbox may communicate over the network but 
may not read from local file systems. 



56 Applying Flex Security

local-trusted This sandbox is not restricted. Any local file can be placed in this sandbox if 
given authorization by the end user. This authorization can come in two forms: interactively 
through the Settings Manager or noninteractively through an executable installer that creates 
Flash Player configuration files on the user’s computer. 

You can determine the current sandbox type by using the sandboxType property of the 
Security class, as the following example shows:
<?xml version="1.0" encoding="utf-8"?>
<!-- security/DetectCurrentSandbox.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp()">
    <mx:Script><![CDATA[
        [Bindable]
        private var l_sandboxType:String;

        private function initApp():void {
            l_sandboxType = String(Security.sandboxType);
        }
    ]]></mx:Script>

    <mx:Form>
        <mx:FormItem id="fi1" label="Security.sandboxType">
            <mx:Label id="l1" text="{l_sandboxType}"/>
        </mx:FormItem>
    </mx:Form>

</mx:Application>

When you compile a Flex application, you have some control over which sandbox the 
application is in. This determination is a combination of the value of the use-network 
compiler option (the default is true) and whether the SWF file was loaded by the client over 
a network connection or as a local file.

The following table shows how the sandbox type is determined:

Browser security
Flash Player clients can be one of the following four types:

■ Embedded Flash Player

use-network Loaded Sandbox type

true or false locally local-trusted

false locally local-with-filesystem

true locally local-with-network

true network remote



Introduction 57

■ Debugger version of embedded Flash Player 
■ Stand-alone Flash Player
■ Debugger version of stand-alone Flash Player

The stand-alone Flash Player runs on the desktop. It is typically used by people who are 
running applications that are installed and maintained by an IT department that has access to 
the desktop on which the application runs.

The embedded Flash Player is run within a browser. Anyone with Internet access can run 
applications from anywhere with this player. For Internet Explorer, the embedded player is 
loaded as an ActiveX control inside the browser. For Netscape-based browsers (including 
Firefox), it is loaded as a plug-in inside the browser. Using an embedded player lets the 
developer use browser-based technologies such as FORM and BASIC authentication as well 
as SSL.

Browser APIs

Applications hosting the Flash Player ActiveX control or Flash Player plug-in can use the 
EnforceLocalSecurity and DisableLocalSecurity API calls to control security settings. If 
DisableLocalSecurity is opened, the application does not benefit from the local-with-
networking and local-with-file-system sandboxes. All files loaded from the local file system are 
placed into the local-trusted sandbox. The default behavior for an ActiveX control hosted in a 
client application is DisableLocalSecurity. 

If EnforceLocalSecurity is opened, the application can use all three local sandboxes. The 
default behavior for the browser plug-in is EnforceLocalSecurity. 

Cross-scripting

Cross-scripting is when a SWF file communicates directly with another SWF file. This 
communication includes calling methods and setting properties of the other SWF file. 

SWF file loading and cross-scripting are always permitted between SWF files that reside in the 
same sandbox. For example, any local-with-filesystem SWF file can load and cross-script any 
other local-with-filesystem SWF file; any local-with-networking SWF file can load and cross-
script any other local-with-networking SWF file; and so on. The restrictions appear when two 
SWF files from different sandboxes or two remote SWF files with different domains attempt 
to cooperate. 

For SWF files in the remote sandbox, if two SWF files were loaded from the same domain, 
they can cross-script without any restrictions. If both SWF files were loaded from a network, 
but from different domains, you must provide permissions to allow them to cross-script.

To enable cross-scripting between SWF files, use the Security class’s allowDomain() and 
allowInsecureDomain() methods. 



58 Applying Flex Security

You call these methods from the called SWF file and specify the calling SWF file’s domain. 
For example, if SWF1 in domainA.com calls a method in SWF2 in domainB, SWF2 must 
call the allowDomain() method and specifically allow SWF files from domainA.com to cross-
script the method, as the following example shows:
import flash.system.Security;
Security.allowDomain("domainA.com");

If the SWF files are in different sandboxes (for example, if one SWF file was loaded from the 
local file system and the other from a network) they must adhere to the following set of rules:

■ Remote SWF files (those served over HTTP and other non-local protocols) can never load 
local SWF files. 

■ Local-with-networking SWF files can never load local-with-filesystem SWF files, or vice 
versa. 

■ Local-with-filesystem SWF files can never load remote SWF files.
■ Local-trusted SWF files can load SWF files from any sandbox.

To facilitate SWF-to-SWF communication, you can also use the LocalConnection class. For 
more information, see “Using the LocalConnection class” on page 74.

ExternalInterface

You use the ExternalInterface API to let your Flex application call scripts in the wrapper and 
to allow the wrapper to call functions in your Flex application. The ExternalInterface API 
consists primarily of the call() and addCallback() methods in the flash.net package. 

This communication relies on the domain-based security restrictions that the 
allowScriptAccess and allowNetworking properties define. You set the values of the 
allowScriptAccess and allowNetworking properties in the SWF file’s wrapper. For more 
information, see “About the <object> and <embed> tags” on page 378.

By default, the Flex application and the HTML page it is calling must be in the same domain 
for the call() method to succeed. For more information, see Chapter 34, “Communicating 
with the Wrapper,” in Flex 2 Developer’s Guide.

The navigateToURL() method

The navigateToURL() method opens or replaces a window in the Flash Player’s container 
application. You typically use it to launch a new browser window, although you can also 
embed script in the method’s call to perform other actions.

This usage of the navigateToURL() method relies on the domain-based security restrictions 
that the allowScriptAccess and allowNetworking parameters define. You set the values of 
the allowScriptAccess and allowNetworking parameters in the SWF file’s wrapper. For 
more information, see “About the <object> and <embed> tags” on page 378.



Introduction 59

Caching

Flex applications reside entirely on the client. If the browser loads the application, the 
application SWF file, plus externally loaded images and other media files, are stored locally on 
the client in the browser’s cache. These files reside in the cache until cleared.

Storing a SWF file in the browser’s cache can potentially expose the file to people who would 
not otherwise be able to see it.

These files can remain in the cache even after the browser is closed.

To prevent client browsers from caching the SWF file, try setting the following HTTP 
headers in the wrapper that returns the Flex application’s SWF file:
Cache-control: no-cache, no-store, must-revalidate, max-age=-1
Pragma: no-cache, no-store
Expires: -1

Trusted sites and directories

The browser security model includes levels of trust applied to specific websites. Flash Player 
interacts with this model by assigning a sandbox based on whether the browser declared the 
site of the SWF file’s origin trusted. 

If Flash Player loads a SWF file from a trusted website, the SWF file is put in the local-trusted 
sandbox. The SWF file can read from local data sources and communicate with the Internet.

You can also assign a SWF file the local-trusted sandbox when you load a SWF file from the 
local file system. To do this, you configure a directory as trusted by Flash Player (which results 
in the SWF file being put in the local-trusted sandbox) by adding a FlashPlayerTrust 
configuration file that specifies the directory to trust. This requires administrator access 
privileges to the client system, so it is typically used in controlled environments. Users can also 
define a directory as trusted by using the Flash Player User Settings Manager. For more 
information, see Flash Player documentation.

Broswer or operating system Cache location

Internet Explorer C:\Documents and Settings\username\Local 
Settings\Temporary Internet Files

Firefox on Windows C:\Documents and Settings\username\Application 
Data\Mozilla\Firefox\Profiles\{user_id}.default\Cache

UNIX $HOME/.mozilla/firefox/{user_id}.default/Cache/

http://www.adobe.com/go/AS3_security


60 Applying Flex Security

Server security overview
When you use Flex Data Services, you install it as a web application on a J2EE application 
server. In addition, you can optionally install the JRun Java application server when you 
install Flex Data Services or Flex Builder. This section provides an overview of security-related 
issues for Flex server-based products.

About J2EE security
To handle authentication and authorization of the system, J2EE security covers multiple 
areas, each of which is handled by different roles:

■ Role definition and programmatic security The application developer defines the roles 
that apply at the web application level. The application developer can optionally 
implement programmatic security, as required by the application. Declarative security is 
recommended over programmatic security for most J2EE applications.

■ Client coding The application developer ensures that clients pass the required 
credentials (typically a user ID and password) at the appropriate time. Web application 
clients prompt for user ID and password. 

■ Role resolution and declarative security The application assembler resolves and links 
programmer-defined roles with system roles. The application assembler also specifies 
declarative security in the web deployment descriptors. 

■ Security architecture and user-store management The administrator controls the 
user store, coordinates global role definition, and customizes security to match the site-
specific security environment.

For information on using J2EE security methods, see your application server’s 
documentation.

Deploying secure applications
When you deploy an application, you make the application accessible to your users. The 
process of deploying an application is dependent on your application, your application 
requirements, and your deployment environment. This section provides some strategies you 
can employ to ensure that the application you deploy is secure. 

Deploying local SWF files versus network SWF files

Client computers can obtain individual SWF files from a number of sources, such as from an 
external website or a local file system. When SWF files are loaded into Flash Player, they are 
individually assigned to security sandboxes based on their origin. 



Introduction 61

Flash Player classifies SWF files downloaded from the network (such as from external 
websites) in separate sandboxes that correspond to their website origin domains. By default, 
these files are authorized to access additional network resources that come from the specific 
(exact domain name match) site. Network SWF files can be allowed to access additional data 
from other domains by explicit website and author permissions. 

A local SWF file describes any file referenced by using the “file:\\” protocol or a UNC path, 
which does not include an IP address or a qualifying domain. For example, “\\test\test.swf” 
and “file:\\test.swf” are considered local files, while “\\test.com\test.swf” and 
“\\192.168.0.1\test.swf” are not considered local files.

Local SWF files from local origins, such as local file systems or UNC network paths, are 
placed into one of three sandboxes: local-with-networking, local-with-filesystem, and local-
trusted. 

When you compile the Flex application, if you set the use-network compiler option to 
false, local SWF files are placed in the local-with-filesystem sandbox. If you set the use-
network compiler option to true, local SWF files are placed in the local-with-networking 
sandbox.

Local SWF files that are registered as trusted (by users or by installer programs) are placed in 
the local-trusted sandbox. Users can also reassign (move) a local SWF file to or from the local-
trusted sandbox based on their security considerations. 

Deploy checklist

Before you deploy your application, ensure that your proxy servers, firewalls, and assets are 
configured properly. Adobe provides a deployment checklist that you can follow. For more 
information, see “Deployment checklist” on page 360.

Enabling production mode

You enable production mode for Flex Data Services when your application is actively running 
on a public-facing server. Enabling or disabling production mode mainly affects how the web-
tier compiler compiles a Flex Data Services application deployed as MXML and ActionScript 
files. 

For more information, see “Enabling production mode” on page 359.



62 Applying Flex Security

Clearing the server cache

When in production mode, the server running Flex Data Services caches the SWF file after it 
is first compiled and does not poll for file changes until you restart the server. As a result, if 
you make changes to your Flex application or to dependent files such as imported images, 
movies, or class libraries, you must restart your server before those changes take effect. Not 
restarting can cause users to get the wrong version of your application or other assets. Flex 
polls for file changes only during startup when production mode is enabled.

Remove wildcards

If your application relies on assets loaded from another domain, and that domain has a 
crossdomain.xml file on it, remove wildcards from that file if possible. For example, change 
the following:
<cross-domain-policy>

<allow-access-from domain="*" to-ports="*"/>
</cross-domain-policy>

to this:
<cross-domain-policy>

<allow-access-from domain="*.myserver.com" to-ports="80,443,8100,8080" />
</cross-domain-policy>

Also, set the value of the to-ports attribute of the allow-access-from tag to ensure that 
you are only allowing necessary ports access to the resources.

Check your application for calls to the allowDomain() and allowInsecureDomain() 
methods. During development, you might pass these methods a wildcard character (*), but 
now restrict those methods to allowing requests only from the necessary domains.

Deploy assets to WEB-INF

In some deployments, you want to make assets such as data files accessible to the application, 
but not accessible to anyone requesting the file. If you are using Flex Data Services or a J2EE-
based server, you can deploy those files to a subdirectory within the WEB-INF directory. 
Based on J2EE security constraints, no J2EE server can return a resource from the WEB-INF 
directory to any client request. The only way to access files in this directory is with server-side 
code.



Introduction 63

Precompiling source code

Precompile MXML files, JSP files, and class files. After you precompile your MXML and JSP 
files, remove the source files from the public-facing server. 

To precompile MXML files, use the mxmlc compiler utility in the bin directory. For more 
information on using the utility, see “About the command-line compilers” on page 187.

To precompile JSP files on JRun, for example, you use the jspc precompiler utility located in 
the JRun bin directory. For information on precompiling JSP files on your application server, 
see your application server documentation.

Preventing access to certain file types

If you deploy the Flex Data Services web application, you can ensure that file types such as 
*.JSP, *.AS, and *.MXML cannot be sent in their raw format to the client. The 
FlexForbiddenServlet intercepts requests to the specified file types and prevents clients from 
accessing the source files. By default, it intercepts direct client requests for *.as and *.swc files.

You can intercept other file type requests with the FlexForbiddenServlet by adding additional 
servlet mappings in the web.xml file in the /flex/WEB-INF directory. For example, to prevent 
users from accessing your GIF files directly, add the following mapping to the web.xml file:
<servlet-mapping>

<servlet-name>FlexForbiddenServlet</servlet-name>
<url-pattern>*.gif</url-pattern>

</servlet-mapping>

The value of the url-pattern is not case sensitive, so adding *.gif prevents users from 
accessing files with the GIF, gif, and Gif extensions.

Securing JRun
When you install Flex Data Services, you optionally install the JRun J2EE web application 
server. You can use this server to run the Flex web application and enable messaging, named 
destinations, and other server-based Flex features. 

This integrated version of JRun is not full featured and should not be used in a production 
environment. However, you can use some techniques to make it as secure as possible if 
necessary. These techniques include:

■ Disable directory browsing. By default, directory browsing is enabled. Disable it if you are 
going to make your application publicly accessible by using the JRun server. For more 
information, see “Enabling and disabling directory browsing” on page 409.

■ Disable the JRun Web Service (JWS). If you use the web server connector to connect to 
another web server, disable the JWS. Set the deactivated attribute of the WebService to 
true in the jrun.xml file.



64 Applying Flex Security

■ Disable hot-deploy. Set the HotDeploy attribute of the DeployerService to false in the 
jrun.xml file.

■ Disable web services. If your application does not use web services, disable the AxisServlet 
mappings in the SERVER-INF/default-web.xml file.

■ Prevent access to particular file types. You can use URL patterns to define file types (such 
as *.as or *.swc) that should not be returned by a request. For more information, see 
“Preventing access to certain file types” on page 63.

For more information on using the integrated JRun server, see Chapter 18, “Configuring 
JRun,” on page 401 and the JRun documentation.

Loading assets
The most common task that developers will perform that requires an understanding of 
security is loading external assets. This section describes topics related to loading assets.

Data compared to content
The Flash Player security model makes a distinction between loading content and accessing or 
loading data. Content is defined as media: visual media that Flash Player can display, such as 
audio, video, or a SWF file that includes displayed media. Data is defined as something that 
you can manipulate only with ActionScript code. 

You can load data in one of two ways: by extracting data from loaded media content, or by 
directly loading data from an external file (such as an XML file) or socket connection. You can 
extract data from loaded media by using the BitmapData.draw() method, the Sound.id3 
property, or the SoundMixer.computeSpectrum() method. You can load data by using 
classes such as the SWFLoader, URLStream, URLLoader, Socket, and XMLSocket classes. 

The Flash Player security model defines different rules for loading content and accessing data. 
Loading content has fewer restrictions than accessing data. In general, content such as SWF 
files, bitmaps, MP3 files, and videos can be loaded from anywhere, but if the content is from 
a domain other than that of the loading SWF file, it will be partitioned in a separate security 
sandbox.



Loading assets 65

Loading remote assets
Loading remote or network assets relies on three factors:

■ Type of asset. If the target asset is a content asset, such as an image file, you do not need 
any specific permissions from the target domain to load its assets into your Flex 
application. If the target asset is a data asset, such as an XML file, you must have the target 
domain’s permission to access this asset. For more information on the types of assets, see 
“Data compared to content” on page 64.

■ Target domain. If you are loading data assets from a different domain, the target domain 
must provide a crossdomain.xml policy file. This file contains a list of URLs and URL 
patterns that it allows access from. The calling domain must match one of the URLs or 
URL patterns in that list. For more information about the crossdomain.xml file, see 
“Using cross-domain policy files” on page 65. If the target asset is a SWF file, you can also 
provide permissions by calling the loadPolicyFile() method and loading an alternative 
policy file inside that target SWF file. For more information, see “Using cross-domain 
policy files” on page 65.

■ Loading SWF file’s sandbox. To load an asset from a network address, you must ensure 
that your SWF file is in either the remote or local-with-networking sandbox. To ensure 
that a SWF file can load assets over the network, you must set the use-network compiler 
option to true when you compile the Flex application. This is the default. If the 
application was loaded from the local file system with use-network set to false, the 
application is put in the local-with-filesystem sandbox and it cannot load remote SWF 
files.

Loading assets from a remote location that you do not control can potentially expose your 
users to risks. For example, the remote website B contains a SWF file that is loaded by your 
website A. This SWF file normally displays an advertisement. However, if website B is 
compromised and its SWF file is replaced with one that asks for a username and password, 
some users might disclose their login information. To prevent data submission, the loader has 
a property called allowNetworking with a default value of never.

Using cross-domain policy files
To make data available to SWF files in different domains, use a cross-domain policy file. A 
cross-domain policy file is an XML file that provides a way for the server to indicate that its 
data and documents are available to SWF files served from other domains. Any SWF file that 
is served from a domain that the server’s policy file specifies is permitted to access data or 
assets from that server.



66 Applying Flex Security

When a Flash document attempts to access data from another domain, Flash Player attempts 
to load a policy file from that domain. If the domain of the Flash document that is attempting 
to access the data is included in the policy file, the data is automatically accessible.

The default policy file is named crossdomain.xml and resides at the root directory of the 
server that is serving the data. The following example policy file permits access to Flash 
documents that originate from foo.com, friendOfFoo.com, *.foo.com, and 105.216.0.40:
<?xml version="1.0"?>
<!-- http://www.foo.com/crossdomain.xml -->
<cross-domain-policy>

<allow-access-from domain="www.friendOfFoo.com"/>
<allow-access-from domain="*.foo.com"/>
<allow-access-from domain="105.216.0.40"/>

</cross-domain-policy>

You can also configure ports in the crossdomain.xml file. For more information about 
crossdomain.xml policy files, see Programming ActionScript 3.0. 

You can use the loadPolicyFile() method to access a nondefault policy file.

Loading local assets
In some cases, your SWF file might load assets that reside on the client’s local file system. This 
typically happens when the Flex application is embedded on the client device and loaded from 
a network. If the application is allowed to access local assets, it cannot access network assets.

To ensure that a Flex application can access assets in the local sandbox, the application must 
be in the local-with-filesystem or local-trusted sandbox. To ensure this, you set the use-
network compiler option to false when you compile the application. The default value of 
this option is true.

When you load another SWF file that is in the local file system into your application with a 
class such as SWFLoader, and you want to call methods or access properties of that SWF file, 
you do not need to explicitly enable cross-scripting. 

If the SWF files are in different sandboxes (for example, you loaded the main SWF file into 
the local-with-network sandbox, but loaded the asset SWF file from the network), you cannot 
cross-script because they are in different sandboxes. Remote SWF files cannot load local SWF 
files, and vice versa.



Using J2EE authentication 67

Using J2EE authentication
To effectively implement secure web applications, you should understand the following 
concepts: 

Authentication The process of gathering user credentials (user name and password) and 
validating them in the system. This requires checking the credentials against a user repository 
such as a database, flat file, or LDAP implementation, and authenticating that the user is who 
they say they are. 

Authorization The process of making sure that the authenticated user is allowed to view or 
access a given resource. If a user is not authorized to view a resource, the container does not 
allow access.

Using container-based authentication
J2EE uses the Java Authentication and Authorization Service (JAAS), Java security manager, 
and policy files to enforce access controls on users and ties this enforcement to web server 
roles. The authenticating mechanism is role based. That is, all users who access a web 
application are assigned to one or more roles. Example roles are manager, developer, and 
customer. 

Application developers can assign usage roles to a web application, or to individual resources 
that make up the application. Before a user is granted access to a web application resource, the 
container ensures that the user is identified (logged in) and that the user is assigned to a role 
that has access to the resource. Any unauthorized access of a web application results in an 
HTTP 401 (Unauthorized) status code. 

Authentication requires a website to store information about users. This information includes 
the role or roles assigned to each user. In addition, websites that authenticate user access 
typically implement a login mechanism that forces verification of each user’s identity by using 
a password. After the website validates the user, the website can then determine the user’s 
roles. 

This logic is typically implemented in one of the following forms:

■ JDBC Login Module 
■ LDAP Login Module 
■ Windows Login Module 
■ Custom JAAS Login Module 

Authentication occurs on a per-request basis. The container typically checks every request to a 
web application and authenticates it. 



68 Applying Flex Security

Authentication requires that the roles that the application developer defines for a web 
application be enforced by the server that hosts the application. This section describes how to 
set the roles, and other authentication information, for the application during application 
development. 

As part of developing and deploying an application, you must configure the following 
application authentication settings: 

■ Access roles to applications 
■ Resource protection 
■ Application server validation method 

The web application’s deployment descriptor, web.xml, contains the settings for controlling 
application authentication. This file is stored in the web application’s WEB-INF directory. 

Using authentication to control access to Flex applications
To use authentication to prevent unauthorized access to your Flex application, you typically 
use the container to set up constraints on resources. You then challenge the user who then 
submits credentials. These credentials determine the success or failure of the user’s login 
attempt, as the container’s authentication logic determines. 

For example, you can protect the page that the Flex application is returned with, or protect 
the SWF file itself. You do this in the web.xml file by defining specific URL patterns, as the 
following example shows:
<web-app>

<security-constraint> 
<web-resource-collection> 

<web-resource-name>Payroll Application</web-resource-name> 
<url-pattern>/payroll/*</url-pattern> 
<http-method>GET</http-method> 
<http-method>POST</http-method> 

</web-resource-collection> 
<auth-constraint> 

<role-name>manager</role-name> 
</auth-constraint> 

</security-constraint> 
</web-app>

When the browser tries to load a resource that is secured by constraints in the web.xml file, 
the browser either challenges the user (if you are using BASIC authentication) or forwards the 
user to a login page (with FORM authentication).



Using J2EE authentication 69

With BASIC authentication, the user enters a username and password in a popup box that the 
browser creates. To specify that an application uses BASIC authentication, you use the 
login-config element and its auth-method subelement in the web application’s web.xml 
file, as the following example shows:
<web-app>

<login-config> 
<auth-method>BASIC</auth-method> 
<realm-name>Managers</realm-name> 

</login-config> 
...

</web-app>

With FORM authentication, you must code the page that accepts the username and 
password, and submit them as FORM variables named j_username and j_password. This 
form can be implemented in HTML or as a Flex application or anything that can submit a 
form. 

When you configure FORM authentication, you can specify both a login form and an error 
form in the web.xml file, as the following example shows: 
<web-app>

<login-config> 
<auth-method>FORM</auth-method> 
<form-login-config> 

<form-login-page>/login.htm</form-login-page> 
<form-error-page>/loginerror.htm</form-error-page> 

</form-login-config>
</login-config> 

</web-app>

You submit the results of the form validation to the j_security_check action. The server 
executing the application recognizes this action and processes the form. 

A simple HTML-based form might appears as follows:
<form method="POST" action="j_security_check"> 

<table> 
<tr><td>User</td><td><input type=text name="j_username"></tr> 
<tr><td>Password</td><td><input type=password name="j_password"></tr> 

</table> 
<input type=submit> 

</form> 



70 Applying Flex Security

The results are submitted to the container’s JAAS system with base-64 encoding, which means 
they can be read by anyone that can view the TCP/IP traffic. Use encryption to prevent these 
so-called “man-in-the-middle” attacks. In both BASIC and FORM authentication, if the user 
accessed the resource through SSL, the username and password submission are encrypted, as is 
all traffic during that exchange.

After it is complete, the container populates the browser’s security context and provides or 
denies access to the resource. Flash Player inherits the security context of the underlying 
browser. As a result, when you make a data service call, the established credentials are used. 

When a user fails an authentication attempt with invalid credentials, be sure not to return 
information about which item was incorrect. Instead, use a generic message such as “Your 
login information was invalid.”

For application-server specific information about using custom authentication with Flex Data 
Services, you can use the examples in flex_install_dir/resources/security/examples.

Using RPC services
You can use the RPC services classes—RemoteObject, HTTPService, and WebService—not 
only to control access to the data that goes into an MXML page, but also to control the data 
and actions that flow out of it. You can also use service authentication to allow only certain 
users to perform certain actions. For example, if you have an application that allows employee 
data to be modified through a RemoteObject call, use RemoteObject authentication to make 
sure that only managers can change the employee data. 

A service-based architecture makes it easy to implement several different security models for 
your Flex application. You can use programmatic security to limit access to services, or you 
can apply declarative security constraints to entire services. 

Accessing RPC services with Flex tags such as the <mx:WebService> and <mx:HTTPService> 
tags is possible with and without Flex Data Services. However, if you are not running Flex 
Data Services, your Flex application’s SWF file must connect to the service directly, which 
means that it can encounter security-based limitations. This section describes the security 
restraints applied to Flex applications when they access RPC services with and without Flex 
Data Services.



Using RPC services 71

Connecting to RPC services with Flex Data Services
When you run Flex Data Services, you can use the proxy and defined destinations to connect 
to RPC services such as a web service. Destinations are configured in the Flex services 
configuration files. You do not have to store information about the destinations in the Flex 
application itself.

Typically, you set the use-proxy compiler option to true when you are accessing the 
HTTPService and WebService services with Flex Data Services. These are the only services 
that use the Proxy Service. When you do this, you can use the default destinations that are 
configured for you, and you no longer have to provide a crossdomain.xml file on the target 
domain because the proxy is making the connection for you.

Connecting to RPC services without Flex Data 
Services
When you are not running Flex Data Services, you cannot use the proxy functionality or the 
named destination functionality. In this case, destinations must be configured entirely in the 
Flex application (and not in configuration files); the component must communicate directly 
with the RPC service. 

In addition, you must set the use-proxy compiler option to false when you compile the 
application.

When use-proxy is false, one of the following must be true:

■ The RPC is in the same domain as the Flex application that calls it.
■ The RPC’s host system has a crossdomain.xml file that explicitly allows access from the 

Flex application’s domain.

Using secured services
Secured services are services that are protected by resource constraints. The service itself 
behaves as a resource that needs authentication and the container defines its URL pattern as 
requiring authorization.

You might have a protected Flex application that calls a protected resource. In this case, with 
BASIC authentication and a proxied destination, the user’s credentials are passed through to 
the service. The user only has to log on once when they first start the Flex application, and not 
when the application attempts to access the service.

Without a proxy, the user is challenged to enter their credentials a second time when the 
application attempts to access the service.



72 Applying Flex Security

When you use secured services, keep the following in mind:

■ If possible, use HTTPS for your services when you use authentication. In BASIC and 
custom authentication, user names and passwords are sent in a base-64 encoding. Using 
base-64 encoding hides the data only from plain view; HTTPS actually encrypts the data. 
You can use HTTPS in these cases by making sure HTTPS is set up on your server and by 
adding a protocol attribute with the value https on the service, and by adding a 
crossdomain.xml file. 

■ To ensure that the WebService and HTTPService endpoints are secure, use a browser 
window to access the URL you are trying to secure. This should always bring up a BASIC 
authentication prompt. 

■ If the BASIC or custom login box appears but you can’t log in, make sure that the users 
and roles were added correctly to your application server. This is often an error-prone task 
that is overlooked as the source of the problem. 

Using data services
The Flex Data Management Service provides data synchronization between application tiers, 
real-time data updates, data replication, occasionally connected application services, and 
integration with data sources through adapters. This feature lets you create applications that 
work with distributed data, and lets you manage large collections of data and nested data 
relationships, such as one-to-one and one-to-many relationships.

The Flex messaging service provides messaging services for collaborative and real-time 
applications. This feature lets you create applications that can send messages to and receive 
messages from other applications, including Flex applications and Java Message Service (JMS) 
applications.

For information about configuring security for the Flex data services, see the Flex 2 Developer’s 
Guide.



Making other connections 73

Making other connections
Flash Player can connect to servers, services, and load data from sources other than RPC 
services. This section describes some of these sources and the security issues regarding them. 

Using RTMP
Flash Player uses the Real-Time Messaging Protocol (RTMP) for client-server 
communication. This is a TCP/IP protocol designed for high-performance transmission of 
audio, video, and data messages. RTMP sends unencrypted data, including authentication 
information (such as a name and a password).

Although RTMP in and of itself does not offer security features, Flash communications 
applications can perform secure transactions and secure authentication through an SSL-
enabled web server.

Flash Player also provides support for versions of RTMP that are tunneled through HTTP 
and HTTPS. RTMP refers to RTMP transmitted within an HTTP wrapper, and RTMPS is 
RTMP transmitted within an HTTPS wrapper.

Using sockets
Sockets let you read and write raw binary or XML data with a connected server. Sockets 
transmit over TCP. Because of this, Flash Player cannot take advantage of the built-in 
encryption capabilities of the browser. However, you can use encryption algorithms written in 
ActionScript to protect the data that is being communicated. 

Cross-domain access to socket and XML socket connections is disabled by default. Access to 
socket connections in the same domain of the SWF file on ports lower than 1024 is also 
disabled by default. You can permit access to these connections by serving a cross-domain 
policy file from any of the following locations:

■ The same port as the main socket connection
■ A different port
■ The HTTP server on port 80 in the same domain as the socket server

For more information, see the Socket and XMLSocket classes in Flash ActionScript Language 
Reference.



74 Applying Flex Security

Using the LocalConnection class
The LocalConnection class lets you develop SWF files that can send instructions to each 
other. LocalConnection objects can communicate only among SWF files that are running on 
the same client computer, but they can be running in different applications—for example, a 
SWF file running in a browser and a SWF file running in a projector. (A projector is a SWF 
file saved in a format that can run as a stand-alone application—that is, the projector doesn’t 
require Flash Player to be installed since it is embedded inside the executable file.) 

For every LocalConnection communication, there is a sender SWF file and a listener SWF 
file. The simplest way to use a LocalConnection object is to allow communication only 
between LocalConnection objects located in the same domain because you won’t have security 
issues.

Applications served from different domains that need to be able to make LocalConnection 
calls to each other must be granted cross-domain LocalConnection permissions. To do this, 
the listener must allow the sender permission by using the 
LocalConnection.allowDomain() or LocalConnection.allowInsecureDomain() 
methods.

Adobe does not recommend using the LocalConnection.allowInsecureDomain() method 
because allowing non-HTTPS documents to access HTTPS documents compromises the 
security offered by HTTPS. It is best that all Flash SWF files that make LocalConnection calls 
to HTTPS SWF files are served over HTTPS.

For more information about using the LocalConnection class, see Programming 
ActionScript 3.0.

To facilitate SWF-to-SWF communication, you can also use cross-scripting. For more 
information, see “Cross-scripting” on page 57.

Using SSL
A SWF file playing in a browser has many of the same security concerns as an HTML page 
being displayed in a browser. This includes the security of the SWF file while it is being 
loaded into the browser, as well as the security of communication between Flash and the 
server after the SWF file has loaded and is playing in the browser. In particular, data 
communication between the browser and the server is susceptible to being intercepted by 
third parties. The solution to this issue in HTML is to encrypt the communication between 
the client and server to make any data captured by third parties undecipherable and thus 
unusable. This encryption is done by using an SSL-enabled browser and server. 



Using SSL 75

Because a SWF file running within a browser uses the browser for almost all of its 
communication with the server, it can take advantage of the browser’s built-in SSL support. 
This lets communication between the SWF file and the server be encrypted. Furthermore, the 
actual bytes of the SWF file are encrypted while they are being loaded into the browser. Thus, 
by playing a SWF file within an SSL-enabled browser through an HTTPS connection with 
the server, you can ensure that the communication between Flash Player and the server is 
encrypted and secure.

The one exception to this security is the way Flash Player uses persistent sockets (through the 
ActionScript XMLSocket object), which does not use the browser to communicate with the 
server. Because of this, SWF files that use sockets cannot take advantage of the built-in 
encryption capabilities of the browser. However, you can use one-way encryption algorithms 
written in ActionScript to encrypt the data being communicated.

MD5 is a one-way encryption algorithm described in RFC 1321. This algorithm has been 
ported to ActionScript, which enables developers to secure one-way data by using the MD5 
algorithm before it is sent from the SWF file to the server. For more information about RFC 
1321, see www.faqs.org/rfcs/rfc1321.html or www.rsasecurity.com/rsalabs/faq/3-6-6.html.

Using secure endpoints with Flex Data Services
When you use Flex Data Services, you can use the predefined secure channels with proxied 
destinations. To use encryption with an RTMP channel (the channel that you use to connect 
to an RTMP endpoint), use the Secure RTMP channel instead of the standard RTMP 
channel. This channel supports real-time messaging and server-pushed broadcasts. This 
channel requires a digital certificate, and contains child elements for specifying a keystore 
filename and password.

To use HTTPS with an AMF channel, use the Secure AMF channel. You do this by specifying 
the flex.messaging.endpoints.SecureAMFEndpoint class in your channel definition. To use 
HTTPS with an HTTP channel, use the Secure HTTPS message channel. You do this by 
specifying the flex.messaging.endpoints.SecureHTTPEndpoint class in your channel 
definition. 

For more information, see the Flex 2 Developer’s Guide.

Using secure endpoints without Flex Data Services
To access HTTP services or web services through HTTPS without named destinations, you 
can specify the protocols using “https” in the wsdl or url properties; for example: 
<mx:WebService url="https://myservice.com" .../>
<mx:HTTPService wsdl="https://myservice.com" .../>

http://www.faqs.org/rfcs/rfc1321.html
http://www.rsasecurity.com/rsalabs/faq/3-6-6.html


76 Applying Flex Security

By default, a SWF file served over an unsecure protocol, such as HTTP, cannot access other 
documents served over the secure HTTPS protocol, even when those documents come from 
the same domain. As a result, if you loaded the SWF file over HTTP but want to connect to 
the service through HTTPS, you must add secure="false" in the crossdomain.xml file on 
the services’s server, as the following example shows:
<cross-domain-policy>

<allow-access-from domain="*.mydomain.com" secure="false"/>
</cross-domain-policy>

If you loaded the SWF file over HTTPS, you do not have to make any changes.

Writing secure Flex applications
When you code a Flex application, keep the topics in this section in mind to ensure that the 
application you write is as secure as possible.

MXML tags with security restrictions
Some MXML tags trigger operations that require security settings. Operations that trigger 
security checks include:

■ Referencing a URL that is outside the exact domain of the application that makes a 
request.

■ Referencing an HTTPS URL when the application that makes the request is not served 
over HTTPS.

■ Referencing a resource that is in a different sandbox.

In these cases, access rights must be granted through one of the permission-granting 
mechanisms such as the allowDomain() method or a crossdomain.xml file.

MXML tags that can trigger security checks include:

■ Any class that extends the Channel class.
■ RPC-related tags that use channels such as <mx:WebService>, <mx:RemoteObject>, and 

<mx:HTTPService>.
■ Messaging tags such as <mx:Producer> and <mx:Consumer>.
■ The <mx:DataService> tag.
■ Tags that load SWF files such as <mx:SWFLoader>.

In addition to these tags and their underlying classes, many Flash classes trigger security 
checks including ExternalInterface, Loader, NetStream, SoundMixer, URLLoader, and 
URLRequest.



Writing secure Flex applications 77

Disabling viewSourceURL
If you enabled the view source feature by setting the value of the viewSourceURL property on 
the <mx:Application> tag, you must be sure to remove it before you put your application 
into production.

This functionality applies only to Flex Builder users.

Remove sensitive information from SWF files
Flash applications share many of the same concerns and issues as web pages when it comes to 
protecting the security of data. Because the SWF file format is an open format, you can 
extract data and algorithms contained within a SWF file. This is similar to how HTML and 
JavaScript code can be easily viewed by users. However, SWF files make viewing the code 
more difficult. A SWF file is compiled and is not human-readable like HTML or JavaScript.

But security is not obtained through obscurity. A number of third-party tools can extract data 
from compiled SWF files. As a result, do not consider that any data, variables, or ActionScript 
code compiled into a Flash application are secure. You can use a number of techniques to 
secure sensitive information and still make it available for use in your SWF files.

To help ensure a secure environment, use the following general guidelines:

■ Do not include sensitive information, such as user names, passwords, or SQL statements 
in SWF files.

■ Do not use client-side username and password checks for authentication.
■ Remove debug code, unused code, and comments from code before compiling to 

minimize the amount of information about your application that is available to someone 
with a decompiler or a debugger version of Flash Player.

■ If your SWF file needs access to sensitive information, load the information into the SWF 
file from the server at run time. The data will not be part of the compiled SWF file and 
thus cannot be extracted by decompiling the SWF file. Use a secure transfer mechanism, 
such as SSL, when you load the data.

■ Implement sensitive algorithms on the server instead of in ActionScript.
■ Use SSL whenever possible.
■ Only deploy your web applications from a trusted server. Otherwise, the server-side aspect 

of your application could be compromised.



78 Applying Flex Security

Input validation
Input validation means ensuring that input is what it says it is or is what it is supposed to be. 
If your application is expecting name and address information, but it gets SQL commands, 
have a validation mechanism in your application that checks for and filters out SQL-specific 
characters and strings before passing the data to the execute method.

In many cases, you want users to provide input in TextInput, TextArea, and other controls 
that accept user input. If you use the input from these controls in operations inside the 
application, make sure that the input is free of possible malicious characters or code.

One approach to enforcing input validation is to use the Flex validator classes by using the 
<mx:Validator> tag or the tag for the appropriate validator type. Validators ensure that the 
input conforms to a predetermined pattern. For example, the NumberValidator class ensures 
that a string represents a valid number. This validator can ensure that the input falls within a 
given range (specified by the minValue and maxValue properties), is an integer (specified by 
the domain property), is non-negative (specified by the allowNegative property), and does 
not exceed the specified precision. 

In typical client-server environments, data validation occurs on the server after data is 
submitted to it from the client. One advantage of using Flex validators is that they execute on 
the client, which lets you validate input data before transmitting it to the server. By using Flex 
validators, you eliminate the need to transmit data to and receive error messages back from the 
server, which improves the overall responsiveness of your application. 

You can also write your own ActionScript filters that remove potentially harmful code from 
input. Common approaches include stripping out dollar sign ($), quotation mark ("), semi-
colon (;) and apostrophe (') characters because they have special meaning in most 
programming languages. Because Flex also renders HTML in some controls, also filter out 
characters that can be used to inject script into HTML, such as the left and right angle 
brackets (“<” and “>”), by converting these characters to their HTML entities “&lt;” and 
“&gt;”. Also filter out the left and right parentheses (“(”and “)”) by translating them to 
“&#40;” and “&#41;”, and the pound sign (“#”) and ampersand (“&”) by translating them to 
“&#35” (#) and “&#38” (&). 

Another approach to enforcing input validation is to use strongly-typed, parameterized 
queries in your SQL code. This way, if someone tries to inject malicious SQL code into text 
that is used in a query, the SQL server will reject the query.

For more information on potentially harmful characters and conversion processes, see http://
www.cert.org/tech_tips/malicious_code_mitigation.html.

For more information about validators, see Chapter 40, “Validating Data,” in Flex 2 
Developer’s Guide.

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html


Writing secure Flex applications 79

ActionScript
This section introduces some ways to try to make your use of ActionScript more secure.

Handling errors
The SecurityError exception is thrown when some type of security violation takes place. 
Security errors include:

■ An unauthorized property access or method call was made across a security sandbox 
boundary. 

■ An attempt was made to access a URL not permitted by the security sandbox. 
■ A socket connection was attempted to an unauthorized port number, for example, a port 

below 1024, without a policy file present. 
■ An attempt was made to access the user’s camera or microphone, and the request to access 

the device was denied by the user. 

Flash Player dispatches SecurityErrorEvent objects to report the occurrence of a security error. 
Security error events are the final events dispatched for any target object. This means that any 
other events, including generic error events, are not dispatched for a target object that 
experiences a security error.



80 Applying Flex Security

Your event listener can access the SecurityErrorEvent object’s text property to determine 
what operation was attempted and any URLs that were involved, as the following example 
shows:
<?xml version="1.0"?>
<!-- security/SecurityErrorExample.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp()">
    <mx:Script><![CDATA[
        import flash.net.URLLoader;
        import flash.net.URLRequest;
        import flash.events.SecurityErrorEvent;
        import mx.controls.Alert;

        private var loader:URLLoader = new URLLoader();

        private function initApp():void {
            loader.addEventListener(SecurityErrorEvent.SECURITY_ERROR, 
securityErrorHandler);
        }
        
        private function triggerSecurityError():void {      
            // This URL is purposefully broken so that it will trigger a
            // security error.
            var request:URLRequest = new URLRequest("http://
www.[yourDomain].com");
            
            // Triggers a security error.
            loader.load(request);
        }

        private function securityErrorHandler(event:SecurityErrorEvent):void 
{
            Alert.show("A security error occurred! Check trace logs for 
details.");         
            trace("securityErrorHandler: " + event.text);
        }
    ]]></mx:Script>

    <mx:Button id="b1" label="Click Me To Trigger Security Error" 
click="triggerSecurityError()"/>

</mx:Application>

If no event listeners are present, the debugger version of Flash Player automatically displays an 
error message that contains the contents of the text property. 

In general, try to wrap methods that might trigger a security error in a try/catch block. This 
prevents users from seeing information about destinations or other properties that you might 
not want to be visible.



Writing secure Flex applications 81

Suppressing debug output
Flash Player writes debug output from a trace() method or the Logging API to a log file on 
the client. Any client can be running the debugger version of Flash Player. As a result, remove 
calls to the trace() method and Logging API calls that produce debugging output so that 
clients cannot view your logged information.

If you use the Logging API in your custom components and classes, set the value of the 
LogEventLevel to NONE before compilation, as the following example shows:
myTraceTarget.level = LogEventLevel.NONE;

For more information about the Logging API, see “Using the Logging API” on page 252.

Using host-based authentication
IP addresses and HTTP headers are sometimes used to perform host-based authentication. 
For example, you might check the Referer header or the client IP address to ensure that a 
request comes from a trusted source.

However, request headers such as Referer can be spoofed easily. This means that clients can 
pretend to be something they are not by settings headers or faking IP addresses. The solution 
to the problem of client spoofing is to not use HTTP header data as an authentication 
mechanism.

Using passwords
Using passwords in your Flex application is a common way to protect resources from 
unauthorized access. Test the validity of the password on the server rather than the client, 
because the client has access to all the logic in the local SWF file.

Never store passwords locally. For example, do not store username and password 
combinations in local SharedObjects. These are stored in plain-text and unencrypted, just as 
cookie files are. Anyone with access to the user’s computer can access the information inside a 
SharedObject.

To ensure that passwords are transmitted from the client to the server safely, enforce the use of 
SSL or some other secure transport-level protocol.

When you ask for a password in a TextArea or TextInput control, set the displayAsPassword 
property to true. This displays the password as asterisks as it is typed.



82 Applying Flex Security

Storing persistent data with the SharedObject class
Flash Player supports persistent shared objects through the SharedObject class. The 
SharedObject class stores data on users’ computers. This data is usually local, meaning that it 
was obtained with the SharedObject.getLocal() method. You can also create persistent 
remote data with the SharedObject class; this requires Flash Media Server (formerly Flash 
Communication Server). 

Each remote sandbox has an associated store of persistent SharedObject directory on the 
client. For example, when any SWF from domain1.com reads or writes data with the 
SharedObject class, Flash Player reads or writes that object in the domain1.com object store. 
Likewise for a SWF from domain2.com, Flash Player uses the domain2.com store. To avoid 
name collisions, the directory path defaults to the full path in the URL of the creating SWF 
file. This process can be shortened by using the localPath parameter of the 
SharedObject.getLocal() method, which allows other SWF files from the same domain to 
access a shared object after it is created. 

Every domain has a maximum amount of data that a SharedObject class can save in the object 
store. This is an allocation of the user’s disk space in which applications from that domain can 
store persistent data. Users can change the quota for a domain at any time by choosing 
Settings from the Flash Player context menu. When an application tries to store data with a 
SharedObject class that causes Flash Player to exceed its domain’s quota, a dialog box appears, 
asking the user whether to increase the domain quota.

Configuring client security settings
Some security control features in Flash Player target user choices, and some target the modern 
corporate and enterprise environments, such as when the IT department would like to install 
Flash Player across the enterprise but has concerns about IT security and privacy. To help 
address these types of requirements, Flash Player provides various installation-time 
configuration choices. For example, some corporations do not want Flash Player to have 
access to the computer’s audio and video hardware; other environments do not want Flash 
Player to have any read or write access to the local file system.

Three groups can make security choices: the application author (using developer controls), 
the administrative user (using administrator controls), and the local user (with user controls).

This section describes the ways to configure Flash Player’s security settings.



Configuring client security settings 83

About the mm.cfg file
You configure the debugger version of Flash Player by using the settings in the mm.cfg text 
file. You must create this file when you first configure the debugger version of Flash Player. 

The settings in this file let you enable or disable trace() logging, set the location of the 
trace() file’s output, and configure client-side error and warning logging.

For more information, see “Configuring the debugger version of Flash Player” on page 248.

About the mms.cfg file
The primary purpose for the Macromedia® Security Configuration file (mms.cfg) is to 
support the corporate and enterprise environments where the IT department wants to install 
Flash Player across the enterprise, while enforcing some common global security and privacy 
settings (supported with installation-time configuration choices).

On operating systems that support the concept of user security levels, the file is flagged as 
requiring system administrator (or root) permissions to modify or delete it. 

■ On Mac OS X systems using mms.cfg, the security configuration file is located at /
Library/Application Support/Macromedia/mms.cfg. 

■ On Microsoft Windows, the file is located in the Macromedia Flash Player folder within 
the system directory (for example, C:\winnt\system32\macromed\flash\mms.cfg on a 
default Windows XP installation).

You can use this file to configure security settings that deal with data loading, privacy, and 
local file access. The settings include:

■ FileDownloadDisable

■ FileUploadDisable

■ LocalStorageLimit

■ AVHardwareDisable

For a complete list of options and their descriptions, see http://www.adobe.com/devnet/
flashplayer/articles/flash_player_8_security.pdf.

http://www.adobe.com/devnet/flashplayer/articles/flash_player_8_security.pdf
http://www.adobe.com/devnet/flashplayer/articles/flash_player_8_security.pdf


84 Applying Flex Security

About FlashPlayerTrust files
Flash Player provides a way for administrative users to register certain local files so that they 
are always loaded into the local-trusted sandbox. Often an installer for a native application or 
an application that includes many SWF files will do this. Depending on whether Flash Player 
will be embedded in a nonbrowser application, one of two strategies can be appropriate: 
register SWF files and HTML files to be trusted, or register applications to be trusted. Only 
applications that embed the browser plug-ins can be trusted—the stand-alone players and 
standard browsers do not check to see if they were trusted.

The installer creates files in a directory called FlashPlayerTrust. These files list paths of trusted 
files. This directory, known as the Global Flash Player Trust directory, is alongside the 
mms.cfg file, in the following location, which requires administrator access:

■ Windows: system\Macromed\Flash\FlashPlayerTrust (for example, 
C:\winnt\system32\Macromed\Flash\FlashPlayerTrust)

■ OS X: app support/Macromedia/FlashPlayerTrust (for example, /Library/Application 
Support/Macromedia/FlashPlayerTrust)

These settings affect all users of the computer. If an installer is installing an application for all 
users, the installer can register its SWF files as trusted for all users.

For more information about FlashPlayerTrust files, see http://www.adobe.com/devnet/
flashplayer/articles/flash_player_8_security.pdf.

About the Settings Manager
The Settings Manager allows the individual user to specify various security, privacy, and 
resource usage settings for Flash applications executing on their client computer. For example, 
the user can control application access to select facilities (such as their camera and 
microphone), or control the amount of disk space allotted to a SWF file’s domain. The 
settings it manages are persistent and controlled by the user.

The user can indicate their personal choices for their Flash Player settings in a number of 
areas, either globally (for Flash Player itself and all Flash applications) or specifically (applying 
to specific domains only). To designate choices, the user can select from the six tab categories 
along the top of the Settings Manager dialog box:

■ Global Privacy Settings
■ Global Storage Settings
■ Global Security Settings
■ Flash Player Update Settings
■ Privacy Settings for Individual Websites

http://www.adobe.com/devnet/flashplayer/articles/flash_player_8_security.pdf
http://www.adobe.com/devnet/flashplayer/articles/flash_player_8_security.pdf


Other resources 85

■ Storage Settings for Individual Websites

To access the Settings Manager for your Flash Player:

1. Open an application in Flash Player. 

2. Right-click and select Settings. 

The Adobe Flash Player Settings dialog box appears.
3. Select the Privacy tab (on the far left).

4. Click the Advanced button. 

Flash Player launches a new browser window and loads the Settings Manager help page.

Other resources
The following table lists resources that are useful in understanding the Flash Player security 
model and implementing security in your Flex applications:

Resource name Location

Security Topic Center http://www.adobe.com/devnet/security

Security Advisories http://www.adobe.com/support/security

Flash Player Security & Privacy http://www.adobe.com/products/flashplayer/
security

Security Resource Center http://www.adobe.com/resources/security

Flash Player 9 Security white paper http://www.adobe.com/go/fp9_0_security

“Flash Player Security” chapter in 
Programming ActionScript 3.0

http://www.adobe.com/go/progAS3_security

“Networking and Communications” chapter 
in Programming ActionScript 3.0.

http://www.adobe.com/go/
AS3_networking_and_communications

Security Changes in Flash Player 8 http://www.adobe.com/devnet/flash/articles/
fplayer8_security.html

Security Changes in Flash Player 7 http://www.adobe.com/devnet/flash/articles/
fplayer_security.html

Understanding Service Authentication http://www.adobe.com/devnet/flex/articles/
security_framework_print.html

Settings Manager http://www.macromedia.com/support/
documentation/en/flashplayer/help/
settings_manager.html

http://www.adobe.com/devnet/security
http://www.adobe.com/support/security
http://www.adobe.com/products/flashplayer/security
http://www.adobe.com/resources/security
http://www.adobe.com/go/fp9_0_security
http://www.adobe.com/go/AS3_security
http://www.adobe.com/devnet/flash/articles/fplayer8_security.html
http://www.adobe.com/devnet/flash/articles/fplayer_security.html
http://www.adobe.com/devnet/flex/articles/security_framework_print.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager.html
http://www.adobe.com/go/AS3_networking_and_communications 


86 Applying Flex Security



87

5
CHAPTER 5

Optimizing Flex Applications

After you have a working application, you can explore ways to make that application 
download faster and perform better. This topic describes some techniques that you can use to 
improve your application’s performance.

Contents
About performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Improving client-side performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Improving server-side performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Improving Flex Charting component performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



88 Optimizing Flex Applications

About performance
The two distinct aspects of Adobe Flex performance that you must consider are client-side 
performance and server-side performance. 

Client-side performance The responsiveness of the user interface when it runs on Adobe 
Flash Player 9 on a user’s computer. This responsiveness depends on how you wrote the 
application, the application’s complexity, and the client’s operating environment (network, 
operating system, and hardware). For details about improving client-side performance, see 
“Improving client-side performance” on page 88.

Server-side performance The responsiveness and scalability attributes of servers running 
the Flex application in production. The server-side performance of Flex depends on the 
operating environment, caching and compilation settings, the way you wrote the application, 
the number of clients accessing the server, and the size and complexity of the data being 
transported between the client and the server. Server-side performance can also be attributed 
to data sources that the server accesses to provide data to a Flex application. For details about 
improving server-side performance, see “Improving server-side performance” on page 123.

Improving client-side performance
Tuning software to achieve maximum performance is not an easy task. You must commit to 
producing efficient implementations and monitor software performance continuously during 
the software development process.

This section describes some general guidelines for testing applications for performance. It also 
describes some techniques you can use to do the actual testing, such as using the getTimer() 
method and checking initialization time. 

Before you begin actual testing, you should understand some of the influences that client 
settings can have on performance testing. For more information, see “Configuring the client 
environment” on page 94.

General guidelines
You can use the following general guidelines when you improve your application and the 
environment in which it runs:

■ Set performance targets early in the software design stage. If possible, try to estimate an 
acceptable performance target early in the application development cycle. Certain usage 
scenarios dictate the performance requirements. It would be disappointing to fully 
implement a product feature and then find out that it is too slow to be useful. 



Improving client-side performance 89

■ Understand performance characteristics of the application framework. Some components 
and operations in the Flex framework are more efficient than others. This topic introduces 
you to some strategies for using the optimal methods of using the Flex framework.

■ Understand performance characteristics of the application code. In medium-sized or 
large-sized projects, it is common for a product feature to use codes or components 
written by other developers or by third-party vendors. Knowing what is slow and what is 
fast in dependent components and code is essential in getting the design right.

■ Do not attempt to test a large application’s performance all at once. Rather, test small 
pieces of the application so that you can focus on the relevant results instead of being 
overwhelmed by data.

■ Test the performance of your application early and often. It is always best to identify 
problem areas early and resolve them in an iterative manner, rather then trying to shove 
performance enhancements into existing, poorly performing code at the end of your 
application development cycle. 

■ Avoid optimizing code too early. Even though early testing can highlight performance hot 
spots, refrain from fixing them while you are still developing those areas of the 
application; doing so might unexpectedly delay the implementation schedule. Instead, 
document the issues and prioritize all the performance issues as soon as your team finishes 
the feature implementation.

Testing applications for performance
This section provides some techniques that you can use to test start-up and run-time 
performance of your Flex applications. You can use the techniques described in this section to 
monitor memory consumption, time application initialization, and time events. 

Calculating application initialization time
One approach to performance profiling is to use code to gauge the start-up time of your 
application. This can help identify bottlenecks in the initialization process, and reveal 
deficiencies in your application design, such as too many components or too much reliance 
on nested containers.

The getTimer() method in flash.utils returns the number of milliseconds that have elapsed 
since Flash Player was initialized. This indicates the amount of time since the application 
began playing. The Timer class provides a set of methods and properties that you can use to 
determine how long it takes to execute an operation.



90 Optimizing Flex Applications

Before each update of the screen, Flash Player calls the set of functions that are scheduled for 
the update. Sometimes, a function should be called in the next update to allow the rest of the 
code scheduled for the current update to execute. You can instruct Flash Player to call a 
function in the next update by using the callLater() method. This method accepts a 
function pointer as an argument. The method then puts the function pointer on a queue, so 
that the function is called the next time the player dispatches either a render event or an 
enterFrame event.

The following example records the time it takes the Application object to create, measure, lay 
out, and draw all of its children. This example does not include the time to download the 
SWF file to the client, or to perform any of the server-side processing, such as checking the 
Flash Player version, checking the SWF file cache, and so on.
<?xml version="1.0"?>
<!-- optimize/ShowInitializationTime.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="callLater(showInitTime)">
    <mx:Script><![CDATA[
        import flash.utils.Timer;

        [Bindable]
        public var t:String;
        private function showInitTime():void {
            // Record the number of ms since the player was initialized.
            t = "App startup: " + getTimer() + " ms";
        }
    ]]></mx:Script>
    <mx:Label id="l1" text="{t}"/>
</mx:Application>

This example uses the callLater() method to delay the recording of the startup time until 
after the application finishes and the first screen updates. The reason that the showInitTime 
function pointer is passed to the callLater() method is to make sure that the application 
finishes initializing itself before calling the getTimer() method.

For more information on using the callLater() method, see “Using the callLater() method” 
on page 150.

Calculating elapsed time
Some operations take longer than others. Whether these operations are related to data 
loading, instantiation, effects, or some other factor, it’s important for you to know how long 
each aspect of your application takes.



Improving client-side performance 91

You can calculate elapsed time by using the getTimer() method. The following example 
calculates the instantiation time for all the form elements:
<?xml version="1.0" encoding="iso-8859-1"?>
<!-- optimize/ShowElapsedTime.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
initialize="init()">
    <mx:Script><![CDATA[
        [Bindable]
        public var dp:Array = [
            {food:"apple", type:"fruit", color:"red"}, 
            {food:"potato", type:"vegetable", color:"brown"}, 
            {food:"pear", type:"fruit", color:"green"},
            {food:"orange", type:"fruit", color:"orange"},
            {food:"spinach", type:"vegetable", color:"green"},
            {food:"beet", type:"vegetable", color:"red"}
        ];
        [Bindable]
        public var t:String;

        public var sTime:Number;

        private function init():void {
            f1.addEventListener("preinitialize", startTime, true);
            f1.addEventListener("creationComplete", endTime, true);
        }

        private function startTime(e:Event):void {
            // Get the time when the preinitialize event is dispatched.
            sTime = getTimer();
        }

        private function endTime(e:Event):void {
            // Get the time when the creationComplete event is dispatched.
            var eTime:Number = getTimer();
    
            // Calculate initialization time by subtracting the number of
            // milliseconds between the preinitialize and creationComplete 
events.
            var totalTime:Number = eTime - sTime;
    
            // Use target rather than currentTarget because these events are
            // triggered by each child of the Form control during the capture
            // phase.
            t = "Time to create " + e.target + ": " + totalTime + "ms";
        }
    
    ]]></mx:Script>

    <mx:Label id="l1" text="{t}"/>



92 Optimizing Flex Applications

    <mx:Form id="f1">
        <mx:FormHeading label="Sample Form" id="fh1"/>
        <mx:FormItem label="List Control" id="fi1">
            <mx:List dataProvider="{dp}" labelField="food" id="list1"/>
        </mx:FormItem>
        <mx:FormItem label="DataGrid control" id="fi2">
            <mx:DataGrid width="200" dataProvider="{dp}" id="dg1"/>
        </mx:FormItem>
        <mx:FormItem label="Date controls" id="fi3">
            <mx:DateChooser id="dc"/>
            <mx:DateField id="df"/>
        </mx:FormItem>
    </mx:Form>
</mx:Application>

Calculating memory usage
You use the totalMemory property in the System class to find out how much memory has 
been allocated to Flash Player on the client. The totalMemory property represents all the 
memory allocated to Flash Player, not necessarily the memory being used by objects. 
Depending on the operating system, Flash Player will be allocated more or less resources and 
will allocate memory with what is provided. 

You can record the value of totalMemory over time by using a Timer class to set up a 
recurring interval for the timer event, and then listening for that event.



Improving client-side performance 93

The following example displays the total amount of memory allocated (totmem) to Flash 
Player at 1-second intervals. This value will increase and decrease. In addition, this example 
shows the maximum amount of memory that had been allocated (maxmem) since the 
application started. This value will only increase.
<?xml version="1.0"?>
<!-- optimize/ShowTotalMemory.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
initialize="initTimer()">
    <mx:Script><![CDATA[
        import flash.utils.Timer;
        import flash.events.TimerEvent;

        [Bindable]
        public var time:Number = 0;
        [Bindable]
        public var totmem:Number = 0;
        [Bindable]
        public var maxmem:Number = 0;

        public function initTimer():void {
            // The first parameter is the interval (in milliseconds). The 
            // second parameter is number of times to run (0 means infinity).
            var myTimer:Timer = new Timer(1000, 0);
            myTimer.addEventListener("timer", timerHandler);
            myTimer.start();
        }
        
        public function timerHandler(event:TimerEvent):void {
            time = getTimer()
            totmem = flash.system.System.totalMemory;
            maxmem = Math.max(maxmem, totmem);
        }
    ]]></mx:Script>
    <mx:Form>
        <mx:FormItem label="Time:">
            <mx:Label text="{time} ms"/>
        </mx:FormItem>
        <mx:FormItem label="totalMemory:">
            <mx:Label text="{totmem} bytes"/>
        </mx:FormItem>
        <mx:FormItem label="Max. Memory:">
            <mx:Label text="{maxmem} bytes"/>
        </mx:FormItem>
    </mx:Form>
</mx:Application>



94 Optimizing Flex Applications

Configuring the client environment
When testing applications for performance, it is important to configure the client properly. 
This section describes some issues you might encounter when configuring the client.

Choosing the version of Flash Player
When you test your applications for performance, ensure that you use the standard version of 
Flash Player rather than the debugger version of Flash Player, if possible. The debugger 
version of Player provides support for the trace() method and the Logging API. Using 
logging or the trace() method can significantly slow player performance, because the player 
must write log entries to disk while running the application.

If you do use the debugger version of Flash Player, you can disable logging and the trace() 
method by setting the TraceOutputFileEnable property to 0 in your mm.cfg file. You can 
keep trace() logging working, but disable the Logging API that you might be using in your 
application, by setting the logging level of the TraceTarget logging target to NONE, as the 
following example shows:
myLogger.log(LogEventLevel.NONE, s);

For performance testing, consider writing run-time test results to text components in the 
application rather than calling the trace() method so that you can use the standard version 
of Flash Player and not the debugger version of Flash Player.

For more information about configuring trace() method output and logging, see Chapter 
11, “Logging,” on page 245.

Disabling SpeedStep
If you are running performance tests on a Windows laptop computer, disable Intel SpeedStep 
functionality. SpeedStep toggles the speed of the CPU to maximize battery life. SpeedStep can 
toggle the CPU at unpredictable times, which makes the results of a performance test less 
accurate than they would otherwise be.

To disable SpeedStep:

1. Select Start > Settings > Control Panel.

2. Double-click the Power Settings icon. 

The Power Options Properties dialog box displays.
3. Select the Power Schemes tab.

4. Select High System Performance from the Power Schemes drop-down box.

5. Click OK.



Improving client-side performance 95

Changing timeout length
When you test your application, be aware of the scriptTimeLimit property. If an application 
takes too long to initialize, Flash Player warns users that a script is causing Flash Player to run 
slowly and prompts the user to abort the application. If this is the situation, you can set the 
scriptTimeLimit property of the <mx:Application> tag to a longer time so that the Flex 
application has enough time to initialize.

However, the default value of the scriptTimeLimit property is 60 seconds, which is also the 
maximum, so you can only increase the value if you have previously set it to a lower value. You 
rarely need to change this value.

The following example sets the scriptTimeLimit property to 30:
<?xml version="1.0"?>
<!-- optimize/ChangeScriptTimeLimit.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
scriptTimeLimit="30">
    <!-- Empty application -->
</mx:Application>

Preventing client-side caching
When you test performance, ensure that you are not serving files from the local cache to Flash 
Player. Otherwise, this can give false results about download times. Also, during development 
and testing, you might want to change aspects of the application such as embedded images, 
but the browser continues to use the old images from your cache. 

If the date and time in the If-Modified-Since request header matches the data and time in the 
Last-Modified response header, the browser loads the SWF file from its cache. Then the server 
returns the 304 Not Modified message. If the Last-Modified header is more recent, the server 
returns the SWF file.

You can use the following techniques to disable client-side caching:

■ Delete the Flex files from the browser’s cache after each interaction with your application. 
Browsers typically store the SWF file and other remote assets in their cache. On Microsoft 
Internet Explorer, for example, you can delete all the files in c:/Documents and Settings/
username/Local Settings/Temporary Internet Files to force a refresh of the files on the next 
request.



96 Optimizing Flex Applications

■ Set the HTTP headers for the SWF file request to prevent caching of the SWF file on the 
client. The following example shows how to set headers that prevent caching in JSP:
// Set Cache-Control to no-cache.
response.setHeader("Cache-Control", "no-cache");
// Prevent proxy caching.
response.setHeader("Pragma", "no-cache"); 
// Set expiration date to a date in the past.
response.setDateHeader("Expires", 946080000000L); //Approx Jan 1, 2000
// Force always modified.
response.header("Last-Modified", new Date());

■ Invalidate all items in the client cache by making a change to the flex-config.xml file and 
saving it. This file stores all the options that the web-tier compiler uses. When the file 
changes, Adobe Flex Data Services recompiles the application SWF file the next time the 
MXML file is requested.

■ Delete the cache.dep file in the /WEB-INF/flex/ directory. This forces the server to 
invalidate all items in its cache.

■ Use the Flex Data Services server’s caching functionality to control client-side caching. 
You can set the number of files to cache to 0, which means that Flex Data Services does 
not cache any files. Every request results in a recompilation. Because the SWF file has a 
newer data-time stamp, the server sends a new SWF file to the requesting client and the 
file is never read from the browser’s cache. To do this, you set the value of the content-
size property in the flex-webtier-config.xml file to 0 as the following example shows:
<cache>

<content-size>0</content-size>
<http-maximum-age>1</http-maximum-age>
<file-watcher-interval>1</file-watcher-interval>

</cache>

■ Add the recompile=true query string parameter to your request to force a recompile of 
the application. For more information, see “Compiler configuration” on page 168.

Using the JRun sniffer
The sniffer can help you see the transfer times and what files are being transmitted during the 
request and response of the Flex application. The sniffer is included with the integrated JRun 
server. You optionally install this server when you install Flex Data Services. To use the sniffer, 
launch the sniffer utility in the flex_install_dir/jrun4/bin directory.

For more information, see “Using the sniffer” on page 411.



Improving client-side performance 97

Reducing SWF file sizes
You can improve initial user experience by reducing the time it takes to start an application. 
Part of this time is determined by the download process, where the SWF file is returned from 
the server to the client. The smaller the SWF file, the shorter the download wait. In addition, 
reducing the size of the SWF file also results in a shorter application initialization time. Larger 
SWF files take longer to unpack in Flash Player.

The mxmlc compiler includes several options that can help reduce SWF file size.

Using the bytecode optimizer
The bytecode optimizer can reduce the size of the Flex application’s SWF file by using 
bytecode merging and peephole optimization. Peephole optimization removes redundant 
instructions from the bytecode.

If you are using Flex Data Services, you can set the optimize option in the flex-config.xml 
file. If you are using Flex Builder or the mxlmc command-line compiler, you can set the 
optimize compiler option to true, as the following example shows:
mxmlc -optimize=true MyApp.mxml

The default value of the optimize option is true.

Disabling debugging
Disabling debugging can make your SWF files smaller. When debugging is enabled, the Flex 
compilers include line numbers and other navigational information in the SWF file that are 
only used in a debugging environment. Disabling debugging reduces functionality of the fdb 
command-line debugger and the debugger built into Flex Builder.

To disable debugging, set the debug compiler option to false. The default value for the 
mxmlc compiler is false. The default value for the compc compiler is true.

For more information about debugging, see Chapter 12, “Using the Command-Line 
Debugger,” on page 269.

Using strict mode
When you set the strict compiler option to true, the compiler verifies that definitions and 
package names in import statements are used in the application. If the imported classes are 
not used, the compiler reports an error. 



98 Optimizing Flex Applications

The following example shows some examples of when strict mode throws a compiler error:
package {

import flash.utils.Timer; // Error. This class is not used.
import flash.printing.* // Error. This class is not used.
import mx.controls.Button; // Error. This class is not used.
import mx.core.Application; // No error. This class is used.

public class Foo extends Application {
}

}

The strict option also performs compile-time type checking, which provides a small 
optimization increase in the application at run time.

The default value of the strict compiler option is true.

Examining linker dependencies
To find ways to reduce SWF file sizes, you can look at the list of ActionScript classes that are 
linked into your SWF file.

You can generate a report of linker dependencies by setting the link-report compiler option 
to true. The output of this compiler option is a report that shows linker dependencies in an 
XML format. 

The following example shows the dependencies for the ProgrammaticSkin script as it appears 
in the linker report:
<script name="C:\flex2sdk\frameworks\libs\framework.swc( 

mx/skins/ProgrammaticSkin)" mod="1141055632000" size="5807">
<def id="mx.skins:ProgrammaticSkin"/>
<pre id="mx.core:IFlexDisplayObject"/>
<pre id="mx.styles:IStyleable"/>
<pre id="mx.managers:ILayoutClient"/>
<pre id="flash.display:Shape"/>
<dep id="String"/>
<dep id="flash.geom:Matrix"/>
<dep id="mx.core:mx_internal"/>
<dep id="uint"/>
<dep id="mx.core:UIComponent"/>
<dep id="int"/>
<dep id="Math"/>
<dep id="Object"/>
<dep id="Array"/>
<dep id="mx.core:IStyleClient"/>
<dep id="Boolean"/>
<dep id="Number"/>
<dep id="flash.display:Graphics"/>

</script>



Improving client-side performance 99

The following table describes the tags used in this file:

You can examine the list of prerequisites and dependencies for your application definition. 
You do this by searching for your application’s root MXML file by its name; for example, 
MyApp.mxml. You might discover that you are linking in some classes inadvertently. When 
writing code, it is common to make a reference to a class but not actually require that class in 
your application. That reference causes the referenced class to be linked in, and it also links in 
all the classes on which the referenced class depends.

If you look through the linker report, you might find that you are linking in a class that is not 
needed. If you do find an unneeded class, try to identify the linker dependency that is causing 
the class to be linked in, and try to find a way to rewrite the code to eliminate that 
dependency. 

Tag Description

<script> Indicates the name of a compilation unit used in the creation of the application 
SWF file. Compilation units must contain at least one public definition, such as 
a class, function, or namespace.
The name attribute shows the origin of the script, either from a source file or from 
a SWC file (for example, frameworks.swc).
If you set keep-generated=true on the command line, all classes in the 
generated folder are listed as scripts in this file.
The size attribute shows the class' size, in bytes.
The mod attribute shows the time stamp when the script was created.

<def> Indicates the name of a definition. A definition, like a script, can be a class, 
function, or namespace.

<pre> Indicates a definition that must be linked in to the SWF file before the current 
definition is linked in. This tag means prerequisite.
For class definitions, this tag shows the direct parent class (for example, 
flash.events:Event), plus all implemented interfaces (for example, 
mx.core:IFlexDisplayObject and mx.managers:ILayoutClient) of the class.

<dep> Indicates other definitions that this definition depends on (for example, String, 
_ScrollBarStyle, and mx.core:IChildList). This is a reference to a definition that 
the current script requires. 
Some script definitions have no dependencies, so the <script> tag might have 
no <dep> child tags.

<ext> Indicates a dependency to an asset that was not linked in. These dependencies 
show up in the linker report when you use the external-library-path, externs, 
or load-externs compiler options to add assets to the SWF file.



100 Optimizing Flex Applications

Avoiding initializing unused classes
Some common ways to avoid unnecessary references include avoiding initializing classes you 
do not use and performing type-checking with the getQualifiedClassName() method.

The following example checks if the class is a Button control. This example forces the 
compiler to include a Button in the SWF file, even if the child is not a Button control and the 
entire application has no Button controls. 
<?xml version="1.0"?>
<!-- optimize/UnusedClasses.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="checkChildType()">
    <mx:Script><![CDATA[
    import mx.controls.Button;

    public function checkChildType():void {
        var child:DisplayObject = getChildAt(0);
        var childIsButton:Boolean = child is mx.controls.Button;
        trace("child is mx.controls.Button: " + childIsButton); // False.
    }
    ]]></mx:Script>

    <!-- This control is here so that the getChildAt() method succeeds. -->
    <mx:DataGrid/>

</mx:Application>

You can use the getQualifiedClassName() method to accomplish the same task as the 
previous example. This method returns a String that you can compare to the name of a class 
without causing that class to be linked into the SWF. 

The following example does not create a linker dependency on the Button control:
<?xml version="1.0"?>
<!-- optimize/GetQualifiedClassNameExample.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
        creationComplete="checkChildType()">
    <mx:Script><![CDATA[
    public function checkChildType():void {     
        var child:DisplayObject = getChildAt(0);
        var childClassName:String = getQualifiedClassName(child);
        var childIsButton:Boolean = childClassName == "mx.controls::Button"
        trace("child class name = Button " + childIsButton);
    }
    ]]></mx:Script>

    <!-- This control is here so that the getChildAt() method succeeds. -->
    <mx:DataGrid/>

</mx:Application>



Improving client-side performance 101

Externalizing assets
One method of reducing the SWF file size is to externalize assets; that is, to load the assets at 
run time rather than embed them at compile time. You can do this with assets such as images, 
SWF files, and sound files. 

Embedded assets load immediately, because they are already part of the Flex SWF file. 
However, they add to the size of your application and slow down the application initialization 
process. Embedded assets also require you to recompile your applications whenever your asset 
changes. 

The following example embeds the shapes.swf file into the Flex application at compile time:
<?xml version="1.0"?>
<!-- optimize/EmbedAtCompileTime.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Image source="@Embed(source='../assets/bird.gif')"/>
</mx:Application>

The following example loads the shapes.swf file into the Flex application at run time:
<?xml version="1.0"?>
<!-- optimize/EmbedAtRunTime.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Image source="../assets/bird.gif"/>
</mx:Application>

The only supported image type that you cannot load at run time is SVG. Flash Player requires 
that the compiler transcodes that file type at compile time. The player cannot transcode that 
file type at run time.

When you load SWF files from domains that are not the same as the loading SWF file, you 
must use a crossdomain.xml file or other mechanism to enable the proper permissions. For 
more information on using the crossdomain.xml file, see “Using cross-domain policy files” 
on page 65.

An alternative to reducing SWF file sizes by externalizing assets is to increase the SWF file size 
by embedding assets. By embedding assets such as images, sounds, and SWF files, you can 
reduce the network bandwidth and connections. The SWF file size increases, but the 
application requires fewer network connections to the server. 

For information on loading assets, see Chapter 30, “Embedding Assets,” in Flex 2 Developer’s 
Guide.



102 Optimizing Flex Applications

Using character ranges for embedded fonts
By specifying a range of symbols that compose the face of an embedded font, you reduce the 
size of an embedded font. Each character in a font must be described; if you remove some of 
these characters, it reduces the overall size of the description information that Flex must 
include for each embedded font.

You can set the range of glyphs in the flex-config.xml file or in the font-face declaration in 
each MXML file. You specify individual characters or ranges of characters using the Unicode 
values for the characters, and you can set multiple ranges for each font declaration.

In CSS, you can set the Unicode range with the unicodeRange property, as the following 
example shows:
@font-face {

src:url("../assets/MyriadWebPro.ttf");
fontFamily: myFontFamily;
unicodeRange:

U+0041-U+005A, /* Upper-Case [A..Z] */
U+0061-U+007A, /* Lower-Case a-z */
U+0030-U+0039, /* Numbers [0..9] */
U+002E-U+002E; /* Period [.] */

}

In the flex-config.xml file, you can set the Unicode range with the <language-range> block, 
as the following example shows:
<language-range>

<lang>Latin I</lang>
<range>U+0020,U+00A1-U+00FF,U+2000-U+206F,U+20A0-U+20CF,U+2100-U+2183</
range>

</language-range>

For more information, see Chapter 19, “Using Fonts,” in Flex 2 Developer’s Guide.

Using multiple SWF files
One way to reduce the size of an application’s file is to break the application up into logical 
parts that can be sent to the client and loaded over a series of requests rather than all at once. 
By breaking a monolithic application into smaller applications, users can interact with your 
application more quickly, but possibly experience some delays while the application is 
running.



Improving client-side performance 103

One approach is to use the SWFLoader control. This technique can work with SWF files that 
add graphics or animations to an application, or SWF files that act as stand-alone applications 
inside the main application. If you import SWF files that require a large amount of user 
interaction, however, consider building them as custom components. SWF files produced 
with earlier versions of Flex or ActionScript may not work properly when loaded with the 
SWFLoader control.

Rather than loading SWF files into the main application with the SWFLoader control, 
consider having the SWF files communicate with each other as separate applications. You can 
do this with local SharedObjects, LocalConnection objects, or with the ExternalInterface API.

Another approach to loading multiple small SWF files rather than one large one is to use the 
HTML wrapper to provide a framework for loading the SWF files. The Samples Explorer, 
which is included with Flex 2 SDK, uses HTML frames to load many smaller applications, 
one at a time. >

Comparing dynamic and static linking
Most large applications use libraries of ActionScript classes and components. You must decide 
whether to use static or dynamic linking when using these libraries in your Flex applications.

When you use static linking, the compiler includes all components, classes, and their 
dependencies in the application SWF file when you compile the application. The result is a 
larger SWF file that takes longer to download but loads and runs quickly because all the code 
is in the SWF file. To compile your application that uses libraries and to statically link those 
definitions into your application, you use the library-path and include-libraries 
options to specify the locations of SWC files. 

Dynamic linking is when some classes used by an application are left in an external file that is 
loaded at run time. The result is a smaller SWF file size for the main application, but the 
application relies on external files that are loaded during run time. 

To dynamically link classes and components, you compile a library. You then instruct the 
compiler to exclude that library’s contents from the application SWF file. You must still 
provide link-checking at compile time even though the classes are not going to be included in 
the final SWF file. 



104 Optimizing Flex Applications

You use dynamic linking by creating component libraries and compiling them with your 
application by using the external-library-path, externs, or load-externs compiler 
options. These options instruct the compiler to exclude resources defined by their arguments 
from inclusion in the application, but to check links against them and prepare to load them at 
run time. The external-library-path option specifies SWC files or directories for 
dynamic linking. The externs option specifies individual classes or symbols for dynamic 
linking. The load-externs option specifies an XML file that describes which classes to use 
for dynamic linking. This XML file has the same syntax as the file produced by the link-
report compiler option.

For more information about linking, see “About linking” on page 234. For more information 
about compiler options, see Chapter 9, “Using the Flex Compilers,” on page 179.

Using RSLs to reduce SWF file size
One way to reduce the size of your application’s SWF file is by externalizing shared assets into 
stand-alone files that can be separately downloaded and cached on the client. These shared 
assets are loaded by any number of applications at run time, but must be transferred only once 
to the client. These shared files are known as Runtime Shared Libraries (RSLs).

If you have multiple applications but those applications share a core set of components or 
classes, your users will be required to download those assets only once as an RSL. The 
applications that share the assets in the RSL use the same cached RSL as the source for the 
libraries as long as they are in the same domain. The resulting file size for your applications 
can be reduced. The benefits increase as the number of applications that use the RSL 
increases. 

For more information, see Chapter 10, “Using Runtime Shared Libraries,” on page 233.

Application coding
The MXML language provides a rich set of controls and classes that you can use to create 
interactive applications. This richness sometimes can reduce efficient performance. This 
section describes some techniques that a Flex developer can use to improve the run-time 
performance of the Flex application.

Object creation and destruction
Object creation is the task of instantiating all the objects in your application. These objects 
include controls, components, and objects that contain data and other dynamic information. 
Optimizing the process of object creation and destruction can result in significant 
performance gains. 



Improving client-side performance 105

No single task during application initialization takes up the most time. The best way to 
improve performance is to create fewer objects. You can do this by deferring the instantiation 
of objects, or changing the order in which they are created to improve perceived performance.

Using ordered creation

You can improve perceived startup time of your Flex application by ordering the creation of 
containers in the initial view. The default behavior of Flex is to create all containers and their 
children in the initial view, and then display everything at once. The user cannot interact with 
the application or see meaningful data until all the containers and their children are created. 

In some cases, you can improve the user’s initial experience by displaying the components in 
one container before creating the components in the next container. This process is called 
ordered creation.

To use ordered creation, you set the creationPolicy property of a container to queued, as 
the following example shows:
<?xml version="1.0"?>
<!-- optimize/QueuedPanels.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Panel id="panel1" creationPolicy="queued" width="100%" 
height="33%">
        <mx:Button id="button1a"/>
        <mx:Button id="button1b"/>
    </mx:Panel>

    <mx:Panel id="panel2" creationPolicy="queued" width="100%" 
height="33%">
        <mx:Button id="button2a"/>
        <mx:Button id="button2b"/>
    </mx:Panel>

    <mx:Panel id="panel3" creationPolicy="queued" width="100%" 
height="33%">
        <mx:Button id="button3a"/>
        <mx:Button id="button3b"/>
    </mx:Panel>
</mx:Application>

This adds the container’s children to a queue. Flash Player instantiates and displays all of the 
children within the first container in the queue before instantiating the children in the next 
container in the queue.

For more information on ordered creation, see “Using ordered creation” on page 143.



106 Optimizing Flex Applications

Using deferred creation

To improve the start-up time of your application, minimize the number of objects that are 
created when the application is first loaded. If a user-interface component is not initially 
visible at start up, create that component only when you need it. This is called deferred 
creation. Containers that have multiple views, such as an Accordion, provide built-in support 
for this behavior. You can use ActionScript to customize the creation order of multiple-view 
containers or defer the creation of other containers and controls.

To use deferred creation, you set the value of a component’s creationPolicy property to 
all, auto, or none. If you set it to none, Flex does not instantiate a control’s children 
immediately, but waits until you instruct Flex to do so. In the following example, the children 
of the VBox container are not be instantiated when the application is first loaded, but only 
after the user clicks the button:
<?xml version="1.0"?>
<!-- optimize/CreationPolicyNone.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[

        private function createButtons(e:Event):void {
            myVBox.createComponentsFromDescriptors();
        }

    ]]></mx:Script>

    <mx:Panel title="VBox with Repeater">
        <mx:VBox id="myVBox" height="100" width="125" creationPolicy="none">
            <mx:Button id="b1" label="Hurley"/>
            <mx:Button id="b2" label="Jack"/>
            <mx:Button id="b3" label="Sawyer"/>
        </mx:VBox>
    </mx:Panel>
    
    <mx:Button id="myButton" click="createButtons(event)" label="Create 
Buttons"/>

</mx:Application>

You call methods such as createComponentFromDescriptor() and 
createComponentsFromDescriptor() on the container to instantiate its children at run 
time. For more information on using deferred instantiation, see “Using deferred creation” 
on page 134.



Improving client-side performance 107

Destroying unused objects

Flash Player provides built-in garbage collection that frees up memory by destroying objects 
that are no longer used. To ensure that the garbage collector destroys your unused objects, 
remove all references to that object, including the parent’s reference to the child. 

On containers, you can call the removeChild() or removeChildAt() method to remove 
references to child controls that are no longer needed. The following example removes 
references to button instances from the myVBox control:
<?xml version="1.0"?>
<!-- optimize/DestroyObjects.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
        private function destroyButtons(e:Event):void {
            myVBox.removeChild(b1);
            myVBox.removeChild(b2);
            myVBox.removeChild(b3);
        }
    ]]></mx:Script>

    <mx:Panel title="VBox with Repeater">
        <mx:VBox id="myVBox" height="100" width="125">
            <mx:Button id="b1" label="Hurley"/>
            <mx:Button id="b2" label="Jack"/>
            <mx:Button id="b3" label="Sawyer"/>
        </mx:VBox>
    </mx:Panel>
    
    <mx:Button id="myButton2" click="destroyButtons(event)" label="Destroy 
Buttons"/>

</mx:Application>

You can clear references to unused variables by setting them to null in your ActionScript; for 
example:
myDataProvider = null



108 Optimizing Flex Applications

To ensure that destroyed objects are garbage collected, you must also remove event listeners on 
them by using the removeEventListener() method, as the following example shows:
<?xml version="1.0"?>
<!-- optimize/RemoveListeners.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp(event)">
    <mx:Script><![CDATA[
        private function initApp(e:Event):void {
            b1.addEventListener("click",myClickHandler);
            b2.addEventListener("click",myClickHandler);
            b3.addEventListener("click",myClickHandler);
        }

        private function destroyButtons(e:Event):void {
            b1.removeEventListener("click",myClickHandler);
            b2.removeEventListener("click",myClickHandler);
            b3.removeEventListener("click",myClickHandler);

            myVBox.removeChild(b1);
            myVBox.removeChild(b2);
            myVBox.removeChild(b3);
        }
        
        private function myClickHandler(e:Event):void {
            // Do something here.
        }
    ]]></mx:Script>

    <mx:Panel title="VBox with Repeater">
        <mx:VBox id="myVBox" height="100" width="125">
            <mx:Button id="b1" label="Hurley"/>
            <mx:Button id="b2" label="Jack"/>
            <mx:Button id="b3" label="Sawyer"/>
        </mx:VBox>
    </mx:Panel>
    
    <mx:Button id="myButton" click="destroyButtons(event)" label="Destroy 
Buttons"/>

</mx:Application>



Improving client-side performance 109

You cannot call the removeEventListener() method on an event handler that you added 
inline. In the following example, you cannot call removeEventListener() on b1’s click 
event handler, but you can call it on b2’s and b3’s event handlers:
<?xml version="1.0"?>
<!-- optimize/RemoveSomeListeners.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp(event)">
    <mx:Script><![CDATA[
        private function initApp(e:Event):void {
            b2.addEventListener("click",myClickHandler);
            b3.addEventListener("click",myClickHandler);
        }

        private function destroyButtons(e:Event):void {
            b2.removeEventListener("click",myClickHandler);
            b3.removeEventListener("click",myClickHandler);

            myVBox.removeChild(b1);
            myVBox.removeChild(b2);
            myVBox.removeChild(b3);
        }
        
        private function myClickHandler(e:Event):void {
            // Do something here.
        }
    ]]></mx:Script>

    <mx:Panel title="VBox with Repeater">
        <mx:VBox id="myVBox" height="100" width="125">
            <mx:Button id="b1" label="Hurley" click="myClickHandler(event)"/
>
            <mx:Button id="b2" label="Jack"/>
            <mx:Button id="b3" label="Sawyer"/>
        </mx:VBox>
    </mx:Panel>
    
    <mx:Button id="myButton" click="destroyButtons(event)" label="Destroy 
Buttons"/>

</mx:Application>

The weakRef parameter to the addEventListener() method provides you with some 
control over memory resources for listeners. A strong reference (when weakRef is false) 
prevents the listener from being garbage collected. A weak reference (when weakRef is true) 
does not. The default is false.

For more information about the removeEventListener() method, see Chapter 5, “Using 
Events,” in the Flex 2 Developer’s Guide.



110 Optimizing Flex Applications

Using styles
You use styles to define the look and feel of your Flex applications. You can use them to 
change the appearance of a single component, or apply them globally. Be aware that some 
methods of applying styles are more expensive than others. This section describes some of the 
ways you can increase your application’s performance by changing the way you apply styles.

For more information about using styles, see Chapter 18, “Using Styles and Themes,” in 
Flex 2 Developer’s Guide.

Reducing calls to the setStyle() method

Run-time cascading styles are very powerful, but use them sparingly and in the correct 
context. Calling the setStyle() method can be an expensive operation because the call 
requires notifying all the children of the newly-styled object. The resulting tree of children 
that must be notified can be quite large.

A common mistake that impacts performance is overusing or unnecessarily using the 
setStyle() method. In general, you only use the setStyle() method when you change 
styles on existing objects. Do not use it when you set up styles for an object for the first time. 
Instead, set styles in an <mx:Style> block, as style properties on the MXML tag, through an 
external CSS style sheet, or as global styles. 

Some applications must call the setStyle() method during the application or object 
instantiation. If this is the case, call the setStyle() method early in the instantiation phase. 
Early in the instantiation phase means setting styles from the component or application’s 
preinitialize event, instead of the initialize or creationComplete event. By setting 
the styles as early as possible during initialization, you avoid unnecessary style notification and 
lookup.



Improving client-side performance 111

If you programmatically create a component and want to set styles on that component, call 
the setStyle() method before you attach it to the display list with a call to the addChild() 
method, as the following example shows:
<?xml version="1.0"?>
<!-- optimize/CreateStyledButton.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp(event)">
    <mx:Script><![CDATA[
        import mx.controls.Button;
    
        public function initApp(e:Event):void {
            var b:Button = new Button();
            b.label="Click Me";
            b.setStyle("color", 0x00CCFF);
            panel1.addChild(b);
        }
    ]]></mx:Script>
        
    <mx:Panel id="panel1"/>
    
</mx:Application>

Setting global styles

Changing global styles (changing a CSS ruleset that is associated with a class or type selector) 
at run time is an expensive operation. Any time you change a global style, Flash Player must 
perform the following actions:

■ Traverse the entire application looking for instances of that control.
■ Check all the control’s children if the style is inheriting.
■ Redraw that control.



112 Optimizing Flex Applications

The following example globally changes the Button control’s color style property:
<?xml version="1.0"?>
<!-- optimize/ApplyGlobalStyles.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp(event)">
    <mx:Script><![CDATA[
        public function initApp(e:Event):void {
            StyleManager.getStyleDeclaration("Button").setStyle("color", 
0x00CCFF);
        }
    ]]></mx:Script>
        
    <mx:Panel id="panel1">
        <mx:Button id="b1" label="Click Me"/>
        <mx:Button id="b2" label="Click Me"/>
        <mx:Button id="b3" label="Click Me"/>
    </mx:Panel> 
    
</mx:Application>

If possible, set global styles at authoring time by using CSS. If you must set them at run time, 
try to set styles by using the techniques described in “Reducing calls to the setStyle() method” 
on page 110.

Calling the setStyleDeclaration() and loadStyleDeclarations() methods

The setStyleDeclaration() method is computationally expensive. You can prevent Flash 
Player from applying or clearing the new styles immediately by setting the update parameter 
to false. 



Improving client-side performance 113

The following example sets new class selectors on different targets, but does not trigger the 
update until the last style declaration is applied:
<?xml version="1.0"?> 
<!-- styles/SetStyleDeclarationExample.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp()">
  <mx:Script><![CDATA[ 
        import mx.styles.StyleManager;

        private var myButtonStyle:CSSStyleDeclaration = new 
CSSStyleDeclaration('myButtonStyle');
        private var myLabelStyle:CSSStyleDeclaration = new 
CSSStyleDeclaration('myLabelStyle');
        private var myTextAreaStyle:CSSStyleDeclaration = new 
CSSStyleDeclaration('myTextAreaStyle');

        private function initApp():void {
            myButtonStyle.setStyle('color', 'blue');
            myLabelStyle.setStyle('color', 'blue');
            myTextAreaStyle.setStyle('color', 'blue');
        }

        private function applyStyles():void {
            StyleManager.setStyleDeclaration("Button", myButtonStyle, 
false);
            StyleManager.setStyleDeclaration("Label", myLabelStyle, false);
            StyleManager.setStyleDeclaration("TextArea", myTextAreaStyle, 
true);
        }
  ]]></mx:Script>

    <mx:Button id="myButton" label="Click Me" click="applyStyles()"/>
    <mx:Label id="myLabel" text="This is a label"/>
    <mx:TextArea id="myTextArea" text="This is a TextArea"/>

</mx:Application>

When you pass false for the update parameter, Flash Player stores the selector but does not 
apply the style. When you pass true for the update parameter, Flash Player recomputes the 
styles for every visual component in the application.

The loadStyleDeclarations() method is similarly computationally expensive. When you 
load a new style sheet, this method triggers an update to the display list by default. You can 
prevent Flash Player from applying or clearing the new style sheets immediately by setting the 
update parameter to false. When you chain calls to loadStyleDeclarations() methods, 
set the update parameter to false for all calls except the last one. 



114 Optimizing Flex Applications

Working with containers
Containers provide a hierarchical structure that lets you control the layout characteristics of 
container children. You can use containers to control child sizing and positioning, or to 
control navigation among multiple child containers.

When you develop your Flex application, try to minimize the number of containers that you 
use. This is because most containers provide relative sizing and positioning, which can be 
resource-intensive operations, especially when an application first starts.

One common mistake is to create a container that contains a single child. Sometimes having a 
single child in a container is necessary, such as when you use the container’s padding to 
position the child. But try to identify and remove containers such as these that provide no real 
functionality. Also keep in mind that the root of an MXML component does not need to be a 
container.

Another sign of possibly too many containers is when you have a container nested inside 
another container, where both the parent and child containers have the same type (for 
example, HBoxes).

Minimizing container nesting

It is good practice to avoid deeply nested layouts when possible. For simple applications, if 
you have nested containers more than three levels deep, you can probably produce the same 
layout with fewer levels of containers. Deep nesting can lead to performance problems. For 
larger applications, deeper nesting might be unavoidable.

When you nest containers, each container instance runs measuring and sizing algorithms on 
its children (some of which are containers themselves, so this measuring procedure can be 
recursive). When the layout algorithms have processed, and the relative layout values have 
been calculated, Flash Player draws the complex collection of objects comprising the view. By 
eliminating unnecessary work at object creation time, you can improve the performance of 
your application.

Using Grid containers

A Grid container is useful for aligning multiple objects. When you use Grid containers, 
however, you introduce additional levels of containers with the GridItem and GridRow 
controls. In many cases, you can achieve the same results by using the VBox and HBox 
containers, and these containers use fewer levels of nesting.



Improving client-side performance 115

Using layout containers

You can sometimes improve application start-up time by using Canvas containers, which 
perform absolute positioning, instead of relative layout containers, such as the Form, HBox, 
VBox, Grid, and Tile containers.

Canvas containers are the only containers that let you specify the location of their child 
controls by default. All other containers are relative containers by default, which means that 
they lay everything out relative to other components in the container. You can make 
Application and Panel containers do absolute positioning.

Canvas containers eliminate the layout logic that other containers use to perform automatic 
positioning of their children at startup, and replace it with explicit pixel-based positioning. 
When you use a Canvas container, you must remember to set the x and y positions of all of its 
children. If you do not set the x and y positions, the Canvas container’s children lay out on top 
of each other at the default x, y coordinates (0,0).

The canvas container is not always more efficient than other containers, however, because it 
must measure itself to make sure that it is large enough to contain its children. Applications 
that use canvases typically contain a much flatter containment hierarchy. As a result, using 
canvas containers can lead to less nesting and fewer overall containers, which improves 
performance.

Canvas containers support constraints, which means that if the container changes size, the 
children inside the container move with it.

Using absolute sizing

Writing object widths and heights into the code can save time because the Flex layout 
containers do not have to calculate the size of the object at run time. By specifying container 
or control widths or heights, you lighten the relative layout container’s processing load and 
subsequently decrease the creation time for the container or control. This technique works 
with any container or control.

Improving effect performance
Effects let you add animation and motion to your application in response to user or 
programmatic action. For example, you can use effects to cause a dialog box to bounce slightly 
when it receives focus, or to slowly fade in when it becomes visible.

Effects can be one of the most processor-intensive tasks performed by a Flex application. This 
section describes some techniques for improving the performance of effects.

For more information on the topics introduced here, see Chapter 17, “Using Behaviors,” in 
Flex 2 Developer’s Guide.



116 Optimizing Flex Applications

Increasing effect duration

Increase the duration of your effect with the duration property. Doing this spreads the 
distinct, choppy stages over a longer period of time, which lets the human eye fill in the 
difference for a smoother effect.

Hiding parts of the target view

Make parts of the target view invisible when the effect starts, play the effect, and then make 
those parts visible when the effect has completed. To do this, you add logic in the 
effectStart and effectEnd event handlers that controls what is visible before and after the 
effect.

When you apply a Resize effect to a Panel container, for example, the measurement and layout 
algorithm for the effect executes repeatedly over the duration of the effect. When a Panel 
container has many children, the animation can be jerky because Flex cannot update the 
screen quickly enough. Also, resizing one Panel container often causes other Panel containers 
in the same view to resize. 

To solve this problem, you can use the Resize effect’s hideChildrenTargets property to hide 
the children of Panel containers while the Resize effect is playing. The value of the 
hideChildrenTargets property is an Array of Panel containers that should include the Panel 
containers that resize during the animation. When the hideChildrenTargets property is 
true, and before the Resize effect plays, Flex iterates through the Array and hides the children 
of each of the specified Panel containers.

Avoiding bitmap-based backgrounds

Designers often give their views background images that are solid colors with gradients, slight 
patterns, and so forth. To ease what Flash Player redraws during an effect, try using a solid 
background color for your background image. Or, if you want a slight gradient instead of a 
solid color, use a background image that is a SWF or SVG file. These are easier for Flash 
Player to redraw than standard JPG or PNG files. 

Suspending background processing

To improve the performance of effects, you can disable background processing in your 
application for the duration of the effect by setting the suspendBackgroundProcessing 
property of the Effect to true. The background processing that is blocked includes 
component measurement and layout, and responses to data services for the duration of the 
effect.



Improving client-side performance 117

Using the cachePolicy property 

An effect can use the bitmap caching feature in Flash Player to speed up animations. An effect 
typically uses bitmap caching when the target component’s drawing does not change while the 
effect is playing.

The cachePolicy property of UIComponents controls the caching operation of a 
component during an effect. The cachePolicy property can have the following values: 

CachePolicy.ON Specifies that the effect target is always cached.

CachePolicy.OFF Specifies that the effect target is never cached.

CachePolicy.AUTO Specifies that Flex determines whether the effect target should be 
cached. This is the default value.

The cachePolicy property is useful when an object is included in a redraw region but the 
object does not change. For more information about redraw regions, see “Understanding 
redraw regions” on page 118.

The cachePolicy property provides a wrapper for the cacheAsBitmap property. For more 
information, see “Using the cacheAsBitmap property” on page 118.

Improving rendering speed
The actual rendering of objects on the screen can take a significant amount of time. 
Improving the rendering times can dramatically improve your application’s performance. Use 
the techniques in this section to help improve rendering speed. In addition, use the 
techniques described in the previous section, “Improving effect performance” on page 115, to 
improve effect rendering speed.

Setting movie quality

You can use the quality property of the wrapper’s <object> and <embed> tags to change the 
rendering of your Flex application in Flash Player. Valid values for the quality property are 
low, medium, high, autolow, autohigh, and best. The default value is best.

The low setting favors playback speed over appearance and never uses anti-aliasing. The 
autolow setting emphasizes speed at first but improves appearance whenever possible. The 
autohigh setting emphasizes playback speed and appearance equally at first, but sacrifices 
appearance for playback speed if necessary. The medium setting applies some anti-aliasing and 
does not smooth bitmaps. The high setting favors appearance over playback speed and always 
applies anti-aliasing. The best setting provides the best display quality and does not consider 
playback speed. All output is anti-aliased and all bitmaps are smoothed. 

For information on these settings, see “About the <object> and <embed> tags” on page 378.



118 Optimizing Flex Applications

Understanding redraw regions

A redraw region is the region around an object that must be redrawn when that object changes. 
Everything in a redraw region is redrawn during the next rendering phase after an object 
changes. The area that Flash Player redraws includes the object, and any objects that overlap 
with the redraw region, such as the background or the object’s container.

You can see redraw regions at run time in the debugger version of Flash Player by selecting 
View > Show Redraw Regions in the player’s menu. When you select this option, the 
debugger version of Flash Player draws red rectangles around each redraw region while the 
application runs.

By looking at the redraw regions, you can get a sense of what is changing and how much 
rendering is occurring while your application runs. Flash Player sometimes combines the 
redraw regions of several objects into a single region that it redraws. As a result, if your objects 
are spaced close enough together, they might be redrawn as part of one region, which is better 
than if they are redrawn separately. If the number of regions is too large, Flash Player might 
redraw the entire screen.

Using the cacheAsBitmap property

To improve rendering speeds, make careful use of the cacheAsBitmap property. You can set 
this property on any UIComponent. 

When you set the cacheAsBitmap property to true, Flash Player stores a copy of the initial 
bitmap image of an object in memory. If you later need that object, and the object’s properties 
have not changed, Flash Player uses the cached version to redraw the object. This can be faster 
than using the vectors that make up the object.

Setting the cacheAsBitmap property to true can be especially useful if you use animations or 
other effects that move objects on the screen. Instead of redrawing the object in each frame 
during the animation, Flash Player can use the cached bitmap.

The downside is that changing the properties of objects that are cached as bitmaps is more 
computationally expensive. Each time you change a property that affects the cached object’s 
appearance, Flash Player must remove the old bitmap and store a new bitmap in the cache. As 
a result, only set the cacheAsBitmap property to true for objects that do not change much.

Enable bitmap caching only when you need it, such as during the duration of an animation, 
and only on a few objects at a time because it can be a memory-intensive operation. The best 
approach might be to change this property at various times during the object’s life cycle, 
rather than setting it once.



Improving client-side performance 119

Using filters

To improve rendering speeds, do not overuse of filters such as DropShadowFilter. The expense 
of the filter is proportional to the number of pixels in the object that you are applying the 
filter to. As a result, it is best to use filters on smaller objects. 

Using device text

Mixing device text and vector graphics can slow rendering speeds. For example, a DataGrid 
control that contains both text and graphics inside a cell will be much slower to redraw than a 
DataGrid that contains just text.

Using clip masks

Using the scrollRect and mask properties of an object are expensive operations. Try to 
minimize the number of times you use these properties.

Using large data sets
This section describes how to minimize overhead when working with large data sets.

Paging

When you use a DataService class to get your remote data, you might have a collection that 
does not initially load all of its data on the client. You can prevent large amounts of data from 
traveling over the network and slowing down your application while that data is processed 
using paging. The data that you get incrementally is referred to as paged data, and the data 
that has not yet been received is pending data.

The paging features of the DataService class include:

■ Maximum message size on the destination can be configured.
■ If size exceeds the maximum value, multiple message batches are used.
■ Client reassembles separate messages.
■ Asynchronous data paging across the network.
■ User interface elements can display portions of the collection without waiting for the 

entire collection to load.

For more information, see Chapter 7, “Using Data Providers and Collections,” in Flex 2 
Developer’s Guide.



120 Optimizing Flex Applications

Disabling live scrolling

One issue when using a DataGrid control with large data sets is that it may be slow to scroll 
when using the scrollbar. When the DataGrid displays newly visible data, it calls the 
getItemAt() method on the data provider. 

The default behavior of a DataGrid is to continuously update data when the user is scrolling 
through it. As a result, performance can degrade if you just simply scroll through the data on 
a DataGrid because the DataGrid is continuously calling the getItemAt() method. This can 
be a computationally expensive method to call.

You can disable this live scrolling so that the view is only updated when the scrolling stops by 
setting the liveScrolling property to false. 

The default value of the liveScrolling property is true. All subclasses of ScrollControlBase, 
including TextArea, HorizontalList, TileList, and DataGrid, have this property.

Dynamically repeating components
This section describes the relative benefits of using List-based controls rather than the 
Repeater control to dynamically repeat components. If you must use the Repeater, however, it 
also describes some techniques for improving the performance of that control.

Comparing List-based controls to the Repeater control

To dynamically repeat components, you can choose between the Repeater or List-based 
controls, such as HorizontalList, TileList, or List. To achieve better performance, you can 
often replace layouts you created with a Repeater with the combination of a HorizontalList or 
TileList and an item renderer.

The Repeater object is useful for repeating a small set of simple user interface components, 
such as RadioButton controls and other controls typically used in Form containers. You can 
use the HorizontalList, TileList, or List control when you display more than a few repeated 
objects.

The HorizontalList control displays data horizontally, similar to the HBox container. The 
HorizontalList control always displays items from left to right. The TileList control displays 
data in a tile layout, similar to the Tile container. The TileList control provides a direction 
property that determines if the next item is down or to the right. The List control displays 
data in a single vertical column. 



Improving client-side performance 121

Unlike the Repeater object, which instantiates all objects that are repeated, the HorizontalList, 
TileList, and List controls only instantiate what is visible in the list. The Repeater control 
takes a data provider (typically an Array) that creates a new copy of its children for each entry 
in the Array. If you put the Repeater control’s children inside a container that does not use 
deferred instantiation, your Repeater control might create many objects that are not initially 
visible.

For example, a VBox container creates all objects within itself when it is first created. In the 
following example, the Repeater control creates all the objects whether or not they are initially 
visible:
<?xml version="1.0"?>
<!-- optimize/VBoxRepeater.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

    <mx:Script><![CDATA[
        import mx.collections.ArrayCollection;
    
        [Bindable]
        public var imgList:ArrayCollection = new ArrayCollection([
            {img:"bird.gif"},
            {img:"bird-gray.gif"},
            {img:"bird-silly.gif"}
        ]);     

    ]]></mx:Script>

    <mx:Panel title="VBox with Repeater">
        <mx:VBox height="150" width="250">
            <mx:Repeater id="r" dataProvider="{imgList}">
                <mx:Image source="../assets/{r.currentItem.img}"/>
            </mx:Repeater>
        </mx:VBox>
    </mx:Panel>

</mx:Application>



122 Optimizing Flex Applications

If you use a List-based control, however, Flex only creates those controls in the list that are 
initially visible. The following example uses the List control to create only the image needed 
for rendering:
<?xml version="1.0"?>
<!-- optimize/ListItems.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
   <mx:Script><![CDATA[
        import mx.collections.ArrayCollection;
    
        private static var birdList:Array = ["../assets/bird.gif","../
assets/bird-gray.gif","../assets/bird-silly.gif"];
        [Bindable]
        private var birdListAC:ArrayCollection = new 
ArrayCollection(birdList);

        private function initCatalog():void {
            birdlist.dataProvider = birdListAC;
        }

    ]]></mx:Script>

    <mx:Panel title="List">
        <mx:List id="birdlist" rowHeight="150" width="250" rowCount="1" 
itemRenderer="mx.controls.Image" creationComplete="initCatalog()">
        </mx:List>  
    </mx:Panel>
</mx:Application>

Using the Repeater control

When using a Repeater control, keep the following techniques in mind:

■ Avoid repeating objects that have clip masks because using clip masks is a resource- 
intensive process.

■ Ensure that the containers used as the children of the Repeater control do not have 
unnecessary container nesting and are as small as possible. If a single instance of the 
repeated view takes a noticeable amount of time to instantiate, repeating makes it worse. 
For example, multiple Grid containers in a Repeater object do not perform well because 
Grid containers themselves are resource-intensive containers to instantiate.

■ Set the recycleChildren property to true. The recycleChildren property is a Boolean 
value that, when set to true, binds new data items into existing Repeater children, 
incrementally creates children if there are more data items, and destroys extra children that 
are no longer required. 



Improving server-side performance 123

The default value of the recycleChildren property is false to ensure that you do not 
leave stale state information in a repeated instance. For example, suppose you use a 
Repeater object to display photo images and each Image control has an associated 
NumericStepper control for how many prints you want to order. Some of the state 
information, such as the image, comes from the dataProvider property. Other state 
information, such as the print count, is set by user interaction. If you set the 
recycleChildren property to true and page through the photos by incrementing the 
Repeater object's startingIndex value, the Image controls bind to the new images, but 
the NumericStepper control maintains the old information. Use 
recycleChildren="false" only if it is too cumbersome to reset the state information 
manually, or if you are confident that modifying your dataProvider property should not 
trigger a recreation of the Repeater object’s children.
Keep in mind that the recycleChildren property has no effect on a Repeater object’s 
speed when the Repeater object loads the first time. The recycleChildren property 
improves performance only for subsequent changes to the Repeater control’s data 
provider. If you know that your Repeater object creates children only once, you do not 
have to use the recycleChildren property or worry about the stale state situation. 

Improving server-side performance
The Flex web application is deployed as a standard J2EE web application and is supported on 
a number of popular J2EE application servers. 

Flex relies on the Flash Player client for the user interface, and on the server solely for 
transferring the client application and then sending requested data. When a user requests an 
application by using a URL, the SWF file is transferred to the client where it begins to 
execute. Requests for data are typically handled by the server running Flex and are 
subsequently transferred to the client. This separation of processing lets the client handle 
simple tasks, such as field validation, data formatting, sorting, and filtering, which frees up 
valuable server CPU cycles.

This section describes some techniques to use to improve server-side performance, both for 
when you are using the web-tier compiler and the features of the Flex Data Services server, 
and when you deploy Flex as a web application on another platform. 

Some of the techniques described in this section apply to improving the performance of the 
Flex Builder and command-line compilers.



124 Optimizing Flex Applications

Precompiling
MXML compilation is CPU intensive. In most situations, this is not a factor because an 
MXML page is compiled once by the server the first time it is requested. On subsequent 
requests, the MXML page is served from a cache. 

In general, precompile your MXML pages with the mxmlc command-line compiler or the 
built-in Flex Builder compiler, and create your own wrapper to load the SWF files into the 
browser. This option enables you to deploy bytecode, but is somewhat more involved than 
letting Flex build your HTML wrappers for you on the fly. Some features, such as Flash Player 
detection and history management are not generated automatically. You must add the code 
for these features in your application’s wrapper. 

Using incremental compilation
When you use Flex Data Services, you can use incremental compilation to help decrease the 
time it takes to compile with the web-tier compiler. When incremental compilation is 
enabled, the compiler inspects changes to the bytecode between revisions of an application 
and only recompiles the sections of compiled code that changed.

To enable incremental compilation for the web-tier compiler, you set the value of the 
incremental-compile option in the flex-webtier-config.xml file to true. The default value 
is true. The incremental option in the flex-config.xml file has no effect when you use the 
web-tier compiler.

You can use the recompile query string parameter to override the incremental-compile 
option, as the following example shows:
http://www.mydomain.com/MyApp.mxml?recompile=true

This option forces a complete recompile of the application. 

Incremental compilation requires more memory than standard compilation. Therefore, you 
might find it more advantageous to disable incremental compilation when you use the web-
tier compiler in a production environment. The Flex Data Services server generally caches the 
first-compiled SWF file, and returns that file on subsequent requests. Unless your applications 
change frequently, you only benefit from incremental compilation for the first request.

If production mode is enabled, disable incremental compilation. 

For more information on incremental compilation, see “About incremental compilation” 
on page 214.



Improving server-side performance 125

Disabling Express Install and player detection
You can disable the Express Install and player detection features if they are not required. 
Doing so reduces the size of the wrapper and prevents the server from having to transmit 
Express Install and player detection files. This can reduce network overhead.

To disable Express Install, remove the Express Install code from your wrapper. You can do this 
in the wrapper generated by Flex Builder by deselecting the Detect Flash Version and Use 
Express Install options in the Flex Compiler properties dialog box in Flex Builder.

If you are using Flex Data Services, you can disable Express Install and player detection by 
setting the values of the use-player-detection and use-express-install options to 
false in the flex-webtier-config.xml file.

For more information about Express Install, see Chapter 17, “Using Express Install,” on 
page 391.

Disabling history management
You can disable the Flex history management feature if it is not required. Disabling this 
feature prevents the server from transmitting the history management files, such as the 
history.js, history.htm, and history.swf files, which can reduce network overhead.

To disable history management, remove the history management code from your wrapper. 
You can do this in Flex Builder by deselecting the Enable History Management option in the 
Flex Compiler properties dialog box.

If you are using Flex Data Services, you can disable history management by setting the value 
of the use-history-management option to false in the flex-webtier-config.xml file.

For more information about history management, see Chapter 32, “Using the History 
Manager,” in Flex 2 Developer’s Guide.

Tuning JVM heap sizes
Flex Data Services is an application running on a Java application server. Therefore, the 
performance of your Flex applications can be affected by the underlying JVM of the 
application server. The most common way to potentially increase the performance and 
reliability of your JVM is to tune the JVM’s heap size. Configuring the JVM can lead you to 
faster and more efficient compilations. 

In addition, the Flex command-line compilers use the Java JRE. You can improve the 
performance of your command-line compilers by adjusting the JVM’s heap size.



126 Optimizing Flex Applications

The most common JVM configuration is to set the size of the Java heap. The Java heap is the 
amount of memory reserved for the JVM. The actual size of the heap varies as classes are 
loaded and unloaded. If the heap requires more memory than the maximum allocated, 
performance suffers as the JVM performs garbage collection to maintain enough free memory 
for the applications to run. 

For more information, see “Changing the JVM heap size” on page 167.

Caching
The Flex Data Services server returns SWF files based on client requests. The caching 
mechanism used by Flex Data Services reduces delays by storing compiled SWF files in a 
content cache and responding to requests with the cached files when possible. In addition, the 
Flex Data Services server caches resources including components (SWC, MXML, and 
ActionScript files), CSS style sheets, images, RSLs, and ActionScript files included with the 
<mx:Script> tag.

You can configure settings such as the watcher interval and number of files cached. Increasing 
the value of the watcher interval, for example, can result in slightly increased performance 
because the server does not check the cache as often. 

For more information, see “Cache settings” on page 173. You can also configure font caching. 
For more information, see “Caching fonts and glyphs” on page 174. 

In addition to caching fonts, you can also restrict the number of characters in a embedded 
font definition to reduce the overall size of the font definition included in the SWF file. You 
do this by using the language-range compiler option. For more information, see Chapter 
19, “Using Fonts,” in Flex 2 Developer’s Guide.

Using headless servers
A headless server is one that is running on UNIX or Linux and often does not have a monitor, 
keyboard, mouse, or even a graphics card. Headless servers are most commonly encountered 
in ISPs and ISVs, where available space is at a premium and servers are often mounted in 
racks. Enabling headless mode reduces the graphics requirements of the underlying system 
and can make for a more efficient use of memory.

To enable headless mode of the Flex application, define the value of the <headless-server> 
tag in the flex-config.xml file. Setting this property to true is required to support fonts and 
SVG images in a nongraphical environment. The <headless-server> tag is a child tag of 
<compiler>. The following example sets <headless-server> to true:
<headless-server>true</headless-server>



Improving Flex Charting component performance 127

The default value is commented out. 

Setting the value of <headless-server> to true in flex-config.xml sets the system property 
java.awt.headless to true.

Enabling production mode
Production mode disables settings such as warnings, debugging, and caching. You enable 
production mode in the flex-webtier-config.xml file, as the following example shows:
<production-mode>true</production-mode>

The default value of the production-mode option is false.

Improving Flex Charting component 
performance
This section describes some techniques you can use to improve the performance of charting 
controls. Charting controls are included in Flex Charting components. For more information 
about charting controls, see Part 7, “Charting Components,” in Flex 2 Developer’s Guide.

Avoiding filtering series data
When possible, set the filterData property to false. In the transformation from data to 
screen coordinates, the various series types filter the incoming data to remove any missing 
values that are outside the range of the chart; missing values would render incorrectly if drawn 
to the screen. For example, a chart that represents vacation time for each week in 2003 might 
not have a value for the July fourth weekend because the company was closed. If you know 
your data model will not have any missing values at run time, or values that fall outside the 
chart’s data range, you can instruct a series to explicitly skip the filtering step by setting its 
filterData property to false.

Coding the LinearAxis object
If possible, do not let a LinearAxis object autocalculate its range. A LinearAxis control 
calculating its numeric range can be a resource-intensive calculation. If you know reasonable 
minimum and maximum values for the range of your LinearAxis, specify them to help your 
charts render quicker. 



128 Optimizing Flex Applications

In addition to specifying the range for a LinearAxis, specify an interval (the numeric distance 
between label values along the axis) value. Otherwise, the chart control must calculate this 
value.

Coding the CategoryAxis object
Modifying a CategoryAxis object’s data provider is more resource intensive than modifying a 
Series object’s data provider. If the data bound to your chart is going to change, but the 
categories in your chart will stay static, have the CategoryAxis’ data provider and Series’ data 
provider refer to different objects. This prevents the CategoryAxis from reevaluating its data 
provider, which is a resource-intensive computation. 

Styling AxisRenderer objects
Improve the rendering time of your AxisRenderers objects by setting particular styles. The 
AxisRenderers perform many calculations to ensure that they render correctly in all situations. 
The more help you can give them in restricting their options, the faster they render. Setting 
the labelRotation and canStagger styles on the AxisRenderer improve performance. You 
can set these styles within the tag or in CSS.

Specifying gutter styles
Specify gutter styles when possible. The gutter area of a Cartesian chart is the area between the 
margins and the actual axis lines. With default values, the chart adjusts the gutter values to 
accommodate axis decorations. Calculating these gutter values can be resource intensive. By 
explicitly setting the values of the gutterLeft, gutterRight, gutterTop, and 
gutterBottom style properties, your charts draw quicker and more efficiently. 

Using drop shadows
To improve performance, do not use drop-shadows on your series items unless they are 
necessary. You can selectively add shadows to individual chart series by using renderers such as 
the ShadowBoxItemRenderer and ShadowLineRenderer classes.



Improving Flex Charting component performance 129

Shadows are implemented as filters in charting controls. As a result, you must remove these 
shadows by setting the chart control’s seriesFilters property to an empty Array. The 
following example removes the shadows from all series, but then changes the renderer for the 
third series to be a shadow renderer:
<?xml version="1.0"?>
<!-- optimize/RemoveShadowsColumnChart.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
        import mx.collections.ArrayCollection;
        [Bindable]
        public var expenses:ArrayCollection = new ArrayCollection([
            {Month: "Jan", Income: 2000, Expenses: 1500, Profit: 500}, 
            {Month: "Feb", Income: 1000, Expenses: 200, Profit: 800},
            {Month: "Mar", Income: 1500, Expenses: 500, Profit: 1000}
        ]);
    ]]></mx:Script>
    <mx:Panel title="Column Chart">
        <mx:ColumnChart id="myChart" dataProvider="{expenses}">
            <mx:seriesFilters>
                <mx:Array/>
            </mx:seriesFilters>
            <mx:horizontalAxis>
                <mx:CategoryAxis dataProvider="{expenses}" 
categoryField="Month"/>
            </mx:horizontalAxis>
            <mx:series>
                <mx:ColumnSeries xField="Month" yField="Income" 
displayName="Income"/>
                <mx:ColumnSeries xField="Month" yField="Expenses" 
displayName="Expenses"/>
                <mx:ColumnSeries xField="Month" yField="Profit" 
displayName="Profit" 
itemRenderer="mx.charts.renderers.ShadowBoxItemRenderer"/>
            </mx:series>
        </mx:ColumnChart>
        <mx:Legend dataProvider="{myChart}"/>
    </mx:Panel>
</mx:Application>



130 Optimizing Flex Applications



131

6
CHAPTER 6

Improving Startup 
Performance

Adobe Flex helps you improve the actual and perceived startup times of your applications. 
You can do this by deferring the creation of certain controls until a later time, or customize 
the order in which containers are created and displayed in your applications. This topic 
describes these techniques, which can improve the startup performance of your Flex 
applications.

Contents
About startup performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

About startup order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Using deferred creation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Creating deferred components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Using ordered creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Using the callLater() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

About startup performance
You could increase the startup time and decrease performance of your applications if you 
create too many objects or put too many objects into a single view. To improve startup time, 
minimize the number of objects that are created when the application is first loaded. If a user-
interface component is not initially visible at startup, avoid creating that component until you 
need it. This is called deferred creation. Containers that have multiple views, such as an 
Accordion container, provide built-in support for this behavior. You can use ActionScript to 
customize the creation order of multiple-view containers or defer the creation of other 
containers and controls.



132 Improving Startup Performance

After you improve the actual startup time of your application as much as possible, you can 
improve perceived startup time by ordering the creation of containers in the initial view. The 
default behavior of Flex is to create all containers and their children in the initial view, and 
then display everything at one time. The user will not be able to interact with the application 
or see meaningful data until all the containers and their children are created. In some cases, 
you can improve the user’s initial experience by displaying the components in one container 
before creating the components in the next container. This process is called ordered creation.

The remaining sections of this topic describe how to use deferred creation to reduce overall 
application startup time and ordered creation to make the initial startup time appear as short 
as possible to the user. But before you can fully understand ordered creation and deferred 
creation, you must also understand the differences between single-view and multiple-view 
containers, the order of events in a component’s startup life cycle, and how to manually 
instantiate controls from their child descriptors.

About startup order
All Flex components trigger a number of events during their startup procedure. These events 
indicate when the component is first created, plotted internally, and drawn on the screen. The 
events also indicate when the component is finished being created and, in the case of 
containers, when its children are created.

Components are instantiated, added or linked to a parent, and then sized and laid out inside 
their container. The component creation order is as follows:

The following example shows the major events that are dispatched during a component’s 
creation life cycle:

preinitialize

initialize

creationComplete

updateComplete



About startup order 133

The creation order is different for containers and components because containers can be the 
parent of other components or containers. Components within the containers must also go 
through the creation order. If a container is the parent of another container, the inner 
container’s children must also go through the creation order. 

The following example shows the major events that are dispatched during a container’s 
creation life cycle:

After all components are created and drawn, the Application object dispatches an 
applicationComplete event. This is the last event dispatched during an application startup.

The creation order of multiview containers (navigators) is different from standard containers. 
By default, all top-level views of the navigator are instantiated. However, Flex creates only the 
children of the initially visible view. When the user navigates to the other views of the 
navigator, Flex creates those views’ children. For more information on the deferred creation of 
children of multiview containers, see “Using deferred creation” on page 134.

For a detailed description of the component creation life cycle, see Chapter 10, “Creating 
Advanced Visual Components in ActionScript,” in Creating and Extending Flex 2 Components.

initialize

creationComplete

updateComplete

preinitialize

preinitialize

initialize

childAdd

creationComplete

updateComplete

Container Component



134 Improving Startup Performance

Using deferred creation
By default, containers create only the controls that initially appear to the user. Flex creates the 
container’s other descendants if the user navigates to them. Containers with a single view, 
such as Box, Form, and Grid containers, create all of their descendants during the container’s 
instantiation because these containers display all of their descendants immediately.

Containers with multiple views, called navigator containers, only create and display the 
descendants that are visible at any given time. These containers are the ViewStack, Accordion, 
and TabNavigator containers.

When navigator containers are created, they do not immediately create all of their 
descendants, but only those descendants that are initially visible. Flex defers the creation of 
descendants that are not initially visible until the user navigates to a view that contains them.

The result of this deferred creation is that an MXML application with navigator containers 
loads more quickly, but the user experiences brief pauses when he or she moves from one view 
to another when interacting with the application.

You can instruct each container to create their children or defer the creation of their children 
at application startup by using the container’s creationPolicy property. This can improve 
the user experience after the application loads. For more information, see “About the 
creationPolicy property” on page 134.

You can also create individual components whose instantiation is deferred by using the 
createComponentsFromDescriptors() method. For more information, see “Creating 
deferred components” on page 138.

About the creationPolicy property
To defer the creation of any component, container, or child of a container, you use the 
creationPolicy property. Every container has a creationPolicy property that determines 
how the container decides whether to create its descendants when the container is created. 
You can change the policy of a container using MXML or ActionScript.

The valid values for the creationPolicy property are auto, all, none, and queued. The 
meaning of these settings depends on whether the container is a navigator container 
(multiple-view container) or a single-view container. For information on the meaning of these 
values see “Single-view containers” on page 135 and “Multiple-view containers” on page 136.



Using deferred creation 135

The creationPolicy property is not inheritable. This means that if you set the value of the 
creationPolicy property to none on an outer container, all containers within that container 
have the default value of the creationPolicy property, unless otherwise set. They do not 
inherit the value of none for their creationPolicy. Also, if you have two containers at the 
same level (of the same type) and you set the creationPolicy of one of them, the other 
container has the default value of the creationPolicy property unless you explicitly set it. 

Single-view containers
Single-view containers by default create all their children when the application first starts. You 
can use the creationPolicy property to change this behavior. The following table describes 
the values of the creationPolicy property when you use it with single-view containers:

The following example sets the value of a VBox container’s creationPolicy property to 
auto, the default value:
<?xml version="1.0"?>
<!-- layoutperformance/AutoCreationPolicy.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:VBox id="myVBox" creationPolicy="auto">
        <mx:Button id="b1" label="Get Weather"/>
    </mx:VBox>
</mx:Application>

Value Description

all, auto Creates all controls inside the single-view container. The default value is auto, 
but all results in the same behavior.

none Instructs Flex to not instantiate any component within the container until you 
manually instantiate the controls.
When the value of the creationPolicy property is none, explicitly set a width 
and height for that container. Normally, Flex scales the container to fit the 
children that are inside it, but because no children are created, proper scaling 
is not possible. If you do not explicitly resize the container, it grows to 
accommodate the children when they are created.
To manually instantiate controls, you use the 
createComponentsFromDescriptors() method. For more information, see 
“Creating deferred components” on page 138.

queued Has no effect on deferred creation. For more information on using the queued 
value of the creationPolicy property, see “Using ordered creation” 
on page 143.



136 Improving Startup Performance

The default behavior of all single-view containers is that they and their children are entirely 
instantiated when the application starts. If you set the creationPolicy property to none, 
however, you can selectively instantiate controls within the containers by using the techniques 
described in “Creating deferred components” on page 138.

Multiple-view containers
Containers with multiple views, such as the ViewStack and Accordion, do not immediately 
create all of their descendants, but only those descendants that are visible in the initial view. 
Flex defers the instantiation of descendants that are not initially visible until the user navigates 
to a view that contains them. The following containers have multiple views and, so, are 
defined as navigator containers:

■ ViewStack
■ TabNavigator
■ Accordion 

When you instantiate a navigator container, Flex creates all of the top-level children. For 
example, creating an Accordion container triggers the creation of each of its views, but not the 
controls within those views. The creationPolicy property determines the creation of the 
child controls inside each view.

When you set the creationPolicy property to auto (the default value), navigator containers 
instantiate only the controls and their children that appear in the initial view. The first view of 
the Accordion container is the initial pane, as the following example shows:



Using deferred creation 137

When the user navigates to another panel in the Accordion container, the navigator container 
creates the next set of controls, and recursively creates the new view’s controls and their 
descendants. You can use the Accordion container’s creationPolicy property to modify this 
behavior. The following table describes the values of the creationPolicy property when you 
use it with navigator containers:

Value Description

all Creates all controls in all views of the navigator container. This setting causes a 
delay in application startup time, but results in quicker response time for user 
navigation.

auto Creates all controls only in the initial view of the navigator container. This setting 
causes a faster startup time for the application, but results in slower response 
time for user navigation. 
This setting is the default for multiple-view containers.

none Instructs Flex to not instantiate any component within the navigator container or 
any of the navigator container’s panels until you manually instantiate the 
controls.
To manually instantiate controls, you use the 
createComponentsFromDescriptors() method. For more information, see 
“Creating deferred components” on page 138.

queued This property has no effect on deferred creation. For more information on using 
the queued value of the creationPolicy property, see “Using ordered creation” 
on page 143.



138 Improving Startup Performance

The following example sets the creationPolicy property of an Accordion container to all, 
which instructs the container to instantiate all controls for every panel in the navigator 
container when the application starts:
<?xml version="1.0"?>
<!-- layoutperformance/AllCreationPolicy.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Panel title="Accordion">
        <mx:Accordion id="myAccordion" creationPolicy="all">
            <mx:VBox label="Accordion Button for Panel 1">
                <mx:Label text="Accordion container panel 1"/>
                <mx:Button label="Click Me"/>
            </mx:VBox>
            <mx:VBox label="Accordion Button for Panel 2">
                <mx:Label text="Accordion container panel 2"/>
                <mx:Button label="Click Me"/>
            </mx:VBox>
            <mx:VBox label="Accordion Button for Panel 3">
                <mx:Label text="Accordion container panel 3"/>
                <mx:Button label="Click Me"/>
            </mx:VBox>
        </mx:Accordion>
    </mx:Panel>
</mx:Application>

Creating deferred components
When you set a container’s creationPolicy property to none, components declared as 
MXML tags inside that container are not created. Instead, objects that describe those 
components are added to an Array. These objects are called descriptors. You can use the 
createComponentsFromDescriptors() method to manually instantiate those components. 
This method is defined on the Container base class.



Creating deferred components 139

Using the createComponentsFromDescriptors() 
method
You use the createComponentsFromDescriptors() method of a container to create all the 
children of a container at one time.

The createComponentsFromDescriptors() method has the following signature:
container.createComponentsFromDescriptors(recurse:Boolean):Boolean

The recurse argument determines whether Flex should recursively instantiate children of the 
components. Set the parameter to true to instantiate children of the components, or false 
to not instantiate the children. The default value is false.

On a single-view container, calling the createComponentsFromDescriptors() method 
instantiates all controls in that container, regardless of the value of the creationPolicy 
property. 

In navigator containers, if you set the creationPolicy property to all, you do not have to 
call the createComponentsFromDescriptors() method, because the container creates all 
controls in all views of the container. If you set the creationPolicy property to none or 
auto, calling the createComponentsFromDescriptors() method creates only the current 
view’s controls and their descendents.

Another common usage is to set the navigator container’s creationPolicy property to auto. 
You can then call navigator.getChildAt(n).createComponentsFromDescriptors() to 
explicitly create the children of the n-th view.



140 Improving Startup Performance

The following example does not instantiate any of the buttons in the HBox container when 
the application starts up, but does when the user changes the value of the creationPolicy 
property. The user initiates this change by selecting all from the drop-down list.
<?xml version="1.0"?>
<!-- layoutPerformance/ChangePolicy.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="appInit()">
    <mx:Script><![CDATA[
        [Bindable]
        public var p:String;
    
        private function appInit():void {
            p = policy.selectedItem.toString();
        }

        private function changePolicy():void {
            var polType:String = policy.value.toString();
            hb.creationPolicy = polType;    
            if (polType == "none") {
                // do nothing
            } else if (polType == "all") {
                hb.createComponentsFromDescriptors();
            }
        }
    ]]></mx:Script>
    <mx:ComboBox id="policy" 
close="p=String(policy.selectedItem);changePolicy();">
        <mx:dataProvider>
            <mx:Array>
                <mx:String>none</mx:String>
                <mx:String>all</mx:String>
            </mx:Array>
        </mx:dataProvider>
    </mx:ComboBox>

    <mx:Panel title="Creation Policy" id="hb" creationPolicy="none">
        <mx:Button label="1" width="50" y="0" x="0"/>
        <mx:Button label="2" width="50" y="0" x="75"/>
        <mx:Button label="3" width="50" y="0" x="150"/>
    </mx:Panel>
    
    <mx:Label text="{p}"/>
    
</mx:Application>



Creating deferred components 141

Using the childDescriptors property
When a Flex application starts, Flex creates an object of type Object that describes each 
MXML component. These objects contain information about the component’s name, type, 
and properties set in the object’s MXML tag. Flex adds these objects to an Array that each 
container maintains. For example, applications with two Canvas containers have an Array 
with objects that describe the Canvas containers. Those containers, in turn, have an Array 
with objects that describe their children.

Each object in the Array is an object of type ComponentDescriptor. You can access this Array 
by using a container’s childDescriptors property, and use a zero-indexed value to identify 
the descriptor. All containers have a childDescriptors property.

Depending on the value of the creationPolicy property, Flex immediately begins 
instantiating controls inside the containers or it defers their instantiation. If instantiation is 
deferred, you can use the properties of this Array to access the ComponentDescriptor of each 
component and create that object at a specified time.



142 Improving Startup Performance

The childDescriptors property points to an Array of objects, so you can use Array 
functions, such as length, to iterate over the children, as the following example shows:
<?xml version="1.0"?>
<!-- layoutperformance/AccessChildDescriptors.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
        import mx.core.ComponentDescriptor;
        import flash.utils.*;
        
        public function iterateOverChildren():void {
            // Get the number of descriptors.
            var n:int = tile.childDescriptors.length;
            for (var i:int = 0; i < n; i++) {
                var c:ComponentDescriptor = tile.childDescriptors[i];
                var d:Object = c.properties;
                
                // Trace ids and types of objects in the Array.
                trace(c.id + " is of type " + c.type);
                
                // Trace the properties added in the MXML tag of the object.
                for (var p:String in d) {
                    trace("Property: " + p + " : " + d[p]);
                }
            }
        }
        
    ]]></mx:Script>

    <mx:Tile id="tile" creationComplete="iterateOverChildren();">
        <mx:TextInput id="myInput" text="Enter text here"/>
        <mx:Button id="myButton" label="OK" width="150"/>
    </mx:Tile>
    
</mx:Application>

Properties of the ComponentDescriptor include id, type, and properties. The properties 
property points to an object that contains the properties that were explicitly added in the 
MXML tag. This object does not store properties such as styles and events.

Destroying components
After you create a component, it continues to exist until the user quits the application or you 
detach it from its parent and the garbage collector destroys it. 



Using ordered creation 143

To detach a component from its parent container, you can use the removeChild() or 
removeChildAt() methods. You can also use the removeAllChildren() method to remove 
all child controls from a container. Calling these methods does not immediately delete the 
objects from memory. If you do not have any other references to the child, Flash Player 
garbage collectsw it at some future point. But if you have stored a reference to that child on 
some other object, the child is not removed from memory.

For more information on using these methods, see the View class in the Adobe Flex 2 
Language Reference.

Using ordered creation
By default, Flex displays the Loading progress bar while it initializes an application. Only after 
all of the components in the application are initialized and laid out does Flex display any 
portion of the application. Using ordered creation, you can customize this experience and 
change the user’s perception of how quickly the application starts.

During initialization, Flex first creates all the containers, and then fills in each container with 
its children and data. Finally, Flex displays the application in its entirety. This causes the user 
to wait for the entire application to load before beginning to interact with it. 

However, you can instruct Flex to display the children of each container as its children are 
created rather than waiting for the entire application to finish loading. You do this using a 
technique called ordered creation.

The following example shows a complex application that contains a single container at the 
top, and four containers across the bottom. This application implements ordered creation so 
that the contents of each container become visible before the entire application is finished 
loading. 

In this example, the image on the left shows the application after the first container is 
populated with its children and data, but before the remaining four containers are populated. 
The image on the right shows the final state of the application.



144 Improving Startup Performance

If this application did not use ordered creation, Flex would not display anything until all 
components in all five of the containers were created, resulting in a longer perceived start-up 
time.

To gradually display children of each container, you add them to an instantiation queue. The 
“Adding containers to the queue” on page 144 section describes how to add containers to the 
queue so that you can improve perceived layout performance of your Flex applications.

Adding containers to the queue
You can add any number of containers to the instantiation queue so that their contents are 
displayed in queue order. To add a container to the instantiation queue, you set the value of 
the container’s creationPolicy property to queued. Unless you specify a queue order, 
containers are instantiated and displayed in the order in which they appear in the application 
source code.

In the following example, the Panel containers and their child controls are added to the 
instantiation queue. To the user, each Panel container appears one at a time during the 
application startup. The perceived startup time of the application is greatly reduced. The 
panels are created in the order that they appear in the source code (panel1, panel2, panel3):
<?xml version="1.0"?>
<!-- layoutperformance/QueuedCreationPolicy.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Panel id="panel1" creationPolicy="queued" width="100%" 
height="33%">
        <mx:Button id="button1a"/>
        <mx:Button id="button1b"/>
    </mx:Panel>

    <mx:Panel id="panel2" creationPolicy="queued" width="100%" 
height="33%">
        <mx:Button id="button2a"/>
        <mx:Button id="button2b"/>
    </mx:Panel>

    <mx:Panel id="panel3" creationPolicy="queued" width="100%" 
height="33%">
        <mx:Button id="button3a"/>
        <mx:Button id="button3b"/>
    </mx:Panel>
</mx:Application>

Flex first creates all the panels. Flex then instantiates and displays all the children in the first 
panel in the queue before moving on to instantiate the children in the next panel in the 
queue.



Using ordered creation 145

To specify an order for the containers in the instantiation queue, you use the creationIndex 
property. For more information on using the creationIndex property, see “Setting queue 
order” on page 145.

Setting queue order
When you use ordered creation, the order in which containers appear in the instantiation 
queue determines in what order Flex displays the container and its children on the screen.

You can set the order in which containers are queued by using the container’s creationIndex 
property, in conjunction with setting the creationPolicy property to queued. Flex creates 
the containers in their creationIndex order until all containers in the initial view are created. 
Flex then revisits each container and creates its children in the same order. After creating all 
the children in a container that is in the queue, Flex displays that container before starting to 
create the children in the next container.

All containers support a creationIndex property.

If you set a creationIndex property on a container, but do not set the creationPolicy 
property to queued, Flex ignores the creationIndex property and uses auto, the default 
value, for the creationPolicy property. 



146 Improving Startup Performance

The following example sets the creationIndex property so that the contents of the panel3 
container are shown first, then the contents of panel2, and finally the contents of panel1:
<?xml version="1.0"?>
<!-- layoutperformance/QueueOrder.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
        private function logCreationOrder(e:Event):void {
            trace(e.currentTarget.id + " created");
        }
    ]]></mx:Script>

    <mx:Fade id="SlowFade" duration="4000"/>

    <mx:Panel id="panel1" title="Panel 1 (index:2)" creationPolicy="queued" 
creationIndex="2"  creationComplete="logCreationOrder(event)" 
creationCompleteEffect="{SlowFade}">
        <mx:Button id="button1a" creationComplete="logCreationOrder(event)"/
>
        <mx:Button id="button1b" creationComplete="logCreationOrder(event)"/
>
    </mx:Panel>

    <mx:Panel id="panel2" title="Panel 2 (index:1)" creationPolicy="queued" 
creationIndex="1"  creationComplete="logCreationOrder(event)" 
creationCompleteEffect="{SlowFade}">
        <mx:Button id="button2a" creationComplete="logCreationOrder(event)"/
>
        <mx:Button id="button2b" creationComplete="logCreationOrder(event)"/
>
    </mx:Panel>

    <mx:Panel id="panel3" title="Panel 3 (index:0)" creationPolicy="queued" 
creationIndex="0" creationComplete="logCreationOrder(event)" 
creationCompleteEffect="{SlowFade}">
        <mx:Button id="button3a" creationComplete="logCreationOrder(event)"/
>
        <mx:Button id="button3b" creationComplete="logCreationOrder(event)"/
>
    </mx:Panel>
</mx:Application>

This example uses the inherited creationCompleteEffect effect to play an effect just as the 
container finishes creation. The result is that the panels fade in slow enough that you can see 
the order of creation. After a container is initialized and displayed, Flex waits for all effects to 
finish playing before initializing the next container.



Using ordered creation 147

If you set the same value of the creationIndex property for two queued containers, Flex 
creates and displays their contents in the order in which they are defined in the application’s 
source code. The value of the creationIndex property can be any valid Number, including 0 
and negative values.

Dynamically adding containers to the queue
You can dynamically add containers to the instantiation queue by using the Application class’s 
addToCreationQueue() method. The addToCreationQueue() method has the following 
signature:
function addToCreationQueue(id:Object, preferredIndex:int, 

callbackFunction:Function, parent:IFlexDisplayObject):void

The following table describes the addToCreationQueue() method’s arguments:

Only use the addToCreationQueue() method to add containers to the queue whose 
creationPolicy property is set to none. Containers whose creationPolicy property is set 
to auto or all will probably created their children during the application initialization. 
Containers whose creationPolicy property is set to queued are already in the queue. 

After it is added to the queue, the container that is to be created with the 
addToCreationQueue() method then competes with containers whose creationPolicy is 
set to queued, depending on their position in the queue. Flex creates containers whose 
preferredIndex property is lowest.

Argument Description

id Specifies the name of the container that you want to add to the queue.

preferredIndex (Optional) Specifies the container’s position in the queue. By default, Flex 
places the container at the end of the queue, but this value lets you 
explicitly choose the queue order for the container.p

callbackFunction This parameter is currently ignored.

parent This paremeter is currently ignored.



148 Improving Startup Performance

The following example uses the addToCreationQueue() method to create the children of the 
HBox containers when the user clicks the Create Later button. The calls to the 
addToCreationQueue() method specify a preferredIndex for each box, which causes the 
boxes and their children to be created in a different order from the order in which they are 
defined in the application’s source code (in this example, box1, box3, box2, and then box4).
<?xml version="1.0"?>
<!-- layoutPerformance/AddToCreationQueueExample.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
        public function doCreate():void {
             addToCreationQueue('box1', 0);
             addToCreationQueue('box2', 2);
             addToCreationQueue('box3', 1);
             addToCreationQueue('box4', 3);
        }
    ]]></mx:Script>

    <mx:HBox backgroundColor="#CCCCFF" horizontalAlign="center">
        <mx:Label text="addToCreationQueue()" fontWeight="bold"/>
    </mx:HBox>

    <mx:Form>
        <mx:FormItem label="first:">
            <mx:HBox id="box1" creationPolicy="none" width="200" height="50" 
                    borderStyle="solid" backgroundColor="#CCCCFF">
                <mx:Button label="Button 1"/>
                <mx:Button label="Button 2"/>
            </mx:HBox>
        </mx:FormItem>
        <mx:FormItem label="fourth:">
            <mx:HBox id="box2" creationPolicy="none" width="200" height="50"
                    borderStyle="solid" backgroundColor="#CCCCFF">
                <mx:Button label="Button 3"/>
                <mx:Button label="Button 4"/>
            </mx:HBox>
        </mx:FormItem>
        <mx:FormItem label="second:">
            <mx:HBox id="box3" creationPolicy="none" width="200" height="50"
                    borderStyle="solid" backgroundColor="#CCCCFF">
                <mx:Button label="Button 5"/>
                <mx:Button label="Button 6"/>
            </mx:HBox>
        </mx:FormItem>
        <mx:FormItem label="third:">
            <mx:HBox id="box4" creationPolicy="none" width="200" height="50"
                    borderStyle="solid" backgroundColor="#CCCCFF">
                <mx:Button label="Button 7"/>
                <mx:Button label="Button 8"/>



Using ordered creation 149

            </mx:HBox>
        </mx:FormItem>
    </mx:Form>
    <mx:Button label="Create Later" click="doCreate();"/>
</mx:Application>

In some cases, the addToCreationQueue() method does not act as you might expect. The 
reason is that if the instantiation queue is empty, the first container to be put in that queue 
triggers the creation process of its children. Other containers might subsequently be added to 
the queue, but the instantiation of the first container added has already been triggered, 
regardless of the value of its preferredIndex property. The result is that an item might not 
have the lowest preferredIndex value, but because no other containers are in the queue, Flex 
begins creating that container. Flex cannot stop instantiating the first container once it starts.

In the following example, although the redBox container has the highest preferredIndex, 
Flex creates its children first because the queue was empty when Flex encountered this line in 
the code. By the time redBox is complete, the other containers will be in the queue, and Flex 
proceeds with the next lowest item in the queue; in this case, the whiteBox container, followed 
by blueBox and, finally, greenBox.
function doCreate():void {

 addToCreationQueue('redBox', 4);
 addToCreationQueue('blueBox', 2);
 addToCreationQueue('whiteBox', 1);
 addToCreationQueue('greenBox', 3);

}

Combining containers with different creationPolicy 
settings
You can mix containers with different creationPolicy settings and change the order in 
which they are created and their children are displayed. Flex creates outer containers before 
inner containers, regardless of their creationIndex. This is because Flex does not create the 
children of a queued container until all containers at that level are created.

Setting a container’s creationPolicy property does not override the policies of the 
containers within that container. For example, if you queue an outer container, but set the 
inner container’s creationPolicy to none, Flex creates the inner container, but not any child 
controls of that inner container.



150 Improving Startup Performance

In the following example, the button1 control is never created because its container specifies a 
creationPolicy of none, even though the outer container sets the creationPolicy 
property to all:
<?xml version="1.0"?>
<!-- layoutperformance/TwoCreationPolicies.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:HBox label="HBox1" creationPolicy="all" creationIndex="0">
        <mx:HBox label="HBox1" creationPolicy="none">
            <mx:Button id="button1" label="Click Me"/>
        </mx:HBox>
    </mx:HBox>
</mx:Application>

Using the callLater() method
The callLater() method queues an operation to be performed for the next screen refresh, 
rather than in the current update. Without the callLater() method, you might try to access 
a property of a component that is not yet available. The callLater() method is most 
commonly used with the creationComplete event to ensure that a component has finished 
being created before Flex proceeds with a specified method call on that component.

All objects that inherit from the UIComponent class can open the callLater() method. It 
has the following signature:
callLater(method:Function, args:Array):void

The method argument is the function to call on the object. The args argument is an optional 
Array of arguments that you can pass to that function.

The following example defers the invokation of the doSomething() method, but when it is 
opened, Flex passes the Event object and the “Product Description” String in an Array to that 
function:
callLater("doSomething", [event, "Product Description"]);
...
function doSomething(event:Event, title:String):void {

...
}

The following example uses a call to the callLater() method to ensure that new data is 
added to a DataGrid before Flex tries to put focus on the new row. Without the callLater() 
method, Flex might try to focus on a cell that does not exist and throw an error:
<?xml version="1.0"?>
<!-- layoutperformance/CallLaterAddItem.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
initialize="initData()">
    <mx:Script><![CDATA[



Using the callLater() method 151

        import mx.collections.*;
        private var DGArray:Array = [
            {Artist:'Pavement', Album:'Slanted and Enchanted', Price:11.99},
            {Artist:'Pavement', Album:'Brighten the Corners', Price:11.99}];
            
        [Bindable]
        public var initDG:ArrayCollection;
        //Initialize initDG ArrayCollection variable from the Array.
        public function initData():void {
            initDG=new ArrayCollection(DGArray);
        }
        
        public function addNewItem():void {
            var o:Object;
            o = {Artist:'Pavement', Album:'Nipped and Tucked', Price:11.99};
            initDG.addItem(o);
            callLater(focusNewRow);
        }

        public function focusNewRow():void {
            myGrid.editedItemPosition = { 
                columnIndex:0,rowIndex:myGrid.dataProvider.length-1
            };
        }
        
    ]]></mx:Script>

    <mx:DataGrid id="myGrid" width="350" height="200" 
dataProvider="{initDG}"  editable="true">
        <mx:columns>
            <mx:Array>
                <mx:DataGridColumn dataField="Album" />
                <mx:DataGridColumn dataField="Price" />
            </mx:Array>
        </mx:columns> 
    </mx:DataGrid>
    
    <mx:Button id="b1" label="Add New Item" click="addNewItem()"/>

</mx:Application>

Another use of the callLater() method is to create a recursive method. Because the function 
is called only after the next screen refresh (or frame), the callLater() method can be used to 
create animations or scroll text with methods that reference themselves. 



152 Improving Startup Performance

The following example scrolls ticker symbols across the screen and lets users adjust the speed 
with an HSlider control:
<?xml version="1.0"?>
<!-- layoutperformance/CallLaterTicker.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
    [Bindable]
    public var text:String = 
"SLAR:95.5....TIBA:42....RTF:34.15....AST:23.42";
    [Bindable]
    public var speed:Number = 5;

    public function initTicker():void {
        theText.move( this.width+10, 0 ); // Start the text on the right 
side.
        callLater(moveText);
    }

    public function moveText():void {
        var xpos:Number = theText.x;
        if( xpos-speed+theText.width < 0 ) {
            xpos = this.width+10; // Start the text on the right side.
        }
        xpos -= speed;
        theText.move(xpos,0);
        callLater(moveText);
    }

    public function changeSpeed():void {
        speed = speedSelector.value;
    }
    ]]></mx:Script>

    <mx:Panel title="Ticker Sample" width="400" height="200">
        <mx:Canvas creationComplete="initTicker()"
                horizontalScrollPolicy="off" backgroundColor="red" 
color="white"
                width="100%">
            <mx:Label id="theText" text="{text}" y="0"/>
        </mx:Canvas>
        <mx:HBox>
            <mx:Label text="Speed:"/>
            <mx:HSlider minimum="1" maximum="10" value="{speed}"
                id="speedSelector" snapInterval="1" tickInterval="1"
                change="changeSpeed()"/>
        </mx:HBox>
    </mx:Panel>
</mx:Application>



153

7
CHAPTER 7

Building Overview

This topic introduces the tools available in a typical Adobe Flex development environment. It 
also describes the asset types that you work with to create Flex applications.

Contents
About the Flex development tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

About application files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

About the Flex development tools
This section introduces several aspects of the typical Flex development environment.

Configuration files
Be familiar with the ways to configure your development environment. Adobe Flex Software 
Development Kit (SDK) and Adobe Flex Data Services primarily provide XML files that you 
use to configure the settings.

The flex-config.xml file defines the default compiler options for the compilers. The flex-
webtier-config.xml defines the configuration settings for the server running Flex Data 
Services.

In addition to server and compiler configuration settings, you can also modify the messaging 
and data management settings, the JVM heap size, Adobe Flash Player settings, and logging 
and caching settings.

For more information about configuring your Flex 2 SDK and Flex Data Services 
environment, see Chapter 8, “Flex 2 SDK and Flex Data Services Configuration,” on 
page 161.



154 Building Overview

Compilers
Flex includes application compilers and component compilers. You use the application 
compilers to compile SWF files from MXML and other source files. You use the component 
compilers to compile SWC files from component files. You can then use SWC files as 
dynamic or static libraries with your Flex applications.

The application compilers take the following forms:

■ Flex Builder project compiler. The Flex Builder application compiler is opened by Flex 
Builder for Flex Projects and ActionScript Projects.

■ mxmlc command-line compiler. You open the mxlmc compiler from the command line to 
create a SWF file that you then deploy to a website.

■ Web-tier compiler. The web-tier compiler is a set of servlets that run in a J2EE application 
server such as JRun. The application server passes requests for *.mxml files to the servlet 
container, which then compiles a SWF file and return the results to the client. In a 
production environment, you generally precompile Flex applications so that they are not 
compiled at request time. 

The component compilers take the following forms:

■ Flex Builder library project compiler. The Flex Builder component compiler is openedd 
by Flex Builder for Flex library projects.

■ compc command-line compiler. You open the compc compiler from the command line to 
create SWC files. You can use these SWC files as static component libraries, themes, or 
runtime shared libraries (RSLs).

For information on using the compilers, see Chapter 9, “Using the Flex Compilers,” on 
page 179.

Debugger
To test your applications, you run the application SWF files in a web browser or the stand-
alone Flash Player. If you encounter errors in your applications, you can use the debugging 
tools to set and manage breakpoints in your code; control application execution by 
suspending, resuming, and terminating the application; step into and over the code 
statements; select critical variables to watch; evaluate watch expressions while the application 
is running; and so on.



About the Flex development tools 155

Flex provides the following debugging tools:

Flex Builder debugger The Flex Builder Debugging perspective provides all of the 
debugging tools you expect from a robust, full-featured development tool. You can set and 
manage breakpoints; control application execution by suspending, resuming, and terminating 
the application; step into and over the code; watch variables; evaluate expressions; and so on. 
For more information, see Using Flex Builder 2.

The fdb command-line debugger  The fdb command-line debugger provides a command-
line interface to the debugging experience. With fdb, you can step into code, add breakpoints, 
check variables, and perform many of the same tasks you can with the Flex Builder visual 
debugger. For more information, see Chapter 12, “Using the Command-Line Debugger,” on 
page 269.

Loggers
You can log messages at several different points in a Flex application’s life cycle. You can log 
messages when you compile the application, when you deploy it to a web application server, 
or when a client runs it. You can log messages on the server or on the client. These messages 
are useful for informational, diagnostic, and debugging activities. This section describes the 
various logging mechanisms that you can use when working with Flex applications.

Flex includes the following logging mechanisms:

Client-side logging When you use the debugger version of Flash Player, you can use the 
trace() global method to write out messages or configure a TraceTarget to customize log 
levels of applications for data services-based applications. For more information, see “Client-
side logging and debugging” on page 251. 

Compiler logging  When compiling your Flex applications from the command line and in 
Flex Builder, you can view deprecation and warning messages, and sources of fatal errors. For 
more information, see “Compiler logging” on page 264.

Web-tier logging The Flex web application provides some control over logging messages 
for the FlexMxmlServlet and lets you write the web-tier compiler log messages to your 
application server’s logs. For more information, see “Web-tier logging” on page 265.

Server-side data services logging You can perform server-side logging for data service 
messages. You configure server-side logging in the logging section of the Flex services 
configuration file. By default, the output is sent to the System.out file, but you can also 
configure the logging to use your application server’s logging mechanism. For more 
information, see Chapter 43, “Configuring Data Services,” in the Flex 2 Developer’s Guide.



156 Building Overview

About application files
Flex applications can use many types of application files such as classes, component libraries, 
theme files, and runtime shared libraries (RSLs). This section describes the types of files you 
can use in your Flex applications.

Component classes
You can use any number of component classes in your Flex applications. These classes can be 
MXML or ActionScript files. You can use classes to extend existing components or define new 
ones. 

Component classes can take the form of MXML, ActionScript files, or as SWC files. In 
MXML or ActionScript files, the components are not compiled but reside in a directory 
structure that is part of your compiler’s source path. SWC files are described in “SWC files” 
on page 156.

Component libraries are not dynamically linked unless they are used in a Runtime Shared 
Library (RSL). Component classes are statically linked at compile time, which means that 
they must be in the compiler’s source path. For information about creating and using custom 
component classes, see Creating and Extending Flex 2 Components.

SWC files
A SWC file is an archive file for Flex components and other assets. SWC files contain a SWF 
file and a catalog.xml file. The SWF file inside the SWC file implements the compiled 
component or group of components and includes embedded resources as symbols. Flex 
applications extract the SWF file from a SWC file, and use the SWF file’s contents when the 
application refers to resources in that SWC file. The catalog.xml file lists of the contents of the 
component package and its individual components.

You compile SWC files by using the component compilers. These include the compc 
command-line compiler and the Flex Builder Library Project compiler. SWC files can be 
component libraries, RSLs, theme files, and resource bundles. 

To include a SWC file in your application at compile time, it must be located in the library 
path. For more information about SWC files, see “About SWC files” on page 229.



About application files 157

Component libraries
A component library is a SWC file that contains classes and other assets that your Flex 
application uses. The component library’s file structure defines the package system that the 
components are in. 

Typically, component libraries are statically linked into your application, which means that 
the compiler compiles it into the SWF file before the user downloads that file.

To build a component library SWC file, you use the include-classes, include-
namespaces, and include-sources component compiler options. For more information on 
building component libraries, see “Using the component compiler” on page 215.

Runtime Shared Libraries
You can use shared assets that can be separately downloaded and cached on the client in Flex. 
These shared assets are loaded by multiple applications at run time, but must be transferred 
only once to the client. These shared files are known as Runtime Shared Libraries or RSLs.

RSLs are the only kind of application asset that is dynamically linked into your Flex 
application. When you compile your application, the RSL source files must be available to the 
compiler so that it can perform proper link checking. The assets themselves are not included 
in the application SWF file, but are only referenced at run time.

To create an RSL SWC file, you add files to a library by using the include-classes and 
include-namespaces component compiler options. To use RSLs when compiling your 
application, you use the external-library-path, externs, load-externs, and runtime-
shared-libraries application compiler options. The external-library-path, externs, 
and load-externs options provide the compile-time location of the libraries. The runtime-
shared-libraries option provides the run-time location of the shared library. The compiler 
requires this for dynamic linking.

For more information, see Chapter 10, “Using Runtime Shared Libraries,” on page 233.

Themes
A theme defines the look and feel of a Flex application. A theme can define something as 
simple as the color scheme or common font for an application, or it can be a complete 
reskinning of all the components used by the application. 

Themes usually take the form of a SWC file. However, themes can also be composed of a CSS 
file and embedded graphical resources, such as symbols from a SWF file.



158 Building Overview

Theme files must be available to the compiler at compile-time. You build a theme file by using 
the include-file and include-classes component compiler options to add skin files and 
style sheets to a SWC file. You then reference the theme SWC file when you compile the main 
Flex application by using the theme application compiler option.

For more information about themes, see Chapter 18, “Using Styles and Themes,” in Flex 2 
Developer’s Guide.

Resource bundles
You can package libraries of localized properties files and ActionScript classes into a SWC file. 
The application compiler can then statically use this SWC file as a resource bundle. For more 
information about creating and using resource bundles, see Chapter 25, “Localizing Flex 
Applications,” in Flex 2 Developer’s Guide.

Other assets
Other application assets include images, fonts, movies, and sound files. You can embed these 
assets at compile time or access them at run time.

When you embed an asset, you compile it into your application’s SWF file. The advantage of 
embedding an asset is that it is included in the SWF file, and can be accessed faster than when 
the application has to load it from a remote location at run time. The disadvantage of 
embedding an asset is that your SWF file is larger than if you load the resource at run time. 

The alternative to embedding an asset is to load the asset at run time. You can load an asset 
from the local file system in which the SWF file runs, or you can access a remote asset, 
typically though an HTTP request over a network.

Embedded assets load immediately, because they are already part of the Flex SWF file. 
However, they add to the size of your application and slow down the application initialization 
process. Embedded assets also require you to recompile your applications whenever your asset 
files change.

For more information, see Chapter 30, “Embedding Assets,” in Flex 2 Developer’s Guide.



159

2
PART 2

Building Flex Applications

This part describes how to compile, debug, and test Flex applications. 

The following topics are included:
Chapter 7: Building Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Chapter 8: Flex 2 SDK and Flex Data Services Configuration  . 161

Chapter 9: Using the Flex Compilers . . . . . . . . . . . . . . . . . . . . . . . . 179

Chapter 10: Using Runtime Shared Libraries. . . . . . . . . . . . . . . . 233

Chapter 11: Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Chapter 12: Using the Command-Line Debugger. . . . . . . . . . . . 269

Chapter 13: Using ASDoc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Chapter 14: Creating Applications for Testing . . . . . . . . . . . . . . . . 311





161

8
CHAPTER 8

Flex 2 SDK and Flex Data 
Services Configuration

This section provides an overview of how to use the configuration files included with Flex 2 
SDK and Flex Data Services. You use these files to configure the compilers and other aspects 
of the product. For Flex Data Services, be aware that Flex is a web application running within 
a web application server. As a result, you make many configuration settings at the server level. 
For more information, consult your web application server’s documentation.

This topic does not describe how to configure Flex Builder. That is described in Using Flex 
Builder 2.

Contents
About configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Flex 2 SDK configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Flex Data Services configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Flash Player configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

About configuration files
This section helps you understand how the the various compilers and servers use the 
configuration files.

Applying license keys
When you upgrade Flex Data Services from a trial edition to the commercial edition or add 
Flex Charting components, you must add the new license key to the license.properties files.

If you are using Flex 2 SDK and install charting, edit the license.properties file in the 
sdk_install_dir/frameworks directory.



162 Flex 2 SDK and Flex Data Services Configuration

If you are running Flex Data Services, you must edit the license.properties file in the following 
locations: 

■ In every deployed WAR file. The license.properties file is in the WEB-INF/flex directory. 
By default, a license.properties file is in the flex, flex-admin, and samples WAR files. If you 
create a web application that includes Flex, you must also edit the license.properties file in 
that WAR file.

■ In the flex_install_dir/flex_sdk_2/frameworks directory.

Root variables
This section refers to the flex_install_dir variable. For Flex SDK, this is the top-level directory 
where you installed the SDK. Under this directory are the bin, frameworks, lib, and samples 
directories. For Flex Data Services, this is the top-level directory where you installed Flex Data 
Services. Under this directory are the flex_sdk_2, resources, and UninstallerData directories, 
and, optionally, the jrun4 directory.

This section refers to the flex_app_root directory as the top level location for many files. If you 
deploy Flex Data Services as a WAR file on an application server, this is the root of the WAR 
file. For example, if you installed JRun with the integrated JRun application server, 
flex_app_root refers to the flex_install_dir/jrun4/servers/default/flex directory.

Configuration files layout
The layout of the configuration files for Flex SDK is simple. It includes a jvm.config file, fdb 
command-line debugger shell script, and the mxmlc and compc command-line compiler shell 
scripts for configuring the JVM that the compiler uses. It also includes the flex-config.xml file 
that sets the compiler options, as well as executable files for fdb, mxmlc, and compc.

The layout of the configuration files for Flex SDK is as follows:
flex_install_dir/

bin/jvm.config
bin/mxmlc
bin/mxmlc.exe
bin/compc
bin/compc.exe
bin/fdb
bin/fdb.exe
frameworks/flex-config.xml



About configuration files 163

The layout of the configuration files for the Flex Data Services is relatively complex. Flex Data 
Services includes the Flex SDK, so it stores the shell scripts and jvm.config files in the 
flex_sdk_2 directory:
flex_install_dir/

flex_sdk_2/bin/jvm.config
flex_sdk_2/bin/mxmlc
flex_sdk_2/bin/compc
flex_sdk_2/frameworks/flex-config.xml

In addition to these tools, you can edit the web application and web-tier compiler settings 
with the following configuration files:
flex_app_root/

web.xml
WEB-INF/flex/flex-config.xml

Also, the Flex Data Services web application includes the data services configuration files:
flex_app_root/WEB-INF/flex/

data-management-config.xml fds-
services-config.xml
messaging-config.xml
proxy-config.xml
remoting-config.xml

In addition to these configuration files, Flex Data Services can include a JRun application 
server, which has its own configuration files. Edit the following files to configure the default 
JRun server:
flex_install_dir/jrun4/

bin/jvm.config
servers/default/flex/WEB-INF/jrun-web.xml
servers/default/SERVER-INF/jrun.xml

The following table describes the configuration files shown in the previous lists:

File Name Description

fdb Configures the JVM for the fdb command-line debugger 
shell script. For more information, see Chapter 12, “Using the 
Command-Line Debugger,” on page 269.

flex-config.xml Configures the Flex compilers. 
Flex Data Services includes two copies of this file: one in the 
flex_install_dir/flex_sdk_2/frameworks directory for use with 
the command line compilers. The other copy of this file is in 
the flex_app_root/WEB-INF/flex/ directory for use with the 
web-tier compiler.



164 Flex 2 SDK and Flex Data Services Configuration

services-config.xml Defines the basic settings for data services such as logging 
and security. This file does not usually contain service-
specific destination definitions. You typically define individual 
service destination definitions in the fds-service_name.xml 
files, which are referenced by services-config.xml. 
For more information, see “Data services configuration” 
on page 170.

fds-service_name.xml Contains service-specific configuration information. 
For more information, see “Data services configuration” 
on page 170.

jrun.xml Defines settings for the optional, integrated JRun application 
server. You use this file to configure settings for JRun 
services such as logging, web server, and the security. 
For more information, see “Configuring JRun servers” 
on page 406.

jrun-web.xml Contains web application elements that are specific to the 
JRun web application server. 
For more information, see “Configuring JRun servers” 
on page 406.

jvm.config Configures the JVM used by your J2EE application server or 
compiler. You use this file to pass arguments to the JVM, 
including memory management and source path definitions.
For more information, see “JVM configuration” on page 166.

mm.cfg Configures client-side logging for the debugger version of 
Flash Player. For more information, see “Configuring the 
debugger version of Flash Player” on page 248.

mms.cfg Configures Flash Player auto-update and other settings. For 
more information, see the Flash Player documentation.

mxmlc and compc shell scripts Configures the JVM for the mxmlc and compc shell scripts.
For more information, see “Command-line compiler 
configuration” on page 165.

web.xml Configures your Flex application to run on the J2EE web 
application server. You use this file to define context 
parameters, filters, servlet mappings, JSP tag libraries, error 
handling, and other settings for your web application.
For more information, see “Servlet configuration” 
on page 171.

File Name Description



Flex 2 SDK configuration 165

About application and server verbiage
This section discusses two types of applications: web applications and Flex applications. Web 
applications are applications that run inside a container. The container typically provides 
services such as state management, fault handling, and data interoperation. Often, a web 
application takes the form of a WAR file that you expand into a directory on your application 
server. Flex Data Services is a web application that runs on top of your application server and 
its associated web server. It is made up of servlets that manage the data services and 
applications.

Flex applications are typically *.mxml files plus helper files such as images, ActionScript classes, 
and custom components. You write Flex applications using the MXML syntax and run those 
applications inside the Flex web application. A single Flex web application can contain any 
number of Flex applications such as a WYSIWIG editor, a shopping cart, or a stock charting 
application.

The JRun application server is the server on which web applications run. The default JRun 
server is an instance of the JRun application server. You can add any number of instances of 
the JRun server. Each must be started and maintained separately.

Flex 2 SDK configuration
Flex 2 SDK includes the mxmlc and compc command-line compilers. You use mxmlc to 
compile Flex applications from MXML, ActionScript, and other source files. You use the 
compc compiler to compile component libraries, Runtime Shared Libraries (RSLs), and 
theme files.

The compilers are located in the sdk_install_dir/bin directory. You configure the compiler 
options with the flex-config.xml file. The compilers use the Java JRE. As a result, you can also 
configure settings such as memory allocation and source path with the JVM arguments.

Command-line compiler configuration
The flex-config.xml file defines the default compiler options for the compc and mxmlc 
command-line compilers. You can use this file to set options such as debugging, SWF file 
metadata, and themes to apply to your application. For a complete list of compiler options, 
see “Using the application compiler” on page 195 and “Using the component compiler” 
on page 215.



166 Flex 2 SDK and Flex Data Services Configuration

The flex-config.xml file is located in the flex_install_dir/frameworks directory. If you change 
the location of this file relative to the location of the command-line compilers, you can use the 
load-config compiler option to point to its new location.

You can also use a local configuration file that overrides the compiler options of the flex-
config.xml file. You give this local configuration file the same name as the MXML file, plus -
config.xml” and store it in the same directory. When you compile your MXML file, the 
compiler looks for a local configuration file first, then the flex-config.xml file.

For more information on compiler configuration files, see “About configuration files” 
on page 190.

JVM configuration
The Flex compilers use the Java JRE. Configuring the JVM can result in faster and more 
efficient compilations. Without a JVM, you cannot use the mxmlc and compc command-line 
compilers. You can configure JVM settings such as the Java source path, Java library path, and 
memory settings.

On Windows, you use the compc.exe and mxmlc.exe executable files in the bin directory to 
compile Flex applications and component libraries. You use the fdb.exe executable file in the 
bin directory to debug applications. The executable files use the jvm.config file to set JVM 
arguments. The jvm.config file is in the same directory as the executable files. If you move it 
or the executable files to another directory, they use their default settings and not the settings 
defined in the jvm.config file.

The fdb, compc, and mxmlc shell scripts (for UNIX, Linux, or Windows systems running a 
UNIX-shell emulator such as Cygwin) do not take a configuration file. You set the JVM 
arguments inside the shell script file.



Flex 2 SDK configuration 167

Locating the jvm.config file
The location of the jvm.config file depends on which Flex product you use. The following 
table shows the location and use of the product-specific jvm.config files:

Changing the JVM heap size
The most common JVM configuration is to set the size of the Java heap. The Java heap is the 
amount of memory reserved for the JVM. The actual size of the heap during run time varies 
as classes are loaded and unloaded. If the heap requires more memory than the maximum 
amount allocated, performance will suffer as the JVM performs garbage collection to 
maintain enough free memory for the applications to run. 

You can set the initial heap size (or minimum) and the maximum heap size on most JVMs. By 
providing a larger heap size, you give the JVM more memory with which to defer garbage 
collection. However, you must not assign all of the system’s memory to the Java heap so that 
other processes can run optimally.

To set the initial heap size on the Sun HotSpot JVM, change the value of the Xms property. To 
change the maximum heap size, change the value of the Xmx property. The following example 
sets the initial heap size to 256M and the maximum heap size to 512M:
java.args=-Xms256m -Xmx512m -Dsun.io.useCanonCaches=false

In addition to increasing your JVM’s heap size, you can tune the JVM in other ways. Some 
JVMs provide more granular control over garbage collecting, threading, and logging. For 
more information, consult your JVM documentation or view the options on the command 
line. If you are using the Sun HotSpot JVM, for example, you can enter java -X or java -D 
on the command line to see a list of configuration options.

Product Location of 
jvm.config

Description

Flex 2 SDK sdk_install_dir/bin Used by the Java process opened by the 
mxmlc and compc command-line executable 
files.

Flex Data Services flex_install_dir/jrun4/bin Used by the web-tier compiler when used with 
the integrated JRun application server. If you 
deploy the flex.war file on another application 
server, consult that product’s documentation.

Flex Data Services flex_install_dir/
flex_sdk_2/bin

Used by the Java process opened by the 
mxmlc and compc command-line executable 
files.



168 Flex 2 SDK and Flex Data Services Configuration

In many cases, you can also use a different JVM. Benchmark your Flex application and the 
application server on several different JVMs. Choose the JVM that provides you with the best 
performance.

Setting the useCanonCaches argument to false is required to support Windows file names.

Flex Data Services configuration
Flex Data Services runs as a web application within a web application server. You deploy the 
flex.war file to the server. You use the underlying application server settings to configure 
settings such as security and logging, but you can configure other settings in the Flex 
application’s configuration files.

If you installed Flex Data Services with the integrated JRun Java application server, see 
Chapter 18, “Configuring JRun,” on page 401 for additional server configuration 
information.

Compiler configuration
Flex Data Services uses the web-tier compiler to compile MXML files and other assets into a 
SWF file. You configure the web-tier compiler by editing the flex_app_root/WEB-INF/flex/
flex-webtier-config.xml file. Options in this file include enabling production mode and 
changing debugging settings. The settings apply to all Flex applications found under the 
flex_app_root directory.

The flex-webtier-config.xml file also imports the contents of the flex-config.xml file for 
additional compiler settings such as the application’s library path and source path. For more 
information on the flex-config.xml file, see “Command-line compiler configuration” 
on page 165.

If you change options in the flex-webtier-config.xml file, restart your application server.

In addition to the flex-webtier-config.xml file, you can change some settings of the web-tier 
compiler at run time using query string parameters. For example, you can enable accessibility 
using a URL request such as the following:
http://www.mysite.com/MyApp.mxml?accessible=true

The Flex Data Services server converts query string parameters to flashVars variables in the 
wrapper. The web-tier compiler interprets these variables and compiles the Flex application 
accordingly.

In most cases, enabling production mode prevents the query string parameters from taking 
effect.



Flex Data Services configuration 169

The following table describes query string parameters that you can use to override compiler 
settings for the web-tier compiler:

For more information about the wrapper, see Chapter 16, “Creating a Wrapper,” on page 367.

JVM configuration
Flex is an application running on an application server. As a result, the performance of your 
Flex applications can be affected by the underlying JVM of the application server. 

Query string parameter Description

accessible=true|false Enables accessibility features when compiling the Flex 
application or SWC file. 
This option overrides the accessible compiler option in the 
flex-config.xml file.

debug=true|false Adds debugging information to the application.swf file.
This option overrides the debug compiler option in the flex-
config.xml file.
When production mode is enabled, setting this option has 
no effect.

recompile=true|false Forces a full compilation regardless of caching, if one is 
required by the caching settings.

showAllWarnings=true|false Enables or disables all warning messages. This setting 
overrides all other warning settings, such as show-coach-
warnings and show-binding-warnings.
This option has no equivalent in the flex-config.xml file.
When production mode is enabled, setting this option has 
no effect.

showBindingWarnings=true|false Shows a warning when Flash Player cannot detect 
changes to a bound property.
This option overrides the show-binding-warnings compiler 
option in the flex-config.xml file.
When production mode is enabled, setting this option has 
no effect.

verboseStackTraces=true|false Shows additional information in the stack traces.
This option overrides the verbose-stacktraces compiler 
option in the flex-config.xml file.
When production mode is enabled, setting this option has 
no effect.



170 Flex 2 SDK and Flex Data Services Configuration

Where you set your JVM’s arguments depends on your application server’s configuration. And 
depending on which JVM you are using, you might have more or less memory management 
options available to you. On the integrated version of JRun, for example, change the values of 
the jvm.args property in the flex_install_dir/jrun4/bin/jvm.config file. For more 
information, see “Changing the JVM heap size” on page 167.

Data services configuration
Flex Data Services includes several configuration files that let you configure the data services. 
These files are located in the flex_app_root/WEB-INF/flex directory.

The primary file is services-config.xml. This file defines the basic settings for data services 
such as logging and security. This file does not define service destinations. Individual service 
destination definitions are set in the other files referenced by services-config.xml. This 
configuration lets you separate the types of service destination definitions into multiple files, 
with each file dedicated to defining destinations.

The following table describes the default configuration files included with Flex Data Services:

For more information on configuring Flex data services, see Flex 2 Developer’s Guide.

Configuration File Description

services-config.xml This is the default location of configuration information for all 
data services information. All other data services configuration 
files are referenced by this file with the service-include tag. For 
example: 
<service-include file-path=”messaging-config.xml”/>
The default configuration defines services, logging, security, 
and system settings for data services. It also references the 
other configuration files that define a service.

data-management-
config.xml

Defines a Data Management service for use by applications 
running on Flex Data Services.
The Flex Data Management Service that you define in this 
configuration file works in conjunction with a client-side Data 
Service component to distribute and synchronize data among 
multiple client applications. 

messaging-config.xml Defines Message Service destinations for use by applications 
running on Flex Data Services.

proxy-config.xml Defines proxy service destinations for Web Services and HTTP 
services for applications running on Flex Data Services.

remoting-config.xml Defines RemoteObject service destinations for use by 
applications running on Flex Data Services.



Flex Data Services configuration 171

Servlet configuration
Flex Data Services uses servlets that intercept requests for *.mxml and *.swf files. These 
servlets open the web-tier compiler to compile and return a SWF file and wrapper.

Each Flex Data Services web application contains configuration files that you can edit to 
customize Flex Data Services. You can use the flex_app_root/WEB-INF/flex/web.xml file to 
change settings such as the servlet mappings, paths, and other settings.

The following table describes some of the servlets defined in the web.xml file:

You can view the servlet mappings that define the patterns that Flex uses to open the web-tier 
compiler, as the following example shows:
<servlet-mapping>

<servlet-name>FlexMxmlServlet</servlet-name> 
<url-pattern>*.mxml</url-pattern> 

</servlet-mapping>

If you are using the JRun integrated server, see Chapter 18, “Configuring JRun,” on page 401 
for specific configuration information.

Logging configuration
Flex Data Services provides logging for the following types of messages:

Startup messages from the FlexMxmlServlet These messages are primarily 
informational. For example, when the servlet starts, you will get information about your 
license version. For more information, see “Configuring web application logging” 
on page 265.

Servlet Description

FlexMxmlServlet Defines the servlet wrapper for the web-tier compiler. This 
servlet is opened for all *.mxml requests.
The definition of this servlet includes the location of the web-tier 
compiler’s configuration file.

FlexSwfServlet Returns SWF files. This servlet is opened for all *.swf requests.

MessageBrokerServlet Manages the Messaging Service.
This servlet is opened for all requests matching the /
messagebroker/* pattern.
The definition of this servlet includes the location of the 
services-config.xml configuration file.



172 Flex 2 SDK and Flex Data Services Configuration

Web-tier compiler messages When the server running Flex Data Services responds to a 
request for an MXML file, it opens the web-tier compiler. The compiler can write error and 
warning messages to the wrapper and the web application logging mechanism. For more 
information, see “Configuring web-tier compiler logging” on page 267.

JRun application server messages If you are using the integrated JRun application server 
with Flex Data Services or Flex Builder, you can configure the JRun logging mechanism by 
using the flex_install_dir/jrun4/servers/default/SERVER-INF/jrun.xml file. For more 
information, see “Configuring JRun logging” on page 410.

Server-side caching configuration
The first time an MXML file is requested, the Flex web-tier compiler compiles the 
application’s SWF file and caches it in memory. On subsequent requests from different clients, 
Flex returns the cached SWF file. On subsequent requests from the same client, Flex usually 
returns a 304 Not Modified header. In this case, the client then reads the SWF file out of the 
browser’s local cache.

The caching mechanism polls the Flex files at regular intervals to determine if new files should 
be returned or if a new application should be compiled. If the MXML file changes, Flex 
recompiles the application and replaces the existing SWF in its content cache with the new 
one. Flex stores caching information in the flex_root/WEB-INF/flex/cache.dep file.

In addition to SWF files, Flex also caches generated SWC files and other asset files in 
memory. On the client side, these files are all cached by the browser. Flex does not cache 
images or other files that are included by reference in applications. Image caching is usually 
handled by the browser or by the web server.

Embedded images and resources are stored inside the application (whereas included resources 
are sent separate from the application’s SWF file). If the source file for an embedded resource 
changes, Flex recompiles the application on the next request. Flex then replaces the existing 
SWF file in the content cache with the newly compiled file. 

In production mode, changes to compiled files are only recognized at server startup.

Adding most query string parameters or changing flashVars variables in the wrapper to a 
request do not cause Flex to recompile the application.

Caching is enabled by default.

For information on preventing client-side caching, see “Preventing client-side caching” 
on page 95.



Flex Data Services configuration 173

Cache settings
The default cache settings in the flex-webtier-config.xml file are as follows:
<cache>

<content-size>200</content-size>
<http-maximum-age>1</http-maximum-age>
<file-watcher-interval>1</file-watcher-interval>

</cache>

The following table describes the child tags of <cache>:

Child tag Description

<content-size> The maximum number of files that Flex Data Services caches. The 
default value is 10. When the maximum number of files reaches the 
size limit, Flex Data Services removes the least-recently used files 
from the cache.
The wrapper and other generated files such as AC_OETags.js are 
not stored in the cache.
Flex creates additional cache entries for different URL pairs (for 
example, page.mxml and page.mxml?accessible=true). By setting 
accessible=true in the URL, you create a unique SWF file that is 
added to the cache. Not all URL variables force a recompilation.
For more information on the HTML wrapper, see Chapter 16, 
“Creating a Wrapper,” on page 367.

<http-maximum-age> The maximum amount of time, in seconds, during which a browser 
can return its copy of the file without checking the server for 
freshness of the document.
The default value is 1 second.
This setting sets the value of the Cache-Control HTTP header. Flex 
assigns the value of this property to the max-age setting in that 
header.

<file-watcher-
interval>

The amount of time Flex waits before polling for changes to MXML 
and dependent files (such as MXML component files, SWC files, 
images, included *.as files, and ActionScript class files). 
When Flex Data Services finds that a file has changed, Flex Data 
Services recompiles the SWF file and replaces the cached SWF file 
with the new one.
If production mode is enabled, Flex only checks dependent files 
when the server starts up.
The default value is 1 second.



174 Flex 2 SDK and Flex Data Services Configuration

Using incremental compilation
You can use incremental compilation to decrease the time it takes to compile an application or 
component library with the Flex application compilers. When incremental compilation is 
enabled, the compiler inspects changes to the bytecode between revisions and only recompiles 
the section of bytecode that changed.

To enable incremental compilation for the web-tier compiler, you set the value of the 
incremental-compile option in the flex-webtier-config.xml file to true. The default is 
true.

For more information about incremental compilation, see “About incremental compilation” 
on page 214.

Caching fonts and glyphs
Fonts and glyphs can be expensive to reload every time you compile them into an application. 
Because of this, Flex Data Services lets you cache the fonts and glyphs used by your Flex 
applications running on a Flex Data Services server. By caching your fonts, you can improve 
response time of components that use embedded fonts.

Flex Data Services caches a specified number of embedded font faces in memory. The default 
number of fonts is 20. You can control the maximum number of fonts and character glyph 
outlines for each font face to cache using the <max-cached-fonts> and the <max-glyphs-
per-face> settings in the flex-config.xml file.

The following table describes the caching-related child tags of the <fonts> tag:

To obtain further optimizations, you can reduce the size of the font by specifying its character 
range. For more information on embedding fonts, see Chapter 19, “Using Fonts,” in Flex 2 
Developer’s Guide.

Child tag Description

<max-cached-fonts> Sets the number of embedded font faces that Flex stores in its 
cache before rotating out older font faces. Each cached font uses 
up memory related to the size of the TrueType font (TTF) file.
The default value is 20. When the number of embedded font faces 
exceeds max-cached-fonts, Flex removes the least-recently used 
from the cache.

<max-glyphs-per-face> Defines the maximum number of character glyph outlines to cache 
for each font face. The default value is 1000.



Flex Data Services configuration 175

Production mode
Production mode is a state of the Flex application that you use when the application is running 
live on a public-facing server. Enabling production mode affects many aspects of Flex, 
including debugging, logging, and caching. The following sections describe the effect that 
enabling production mode has on these features.

The default value of <production-mode> is false. To enable production mode, change the 
value of the <production-mode> tag to true, as the following example shows:
<production-mode>true</production-mode>

You must restart the server running Flex in order for changes to the production mode to take 
effect.

For more information about production mode, see “Enabling production mode” 
on page 359.

Configuring mappings
In a development environment, it is generally acceptable for testers to request an application 
by its full name in their browser. This can lead to unattractive request strings. But in a 
production environment, you will want control over how the request string looks to users who 
request your Flex applications. 

This section shows how to map file extensions to the MXML compiler and how to set your 
Flex application as a the default file.

The techniques described here are standard across all J2EE-compiant application servers. For 
more information about them, consult your J2EE server’s documentation.

Using virtual directories
Virtual directories map a request path to a real path in your file system. You can keep your 
files in directories outside of the application directory structure, but map them to a path 
inside the application directory structure.

For example, you can store files in an images folder at C:/images/production and use those 
images in your applications by adding a virtual directory that points to the /flex/images/
production folder.

N
O

T
E

In Windows systems, use forward slashes for path separators in XML configuration files.



176 Flex 2 SDK and Flex Data Services Configuration

To add a virtual directory on the JRun application server, for example, add a virtual mapping 
in the jrun_root/server_name/WEB-INF/jrun-web.xml file. The following example adds the 
images virtual directory:
<jrun-web-app>

<virtual-mapping>
<resource-path>/flex/images/*</resource-path>
<system-path>c:/images/production</system-path>

</virtual-mapping>
</jrun-web-app>

To add virtual directories for non-JRun web application servers, consult your application 
server documentation. To enable or disable directory browsing, see “Configuring directory 
browsing” on page 177.

Changing the default application mapping
You can map any file as the entry point for your application using the <welcome-file-list> 
property in the web.xml file. Whatever file you specify becomes the default file that the 
application server returns when no file is specified in a request to the web application’s context 
root.

The default value of <welcome-file-list> is index.html. You can map a request to a 
particular MXML file, instead. The following example instructs the application server to open 
MyApp.mxml by default:
<welcome-file-list>

<welcome-file>MyApp.mxml</welcome-file>
</welcome-file-list>

In this example, the client can make the following request to get the MyApp.mxml 
application:
http://www.yourdomain.com/flex/

Changing the context root
The context root maps requests to the Flex application. In practice, the context root defines 
the URL prefix that clients use to request files in your application. 

The default context root is /flex. For example, the context root in the following URL is /flex:
http://localhost:8700/flex/myApp.mxml

The value is typically equivalent to a call to the request.getContextPath() method.



Flex Data Services configuration 177

The context root for the Flex web application is set in the flex_app_root/WEB-INF/flex/flex-
config.xml file. To change the context root, edit the <context-root> tag. The following 
example changes the context root to /:
<context-root>/</context-root>

You can also set the value of the context root using the context-root compiler option, as the 
following example shows:
$ mxmlc -context-root=/samples MyApp.mxml

To access the context root of the web application from inside your Flex application, use the 
@ContextRoot() method. The following example sets the value of the HTTPService’s url 
property and then traces that property:
<?xml version="1.0"?>
<!-- config/ContextRootTest.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="l1.text='url='+s1.url">
    <mx:HTTPService id="s1" url="@ContextRoot()/service.jsp"/>
    <mx:Label id="l1"/>
</mx:Application>

If you do not specify the value of the context-root compiler option, the @ContextRoot() 
method returns an exception.

In the Flex configuration files, you can use the {context.root} token to represent the value 
of the context-root compiler option. If you do not set the value of the context-root option, 
the {context.root} token’s value is null. You commonly use the {context.root} token in 
the flex-config.xml file to specify the URLs of the gateways and proxies, and to point to Flash 
Player detection and deployment resources.

If you are running your MXML apps inside http://localhost:8700/flex, then you typically set 
“/flex” as the context root. The value of {context.root} includes the prefix “/”. As a result, 
you are not required to add a forward slash before the {context.root} token.

Configuring directory browsing
When directory browsing is enabled, you can make a general request that does not specify a 
filename, and you can view the entire contents of the directory rather than receiving a File 
Not Found error.

By default, the default JRun server enables directory browsing.

N
O

T
E

The ColdFusion MX standalone configuration uses a context root of /.



178 Flex 2 SDK and Flex Data Services Configuration

To change the directory browsing setting, you configure the initialization parameter of the 
FileServlet in the SERVER-INF/application_name-web.xml file. The following example 
disables directory browsing by setting the browsDirs parameter to false:
<servlet>

<servlet-name>FileServlet</servlet-name> 
<servlet-class>jrun.servlet.file.FileServlet</servlet-class> 
<init-param>

<param-name>browseDirs</param-name> 
<param-value>false</param-value> 

</init-param>
</servlet>

Flash Player configuration
You can use the standard version or the debugger version of Flash Player as clients for your 
Flex applications. The debugger version of Flash Player can log output from the trace() 
global method as well as data services messages and custom log events.

You enable and disable logging and configure the location of the output file in the mm.cfg 
file. This file is located in the HOMEPATH/HOMEDRIVE/ directory. For more 
information on locating and editing the mm.cfg file, see “Configuring the debugger version of 
Flash Player” on page 248.

You can configure the standard version and the debugger version of Flash Player auto-update 
and other settings by using the mms.cfg file. This file is in the same directory as the mm.cfg 
file. For more information on auto-update, see the Flash Player documentation.



179

9
CHAPTER 9

Using the Flex Compilers

This topic describes using the Flex 2 application and component compilers. These compilers 
can be opened on the command line, in Adobe Flex Builder, and at run time in the Flex web 
application. This topic also describes what SWC files are and how to write manifest files for 
use by the compilers.

Contents
About the Flex compilers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

About the command-line compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

About configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

About option precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Using the application compiler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Using the component compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Viewing errors and warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

About SWC files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229

About manifest files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

About the Flex compilers
You can use Adobe Flex tools to compile applications, component libraries, themes, and run-
time shared libraries (RSLs). Flex includes the following application and component 
compilers:

■ Application compilers. The application compilers create SWF files from MXML, 
ActionScript, and other assets such as images, SWF files, and SWC files. 

■ Component compilers. The component compilers create SWC files from the same kinds 
of files. The application compilers then use the SWC files as component libraries, themes, 
or RSLs.



180 Using the Flex Compilers

The following example shows the input and output of the Flex compilers:

You open the application compiler with the mxmlc command-line tool, the Flex Builder 
Build Project option, or with the run-time web-tier compiler. You open the component 
compiler with the Flex Builder Build Project option for a Library Project or with the compc 
command-line tool.

About the application compilers
The application compilers create SWF files that are run in an Adobe Flash Player client. The 
client can be a stand-alone Flash Player or a Flash Player in a browser, which takes the form of 
an ActiveX control for Microsoft Internet Explorer or a plug-in for Netscape-based browsers.

Component compilers

Application compilers

*.swc

*.swc

*.as

*.mxml

*.as

*.mxml

Flex Builder

compc

*.swf

*.swf

*.as

*.mxml

*.as

*.mxml
*.html

*.mxml

mxmlc

Flex Builder

Web tier



About the Flex compilers 181

Flex Builder project compiler. The Flex Builder application compiler is opened by Flex 
Builder for Flex Projects and ActionScript Projects. (The component compiler is used for 
Library Projects.) It is similar in functionality to the mxmlc command-line compiler, although 
the way you set options is different. You use this compiler to compile Flex Builder projects 
that you will later deploy. For more information, see “Using the Flex Builder application 
compiler” on page 181.

The mxmlc command-line compiler. You open the mxlmc compiler from the command 
line to create a SWF file that you then deploy to a website. Typically, you pass the name of the 
application’s root MXML file to the compiler. The output is a SWF file. For more 
information, see “Using the mxmlc application compiler” on page 182.

Web-tier compiler. The web-tier compiler is a set of servlets and servlet filters that run in a 
J2EE application server. The application server passes requests for *.mxml files to the servlet 
container, which then compiles a SWF file and return the results to the client. The Flex web 
application is installed with the Flex Data Services. For more information, see “Using the 
web-tier application compiler” on page 183.

The Flex Builder compiler, web-tier compiler, and mxmlc compiler have similar sets of 
options. These are described in “About the application compiler options” on page 196.

You can compile applications that are written entirely in ActionScript and contain no 
MXML. You can compile these “ActionScript-only” applications with the Flex Builder and 
mxmlc compilers. You cannot compile ActionScript-only applications with the web-tier 
compiler. This compiler requires that there be at least a root application MXML file.

Using the Flex Builder application compiler
You use the Flex Builder application compiler to create SWF files from MXML, ActionScript, 
and other source files. You use this compiler to precompile SWF files that you deploy later, or 
you can deploy them immediately to a server running the Flex web application.

To open the Flex Builder application compiler, you select Project > Build. The Flex Builder 
application compiler is opened by Flex Builder for Flex Projects and ActionScript Projects. 
(You use the component compiler for Library Projects.)

To edit the compiler settings, use the settings on the Project > Properties > Flex Compiler 
dialog box. For information on the compiler options, see “About the application compiler 
options” on page 196.

The Flex Builder compiler has the same options as the mxmlc compiler. Some options are 
implemented with GUI controls in the Flex Compiler dialog box. To set the source path and 
library options, select Project > Properties > Flex Build Path and use the Flex Build Path dialog 
box.



182 Using the Flex Compilers

You can set the values of most options in the “Additional compiler arguments” field by using 
the same syntax as on the command line. For information about the syntax for setting options 
in the Flex Compiler dialog box, see “About the command-line compilers” on page 187. 

By default, Flex Builder exposes the compilation options through the project properties. If 
you want to use a configuration file, you can create your own and pass it to the compiler by 
using the load-config option. For more information on setting compiler options with 
configuration files, see “About configuration files” on page 190.

In addition to generating SWF files, the Flex Builder compiler also generates an HTML 
wrapper that you can use when you deploy the new Flex application. The HTML wrapper 
includes the <object> and <embed> tags that reference the new SWF file, as well as scripts 
that support history management and player version detection. For more information about 
the HTML wrapper, see Chapter 16, “Creating a Wrapper,” on page 367.

The Flex Builder application compiler uses incremental compilation by default. For more 
information on incremental compilation, see “About incremental compilation” on page 214.

Using the mxmlc application compiler
You use the mxmlc command-line compiler to create SWF files from MXML, AS, and other 
source files. You can open it as a shell script and executable file for use on Windows and 
UNIX systems. You use this compiler to precompile Flex applications that you deploy later. 

The command-line compiler is installed with Flex 2 SDK and Flex Data Services. It is in the 
flex_install_dir/bin directory in Flex 2 SDK and the flex_install_dir/flex_sdk_2/bin directory 
in Flex Data Services. The compiler is also included in the default Flex Builder installation, in 
the flex_builder_install_dir/Flex SDK 2/bin directory.

To use the mxmlc utility, you should understand its syntax and how to use configuration files. 
For more information, see “About the command-line compilers” on page 187.

The basic syntax of the mxmlc utility is as follows:
mxmlc [options] target_file

The default option is the target file to compile into a SWF file, and it is required to have a 
value. If you use a space-separated list as part of the options, you can terminate the list with a 
double hyphen before adding the target file; for example:
mxmlc -option arg1 arg2 arg3 -- target_file.mxml

To see a list of options for mxmlc, you can use the help list option, as the following example 
shows:
mxmlc -help list



About the Flex compilers 183

To see a list of all options available for mxmlc, including advanced options, you use the 
following command:
mxmlc -help list advanced

The default output of mxmlc is filename.swf, where filename is the name of the root 
application file. The default output location is in the same directory as the target, unless you 
specify an output file and location with the output option.

The mxmlc command-line compiler does not generate an HTML wrapper. You must create 
your own wrapper to deploy a SWF file that the mxmlc compiler produced. The wrapper is 
used to embed the SWF object in the HTML tag. It includes the <object> and <embed> tags, 
as well as scripts that support Flash Player version detection and history management. For 
information about creating an HTML wrapper, see Chapter 16, “Creating a Wrapper,” on 
page 367.

The mxmlc utility uses the default compiler settings in the flex-config.xml file. This file is in 
the flex_sdk_dir/frameworks/ directory. You can change the settings in this file or use another 
custom configuration file. For more information on using configuration files, see “About 
configuration files” on page 190.

The mxmlc compiler is highly customizable with a large set of options. For information on 
the compiler options, see “About the application compiler options” on page 196.

You can also open the mxmlc compiler with the java command on the command line. For 
more information, see “Invoking the command-line compilers with Java” on page 189.

Using the web-tier application compiler
You use the web-tier application compiler to create SWF files from MXML, AS, and other 
source files at run time. The web-tier compiler is made up of servlets and servlet filters that 
run inside a J2EE servlet container on a Java application server. 

The web-tier compiler accepts a request from an HTTP client, and compiles the result of that 
request into a SWF file that it returns to the client. To use the web-tier compiler, you deploy 
the Flex WAR file on a J2EE server. You then request the MXML file in the browser. For 
information on installing the Flex WAR file, see the Flex installation and deployment 
instructions on the Adobe website.

http://www.adobe.com/go/flex2_installation


184 Using the Flex Compilers

The web-tier compiler requires that at least one MXML file contains the root 
<mx:Application> tag. You request this MXML file in the browser. On the first request, the 
web-tier compiler compiles the MXML file and its assets into a SWF file. It returns an HTML 
wrapper that embeds the resulting SWF file to the client. The HTML wrapper includes the 
<object> and <embed> tags that reference the new SWF file, as well as scripts that support 
history management and player version detection. For more information about the HTML 
wrapper, see Chapter 16, “Creating a Wrapper,” on page 367.

On each subsequent request from the same client, the SWF file is loaded from the browser’s 
local cache, unless the compiled SWF file in the server’s cache has a newer timestamp. On 
each subsequent request from other clients, the Flex web application returns the SWF file that 
has already been compiled. The Flex web application does not open the web-tier compiler 
unless one of its source files have changed.

To set options for the web-tier compiler, you edit the flex-config.xml file. This file is located 
in the flex_webapp_root/WEB-INF/flex directory. The options in this configuration file are 
similar to those available for the command-line and Flex Builder application compilers. For 
information on setting the compiler options, see “About the application compiler options” 
on page 196.

In addition to the compiler options you set in flex-config.xml, you can also set debugging and 
logging options in the flex-webtier-config.xml file, located in the same directory. You also use 
this file to enable production mode and to configure player version detection and caching.

You can use query string parameters as run-time arguments. Query string parameters are 
converted to flashVars variables that are passed to the SWF file. For more information on 
passing in request data, see Chapter 34, “Communicating with the Wrapper,” in Flex 2 
Developer’s Guide.

The web-tier compiler is included for development purposes only. It is not intended to be 
used in a production environment. Instead, precompile Flex applications and deploy them on 
a production server.

About the component compiler
You use the component compiler to generate a SWC file from component source files and 
other asset files such as images and style sheets. A SWC file is an archive of Flex components 
and other assets. For more information about SWC files, see “About SWC files” on page 229.

In some ways, the component compiler is similar to the application compiler. The application 
compiler produces a SWF file from one or more MXML and ActionScript files; the 
component compiler produces a SWC file from its input files. SWC files are compressed files 
that contain a SWF file (library.swf ), asset files, and a catalog.xml file. 



About the Flex compilers 185

You use the component compiler to create the following kinds of assets:

Component libraries. Component libraries are SWC files that contain one or more 
components that are used by applications. SWC files also contain the namespace information 
that describe the contents of the SWC file. For more information about component libraries, 
see “About SWC files” on page 229.

Run-time shared libraries (RSLs). RSLs are external shared assets that can be separately 
downloaded and cached on the client. These shared assets are loaded by any number of 
applications at run time. For more information on RSLs, see Chapter 10, “Using Runtime 
Shared Libraries,” on page 233.

Themes. Themes are a combination of graphical and programmatic skins, and Cascading 
Style Sheets (CSS). You use themes to define the look and feel of a Flex application. For more 
information on themes, see Chapter 18, “Using Styles and Themes,” in Flex 2 Developer’s 
Guide.

You open the component compiler in the following ways:

Flex Builder Library Project compiler. Flex Builder uses the component compiler when 
you create a Library Project. (The application compiler is used for Flex Projects and 
ActionScript Projects). For more information, see “Using the Flex Builder component 
compiler” on page 186.

The compc command-line compiler. You open the compc compiler from the command 
line to create a SWC file. For more information, see “Using the compc component compiler” 
on page 186.

The component compiler has many of the same options as the application compilers, as 
described in “About the application compiler options” on page 196. Also, the component 
compiler has additional options as described in “About the component compiler options” 
on page 215.

Like the application compiler, you can use the load-config option to point the component 
compiler to a configuration file, rather than specify command-line options or set the options 
in the Flex Library Compiler dialog box.

When you compile a SWC file, store the new file in a location that is not the same as the 
source files. If both sets of files are accessible by Flex when you compile your application, 
unexpected behavior can occur. 

The SWC files that are produced by the component compilers do not require an HTML 
wrapper because they are used as themes, RSLs, or component libraries that are input to other 
compilers to create Flex applications. You never deploy a SWC file that users can request 
directly.



186 Using the Flex Compilers

Using the Flex Builder component compiler
You use the component compiler in Flex Builder to create SWC files. You do this by setting 
up a Flex Library Project by using the New Library Project command. You add MXML and 
ActionScript components, style sheets, SWF files, and other assets to the project. 

To open the Flex Builder component compiler, select Project > Build Project for your Flex 
Library Project. 

You edit the compiler settings by using the settings on the Project > Properties > Flex Library 
Compiler dialog box. Using the “Additional compiler arguments” field in this dialog box, you 
can set compiler options as if you were using the command-line compiler. For information 
about the syntax for setting options in the Flex Library Compiler dialog box, see “About the 
command-line compilers” on page 187.

You can set the value of some options using the GUI controls. To set the resource options in 
the Flex Library Build Path dialog box, select Project > Properties > Flex Library Build Path.

Flex Builder does not expose a default configuration file to set compiler options but you can 
create your own and pass it to the compiler with the load-config option. For more 
information on setting compiler options with configuration files, see “About configuration 
files” on page 190.

Using the compc component compiler
You use the compc command-line compiler to compile SWC files from MXML, 
ActionScript, and other source files such as style sheets, images, and SWF files.

You can open the compc compiler as a shell script and executable file for use on Windows and 
UNIX systems. It is in the flex_install_dir/bin directory in Flex 2 SDK and the 
flex_install_dir/flex_sdk_2/bin directory in Flex Data Services. 

To use the compc compiler, you should understand how to pass options and use configuration 
files. For more information, see “About the command-line compilers” on page 187.

The syntax of the compc compiler is as follows:
compc [options] -include-classes class [...]

The default option for compc is include-classes. At least one of the “include-” options is 
required.

To see a list of supported options for compc, you can use the help list option, as the 
following example shows:
compc -help list



About the command-line compilers 187

The compc compiler uses the default compiler settings in the flex-config.xml file. Like the 
application compiler, you can change these settings or use another custom configuration file. 
Unlike the application compiler, however, the component compiler does not support the use 
of default configuration files. 

You cannot use the compc compiler to create a SWC file from a FLA file or other file created 
in the Adobe Flash authoring environment.

You can also open the compc compiler with the java command on the command line. For 
more information, see “Invoking the command-line compilers with Java” on page 189.

About the command-line compilers
You use the mxmlc and compc command-line compilers to compile your MXML and AS files 
into SWF and SWC files. You can use the utilities to precompile Flex applications that you 
want to deploy on another server or to automate compilation in a testing environment.

To use the command-line compilers, you must have a Java run-time environment in your 
system path. 

For Flex 2 SDK, the command-line compilers are located in the flex_install_dir/bin directory. 
For Flex Data Services, the compilers are located in the flex_install_dir/flex_sdk_2/bin 
directory. For Flex Builder, the compilers are located in the flex_builder_install_dir/Flex SDK 
2/bin directory.

When using mxmlc and compc on the command line, you can also use a configuration file to 
store your options rather than list them on the command line. You can store command-line 
options as XML blocks in a configuration file. For more information, see “About 
configuration files” on page 190.

Command-line syntax
The mxmlc and compc compilers take many options. The options are listed in the help which 
you can view with the help option, as the following example shows:
mxmlc -help

This displays a menu of choices for getting help. The most common choice is to list the basic 
configuration options:
mxmlc -help list

To see advanced options, use the list advanced option, as the following example shows:
mxmlc -help list advanced



188 Using the Flex Compilers

To see a list of entries whose names or descriptions include a particular String, use the 
following syntax:
mxmlc -help pattern

The following example returns descriptions for the external-library-path, library-
path, and runtime-shared-libraries options:
mxmlc -help list library

For a complete description of mxmlc options, see “About the application compiler options” 
on page 196. For a complete description of compc options, see “About the component 
compiler options” on page 215.

Many command-line options, such as show-actionscript-warnings and accessible, 
have true and false values. You specify these values by using the following syntax:
mxmlc -accessible=true -show-actionscript-warnings=true

Some options, such as source-path, take a list of one or more options. You can see which 
options take a list by examining the help output. Square brackets ([ ]) that surround options 
indicate that the option can take a list of one or more parameters. 

You can separate each entry in a list with a space or a comma. The syntax is as follows:
-var val1 val2

or
-var=val1, val2

If you do not use commas to separate entries, you terminate a list by using a double hyphen, 
as the following example shows:
-var val1 val2 -- -next_option

If you use commas to separate entries, you terminate a list by not using a comma after the last 
entry, as the following example shows:
-var=val1, val2 -next_option

You can append values to an option using the += operator. This adds the new entry to the end 
of the list of existing entries rather than replacing the existing entries. The following example 
adds the c:/myfiles directory to the library-path option:
mxmlc -library-path+=c:/myfiles



About the command-line compilers 189

Using abbreviated option names
In some cases, the command-line help shows an option with dot-notation syntax; for 
example, source-path is shown as compiler.source-path. This notation indicates how 
you would set this option in a configuration file. On the command line, you can specify the 
option with only the final node, source-path, as long as that node is unique, as the following 
example shows:
mxmlc -source-path . c:/myclasses/ -- foo.mxml

For more information about using configuration files to store command-line options, see 
“About configuration files” on page 190.

Some compiler options have aliases. Aliases provide shortened variations of the option name to 
make command lines more readable and less verbose. For example, the alias for the output 
option is o. You can view a list of options by their aliases by using the following command:
mxmlc -help list aliases

or
mxmlc -help list advanced aliases

You can also see the aliases in the verbose help output by using the following command:
mxmlc -help list details

Invoking the command-line compilers with Java
Flex provides a simple interface to the command-line compilers. For UNIX users, there is a 
shell script. For Windows users, there is an executable file. These files are located in the bin 
directory. You can also invoke the compilers using Java. This lets you integrate the compilers 
into Java-based projects (such as Ant) or other utilities. 

The shell scripts and executable files for the command-line compilers wrap calls to the 
mxmlc.jar and compc.jar JAR files. To invoke the compilers from Java, you call the JAR files 
directly. For Flex SDK, the JAR files are located in the flex_install_dir/lib/ directory. For Flex 
Builder, they are located in the flex_builder_install_dir/Flex SDK 2/lib. For Flex Data 
Services, the JAR files are located in the flex_webapp_root/WEB-INF/flex/jars directory.

To invoke a command in a JAR file, use the java command from the command line and 
specify the JAR file you want to execute with the jar option. You must also specify the value 
of the +flexlib option. This advanced option lets you set the root directory that is used by 
the compiler to locate the flex-config.xml file, among other files. You typically point it to your 
frameworks directory. From there, the compiler can detect the location of other configuration 
files.



190 Using the Flex Compilers

The following example compiles MyApp.mxml into a SWF file using the JAR file to invoke 
the mxmlc compiler:
java -jar ../lib/mxmlc.jar +flexlib c:/flex_2_sdk/frameworks 

c:/flex2/MyApp.mxml

You pass all other options as you would when you open the command-line compilers. The 
following example sets the locale and source path when compiling MyApp:
java -jar ../lib/mxmlc.jar +flexlib c:/flex_2_sdk/frameworks 

-locale en_US -source-path locale/{locale} c:/flex2/MyApp.mxml

About configuration files
Configuration files can be used by the command-line utilities, Flex Builder, and the web-tier 
compiler.

Flex includes a default configuration file named flex-config.xml. This configuration file 
contains most of the default compiler settings for the application and component compilers. 
You can customize this file or create your own custom configuration file.

Flex Data Services include the flex-config.xml file in the flex_webapp_root/WEB-INF/flex 
directory. Flex 2 SDK includes the flex-config.xml file in the flex_install_dir/frameworks 
directory. 

The Flex Builder compilers do not use a flex-config.xml file by default. The default settings 
are stored internally. You can, however, create a custom configuration file and pass it to the 
Flex Builder compilers by using the load-config option. Flex Builder includes a copy of the 
flex-config.xml file that you can use as a template for your custom configuration file. This file 
located in the flex_builder_install_dir/Flex SDK 2/frameworks directory.

You can generate a configuration file with the current settings by using the dump-config 
option, as the following example shows:
mxmlc -dump-config myapp-config.xml

Locating configuration files
You can specify the location of a configuration file by using the load-config option. The 
target configuration file can be the default flex-config.xml file, or it can be a custom 
configuration file. The following example loads a custom configuration file:
compc -load-config=myconfig.xml

If you specify the filename with the += operator, your loaded configuration file is used in 
addition to and not instead of the flex-config.xml file:
compc -load-config+=myconfig.xml



About configuration files 191

With the mxmlc compiler, you can also use a local configuration file. A local configuration file 
does not require you to point to it on the command line. Rather, Flex examines the same 
directory as the target MXML file for a configuration file with the same name (one that 
matches the filename-config.xml filename). If it finds a file, it uses it in conjunction with the 
flex-config.xml file. You can also specify a configuration file by using the load-config option 
with the += operator.

For example, if your application’s top-level file is called MyApp.mxml, the compiler first 
checks for a MyApp-config.xml file for configuration settings. With this feature, you can 
easily compile multiple applications using different configuration options without changing 
your command-line options or your flex-config.xml file.

Options in the local configuration file take precedence over options set in the flex-config.xml 
file. Options set in a configuration file that the load-config option specify take precedence 
over the local configuration file. Command-line settings take precedence over all 
configuration file settings. For more information on the precedence of compiler options, see 
“About option precedence” on page 194.

Configuration file syntax
You store values in a configuration file in XML blocks. In general, the tags you use match the 
command-line options. This section describes the syntax of the XML blocks in a 
configuration file, and how to find the appropriate tags for a particular compiler option.

About the root tag
The root tag of the default configuration file, flex-config.xml, is <flex-config>. If you write 
a custom configuration file, it must also have this root tag. Compiler configuration files must 
also have an XML declaration tag, as the following example shows:
<?xml version="1.0"?>
<flex-config xmlns="http://www.adobe.com/2006/flex-config">

You must close the <flex-config> tag as you would any other XML tag. All compiler 
configuration files must be closed with the following tag:
</flex-config>

In general, the second tag in a configuration file is the <compiler> tag. This tag wraps most 
compiler options. However, not all compiler options are set in the <compiler> block of the 
configuration file. 



192 Using the Flex Compilers

Tags that you must wrap in the compiler block are prefixed by compiler in the help output 
(for example, compiler.services). If the option uses no dot-notation in the help output 
(for example, include-file), it is a tag at the root level of the configuration file, and the 
entry appears as follows:
<compiler>
...
</compiler>
<include-file>

<name>logo.gif</name>
<path>c:/images/logo/logo1.gif</path>

</include-file>

In some cases, options have multiple parent tags, as with the fonts options, such as 
compiler.fonts.managers and compiler.fonts.languages.language. Other options 
that require parent tags when added to a configuration file include the frames.frame option 
and the metadata options. The following sections describe methods for determining the 
syntax.

Getting the configuration file tags
Use the help list option of the command-line compilers to get the configuration file syntax 
of the compiler options; for example:
mxmlc -help list advanced

The following is the entry for the source-path option: 
-compiler.source-path [path-element][...]

This indicates that in the configuration file, you can have one or more <path-element> child 
tags of the <source-path> tag, and that <source-path> is a child of the <compiler> tag. 
The following example shows how this should appear in the configuration file:
<compiler>

<source-path>
<path-element>.</path-element>
<path-element>c:/myclasses/</path-element>

</source-path>
</compiler>

Understanding leaf nodes
The help output uses dot-notation to separate child tags from parent tags, with the right-most 
entry being known as the leaf node. For example, -tag1.tag2 indicates that <tag2> should be 
a child tag of <tag1>. 

Angle brackets (< >) or square brackets ([ ]) that surrount an option indicate that the option 
is a leaf node. 



About configuration files 193

Square brackets indicate that there can be a list of one or more parameters for that option.

If the leaf node of a tag in the angle bracket is unique, you do not have to specify the parent 
tags in the configuration file. For example, the help usage shows the following:
compiler.fonts.managers [manager-class][...]

You can specify the value of this option in the configuration file, as the following example 
shows:
<compiler>

<fonts>
<managers>

<manager-class>flash.fonts.JREFontManager</manager-class>
</managers>

</fonts>
</compiler>

However, the <manager-class> leaf node is unique, so you can set the value without 
specifying the <fonts> and <managers> parent tags, as the following example shows:
<compiler>

<manager-class>flash.fonts.JREFontManager</manager-class>
</compiler>

If the help output shows multiple options listed in angle brackets, you set the values of these 
options at the same level inside the configuration file and do not make them child tags of each 
other. For example, the usage for default-size (default-size <width> <height>) indicates 
that the default size of the application is set in a configuration file, as the following example 
shows:
<default-size>

<height>height_value</height>
<width>width_value</width>

</default-size>

Using tokens
You can pass custom token values to the compiler using the following syntax:
+token_name=value

In the configuration file, you reference that value using the following syntax:
${token_name}

You can use the @Context token in your configuration files to represent the context root of 
the application. You can also use the ${flexlib} token to represent the frameworks 
directory. This is useful if you set up your own configuration and are not using the default 
library-path settings.

The default value of the ${flexlib} token is application_home\frameworks.



194 Using the Flex Compilers

Appending values
In a configuration file, you can specify the append attribute of any tag that takes a list of 
arguments. Set this attribute to true to indicate that the values should be appended to the 
option rather than replace it. The default value is false.

Setting the append attribute to true lets you compound the values of options with multiple 
configuration files. The following example appends two entries to the library-path option:
<library-path append="true">

<path-element>/mylibs</path-element>
<path-element>/myotherlibs</path-element>

</library-path>

About option precedence
You can set the same options in multiple places and the Flex compilers use the value from the 
source that has the highest precedence. 

If you do not specify an option on the command line, the compilers check for a load-config 
option and get the value from that file.

When using the mxmlc compiler, Flex checks to see if there is an app_name-config.xml file in 
the same directory as the target MXML file. This is known as the local configuration file and 
is described in “Locating configuration files” on page 190. The syntax and structure of local 
configuration files are the same as with the flex-config.xml file.

If no load-config option is specified, the compilers check for the flex-config.xml file. The 
compilers look for the directory using the application.home environment variable. The 
following location is the default:
{application.home}/frameworks

Most options have a default value that the compilers use if the option is not set in any of the 
other ways.



Using the application compiler 195

The following table shows the possible sources of options for each compiler. The table also 
shows the order of precedence for each option. The options set using the method described in 
a lower row take precedence over the options set using the methods described in a higher row.

You can mix and match the source of the compiler options. For example, you can specify a 
custom configuration file with the load-config option, and also set additional options on 
the command line. 

You can also use multiple configuration files. You can chain them by using the += operator 
with the load-config option. If you specify a configuration file with this option, the 
compilers also look for the flex-config.xml and local (appname-config.xml) configuration files.

Using the application compiler
The application compiler’s options let you define settings such as the library path and whether 
to include debug information in the resulting SWF file. Also, you can set application-specific 
settings such as the frame rate at which the SWF file should play and its height and width. 

In Flex Builder, you open the application compiler by building a new Flex Project. Some of 
the options described in this section have equivalents in the Flex Builder environment. For 
example, you can use the tabs in the Flex Build Path dialog box to add classes and libraries to 
your project.

This section includes a detailed description of the application compiler options and a set of 
examples that use the application compiler.

Compiler options Flex Builder Web-tier mxmlc compc

Default settings Yes No No No

flex-config.xml No Yes Yes Yes

Local configuration file No No Yes No

Configuration file specified 
by load-config option

Yes No Yes Yes

Command-line option No No Yes Yes

Options panel Yes No No No



196 Using the Flex Compilers

About the application compiler options
The following table describes the application compiler options:

Option Description

accessible=true|false Enables accessibility features when compiling 
the Flex application or SWC file. The default 
value is false.
For more information on using the Flex 
accessibility features, see Chapter 36, 
“Creating Accessible Applications,” in Flex 2 
Developer’s Guide.

actionscript-file-encoding string Sets the file encoding for ActionScript files.
For more information, see “Setting the file 
encoding” on page 212.

advanced Lists advanced help options when used with 
the help option, as the following example 
shows:
mxmlc -help advanced
This is an advanced option.

allow-source-path-overlap=true|false Checks if a source-path entry is a subdirectory 
of another source-path entry. It helps make the 
package names of MXML components 
unambiguous.
This is an advanced option.

as3=true|false Use the ActionScript 3.0 class-based object 
model for greater performance and better 
error reporting. In the class-based object 
model, most built-in functions are 
implemented as fixed methods of classes.
The default value is true. If you set this value to 
false, you must set the es option to true.
This is an advanced option.

benchmark=true|false Prints detailed compile times to the standard 
output. The default value is true.



Using the application compiler 197

context-root context-path Sets the value of the {context.root} token, 
which is often used in channel definitions in 
the flex-services.xml file and other settings in 
the flex-config.xml file. The default value is 
null.
For more information on using the 
{context.root} token, see “Changing the 
context root” on page 176.

contributor name Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

creator name Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

date text Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

debug=true|false Generates a debug SWF file. This file includes 
line numbers and filenames of all the source 
files. When a run-time error occurs, the 
stacktrace shows these line numbers and 
filenames. This information is also used by the 
command-line debugger and the Flex Builder 
debugger. Enabling the debug option 
generates larger SWF files.
For the mxmlc compiler, the default value is 
false. For the compc compiler, the default 
value is true.
For SWC files generated with the compc 
compiler, set this value to true, unless the 
target SWC file is an RSL. In that case, set the 
debug option to false.
For information about the command-line 
debugger, see Chapter 12, “Using the 
Command-Line Debugger,” on page 269.
If you set this option to true, Flex also sets the 
verbose-stacktraces option to true

debug-password string Lets you engage in remote debugging 
sessions with the Flash IDE. 
This is an advanced option.

Option Description



198 Using the Flex Compilers

default-background-color int Sets the application’s background color. You 
use the 0x notation to set the color, as the 
following example shows:
-default-background-color=0xCCCCFF
The default value is null. The default 
background of a Flex application is an image 
of a gray gradient. You must override this 
image for the value of the default-background-
color option to be visible. For more 
information, see “Editing application settings” 
on page 213.
This is an advanced option.

default-frame-rate int Sets the application’s frame rate. The default 
value is 24.
This is an advanced option.

default-script-limits  
max-recursion-depth  
max-execution-time

Defines the application’s script execution 
limits.
The max-recursion-depth value specifies the 
maximum depth of Adobe Flash Player call 
stack before Flash Player stops. This is 
essentially the stack overflow limit. The default 
value is 1000.
The max-execution-time value specifies the 
maximum duration, in seconds, that an 
ActionScript event handler can execute 
before Flash Player assumes that it is hung, 
and aborts it. The default value is 60 seconds. 
You cannot set this value above 60 seconds.
You can override these settings in the 
application.
This is an advanced option.

default-size width height Defines the default application size, in pixels. 
This is an advanced option.

defaults-css-url string Defines the location of the default style sheet. 
Setting this option overrides the implicit use of 
the defaults.css style sheet in the 
framework.swc file.
For more information on the defaults.css file, 
see Chapter 18, “Using Styles and Themes,” in 
Flex 2 Developer’s Guide.
This is an advanced option.

Option Description



Using the application compiler 199

description text Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

dump-config filename Outputs the compiler options in the flex-
config.xml file to the target path; for example:
mxmlc -dump-config myapp-config.xml
This is an advanced option.

es=true|false Instructs the compiler to use the ECMAScript 
edition 3 prototype-based object model to 
allow dynamic overriding of prototype 
properties. In the prototype-based object 
model, built-in functions are implemented as 
dynamic properties of prototype objects.
The default value is false. 
Using the ECMAScript edition 3 prototype-
based object model lets you use untyped 
properties and functions in your application 
code. As a result, if you set the value of the es 
compiler option to true, you must set the 
strict compiler option to false. Otherwise, 
the compiler will throw errors.
If you set this option to true, you must also set 
the value of the as3 compiler option to false.
This is an advanced option.

externs symbol [...] Sets a list of symbols to exclude from linking 
when compiling a SWF file. 
This option provides compile-time link 
checking for external references that are 
dynamically linked.
For more information about dynamic linking, 
see “About linking” on page 234.
This is an advanced option.

external-library-path path-element [...] Specifies a list of SWC files or directories to 
exclude from linking when compiling a SWF 
file. This option provides compile-time link 
checking for external components that are 
dynamically linked.
For more information about dynamic linking, 
see “About linking” on page 234.
You can use the += operator to append the 
new SWC file to the list of external libraries.

Option Description



200 Using the Flex Compilers

fonts.flash-type=true|false Sets the default value that determines 
whether embedded fonts use the FlashType 
rendering engine.
Setting the value of the flashType property in a 
style sheet overrides this value.
The default value is false.
For more information about using FlashType, 
see Chapter 19, “Using Fonts,” in Flex 2 
Developer’s Guide.

fonts.languages.language-range lang range Specifies the range of Unicode settings for 
that language. For more information, see 
Chapter 18, “Using Styles and Themes,” in 
Flex 2 Developer’s Guide.
This is an advanced option.

fonts.local-fonts-snapshot path_to_file Sets the location of the local font snapshot 
file. The file contains system font data.
This is an advanced option. 

fonts.managers manager-class [...] Defines the font manager. The default is 
flash.fonts.JREFontManager. You can also 
use the flash.fonts.BatikFontManager. For 
more information, see Chapter 18, “Using 
Styles and Themes,” in Flex 2 Developer’s 
Guide.
This is an advanced option.

fonts.max-cached-fonts string Sets the maximum number of fonts to keep in 
the server cache. For more information, see 
“Caching fonts and glyphs” on page 174.
This is an advanced option.

fonts.max-glyphs-per-face string Sets the maximum number of character glyph-
outlines to keep in the server cache for each 
font face. For more information, see “Caching 
fonts and glyphs” on page 174.
This is an advanced option.

Option Description



Using the application compiler 201

frames.frame label class_name [...] Specifies a SWF file frame label with a 
sequence of class names that are linked onto 
the frame.
This option lets you add asset factories that 
stream in after the application that then 
publish their interfaces with the 
ModuleManager class. The advantage to 
doing this is that the application starts faster 
than it would have if the assets had been 
included in the code, but does not require 
moving the assets to an external SWF file.
This is an advanced option.

generate-frame-loader=true|false Toggles the generation of an IFlexBootstrap-
derived loader class. 
This is an advanced option.

headless-server=true|false Enables the headless implementation of the 
Flex compiler. This sets the following:
System.setProperty("java.awt.headless", 

"true")
The headless setting (java.awt.headless=true) 
is required to use fonts and SVG on UNIX 
systems without X Windows.
This is an advanced option.

help [-list [advanced]] Prints usage information to the standard 
output. For more information, see “Command-
line syntax” on page 187.

include-libraries library [...] Links all classes inside a SWC file to the 
resulting application SWF file, regardless of 
whether or not they are used.
Contrast this option with the library-path 
option that includes only those classes that 
are referenced at compile time.
To link one or more classes whether or not 
they are used and not an entire SWC file, use 
the includes option.
This option is commonly used to specify 
resource bundles. 

Option Description



202 Using the Flex Compilers

includes class [...] Links one or more classes to the resulting 
application SWF file, whether or not those 
classes are required at compile time.
To link an entire SWC file rather than 
individual classes, use the include-libraries 
option. 

incremental=true|false Enables incremental compilation. For more 
information, see “About incremental 
compilation” on page 214. 
This option is true by default for the Flex 
Builder application compiler. For the 
command-line compiler, the default is false. 
The web-tier compiler does not support 
incremental compilation. 

keep-as3-metadata=class_name [...] Specifies metadata that you want to keep.
By default, the compiler keeps the following 
metadata:
• Bindable
• Managed
• ChangeEvent
• NonCommittingChangeEvent
• Transient
If you want to preserve the default metadata, 
you should use the += operator to append your 
new metadata, rather than the = operator 
which replaces the default metadata.
This is an advanced option.

Option Description



Using the application compiler 203

keep-all-type-selectors=true|false Instructs the compiler to keep a style sheet’s 
type selector in a SWF file, even if that type 
(the class) is not used in the application. This 
is useful when you have a modular application 
that loads other applications. For example, the 
loading SWF file might define a type selector 
for a type used in the loaded (or, target) SWF 
file. If you set this option to true when 
compiling the loading SWF file, then the 
target SWF file will have access to that type 
selector when it is loaded. If you set this option 
to false, the compiler will not include that type 
selector in the loading SWF file at compile 
time. As a result, the styles will not be available 
to the target SWF file.
This is an advanced option.

keep-generated-actionscript=true|false Determines whether to keep the generated 
ActionScript class files. 
The generated class files include stubs and 
classes that are generated by the compiler 
and used to build the SWF file.
When using the application compiler, the 
default location of the files is the /generated 
subdirectory, which is directly below the target 
MXML file. If the /generated directory does 
not exist, the compiler creates one. When 
using the compc component compiler, the 
default location of the /generated directory is 
relative to the output of the SWC file. When 
using Flex Builder, the default location of the 
generated files is the /bin/generated directory.
The default names of the primary generated 
class files are filename-generated.as and 
filename-interface.as.
The default value is false.
This is an advanced option.

language code Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

Option Description



204 Using the Flex Compilers

library-path path-element [...] Links SWC files to the resulting application 
SWF file. The compiler only links in those 
classes for the SWC file that are required.
The default value of the library-path option 
includes all SWC files in the libs directory and 
the current locale. These are required.
To point to individual classes or packages 
rather than entire SWC files, use the source-
path option.
If you set the value of the library-path as an 
option of the command-line compiler, you 
must also explicitly add the framework.swc 
and locale SWC files. Your new entry is not 
appended to the library-path but replaces it, 
unless you use the += operator.
On the command line, you use the += operator 
to append the new argument to the list of 
existing SWC files.
In a configuration file, you can set the append 
attribute of the library-path tag to true to 
indicate that the values should be appended to 
the library path rather than replace existing 
default entries.

license product_name license_key Defines the license key to use when 
compiling. Valid values for product_name 
include fds, charting, and flexbuilder.

link-report filename Prints linking information to the specified 
output file. This file is an XML file that contains 
<def>, <pre>, and <ext> symbols showing 
linker dependencies in the final SWF file.
The file format output by this command can be 
used to write a file for input to the load-
externs option. 
For more information on the report, see 
“Examining linker dependencies” on page 98.
This is an advanced option.

Option Description



Using the application compiler 205

load-config filename Specifies the location of the configuration file 
that defines compiler options. 
If you specify a configuration file, you can 
override individual options by setting them on 
the command line.
All relative paths in the configuration file are 
relative to the location of the configuration file 
itself.
Use the += operator to chain this configuration 
file to other configuration files. 
For more information on using configuration 
files to provide options to the command-line 
compilers, see “About configuration files” 
on page 190.

load-externs filename [...] Specifies the location of an XML file that 
contains <def>, <pre>, and <ext> symbols to 
omit from linking when compiling a SWF file. 
The XML file uses the same syntax as the one 
produced by the link-report option. For more 
information on the report, see “Examining 
linker dependencies” on page 98.
This option provides compile-time link 
checking for external components that are 
dynamically linked.
For more information about dynamic linking, 
see “About linking” on page 234.
This is an advanced option.

locale string Specifies the locale that should be packaged 
in the SWF file (for example, en_EN). You run 
the mxmlc compiler multiple times to create 
SWF files for more than one locale, with only 
the locale option changing.
You must also include the parent directory of 
the individual locale directories, plus the token 
{locale}, in the source-path; for example:
mxmlc -locale en_EN -source-path locale/

{locale} MainApp.mxml
For more information, see Chapter 25, 
“Localizing Flex Applications,”in Flex 2 
Developer’s Guide.

Option Description



206 Using the Flex Compilers

localized-description text lang Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

localized-title text lang Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

namespaces.namespace uri manifest Specifies a namespace for the MXML file. You 
must include a URI and the location of the 
manifest file that defines the contents of this 
namespace. This path is relative to the MXML 
file.
For more information about manifest files, see 
“About manifest files” on page 231.

optimize=true|false Enables the ActionScript optimizer. This 
optimizer reduces file size and increases 
performance by optimizing the SWF file’s 
bytecode.
The default value is false.

output filename Specifies the output path and filename for the 
resulting file. If you omit this option, the 
compiler saves the SWF file to the directory 
where the target file is located. 
The default SWF filename matches the target 
filename, but with a SWF file extension.
If you use a relative path to define the filename, 
it is always relative to the current working 
directory, not the target MXML application 
root.
The compiler creates extra directories based 
on the specified filename if those directories 
are not present.
When using this option with the component 
compiler, the output is a SWC file rather than a 
SWF file.

publisher name Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

Option Description



Using the application compiler 207

raw-metadata XML_string Defines the metadata for the resulting SWF 
file. The value of this option overrides any 
metadata.* compiler options (such as 
contributor, creator, date, and description).
This is an advanced option.

resource-bundle-list filename Prints a list of resource bundles to input to the 
compc compiler to create a resource bundle 
SWC file. The filename argument is the name 
of the file that contains the list of bundles.
For more information, see Chapter 25, 
“Localizing Flex Applications,” in Flex 2 
Developer’s Guide.

runtime-shared-libraries url [...] Specifies a list of run-time shared libraries 
(RSLs) to use for this application. RSLs are 
dynamically-linked at run time.
You specify the location of the SWF file 
relative to the deployment location of the 
application. For example, if you store a file 
named library.swf file in the web_root/libraries 
directory on the web server, and the 
application in the web root, you specify 
libraries/library.swf.
For more information about RSLs, see 
Chapter 10, “Using Runtime Shared 
Libraries,” on page 233.

services filename Specifies the location of the services-
config.xml file. This file is used by Flex Data 
Services.

show-binding-warnings=true|false Shows a warning when Flash Player cannot 
detect changes to a bound property.
The default value is true.
For more information about compiler 
warnings, see “Using SWC files” on page 213.

show-actionscript-warnings=true|false Shows warnings for ActionScript classes. 
The default value is true.
For more information about viewing warnings 
and errors, see “Viewing warnings and errors” 
on page 227.

Option Description



208 Using the Flex Compilers

show-deprecation-warnings=true|false Shows deprecation warnings for Flex 
components. To see warnings for 
ActionScript classes, use the show-
actionscript-warnings option.
The default value is true.
For more information about viewing warnings 
and errors, see “Viewing warnings and errors” 
on page 227.

show-unused-type-selector-
warnings=true|false

Shows warnings when a type selector in a 
style sheet or <mx:Style> block is not used by 
any components in the application.

source-path path-element [...] Adds directories or files to the source path. 
The Flex compiler searches directories in the 
source path for MXML or AS source files that 
are used in your Flex applications and includes 
those that are required at compile time.
You can use wildcards to include all files and 
subdirectories of a directory. 
To link an entire library SWC file and not 
individual classes or directories, use the 
library-path option.
The source path is also used as the search 
path for the component compiler’s include-
classes and include-resource-bundles 
options.
You can also use the += operator to append 
the new argument to the list of existing source 
path entries.
This option has the following default behavior:
• If source-path is empty, the target file’s 

directory will be added to source-path.
• If source-path is not empty and if the target 

file’s directory is a subdirectory of one of the 
directories in source-path, source-path 
remains unchanged.

• If source-path is not empty and if the target 
file’s directory is not a subdirectory of any 
one of the directories in source-path, the 
target file’s directory is pre-pended to 
source-path.

Option Description



Using the application compiler 209

strict=true|false Prints undefined property and function calls; 
also performs compile-time type checking on 
assignments and options supplied to method 
calls.
The default value is true.
For more information about viewing warnings 
and errors, see “Viewing warnings and errors” 
on page 227.

theme filename [...] Specifies a list of theme files to use with this 
application. Theme files can be SWC files with 
CSS files inside them or CSS files. 
For information on compiling a SWC theme 
file, see Chapter 18, “Using Styles and 
Themes,” in Flex 2 Developer’s Guide.

title text Sets metadata in the resulting SWF file. For 
more information, see “Adding metadata to 
SWF files” on page 211.

use-network=true|false Specifies that the current application uses 
network services.
The default value is true. 
When the use-network property is set to false, 
the application can access the local filesystem 
(for example, use the XML.load() method with 
file: URLs) but not network services. In most 
circumstances, the value of this property 
should be true.
For more information about the use-network 
property, see Chapter 4, “Applying Flex 
Security,” on page 51.

use-resource-bundle-metadata=true|false Enables resource bundles. Set to true to 
instruct the compiler to process the contents 
of the [ResourceBundle] metadata tag. 
The default value is true.
For more information, see Chapter 25, 
“Localizing Flex Applications,” in Flex 2 
Developer’s Guide.
This is an advanced option.

Option Description



210 Using the Flex Compilers

The following sections provide examples of using the mxmlc application compiler options on 
the command line. You can also use these techniques with the application compilers in the 
Flex Builder and web-tier environments.

Basic example
The most basic example is one in which the MXML file has no external dependencies (such as 
components in a SWC file or ActionScript classes) and no special options. In this case, you 
invoke the mxmlc compiler and point it to your MXML file as the following example shows:
mxmlc c:/myfiles/app.mxml

The default option is the target file to compile into a SWF file, and it is required to have a 
value. If you use a space-separated list as part of the options, you can terminate the list with a 
double hyphen before adding the target file; for example:
mxmlc -option arg1 arg2 arg3 -- target_file.mxml

verbose-stacktraces=true|false Generates source code that includes line 
numbers. When a run-time error occurs, the 
stacktrace shows these line numbers.
Enabling this option generates larger SWF 
files.
Enabling this option does not generate a 
debug SWF file. To do that, you must set the 
debug option to true.
The default value is false.

version Returns the version number of the MXML 
compiler. If you are using a trial or Beta version 
of Flex, the version option also returns the 
number of days remaining in the trial period 
and the expiration date.

warn-warning_type=true|false Enables specified warnings. For more 
information, see “Viewing warnings and 
errors” on page 227.

warnings=true|false Enables all warnings. Set to false to disable all 
warnings. This option overrides the warn-
warning_type options.
The default value is true.

Option Description



Using the application compiler 211

Adding metadata to SWF files
The application compilers support adding metadata to SWF files. This metadata can be used 
by search engines and other utilities to gather information about the SWF file. This metadata 
represents a subset of the Dublin Core schema.

You can set the following values:

■ contributor

■ creator

■ date

■ description

■ language

■ localized-description

■ localized-title

■ publisher

■ title

For the mxmlc command-line compiler and the web-tier compiler, the default metadata 
settings in the flex-config.xml file are as follows:
<metadata>

<title>Adobe Flex 2 Application</title>
<description>http://www.adobe.com/flex</description>
<publisher>unknown</publisher>
<creator>unknown</creator>
<language>EN</language>

</metadata>

You can also set the metadata values as command-line options. The following example sets 
some of the metadata values:
mxmlc -language+=klingon -title "checkintest!" -localized-description "it 

r0x0rs" en-us -localized-description "c'est magnifique!" fr-fr  
-creator "Flexy Frank" -publisher "Franks Beans" flexstore.mxml



212 Using the Flex Compilers

In this example, the following values are compiled into the resulting SWF file:
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

<rdf:Description rdf:about='' xmlns:dc='http://purl.org/dc/elements/
1.1'>

<dc:format>application/x-shockwave-flash</dc:format>
<dc:title>checkintest!</dc:title>
<dc:description>

<rdf:Alt>
<rdf:li xml:lang='fr-fr'>c'est magnifique!</rdf:li>
<rdf:li xml:lang='x-default'>http://www.adobe.com/flex<

/rdf:li>
<rdf:li xml:lang='en-us'>it r0x0rs</rdf:li>

</rdf:Alt>
</dc:description>
<dc:publisher>Franks Beans</dc:publisher>
<dc:creator>Flexy Frank</dc:creator>
<dc:language>EN</dc:language>
<dc:language>klingon</dc:language>
<dc:date>Dec 16, 2005</dc:date>

</rdf:Description>
</rdf:RDF>

For information on the SWF file format, see the Flash File Format (SWF) Specification, 
which is available through the Player Licensing program.

Setting the file encoding
You use the actionscript-file-encoding option to set the file encoding so that the 
application compiler correctly interprets ActionScript files. This tag does not affect MXML 
files because they are XML files that contain an encoding specification in the xml tag. 

You use the actionscript-file-encoding option when your ActionScript files do not 
contain a Byte Order Mark (BOM), and the files use an encoding that is different from the 
default encoding of your computer. If your ActionScript files contain a BOM, the compiler 
uses the information in the BOM to determine the file encoding. 

For example, if your ActionScript files use Shift_JIS encoding, have no BOM, and your 
computer uses ISO-8859-1 as the default encoding, you use the actionscript-file-
encoding option, as the following example shows:
actionscript-file-encoding=Shitf_JIS



Using the application compiler 213

Editing application settings
The mxmlc compiler includes options to set the application’s frame rate, size, script limits, 
and background color. By setting them when you compile your application, you do not need 
to edit the HTML wrapper or the application’s MXML file. You can override these settings by 
using properties of the <mx:Application> tag or properties of the <object> and <embed> 
tags in the HTML wrapper.

The following command-line example sets default application properties:
mxmlc -default-size 240 240 -default-frame-rate=24  

-default-background-color=0xCCCCFF -default-script-limits 5000 10  
-- c:/myfiles/flex2/misc/MainApp.mxml

To successfully apply the value of the default-background-color option to your Flex 
application, you must set the default background image to an empty string. Otherwise, this 
image of a gray gradient covers the background color. For more information, see Chapter 14, 
“Using the Application Container,” in Flex 2 Developer’s Guide.

For more information about the HTML wrapper, see Chapter 16, “Creating a Wrapper,” on 
page 367.

Using SWC files
Often, you use SWC files when compiling MXML files. SWC files can provide themes, 
components, or other helper files. You typically specify SWC files used by the application by 
using the library-path option. 

The following example compiles the RotationApplication.mxml file into the 
RotationApplication.swf file:
mxmlc -library-path+=c:/mylibraries/MyButtonSwc.swc  

c:/myfiles/comptest/testRotation.mxml

In a configuration file, this appears as the following example shows:
<compiler>

<library-path>
<path-element>c:/flexdeploy/frameworks/libs/framework.swc</path-

element>
<path-element>c:/flexdeploy/frameworks/locale/{locale} 

/framework_rb.swc</path-element>
<path-element>c:/mylibraries/MyButtonSwc.swc</path-element>

</library-path>
</compiler>



214 Using the Flex Compilers

About incremental compilation
You can use incremental compilation to decrease the time it takes to compile an application or 
component library with the Flex application compilers. When incremental compilation is 
enabled, the compiler inspects changes to the bytecode between revisions and only recompiles 
the section of bytecode that has changed. These sections of bytecode are also referred to as 
compilation units.

You enable incremental compilation by setting the incremental option to true, as the 
following example shows:
mxmlc -incremental=true MyApp.mxml

Incremental compilation means that the compiler inspects your code, determines which parts 
of the application are affected by your changes, and only recompiles the newer classes and 
assets. The Flex compilers generate many compilation units that do not change between 
compilation cycles. It is possible that when you change one part of your application, the 
change might not have any effect on the bytecode of another. 

As part of the incremental compilation process, the compiler generates a cache file that lists 
the compilation units of your application and information on your application’s structure. 
This file is located in the same directory as the file that you are compiling. For example, if my 
application is called MyApp.mxml, the cache file is called MyApp_n.cache, where n represents 
a checksum generated by the compiler based on compiler configuration. This file helps the 
compiler determine which parts of your application must be recompiled. One way to force a 
complete recompile is to delete the cache file from the directory. 

Incremental compilation can help reduce compile time on small applications, but you achieve 
the biggest gains on larger applications. 

The default value of the incremental compiler option is true for the Flex Builder 
application compiler. For the mxmlc command-line compiler, the default is false. 

To enable incremental compilation for the web-tier compiler, you set the value of the 
incremental-compile option in the flex-webtier-config.xml file to true. The default is 
true. The incremental option in the flex-config.xml file has no effect when you use the 
web-tier compiler. If production mode is enabled, disable incremental compilation because 
the web-tier compiler does not recompile pages unless the server is restarted.

You can use the recompile query string parameter to override the incremental-compile 
option. This query string parameter forces a full recompilation of all parts of the application.

For more information about query string compiler overrides, see “Compiler configuration” 
on page 168.



Using the component compiler 215

Using the component compiler
In Flex Builder, you open the component compiler by building a new Flex Library Project. 
Some of the options described in this section have equivalents in the Flex Builder 
environment. You use the tabs in the Flex Library Build Path dialog box to add classes, 
libraries, and other resources to the SWC file.

This section describes the component compiler options and includes examples that show 
component compiler usage.

About the component compiler options
The component compiler options let you define settings such as the classes, resources, and 
namespaces to include in the resulting SWC file. 

The component compiler can take most of the application compiler options, and the options 
described in this section. For a description of the application compiler options, see “About the 
application compiler options” on page 196. Application compiler options that do not apply to 
the component compiler include the metadata options (such as contributor, title, and 
date), default application options (such as default-background-color and default-
frame-rate), locale, debug-password, and theme.



216 Using the Flex Compilers

The component compiler has compiler options that the application compilers do not have. 
The following table describes the component compiler options that are not used by the 
application compilers:

Option Description

directory Outputs the SWC file in an open directory format 
rather than a SWC file. You use this option with the 
output option to specify a destination directory, as 
the following example shows:
compc -directory -output destination_directory
You use this option when you create RSLs. For 
more information, see Chapter 10, “Using Runtime 
Shared Libraries,” on page 233.

include-classes class [...] Specifies classes to include in the SWC file. You 
provide the class name (for example, MyClass) 
rather than the file name (for example, MyClass.as) 
to the file for this option. As a result, all classes 
specified with this option must be in the compiler’s 
source path. You specify this by using the source-
path compiler option. 
You can use packaged and unpackaged classes. 
To use components in namespaces, use the 
include-namespaces option.
If the components are in packages, ensure that you 
use dot-notation rather than slashes to separate 
package levels. 
This is the default option for the component 
compiler.

include-file name path [...] Adds the file to the SWC file. This option does not 
embed files inside the library.swf file. This is useful 
for skinning and theming, where you want to add 
non-compiled files that can be referenced in a style 
sheet or embedded as assets in MXML files.
If you use the [Embed] syntax to add a resource to 
your application, you are not required to use this 
option to also link it into the SWC file.
For more information, see “Adding nonsource 
classes” on page 225.



Using the component compiler 217

On the command line, you cannot point the compc utility to a single directory and have it 
compile all components and source files in that directory. You must specify each source file to 
compile. 

If you have a large set of components in a namespace to include in a SWC file, you can use a 
manifest file to avoid having to type an unwieldy compc command. For information on 
creating manifest files, see “About manifest files” on page 231.

The following sections describe common scenarios where you could use the compc 
command-line compiler. You can apply the techniques described here to compiling SWC files 
in Flex Builder with the Flex Library Compiler.

include-namespaces uri [...] Specifies namespace-style components in the 
SWC file. You specify a list of URIs to include in the 
SWC file. The uri argument must already be 
defined with the namespace option.
To use components in packages, use the include-
classes option.

include-resource-bundles string [...] Specifies the resource bundles to include in this 
SWC file. All resource bundles specified with this 
option must be in the compiler’s source path. You 
specify this using the source-path compiler option. 
For more information on using resource bundles, 
see Chapter 25, “Localizing Flex Applications,” in 
Flex 2 Developer’s Guide.

include-sources path-element Specifies classes or directories to add to the SWC 
file. When specifying classes, you specify the path 
to the class file (for example, MyClass.as) rather 
than the class name itself (for example, MyClass). 
This lets you add classes to the SWC file that are 
not in the source path. In general, though, use the 
include-classes option, which lets you add classes 
that are in the source path.
If you specify a directory, this option includes all 
files with an MXML or AS extension, and ignores all 
other files.

Option Description



218 Using the Flex Compilers

Compiling stand-alone components and classes
In many cases, you have one or more components that you use in your Flex applications, but 
you do not have them in a package structure. You want to be able to use them in the generic 
namespace (“*”) inside your Flex applications. In these cases, you use the include-classes 
option to add the components to your SWC file.

The following command-line example compiles two MXML components, Rotation.as and 
RotationInstance.as, into a single SWC file:
compc -source-path . -output c:/jrun4/servers/flex2/flex/WEB-INF/flex/

user_classes/RotationClasses.swc -include-classes 
rotationClasses.Rotation rotationClasses.RotationInstance

The rotationClasses directory is a subdirectory of the current directory, which is in the source 
path. The SWC file is output to the user_classes directory, so the new components require no 
additional configuration to be used in a server environment. 

You use the include-classes option to add components to the SWC file. You use just the 
class name of the component and not the full filename (for example, MyComponent rather 
than MyComponent.as). Use dot-notation to specify the location of the component in the 
package structure.

You also set the source-path to the current directory or a directory from which the 
component directory can be determined. 

You can also add the framework.swc and framework_rb.swc files to the library-path 
option. This addition is not always required if the compiler can determine the location of 
these SWC files on its own. However, if you move the compiler utility out of the default 
location relative to the frameworks files, you must add it to the library path.

The previous command-line example appears in a configuration file as follows:
<compiler>

<source-path>
<path-element>.</path-element>

</source-path>
<output>c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 

RotationClasses.swc</output>
</compiler>
<include-classes>

<class>rotationClasses.Rotation</class>
<class>rotationClasses.RotationInstance</class>

<include-classes>



Using the component compiler 219

To use components that are not in a package in a Flex application, you must declare a 
namespace that includes the directory structure of the components. The following example 
declares a namespace for the components compiled in the previous example:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 

xmln:local="rotationclasses.*">
...
<local:Rotation id="Rotate75" angleFrom="0" angleTo="75" duration="100"/>
...

</mx:Application>

To use the generic namespace of “*” rather than a namespace that includes a component’s 
directory structure, you can include the directory in the source-path as the following 
command-line example shows:
compc -source-path . c:/flexdeploy/comps/rotationClasses  

-output c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 
RotationComps.swc -include-classes Rotation RotationInstance

Then, you can specify the namespace in your application as:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmln:local="*">

You are not required to use the directory name in the include-classes option if you add the 
directory to the source path. 

These options appear in a configuration file, as the following example shows:
<compiler>

<source-path>
<path-element>.</path-element>
<path-element>c:/flexdeploy/comps/rotationClasses</path-element>

</source-path>
<output>c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 
RotationComps.swc</output>

</compiler>
<include-classes>

<class>Rotation</class>
<class>RotationInstance</class>

<include-classes>

This example assumes that the components are not in a named package. For information 
about compiling packaged components, see “Compiling components in packages” 
on page 220.



220 Using the Flex Compilers

Compiling components in packages
Some components are created inside packages or directory structures so that they can be 
logically grouped and separated from application code. As a result, packaged components can 
have a namespace declaration that includes the package name or a unique namespace 
identifier that references their location within a package. 

You compile packaged components similarly to how you compile components that are not in 
packages. The only difference is that you must use the package name in the namespace 
declaration, regardless of how you compiled the SWC file, and that package name uses dot-
notation instead of slashes. You must be sure to specify the location of the classes in the 
source-path.

In the following command-line example, the MyButton component is in the mypackage 
package:
compc -source-path . c:/flexdeploy/comps/mypackage/  

-output c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/
MyButtonComp.swc -include-classes mypackage.MyButton

These options appear in a configuration file, as the following example shows:
<compiler>

<source-path>
<path-element>.</path-element>
<path-element>c:/flexdeploy/comps/mypackage/</path-element>

</source-path>
<output>c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 

MyButtonComp.swc</output>
</compiler>
<include-classes>

<class>mypackage.MyButton</class>
<include-classes>

To access the MyButton class in your application, you must declare a namespace that includes 
its package; for example:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 

xmlns:mine="mypackage.*">



Using the component compiler 221

You can use the compc compiler to compile components from multiple packages into a single 
SWC file. In the following command-line example, the MyButton control is in the 
mypackage package, and the CustomComboBox control is in the acme package:
compc -source-path . -output c:/jrun4/servers/flex2/flex/WEB-INF/flex/

user_classes/CustomComps.swc -include-classes mypackage.MyButton 
acme.CustomComboBox

You then define each package as a separate namespace in your MXML application:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 

xmlns:mine="mypackage.*" xmlns:acme="acme.*">
<mine:MyButton/>
<acme:CustomComboBox/>

</mx:Application>

Compiling components using namespaces
When you have many components in one or more packages that you want to add to a SWC 
file and want to reference from an MXML file through a custom namespace, you can list them 
in a manifest file, then reference that manifest file on the command line. Also, you can specify 
a namespace for that component or define multiple manifest files and, therefore, specify 
multiple namespaces to compile into a single SWC file.

When you use manifest files to define the components in your SWC file, you specify the 
namespace that the components use in your Flex applications. You can compile all the 
components from one or more packages into a single SWC file. If you have more than one 
package, you can set it up so that all packages use a single namespace or so that each package 
has an individual namespace.

Components in a single namespace
In the manifest file, you define which components are in a namespace. The following sample 
manifest file defines two components to be included in the namespace:
<?xml version="1.0"?>
<!-- SimpleManifest.xml -->
<componentPackage>

<component id="MyButton" class="MyButton"/>
<component id="MyOtherButton" class="MyOtherButton"/>

</componentPackage>



222 Using the Flex Compilers

The manifest file can contain references to any number of components in a namespace. The 
class option is the full class name (including package) of the class. The id property is 
optional, but you can use it to define the MXML tag interface that you use in your Flex 
applications. If the compiler cannot find one or more files listed in the manifest, it throws an 
error. For more information on using manifest files, see “About manifest files” on page 231.

On the command line, you define the namespace with the namespace option; for example:
-namespace http://mynamespace SimpleManifest.xml

Next, you target the defined namespace for inclusion in the SWC file with the include-
namespaces option; for example:
-include-namespaces http://mynamespace

The namespace option matches a namespace (such as “http://www.adobe.com/2006/mxml”) 
with a manifest file. The include-namespaces option instructs compc to include all the 
components listed in that namespace’s manifest file in the SWC file.

After you define the manifest file, you can compile the SWC file. The following command-
line example compiles the components into the “http://mynamespace” namespace:
compc -source-path . -output c:/jrun4/servers/flex2/flex/WEB-INF/flex/

user_classes/MyButtons.swc -namespace http://mynamespace 
SimpleManifest.xml -include-namespaces http://mynamespace

In a configuration file, these options appear as the following example shows:
<compiler>

<source-path>
<path-element>.</path-element>

</source-path>
<output>c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 

MyButtons.swc</output>
<namespaces>

<namespace>
<uri>http://mynamespace</uri>
<manifest>SimpleManifest.xml</manifest>

</namespace>
</namespaces>

</compiler>
<include-namespaces>

<uri>http://mynamespace</uri>
<include-namespaces>



Using the component compiler 223

In your Flex application, you can access the components by defining the new namespace in 
the <mx:Application> tag, as the following example shows:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:a="http://

mynamespace">
<a:MyButton/>
<a:MyOtherButton/>

</mx:Application>

Components in multiple namespaces
You can use the compc compiler to compile components that use multiple namespaces into a 
SWC file. Each namespace must have its own manifest file. The following command-line 
example compiles components defined in the AcmeManifest.xml and SimpleManifest.xml 
manifest files:
compc -source-path . -output c:/jrun4/servers/flex2/flex/WEB-INF/flex/

user_classes/MyButtons.swc -namespace http://acme2006 
AcmeManifest.xml -namespace http://mynamespace SimpleManifest.xml  
-include-namespaces http://acme2006 http://mynamespace

In this case, all components in both the http://mynamespace and http://acme2006 
namespaces are targeted and included in the output SWC file.

In a configuration file, these options appear as the following example shows:
<compiler>

<source-path>
<path-element>.</path-element>

</source-path>
<output>c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 

MyButtons.swc</output>
<namespaces>

<namespace>
<uri>http://acme2006</uri>
<manifest>AcmeManifest.xml</manifest>

</namespace>
<namespace>

<uri>http://mynamespace</uri>
<manifest>SimpleManifest.xml</manifest>

</namespace>
</namespaces>

</compiler>
<include-namespaces>

<uri>http://acme2006</uri>
<uri>http://mynamespace</uri>

<include-namespaces>



224 Using the Flex Compilers

In your MXML application, you define both namespaces separately:
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 

xmlns:simple="http://mynamespace" xmlns:acme="http://acme2006">
<simple:SimpleComponent/>
<acme:AcmeComponent/>

</mx:Application>

You are not required to include all namespaces that you define as target namespaces. You can 
define multiple namespaces, but use only one target namespace. You might do this if some 
components use other components that are not directly exposed as MXML tags. You cannot 
then directly access the components in the unused namespace, however. 

The following command line example defines two namespaces, http://acme2006 and  
http://mynamespace, but only includes one as a namespace target:
compc -source-path . -output c:/jrun4/servers/flex2/flex/WEB-INF/flex/

user_classes/MyButtons.swc -namespace http://acme2006 
AcmeManifest.xml -namespace http://mynamespace SimpleManifest.xml  
-include-namespaces http://mynamespace

Adding utility classes
You can add any classes that you want to use in your Flex applications to a SWC file. These 
classes do not have to be components, but are often files that components use. They are classes 
that might be used at run time and, therefore, are not checked by the compiler. For example, 
your components might use a library of classes that perform mathematical functions, or use a 
custom logging utility. This documentation refers to these classes as utility classes. Utility 
classes are not exposed as MXML tags. 

To add utility classes to a SWC file, you use the include-sources option. This option lets 
you specify a path to a class file rather than the class name, or specify an entire directory of 
classes. 

The following command-line example adds the FV_calc.as and FV_format.as utility classes to 
the SWC file:
compc -source-path . -output c:/jrun4/servers/flex2/flex/WEB-INF/flex/

user_classes/MySwc.swc -include-sources FV_classes/FV_format.as 
FV_classes/FV_calc.as -include-classes asbutton.MyButton



Using the component compiler 225

In a configuration file, these options appear as the following example shows:
<compiler>

<source-path>
<path-element>.</path-element>

</source-path>
<output>c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 

MySwc.swc</output>
</compiler>
<include-classes>

<class>asbutton.MyButton</class>
</include-classes>
<include-sources>

<path-element>FV_classes/FV_format.as</path-element>
<path-element>FV_classes/FV_calc.as</path-element>

<include-sources>

When specifying files with the include-sources option, you must give the full filename (for 
example, FV_calc.as instead of FV_calc) because the file is not a component. 

You can also provide a directory name to the include-sources option. In this case, the 
compiler includes all files with an MXML or AS extension, and ignores all other files.

Classes that you add with the include-sources option can be accessed from the generic 
namespace in your Flex applications. To use them, you need to add the following code in your 
Flex application tag:
xmlns:local="*"

You can then use them as tags; for example:
<local:FV_calc id="calc" rate=".0125" nper="12" pmt="100" pv="0" type="1"/>

Adding nonsource classes
You often include noncompiled (or nonsource) files with your applications. A nonsource file is 
a class or resource (such as a style sheet or graphic) that is not compiled but is included in the 
SWC file for other classes to use. For example, a font file that you embed or a set of images 
that you use as graphical skins in a component’s style sheet should not be compiled but should 
be included in the SWC file. These are classes that you typically do not use the [Embed] 
syntax to link in to your application.

Use the include-file option to define nonsource files in a SWC file. 

The syntax for the include-file option is as follows:
-include-file name path

The name argument is the name used to reference the embedded file in your Flex applications.  
The path argument is the current path to the file in the file system.



226 Using the Flex Compilers

When you use the include-file option, you specify both a name and a filepath, as the 
following example shows:
compc -include-file logo.gif c:/images/logo/logo1.gif ...

In a configuration file, these options appear as the following example shows:
<compiler>

<output>c:/jrun4/servers/flex2/flex/WEB-INF/flex/user_classes/ 
Combo.swc</output>

</compiler>
<include-file>

<name>logo.gif</name>
<path>c:/images/logo/logo1.gif</path>

</include-file>
<include-classes>

<class>asbutton.MyButton</class>
<include-classes>

Each name that you assign to a resource must be unique because the name becomes a global 
variable.

You cannot specify a list of files with the include-file option. So, you must add a separate 
include-file option for each file that you include, as the following command-line example 
shows:
compc -include-file file1.jpg ../images/file1.jpg  

-include-file file2.jpg ../images/file2.jpg -- -output MyFile.swc

If you want to add many resources to the SWC file, consider using a configuration file rather 
than listing all the resources on the command line. For an example of a configuration file that 
includes multiple resources in a SWC file, see Chapter 18, “Using Styles and Themes,” in 
Flex 2 Developer’s Guide.

In general, specify a file extension for files that you include with the include-file option. In 
some cases, omitting the file extension can lead to a loss of functionality. For example, if you 
include a CSS file in a theme SWC file, you must set the name to be *.css. When Flex 
examines the SWC file, it applies all CSS files in that SWC file to the application. CSS files 
without the CSS extension are ignored.

Creating themes
You can use the include-file and include-classes options to add skin files and style 
sheets to a SWC file. The SWC file can then be used as a theme. For more information about 
using themes in Flex applications, see Chapter 18, “Using Styles and Themes,” in Flex 2 
Developer’s Guide.



Viewing errors and warnings 227

Viewing errors and warnings
You can use the compiler options to specify what level of warnings and errors to view. Also, 
you can set levels of logging with the compiler options. This section describes these 
techniques.

Viewing warnings and errors
There are several options that let you customize the level of warnings and errors that are 
displayed by the Flex compilers, including the following:

■ show-binding-warnings

■ show-actionscript-warnings

■ show-deprecation-warnings

■ strict

■ warnings

To disable all warnings, set the warnings option to false.

The show-actionscript-warnings option displays compiler warnings for the following 
situations:

■ Situations that are probably not what the developer intended, but are still legal; for 
example:
if (a = 10)   // Did you really want '==' instead of '='?
if (b == NaN) // Any comparison with NaN is always false.
var b; // Missing type declaration.

■ Usage of deprecated or removed ActionScript 2.0 APIs.
■ Situations where APIs behave differently in ActionScript 2.0 than in ActionScript 3.0.

You can customize the types of warnings displayed by using options that begin with warn (for 
example, warn-constructor-return-values and warn-bad-type-cast). A complete list 
of warnings are available in the advanced command-line help or in the flex-config.xml file.

The strict option enforces typing and reports run-time verifier errors at compile time. This 
option assumes that definitions are not dynamically redefined at run time, so these checks can 
be made at compile time. It displays errors for conditions such as undefined references, const 
and private violations, argument mismatches, and type checking.

The show-deprecation-warnings and show-binding-warnings options display warnings 
when you use deprecated APIs and when Flash Player cannot detect changes to bound 
properties, respectively.



228 Using the Flex Compilers

About deprecation
The command-line compilers express deprecation warnings by default. In some cases, Flex 
functionality has been deprecated. Deprecated features and properties have the following 
characteristics: 

■ Generate compilation warnings that Flex displays in the HTML wrapper for the 
application.

■ Continue to work in Flex 2. 
■ Will be removed from the product in a future major release.

You can suppress deprecation warnings by setting the show-deprecated-warnings option to 
false.

About logging
Errors and warnings are reported differently, depending on which compiler you are using. 

The mxmlc and compc command-line compilers send error and warning messages to the 
standard output. You can redirect this output by using the redirector (>).

Flex Builder displays error and warning messages in the Problems tab.

The web-tier compiler displays error and warning messages in the requesting browser by 
default. The web-tier compiler also stores error and warning messages in a log file. You 
configure the location of this log file in the flex-webtier-config.xml file. You can enable or 
disable file logging, and set the size, log level, and location of the log file.

The following example shows the default logging settings for the web-tier compiler:
<logging>

<level>info</level>
<console>

<enable>true</enable>
</console>
<file>

<enable>true</enable>
<file-name>/WEB-INF/flex/logs/flex.log</file-name>
<maximum-size>200KB</maximum-size>
<maximum-backups>3</maximum-backups>

</file>
</logging>

For more information on configuring logging for the web-tier compiler, see “Web-tier 
logging” on page 265.



About SWC files 229

About SWC files
A SWC file is an archive file for Flex components and other assets. SWC files contain a SWF 
file and a catalog.xml file. The SWF file implements the compiled component or group of 
components and includes embedded resources as symbols. Flex applications extract the SWF 
file from a SWC file and use the SWF file’s contents when the application refers to resources 
in that SWC file. The catalog.xml file lists of the contents of the component package and its 
individual components.

In most cases, the symbols defined in the SWF file in the SWC file that are referenced by the 
application are embedded in the Flex application at compile-time. This is known as static 
linking. Dynamic linking is when the SWF file is loaded at run time. To achieve dynamic 
linking of the SWF file, you must use the SWC file as a runtime shared library, or RSL. For 
more information, see Chapter 10, “Using Runtime Shared Libraries,” on page 233.

SWC files make it easy to exchange components and other assets among Flex developers. You 
need only exchange a single file, rather than the MXML or ActionScript files and images and 
other resource files. The SWF file in a SWC file is compiled, which means that the code is 
loaded efficiently and it is hidden from casual view. Also, compiling a component as a SWC 
file can make namespace allocation an easier process.

You can package and expand SWC files with tools that support the PKZip archive format, 
such as WinZip or jar. However, do not manually change the contents of a SWC file, and do 
not try to run the SWF file that is in a SWC file in Flash Player.

An application running on a Flex Data Services server caches the contents of SWC files in the 
user_classes directory. If you change a SWC file in the user_classes directory, the Flex web-tier 
compiler does not automatically recompile the application. You must restart the application 
server so that Flex will load the new SWC file.

You can also save SWC files as open directories rather than archived files. This give you easier 
access to the contents of the SWC file. You create an open directory SWC with the 
directory option of the compc compiler. This is typically only used when you create an 
RSL. 

When you use the component compiler to create a SWC file, you can include any number of 
components. When you use components from that SWC file in your MXML applications, 
the application compiler only includes those components that are used by your application, 
and dependent classes, in the final SWF file.



230 Using the Flex Compilers

About included SWC files
Flex includes SWC files such as framework.swc, framework_rb.swc, playerglobal.swc, 
charts.swc, fds.swc, and rpc.swc. Flex 2 SDK includes the SWC files in the flex_install_dir/
frameworks/libs directory. Flex Builder includes the SWC files in the flex_builder_install_dir/
Flex SDK 2/frameworks/libs directory. Flex Data Services includes the SWC files in the 
flex_webapp_root/WEB-INF/flex/libs directory.

The following table describes the included SWC files:

Distributing SWC files
After you generate a SWC file, you can use it in your Flex applications. If you are running a 
Flex application on an application server with Flex Data Services, you copy the SWC file to 
the flex_webapp_root/WEB-INF/flex/user_classes directory. 

SWC file Description

charts.swc Contains all the charting components. This is a separate product that 
you can add to your Flex installation. For more information, see Part 
7, “Charting Components,” in Flex 2 Developer’s Guide.

charts_rb.swc Contains the resource bundles for the Flex Charting components. For 
more information about resource bundles, see Chapter 25, 
“Localizing Flex Applications,” in Flex 2 Developer’s Guide.

fds_rb.swc Contains the resource bundles for Flex Data Services classes.

fds.swc Contains the class libraries for working with Flex Data Services. This 
file is only available for Flex Data Services developers. For more 
information, see Chapter 47, “Understanding Flex Messaging,” in 
Flex 2 Developer’s Guide.

flex.swc Contains the Flex framework. Used for building ActionScript-only 
applications.

framework_rb.swc Contains the resource bundles for the framework.

framework.swc Contains all the built-in components of the Flex framework.

playerglobal.swc Contains the Flash class libraries, such as flash.utils and flash.net, 
and the Flash primitives, such as String and Object.

rpc.swc Contains the class libraries for working with RPC services, including 
SOAP-compliant web services, Adobe remote object services, and 
REST-style services. For more information, see Chapter 44, 
“Understanding RPC Components,” in Flex 2 Developer’s Guide.



About manifest files 231

You can also copy SWC files to a directory specified by the library-path compiler option. 
You must store SWC files at the top level of the user_classes directory or the directory 
specified by the library-path. You cannot store SWC files in subdirectories. 

To use a SWC file when compiling components or applications from the command line or 
from within Flex Builder, you specify the location of the SWC file with the library-path 
compiler option.

Using components in SWC files
If a component in a SWC file does not have a namespace, you can add a generic namespace 
identifier in your <mx:Application> tag to use the component, as the following example 
shows:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:a="*">

If the component has a package name as part of its namespace, you must do one of the 
following:

■ Add the package name to the namespace declaration in the <mx:Application> tag; for 
example:
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 

xmlns:but="mycomponents.*">

■ Create a manifest file and recompile the SWC file. You pass the manifest file to the compc 
compiler by using the namespace option. In the <mx:Application> tag, you specify only 
the unique namespace URI that you used with compc. For more information on 
specifying a namespace for the component, see “Compiling components using 
namespaces” on page 221.

About manifest files
Manifest files map a component namespace to class names. They define the package names 
that the components used before being compiled into a SWC file. They are not required when 
compiling SWC files, but they can help keep your source files organized.

N
O

T
E

Do not store custom components or classes in the flex_root/WEB-INF/flex/libs 
directory. This directory is for Adobe classes and components.



232 Using the Flex Compilers

Manifest files use the following syntax:
<?xml version="1.0"?>
<componentPackage>

<component id="component_name" class="component_class"/>
[...]

</componentPackage>

For example:
<?xml version="1.0"?>
<componentPackage>

<component id="MyButton" class="package1.MyButton"/>
<component id="MyOtherButton" class="package2.MyOtherButton"/>

</componentPackage>

In a manifest file, the id property of each <component> tag must be unique. It is the name 
you use for the tag in your Flex applications. For example, you define the id as MyButton in 
the manifest file:
<component id="MyButton" class="asbutton.MyButton"/>

In your Flex application, you use MyButton as the tag name:
<local:MyButton label="Click Me"/>

The id property in the manifest file entry is optional. If you omit it, you can use the class 
name as the tag. This is useful if you have two classes with the same name in different 
packages. In this case, you use the manifest to define the tags, as the following example shows:
<?xml version="1.0"?>
<componentPackage>

<component id="BoringButton" class="boring.MyButton"/>
<component id="GreatButton" class="great.MyButton"/>

</componentPackage>

Some SWC files consist of multiple components from different packages, so compc includes a 
manifest file with your SWC file in those cases to prevent compiler errors.

When compiling the SWC file, you specify the manifest file by using the namespace and the 
include-namespaces options. You define the namespace and its contents with the 
namespace option:
-namespace http://mynamespace mymanifest.xml

Then you identify that namespace’s contents for inclusion in the SWC file:
-include-namespaces http://mynamespace



233

10
CHAPTER 10

Using Runtime Shared 
Libraries

Adobe Flex supports Runtime Shared Libraries (RSLs). This topic describes how to configure 
and use them to take advantage of their benefits.

Contents
About RSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Creating libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Using RSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

RSL example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

About RSLs
One way to reduce the size of your application’s SWF file is by externalizing shared assets into 
stand-alone files that can be separately downloaded and cached on the client. These shared 
assets are loaded by multiple applications at run time, but must be transferred only once to 
the client. These shared files are known as Runtime Shared Libraries or RSLs.

If you have multiple applications but those applications share a core set of components or 
classes, the users have to download those assets only once as an RSL. The applications that 
share the assets in the RSL use the same cached RSL as the source for the libraries as long as 
they are in the same domain. The resulting file size for the applications can be reduced. The 
benefits increase as the number of applications that use the RSL increases. If you have only 
one application, RSLs do not reduce the aggregate download size, and might increase it.

Definition of RSLs
RSLs are libraries of components that are shared by applications in the same domain. You 
create an RSL by using either the Flex Builder’s Build Project option for your Flex Library 
Project or the compc command-line compiler. After you compile the RSL, you can pass the 
library’s location to the compiler when compiling your application. 



234 Using Runtime Shared Libraries

You can benefit from the use of RSLs if you meet all of the following conditions:

■ You host multiple applications in the same domain.
■ You have custom component libraries.
■ More than one application uses those custom component libraries.

Not all applications can benefit from RSLs.

The following is a list of typical applications that can benefit from RSLs:

■ Large applications that load multiple smaller applications that use a common component 
library. The top-level application and all the subordinate applications can share 
components that are stored in a common RSL.

■ A family of applications on a server built with a common component library. When the 
user accesses the first application, they download an application SWF file and the RSL. 
When they access the second application, they download only the application SWF file 
(the client has already downloaded the RSL, and the components in the RSL are shared 
between the two applications).

■ A single monolithic application can benefit from RSLs if the application itself changes 
frequently, but it has a large set of components that rarely change. In this case, the 
components are downloaded once, while the application itself might be downloaded 
many times. This might be the case with the charts add-on to Flex Charting components, 
where you might have an application that uses the charts that you change frequently, but 
the charting components themselves remain fairly static.

About linking
Understanding linking can help you understand how RSLs work. The Flex compilers support 
static linking and dynamic linking. Static linking is the most common method of compiling a 
Flex application. However, dynamic linking lets you take advantage of RSLs to achieve some 
improvements on final SWF file size and, therefore, application download time.

When you use static linking, the compiler includes all referenced classes and their 
dependencies in the application SWF file when you compile the application. The end result is 
a large file that takes longer to download but loads and runs quickly because all the code is in 
the SWF file. 

To compile your application with a library and to statically link its definitions into your 
application, you use the library-path and include-libraries options to specify locations 
of SWC files. When you use the library-path option, the compiler includes only those 
classes required at compile time in the SWF file. The include-libraries option includes 
the entire contents of the SWC file, regardless of which classes are required. You can also use 
the source-path and includes options to embed individual classes in your SWF file.



About RSLs 235

Dynamic linking is when some classes used by an application are left in an external file that is 
loaded at run time. The result is a smaller SWF file size for the main application, but the 
application relies on external files that are loaded during run time. RSLs use dynamic linking.

When you want to use dynamically link classes, you compile them into a library. You then 
instruct the compiler to exclude that library’s contents from the application SWF file. You 
must provide link-checking at compile time even though the classes are not going to be 
included in the final SWF file. 

To specify which files to dynamically link, you use the external-library-path, externs, 
or load-externs compiler options. These options instruct the compiler to exclude their 
arguments from inclusion in the application, but to check links against them and prepare to 
load them at run time. The external-library-path option specifies SWC files or 
directories for dynamic linking. The externs option specifies individual classes or symbols 
for dynamic linking. The load-externs option specifies an XML file that describes what 
classes to use for dynamic linking. This XML file has the same syntax as the file produced by 
the link-report compiler option. For more information about this report, see “Examining 
linker dependencies” on page 98.

The order in which you specify the external assets for RSLs is significant because the base 
classes must be loaded before the classes that use them.

You also use the runtime-shared-libraries option to specify the location of an RSL that 
contains the dynamically linked components. This RSL contains the matching set of 
definitions and is used at run time.

You can view the linking information for your application by using the link-report 
compiler option. For more information about the command-line compiler options, see 
Chapter 9, “Using the Flex Compilers,” on page 179.

For more information on using these compiler options to use RSLs, see “Using RSLs” 
on page 240.

RSL considerations
RSLs are not necessarily beneficial for all applications. Try to test both the download time and 
startup time of your application with and without RSLs.

RSLs are not shared across domains. If a client runs an application in domain1 and uses an 
RSL, and then launches an application in domain2 that uses the same RSL, the client 
downloads the RSL twice. 



236 Using Runtime Shared Libraries

An RSL usually increases the startup time of an application. This is because the entire library 
is loaded into a Flex application regardless of how much of the RSL is actually used. For this 
reason, make your RSLs as small as possible. This contrasts with how statically linked libraries 
are used. When you compile a Flex application, the compiler extracts just the components it 
needs from those component libraries. In general, libraries can be any size you want and only 
affect compilation time, not download time.

If you have several applications that share several components libraries, it might be tempting 
to merge the libraries into a single library that you use as an RSL. However, if the individual 
applications generally do not use more than one or two libraries each, the penalty for having 
to load the large RSL might be higher than it would be to have the applications incrementally 
load multiple smaller RSLs.

Test your application with both a single large RSL and multiple smaller RSLs, because the 
gains are largely application specific. It may be better to build one RSL that has some extra 
classes than to build two RSLs, if most users will load both of them anyway.

If you do have overlapping classes in multiple RSLs, be sure to synchronize the versions so 
that the wrong class is never loaded.

You cannot use RSLs in ActionScript-only projects if the base class is Sprite or MovieClip. 
RSLs require that the base class, such as Application or SimpleApplication, understand RSL 
loading.

About the framework.swc file
The Flex framework is a standard SWC file. By default, it is not used as an RSL. The entire 
framework.swc file is not linked into every application. The Flex compiler only links in the 
parts of the framework.swc file that the application uses. For example, if an application only 
uses Button, Panel, and TextArea controls, only the Button, Panel, and TextArea controls and 
their dependencies are linked by the compiler.

Most applications link in at least some of the contents of the framework.swc file, so you might 
wonder why the framework.swc file is not an RSL. The reason is that the classes in an RSL are 
always entirely linked in, regardless of which classes inside the RSL the application uses. If the 
RSL has many classes, and the application links in only a few of them, the compiler still links 
in all classes in the RSL into the application’s SWF file.

If you used the framework.swc file as an RSL, all applications would include the entire 
framework. The effect of this would be to drastically increase startup time and increase the 
initial download size of applications. The framework.swc file is very large, and you would 
need many applications to offset the initial download size difference that would result from 
using it as an RSL.



About RSLs 237

RSL benefits
The following example shows the possible benefit of separating shared components into an 
RSL. In this example, the component library’s size is 150 KB (kilobytes) and the compiled 
application’s size is 100 KB. Without RSLs, you compile the component library into both 
applications for an aggregate download size of 500 KB. If you add a third or fourth 
application, the aggregate download size increases by 250 KB for each additional application.

With RSLs, the RSL needs to be downloaded once only. The result is an aggregate download 
size of 350 KB, or a 30% savings. If you add a third or fourth application, the aggregate 
download size increases by 100 KB for each additional application. The benefits of using an 
RSL increase with each new application in the same domain. 

In this example, the applications with statically-linked libraries run only after Flash Player 
loads the 250 KB for each application. With dynamically linked RSLs, however, only the first 
application must load the entire 250 KB (the combined size of the application and the RSL). 
The second application runs when just 100 KB loads because the RSL is cached.

The illustrated scenario shows one possible outcome. If your applications do not use all of the 
components in the RSL, the size difference (and, as a result, the savings in download time) 
might not be as great. 

Without RSLs
(Using statically-linked 

component libraries)

With RSLs

Flash Player

500 KB 350 KB

250 KB

App1 + lib

250 KB

App2 + lib RSL

150 KB 

App1

100 KB 

App2

100 KB



238 Using Runtime Shared Libraries

Suppose that each application only uses half of the components in the RSL. If you statically 
link the library, the total download size is 100 KB + 75 KB for the first application and the 
library and 100 KB + 75 KB for the second application and the library, or an aggregate 
download size of 350 KB. In this second case, the combined download size when using RSLs 
and when not using RSLs is the same.

In general, the more Flex applications that are running on the same domain that use a 
common RSL, the greater the benefit.

Using RSLs
To use RSLs, you perform the following tasks:

■ Create a library You can do this with either the Flex Builder Library Project or the 
compc command-line compiler. You can output the library as a SWC file or an open 
directory. The library includes a library.swf file and a catalog.xml file. For more 
information, see “Creating libraries” on page 238.

■ Define the library as an external resource You do this when you compile the 
application by passing the compile-time location of the components as well as the run-
time location of the library’s library.swf file. For more information, see “Using RSLs” 
on page 240.

Creating libraries
You can create a library using either Flex Builder or the compc command-line compiler. The 
library is a SWC file or open directory that contains a library.swf file and a catalog.xml file. A 
library generally contains custom components and classes. You can use libraries as RSLs, but it 
is not a requirement. 

In Flex Builder, you add resources to a library by using the Flex Library Build Path dialog box. 

On the command line, you add files to the library by using the include-classes and 
include-namespaces options.

The following command-line example creates a library called CustomCellRenderer with the 
compc compiler:
compc -source-path ../mycomponents/components/local  

-include-classes CustomCellRendererComponent -directory=true -debug=false 
-output ../libraries/CustomCellRenderer



Creating libraries 239

All included components must be statically linked in the library.swf file of the resulting SWC 
file. When you use the compc compiler to create the library, do not use the include-file 
option to add files to the library, because this option does not statically link files inside the 
library.swf file.

You can specify that the output be an open directory rather than a SWC file by using the 
directory option. If you do not specify that the output be an open directory, you must 
extract the library.swf file from the SWC file with a compression utility, such as PKZip, 
because you later refer to the location of that file. In addition, when you deploy the RSL and 
the application, the SWF file must be unzipped.

The options on the command line in the previous example can also be represented by a 
configuration file as the following example shows:
<?xml version="1.0">
<flex-config>

<compiler>
<source-path>

<path-element>mycomponents/components/local</path-element>
</source-path>

</compiler>
<output>libraries/CustomCellRenderer</output>
<directory>true</directory>
<debug>false</false>
<include-classes>

<class>CustomCellRendererComponent</class>
</include-classes>

</flex-config>

The output is an open directory that contains the following files:

■ catalog.xml
■ library.swf

After you create the library.swf file, you can compile your application and specify that file’s 
location for use at run time. For more information, see “Using RSLs” on page 240.

Set the debug option to false when you use the compc compiler to compile an RSL. The 
default value is true for compc, which means that the compiler, by default, includes extra 
information in the SWC file to make it debuggable. Avoid this for an RSL you intend to use 
in production so that the RSL’s files are as small as possible.

For more information on using the compc compiler options, see Chapter 9, “Using the Flex 
Compilers,” on page 179.



240 Using Runtime Shared Libraries

Using RSLs
To use RSLs when compiling your application, you use the following application compiler 
options:

■ runtime-shared-libraries Provides the run-time location of the shared library. 
■ external-library-path|externs|load-externs Provides the compile-time location 

of the libraries. The compiler requires this for dynamic linking.

Use the runtime-shared-libraries option to specify the location of the SWF file that the 
application loads as an RSL at run time. You specify the location of the SWF file relative to 
the deployment location of the application. For example, if you store the library.swf file in the 
web_root/libraries directory on the web server, and the application in the web root, you specify 
libraries/library.swf.

You can specify one or more libraries with this option. If you specify more than one library, 
separate each library with a comma. 

Use the external-library-path option to specify the location of the library’s SWC file or 
open directory that the application references at compile time. The compiler provides 
compile-time link checking by using the library specified by this option. You can also use the 
externs or load-externs options to specify individual classes or an XML file that defines 
the contents of the library.

The following command-line example compiles the MyApp application that uses two 
libraries:
mxmlc -runtime-shared-libraries= 

../libraries/CustomCellRenderer/library.swf, 

../libraries/CustomDataGrid/library.swf  
-external-library-path=../libraries/CustomCellRenderer,  
../libraries/CustomDataGrid MyApp.mxml

The order of the libraries is significant because the base classes must be loaded before the 
classes that use them.

You can also use a configuration file, as the following example shows:
<compiler>

<external-library-path>
<path-element>../libraries/CustomCellRenderer</path-element>
<path-element>../libraries/CustomDataGrid</path-element>
<path-element>../libs/playerglobal.swc</path-element>

</external-library-path>
</compiler>
<runtime-shared-libraries>

<url>../libraries/CustomCellRenderer/library.swf</url>
<url>../libraries/CustomDataGrid/library.swf</url>

</runtime-shared-libraries>



RSL example 241

The runtime-shared-libraries option is the relative location of the library.swf files when 
the application has been deployed. The external-library-path option is the location of 
the SWC file or open directory at compile time. Because of this, you must know the 
deployment locations of the libraries relative to the application when you compile it. You do 
not have to know the deployment structure when you create the library, because you use the 
compc command-line compiler to create a SWC file.

In the previous example, the file structure at compile time looks like this:
c:/appfiles/MyApp.mxml
c:/libraries/CustomCellRenderer/CustomCellRenderer.swc
c:/libraries/CustomDataGrid/CustomDataGrid.swc

The presence of the library.swf at compile time is not actually necessary. The Flex compiler 
does not verify the SWF file’s existence, but does compile the location specified by the 
runtime-shared-libraries option into the application code.

The deployed files are structured like this:
web_root/MyApp.swf
web_root/libraries/CustomCellRenderer/library.swf
web_root/libraries/CustomDataGrid/library.swf

For more information about using the compilers, see Chapter 9, “Using the Flex Compilers,” 
on page 179.

RSL example
This example walks you through the process of using an RSL with an application. It uses the 
command-line compilers, but you can apply the same process to creating and using RSLs with 
a Flex Builder project.

Keep in mind that a SWC file is a library that contains a SWF file that contains run-time 
definitions and additional metadata that is used by the compiler for dependency tracking, 
among other things. You can open SWC files with any archive tool, such as WinZip, and 
examine the contents.

Before you use an RSL, first learn how to statically link a SWC file. To do this, you build a 
SWC file and then set up your application to use that SWC file.

T
IP The playerglobal.swc file is the default external library that defines the base classes for 

Flash Player. 



242 Using Runtime Shared Libraries

In this example you have an application named app.mxml that uses the 
ProductConfigurator.as and ProductView.as classes. The files and classes involved are:
project/src/app.mxml
project/libsrc/ProductConfigurator.as
project/libsrc/ProductView.as 
project/lib/
project/bin/

To compile this application, you can link the classes in the /libsrc directory using the source-
path option, as the following example shows:
cd project/src
mxmlc -o=../bin/app.swf -source-path+=../libsrc app.mxml

This command adds the ProductConfigurator and ProductView classes to the SWF file.

To use a library, you use the compc compiler to create the SWC file, as the following 
command shows:
cd project
compc -source-path+=libsrc -debug=false -o=lib/mylib.swc 

ProductConfigurator ProductView

Be sure to set the debug option to false. The result is the project/lib/mylib.swc file, which 
contains the implementations of the ProductConfigurator and ProductView classes.

To recompile your application with the new library, you add the library with the library-
path option, as the following example shows:
cd project/src 
mxmlc -o=../bin/app.swf -library-path+=../lib/mylib.swc app.mxml

After you create a library, you can recompile the application to use the RSL. Complete the 
following three steps:

1. Instruct the compiler to not link the library classes into your application.

2. Prepare the RSL so that it can be found and used at run time.

3. Instruct the compiler to generate extra metadata that loads your RSL. 

The first step is to specifically exclude the classes in your library from being compiled into 
your application. You do this with the external-library-path option, as the following 
example shows:
cd project/src
mxmlc -o=../bin/app.swf -external-library-path+=../lib/mylib.swc app.mxml



RSL example 243

If you tried to run app.swf now, Flash Player would throw a run-time exception because the 
ProductConfigurator and ProductView classes are not yet defined. The external-library-
path configuration option instructs the compiler to compile against these libraries, but omit 
their definitions. You can also use the externs option if you want to exclude classes on a 
class-by-class basis, but it is generally more convenient to use the external-library-path 
option.

The next step is to prepare the RSL so that it can be found at run time. To do this, you extract 
the library.swf file from the SWC file with any archive tool, such as WinZip or jar. 

The following example extracts the SWF file by using the unzip utility on the command line:
cd project/lib
unzip mylib.swc library.swf
mv library.swf ../bin/myrsl.swf

This example renames the library.swf file to myrsl.swf and and moves it to the same directory 
as the application SWF file. 

The final step is to recompile the application to use the RSL. You do this with the runtime-
shared-libraries option, as the following example shows:
cd project/src 
mxmlc -o=../bin/app.swf -external-library-path+=../lib/mylib.swc  

-runtime-shared-libraries=myrsl.swf app.mxml

The new SWF file dynamically loads the RSL before running the application.



244 Using Runtime Shared Libraries



245

1 1
CHAPTER 11

Logging

You can log messages at several different points in an Adobe Flex application’s life cycle. You 
can log messages when you compile the application, when you deploy it to a web application 
server, or when a client runs it. You can log messages on the server or on the client. These 
messages are useful for informational, diagnostic, and debugging activities. This topic 
describes the various logging mechanisms you can use when you work with Flex applications.

Contents
About logging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Using the debugger version of Flash Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247

Client-side logging and debugging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Compiler logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

Web-tier logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265

About logging
When you encounter a problem with your application, whether during compilation or at run 
time, the first step is to gather diagnostic information to locate the cause of the problem. The 
source of a problem typically is in one of two places: the server web application, or the client 
application.

Flex includes several different logging and error reporting mechanisms that you can use to 
track down failures:

Client-side logging and debugging With the debugger version of Flash Player, you can use 
the global trace() method to write out messages or configure a TraceTarget to customize log 
levels of applications for data services-based applications. For more information, see “Client-
side logging and debugging” on page 251. 

Compiler logging  When compiling your Flex applications from the command line and in 
Flex Builder, you can view deprecation and warning messages, and sources of fatal errors. For 
more information, see “Compiler logging” on page 264.



246 Logging

Web-tier logging The Flex web application provides some control over logging messages 
for the FlexMxmlServlet and lets you write the web-tier compiler log messages to your 
application server’s logs. For more information, see “Web-tier logging” on page 265.

Server-side data services logging You can perform server-side logging for data service 
messages. You configure server-side logging in the logging section of the Flex services 
configuration file (services-config.xml). By default, output is sent to System.out, but you can 
also configure the logging to use your application server’s logging mechanism. For more 
information, see Chapter 43, “Configuring Data Services,” in Flex 2 Developer’s Guide.

The following example shows the types of logging you can do in the appropriate 
environment:

To use client-side debugging utilities such as the trace() global method and client-side data 
services logging, you must install and configure the debugger version of Flash Player. This is 
described in “Using the debugger version of Flash Player” on page 247. The debugger verison 
of Flash Player is not required to log compiler messages, server-side data services messages, or 
web-tier compiler messages.

Development
environment

Client 
(Flash Debug Player) Web application server

● The trace() method
● Logging API
● Client-side data services

● Web-tier compiler
● Server-side data services
● Web application server
● FlexMxmlServlet

● Command-line compiler
● Flex Builder compiler



Using the debugger version of Flash Player 247

Using the debugger version of Flash 
Player
The debugger verison of Flash Player is a tool for development and testing. Like the standard 
version of Adobe Flash Player 9, it runs SWF files in a browser or on the desktop in a stand-
alone player. Unlike Flash Player, the debugger version of Flash Player enables you to do the 
following:

■ Output statements and application errors to the debugger version of the Flash Player local 
log file by using the trace() method.

■ Write data services log messages to the local log file of the debugger version of Flash 
Player.

■ View run-time errors (RTEs).
■ Use the fdb command-line debugger.
■ Use the Flex Builder debugging tool.

The debugger version of Flash Player lets you take advantage of the client-side logging utilities 
such as the trace() method and the Logging API. You are not required to run the debugger 
version of Flash Player to log compiler and web-tier messages because these logging 
mechanisms do not require a player.

In nearly all respects, the debugger version of Flash Player appears to be the same as the 
standard version of Flash Player. To determine whether or not you are running the debugger 
version of Flash Player, use the instructions in “Determining Flash Player version in Flex” 
on page 250.

The debugger version of Flash Player comes in ActiveX, Plug-in, and stand-alone versions for 
Microsoft Internet Explorer, Netscape-based browsers, and desktop applications, respectively. 
You can find the debugger version of Flash Player installers in the following locations:

■ Flex Builder: install_dir/Player/debug
■ Flex SDK: install_dir/player/debug
■ Flex Data Services: install_dir/resources/player/debug

Uninstall your current Flash Player before you install the debugger version of Flash Player. For 
information on installing the debugger version of Flash Player, see the Flex installation 
instructions.

N
O

T
E

Any client running the debugger version of Flash Player can view your application’s 
trace() statements and other log messages unless you disable them. For more 
information, see “Suppressing debug output” on page 81.



248 Logging

You can enable or disable trace logging, change the location of the trace output, and perform 
other configuration tasks for the debugger version of Flash Player. For more information, see 
“Configuring the debugger version of Flash Player” on page 248.

Configuring the debugger version of Flash Player
You use the settings in the mm.cfg text file to configure the debugger version of Flash Player. 
You must create this file when you first configure the debugger version of Flash Player. The 
location of this file depends on your operating system. The following table shows where to 
create the mm.cfg file for several operating systems:

Operating system Create file in …

Macintosh OS X MacHD:Library:Application Support:macromedia:mm.cfg 

Microsoft Windows XP C:\Documents and Settings\user_name\mm.cfg

Windows 2000 C:\mm.cfg

Linux home/user_name/mm.cfg

T
IP On Windows, the location of the mm.cfg file is determined by the HOMEDRIVE and HOMEPATH 

environment variables. The HOMEDRIVE variable specifies the drive letter of the path to the 
home directory. On most Microsoft Windows systems, the default value is C:, the 
primary hard disk drive. The HOMEPATH variable specifies the path to the home directory, 
relative to HOMEDRIVE. 
On Microsoft Windows 2000, the default location is \. 
On Microsoft Windows XP, the default location is \Documents and Settings\user_name, 
where user_name is your system user name. 



Using the debugger version of Flash Player 249

The following table lists the properties that you can set in the mm.cfg file: 

The following sample mm.cfg file enables error reporting and trace logging:
ErrorReportingEnable=1
TraceOutputFileEnable=1

Property Description

ErrorReportingEnable Enables the logging of error messages. 
Set the ErrorReportingEnable property to 1 to enable the debugger 
version of Flash Player to write error messages to the log file. To 
disable logging of error messages, set the ErrorReportingEnable 
property to 0. 
The default value is 0.

MaxWarnings Sets the number of warnings to log before stopping.
The default value of the MaxWarnings property is 100. After 100 
messages, the debugger version of Flash Player writes a message to 
the file stating that further error messages will be suppressed.
Set the MaxWarnings property to override the default message limit. 
For example, you can set it to 500 to capture 500 error messages.
Set the MaxWarnings property to 0 to remove the limit so that all error 
messages are recorded.

TraceOutputFileEnable Enables trace logging.
Set TraceOutputFileEnable to 1 to enable the debugger version of 
Flash Player to write trace messages to the log file. Disable trace 
logging by setting the TraceOutputFileEnable property to 0. 
The default value is 0.

TraceOutputFileName Note: Beginning with the Flash Player 9 Update, Flash Player 
ignores the TraceOutputFileName property.
Sets the location of the log file. By default, the debugger version of 
Flash Player writes error messages to a file named flashlog.txt, 
located in the same directory in which the mm.cfg file is located. 
Set TraceOutputFileName to override the default name and location of 
the log file by specifying a new location and name in the following 
form: On Macintosh OS X, you should use colons to separate 
directories in the TraceOutputFileName path rather than slashes.
TraceOutputFileName=<fully qualified path/filename> 



250 Logging

Log file location
The default log file location changed between the initial Flash Player 9 release and the Flash 
Player 9 Update. In the initial Flash Player 9 release, the default location is the same directory 
as the mm.cfg file and you can update the log file location and name through the 
TraceOutputFileName property. Beginning with the Flash Player 9 Update, you cannot 
modify the log file location or name and the log file location has changed, as follows:

Windows C:\Documents and Settings\user_name\Application Data\Macromedia\Flash 
Player\Logs 

Macintosh Users/user_name/Library/Preferences/Macromedia/Flash Player/Logs/

Linux home/user_name/macromedia/Flash_Player/Logs/flashlog.txt

Determining Flash Player version in Flex
To determine which version of Flash Player you are currently using—the standard version or 
the debugger version—you can use the Capabilities class. This class contains information 
about Flash Player and the system that it is currently operating on. To determine if you are 
using the debugger version of Flash Player, you can use the isDebugger property of that class. 
This property returns a Boolean value: the value is true if the current player is the debugger 
version of Flash Player and false if it is not. 

The following example uses the playerType, version, and isDebugger properties of the 
Capabilities class to display information about the Player:
<?xml version="1.0"?>
<!-- logging/CheckDebugger.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
        import flash.system.Capabilities;

        private function reportVersion():String {
            if (Capabilities.isDebugger) {
                return "Debugger version of Flash Player";
            } else {
                return "Flash Player";
            }
        }
        private function reportType():String {
            return Capabilities.playerType + " (" + Capabilities.version + 
")";
        }
    ]]></mx:Script>
    <mx:Label text="{reportVersion()}"/>
    <mx:Label text="{reportType()}"/>
</mx:Application>



Client-side logging and debugging 251

Other properties of the Capabilities class include hasPrinting, os, and language.

Client-side logging and debugging
Often, you use the trace() method when you debug applications to write a checkpoint 
message on the client, which signals that your application reached a specific line of code, or to 
output the value of a variable. 

The debugger version of Flash Player has two primary methods of writing messages that use 
trace():

■ The global trace() method. The global trace() method prints Strings to a specified 
output log file. For more information, see “Using the global trace() method” on page 252.

■ Logging API. The Logging API provides a layer of functionality on top of the trace() 
method that you can use with your custom classes or with the data service APIs. For more 
information, see “Using the Logging API” on page 252.

Configuring the debugger version of Flash Player to 
record trace() output
To record messages on the client, you must use the debugger version of Flash Player. 

The debugger version of Flash Player sends output from the trace() method to the 
flashlog.txt file. The default location of this file is the same directory as the mm.cfg file. You 
can customize the location of this file by using the TraceOutputFileName property in the 
mm.cfg file. You must also set TraceOutputFileEnable to 1 in your mm.cfg file. 

For more information, see “Configuring the debugger version of Flash Player” on page 248.



252 Logging

Using the global trace() method
You can use the debugger version of Flash Player to capture output from the global trace() 
method and write that output to the client log file. You can use trace() statements in any 
ActionScript or MXML file in your application. Because it is a global function, you are not 
required to import any ActionScript classes packages to use the trace() method.

The following example defines a function that logs the various stages of the Button control’s 
startup life cycle:
<?xml version="1.0"?>
<!-- logging/ButtonLifeCycle.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script><![CDATA[
        private function traceEvent(event:Event):void {
            trace(event.currentTarget + ":" + event.type);
        }
    ]]></mx:Script>

    <mx:Button id="b1" label="Click Me"
        preinitialize="traceEvent(event)"
        initialize="traceEvent(event)" 
        creationComplete="traceEvent(event)"
        updateComplete="traceEvent(event)"
    />

</mx:Application>

The following example shows the output of this simple application:
TraceLifecycle_3.b1:Button:preinitialize
TraceLifecycle_3.b1:Button:initialize
TraceLifecycle_3.b1:Button:creationComplete
TraceLifecycle_3.b1:Button:updateComplete
TraceLifecycle_3.b1:Button:updateComplete
TraceLifecycle_3.b1:Button:updateComplete

Messages that you log by using the trace() method should be Strings. If the output is not a 
String, use the String(...) String conversion function, or use the object’s toString() 
method, if one is available, before you call the trace() method.

To enable tracing, you must configure the debugger version of Flash Player as described in 
“Configuring the debugger version of Flash Player to record trace() output” on page 251.

Using the Logging API
The Logging API lets an application capture and write messages to a target’s configured 
output. Typically the output is equivalent to the global trace() method, but it can be 
anything that an active target supports.



Client-side logging and debugging 253

The Logging API consists of the following parts:

Logger The logger provides an interface for sending a message to an active target. Loggers 
implement the ILogger interface and call methods on the Log class. The two classes of 
information used to filter a message are category and level.  Each logger operates under a 
category. A category is a string used to filter all messages sent from that logger. For example, a 
logger can be acquired with the category “orange”. Any message sent using the “orange” logger 
only reaches those targets that are listening for the “orange” category. In contrast to the 
category that is applied to all messages sent with a logger, the level provides additional filtering 
on a per-message basis. For example, to indicate that an error occurred within the “orange” 
subsystem, you can use the error level when logging the message. The supported levels are 
defined by the LogEventLevel class. The Flex framework classes that use the Logging API set 
the category to the fully qualified class name as a convention.

Log target The log target defines where log messages are written. Flex predefines two log 
targets: TraceTarget and MiniDebugTarget. The most commonly used log target is 
TraceTarget. This log target connects the Logging API to the trace system so that log messages 
are sent to the same location as the output of the trace() method. For more information on 
the trace() method, see “Using the global trace() method” on page 252. 

You can also write your own custom log target. For more information, see “Implementing a 
custom logger with the Logging API” on page 259.

Destination The destination is where the log message is written. Typically, this is a file, but 
it can also be a console or something else, such as an in-memory object. The default 
destination for TraceTarget is the flashlog.txt file. You configure this destination on the client.

The following example shows a sample relationship between a logger, a log target, and a 
destination:

Flex Data Services uses the Logging API for diagnostic and error reporting. For more 
information, see “Using the Logging API with data services” on page 255.

You can also use the Logging API to send messages from custom code you write. You can do 
this when you create a set of custom APIs or components or when you extend the Flex 
framework classes and you want users to be able to customize their logging. For more 
information, see “Implementing a custom logger with the Logging API” on page 259.

flashlog.txt

Destination

TraceTarget

Log target

ILogger

Logger



254 Logging

The following packages within the Flex framework are the only ones that use the Logging 
API:

■ mx.rpc.* 
■ mx.messaging.* 
■ mx.data.*

To configure client-side logging in MXML or ActionScript, create a TraceTarget object to log 
messages. The TraceTarget object logs messages to the same location as the output of the 
trace() statements. You can also use the TraceTarget to specify which classes to log messages 
for, and what level of messages to log.

The levels of logging messages are defined as constants of the LogLevelEvent class. The 
following table lists the log level constants and their numeric equivalents, and describes each 
message level:

Logging level 
constant (int)

Description

ALL (0) Designates that messages of all logging levels should be logged.

DEBUG (2) Logs internal Flex activities. This is most useful when debugging an 
application.
Select the DEBUG logging level to include DEBUG, INFO, WARN, ERROR, and 
FATAL messages in your log files.

INFO (4) Logs general information.
Select the INFO logging level to include INFO, WARN, ERROR, and FATAL 
messages in your log files.

WARN (6) Logs a message when the application encounters a problem. These 
problems do not cause the application to stop running, but could lead to 
further errors.
Select the WARN logging level to include WARN, ERROR, and FATAL messages 
in your log files.

ERROR (8) Logs a message when a critical service is not available or a situation has 
occurred that restricts the use of the application.
Select the ERROR logging level to include ERROR and FATAL messages in 
your log files.

FATAL (1000) Logs a message when an event occurs that results in the failure of the 
application.
Select the FATAL logging level to include only FATAL messages in your 
log files.



Client-side logging and debugging 255

The log level lets you restrict the amount of messages sent to any running targets. Whatever 
log level you specify, all “lower” levels of messages are written to the log. For example, if you 
set the log level to DEBUG, all log levels are included. If you set the log level to WARNING, only 
WARNING, ERROR, and FATAL messages are logged. If you set the log level to the lowest level of 
message, FATAL, only FATAL messages are logged. 

Using the Logging API with data services
The data services classes are designed to use the Logging API to log client-side and server-side 
messages.

To enable the Logging API with data services:

1. Create a TraceTarget logging target and set the value of one or more filter properties to 
include the classes whose messages you want to log. You can filter the log messages to a 
specific class or package. You can use wildcards (*) when defining a filter.

2. Set the log level by using the level property of the log target. You can also add detail to 
the log file output, such as the date and time that the event occurred, by using properties 
of the log target. 

3. When you create a target within ActionScript, call the Log class’s addTarget() method to 
add the new target to the logging system. Calling the addTarget() method is not required 
when you create a target in MXML. As long as the client is using the debugger version of 
Flash Player and meets the requirements described in “Configuring the debugger version 
of Flash Player to record trace() output” on page 251, the messages are logged.



256 Logging

The following example configures a TraceTarget logging target in ActionScript:
<?xml version="1.0"?>
<!-- charts/ActionScriptTraceTarget.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initLogging();">
    
    <mx:Script><![CDATA[
        import mx.collections.ArrayCollection;
        import mx.logging.targets.*;
        import mx.logging.*;

        [Bindable]
        public var myData:ArrayCollection;

        private function initLogging():void {
            // Create a target.
            var logTarget:TraceTarget = new TraceTarget();

            // Log only messages for the classes in the mx.rpc.* and 
            // mx.messaging packages.
            logTarget.filters=["mx.rpc.*","mx.messaging.*"];

            // Log all log levels.
            logTarget.level = LogEventLevel.ALL;

            // Add date, time, category, and log level to the output.
            logTarget.includeDate = true;
            logTarget.includeTime = true;
            logTarget.includeCategory = true;
            logTarget.includeLevel = true;

            // Begin logging.
            Log.addTarget(logTarget);
        }
    ]]></mx:Script>

    <!-- HTTPService is in the mx.rpc.http.* package -->
    <mx:HTTPService 
        id="srv" 
        url="../assets/data.xml" 
        useProxy="false" 
        result="myData=ArrayCollection(srv.lastResult.data.result)"
    />

    <mx:LineChart id="chart" dataProvider="{myData}" showDataTips="true">
        <mx:horizontalAxis>
            <mx:CategoryAxis categoryField="month"/>
        </mx:horizontalAxis>
        <mx:series>
            <mx:LineSeries yField="apple" name="Apple"/>



Client-side logging and debugging 257

            <mx:LineSeries yField="orange" name="Orange"/>
            <mx:LineSeries yField="banana" name="Banana"/>
        </mx:series>
    </mx:LineChart>

    <mx:Button id="b1" click="srv.send();" label="Load Data"/>

</mx:Application>

In the preceding example, the filters property is set to log messages for all classes in the 
mx.rpc and mx.messaging packages. In this case, it logs messages for the HTTPService class, 
which is in the mx.rpc.http.* package.



258 Logging

You can also configure a log target in MXML. When you do this, though, you must be sure to 
use an appropriate number (such as 2) rather than a constant (such as DEBUG). The following 
example sets the values of the filters for a TraceTarget logging target by using MXML syntax:
<?xml version="1.0"?>
<!-- charts/MXMLTraceTarget.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" 
creationComplete="initApp();">
    
    <mx:Script><![CDATA[
        import mx.collections.ArrayCollection;
        import mx.logging.Log;

        [Bindable]
        public var myData:ArrayCollection;
        
        private function initApp():void {
            Log.addTarget(logTarget);
        }
        
    ]]></mx:Script>

    <mx:TraceTarget id="logTarget" includeDate="true" includeTime="true" 
includeCategory="true" includeLevel="true">
        <mx:filters>
            <mx:Array>
                <mx:String>mx.rpc.*</mx:String>
                <mx:String>mx.messaging.*</mx:String>
            </mx:Array>
        </mx:filters>
        <!-- 0 is represents the LogEventLevel.ALL constant. -->
        <mx:level>0</mx:level>
    </mx:TraceTarget>

    <!-- HTTPService is in the mx.rpc.http.* package -->
    <mx:HTTPService 
        id="srv" 
        url="../assets/data.xml" 
        useProxy="false" 
        result="myData=ArrayCollection(srv.lastResult.data.result)"
    />

    <mx:LineChart id="chart" dataProvider="{myData}" showDataTips="true">
        <mx:horizontalAxis>
            <mx:CategoryAxis categoryField="month"/>
        </mx:horizontalAxis>
        <mx:series>
            <mx:LineSeries yField="apple" name="Apple"/>
            <mx:LineSeries yField="orange" name="Orange"/>
            <mx:LineSeries yField="banana" name="Banana"/>



Client-side logging and debugging 259

        </mx:series>
    </mx:LineChart>

    <mx:Button id="b1" click="srv.send();" label="Load Data"/>

</mx:Application>

Implementing a custom logger with the Logging API
If you write custom components or an ActionScript API, you can use the Logging API to 
access the trace system in the debugger version of Flash Player. You do this by defining your 
log target as a TraceTarget, and then calling methods on your logger when you log messages.



260 Logging

The following example extends a Button control. It writes log messages for the startup life 
cycle events, such as initialize and creationComplete, and the common UI events, such 
as click and mouseOver. 
package { // The empty package.
    import mx.controls.Button;
    import flash.events.*;
    import mx.logging.*;
    import mx.logging.targets.*;
        
    public class MyCustomLogger extends Button {

        private var myLogger:ILogger;

        public function MyCustomLogger() {
            super();
            initListeners();
            initLogger();
        }
        private function initListeners():void {
            // Add event listeners life cycle events.
            addEventListener("preinitialize", logLifeCycleEvent);
            addEventListener("initialize", logLifeCycleEvent);
            addEventListener("creationComplete", logLifeCycleEvent);
            addEventListener("updateComplete", logLifeCycleEvent);
            
            // Add event listeners for other common events.
            addEventListener("click", logUIEvent);      
            addEventListener("mouseUp", logUIEvent);        
            addEventListener("mouseDown", logUIEvent);      
            addEventListener("mouseOver", logUIEvent);      
            addEventListener("mouseOut", logUIEvent);       
        }
        private function initLogger():void {
            myLogger = Log.getLogger("MyCustomClass");
        }

        private function logLifeCycleEvent(e:Event):void {
            if (Log.isInfo()) {
                myLogger.info(" STARTUP: " + e.target + ":" + e.type);
            }
        }

        private function logUIEvent(e:MouseEvent):void {
            if (Log.isDebug()) {
                myLogger.debug(" EVENT:   " + e.target + ":" + e.type);
            }
        }
    }
}



Client-side logging and debugging 261

Within the application that uses the MyCustomLogger class, define a TraceTarget, as the 
following example shows:
<?xml version="1.0"?>
<!-- charts/LoadCustomLogger.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*" >
    <mx:TraceTarget level="0" includeDate="true" includeTime="true" 
includeCategory="true" includeLevel="true">
        <mx:filters>
            <mx:Array>
                <mx:String>*</mx:String>
            </mx:Array>
        </mx:filters>
    </mx:TraceTarget>
    <MyCustomLogger/>
</mx:Application>

After running this application, the flashlog.txt file looks similar to the following: 
3/9/2006 18:58:05.042 [INFO] MyCustomLogger STARTUP: 

Main_3.mcc:MyCustomLogger:preinitialize
3/9/2006 18:58:05.487 [INFO] MyCustomLogger STARTUP: 

Main_3.mcc:MyCustomLogger:initialize
3/9/2006 18:58:05.557 [INFO] MyCustomLogger STARTUP: 

Main_3.mcc:MyCustomLogger:creationComplete
3/9/2006 18:58:05.567 [INFO] MyCustomLogger STARTUP: 

Main_3.mcc:MyCustomLogger:updateComplete
3/9/2006 18:58:05.577 [INFO] MyCustomLogger STARTUP: 

Main_3.mcc:MyCustomLogger:updateComplete
3/9/2006 18:58:05.577 [INFO] MyCustomLogger STARTUP: 

Main_3.mcc:MyCustomLogger:updateComplete
3/9/2006 18:58:06.849 [DEBUG] MyCustomLogger EVENT:   

Main_3.mcc:MyCustomLogger:mouseOver
3/9/2006 18:58:07.109 [DEBUG] MyCustomLogger EVENT:   

Main_3.mcc:MyCustomLogger:mouseDown
3/9/2006 18:58:07.340 [DEBUG] MyCustomLogger EVENT:   

Main_3.mcc:MyCustomLogger:mouseUp
3/9/2006 18:58:07.360 [DEBUG] MyCustomLogger EVENT:   

Main_3.mcc:MyCustomLogger:click
3/9/2006 18:58:07.610 [DEBUG] MyCustomLogger EVENT:   

Main_3.mcc:MyCustomLogger:mouseOut

To log a message, you call the appropriate method of the ILogger interface. The ILogger 
interface defines a method for each log level: debug(), info(), warn(), error(), and 
fatal(). The logger logs messages from these calls if their levels are at or under the log 
target’s logging level. If the target’s logging level is set to all, the logger records messages 
when any of these methods are called.



262 Logging

To improve performance, a static method corresponding to each level exists on the Log class, 
which indicates if any targets are listening for a specific level. Before you log a message, you 
can use one of these methods in an if statement to avoid running the code. The previous 
example uses the Log.isDebug() and Log.isInfo() static methods to ensure that the 
messages are of level INFO or DEBUG before logging them.

The previous example logs messages dispatched from any category because the TraceTarget’s 
filters property is set to the wildcard character (*). The framework code sets the category of 
the logger to the fully qualified class name of the class in which logging is being performed.  
This is by convention only; any String specified when calling Log.getLogger(x) is the 
category required in a filters property to receive the message. 

When you set the filters property for logging within the Flex framework, you can restrict 
this to a certain package or packages, or to other classes. To restrict the logging to your custom 
class only, add the category specified when the logger was acquired (“MyCustomLogger”) to 
the filters Array, as the following example shows:
<mx:filters>

<mx:Array>
<mx:String>*</mx:String>

</mx:Array>
</mx:filters>

In ActionScript, you can set the filters property by using the following syntax:
traceTarget.filters = ["p1.*", "p2.*", "otherPackage*"];

The wildcard character can appear only at the end of a value in the Array.

The Log.getLogger() method sets the category of the logger. You pass this method a String 
that defines the category. 

The value of the category must fall within the definition of at least one of the filters for the log 
message to be logged. For example, if you set the filters property to something other than 
“*” and you use Log.getLogger("MyCustomLogger"), the filter Array must include an entry 
that matches MyCustomLogger, such as “MyCustomLogger” or “My*”. 

You can include the logger’s category in your log message, if you set the logger’s 
includeCategory property to true. 

T
IP The Flex packages that use the Logging API set the category to the current class name 

by convention, but it can be any String that falls within the filters definitions. 



Client-side logging and debugging 263

You can also use the ILogger interface’s log() method to customize the log message, and you 
can specify the logging level in that method. The following example logs messages that use the 
log level that is passed into the method:
package { // The empty package.
    import mx.controls.Button;
    import flash.events.*;
    import flash.events.MouseEvent;
    import mx.logging.*;
    import mx.logging.targets.*;
        
    public class MyCustomLogger2 extends Button {

        private var myLogger:ILogger;

        public function MyCustomLogger2() {
            super();
            initListeners();
            initLogger();
        }
        private function initListeners():void {
            // Add event listeners life cycle events.
            addEventListener("preinitialize", logLifeCycleEvent);
            addEventListener("initialize", logLifeCycleEvent);
            addEventListener("creationComplete", logLifeCycleEvent);
            addEventListener("updateComplete", logLifeCycleEvent);
            
            // Add event listeners for other common events.
            addEventListener("click", logUIEvent);      
            addEventListener("mouseUp", logUIEvent);        
            addEventListener("mouseDown", logUIEvent);      
            addEventListener("mouseOver", logUIEvent);      
            addEventListener("mouseOut", logUIEvent);       
        }
        private function initLogger():void {
            myLogger = Log.getLogger("MyCustomClass");
        }

        private function logLifeCycleEvent(e:Event):void {
            if (Log.isInfo()) {
                dynamicLogger(LogEventLevel.INFO, e, "STARTUP");
            }
        }

        private function logUIEvent(e:MouseEvent):void {
            if (Log.isDebug()) {
                dynamicLogger(LogEventLevel.DEBUG, e, "EVENT");
            }
        }
        



264 Logging

        private function dynamicLogger(level:int, e:Event, 
prefix:String):void {
            var s:String = "__" + prefix + "__" + e.currentTarget + ":" + 
e.type;
            myLogger.log(level, s);
        }

    }
}

Compiler logging
Flex provides you with control over the output of warning and debug messages for the 
application and component compilers. When you compile, you can enable the message 
output to help you to locate and fix problems in your application. The settings that you use to 
control messages are defined in the flex-config.xml file or as command-line compiler options.

You have a high level of control over what compiler messages are displayed. For example, you 
can enable or disable messages, such as deprecation and binding-related warnings in the flex-
config.xml file, by using the show-deprecation-warnings and show-binding-warnings 
options. The following example disables these messages in the flex-config.xml file:
<show-deprecation-warnings>false</show-deprecation-warnings>
<show-binding-warnings>false</show-binding-warnings>

You can also set these options on the command line or as an option of the Flex Builder 
application compiler.

If you enable compiler messages, they are written to the console window (or System.out) by 
default. 

For more information on the compiler logging settings, see “Viewing warnings and errors” 
on page 227.

The web-tier compiler has an additional logging mechanism that you configure in a different 
configuration file. For more information, see “Web-tier logging” on page 265.



Web-tier logging 265

Web-tier logging
The web-tier compiler is used by the Flex web application that runs on a web application 
server. The Flex web application provides logging for the following types of messages:

Startup messages from the FlexMxmlServlet These messages are primarily informational 
in nature. For example, when the servlet starts, you will get information about your license 
version. For more information, see “Configuring web application logging” on page 265.

Web-tier compiler messages When the server running Flex Data Services responds to a 
request for an MXML file, it opens the web-tier compiler. The compiler can write error and 
warning messages to the wrapper and the web application logging mechanism. For more 
information, see “Configuring web-tier compiler logging” on page 267.

JRun application server messages If you are using the integrated JRun application server 
with Flex Data Services or Flex Builder, you can configure the JRun server logging mechanism 
by using the flex_install_dir/jrun4/servers/default/SERVER-INF/jrun.xml file. For more 
information, see “Configuring JRun logging” on page 410.

Configuring web application logging
By default, the Flex web application logs informational messages about the FlexMxmlServlet 
to the console and to a log file. These messages include information about the current license 
and file access. 

When the server starts up, the FlexMxmlServlet writes a message regarding the license service. 
In addition, when a client makes a bad file request to the FlexMxmlServlet, the servlet writes a 
“File Not Found” error message to the log. 

If you use the integrated JRun Java application server, you can view additional servlet 
initialization log entries in the jrun_install_dir/logs/default-event.log file. For more 
information, see “Configuring JRun logging” on page 410.

You configure web-tier logging by using the flex-webtier-config.xml file in the flex_root/WEB-
INF/flex directory.

The default location of the log file is flex_root/WEB-INF/flex/logs/flex.log. You can set the 
name and location, size, and the number of backup files to keep in the flex-webtier-config.xml 
file.



266 Logging

The following example shows the default logging settings in the flex-config.xml file:
<logging>

<level>info</level>
<console>

<enable>true</enable>
</console>
<file>

<enable>true</enable>
<file-name>/WEB-INF/flex/logs/flex.log</file-name>
<maximum-size>200KB</maximum-size>
<maximum-backups>3</maximum-backups>

</file>
</logging>

The value of <file-name> must be an absolute path or it must start with a forward slash (/). 
If the location is invalid, Flex logs an error to the console and the application continues 
without file logging. On UNIX, if you start the path with a forward slash and one of the 
parent directories (other than root '/') exists, the path is absolute. Otherwise, the path is 
relative to the application.

You can also set the log level for the web application logger by using the level property. This 
setting applies only to the servlet messages and not to the compiler messages.

To disable the web application’s file logging, set the value of the enable property in the file 
block to false. To disable the web application’s console logging, set the value of the 
<console> property to false, as the following example shows:
<logging>

<console>
<enable>false</enable>

</console>
...

</logging>

The web application logger can also send compiler error and warning messages to the web 
application server’s logging mechanism. For more information, see “Configuring web-tier 
compiler logging” on page 267.

For more information about the web-tier compiler, see “Using the web-tier application 
compiler” on page 183.



Web-tier logging 267

Configuring web-tier compiler logging
A request for a *.mxml file to the web application server running Flex triggers the web-tier 
compiler to compile a SWF file. When this compiler runs, it can produce warning and error 
log messages just as the command-line compiler can. However, you can have the log messages 
sent to the web application server’s logging mechanism by using the log-compiler-errors 
property in the flex-webtier-config.xml file.

The flex-webtier-config.xml file is located in the flex_root/WEB-INF/flex directory.

The web application logger does not log run-time messages, regardless of their severity. This 
logger only logs server-side compiler messages. 

To log compiler errors to the log file or console, you must set <production-mode> to false. 
If production mode is enabled, Flex does not generate log entries for compiler errors.

To write web-tier compiler warning and error messages to the web application server logging 
mechanism, set the value of the log-compiler-errors property to true, as the following 
example shows:
<debugging>

<log-compiler-errors>true</log-compiler-errors>
</debugging>

The web-tier compiler logging messages are controlled by the Flex web application logging 
mechanism. For example, the log file is limited to the size and number of backups specified in 
the logging block of the flex-webtier-config.xml file. For more information, see 
“Configuring web application logging” on page 265.

You use the level property in the logging block to set the level of log messages to write to 
the log file by using the info and error levels. Do not confuse these messages with the client-
side error messages that share the same log-level names that are written to the trace logs. These 
messages apply only to the compiler’s results, which are never written to logs on the client 
side.

When you set the production-mode property to true, the Flex application does not log any 
compiler messages, regardless of the value of the log-compiler-errors property.

For more information about the web-tier compiler, see “Using the web-tier application 
compiler” on page 183.



268 Logging



269

12
CHAPTER 12

Using the Command-Line 
Debugger

If you encounter errors in your applications, you can use the debugging tools to set and 
manage breakpoints in your code; control application execution by suspending, resuming, 
and terminating the application; step into and over the code statements; select critical 
variables to watch; evaluate watch expressions while the application is running; and so on. 
This topic describes debugging with the debugger version of Flash Player and the fdb 
command-line debugger. 

Contents
About debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Invoking the command-line debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Configuring the command-line debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276

Using the command-line debugger commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

About debugging
Debugging Flex applications can be as simple as enabling trace() statements or as complex 
as stepping into an application’s source files and running the code, one line at a time. The Flex 
Builder debugger and the command-line debugger, fdb, let you step through and debug 
ActionScript files used by your Flex applications.

This topic describes how to use the fdb command-line debugger. To use the Flex Builder 
debugger, see Using Flex Builder 2. To use either debugger, you must install and configure the 
debugger version of Flash Player. To determine if you are running the debugger version or the 
standard version of Flash Player, open any Flex application in the player and right-click the 
mouse button. If you see the Show Redraw Regions option, you are running the debugger 
version of Flash Player. For more information about the debugger version of Flash Player, and 
how to detect which player you are running, see “Using the debugger version of Flash Player” 
on page 247.



270 Using the Command-Line Debugger

Using the command-line debugger
The fdb command-line debugger is located in the flex_install_dir/bin directory. To start fdb, 
open a command prompt, change to that directory, and enter “fdb”.

For a description of available commands, use the following tutorial command:
(fdb) help

For an overview of the fdb debugger, use the following tutorial command:
(fdb) tutorial

To debug a Flex application, you first generate a debug SWF file. Debug SWF files are similar 
to other application SWF files except that they contain debugging-specific information that 
the debugger and the debugger version of Flash Player use during debugging sessions. Debug 
SWF files are larger than non-debug SWF files, so generate them only when you are going to 
debug with them.

To generate the debug SWF file using the mxmlc command-line compiler, you set the debug 
option to true, either on the command line or in the flex-config.xml file. The following 
example sets the debug option to true on the command line:
mxmlc -debug=true myApp.mxml

To generate the debug SWF file using the web-tier compiler with Flex Data Services, you can 
either set the debug compiler option to true in the flex-config.xml file or append debug=true 
on the query string:
http://www.yourdomain.com/MyApp.mxml?debug=true

As long as production mode is not enabled, the web-tier compiler will generate a debug SWF 
file when you set it by using the debug query string parameter.

After you generate a debug SWF file, you then connect fdb to the debugger version of Flash 
Player. The debugger uses this connection to transfer information from the SWF file to the 
command line so that you can add breakpoints, inspect variables, and do other common 
debugging tasks. This connection is made through TCP/IP.

Command-line debugger limitations
The command-line debugger supports debugging only at the ActionScript level and does not 
support the Flash Timeline concept. The debugger also does not support adding breakpoints 
inside script snippets in MXML tags. You can set breakpoints on event handlers defined for 
MXML tags.

Flash Player may interact with a server. The debugger does not assist in debugging the server-
side portion of the application, nor does it offer support for inspecting any of the IP 
transactions that take place from Flash Player to the server, and vice versa.



About debugging 271

Command-line debugger shortcuts
You can open commands within the fdb debugger by using the fewest number of 
nonambiguous keystrokes. For example, to use the print command, you can type p, because 
no other command begins with that letter.

Using the default browser
When you debug an application in a web browser, fdb opens the player in the default browser. 
The default browser is the browser that opens when you open a web-specific file without 
specifying an application. You must also have the debugger version of Flash Player installed 
with this browser. If you do not have the correct version of the debugger version of Flash 
Player, Flash displays an error indicating that your Flash Player does not support all fdb 
commands.

Your default browser might not be the first browser that you installed on your computer. For 
example, if you installed another web browser after installing Microsoft Internet Explorer, 
Internet Explorer might not be your default browser.

To determine your default browser:

1. From the Windows ToolBar, select Start.

2. Select Run.

3. Enter a URL in the Run dialog box; for example:
http://www.adobe.com

4. Click OK.

Windows opens the default browser or displays an error message indicating that there is 
no application configured to handle your request.

To set Internet Explorer 6.x as your default browser:

1. Open the Internet Explorer application.

2. Select Tools > Internet Options.

3. Select the Programs tab.

4. Check the “Internet Explorer should check to see whether it is the default browser” 
checkbox.

5. Click OK.

The next time you start Internet Explorer, Internet Explorer prompts you to make it the 
default browser. If you are not prompted, Internet Explorer is already your default browser.



272 Using the Command-Line Debugger

To set Firefox as your default browser:

1. Open the Firefox application.

2. Select Tools > Options.

3. Select the General icon to view general settings.

4. Check the “Firefox should check to see if it is the default browser when starting” checkbox.

5. Click OK.

The next time you start FireFox, FireFox prompts you to make it the default browser. If 
you are not prompted, FireFox is already your default browser.

About the source files
Each application can have any number of ActionScript files. Some of the files that fdb steps 
into are external class files, and some are generated by the Flex compilers.

In general, Flex generates a single file that contains ActionScript statements used in 
<mx:Script> blocks in the root MXML file, and an additional file for each ActionScript class 
that the application uses. Flex generates many source files so that you can navigate the 
application from within the debugger.

To view a list of files that are used by the application you are debugging, use the info files 
command. For more information, see “Getting status” on page 286.

The generated ActionScript class files are sometimes referred to as compilation units. For 
more information about compilation units, see “About incremental compilation” 
on page 214.

Invoking the command-line debugger
This section describes how to start a debugging session with the fdb command-line debugger.

After you start a session, you typically type continue once before you set break points and 
perform other debugging tasks. This is because the first frame that suspends debugging occurs 
before the application has finished initialization.

For more information about which commands are available after you start a debugging 
session, see “Using the command-line debugger commands” on page 277.



Invoking the command-line debugger 273

Starting a session with the stand-alone debugger 
version of Flash Player
You can start a debugging session with the stand-alone debugger version of Flash Player. You 
do this by compiling the application into a SWF file, and then invoking the SWF file with the 
fdb command-line debugger. The fdb debugger opens the debugger version of the stand-alone 
Flash Player. 

The debugger version of the stand-alone Flash Player runs as an independent application. It 
does not run within a web browser or other shell. The debugger version of the stand-alone 
Flash Player does not support any server requests, such as web services and dynamic SWF 
loading, so not all applications can be properly debugged inside the debugger version of the 
stand-alone Flash Player.

To debug with the debugger version of the stand-alone Flash Player:

1. Compile the Flex application’s debug SWF file and set the debug option to true. 

The following example compiles an application with the mxmlc command-line compiler:
mxmlc -debug=true myApp.mxml 

You can also compile an application SWF file by using the web-tier compiler or the Flex 
Builder compiler. For more information on Flex compilers, see “About the Flex compilers” 
on page 179.

2. Find the flex_install_dir/bin directory. You installed the Flex application files to this 
directory. 

3. Type fdb from the command line. The fdb prompt appears.

You can also open fdb with the JAR file, as the following example shows:
java -jar ../lib/fdb.jar

4. Type run at the fdb prompt, followed by the path to the SWF file; for example:
(fdb) run c:/myfiles/fonts/EmbedFlashTypeFont.swf

The fdb debugger starts the Flex application in the debugger version of the stand-alone 
Flash Player, and the (fdb) command prompt appears. You can also start a session by 
typing fdb filename.swf at the command prompt, rather than by using the run 
command.



274 Using the Command-Line Debugger

Starting a session in a browser with Flex Data 
Services
You can have Flex Data Services compile the application when you want to start a debugging 
session. You do this by starting the Flex Data Services server and invoking the MXML file 
from fdb.

When you use Flex Data Services to start a debugging session, you open the debugger version 
of Flash Player in the default browser. For information about changing the default browser, 
see “Using the default browser” on page 271.

To debug a SWF file with Flex Data Services:

1. Start the application server on which the Flex web application is running. If you are using 
Flex Data Services with the integrated JRun server, start the default JRun server.

2. Open a separate console window.

3. Find the flex_install_dir/bin directory. You installed the Flex application files to this 
directory. 

4. Type fdb from the command line, followed by the path to the MXML file; for example:
fdb http://localhost:8100/flex/MyApp.mxml 

You can also open fdb with the JAR file, as the following example shows:
java -jar ../lib/fdb.jar http://localhost:8100/flex/MyApp.mxml

The fdb debugger starts the Flex application in your default browser and appends 
?debug=true to the query string. This generates a debug SWF file if one is not already 
present. The (fdb) command prompt appears in the console window, as the following 
example shows:
Attempting to launch and connect to Player using URI
http://localhost:8100/flex/wrapper/file1.mxml
Player connected; session starting.
Set breakpoints and then type 'continue' to resume the session.
(fdb)

If fdb does not connect to the player, you might not have the debugger version of Flash 
Player installed for your default browser. For information on installing the debugger 
version of Flash Player, see the installation instructions.



Invoking the command-line debugger 275

Starting a session in a browser without Flex Data 
Services
You can start a debugging session in a browser when you are not running Flex Data Services. 
This requires that you pre-compile the SWF file and are able to request it from a web server.

To debug a SWF file without Flex Data Services:

1. Compile the Flex application’s debug SWF file and set the debug option to true. The 
following example compiles an application with the mxmlc command-line compiler:
mxmlc -debug=true myApp.mxml 

You can also compile an application SWF file by using the web-tier compiler or the Flex 
Builder compiler. For more information on Flex compilers, see “About the Flex compilers” 
on page 179.

2. Create an HTML wrapper that embeds this SWF file, if you have not already done so. For 
more information on creating a wrapper, see Chapter 16, “Creating a Wrapper,” on 
page 367.

3. Copy the SWF file and its wrapper files to your web server.

4. Find the flex_install_dir/bin directory. You installed the Flex application files to this 
directory. 

5. Type fdb in the command line. The fdb prompt appears.

You can also open fdb with the JAR file, as the following example shows:
java -jar ../lib/fdb.jar

6. Type run at the fdb prompt; for example:
(fdb) run

This instructs fdb to wait for a player to connect to it.
7. In your browser, request a wrapper that embeds the debug SWF file. 

Do not request the SWF file directly in a browser because some browsers do not allow you 
to run a SWF file directly.



276 Using the Command-Line Debugger

If you started the browser before you started fdb, the browser prompts you to supply a 
location for the debugger utility, as the following example shows: 

In this case, select localhost and click OK.
Alternatively, you can type run filename.html at the command line, and fdb launches 
the browser for you.

Configuring the command-line debugger
You can configure the current session of the fdb command-line debugger using variables that 
exist entirely within fdb; they are not part of your application. The configuration variables are 
prefixed with $.

The following table describes the most common configuration variables used by fdb:

To set the value of a configuration variable, you use the set command, as the following 
example shows:
(fdb) set $invokegetters = 0

For more information on using the set command, see Chapter 12, “Changing data values,” 
on page 283.

Variable Description

$invokegetters Set to 0 to prevent fdb from firing getter functions. The default 
value is 1 (enabled).

$listsize Sets the number of lines to display with the list command. The 
default value is 10.



Using the command-line debugger commands 277

Using the command-line debugger 
commands
This section describes commands that you use to debug and navigate your Flex application by 
using the fdb command-line debugger.

Running the debugger
The fdb debugger provides several commands for stepping through the debugged application’s 
files. The following table summarizes the commands that let you step through the debugged 
application files:

When you start a session, fdb stops execution before Flex renders the application on the 
screen. Use the continue command to get to the application’s starting screen. 

Command Description

continue Continues running the application.

file [file] Specifies an application to be debugged, without starting it. This command 
does not cause the application to start; use the run command without an 
argument to start debugging the application.

finish Continues until the function exits.

next [N] Continues to the next source line in the application. The optional argument 
N, means do this N times or until the program stops for some other reason.

quit Exits from the debug session.

run [file] Starts a debugging session by running the specified file. To run the 
application that the file command previously specified, execute the run 
command without any options.
The run command starts the application in a browser or stand-alone Flash 
Player.

step [N] Steps into the application. Optional argument N, means do this N times or 
until the program stops for some other reason.
These commands are non-blocking, which means that when they return, the 
client has at least begun the operation, but it has not necessarily finished it.



278 Using the Command-Line Debugger

The following example shows a sample application after it starts:
(fdb) continue
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] ComboBase: y = undefined text_mc.bl = undefined
[trace] RadioButtonGroup.addInstance: instance = 

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton1 data = undefined label = 2005
[trace] RadioButtonGroup.addInstance: instance = 

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton2 data = undefined label = 2004
[trace] RadioButtonGroup.addInstance: instance = 

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton3 data = undefined label = 2005
[trace] RadioButtonGroup.addInstance: instance = 

_level0._VBox0._Accordion0._For
m2._FormItem3._RadioButton4 data = undefined label = 2006
[trace] ComboBase: y = 0 text_mc.bl = 12
[trace] ComboBase: y = 0 text_mc.bl = 12
[trace] ComboBase: y = 0 text_mc.bl = 12
[trace] ComboBase: y = 0 text_mc.bl = 14

During the debugging session, you interact with the application in the debugger version of 
Flash Player. For example, if you select an item from the drop-down list, the debugger 
continues to output information to the command window:
[trace] SSL : ConfigureScrolling
[trace] SSP : 5 51 true 47
[trace] ComboBase: y = 0 text_mc.bl = 14
[trace] layoutChildren : bRowHeightChanged
[trace] >>SSL:layoutChildren
[trace] deltaRows 5
[trace] rowCount 5
[trace] <<SSL:layoutChildren
[trace] >>SSL:draw
[trace] bScrollChanged
[trace] SSL : ConfigureScrolling
[trace] SSP : 5 51 false 46
[trace] SSL Drawing Rows in UpdateControl 5
[trace] <<SSL:draw

You can store commonly used commands in a source file, and then load that file by using the 
source command. For more information, see “Accessing commands from a file” on page 281.



Using the command-line debugger commands 279

Setting breakpoints
Setting breakpoints is a critical aspect of debugging any application. You can set breakpoints 
on any ActionScript code in your Flex application. You can set breakpoints on statements in 
any external ActionScript file, on ActionScript statements in an <mx:Script> tag, or on 
MXML tags that have event handler properties. In the following MXML code, click is an 
event handler property:
<mx:Button click="ws.getWeather.send();"/>

Breakpoints are maintained from session to session. However, when you change the target file 
or quit fdb, breakpoints are lost.

The following table summarizes the commands for manipulating breakpoints with the 
ActionScript debugger:

Command Description

break [args] Sets a breakpoint at the specified line or function. The 
argument can be a line number or function name. With no 
arguments, the break command sets a breakpoint at the 
currently stopped line (not the currently listed line).
If you specify a line number, fdb breaks at the start of code for 
that line. If you specify a function name, fdb breaks at the 
start of code for that function.

clear [args] Clears a breakpoint at the specified line or function. The 
argument can be a line number or function name. 
If you specify a line number, fdb clears a breakpoint in that 
line. If you specify a function name, fdb clears a breakpoint at 
the beginning of that function.
With no argument, fdb clears a breakpoint in the line that the 
selected frame is executing in.
See the delete command, which clears breakpoints by 
number.

commands [breakpoint] Sets commands to execute when the specified breakpoint is 
encountered. If you do not specify a breakpoint, the 
commands are applied to the last breakpoint.



280 Using the Command-Line Debugger

The following example sets a breakpoint on the myFunc() method, which is triggered when 
the user clicks a button:
(fdb) break myFunc
Breakpoint 1 at 0x401ef: file file1.mxml, line 5
(fdb) continue
Breakpoint 1, myFunc() at file1.mxml:5
 5              ta1.text = "Clicked";
(fdb)

To see all breakpoints and their numbers, use the info breakpoints command. This will 
also tell you if a breakpoint is unresolved.

condition bnum [expression] Specifies a condition that must be met to stop at the given 
breakpoint. The fdb debugger evaluates expression when the 
bnum breakpoint is reached. If the value is true or nonzero, 
fdb stops at the breakpoint. Otherwise, fdb ignores the 
breakpoint and continues execution.
To remove the condition from the breakpoint, do not specify 
an expression.
You can use conditional breakpoints to stop on all events of a 
particular type. For example, to stop on every initialize 
event, use the following commands:
(fdb) break UIEvent:dispatch
Breakpoint 18 at 0x16cb3: file UIEventDispatcher.as, 

line 190
(fdb) condition 18 (eventObj.type == 'initialize')

delete [args] Deletes breakpoints. Specify one or more comma- or space-
separated breakpoint numbers to delete those breakpoints. 
To delete all breakpoints, do not provide an argument.

disable breakpoints [bp_num] Disables breakpoints. Specify one or more space-separated 
numbers as options to disable only those breakpoints.

enable breakpoints [bp_num] Enables breakpoints that were previously disabled. Specify 
one or more space-separated numbers as options to enable 
only those breakpoints.

Command Description



Using the command-line debugger commands 281

You can use the commands command to periodically print out values of objects and variables 
whenever fdb encounters a particular breakpoint. The following example prints out the value 
of ta1.text (referred to as $1), executes the where command, and then continues when it 
encounters the button’s click handler breakpoint:
(fdb) commands 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just 'end'.
>print ta1.text
>where
>continue
>end
(fdb) cont
Breakpoint 1, myFunc() at file1.mxml:5
 5              ta1.text = "Clicked";
$1 = ""
#0   [MovieClip 1].myFunc(event=undefined) at file1.mxml:5
#1   [MovieClip 1].handler(event=[Object 18127]) at file1.mxml:15

Breakpoints are not specific to a single SWF file. If you set a breakpoint in a file that is 
common to multiple SWF files, fdb applies the breakpoint to all SWF files.

For example, suppose you have four SWF files loaded and each of those SWF files contains 
the same version of an ActionScript file, view.as. To set a breakpoint in the init() function of 
the view.as file, you need to set only a single breakpoint in one of the view.as files. When fdb 
encounters any of the init() functions, it triggers the break.

Accessing commands from a file
You can use the source command to read fdb commands from a file and execute them. This 
lets you write commands such as breakpoints once and use them repeatedly when debugging 
the same application in different sessions or across different applications.

The source command has the following syntax:
(fdb) source file

The value of file can be a filename for a file in the current working directory or an absolute 
path to a remote file. To determine the current working directory, use the pwd command. 

The following examples read in the mycommands.txt file from different locations:
(fdb) source mycommands.txt
(fdb) source mydir\mycommands.txt
(fdb) source c:\mydir\mycommands.txt



282 Using the Command-Line Debugger

Examining data values
The print command displays values of members such as variables, objects, and properties. 
This command excludes functions, static variables, constants, and inaccessible member 
variables (such as the members of an Array). 

The print command uses the following syntax:
print [variable_name | object_name[.] | property]

The print command prints the value of the specified variable, object, or property. You can 
specify the name or name.property to narrow the results. If fdb can determine the type of the 
entity, fdb displays the type.

If you specify the print command on an object, fdb displays a numeric identifier for the 
object.

To list all the properties of an object, use trailing dot-notation syntax. The following example 
prints all the properties of the object myButton:
(fdb) print myButton

To print the value of a single variable, use dot-notation syntax, as the following example 
shows:
(fdb) print myButton.label

Use the what command to view the context of a variable. The what command has the 
following syntax:
(fdb) what variable

Use the display command to add an expression to the autodisplay list. Every time debugging 
stops, fdb prints the list of expressions in the autodisplay list. The display command has the 
following syntax:
(fdb) display [expression]

The expression is the same as the arguments for the print command, as the following 
example shows:
(fdb) display myButton.color

To view all expressions on the autodisplay list, use the info display command. 

To remove an expression from the autodisplay list, use the undisplay command. The 
undisplay command has the following syntax:
(fdb) undisplay [list_num]

Use the undisplay command without an argument to remove all entries on the autodisplay 
list. Specify one or more list_num options separated by spaces to remove numbered entries 
from the autodisplay list.



Using the command-line debugger commands 283

You can temporarily disable autodisplay expressions by using the disable display 
command. The disable command has the following syntax:
(fdb) disable display [display_num]

Specify one or more space-separated numbers as options to disable only those entries in the 
autodisplay list.

To re-enable the display list, use the enable display command, which has the same syntax as 
the disable display command.

Changing data values
You can use the set command to assign the value of a variable or a configuration variable. 
The set command has the following syntax:
set [expression]

Depending on the variable type, you use different syntax for the expression. The following 
example sets the variable i to the number 3:
(fdb) set i = 3

The following example sets the variable employee.name to the string Reiner: 
(fdb) set employee.name = "Reiner"

The following example sets the convenience variable $myVar to the number 20:
(fdb) set $myVar = 20

You use the set command to set the values of fdb configuration variables. For more 
information, see “Configuring the command-line debugger” on page 276.

Viewing file contents
You use the list command to view lines of code in the ActionScript files. The list 
command uses the following syntax:
list [- | line_num[,line_num] | [file_name:]line_num | file_name[:line_num] 

| [file_name:]function_name]

You use the list command to print the lines around the specified function or line of the 
current file. If you do not specify an argument, list prints 10 lines after or around the 
previous listing. If you specify a filename, but not a line number, list assumes line 1.

If you specify a single numeric argument, the list command lists 10 lines around that line. If 
you specify more than one comma-separated numeric argument, the list command displays 
lines between and including those line numbers.

To set the list location to where the execution is currently stopped, use the home command.



284 Using the Command-Line Debugger

The following example lists code from line 10 to line 15:
(fdb) list 10, 15

If you specify a hyphen (-) in the previous example, the list command displays the 10 lines 
before a previous 10-line listing. 

Specify a line number to list the lines around that line in the current file; for example:
(fdb) list 10

Specify a filename followed by a line number to list the lines around that line in that file; for 
example: 
(fdb) list effects.mxml:10

Specify a function name to list the lines around the beginning of that function; for example:
(fdb) list myFunction

Specify a filename followed by a function name to list the lines around the beginning of that 
function. This lets you distinguish among like-named static functions; for example:
(fdb) list effects.mxml:myFunction

You can resolve ambiguous matches by extending the value of the function name or filename, 
as the following examples show:

Filenames:
(fdb) list UIOb
Ambiguous matching file names:
UIComponent.as#66
UIComponentDescriptor.as#67
UIComponentExtensions.as#68
(fdb) list UIComponent.

Function names:
(fdb) list init
Ambiguous matching function names:
init
initFromClipParameters
(fdb) list init(

Viewing and changing the current file
The list command acts on the current file by default. To change to a different file, use the cf 
command. The cf command has the following syntax:
(fdb) cf [file_name|file_number]

For example, to change the file to MyApp.mxml, use the following command:
(fdb) cf MyApp.mxml



Using the command-line debugger commands 285

If you do not specify a filename, the cf command lists the name and file number of the 
current file.

To view a list of all files used by the current application, use the info files command. For 
more information, see “Getting status” on page 286.

Viewing the current working directory
Use the pwd command to view the file system’s current working directory. This is the directory 
from which fdb was run; for example:
(fdb) pwd
c:/Flex2SDK/bin/

Locating source files
Usually, fdb can find the source files for your application to display them with the list 
command. In some situations, however, you need to add a directory to the search path so that 
fdb can find the source files. This can be necessary, for example, when the application was 
compiled on a different computer than you are using to debug the application.

You use the directory command to add a directory to the search path. This command adds 
the specified directory or directories to the beginning of the list of directories that fdb searches 
for source files. The syntax for the directory command is as follows: 
(fdb) directory path

For example:
(fdb) directory C:\MySource;C:\MyOtherSource

On Windows, use the semicolon character as a separator. On Macintosh and UNIX, use the 
colon character as a separator.

To see the current list of directories in the search path, use the show directories command.

Using truncated file and function names
The fdb debugger supports truncated file and function names. You can specify file_name 
and function_name arguments with partial names, as long as the names are unambiguous. 

If you use truncated file and function names, fdb tries to map the argument to an 
unambiguous function name first, and then a filename. For example, list foo first tries to 
find a function unambiguously starting with foo in the current file. If this fails, it tries to find 
a file unambiguously starting with foo.



286 Using the Command-Line Debugger

Printing stack traces
Use the bt command to display a back trace of all stack frames. The bt command has the 
following syntax:
(fdb) bt

Getting status
Use the info command to get general information about the application. The info 
command has the following syntax:
info [options] [args]

The info command displays general information about the application being debugged. The 
following table describes the options of the info command:

Option Description

arguments Displays the argument variables of the current stack frame.

breakpoints Displays the status of user-settable breakpoints.

display Displays the list of autodisplay expressions.

files [arg] Displays the names of all files used by the target application. This includes 
authored files and system files, plus generated files. Also indicates the file 
number for each file.
You can use wildcards and literals to select and sort the output. The info 
files command supports the following:
info files character Alphabetically lists files with names that start with 
the specified character. The following example lists all files starting with the 
letter V:
info files V
info files *.extension Alphabetically lists all files with the given 
extension. The following example lists all files with the as extension:
info files *.as
info files *string* Alphabetically lists all files with names that include 
string.

functions [arg] Displays all function names used in this application. The info functions 
command optionally takes an argument; for example:
info functions Lists all functions in all files.
info functions Lists all functions in the current file.
info functions MyApp.mxml Lists all functions in the MyApp.mxml file.

handle Displays settings for fault handling in the debugger.

locals Displays the local variables of the current stack frame.

sources Displays authored source files used by the target application.



Using the command-line debugger commands 287

For additional information about these options, use the help command, as the following 
example shows:
(fdb) help info targets

Handling faults
Use the handle command to specify how fdb reacts to Flash Player exceptions during 
execution. To view the current settings, use the info command, as the following example 
shows:
(fdb) info handle

The handle command has the following syntax:
(fdb) handle exception [action]

The fault_type is the category of fault that fdb handles. The action is what fdb does in 
response to that fault. The possible actions are print, noprint, stop, and nostop. The 
following table describes these actions:

stack Displays the backtrace of the stack.

swfs Displays all current SWF files.

targets Displays the HTTP or file URL of the target application.

variables Displays all global and static variable names.

Action Description

print Prints a message if this type of fault occurs.

noprint Does not print a message if this type of fault occurs.

stop Stops execution of the debugger if this type of fault occurs.

nostop Does not stop execution of the debugger if this type of fault occurs.

Option Description



288 Using the Command-Line Debugger

Getting help
Use the help command to get information on particular topics. The help command has the 
following syntax:
help [topic]

The help command provides a relatively terse description of each command and its usage. 
The following example opens the help command:
(fdb) help

Type help followed by the command name to get the full help information, as the following 
example shows:
(fdb) help delete

Terminating the session
You use the kill and exit commands to end the current debugging session and exit from the 
fdb application. The kill and exit commands do not take any arguments. If fdb opened the 
default browser, you can also terminate the fdb session by closing the browser window.

To stop the current session, use the kill command; for example:
(fdb) kill

Using the kill command does not quit the fdb application. You can immediately start 
another session. To exit from fdb, use the exit command; for example:
(fdb) exit



289

13
CHAPTER 13

Using ASDoc

ASDoc is a command-line tool that you can use to create API language reference 
documentation as HTML pages from the classes in your Flex application. The Adobe Flex 
team uses the ASDoc tool to generate the Adobe Flex 2 Language Reference.

Contents
About the ASDoc tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

Creating ASDoc comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Documenting ActionScript elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Documenting MXML files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

ASDoc tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Running the ASDoc tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307

About the ASDoc tool
The ASDoc tool parses one or more ActionScript class definitions and MXML files, and 
generates API language reference documentation for all public and protected methods and 
properties, and for all [Bindable], [DefaultProperty], [Event], [Style], and [Effect] 
metadata tags.

You can specify a single class, multiple classes, an entire namespace, or a combination of these 
inputs as inputs to the ASDoc tool. 

ASDoc generates its output as a directory structure of HTML files that matches the package 
structure of the input class files. Also, ASDoc generates an index of all public and protected 
methods and properties. To view the ASDoc output, you open the index.html file in the top-
level directory of the output. 



290 Using ASDoc

Invoking the ASDoc tool
To invoke ASDoc, invoke the asdoc utility from the bin directory of your Flex installation. 
For example, from the bin directory, enter the following command to create output for the 
Flex Button class:
asdoc -source-path C:\flex\frameworks\source 

-doc-classes mx.controls.Button 
-main-title "Flex API Documentation" 
-window-title "Flex API Documentation" 
-output flex-framework-asdoc

In this example, the source code for the Button class is in the directory 
C:\flex\frameworks\source\mx\controls. The output is written to C:\flex\bin\flex-framework-
asdoc directory. 

To view the output, open the file C:\flex\bin\flex-framework-asdoc\index.html. For more 
information on running the asdoc command, see “Running the ASDoc tool” on page 307. 

Creating ASDoc comments
A standard programing practice is to include comments in source code. The ASDoc tool 
recognizes a specific type of comment in your source code and copies that comment to the 
generated output. This section describes the formatting and parsing rules for comments 
recognized by the ASDoc tool.

Writing an ASDoc comment
An ASDoc comment consists of the text between the characters /** that mark the beginning 
of the ASDoc comment, and the characters */ that mark the end of it. The text in a comment 
can continue onto multiple lines.

Use the following format for an ASDoc comment:
/** 
* Main comment text.
* 
* @tag Tag text.
*/

As a best practice, prefix each line of an ASDoc comment with an asterisk (*) character, 
followed by a single white space to make the comment more readable in the ActionScript or 
MXML file, and to ensure correct parsing of comments. When the ASDoc tool parses a 
comment, the leading asterisk and white space characters on each line are discarded; blanks 
and tabs preceding the initial asterisk are also discarded. 



Creating ASDoc comments 291

The ASDoc comment in the previous example creates a single-paragraph description in the 
output. To add additional comment paragraphs, enclose each subsequent paragraph in 
HTML paragraph tags, <p></p>. You must close the <p> tag, in accordance with XHTML 
standards, as the following example shows:
/**
* First paragraph of a multiparagraph description.
*
* <p>Second paragraph of the description.</p>
*/

All of the classes that ship with Flex contain the ASDoc comments that appear in the Adobe 
Flex 2 Language Reference. For example, view the mx.controls.Button class for examples of 
ASDoc comments. 

Placing ASDoc comments
Place an ASDoc comment immediately before the declaration for a class, interface, 
constructor, method, property, or metadata tag that you want to document, as the following 
example shows for the myMethod() method:
/**
* This is the typical format of a simple
* multiline (single paragraph) main description 
* for the myMethod() method, which is declared in 
* the ActionScript code below.
* Notice the leading asterisks and single white space
* following each asterisk.
*/
public function myMethod(param1:String, param2:Number):Boolean {}

The ASDoc tool ignores comments placed in the body of a method and recognizes only one 
comment per ActionScript statement.

A common mistake is to put an import statement between the ASDoc comment for a class 
and the class declaration. Because an ASDoc comment is associated with the next 
ActionScript statement in the file after the comment, this example associates the comment 
with the import statement, not the class declaration: 
/**
* This is the class comment for the class MyClass.
*/
import flash.display.*;   // MISTAKE - Do not to put import statement here.
class MyClass {
}



292 Using ASDoc

Formatting ASDoc comments
The main body of an ASDoc comment begins immediately after the starting characters, /**, 
and continues until the tag section, as the following example shows: 
/** 
* Main comment text continues until the first @ tag.
* 
* @tag Tag text.
*/

The first sentence of the main description of the ASDoc comment should contain a concise 
but complete description of the declared entity. The first sentence ends at the first period that 
is followed by a space, tab, or line terminator. 

ASDoc uses the first sentence to populate the summary table at the top of the HTML page for 
the class. Each type of class element (method, property, event, effect, and style) has a separate 
summary table in the ASDoc output. 

The tag section begins with the first ASDoc tag in the comment, which is defined by the first 
@ character that begins a line, ignoring leading asterisks, white space, and the leading 
separator characters, /**. The main description cannot continue after the tag section begins.

The text following an ASDoc tag can span multiple lines. You can have any number of tags, 
where some tags can be repeated, such as the @param and @see tags, while others cannot.

The following example shows an ASDoc comment that includes a main description and a tag 
section. Notice the use of white space and leading asterisks to make the comment more 
readable:
/**
* Typical format of a simple multiline comment.
* This text describes the myMethod() method, which is declared below.
*
* @param param1 Describe param1 here.
* @param param2 Describe param2 here.
*
* @return Describe return value here.
*
* @see someOtherMethod
*/
public function myMethod(param1:String, param2:Number):Boolean {}

For a complete list of the ASDoc tags, see “ASDoc tags” on page 301.



Creating ASDoc comments 293

Using the @private tag
By default, the ASDoc tool generates output for all public and protected elements in an 
ActionScript class, even if you omit the ASDoc comment. To make ASDoc ignore an element, 
insert an ASDoc comment that contains the @private tag anywhere in the comment. The 
ASDoc comment can contain additional text along with the @private tag, which is also 
excluded from the output.

ASDoc also generates output for all public classes in the list of input classes. You can specify to 
ignore an entire class by inserting an ASDoc comment that contains the @private tag before 
the class definition. The ASDoc comment can contain additional text along with the 
@private tag, which is also excluded from the output.

Excluding an inherited element
By default, the ASDoc tool copies information and a link for all ActionScript elements 
inherited by a subclass from a superclass. In some cases, a subclass may not support an 
inherited element. You can use the [Exclude] metadata tag to cause ASDoc to omit the 
inherited element from the list of inherited elements.

The [Exclude] metadata tag has the following syntax:
[Exclude(name="elementName", kind="property|method|event|style|effect")] 

For example, to exclude documentation on the click event in the MyButton subclass of the 
Button class, insert the following [Exclude] metadata tag in the MyButton.as file:
[Exclude(name="click", kind="event")] 

Using HTML tags 
You must write the text of an ASDoc comment in XHTML-compliant HTML. You can use 
selected HTML entities and HTML tags to define paragraphs, format text, create lists, and 
add anchors. For a list of the supported HTML tags, see “Summary of commonly used 
HTML elements” on page 305. 

The following example comment contains HTML tags to format the output:
/**
* This is the typical format of a simple multiline comment
* for the myMethod() method.
*
* <p>This is the second paragraph of the main description
* of the <code>myMethod</code> method.
* Notice that you do not use the paragraph tag in the
* first paragraph of the description.</p>
* 



294 Using ASDoc

* @param param1 Describe param1 here.
* @param param2 Describe param2 here.
* 
* @return A value of <code>true</code> means this; 
* <code>false</code> means that.
*
* @see someOtherMethod
*/
public function myMethod(param1:String, param2:Number):Boolean {}

Using special characters
The ASDoc tool might fail if your source files contain non-UTF-8 characters such as curly 
quotes. If it does fail, the error messages it displays should refer to a line number in the 
interim XML file that was created for that class. That can help you track down the location of 
the special character.

ASDoc passes all HTML tags and tag entities in a comment to the output. Therefore, if you 
want to use special characters in a comment, you must enter them using HTML code 
equivalents. For example, to use a less-than (<) or greater-than (>) symbols in a comment, use 
&lt; and &gt;. To use the at-sign (@) in a comment, use &64;. Otherwise, these characters 
will be interpreted as literal HTML characters in the output. 

Hiding text in ASDoc comments
The ASDoc style sheet contains a class called hide, which you use to hide text in an ASDoc 
comment by setting the class attribute to hide. Hidden text does not appear in the ASDoc 
output, as the following example shows:
/**
*  Dispatched when the user presses the Button control.
*  If the <code>autoRepeat</code> property is <code>true</code>,
*  this event is dispatched repeatedly as long as the button stays down.
*
*  <span class="hide">This text is hidden.</span>
*  @eventType mx.events.FlexEvent.BUTTON_DOWN
*/

Rules for parsing ASDoc comments
The following rules summarize how ASDoc processes an ActionScript file:

■ If an ASDoc comment precedes an ActionScript element, ASDoc copies the comment and 
code element to the output file.



Documenting ActionScript elements 295

■ If an ActionScript element is not preceded by an ASDoc comment, ASDoc copies the 
code element to the output file with an empty description.

■ If an ASDoc comment contains the @private ASDoc tag, the associated ActionScript 
element and the ASDoc comment are ignored.

■ The comment text should always precede any @ tags, otherwise the comment text is 
interpreted as an argument to an @ tag. The only exception is the @private tag, which 
can appear anywhere in an ASDoc comment.

■ HTML tags, such as <p></p>, and <ul></ul>, in ASDoc comments are passed through 
to the output. 

■ HTML tags must use XML style conventions, which means there must be a beginning 
and ending tag. For example, an <li> tag must always be closed by a </li> tag.

Documenting ActionScript elements
You can add ASDoc comments to class, property, method, and metadata elements to 
document ActionScript classes. For more information on documenting MXML files, see 
“Documenting MXML files” on page 301.

Documenting classes
The ASDoc tool automatically includes all public classes in its output. Place the ASDoc 
comment for a class just before the class declaration, as the following example shows:
/**
* The MyButton control is a commonly used rectangular button.
* MyButton controls look like they can be pressed.
* They can have a text label, an icon, or both on their face.
*/
public class MyButton extends UIComponent {
}

This comment appears at the top of the HTML page for the associated class. 

To configure ASDoc to omit the class from the output, insert an @private tag anywhere in the 
ASDoc comment, as the following example shows:
/**
* @private
* The MyHiddenButton control is for internal use only. 
*/
public class MyHiddenButton extends UIComponent {
}



296 Using ASDoc

Documenting properties
The ASDoc tool automatically includes all public and protected properties in its output. You 
can document properties that are defined as variables or defined as setter and getter methods. 

Documenting properties defined as variables
Place the ASDoc comment for a public or protected property that is defined as a variable just 
before the var declaration, as the following example shows:
/**
*  The default label for MyButton.
* 
*  @default null 
*/
public var myButtonLabel:String;

A best practice for a property is to include the @default tag to specify the default value of the 
property. The @default tag has the following format:
@default value

This tag generates the following text in the output for the property:
The default value is value. 

For properties that have a calculated default value, or a complex description, omit the 
@default tag and describe the default value in text.

ActionScript lets you declare multiple properties in a single statement. However, this does not 
allow for unique documentation for each property. Such a statement can have only one 
ASDoc comment, which is copied for all properties in the statement. For example, the 
following documentation comment does not make sense when written as a single declaration 
and would be better handled as two declarations:
/** 
 * The horizontal and vertical distances of point (x,y)
 */
public var x, y;      // Avoid this 

ASDoc generates the following documentation from the preceding code:
public var x

The horizontal and vertical distances of point (x,y)

public var y
The horizontal and vertical distances of point (x,y)



Documenting ActionScript elements 297

Documenting properties defined by setter and getter methods
Properties that are defined by setter and getter methods are handled in a special way by the 
ASDoc tool because these elements are used as if they were properties rather than methods. 
Therefore, ASDoc creates a property definition for an item that is defined by a setter or a 
getter method.

If you define a setter method and a getter method, insert a single ASDoc comment before the 
getter, and mark the setter as @private. Adobe recommends this practice because usually the 
getter comes first in the ActionScript file, as the following example shows:
/**
* Indicates whether or not the text field is enabled.
*/
public function get html():Boolean {}; 

/**
* @private
*/
public function set html(value:Boolean):void {};

The following rules define how ASDoc handles properties defined by setter and getter 
methods:

■ If you precede a setter or getter method with an ASDoc comment, the comment is 
included in the output.

■ If you define both a setter and a getter method, only a single ASDoc comment is needed – 
either before the setter or before the getter.

■ If you define a setter method and a getter method, insert a single ASDoc comment before 
the getter, and mark the setter as @private.

■ You do not have to define the setter method and getter method in any particular order, 
and they do not have to be consecutive in the source-code file.

■ If you define just a getter method, the property is marked as read-only.
■ If you define just a setter method, the property is marked as write-only.
■ If you define both a public setter and public getter method in a class, and you want to 

hide them by using the @private tag, they both must be marked @private.
■ If you have only one public setter or getter method in a class, and it is marked @private, 

ASDoc applies normal @private rules and omits it from the output.
■ A subclass always inherits its visible superclass setter and getter method definitions.



298 Using ASDoc

Documenting methods
The ASDoc tool automatically includes all public and protected methods in its output. Place 
the ASDoc comment for a public or protected method just before the function declaration, 
as the following example shows:
/**
* This is the typical format of a simple multiline documentation comment
* for the myMethod() method.
*
* <p>This is the second paragraph of the main description
* of the <code>myMethod</code> method.
* Notice that you do not use the paragraph tag in the
* first paragraph of the description.</p>
* 
* @param param1 Describe param1 here.
* @param param2 Describe param2 here.
* 
* @return A value of <code>true</code> means this; 
* <code>false</code> means that.
*
* @see someOtherMethod
*/
public function myMethod(param1:String, param2:Number):Boolean {}

If the method takes an argument, include an @param tag for each argument to describe the 
argument. The order of the @param tags in the ASDoc comment should match the order of 
the arguments to the method. The @param tag has the following syntax:
@param paramName description 

Where paramName is the name of the argument and description is a description of the 
argument. 

If the method returns a value, use the @return tag to describe the return value. The @return 
tag has the following syntax:
@return description 

Where description describes the return value. 

Documenting metadata
Flex uses metadata tags to define elements of a component. ASDoc recognizes these metadata 
tags and treats them as if there were properties or method definitions. The metadata tags 
recognized by ASDoc include:

■ [Bindable] 
■ [DefaultProperty] 



Documenting ActionScript elements 299

■ [Effect] 
■ [Event] 
■ [Style] 

For more information on these metadata tags, see Chapter 5, “Using Metadata Tags in 
Custom Components,” in Creating and Extending Flex 2 Components.

Documenting bindable properties
A bindable property is any property that can be used as the source of a data binding 
expression. To mark a property as bindable, you insert the [Bindable] metadata tag before 
the property definition, or before the class definition to make all properties defined within the 
class bindable. 

When a property is defined as bindable, ASDoc automatically adds the following line to the 
output for the property:
This property can be used as the source for data binding.

For more information on the [Bindable] metadata tag, see Chapter 5, “Using Metadata Tags 
in Custom Components,” in Creating and Extending Flex 2 Components.

Documenting default properties
The [DefaultProperty] metadata tag defines the name of the default property of the 
component when you use the component in an MXML file. 

When ASDoc encounters the [DefaultProperty] metadata tag, it automatically adds a line 
to the class description that specifies the default property. For example, see the List control in 
Adobe Flex 2 Language Reference.

For more information on the [DefaultProperty] metadata tag, see Chapter 5, “Using 
Metadata Tags in Custom Components,” in Creating and Extending Flex 2 Components.

Documenting effects, events, and styles
You use metadata tags to add information about effects, events, and styles in a class definition. 
The [Effect], [Event], and [Style] metadata tags typically appear at the top of the class 
definition file. To document the metadata tags, insert an ASDoc comment before the 
metadata tag, as the following example shows:
/**
* Defines the name style.
*/
[Style "name"]



300 Using ASDoc

For events and effects, the metadata tag includes the name of the event class associated with 
the event or effect. The following example shows an event definition from the Flex 
mx.controls.Button class:
/**
* Dispatched when the user presses the Button control.
* If the <code>autoRepeat</code> property is <code>true</code>,
* this event is dispatched repeatedly as long as the button stays down.
*
* @eventType mx.events.FlexEvent.BUTTON_DOWN
*/
[Event(name="buttonDown", type="mx.events.FlexEvent")]

In the ASDoc comment for the mx.events.FlexEvent.BUTTON_DOWN constant, you insert a 
table that defines the values of the bubbles, cancelable, target, and currentTarget 
properties of the Event class, and any additional properties added by a subclass of Event. At 
the end of the ASDoc comment, you insert the @eventType tag so that ASDoc can find the 
comment, as the following example shows:
/**
* The FlexEvent.BUTTON_DOWN constant defines the value of the 
* <code>type</code> property of the event object 
* for a <code>buttonDown</code> event.
*
* <p>The properties of the event object have the following values:</p>
* <table class=innertable>
* <tr><th>Property</th><th>Value</th></tr>
* ...
* </table>
*
* @eventType buttonDown
*/
 public static const BUTTON_DOWN:String = "buttonDown"

The ASDoc tool does several things for this event:

■ In the output for the mx.controls.Button class, ASDoc creates a link to the event class that 
is specified by the type argument of the [Event] metadata tag.

■ ASDoc copies the description of the mx.events.FlexEvent.BUTTON_DOWN constant to 
the description of the buttonDown event in the Button class. 

For a complete example, see the mx.controls.Button and mx.events.FlexEvent classes.

For more information on the [Effect], [Event], and [Style] metadata tags, see Chapter 5, 
“Using Metadata Tags in Custom Components,” in Creating and Extending Flex 2 
Components.



ASDoc tags 301

Documenting MXML files
You can use the ASDoc tool with MXML files as well as ActionScript files. All ActionScript 
entities defined in an <mx:Script> block, such as properties and methods, appear in the 
output. Items defined in MXML tags do not appear in the ASDoc output. 

Because the format of an ASDoc comment uses ActionScript syntax, you can only insert an 
ASDoc comment in an <mx:Script> block of an MXML file. 

MXML files correspond to ActionScript classes where the superclass corresponds to the first 
tag in the MXML file. For an application file, that tag is the <mx:Application> tag and 
therefore an MXML application file appears in the ASDoc output as a subclass of the 
Application class.

ASDoc tags
The following table lists the ASDoc tags:

ASDoc tag Description Example

@copy reference Copies an ASDoc comment from 
the referenced location. The main 
description, @param, and @return 
content is copied; other tags are not 
copied.
You typically use the @copy tag to 
copy information from a source 
class or interface not in the 
inheritance list of the destination 
class. If the source class or interface 
is in the inheritance list, use the 
@inheritDoc tag instead. 
You can add content to the ASDoc 
comment before the @copy tag. 
Specify the location by using the 
same syntax as you do for the @see 
tag. For more information, see 
“Using the @see tag” on page 304. 

@copy #stop 
@copy MovieClip#stop

@default value Specifies the default value for a 
property, style, or effect. The 
ASDoc tool automatically creates a 
sentence in the following form when 
it encounters an @default tag: 
The default value is value. 

@default 0xCCCCCC



302 Using ASDoc

@eventType 
package.class.CON
STANT

@eventType String

Use the first form in a comment for 
an [Event] metadata tag. It specifies 
the constant that defines the value 
of the Event.type property of the 
event object associated with the 
event. The ASDoc tool copies the 
description of the event constant to 
the referencing class. 
Use the second form in the 
comment for the constant 
definition. It specifies the name of 
the event associated with the 
constant. If the tag is omitted, 
ASDoc cannot copy the constant's 
comment to a referencing class. 

See “Documenting effects, 
events, and styles” on page 299

@example exampleText Applies style properties, generates 
a heading, and puts the code 
example in the correct location. 
Enclose the code in <listing 
version="3.0"></listing> tags. 
Whitespace formatting is preserved 
and the code is displayed in a gray, 
horizontally scrolling box. 

@example The following code 
sets the volume level for 
your sound:

<listing version="3.0" > var 
mySound:Sound = new 
Sound(); 
mySound.setVolume(VOL_HIGH)
; 

</listing>

@exampleText string Use this tag in an ASDoc comment 
in an external example file that is 
referenced by the @example tag. The 
ASDoc comment must precede the 
first line of the example, or follow 
the last line of the example. 
External example files support one 
comment before and one comment 
after example code. 

/** 
* This text does not appear 
* in the output. 
* @exampleText But this does. 
*/

ASDoc tag Description Example



ASDoc tags 303

@inheritDoc Use this tag in the comment of an 
overridden method or property. It 
copies the comment from the 
superclass into the subclass, or 
from an interface implemented by 
the subclass. 
The main ASDoc comment, @param, 
and @return content are copied; 
other tags are not. You can add 
content to the comment before the 
@inheritDoc tag.
When you include this tag, ASdoc 
uses the following search order: 
1. Interfaces implemented by the 
current class (in no particular order) 
and all of their base-interfaces.
2. Immediate superclass of current 
class.
3. Interfaces of immediate 
superclass and all of their base-
interfaces. 
4. Repeat steps 2 and 3 until the 
Object class is reached.
You can also use the @copy tag, but 
the @copy tag is for copying 
information from a source class or 
interface that is not in the 
inheritance chain of the subclass. 

@inheritDoc

@internal text Hides the text attached to the tag in 
the generated output. The hidden 
text can be used for internal 
comments. 

@internal Please do not 
publicize the undocumented 
use of the third parameter 
in this method.

@param paramName 
description

Adds a descriptive comment to a 
method parameter. The paramName 
argument must match a parameter 
definition in the method signature. 

@param fileName The name of 
the file to load.

ASDoc tag Description Example



304 Using ASDoc

Using the @see tag
The @see tag lets you create cross-references to elements within a class; to elements in other 
classes in the same package; and to other packages. You can also cross-reference URLs outside 
of ASDoc. The @see tag has the following syntax:
@see referenceOrLink [displayText]

where referenceOrLink specifies the destination of the link, and displayText optionally specifies 
the link text. The location of the destination of the @see tag is determined by the prefix to the 
referenceOrLink attribute:

■ # ASDoc looks in the same class for the link destination.
■ ClassName ASDoc looks in a class in the same package for the link destionation.
■ PackageName ASDoc looks in a different package for the link destionation.
■ global ASDoc looks in the Top Level package for the link destionation.

@private Exclude the element from the 
generated output. 
To omit an entire class, put the 
@private tag in the ASDoc 
comment for the class; to omit a 
single class element, put the 
@private tag in the ASDoc 
comment for the element. 

@private

@return description Adds a Returns section to a method 
description with the specified text. 
ASDoc automatically determines 
the data type of the return value. 

@return The translated 
message.

@see reference 
[displayText]

Adds a See Also heading with a link 
to a class element. For more 
information, see “Using the @see 
tag” on page 304. 

@see flash.display.MovieClip

@throws 
package.class.cla
ssName 
description

Documents an error that a method 
can throw. 

@throws SecurityError Local 
untrusted SWFs may not 
communicate with the 
Internet.

ASDoc tag Description Example



ASDoc tags 305

The following table shows several examples of the @see tag: 

Summary of commonly used HTML elements
The following table lists commonly used HTML tags and character codes within ASDoc 
comments:

Example Result

@see "Just a label" Text string

@see http://www.cnn.com External website

@see package-detail.html Local HTML file

@see Array Top-level class

@see AccessibilityProperties Class in same package

@see flash.display.TextField Class in different package

@see Array#length Property in top level class

@see flash.ui.ContextMenu#customItems Property in class in different package

@see #updateProperties() Method in same class as @see tag

@see Array#pop() Method in top-level class

@see flash.ui.ContextMenu#clone() Method in class in different package

@see global#Boolean() Package method in Top Level (global)

@see flash.util.#clearInterval() Package method in flash.util

Tag or 
Code

Description

<p> Starts a new paragraph. You must close <p> tags.
Do not use <p> for the first paragraph of a doc comment (the paragraph after 
the opening /**) or the first paragraph associated with a tag. Use the <p> tag 
for subsequent; for example:
/** 
* The first sentence of a main description. 
* 
* <p>This line starts a new paragraph.</p> * 
* <p>This line starts a third paragraph.</p>
*/
ASDoc ignores white space in comments; to add white space for readability in 
the AS file, do not use the <p> tag but just add blank lines.

class="hide" Hides text. Use this tag if you want to add documentation to the source file but 
do not want it to appear in the output.



306 Using ASDoc

<listing> Indicates a program listing (sample code). 
Use this tag to enclose code snippets that you format as separate paragraphs, 
in monospace font, and in a gray background to distinguish the code from 
surrounding text. You must close <listing> tags. 

<pre> Formats text in monospace font, such as a description of an algorithm or a 
formula. Do not use <br/> tags at end of line.
Use <listing> tag for code snippets. 

<br> Adds a line break. You must close this tag.
Comments for most tags are automatically formatted; you do not generally 
have to add line breaks. To create additional white space, add a new paragraph 
instead.
This tag may not be supported in the future, so use it only if necessary. 

<ul>, <li> Creates a list. You must close these tags.

<table>
<th>
<tr>
<td> 

Creates a table. For basic tables that conform to ASDoc style, set the class 
attribute to innertable. Avoid setting any special attributes. Avoid nesting 
structural items, such as lists, within tables.
ASDoc uses a standard CSS stylesheet that has definitions for the <table>, 
<th>, <tr> and <td> tags. You must close these tags. 
Use <th> for header cells instead of <td>, so the headers get formatted 
correctly.

<img> Inserts an image. To create the correct amount of space around an image, 
enclose the image reference in <p></p> tags. Captions are optional; if you use a 
caption, make it boldface. You must close the <img> tag by ending it with />, as 
the following example shows:
<img src = "../../images/matrix.jpg" />

<code> Applies monospace formatting. You must close this tag.

<strong> Applies bold text formatting. You must close this tag.

<em> Applies italic formatting. You must close this tag.

&lt; Less-than operator (<) . Ensure that you include the final semicolon (;).

&gt; Greater-than operator (>). Ensure that you include the final semicolon (;).

&amp; Ampersand (&). Ensure that you include the final semicolon (;).

~~ Asterisk (*). Because asterisks are used to delimit comments, ASDoc does not 
support asterisks within a comment, so use the double tilde (~~) to represent 
the mathematical operator.

&#x2014; Em dash.

Tag or 
Code

Description



Running the ASDoc tool 307

Running the ASDoc tool 
You use the following options to specify the list of classes processed by the asdoc command: 
doc-classes, doc-sources, doc-namespaces. The doc-classes and doc-namespaces 
options require you to specify the source-path option to specify the root directory of your 
files.

The most basic example is to specify a class or list of classes using the doc-classes option, as 
the following example shows:
asdoc -source-path . -doc-classes comps.GraphingWidget 

comps.GraphingWidgetTwo

In this example, the classes must be located at comps\GraphingWidget.as and 
comps\GraphingWidgetTwo.as, where comps is a subdirectory of the directory from which 
you run the asdoc command. The arguments of the doc-classes option use dot notation 
that corresponds to the package name of the class. 

If the classes are not in the current directory, use the source-path option to specify that 
directory. For example, if the two input classes are in the directory C:\flex\class_dir\comps, 
then use the following command-line to invoke asdoc:
asdoc -source-path C:\flex\class_dir -doc-classes comps.GraphingWidget 

comps.GraphingWidgetTwo

You can also specify the source classes by using the doc-sources option. This option causes 
asdoc to recursively search directories. The following command line generates output for all 
classes in the current directory and its subdirectories:
asdoc -source-path . -doc-sources .

&#x99; Trademark symbol (™) that is not registered. This character is superscript by 
default, so do not enclose it in <sup> tags.

&#xA0; Nonbreaking space.

&#xAE; Registered trademark symbol (®). Enclose this character in <sup> tags to make 
it superscript.

&#xB0; Degree symbol.

@ Do not use an @ sign in an ASDoc comment; instead, insert the HTML 
character code: &#64;.

Tag or 
Code

Description



308 Using ASDoc

You can specify a namespace as the input by using the doc-namespaces option. The 
following command line documents all the classes in the core framework:
asdoc -source-path frameworks 

-namespace http://framework frameworks/core-framework-manifest.xml 
-doc-namespaces http://framework

Excluding classes
All of the classes specified by the doc-classes, doc-sources, and doc-namespaces options 
are documented, with the following exceptions:

■ If you specified the class by using the exclude-classes option, the class is not 
documented.

■ If the ASDoc comment for the class contains the @private tag, the class is not 
documented. 

■ If the class is found in a SWC, the class is not documented.

In the following example, you generate output for all classes in the current directory and its 
subdirectories, except for the two classes comps\PageWidget and comps\ScreenWidget.as: 
asdoc -source-path . -doc-sources . -exclude-classes comps.PageWidget 

comps.ScreenWidget 

Note that the excluded classes are still compiled along with all of the other input classes; only 
their content in the output is suppressed.

If you set the exclude-dependencies option to true, dependent classes found when 
compiling classes are not documented. The default value is false, which means any classes 
that would normally be compiled along with the specified classes are documented. 

For example, you specify class A by using the doc-classes option. If class A imports class B, 
both class A and class B are documented. 

Options to the asdoc command
The options to the asdoc command work the same way that mxmlc and compc options 
work. For more information on mxmlc and comp, see Chapter 9, “Using the Flex Compilers,” 
on page 179. 



Running the ASDoc tool 309

The following table lists the options to the asdoc command:

Option Description

-doc-classes path-element [...] A list of classes to document. These classes must be in 
the source path. This is the default option.
This option works the same way as does the 
-include-classes option for the compc component 
compiler. For more information, see Chapter 9, “Using 
the component compiler,” on page 215. 

-doc-namespaces uri manifest A list of URIs whose classes should be documented. The 
classes must be in the source path.
You must include a URI and the location of the manifest 
file that defines the contents of this namespace. 
This option works the same way as does the 
-include-namespaces option for the compc component 
compiler. For more information, see Chapter 9, “Using 
the component compiler,” on page 215. 

-doc-sources path-element [...] A list of files that should be documented. If a directory 
name is in the list, it is recursively searched.
This option works the same way as does the 
-include-sources option for the compc component 
compiler. For more information, see Chapter 9, “Using 
the component compiler,” on page 215. 

-exclude-classes string A list of classes that should not be documented. You 
must specify individual class names. Alternatively, if the 
ASDoc comment for the class contains the @private tag, 
is not documented. 

-exclude-dependencies true|false Whether all dependencies found by the compiler are 
documented. If true, the dependencies of the input 
classes are not documented. 
The default value is false.

-footer string The text that appears at the bottom of the HTML pages 
in the output documentation.

-left-frameset-width int An integer that changes the width of the left frameset of 
the documentation. You can change this size to 
accommodate the length of your package names. 
The default value is 210 pixels.

-main-title "string" The text that appears at the top of the HTML pages in 
the output documentation. 
The default value is "API Documentation". 



310 Using ASDoc

The asdoc command also recognizes the following options from the compc component 
compiler:

■ -source-path 
■ -library-path 
■ -namespace 
■ -load-config 
■ -actionscript-file-encoding 
■ -help 
■ -advanced 
■ -benchmark 
■ -strict 
■ -warning 

For more information, see “Using the application compiler” on page 195. All other 
application compiler options are accepted but ignored so that you can use the same 
command-lines and configuration files for the ASDoc tool that you can use for mxmlc and 
compc.

-output string The output directory for the generated documentation. 
The default value is "asdoc-output".

-package name "description" The descriptions to use when describing a package in 
the documentation. You can specify more than one 
package option. 
The following example adds two package descriptions to 
the output: 
asdoc -doc-sources my_dir 

-output myDoc 
-package com.my.business "Contains business 
classes and interfaces" 
-package com.my.commands "Contains command base 
classes and interfaces"

-templates-path string The path to the ASDoc template directory. The default is 
the asdoc/templates directory in the ASDoc installation 
directory. This directory contains all the HTML, CSS, 
XSL, and image files used for generating the output. 

-window-title "string" The text that appears in the browser window in the 
output documentation. 
The default value is "API Documentation".

Option Description



311

14
CHAPTER 14

Creating Applications for 
Testing

You can create applications and components that can be tested with automated testing tools 
such as Mercury QuickTest Professional (QTP). This topic includes information intended for 
Flex developers who write applications that are then tested by Quality Control (QC) 
professionals who use these testing tools. For information on installing and running the Flex 
plug-in with QTP, QC professionals should see Testing Flex Applications with Mercury 
QuickTest Professional.

Contents
Tasks and techniques for testable applications overview . . . . . . . . . . . . . . . . . . . . . .311

Compiling applications for testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Creating testable applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Writing the wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Understanding the automation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Instrumenting events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Instrumenting custom components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328

Instrumenting composite components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

Example: Instrumenting the RandomWalk custom component  . . . . . . . . . . . . . . .339

Tasks and techniques for testable 
applications overview
Flex developers should review the information about tasks and techniques for creating testable 
applications, and then update their Flex applications accordingly. QC testing professionals 
who use QTP should use the documentation provided in the separate book, Testing Flex 
Applications with Mercury QuickTest Professional. That document is available for download 
with the Flex plug-in for QTP.



312 Creating Applications for Testing

Use the following general steps to create a testable application:

1. Review the guidelines for creating testable applications. For more information, see 
“Creating testable applications” on page 317.

2. Build a testable application or prepare the application to use automation at run time.

■ To build a testable application, you include automation libraries at compile time. 
Compile the application’s SWF file with the automation.swc, automation_agent.swc, 
and qtp.swc files specified in the compiler’s include-libraries option. If your 
application uses charts, you must also add the automation_charts.swc file. For 
information on the compilation process, see “Compiling applications for testing” 
on page 312.

■ To use automation at run time, you create a wrapper SWF file that is compiled with 
the automation libraries. In this wrapper SWF file, you use the SWFLoader to load 
the SWF file that you plan to test only at run time. For more information, see “Using 
run-time loading” on page 314.

3. Create an HTML wrapper with proper object naming. For more information, see “Writing 
the wrapper” on page 320.

4. Prepare customized components for testing. If you have custom components that extend 
UIComponent, make them testable. For more information, see “Instrumenting custom 
components” on page 328.

5. Deploy the application’s assets to a web server. Assets can include the SWF file; HTML 
wrapper; external assets such as theme files, graphics, and video files; module SWF files; 
and run-time shared libraries (RSLs). The QC professional must be able to access the main 
application. For more information about QTP, see Testing Flex Applications with Mercury 
QuickTest Professional.

Compiling applications for testing
You must precompile applications that you plan to test. The functional testing classes are 
embedded in the application at compile time, and the application has no external 
dependencies for automated testing at run time.

When you embed functional testing classes in your application SWF file at compile time, you 
increase the size of the SWF file. If the size of the SWF file is not important, you can use the 
same SWF file for functional testing and deployment. If the size of the SWF file is important, 
you typically generate two SWF files: one with functional testing classes embedded and one 
without. 



Compiling applications for testing 313

When you precompile the Flex application for testing, you must reference the 
automation.swc, automation_agent.swc, and qtp.swc files in your include-libraries 
compiler option. If your application uses charts, you must also add the 
automation_charts.swc file. When you create the final release version of your Flex application, 
you recompile the application without the references to these SWC files. For more 
information about using the automation SWC files, see the Flex Automation Release Notes.

If you do not deploy your application to a server, but instead request it by using the file 
protocol or run it from within Adobe Flex Builder, you must put the SWF file into the local-
trusted sandbox. This requires configuration information that is separate from the SWF file 
and the wrapper. For more information that is specific to QTP, see Testing Flex Applications 
with Mercury QuickTest Professional.

To include the automation.swc, automation_agent.swc, and qtp.swc libraries, you can add 
them to the compiler’s configuration file or as a command-line option. For the Adobe Flex 2 
SDK, the configuration file is located at flex_install_dir/frameworks/flex-config.xml. For 
Adobe Flex Data Services, this file is located at flex_install_dir/flex/WEB-INF/flex/flex-
config.xml file. Add the following code to the configuration file:
<include-libraries>

...
<library>/libs/automation.swc</library>
<library>/libs/automation_agent.swc</library>
<library>/libs/qtp.swc</library>

</include-libraries>

You can also specify the location of the automation.swc and qtp.swc files when you use the 
command-line compiler with the include-libraries compiler option. The following 
example adds automation.swc and qtp.swc files to the application: 
mxmlc -include-libraries+=../frameworks/libs/automation.swc;../frameworks/

libs/automation_agent.swc../frameworks/libs/qtp.swc MyApp.mxml

If your application uses charts, you must also add the automation_charts.swc file to the 
include-libraries compiler option.

Explicitly setting the include-libraries option on the command line overwrites, rather 
than appends, the existing libraries. As a result, if you add the automation.swc, 
automation_agent.swc, and qtp.swc files by using the include-libraries option on the 
command line, ensure that you use the += operator. This appends rather than overwrites the 
existing libraries that are included.

To add automated testing support to a Flex Builder project, you also add the automation.swc, 
automation_agent.swc, and qtp.swc files to the include-libraries compiler option. 



314 Creating Applications for Testing

To add the SWC files to the include-libraries compiler option in Flex Builder:

1. In Flex Builder, select Project > Properties. The Properties dialog box appears.

2. Select Flex Compiler.

3. In the Additional compiler arguments field, enter the following command, and click OK.
-include-libraries "Flex SDK 2\frameworks\libs\automation.swc" "Flex SDK 

2\frameworks\libs\automation_agent.swc" "Flex SDK 
2\frameworks\libs\qtp.swc"

In Flex Builder, the include-libraries compiler option is relative to the Flex Builder 
installation directory; the default location of this directory on Windows is 
C:\Program Files\Adobe\Flex Builder 2\. 
If your application uses charts, you must also add the automation_charts.swc file. 

Using run-time loading
You can load support for automated testing at run time. This lets you test SWF files that are 
compiled without automated testing support. To do this, you create a SWF file that does load 
automated testing. In that new SWF file, you use the SWFLoader class to load the other SWF 
file. The result is that you can test the target SWF file in a testing tool such as QTP, even 
though the SWF file was not compiled with automated testing support.

To use run-time loading of automated testing support: 

1. Create an MXML file with following code: 
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:SWFLoader source="filename.swf"  width="100%" height="100%"/>
</mx:Application>

2. Replace filename.swf with the name of your application SWF file that you plan to test. The 
loaded SWF file does not have to be compiled with automated testing support. It could be 
any application SWF file that was compiled with Adobe Flex 2.0.1. 

3. Save this file as atTemplate.mxml. 

4. Compile the atTemplate.mxml file and generate an HTML wrapper for it. Ensure that you 
include automated testing support.

5. Instruct the QC professional to record tests by requesting the atTemplate.html file.



Compiling applications for testing 315

You are not required to hard code the name of the SWF file to test. Instead, you can pass it 
dynamically by using a query string parameter. In the following example, you pass the relative 
path of the SWF file that you plan to load and test by using the automationswfurl 
parameter: 
<?xml version="1.0" encoding="utf-8"?>
<!-- at/RunTimeLoader.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" 
creationComplete="actionScriptFunction()">
    <mx:Script>
        <![CDATA[
        import flash.external.*;
        public function init():void {
            myLoader.addEventListener(IOErrorEvent.IO_ERROR, 
                ioErrorHandler);
        }
        private function ioErrorHandler(event:IOErrorEvent):void {
            trace("ioErrorHandler: " + event);
        }
        public function actionScriptFunction():void {
            init();
            myLoader.source = 
                Application.application.parameters.automationswfurl;
        }
        ]]>
    </mx:Script>
    <mx:SWFLoader id="myLoader" width="100%" height="100%"/>
</mx:Application>

The following example shows a URL that you could use to request the application:
http://localhost/automation.html?automationswfurl=../applications/myapp.swf

To use this example, you must convert the query string parameters to a flashVars variable in 
the HTML wrapper. The Adobe Flex Data Services server does this automatically for you if 
you request an MXML file; however, you can also do convert the query string parameters with 
any scripting language such as JSP, ASP.Net, or client-side JavaScript. 

The following sample HTML wrapper uses JavaScript to convert the automationswfurl 
query string parameter to a flashVars variable:
<!-- saved from url=(0014)about:internet -->
<html lang="en"><head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Runtime Loading Sample</title>

</head>
<body scroll="no" top="0" left="0" >

<script language='javascript' charset='utf-8'>
function getQueryVariable(variable) {

var atquery = window.location.search.substring(1);
var atstr = atquery.split("&");



316 Creating Applications for Testing

for (var i=0;i<atstr.length;i++) {
var atvar = atstr[i].split("=");
if (atvar[0] == variable) {

return atvar[1];
}

}
}

document.write('<object classid="clsid:D27CDB6E-AE6D-11cf-96B8 
-444553540000" id="automationExample" width="90%" height="90% 
codebase="http://fpdownload.macromedia.com/get/flashplayer/current 
/swflash.cab">');

document.write('<param name="movie" value="automation.swf"/>');
document.write('<param name="quality" value="high"/>');
document.write('<param name="bgcolor" value="#869ca7"/>');
document.write('<param name="allowScriptAccess" value="sameDomain"/>');
document.write('<param name="flashvars" value="automationswfurl= 

'+getQueryVariable("automationswfurl")+'"/>');
document.write('</object>');

</script>
</body>
</html>

For more information, see "Communicating with the Wrapper" in Flex 2 Developer’s Guide.

Testing applications that load external libraries
Applications that load other SWF file libraries require a special setting for automated testing 
to function properly. A library that is loaded at run time (including run-time shared libraries 
(RSLs)) must be loaded into the ApplicationDomain of the loading application. If the SWF 
file used in the application is loaded in a different application domain, automated testing 
record and playback will not function properly.

The following example shows a library that is loaded into the same ApplicationDomain: 
import flash.display.*;
import flash.net.URLRequest;
import flash.system.ApplicationDomain;
import flash.system.LoaderContext;
 
var ldr:Loader = new Loader();
 
var urlReq:URLRequest = new URLRequest("RuntimeClasses.swf");
var context:LoaderContext = new LoaderContext();
context.applicationDomain = ApplicationDomain.currentDomain;
loader.load(request, context);



Creating testable applications 317

Creating testable applications
As a Flex developer, there are some techniques that you can employ to make Flex applications 
as “test friendly” as possible. One of the most important tasks that you can perform is to make 
sure that objects ares identifiable in the testing tool’s scripts. This means that you should set 
the value of the id property for all controls that are tested, and ensure that you use a 
meaningful string for that id property. If you can use unique IDs for each control, the testing 
scripts are more readable. 

Providing meaningful identification of objects
When working with testing tools such as QTP, a QC professional only sees the visual 
representation of objects in your application. A QC professional generally does not have 
access to the underlying code. When a QC professional records a script, it’s very helpful to see 
IDs that help the tester identify the object clearly. You should take some time to understand 
how testing tools interpret Flex applications and determine what names to use for the test 
objects in the test scripts. 

In most cases, testing tools use a visual cue, such as the label of a Button control, to identify 
the control in the script. Sometimes, however, testing tools use the Flex id property of an 
MXML tag to identify an object in the test script; if there is no value for the id property, 
testing tools use other properties, such as the childIndex property. 

You should give all testable MXML components an ID to ensure that the test script has a 
unique identifier to use when referring to that Flex control. You should also try to make these 
identifiers as human-readable as possible to make it easier for a QC professional to identify 
that object in the testing script. For example, set the id property of a Panel container inside a 
TabNavigator to submit_panel rather than panel1 or p1. 

In some cases, QTP does not use the id property, but it is a good practice to include it to 
avoid naming collisions or confusion. For more information about how QTP identifies Flex 
objects, see Testing Flex Applications with Mercury QuickTest Professional.

You should set the value of the automationName property for all objects that are part of the 
application’s test. The value of this property appears in the testing scripts. Providing a 
meaningful name makes it easier for QC professionals to identify that object. For more 
information about using the automationName property, see “Setting the automationName 
property” on page 334. 



318 Creating Applications for Testing

Avoiding duplication of objects
If you change the Flex component property that is used by QTP as the object name at run 
time, QTP creates a second object in its object repository. 

For example, if you create a Button control without an automationName property, but do not 
initially set the value of its label property, and then later set the value of the label property, 
unexpected test results can occur. This is because QTP uses the value of the label property of 
Button controls to identify an object in its object repository. If you later set the value of the 
label property, or change the value of an existing label while the QC professional is 
recording a test, QTP creates an object in the repository. 

So, you should try to understand what properties are used to identify objects in QTP, and try 
to avoid changing those properties at run time. You should set unique, human-readable id or 
automationName properties for all objects that are included in the recorded script.

Coding containers
Containers are different from other kinds of controls because they are used both to record user 
interactions (such as when a user moves to the next pane in an Accordion container) and to 
provide unique locations for controls in the testing scripts. 

Adding and removing containers from the automation 
hierarchy
In general, the automated testing feature reduces the amount of detail about nested containers 
in its scripts. It removes containers that have no impact on the results of the test or on the 
identification of the controls from the script. This applies to containers that are used 
exclusively for layout, such as the HBox, VBox and Canvas containers, except when they are 
being used in multiple-view navigator containers such as the ViewStack, TabNavigator or 
Accordion containers. In these cases, they are added to the automation hierarchy to provide 
navigation.

Many composite components use containers, such as Canvas or VBox, to organize their 
children. These containers do not have any visible impact on the application. So, you usually 
exclude these containers from being tested because there is no user interaction and no visual 
need for their operations to be recordable. By excluding a container from being tested, it does 
not clutter the test scripts and make them harder to read.



Creating testable applications 319

To exclude a container from being recorded (but not exclude its children), set the container’s 
showInAutomationHierarchy property to false. This property is defined by the 
UIComponent class, so all containers that subclass UIComponent have this property. 
Children of containers that are not visible in the hierarchy appear as children of the next 
highest visible parent. 

The default value of the showInAutomationHierarchy property depends on the type of 
container. For containers such as Panel, Accordion, Application, DividedBox, and Form, the 
default value is true; for other containers, such as Canvas, HBox, VBox, and FormItem, the 
default value is false.

The following example forces the VBox containers to be included in the test script’s hierarchy:
<?xml version="1.0"?>
<!-- at/NestedButton.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Panel title="ComboBox Control Example">
        <mx:HBox id="hb">
            <mx:VBox id="vb1" showInAutomationHierarchy="true">
                <mx:Canvas id="c1">
                    <mx:Button id="b1" 
                        automationName="Nested Button 1" 
                        label="Click Me"
                    />
                </mx:Canvas>
            </mx:VBox>         
            <mx:VBox id="vb2" showInAutomationHierarchy="true">
                <mx:Canvas id="c2">
                    <mx:Button id="b2" 
                        automationName="Nested Button 2" 
                        label="Click Me 2"
                    />
                </mx:Canvas>
            </mx:VBox>         
        </mx:HBox>
    </mx:Panel>    
</mx:Application> 

Working with multiview containers
You should avoid using the same label on multiple tabs in multiview containers, such as 
TabNavigator and Accordion containers. Although it is possible to use the same labels, this is 
generally not an acceptable UI design practice and can cause problems with control 
identification in your testing environment. QTP, for example, uses the label properties to 
identify those views to testers. When two labels are the same, QTP uses different strategies to 
uniquely identify the tabs, which can result in a confusing name list.



320 Creating Applications for Testing

Also, dynamically adding children to multiview containers can cause delays that might 
confuse the testing tool. You should try to avoid this.

Writing the wrapper
In most cases, the testing tool requests a file from a web server that embeds the Flex 
application. This file, known as the wrapper, is often written in HTML, but can also be a JSP, 
ASP, or other file that browsers interpret. You can request the SWF file directly in the testing 
tool by using the file protocol, but then you must ensure that the SWF file is trusted.

If you are using Adobe Flex Data Services or Flex Builder, you can generate a wrapper 
automatically. If you are using the Flex Software Development Kit (SDK), you can use the 
wrapper templates in the flex_sdk/html_templates directory to create a wrapper for your 
application.

When using a wrapper, your wrapper’s <object> tag must have an id attribute, and the value 
of the id attribute can not contain any periods or hyphens. The convention is to set the id to 
match the name of the root MXML file in the application. 

When you use Flex Builder to generate a wrapper, the value of the id attribute is the name of 
the root application file. You do not have to make any changes to this attribute.

When you generate a wrapper with the Flex Data Services server, the object tag’s id attribute 
is valid. The following example shows the default object tag for a file named MainApp.swf:
<object id='MainApp' classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000' 

codebase='http://fpdownload.macromedia.com/get/flashplayer/current/
swflash.cab' height='600' width='600'>

Ensure that you check that the object tag’s id attribute is the same in the <script> and the 
<noscript> blocks of the wrapper.

T
IP You are not required to change the value of the name in the <embed> tag because <embed> 

is used by Netscape-based browsers that do not support the testing feature. The 
<object> tag is used by Microsoft Internet Explorer.



Understanding the automation framework 321

Understanding the automation 
framework
This section describes the automation interfaces and shows the flow of the automation 
framework as you initialize, record, and play back an automatable event.

About the automation interfaces
The Flex class hierarchy includes the following interfaces in the mx.automation.* package that 
enable automation:

About the IAutomationObjectHelper
The IAutomationObjectHelper interface helps the components accomplish the following 
tasks:

■ Replay mouse and keyboard events; the helper generates proper sequence of player level 
mouse and key events. 

■ Generate AutomationIDPart for a child: AutomationIDPart would be requested by the 
Automation for representing a component instance to agents.

■ Find a child matching a AutomationIDPart: Automation would request the component to 
locate a child matching the AutomationIDPart supplied by an agent to it. 

Interface Description

IAutomationClass Defines the interface for a component class descriptor.

IAutomationEnvironment Provides information about the objects and properties of 
automatable components needed for communicating with 
agents.

IAutomationEventDescriptor Defines the interface for an event descriptor.

IAutomationManager Defines the interface expected from an 
AutomationManager by the automation module.

IAutomationMethodDescriptor Defines the interface for a method descriptor.

IAutomationObject Defines the interface for a delegate object implementing 
automation for a component.

IAutomationObjectHelper Provides helper methods for the IAutomationObject 
interface.

IAutomationPropertyDescriptor Describes a property of a test object.



322 Creating Applications for Testing

■ Avoid synchronization issues: Agents invoke methods on Automation requesting 
operations on components in a sequence. Components may not be ready all the time to 
perform operations.

For example, an agent can invoke comboBox.Open, comboBox.select "Item1" operations in a 
sequence. Because it takes time for the drop-down list to open and initialize, it is not possible 
to run the select operation immediately. You can place a wait request during the open 
operation execution. The wait request should provide a function for automation, which can 
be invoked to check the ComboBox control’s readiness before invoking the next operation.

Automated testing workflow
Before you automate custom components, you might find it helpful to see the order of events 
during which Flex’s automation framework initializes, records, and plays backs events. The 
following sections show the steps involved.

Automated testing initialization 
1. The user launches the Flex application. Automation initialization code associates 

component delegate classes with component classes. Component delegate classes 
implement the IAutomationObject interface.

2. AutomationManager is a mixin. Its instance is created in the mixin init() method. 

3. The SystemManager initializes the application. Component instances and their 
corresponding delegate instances are created. Delegate instances add event listeners for 
events of interest. 

4. QTPAgent class is a mixin. In its init() method, it registers itself for 
SystemManager.APPLICATION_COMPLETE event. On receiving the event, it creates a 
QTPAdapter object.

5. QTPAdapter sets up the ExternalInterface function map. QTPAdapter loads the QTP 
Plugin DLLs by creating the ActiveX object to communicate with QTP.

6. The QTPAdapter requests the XML environment information from the plugin and passes 
it to the AutomationManager.

7. The XML information is stored in a chain of AutomationClass, 
AutomationMethodDescriptor, and AutomationPropertyDescriptor objects. 



Understanding the automation framework 323

Automated testing recording 
1. The user clicks the Record button in QTP. 

2. QTP calls the QTPAdapter.beginRecording() method. QTPAdapter adds a listener for 
AutomationRecordEvent.RECORD from the AutomationManager. 

3. The QTPAdapter notifies AutomationManager about this by calling the 
beginRecording() method. The AutomationManager adds a listener for the 
AutomationRecordEvent.RECORD event from the SystemManager. 

4. The user interacts with the application. In this example, suppose the user clicks a Button 
control.

5. The ButtonDelegate.clickEventHandler() method dispatches an 
AutomationRecordEvent event with the click event and Button instance as properties. 

6. The AutomationManager record event handler determines the important properties of 
the click event from XML information. It converts the values into proper type or format. 
It dispatches the record event. 

7. The QTPAdapter event handler receives the event. It calls the 
AutomationManager.createID() method to create the AutomationID object of the 
button. This object provides a structure for object identification.

The AutomationID structure is an array of AutomationIDParts. An AutomationIDPart is 
created by using IAutomationObject. (The UIComponent.id, automationName, 
automationValue, childIndex, and label properties of the Button control are read and 
stored in the object. The label property is used because the XML information specifies 
that this property can be used for identification for the Button.) 

8. The QTPAdapter uses the AutomationManager.getParent() method to get the logical 
parent of Button. The AutomationIDPart objects of parent controls are collected at each 
level up to the application level. 

9. All these AutomationIDParts are made part of an AutomationID object. 

10. The QTPAdapter sends the information in a call to QTP. 

11. At this point, QTP might call the AutomationManager.getProperties() method to get 
property values of Button. The property type information and codec that should be used 
to modify the value format are gotten from the AutomationPropertyDescriptor. 

12. User stops recording. This is propagated by a call to the QTPAdapter.endRecording() 
method. 



324 Creating Applications for Testing

Automated testing playback 
1. The user clicks the Playback button in QTP.

2. The QTPAdapter.findObject() method is called to determine whether the object on 
which the event has to be played back can be found. The AutomationID object is built 
from the XML data received. The AutomationManager.resolveIDToSingleObject() 
method is invoked to see if QTP can find one unique object matching the AutomationID. 
The AutomationManager.getChildren() method is invoked from application level to 
find the child object. The IAutomationObject.numAutomationChildren property and 
the IAutomationObject.getAutomationChildAt() method are used to navigate the 
application. 

3. The AutomationManager.isSynchronized() and AutomationManager.isVisible() 
methods are used to ensure that the object is fully initialized and is visible to receive the 
event. 

4. The QTPAdpater.run() method is invoked from QTP to play back the event. The 
AutomationManager.replayAutomatableEvent() method is called to replay the event.

5. AutomationMethodDescriptor for the click event on the button is used to copy the 
property values (if any). 

6. The AutomationManager.replayAutomatableEvent() method invokes the 
IAutomationObject.replayAutomatableEvent() method on the delegate class. The 
delegate uses the IAutomationObjectHelper.replayMouseEvent() method (or one of 
the other replay methods, such as replayKeyboardEvent()) to play back the event. 

7. If there are check points recorded in QTP, the AutomationManager.getProperties() 
method is invoked to verify the values. 

Instrumenting events
When you extend Flex components that are already instrumented, you do not have to change 
anything to ensure that those components’ events can be recorded by a testing tool. For 
example, if you extend a Button class, the class still dispatches the automation events when 
the Button is clicked, unless you override the Button control’s default event dispatching 
behavior.

Automation events (known in QTP as operations) are not the same as Flex events. Flex must 
dispatch an automation event as a separate action. Flex dispatches them at the same time as 
Flex events, and uses the same event classes, but you must decide whether to make a Flex 
event visible to QTP.



Instrumenting events 325

Not all events on a control are instrumented. You can instrument additional events by using 
the instructions in “Instrumenting existing events” on page 325.

If you change the instrumentation of a component, you must edit that component’s entry in 
the TEAFlex.xml file. This is described in “Using the class definitions file” on page 330.

Instrumenting existing events
Events have different levels of relevance for the QC professional. For example, a QC 
professional is generally interested in recording and playing back a click event on a Button 
control. The QC professional is not generally interested in recording all the events that occur 
when a user clicks the Button, such as the mouseOver, mouseDown, mouseUp, and mouseOut 
events. For this reason, when a tester clicks on a Button control with the mouse, testing tools 
only record and play back the click event for the Button control and not the other lower-
level events.

There are some circumstances where you would want to record events that are normally 
ignored by the testing tool. But the testing tool’s object model only records events that 
represent the end-user’s gesture (such as a click or a drag and drop). This makes a script more 
readable and it also makes the script robust enough so that it does not fail if you change the 
application slightly. So, you should carefully consider whether you add a new event to be 
tested or you can rely on events in the existing object model.

You can see a list of events that QTP can record for each Flex component in the QTP Object 
Type Information document. The Button control, for example, supports the following 
operations:

■ ChangeFocus

■ Click

■ MouseMove

■ SetFocus

■ Type

All of these events except for MouseMove are automatically recorded by QTP by default. The 
QC professional must explicitly add the MouseMove event to their QTP script for QTP to 
play back the event. 

However, you can alter the behavior your application so that this event is recorded by the 
testing tool. To add a new event to be tested, you override the replayAutomatableEvent() 
method of the IAutomationObject interface. Because UIComponent implements this 
interface, all subclasses of UIComponent (which include all visible Flex controls) can override 
this method. To override the replayAutomatableEvent() method, you create a custom 
class, and override the method in that class.



326 Creating Applications for Testing

The replayAutomatableEvent() method has the following signature:
public function replayAutomatableEvent(event:Event):Boolean 

The event argument is the Event object that is being dispatched. In general, you pass the 
Event object that triggered the event. Where possible, you pass the specific event, such as a 
MouseEvent, rather than the generic Event object.

The following example shows a custom Button control that overrides the 
replayAutomatableEvent() method. This method checks for the mouseMove event and 
calls the replayMouseEvent() method if it finds that event. Otherwise, it calls its superclass’s 
replayAutomatableEvent() method.
<?xml version="1.0" encoding="utf-8"?>
<!-- at/CustomButton.mxml -->
<mx:Button xmlns:mx="http://www.adobe.com/2006/mxml">
        <mx:Script>
        <![CDATA[
            import flash.events.Event;
            import flash.events.MouseEvent;
            import mx.automation.Automation;
            import mx.automation.IAutomationObjectHelper;

            override public function 
                replayAutomatableEvent(event:Event):Boolean {

                trace('in replayAutomatableEvent()');

                var help:IAutomationObjectHelper = 
                    Automation.automationObjectHelper;
        
                if (event is MouseEvent && 
                    event.type == MouseEvent.MOUSE_MOVE) {
                    return help.replayMouseEvent(this, MouseEvent(event));
                } else {
                    return super.replayAutomatableEvent(event);                
                }
            }
        ]]>
    </mx:Script>
</mx:Button>



Instrumenting events 327

In the application, you call the AutomationManager’s recordAutomatableEvent() method 
when the user moves the mouse over the button. The following application uses this custom 
class:
<?xml version="1.0" encoding="utf-8"?>
<!-- at/ButtonApp.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns:ns1="*" 
initialize="doInit()">
    <mx:Script>
    <![CDATA[
        import mx.automation.*;

        public function doInit():void {             
            b1.addEventListener(MouseEvent.MOUSE_MOVE, 
                dispatchLowLevelEvent);
        }

        public function dispatchLowLevelEvent(e:MouseEvent):void {
            var help:IAutomationManager = Automation.automationManager;
            help.recordAutomatableEvent(b1,e,false);
        }
    ]]>
    </mx:Script>

    <ns1:CustomButton id="b1" 
        toolTip="Mouse moved over" 
        label="CustomButton"
    />
    
</mx:Application>

If the event is not one that is currently recordable, therefore, you also must define the new 
event to QTP in the TEAFlex.xml file. QTP uses this file to define the events, properties, and 
arguments for each class of test object. For more information, see “Instrumenting events” 
on page 324. For example, if you wanted to add support for the mouseOver event, you would 
add the following to the FlexButton’s entry in the TEAFlex.xml file:
<Operation Name="MouseOver" PropertyType="Method" 

ExposureLevel="CommonUsed">
<Implementation Class="flash.events::MouseEvent" Type="mouseOver"/>

<Argument Name="keyModifier" IsMandatory="false" DefaultValue="0">
<Type VariantType="Enumeration"

ListOfValuesName="FlexKeyModifierValues" 
Codec="keyModifier"

/>
<Description>Occurs when the user moves mouse over the

component</Description>
</Argument>

</Operation>



328 Creating Applications for Testing

In the preceding example, however, the mouseMove event is already in the FlexButton control’s 
entry in that file, so no editing is necessary. The difference now is that the QC professional 
does not have to explicitly add the event to their script. After you compile this application and 
deploy the new TEAFlex.xml file to the QTP testing environment, QTP records the 
mouseMove event for all of the CustomButton objects.

Instrumenting custom components
The process of creating a custom component that supports automated testing is called 
instrumentation. Flex framework components are instrumented by attaching a delegate class 
to each component at run time. The delegate class defines the methods and properties required 
to perform instrumentation. 

If you extend an existing component that is instrumented, such as a Button control, you 
inherit its parent’s instrumentation, and are not required to do anything else to make that 
component testable. If you create a component that inherits from UIComponent, you must 
instrument that class in one of the following ways:

■ Create a delegate class that implements the required interfaces. 
■ Add testing-related code to the component. 

You usually instrument components by creating delegate classes. You can also instrument 
components by adding automation code inside the components, but this is not a 
recommended practice. It creates tighter coupling between automated testing code and 
component code, and it forces the automated testing code to be included in a production 
SWF file.

In both methods of instrumenting a component, you must add your new component’s 
information to a class definitions XML file so that QTP recognizes that component. For more 
information about this file, see “Using the class definitions file” on page 330.

Consider the following additional factors when you instrument custom components:

■ Composition. When instrumenting components, you must consider whether the 
component is a simple component or a composite component. Composite components 
are components made up of several other components. For example, a TitleWindow that 
contains form elements is a composite component. 

■ Container hierarchy. You should understand how containers are viewed in the automation 
hierarchy so that the QC professional can easily test the components. Also, you should be 
aware that you can manipulate the hierarchy to better suit your application by setting 
some automation-related properties. 



Instrumenting custom components 329

■ Automation names. Custom components sometimes have ambiguous or unclear default 
automation names. The ambiguous name makes it more difficult in QTP to determine 
what component the QTP script is referring to. Component authors can manually set the 
value of the automationName property for all components except item renderers. For item 
renderers, use the automationValue.

Creating a delegate class
To instrument custom components with a delegate, you must do the following:

■ Create a delegate class that implements the required interfaces. In most cases, you extend 
the UIComponentAutomationImpl class. You can instrument any component that 
implements IUIComponent.

■ Register the delegate class with the AutomationManager.
■ Define the component in a class definitions XML file.

The delegate class is a separate class that is not embedded in the component code. This helps 
to reduce the component class size and also keeps automated testing code out of the final 
production SWF file. All Flex controls have their own delegate classes. These classes are in the 
mx.automation.delegates.* package. The class names follow a pattern of 
ClassnameAutomationImpl. For example, the delegate class for a Button control is 
mx.automation.delegates.controls.ButtonAutomationImpl.

To instrument with a delegate class:

1. Create a delegate class.

2. Mark the delegate class as a mixin by using the [Mixin] metadata keyword.

3. Register the delegate with the AutomationManager by calling the 
AutomationManager.registerDelegateClass() method in the init() method. The 
following code is a simple example:
[Mixin]
public class MyCompDelegate {
  public static init(root:DisplayObject):void {
    // Pass the component and delegate class information.
    AutomationManager.registerDelegateClass(MyComp, MyCompDelegate);
  }
}

You pass the custom class and the delegate class to the registerDelegateClass() 
method.



330 Creating Applications for Testing

4. Add the following code to your delegate class:

a. Override the getter for the automationName property and define its value. This is the 
name of the object as it appears in QTP. If you are defining an item renderer, use the 
automationValue property instead.

b. Override the getter for the automationValue property and define its value. This is the 
value of the object in QTP.

c. In the constructor, add event listeners for events that QTP records.
d. Override the replayAutomatableEvent() method. The AutomationManager calls 

this method for replaying events. In this method, return whether the replay was 
successful. You can use methods of the helper classes to replay common events.
For examples of delegates, see the source code for the Flex controls in the 
mx.automation.delegates.* packages.

5. Link the delegate class with the application SWF file in one of these ways:

■ Add the following includes compiler option and link in the delegate class:
mxmlc -includes MyCompDelegate -- FlexApp.mxml

■ Build a SWC file for the delegate class by using the compc component compiler:
compc -source-path+=. -include-classes MyCompDelegate -output 

MyComp.swc

Then include this SWC file with your Flex application by using the following 
include-libraries compiler option:
mxmlc -include-libraries MyComp.SWC -- FlexApp.mxml

This approach is useful if you have many components and delegate classes and want to 
include them as a single file.

6. After you compile your Flex application with the new delegate class, you must add the new 
component to QTP’s custom class definition XML file. For more information, see “Using 
the class definitions file” on page 330.

For an example that shows how to instrument a custom component, see “Example: 
Instrumenting the RandomWalk custom component” on page 339.

Using the class definitions file
The TEAFlex.xml file contains information about all instrumented Flex components. This 
file provides information about the components to QTP, including what events can be 
recorded and played back, the name of the component, and the properties that can be tested.



Instrumenting custom components 331

The TEAFlex.xml file is located in the “QTP_plugin_install\Flex 2 Plug-in for Mercury 
QuickTest Pro” directory. QTP recognizes any file in that directory that matches the pattern 
TEAFlex*.xml, where * can be any string. This directory also contains a TEAFlexCustom.xml 
file that you can use as a starting point for adding custom component definitions.

The class definitions file describes instrumented components to QTP with the following basic 
structure:
<TypeInformation>

<ClassInfo>
<Description/>
<Implementation/>
<TypeInfo>

<Operation/>
...

</TypeInfo>
<Properties>

<Property/>
...

</Properties>
</ClassInfo>

</TypeInformation>

The top level tag is <TypeInformation>. You define a new class that uses the <ClassInfo> 
tag, which is a child tag of the <TypeInformation> tag. The <ClassInfo> tag has child tags 
that further define the instrumented classes. The following table describes these tags:

Tag Description

ClassInfo Defines the class that is instrumented, for example, FlexButton. This 
is the name that QTP uses for the Button control.
Attributes of this tag include Name, GenericTypeID, Extends, and 
SupportsTabularData.

Description Defines the text that appears in QTP to define the component.

Implementation Defines the class name, as it is known by the Flex compiler, for 
example, Button or MyComponent.



332 Creating Applications for Testing

The following example adds a new component, MyComponent, to the class definition file. 
This component has one instrumented event, click:
<TypeInformation xsi:noNamespaceSchemaLocation="ClassesDefintions.xsd" 

Priority="0" PackageName="TEA" Load="true" id="Flex" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
<ClassInfo Name="MyComponent" GenericTypeID="mycomponent"

Extends="FlexObject" SupportsTabularData="false">
<Description>FlexMyComponent</Description>
<Implementation Class="MyComponent"/>
<TypeInfo>

<Operation Name="Select" PropertyType="Method"
ExposureLevel="CommonUsed">
<Implementation Class="myComponentClasses::MyComponentEvent"

Type="click"/>
</Operation>

</TypeInfo>
<Properties>

<Property Name="automationClassName" ForDescription="true">
<Type VariantType="String"/>
<Description>This is MyComponent.</Description>

</Property>
<Property Name="automationName" ForDescription="true">

<Type VariantType="String"/>
<Description>The name used by QTP to id an object.</Description>

</Property>
<Property Name="className" ForDescription="true">

TypeInfo Defines events for this class. Each event is defined in an <Operation> 
child tag, which has two child tags:
• The <Implementation> child tag associates the operation with the 

actual event.
• Each operation can also define properties of the event object by 

using an <Argument> child tag.

Properties Defines properties of the class. Each property is defined in a 
<Property> child tag. Inside this tag, you define the property’s type, 
name, and description.
For each Property, if the ForDescription attribute is true, the property 
is used to uniquely identify a component instance in QTP; for 
example, the label property of a Button control. QTP lists this 
property as part of the object in QTP object repository.
If the ForVerfication attribute is true, the property is visible in the 
properties dialog box in QTP.
If the ForDefaultVerification tag is true, the property appears 
selected by default in the dialog box in QTP. This results in verification 
of the property value in the checkpoint.

Tag Description



Instrumenting custom components 333

<Type VariantType="String"/>
<Description>To be written.</Description>

</Property>
<Property Name="id" ForDescription="true" ForVerification="true">

<Type VariantType="String"/>
<Description>Developer-assigned ID.</Description>

</Property>
<Property Name="index" ForDescription="true">

<Type VariantType="String"/>
<Description>The index relative to its parent.</Description>

</Property>
</Properties>

</ClassInfo>
...

</TypeInformation>

You can edit the class definitions file to add a new recordable event to an existing component. 
To do this, you insert a new <Operation> in the control’s <TypeInfo> block. This includes 
the implementation class of the event, and any arguments that the event might take. 

The following example adds a new event, MouseOver, with several arguments to the Button 
control:
<TypeInfo>

<Operation ExposureLevel="CommonUsed" Name="MouseOver" 
PropertyType="Method">

<Implementation Class="flash.events::MouseEvent" Type="mouseOver"/>
<Argument Name="inputType" IsMandatory="false"

DefaultValue="mouse">
<Type VariantType="String"/>

</Argument>
<Argument Name="shiftKey" IsMandatory="false" DefaultValue="false">

<Type VariantType="Boolean"/>
</Argument>
<Argument Name="ctrlKey" IsMandatory="false" DefaultValue="false">

<Type VariantType="Boolean"/>
</Argument>
<Argument Name="altKey" IsMandatory="false" DefaultValue="false">

<Type VariantType="Boolean"/>
</Argument>

</Operation>
</TypeInfo>

When you finish editing the class definitions file, you must distribute the new file to QTP 
users. They must copy this file manually to the “QTP_plugin_install\Flex 2 Plug-in for 
Mercury QuickTest Pro” directory. When you replace the class definitions file in the QTP 
environment, you must restart QTP.



334 Creating Applications for Testing

Setting the automationName property
The automationName property defines the name of a component as it appears in testing 
scripts. The default value of this property varies depending on the type of component. For 
example, a Button control’s automationName is the label of the Button control. Sometimes, 
the automationName is the same as the control’s id property, but this is not always the case.

For some components, Flex sets the value of the automationName property to a recognizable 
attribute of that component. This helps QC professionals recognize that component in their 
scripts. Because they do not usually have access to the underlying source code of the 
application, having a control’s visible property define that control can be useful. For example, 
a Button labeled “Process Form Now” appears in the testing scripts as FlexButton("Process 
Form Now").

If you implement a new component, or derive from an existing component, you might want 
to override the default value of the automationName property. For example, UIComponent 
sets the value of the automationName to the component’s id property by default, but some 
components use their own methods of setting its value.

For example, in the Flex Store sample application, containers are used to create the product 
thumbnails. A container’s default automationName (it is the same as the container’s id 
property) would not be very useful because it is programmatically generated. So in Flex Store, 
the custom component that generates a product thumbnail explicitly sets the 
automationName to the product name to make testing the application easier.

The following example from the CatalogPanel.mxml custom component sets the value of the 
automationName property to the name of the item as it appears in the catalog. This is much 
more recognizable than the default automation name.
thumbs[i].automationName = catalog[i].name;



Instrumenting custom components 335

The following example sets the automationName property of the ComboBox control to 
“Credit Card List”; rather than using the id property, the testing tool typically uses “Credit 
Card List” to identify the ComboBox in its scripts:
<?xml version="1.0"?>
<!-- at/SimpleComboBox.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
    <mx:Script>
        <![CDATA[
            [Bindable]
            public var cards: Array = [ 
                {label:"Visa", data:1}, 
                {label:"MasterCard", data:2}, 
                {label:"American Express", data:3} 
            ];
        
            [Bindable]
            public var selectedItem:Object;        
        ]]>
    </mx:Script>
    <mx:Panel title="ComboBox Control Example">
        <mx:ComboBox id="cb1" dataProvider="{cards}" 
            width="150" 
            close="selectedItem=ComboBox(event.target).selectedItem" 
            automationName="Credit Card List"
        />

        <mx:VBox width="250">
            <mx:Text  
                width="200" 
                color="blue" 
                text="Select a type of credit card."
            />
            <mx:Label text="You selected: {selectedItem.label}"/>
            <mx:Label text="Data: {selectedItem.data}"/>
        </mx:VBox>         
    </mx:Panel>    
</mx:Application> 

If you do not set the value of the automationName property, the name of an object in a testing 
tool is sometimes a property that can change while the application runs. If you set the value of 
the automationName property, testing scripts use that value rather than the default value. For 
example, by default, QTP uses a Button control’s label property as the name of the Button 
in the script. If the label changes, the script can break. You can prevent this from happening 
by explicitly setting the value of the automationName property.



336 Creating Applications for Testing

Buttons that have no label, but have an icon, are recorded by their index number. In this case, 
you should ensure that you set the automationName property to something meaningful so 
that the QC professional can recognize the Button in the script. This might not be necessary 
if you set the toolTip property of the Button because QTP uses that value if there is no label.

After the value of the automationName property is set, you should never change the value 
during the component’s life cycle.

For item renderers, use the automationValue property rather than the automationName 
property. You do this by overriding the createAutomationIDPart() method and returning a 
new value that you assign to the automationName property, as the following example shows:
<mx:List xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Script>
<![CDATA[

import mx.automation.IAutomationObject;
override public function

createAutomationIDPart(item:IAutomationObject):Object {
var id:Object = super.createAutomationIDPart(item);
id["automationName"] = id["automationIndex"];
return id;

}
]]>

</mx:Script>
</mx:List>

This technique works for any container or list-like control to add index values to their 
children. There is no method for a child to specify an index for itself.



Instrumenting composite components 337

Instrumenting composite components
Composite components are custom components made up of two or more components. A 
common composite component is a form that contains several text fields, labels, and buttons. 
Composite components can be MXML files or ActionScript classes.

By default, you can record operations on all instrumented child controls of a container. If you 
have a Button control inside a custom TitleWindow container, the QA professional can 
record actions on that Button control just like on any Button control. You can, however, 
create a composite component in which some of the child controls are instrumented and 
some are not. To prevent the operations of a child component from being recorded, you 
override the following methods:

■ numAutomationChildren getter
■ getAutomationChildAt()

The numAutomationChildren property is a read-only property that stores the number of 
automatable children that a container has. This property is available on all containers that 
delegate implementation classes. To exclude some children from being automated, you return 
a number that is less than the total number of children.

The getAutomatedChildAt() method returns the child at the specified index. When you 
override this method, you return null for the unwanted child at the specified index, but return 
the other children as you normally would.



338 Creating Applications for Testing

The following custom composite component is written in ActionScript. It consists of a VBox 
container with three buttons (OK, Cancel, and Help). You cannot record the operations of 
the Help button. You can record the operations of the other Button controls, OK and Cancel. 
The following example sets the values of the OK and Cancel buttons’ automationName 
properties. This makes those button controls easier to recognize in the automated testing 
tool’s scripts.
// MyVbox.as
package { // Empty package
    import mx.core.UIComponent;
    import mx.containers.VBox;
    import mx.controls.Button;
    import mx.automation.IAutomationObject;
    import mx.automation.delegates.containers.BoxAutomationImpl;

    public class MyVBox extends VBox {
        public var btnOk : Button;
        public var btnHelp : Button;
        public var btnCancel : Button;

        public function MyVBox():void { // Constructor
        } 
        
        override protected function createChildren():void {
            super.createChildren();
                
            btnOk = new Button();
            btnOk.label = "OK";
            btnOk.automationName = "OK_custom_form";
            addChild(btnOk);
    
            btnCancel = new Button();
            btnCancel.label = "Cancel";
            btnCancel.automationName = "Cancel_custom_form";
            addChild(btnCancel);
    
            btnHelp = new Button();
            btnHelp.label = "Help";
            btnHelp.showInAutomationHierarchy = false;
            addChild(btnHelp);      
        } 
        
        override public function get numAutomationChildren():int {
            return 2; //instead of 3
        }

        override public function 
            getAutomationChildAt(index:int):IAutomationObject {
            switch(index) {



Example: Instrumenting the RandomWalk custom component 339

                case 0:
                    return btnOk;
                case 1:
                    return btnCancel;
            }
            return null;
        }                
    } // Class
} // Package

To make this solution more portable, you could create a custom Button control and add a 
property that determines whether a Button should be testable. You could then set the value of 
this property based on the Button instance (for example, btnHelp.useInAutomation = 
false), and check against it in the overridden getAutomationChildAt() method, before 
returning null or the button instance.

Example: Instrumenting the 
RandomWalk custom component
The RandomWalk component is an example of a complex custom component. It has custom 
events and custom itemRenderers. Showing how it is instrumented can be helpful in 
instrumenting your custom components.

This section describes the RandomWalk custom component. This source code is located at 
the following location:

http://demo.quietlyscheming.com/RandomWalk/srcview/RandomWalk.zip

Instrumenting the RandomWalk custom component
The first task when instrumenting a custom component is to create a delegate and add the 
new component to the class definitions XML file.

To instrument the RandomWalk custom component:

1. Create a RandomWalkDelegate class that extends UIComponentAutomationImpl, similar 
to RandomWalk extending UIComponent. UIComponentAutomationImpl implements 
the IAutomationObject interface.

http://demo.quietlyscheming.com/RandomWalk/srcview/RandomWalk.zip


340 Creating Applications for Testing

2. Mark the delegate class as a mixin with the [Mixin] metadata tag; for example:
package { 

...

[Mixin]
public class RandomWalkDelegate extends UIComponentAutomationImpl {
}
}

This results in a call to the static init() method in the class when the SWF file loads.
3. Add a public static init() method to the delegate class, and add the following code to it: 

public static init(root:DisplayObject):void {
Automation.registerDelegateClass(RandomWalk, RandomWalkDelegate);

}

4. Add a constructor that takes a RandomWalk object as parameter. Add a call to the super 
constructor and pass the object as the argument:
private var walker:RandomWalk
public function RandomWalkDelegate(randomWalk:RandomWalk) {

super(randomWalk);
walker = randomWalk;

}

5. Update the TEAFlexCustom.xml file so that QTP recognizes the RandomWalk 
component. Add the text between the <TypeInformation> root tags. The 
TEAFlexCustom.xml file is located in the “QTP_plugin_install\Flex 2 Plug-in for Mercury 
QuickTest Pro” directory. For more information about the TEAFlexCustom.xml file, see 
“Using the class definitions file” on page 330.
<TypeInformation xsi:noNamespaceSchemaLocation="ClassesDefintions.xsd" 

Priority="0" PackageName="TEA" Load="true" id="Flex" xmlns:xsi="http:/
/www.w3.org/2001/XMLSchema-instance">
...
<ClassInfo Name="FlexRandomWalk" GenericTypeID="randomwalk"

Extends="FlexObject" SupportsTabularData="false">
<Description>FlexRandomWalk</Description>
<Implementation Class="RandomWalk"/>
<TypeInfo>
</TypeInfo>
<Properties>

<Property Name="automationClassName" ForDescription="true">
<Type VariantType="String"/>
<Description>To be written.</Description>

</Property>
<Property Name="automationName" ForDescription="true">

<Type VariantType="String"/>
<Description>The name used by the automation system to 



Example: Instrumenting the RandomWalk custom component 341

identify an object.</Description>
</Property>
<Property Name="className" ForDescription="true">

<Type VariantType="String"/>
<Description>To be written.</Description>

</Property>
<Property Name="id" ForDescription="true" ForVerification="true">

<Type VariantType="String"/>
<Description>Developer-assigned ID.</Description>

</Property>
<Property Name="automationIndex" ForDescription="true">

<Type VariantType="String"/>
<Description>The object's index relative to its parent.
</Description>

</Property>
</Properties>

</ClassInfo>
</TypeInformation>

This defines the name of the FlexRandomWalk component and its implementing class. It 
specifies the automationClassName, automationName, className, id and 
automationIndex properties as available for identifying a RandomWalk instance in the Flex 
application. This is possible because RandomWalk derives from UIComponent, and these 
properties are defined on that parent class. 

If your component has a property that you can use to differentiate between component 
instances, you can also add that property. For example, the label property of a Button 
control, though not unique when the whole application is considered, can be assumed to be 
unique within a container; therefore, you can use it as an identification property.

Instrumenting RandomWalk events
The next step in instrumenting a custom component is to identify the important events that 
must be recorded by QTP. The RandomWalk component dispatches a 
RandomWalkEvent.ITEM_CLICK event. Because this event indicates user navigation, it is 
important and must be recorded.



342 Creating Applications for Testing

To instrument the ITEM_CLICK event:

1. Add an event listener for the event in the RandomWalkDelegate constructor:
randomWalk.addEventListener(RandomWalkEvent.ITEM_CLICK, 

itemClickHandler)

2. Identify the event in the TEAFlexCustom.xml file so that QTP recognizes the event. Add 
the following text in the <TypeInfo> tag in the TEAFlexCustom.xml file:
<Operation Name="Select" PropertyType="Method" 

ExposureLevel="CommonUsed">
<Implementation Class="randomWalkClasses::RandomWalkEvent"

Type="itemClick"/>
</Operation>

Adding this block to the TEAFlexCustom.xml file names the event as Select and indicates 
that it is tied to the RandomWalkEvent class, which is available in randomWalkClasses 
namespace. It also defines the event of type itemClick.

When using the RandomWalk component, users click on items. The component records the 
item label so that QC professionals can easily recognize their action in the QTP script. 

The RandomWalkEvent class has only a single property, item, that stores the XML node 
information. In the RandomWalk component’s implementation, the RandomWalkRenderer 
item renderer is used to display the data on the screen. It is derived from the Label control, 
which is already instrumented. The Label control returns the label text as its 
automationName, which is what you want to record. 

To record the label text:

1. Add a new property, itemRenderer, to the RandomWalkEvent class. 

2. Add the code to initialize this property for the event before dispatching the event; for 
example:
var rEvent:RandomWalkEvent = new 

RandomWalkEvent(RandomWalkEvent.ITEM_CLICK,node);
rEvent.itemRenderer = child as Label;
dispatchEvent(rEvent);

3. Add the new itemRenderer property as an argument to the Select operation in the 
TEAFlexCustom.xml file:
<Operation Name="Select" PropertyType="Method" 

ExposureLevel="CommonUsed">
<Implementation Class="randomWalkClasses::RandomWalkEvent"

Type="itemClick"/>
<Argument Name="itemRenderer" IsMandatory="true" >
<Type VariantType="String" Codec="automationObject"/>
<Description>User-clicked item.</Description>

</Argument>
</Operation>



Example: Instrumenting the RandomWalk custom component 343

This code block specifies the type of argument as String and the Codec as 
automationObject. The Codec returns the automationName of the item renderer.

4. In the event handler, call the recordAutomatableEvent() method with event as the 
parameter, as the following example shows:
private function itemClickHandler(event:RandomWalkEvent):void {

recordAutomatableEvent(event);
}

In some cases, the component does not dispatch any events or the event that was dispatched 
does not have the information that is required during the recording or playing back of the test 
script. In these circumstances, you must create an event class with the required properties. In 
the component, you create an instance of the event and pass it as a parameter to the 
recordAutomatableEvent() method. 

For example, the ListItemSelect event has been added in automation code and is used by 
the List automation delegate to record and play back select operations for list items.

To locate the item renderer object, Automation requires some help. Copy the standard 
implementation for the following methods: 
override public function 

createAutomationIDPart(child:IAutomationObject):Object {
var help:IAutomationObjectHelper = Automation.automationObjectHelper;
return help.helpCreateIDPart(this, child);   

}

override public function resolveAutomationIDPart(part:Object):Array {
var help:IAutomationObjectHelper = Automation.automationObjectHelper; 
return help.helpResolveIDPart(this, part as AutomationIDPart);

} 

Preparing RandomWalk for playback
Flex components display the data in a data provider after processing and formatting the data. 
Playback code requires a way to trace back the visual data to the data provider and the 
component displaying that data. For example, from the visual label of an item in the List, 
playback code should be able to find the item renderer that shows the element so that the 
item’s click can be played back.

When playing back a RandomWalkEvent, you must identify the item renderer with the 
automationName given. Because the RandomWalk component has many item renderers that 
are children which are derived from UIComponent subclasses, you must identify them using 
the automationName property.



344 Creating Applications for Testing

The IAutomationObject interface already has APIs to support this. The 
UIComponentAutomationImpl interface provides default implementations for some 
methods, but you must override some methods to return information specific to the 
RandomWalk component. 

To prepare the RandomWalk component for playback:

1. Instruct QTP how many renderers are being used by the instance of the RandomWalk 
component. RandomWalk uses an Array of Arrays for all the renderers. Add the following 
code in RandomWalkDelegate to find the total number of instances: 
override public function get numAutomationChildren():int {

var numChildren:int = 0;
var renderers:Array = walker.getItemRenderers();
for (var i:int = 0;i< renderers.length;i++) {

numChildren += renderers[i].length;
}
return numChildren;

}

2. Access the itemRenderers property in the delegate; however, this property is private. So, 
you must add the following accessor method to the RandomWalk component: 
public function getItemRenderers():Array {

return _renderers;
}

Alternatively, you can make the property public or change its namespace. 
3. QTP requests each child renderer. Add the following code to determine the exact renderer 

and return it:
override public function getAutomationChildAt(index:int): 

IAutomationObject {
var numChildren:int = 0;
var renderers:Array = walker.getItemRenderers();
for(var i:int = 0; i < renderers.length; i++) {

if(index >= numChildren) {
if(i+1 < renderers.length && (numChildren + renderers[i].length)

<= index) {
numChildren += renderers[i].length;
continue;

}
var subIndex:int = index - numChildren;
var instances:Array = renderers[i];
return (instances[subIndex] as IAutomationObject);

}
}
return null;

}



Example: Instrumenting the RandomWalk custom component 345

Linking the delegate to an application
There are two options to link the delegate class with the application SWF file. You can use the 
includes compiler option and link to the delegate as follows:
mxmlc -includes RandomWalkDelegate FlexApp.mxml

You can also build a SWC file for the delegate class. You then include the SWC file with the 
Flex application by using the include-libraries compiler option, as the following code 
shows:
mxmlc -include-libraries RandomWalkAT.SWC -- FlexApp.mxml

This approach is useful if you have many components and many delegate classes.

Adjusting event recording
You can compile and record any application that uses a RandomWalk component. While 
recording, you might notice that the FlexLabel().Click operation is recorded in addition 
to the Select operation. Generally, you do not want to record both operations for each user 
interaction.

In the following example, you stop the AutomationRecordEvent.RECORD event from being 
recorded. Because it is a bubbling event, you can listen to the event from the children, and 
prevent the event from being recorded.

To prevent an event from being recorded:

1. Add an event handler in the constructor of the delegate, as the following example shows:
obj.addEventListener(AutomationRecordEvent.RECORD, labelRecordHandler);

2. Prevent the recording by calling the preventDefault() method or by stopping the 
propagation of the event:
public function labelRecordHandler(event:AutomationRecordEvent):void {

// if the event is not from the owning component reject it.
if (event.replayableEvent.target != uiComponent)

//event.preventDefault(); can also be used.
event.stopImmediatePropagation();

}

The RandomWalkDelegate class must handle the playback of the RandomWalkEvent 
event only. Any other event must be handled by the super class implementation.



346 Creating Applications for Testing

3. Override the replayAutomatableEvent() method and handle the RandomWalkEvent 
event:
override public function replayAutomatableEvent(event:Event):Boolean {

if (event is RandomWalkEvent) {
}
return super.replayAutomatableEvent(event);

}

4. (Optional) To replay the RandomWalkEvent, you must replay a click on the item renderer. 
To use the replayClick() method to play back a click on the item renderer, use the 
following code:
override public function replayAutomatableEvent(event:Event):Boolean {

var help:IAutomationObjectHelper = Automation.automationObjectHelper;
if (event is RandomWalkEvent) {

var rEvent:RandomWalkEvent = event as RandomWalkEvent
help.replayClick(rEvent.itemRenderer);
return true;

} else 
return super.replayAutomatableEvent(event);

}

For playing back an event, the Automation.automationObjectHelper class providers some 
helper methods, the following table describes:

For more information, see the documentation for the IAutomationObjectHelper class in 
the Adobe Flex 2 Language Reference. 

5. Record and play back your application. 

6. To ensure that the view is updated, add the following code after the call to the 
replayClick() method:
override public function replayAutomatableEvent(event:Event):Boolean {

var help:IAutomationObjectHelper = Automation.automationObjectHelper;
if (event is RandomWalkEvent) {

var rEvent:RandomWalkEvent = event as RandomWalkEvent
help.replayClick(rEvent.itemRenderer);

Method Description

replayClick() Dispatches the mouseDown, mouseClick and mouseUp 
events on a UIComponent.

replayMouseEvent() Dispatches a particular mouse event on a UIComponent.

replayKeyDownKeyUp() Dispatches a keyboard event with keyCode and key 
modifiers specified.

replayKeyboardEvent() Dispatches a particular keyboard event on a 
UIComponent.



Example: Instrumenting the RandomWalk custom component 347

(uiComponent as IInvalidating).validateNow();
return true;

} else
return super.replayAutomatableEvent(event);

}

Adjustments like this might be required in the delegate to adjust the behavior of the 
component during playback because QTP does not wait for actions to be completed. The 
same can also be achieved by adding Wait statements in the QTP script.

You should now be able to compile, record, and play back any application with the 
RandomWalk component.

Adding checkpoints
To add checkpoints on public properties of the component, you add a small description of the 
property to the component description in the custom class definitions XML file 
(TEAFlexCustom.xml). You also add a getter for those public properties.

For the openChildrenCount property of the RandomWalk component to appear in 
checkpoints, add the following element as a child of the <Properties> tag:
<Property Name="openChildrenCount" ForVerification="true" 

ForDefaultVerification="true">
<Type VariantType="Integer"/>
<Description>Number of children open currently.</Description>

</Property>

When you use a checkpoint operation with a RandomWalk component, QTP displays the 
openChildrenCount property in the Checkpoint dialog box.

Also, add the following getter method to the RandomWalk class:
public function get openChildrenCount():int { 

return numAutomationChildren;
}

The numAutomationChildren property is inherited from the UIComponent class.



348 Creating Applications for Testing



349

3PART 3

Deploying Flex Applications

This part describes how to deploy Flex applications. 

The following topics are included:
Chapter 15: Deploying Flex Applications  . . . . . . . . . . . . . . . . . . . . 351

Chapter 16: Creating a Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Chapter 17: Using Express Install  . . . . . . . . . . . . . . . . . . . . . . . . . . . 391





351

15
CHAPTER 15

Deploying Flex Applications

When you deploy an application, you make the application accessible to your users. The 
process of deploying an application is dependent on your application, your application 
requirements, and your deployment environment. For example, the process of deploying an 
application on an internal website that is only accessible by company employees might be 
different from the process for deploying the same application on a public website accessible by 
anyone.

This topic does not attempt to define the exact set of steps that you use for deploying all 
applications. Instead, it contains an overview of the deployment process, and a general 
checklist that you might use when you deploy your application. 

Contents
About deploying an application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Deployment options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

Compiling for deployment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

Deployment checklist  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

About deploying an application
When you deploy an application, you move the application from your development 
environment to your deployment environment. After you deploy it, customers have full access 
to the application.

The deployment process that your organization uses might only require you to copy a Flex 
application’s SWF file from your development server to your deployment server. In many 
organizations however, the deployment process is more complicated, and involves people 
from groups outside the development organization. For example, you might have an IT 
department that maintains your corporate website. The IT department might be responsible 
for staging, testing, and then deploying your application.



352 Deploying Flex Applications

Your application architecture might also require you to deploy more than just a single SWF 
file. For example, your application might access Runtime Shared Libraries (RSLs) or other 
assets at run time. You must make sure to copy all required files to your deployment 
environment. 

Deployment might also require you to perform operations other than just copying application 
files to a deployment server. Your application might access data services on your server, or on 
another server. You must ensure that your data services are accessible by a deployed Flex 
application that executes on a client’s computer. 

Deployment options
The process of deploying a Flex application depends on the version of Adobe Flex that you are 
using. The deployment process is simpler for deploying applications created using Flex 2 SDK 
than for deploying applications created using Flex Data Services. 

Deploying Flex 2 SDK applications
The following example shows a typical deployment environment for a Flex application: 

webserver.example.com

Proxy Server

Application server

appserver.example.com

Web services server

finance.example.com

Web  server

Flash Player running 
Flex applications on 
client machine

HTTP/SOAP

Firewall/Router/DNS server



Deployment options 353

Deploying an application for Flex 2 SDK and Adobe Flex Builder might require you to 
perform some or all of the following actions:

■ Copy the application SWF file to your deployment server. As the previous example shows, 
you copy the application to webserver.example.com.

■ Copy any asset files, such as icons, media files, or other assets, to your deployment server. 
■ Copy any RSLs to your web server or application server. For more information, see 

“Deploying RSLs with Flex 2 SDK” on page 353.
■ Copy any SWF files required to support Flex features, such as the History Manager. For 

more information, see “Deploying additional Flex files” on page 353.
■ Write a wrapper for the SWF file if you access it from an HTML, JSP, ASP, or another 

type of page. 
A deployed SWF file can encompass your entire web application, however it is often used 
as a part of the application. Therefore, users do not typically request the SWF file directly, 
but request a web page that references the SWF file. Flex Builder and the Flex Data 
Services web-tier compiler can generate the wrapper for you, or, you can write the 
wrapper. For more information, see Chapter 16, “Creating a Wrapper,” on page 367.

■ Create a crossdomain.xml file on the server for data service, if you directly access any data 
services outside of the domain that serves the SWF file. For more information, see 
“Accessing data services from a deployed application” on page 354

Deploying RSLs with Flex 2 SDK
When your application uses an RSL, you must make sure to deploy the RSL on your 
deployment server. You use the runtime-shared-libraries option of the Flex compiler to 
specify the directory location of the RSL at compile time. Ensure that you copy the RSL to 
the same directory that you specified with runtime-shared-libraries. For more 
information, see Chapter 10, “Using Runtime Shared Libraries,” on page 233. 

Deploying additional Flex files
The implementation of some Flex features requires that you deploy additional files along with 
your application’s SWF file. For example, if you use the History Manager in your application, 
you must deploy the history.swf and history.js files along with your application’s SWF file. If 
you use the Flash Player version detection feature, you also must deploy the 
playerProductInstall.swf file with your SWF file. You typically deploy these files in the same 
directory as your application’s SWF file. 



354 Deploying Flex Applications

The following table lists the Flex feature that requires additional files that you must deploy to 
support that feature:

Accessing data services from a deployed application
In a typical Flex development environment, you build and test your application behind a 
corporate firewall, where security restrictions are much less strict than when a customer runs 
the application on their own computer. However, when you deploy the application, it runs on 
a customers computer outside your firewall. That simple change of location might cause the 
application to fail if you do not correctly configure your data services to allow external access.

Most run-time accesses to application resources fall into one of the following categories:

■ Direct access to asset files on a web server, such as image files. 
■ Direct access to resources on your J2EE application server. 
■ Data services requests through a proxy. A proxy redirects that request to the server that 

handles the data service request. 
■ Direct access to a data service. 

As part of deploying your application, ensure that all run-time data access requests work 
correctly from the application that is executing outside of your firewall.

Feature Files Comments

History Manager history.swf, history.js If you are using Flex Builder or the web-tier 
compiler, the compiler generates a wrapper for 
you that references these files. 
If you are writing your own wrapper, include 
these files in the wrapper.
For more information, see Chapter 16, “Creating 
a Wrapper,” on page 367.

Player detection 
and deployment

playerProductInstall.swf If you are using Flex Builder or the web-tier 
compiler, the compiler generates a wrapper for 
you that references these files. 
If you are writing your own wrapper, include 
these files in the wrapper. 
For more information, see Chapter 16, “Creating 
a Wrapper,” on page 367.



Deployment options 355

Deploying Flex Data Services applications
The following example shows a typical deployment environment for a Flex Data Services 
application:

Deploying an application for Flex Data Services requires that you perform the same tasks as 
you did for Flex 2 SDK, as described in “Deploying Flex 2 SDK applications” on page 352, 
and perform the following tasks:

■ Deploy the Flex Data Services web application on your J2EE application server or servlet 
container.

■ Configure the various services of Flex Data Services, such as the Messaging Service and 
Proxy Service.

webserver.example.com

Flex Data Services

Application server

appserver.example.com

Web services server

finance.example.com

Web  server

HTTP / SOAP / AMF

Firewall/Router/DNS server

Flash Player running 
Flex applications on 
client machine



356 Deploying Flex Applications

Deploying the Flex Data Services web application
You must deploy the Flex Data Services web application on your deployment server. You can 
deploy the web application on a J2EE application server or servlet container. The following 
example shows the directory structure of the Flex Data Services web application:

For a description of this directory structure, see “Flex Data Services installation directory 
structure” on page 33.

J2EE appplication server 
root directory

WEB-INF

flex

SERVER-INF



Deployment options 357

The following example shows a more common approach to web application design. In this 
example, you deploy your application in its own web application, outside of the Flex Data 
Services web application: 

This configuration has the advantage of isolating your application files from the Flex Data 
Services web application so that you can package and distribute them separately. 

Configuring Flex Data Services 
You configure the Flex Proxy Service, Remoting Service, Message Service, and Data 
Management Service by using the Flex Data Services configuration files. You can copy the 
configuration files from your development environment to your deployment environment, or 
you can modify them in the deployment environment. 

J2EE appplication server 
root directory

flex

applications

WEB-INF

appRoot1

appRoot2

sharedAssets

SERVER-INF

WEB-INF



358 Deploying Flex Applications

When you configure Flex Data Services, consider the level of security required by your 
application. When you are running your application in a development environment, you can 
use minimal or no security to control access to data services. In a deployment environment, 
you might decide to restrict access to a privileged group of users by applying a security 
constraint in a destination definition in the Flex services configuration file. A security 
constraint ensures that a user is authenticated, by using custom or basic authentication, before 
they access the destination. 

For more information on configuring Flex Data Services, see Chapter 43, “Configuring Data 
Services,” in Developing Flex Applications.

Compiling for deployment
When you create a deployable SWF file, ensure that you compile the application correctly. 
Typically, you disable certain compiler features, such as the generation of debug output, and 
enable other options, such as the generation of accessible content.

This section contains an overview of some common compiler options that you might use 
when you create a deployable SWF file. For a complete list of compiler options, see Chapter 
9, “Using the Flex Compilers,” on page 179.

Enabling accessibility
The Flex accessibility option lets you create applications that are accessible to users with 
disabilities. By default, accessibility is disabled. You enable the accessibility features of Flex 
components at compile time by using options to a Flex Builder project, setting the 
accessible option to true for the command-line compiler, or setting the <accessible> tag 
in the flex-config.xml file to true. 

If you are using the web-tier compiler of Flex Data Services, you can override the 
<accessible> tag in the flex-config.xml file by appending ?accessible=true or 
?accessible=false parameters to the query string for your application’s MXML file, as the 
following example shows:
http://mydomain.com/flex/myApp.mxml?accessible=false

For more information on creating accessible applications, see Chapter 36, “Creating 
Accessible Applications,” in Flex 2 Developer’s Guide.



Compiling for deployment 359

Preventing users from viewing your source code
Flex lets you publish your source code with your deployed application. You might want to 
enable this option during the development process, but disable it for deployment. Or, you 
might want to include your source code along with your deployed application. 

In Flex Builder, you use the Project > Publish Application menu option to specify whether to 
publish your source code. You can also use the viewSourceURL property of the Application 
class to set the URL of your source code. 

Enabling production mode
You enable production mode for Flex Data Services when your application is running live on 
a public-facing server. Enabling or disabling production mode mainly affects how the web-tier 
compiler compiles a Flex Data Services application deployed as MXML and ActionScript 
files. 

When production mode is disabled, the default mode, and you deploy your application as 
MXML and ActionScript files, Flex Data Services automatically recompiles the application on 
the next request after any source code file is modified. When you enable production mode, 
applications are not recompiled when source files are modified.

When production mode is enabled, all debugging options to the compiler are set internally to 
false, regardless of any conflicting settings to the compiler. This means the compiler does 
not generate any debugging information when compiling an application in production mode.

You control production mode by using the <production-mode> tag in the flex-webtier-
config.xml file. The default value of the <production-mode> tag is false. To enable 
production mode, change the value to true, as the following example shows:
<production-mode>true</production-mode>

You must restart Flex Data Services for changes to the production mode to take effect.

Disabling incremental compilation
You can use incremental compilation to decrease the time it takes to compile an application or 
component library with the Flex application compilers. When incremental compilation is 
enabled, the compiler inspects changes to the bytecode between revisions and only recompiles 
the section of bytecode that has changed. 



360 Deploying Flex Applications

However, if you deploy a Flex Data Services application on a production server as MXML and 
ActionScript files, you typically compile it on the first access of the application, but do not 
recompile it on subsequent accesses. Therefore, you can disable incremental compilation by 
setting the <incremental> tag in the flex-config.xml file to false. Disabling incremental 
compilation reduces the amount of memory used by the Flex Data Services web-tier compiler. 
The <incremental> tag is a child tag of the <compiler> tag.

For more information, see Chapter 9, “Using the Flex Compilers,” on page 179. 

Using a headless server
A headless server is one that is running UNIX or Linux and often does not have a monitor, 
keyboard, mouse, or even a graphics card. Headless servers are most commonly encountered 
in ISPs and ISVs, where available space is at a premium and servers are often mounted in 
racks. Enabling the headless mode reduces the graphics requirements of the underlying system 
and can allow for a more efficient use of memory.

If you deploy a Flex application on a headless server, you must set the headless-server 
option of the compiler to true. Setting this option to true is required to support fonts and 
SVG images in a nongraphical environment. 

If you are using Flex Data Services, you can also enable the headless mode by setting the 
<headless-server> tag in the flex-config.xml file. 

For more information, see “Using headless servers” on page 126.

Deployment checklist
This section contains a checklist of common system configuration issues that customers have 
found when deploying Flex applications for production. It also contains troubleshooting tips 
to diagnose common deployment problems. 



Deployment checklist 361

Types of network access
Deployed Flex applications typically make several types of requests to services within your 
firewall, as the following example shows:

Most of the deployment issues that customers report are related to network security and 
routing, and fall into one of the following scenarios:

1. Direct access to resources on a web server, such as image files. In the preceding example, 
the client directly accesses resources on webserver.example.com.

2. Direct access to resources on your application server. In the preceding example, the client 
directly accesses resources on appserver.example.com. Ensure that deployed Flex 
applications can access the appropriate servers. 

3. Web services requests through a proxy. A proxy redirects a request to the server that handles 
the web service. The proxy server can be the Flex Data Services proxy server or your own 
proxy server. In the preceding example, the client accesses a resource on 
appserver.example.com, but that request is redirected to finance.example.com. Ensure that 
you configure the proxy server correctly so that deployed Flex applications can access your 
web services, or other data services, through the proxy. 

webserver.example.com

Flex Data Services/Proxy server

Application server

appserver.example.com

Web services server

finance.example.com

Web  server

Flash Player running 
Flex applications on 
client machine

HTTP / SOAP / AMF

Firewall/Router/DNS server

2.

3.

4

1.



362 Deploying Flex Applications

4. Direct access of a web service. In the preceding example, the client directly accesses a service 
on finance.example.com. If a deployed Flex application directly accesses web services, or 
other data services, ensure that access is allowed. 

Step 1. Create a list of server-side resources
Before you start testing your network configuration, make a list of the IP addresses and DNS 
names of all the servers that a Flex application might access. A Flex application might directly 
access these servers, for example by using a web service, or another server might access them as 
part of handling a redirected request.

Enter the information about your servers in the following table:

Flex Data Services includes a web service proxy. Enter information about the server hosting 
the Flex Data Services web service proxy:

Enter information about your web services or any other services accessible from a deployed 
Flex application:

Name DNS name IP address

Name DNS Name IP Address

Name Location (URL)



Deployment checklist 363

Step 2. Verify access from server to server within 
your firewall
In some cases, an external request to one server can be redirected to another server behind 
your firewall. A redirected request can occur for a request to a web service or to any file, 
depending on the system configuration. Where it is necessary, ensure that your servers can 
communicate with each other so that a redirected request can be properly handled. 

To determine if one server, called Server A in this example, can communicate with another 
server, called Server B, create a temporary file called temp.htm on Server A in its web root 
directory. Then, log in to Server B and ensure that it can access temp.htm on Server A. Try to 
access the file by using Server A’s DNS name and also its IP address. 

Servers can have multiple NIC cards or multiple IP addresses. Ensure that each server can 
communicate with all of the IP addresses on your other servers.

Also, log in to the server that hosts your web service proxy to make sure that it can access all 
web services on all other servers. Flex Data Services includes a web service proxy, so log in to 
the server that hosts Flex Data Services. If your system includes another web service proxy, log 
in to that server also. You can test the web service proxy by making an HTTP request to the 
WSDL file for each web service. In the previous example, log in to appserver.example.com 
and ensure that it can access the WSDL files on finance.example.com. 

If any server cannot access the other servers in your system, an external request from a Flex 
application might also fail. For more information, contact your system administrator. 



364 Deploying Flex Applications

Step 3. Verify access to your servers from outside the 
firewall
Some servers might have to be accessed from outside the firewall to handle HTTP, SOAP, or 
AMF requests from clients. You can use the following methods to determine if a deployed 
Flex application can access your servers from outside the firewall:

■ On each server that can be accessed from outside the firewall, create a temporary file, such 
as temp.htm, on the server in its web root directory. From a computer outside the firewall, 
use a browser to make an HTTP request to the temporary file to ensure that an external 
computer can access it. 
For example, for a file named temp.htm, try accessing it by using the following URL:
http://webserver.example.com/server1/temp.htm

■ From a computer outside the firewall, use a browser to make an HTTP request to the 
WSDL file for each web service that can be accessed from outside the firewall to ensure 
that the WSDL file can be accessed.
For example, try accessing the WSDL file for a web service by using the following URL: 
http://finance.example.com/server1/myWS.wsdl

You should be able to access the temp.htm file or the WSDL file on all of your servers from 
outside the firewall. If these requests fail, contact your IT department to determine why the 
files cannot be accessed. 

Step 4. Configure the proxy server
In “Step 3. Verify access to your servers from outside the firewall” on page 364, you ensure 
that you can directly access your servers and server resources from outside the firewall. When 
you use the Flex Data Services proxy or your own proxy server to handle requests to data 
services, you also must ensure that you can access the data services from a deployed Flex 
application through the proxy. 

You typically configure a proxy server with a list of URLs to which the administrator gives 
access to the proxy. Only the URLs that are allowed by the administrator can pass through the 
proxy. 

With Flex Data Services, you use the configuration files to configure the list of accessible 
URLs. For another type of proxy server, a different configuration mechanism might be in 
place. After you configure your proxy server, ensure that the deployed Flex application can 
access web services and other server-side resources as necessary. 

For more information on configuring Flex Data Services, see Chapter 43, “Configuring Data 
Services,” in Developing Flex Applications.



Deployment checklist 365

Step 5. Create a crossdomain policy file 
Your system might be configured to allow a Flex application to directly access server-side 
resources on different domains or different computers without going through a proxy. These 
operations fail under the following conditions:

■ When the Flex application’s SWF file references a URL, and that URL is outside the exact 
domain of the SWF file that makes the  request

■ When the Flex application’s SWF file references an HTTPS URL, and the SWF file that 
makes the request is not served over HTTPS

To make a data service or asset available to SWF files in different domains or on different 
computers, use a crossdomain policy file on the server that hosts the data service or asset. A 
crossdomain policy file is an XML file that provides a way for the server to indicate that its data 
services and assets are available to SWF files served from certain domains, or from all 
domains. Any SWF file that is served from a domain specified by the server’s policy file is 
permitted to access a data service or asset from that server. By default, place the 
crossdomain.xml at the root directory of the server that is serving the data.

For more information on using a cross-domain policy file, see “Using cross-domain policy 
files” on page 65.



366 Deploying Flex Applications



367

16
CHAPTER 16

Creating a Wrapper

Adobe Flex applications can take the form of a SWF file that you embed in an HTML page 
by using the <object> and <embed> tags. The HTML page can also reference an external 
JavaScript file to embed the Flex application. Collectively, the HTML page and JavaScript file 
are known as the wrapper. This topic describes how to create a wrapper, customize an existing 
one to include support for history management and Express Install, and how to use the 
<object> and <embed> tags.

Contents
About the wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367

Creating a wrapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370

Adding features to the wrapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375

About the <object> and <embed> tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378

Requesting an MXML file without the wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389

About the wrapper
The wrapper is responsible for embedding the Flex application’s SWF file in a web page, such 
as an HTML, ASP, JSP, or Adobe ColdFusion page. In addition, you use the logic in the 
wrapper to enable history management, Express Install, and to ensure that users both with 
and without JavaScript enabled in their browsers can access your Flex applications. You can 
also use the wrapper to pass flashVars variables into your Flex applications and use the 
ExternalInterface API. These topics are described in Chapter 34, “Communicating with 
the Wrapper,” in Flex 2 Developer’s Guide.



368 Creating a Wrapper

There are several ways to create a wrapper:

■ Write a custom wrapper using the instructions in “Creating a wrapper” on page 370.
■ Export and customize an HTML wrapper from Flex Builder. For more information, see 

“About the Flex Builder wrapper” on page 368.
■ Generate the HTML wrapper with Flex Data Services. For more information, see “About 

the wrapper generated by Flex Data Services” on page 368.
■ Use the templates provided in the /resources/html-templates directory. For more 

information, see “About the HTML templates” on page 370.

Flex Builder and the Flex Data Services server generate a wrapper that embeds your Flex 
application. These wrappers include support for Express Install and history management by 
default, although you can disable these features or configure them to your specifications. 
History management lets users navigate the history of their interactions within the Flex 
application using the browser’s Forward and Back buttons. Express Install ensures that your 
users have a good upgrade experience if their Players require an update. 

The mxmlc command-line compiler does not generate a wrapper. You must write it manually 
using the instructions in “Creating a wrapper” on page 370. You can start out with a simple 
wrapper that just embeds your Flex application. You can then add history management and 
Express Install support to your wrapper. 

About the Flex Builder wrapper
To view the wrapper generated by Flex Builder, run the current project. Flex Builder generates 
an HTML page in the same directory as the project’s root MXML file. This directory also 
includes the supporting files such as the history.swf, history.js, history.htm, and 
AC_OETags.js files.

You can configure the wrapper using the Flex Compiler properties dialog box in Flex Builder. 
For more information, see the Flex Builder documentation.

About the wrapper generated by Flex Data Services
To view the wrapper generated by Flex Data Services, use your browser to request the MXML 
file directly. Flex returns an HTML page that embeds references to the compiled version of 
this file. To access the wrapper, view the page’s source in your browser and save it. 

Viewing the source in the browser only shows you the final page and not the supporting files 
that are part of the Flex application’s request/response lifecycle. To view the contents of the 
other files, you can use the JRun sniffer utility. For more information, see “Using the sniffer” 
on page 411.



About the wrapper 369

You can customize the output of the Flex Data Services wrapper using the settings in the flex-
webtier-config.xml file. The following table describes the options:

For more information about Express Install and the variables used by Express Install in the 
wrapper, see Chapter 17, “Using Express Install,” on page 391.

Option Description

use-history-management Enables history management support in the wrapper 
returned by Flex Data Services. 
The default value is true.

flash-player.use-player-
detection

Enables the insertion of player detection logic into the 
wrapper that is returned by Flex Data Services. Setting this 
value to false also disables Express Install.
The default value is true.

flash-player.use-express-
install

Enables Express Install support in the wrapper that is 
returned by Flex Data Services.
The default value is true.

flash-player.required-major-
version

Sets the value of the requiredMajorVersion variable in the 
wrapper that is returned by Flex Data Services.
The default value is 9.

flash-player.required-minor-
version

Sets the value of the requiredMinorVersion variable in the 
wrapper that is returned by Flex Data Services.
The default value is 0.

flash-player.required-
version-revision

Sets the value of the requiredRevision variable in the 
wrapper that is returned by Flex Data Services.
The default value is 0.

flash-player.alternate-
content-page

Defines the URL to which a client is redirected if the client 
does not have the required version of the player and does 
not install an updated player.
This option prints the following line in the alternate content 
portion of the wrapper:
document.location.replace(“your_url_here“)
If you define both this option and the alternate-content-
include option, the alternate-content-page option takes 
precendence.

flash-player.alternate-
content-include

Defines content to insert in the alternate content location of 
the wrapper if the client does not have the required version 
of the player and does not install an updated player.



370 Creating a Wrapper

About the HTML templates
Flex Data Services and Flex 2 SDK include a set of HTML templates in the flex_install_dir/
resources/html-templates directory. These templates provide a basic wrapper, as well as 
wrappers that implement various features. The following table describes the templates:

For more information about Express Install, see “Adding Express Install to your wrapper” 
on page 377. For more information about history management, see “Adding history 
management to your wrapper” on page 377.

Creating a wrapper
You can write your own wrapper for your SWF files rather than use the wrapper generated by 
Flex Builder or Flex Data Services. Your own wrapper can be simple HTML, or it can be a 
JavaServer Page (JSP), a ColdFusion page, an Active Server Page (ASP), or anything that can 
return HTML that is rendered in your client’s browser. Typically, you integrate wrapper logic 
into your website’s HTML templates. 

This section describes how to write the simplest wrapper possible to get your Flex application 
running on a web server. It does not include features such as history management and Express 
Install. These features improve the user experience and should be omitted only upon careful 
consideration. Instructions for adding these features, which make creating a wrapper 
considerably more complex, are described in later sections.

Directory Description

client-side-detection Provides scripts that detect the version of the client’s 
player and return alternate content if the client’s player 
does not meet the minimum required version.

client-side-detection-with-history Provides the same scripts as those in the client-side-
detection directory, but adds history management 
support.

express-installation Provides scripts that support Express Install.

express-installation-with-history Provides scripts that support Express Install and history 
management.

no-player-detection Provides a basic wrapper that embeds the SWF file by 
using an external JavaScript file.

no-player-detection-with-history Provides a basic wrapper with history management 
support.



Creating a wrapper 371

Flex Data Services and Flex 2 SDK include files that implement the most basic wrapper in the 
/resources/html-templates/no-player-detection directory. Other directories in the /resources/
html-templates subdirectory define templates with additional features such as history 
management and Express Install. You can use these files or you can use the instructions in this 
section to create your own.

The basic wrapper consists of the following:

■ HTML page. This is the file that the client browser requests. It typically defines two 
possible experiences (one for users with JavaScript enabled and one for users without 
JavaScript enabled). This page also references a separate JavaScript file.
In the provided HTML templates, this file is named index.template.html.

■ JavaScript file. The JavaScript file referenced by the <script> tag in the HTML page 
includes the following:
<object> tag This tag embeds the SWF file for Internet Explorer.
<embed> tag This tag embeds the SWF file for Netscape-based browsers.
In the provided HTML templates, the JavaScript file is named AS_OETags.js.

The client first requests the HTML page. If the user’s browser has JavaScript enabled, the 
HTML page then references the JavaScript file. The JavaScript file embeds the Flex 
application’s SWF file. 

To make your Flex application respond immediately without user interaction, use a <script> 
tag to load the JavaScript file that contains the <object> and <embed> tags. Do not write the 
<object> and <embed> tags directly in the HTML file. Controls that are internally loaded 
require activation before they will run in Microsoft Internet Explorer 7 or later. If you load the 
controls directly in the HTML page, users will be required to activate those controls before 
they can use them by clicking on the control or giving it focus. This is undesireable because 
you want your Flex application to run immediately when the page loads, not after the user 
interacts with the control.

If the client disabled JavaScript in their browser, you typically embed the Flex application 
directly in the <noscript> tag. You can add warnings that they should enable JavaScript or 
else they will have a less than ideal experience.



372 Creating a Wrapper

The following example illustrates the minimum number of requests that the client browser 
makes when JavaScript is enabled:

Requested FileClient Browser

Step 1: GET /flex/index.html

Step 2: GET /flex/mysource.js

Step 3: GET /flex/MyApp.swf



Creating a wrapper 373

The following example shows the minimum requirements of the HTML page and JavaScript 
file to embed a Flex application named MyApp:
<!-- index.html -->
<!-- saved from url=(0014)about:internet -->
<html>

<body>
<script src="mysource.js"></script>
<noscript>

<object id='MyApp' classid='clsid:D27CDB6E-AE6D- 
11cf-96B8-444553540000' codebase='http://download.macromedia.com
/pub/shockwave/cabs/flash/swflash.cab#version=9,0,0,0'
height='100%' width='100%'>
<param name='src' value='MyApp.swf'/>
<embed name='MultipleButtons' pluginspage='http:// 

www.macromedia.com/shockwave/download/index.cgi 
?P1_Prod_Version=ShockwaveFlash' src='MyApp.swf' height='100%' 
width='100%'/>

</object>
</noscript>

</body>
</html>

<!-- mysource.js -->
document.write("<object id='MultipleButtons' classid='clsid:D27CDB6E-AE6D 

-11cf-96B8-444553540000' codebase='http://download.macromedia.com/pub/
shockwave/cabs/flash/swflash.cab#version=9,0,0,0' height='100%' 
width='100%'>");

document.write("<param name='src' value='MyApp.swf'/>");
document.write("<embed name='MyApp' src='MyApp.swf'  

pluginspage='http://www.macromedia.com/shockwave/download/index.cgi 
?P1_Prod_Version=ShockwaveFlash' height='100%' width='100%'/>");

document.write("</object>");

Adding the Mark of the Web (MOTW) to your wrapper is optional. However, if you do not 
add the MOTW to your wrapper, your application might not open in the expected security 
zone within Internet Explorer. The following example MOTW forces Internet Explorer to 
open the page in the Internet zone:
<!-- saved from url=(0014)about:internet -->

In general, add a MOTW when you are previewing pages locally before publishing them on a 
server. For more information about the MOTW, see http://msdn.microsoft.com/workshop/
author/dhtml/overview/motw.asp.



374 Creating a Wrapper

About the HTML page
The wrapper’s HTML page includes the following:

<script> block The script block embeds the JavaScript file. This JavaScript file defines the 
<object> and <embed> tags that embed the SWF file in the HTML page. This block is for 
users who have enabled JavaScript in their browser. 

<noscript> block The code in the <noscript> block uses <object> and <embed> tags to 
embed the SWF file in the HTML page for users who have disabled JavaScript in their 
browser. The <noscript> block is useful if your application requires JavaScript (for example, 
if you use the ExternalInterface API in your application). You can use this block to warn users 
that they will have limited functionality, or redirect them to another site. For a simple 
application, however, your <noscript> block typically contains identical tags as they are 
defined in the JavaScript file. For more complex wrappers that include support for Express 
Install, the <script> block can include a considerable amount of JavaScript code.

About the JavaScript file
The JavaScript file consists of a set of document.write() methods that write the <object> 
and <embed> tags that embed your application. In this example, these tags are identical to the 
<object> and <embed> tags used in the HTML page’s <noscript> block. In more complex 
configurations, you can add Express Install or history management support to the JavaScript 
file that is not supported in the HTML page’s <noscript> block. Remember that the code in 
the HTML page is for browers that do not support JavaScript.

The <object> tag’s codebase and the <embed> tag’s pluginspage properties add support for 
basic player version detection and installation. The codebase tag defines the minimum 
version required at the end of the URL (for example, #version=9,0,0,0). If a client requests 
this page with a player version older than that, they are prompted to upgrade their player.

The upgrade experience is considerably better with Express Install. If the user’s player does not 
meet the minimum requirements, the new player is automatically installed for them. You add 
Express Install by editing your wrapper. For more information, see Chapter 17, “Using 
Express Install,” on page 391.

With a generic wrapper, a user who clicks the Back and Forward buttons in their browser 
navigates the HTML pages in the browser’s history and not the history of their interactions 
within the Flex application. History management allows users to navigate their interactions 
with the Flex application by using the Back and Forward buttons in their browser. You can 
add history management by editing your wrapper. For more information, see Chapter 32, 
“Using the History Manager,” in Flex 2 Developer’s Guide.



Adding features to the wrapper 375

In addition to adding history management and Flash Player detection support to your 
wrapper, you can use other properties of the <object> and <embed> tags to add functionality. 
For more information, see “About the <object> and <embed> tags” on page 378.

Adding features to the wrapper
The default wrapper that Flex Builder and Flex Data Services create includes history 
management and support for Express Install. The History Manager lets users navigate 
through a Flex application using the web browser’s Back and Forward buttons. Express Install 
detects if the client has the required version of Flash Player to run the application and installs 
a newer player on the client if necessary.

Each of these features requires additional files to be deployed with your application. This 
section gives an overview of the files required by these features. For additional information on 
implementing these features, see Chapter 32, “Using the History Manager,” in Flex 2 
Developer’s Guide and Chapter 17, “Using Express Install,” on page 391.

Before adding additional functionality to your custom wrapper, you should understand the 
issues described in “Customizing the wrapper” on page 375.

A simple application uses only the main wrapper plus a JavaScript file that embeds the Flex 
application’s SWF file. The following files are required by a simple wrapper:

■ wrapper.html
■ myscript.js
■ app.swf

Customizing the wrapper
This section lists some guidelines to follow when you create a custom wrapper.

To customize your HTML wrapper, keep the following guidelines in mind:

■ You can use the HTML templates in the /resources/html-templates directory as guides to 
adding new features to the wrapper. For information about the templates, see “About the 
HTML templates” on page 370.

■ You must embed the SWF file and not the MXML file, even if you are using the web tier 
compiler at run-time (if your users request the MXML file in their browser). Set the value 
of the src property of the <object> tag to mxml_filename.mxml.swf if you use the web-
tier compiler. If you use the command-line compiler or Flex Builder, set the value of the 
src property to mxml_filename.swf.



376 Creating a Wrapper

The following example defines the src property of the <object> tag for an MXML 
application called MyApp.mxml:
<param name='src' value='MyApp.mxml.swf'>

The <embed> tag uses the src property to define the source of the SWF file:
src='MyApp.mxml.swf'

■ Do not include periods or other special characters in the id and name properties of the 
<object> and <embed> tags. These tags identify the SWF object on the page, and you use 
them when you use the ExternalInterface API. This API lets Flex communicate with the 
wrapper, and vice versa. For more information about using the ExternalInterface API, see 
Chapter 34, “Communicating with the Wrapper,” in Flex 2 Developer’s Guide.

■ Do not put the contents of the JavaScript file directly in the HTML page. This causes 
Internet Explorer to prompt the user before enabling Flash Player. If the client has 
“Disable Script Debugging (Internet Explorer )” unchecked in Internet Explorer’s 
advanced settings, the browser still prompts the user to load the ActiveX plug-in before 
running it.

■ If you use both the <object> and the <embed> tags in your custom wrapper, use identical 
values for each attribute to ensure consistent playback across browsers. For more 
information about the <object> and the <embed> tags, see “About the <object> and 
<embed> tags” on page 378.

■ To add basic player detection logic without history management or Express Install 
support, use the templates in the /resources/html-templates/client-side-detection 
directory.

■ To add support for history management, follow the instructions in “Using history 
management in a custom wrapper” on page 1157. 

■ To add support for Flash Player detection, follow the instructions in “Configuring Express 
Install on Flex Data Services” on page 396.

■ When using Flex Builder, the default wrapper includes history management and Express 
Install support. You can disable one or both of these features by using the Compiler 
Properties dialog box. You can also use this dialog box to set the minimum required 
version of the Flash Player.

■ When using the web-tier compiler with Flex Data Services, you can change some of the 
wrapper settings in the flex-webtier-config.xml file. These settings are applied to the 
generated wrapper that Flex returns for a *.mxml file request. For more information on 
the web-tier compiler, see “Using the web-tier application compiler” on page 183.



Adding features to the wrapper 377

Adding Express Install to your wrapper
Express Install is included by default in the wrappers generated by Flex Builder and Flex Data 
Services. If you write your own wrapper, however, you must add it manually or use the 
HTML templates in the /resources directory as a base.

Adding Express Install support involves adding JavaScript and VBScript to your main 
wrapper file, as well as replacing your external JavaScript file with the AC_OETags.js file. In 
addition, you must deploy another SWF with your application.

The following files are required by a wrapper with Express Install support:

■ wrapper.html (with additional version detection logic)
■ AC_OETags.js
■ playerProductInstall.swf
■ app.swf

The AC_OETags.js file defines functions that the wrapper calls to embed the Flex 
application’s SWF file. It works similarly to the simple external JavaScript file described in 
“About the JavaScript file” on page 374.

In addition to using the AC_OETags.js file, you must also deploy the playerProductInstall.swf 
file in a location that is accessible by the main application SWF file. 

The files required by Express Install are located in the /resources/html-templates/express-
installation and /resources/html-templates/express-installation-with-history directories.

For more information about adding support for Express Install to your wrapper, see Chapter 
17, “Using Express Install,” on page 391.

Adding history management to your wrapper
Support for history management is included by default in the wrappers generated by Flex 
Builder and Flex Data Services. If you write your own wrapper, however, you must add it 
manually or use the HTML templates in the /resources/html-templates directory as a base. 

To add history management support, you reference the history.js file in a <script> tag and 
the history.htm file in an iframe. The history.js file records actions for history management. 
You also deploy another SWF file with your application.

The following files are used by wrappers that support history management:

■ wrapper.html
■ history.js
■ myscript.js
■ app.swf



378 Creating a Wrapper

■ history.htm
■ history.swf

The HTML file references the history.swf file. You must deploy this SWF file to a location 
that is accessible by the main Flex application SWF file.

If your wrapper supports history management but does not include any player version 
detection logic or support for Express Install, you must combine the contents of the history.js 
and myscript.js files.

For more information about adding history management support to your wrapper, see “Using 
history management in a custom wrapper” on page 1157.

About the <object> and <embed> tags
The <object> and <embed> tags embed your Flex application in the wrapper. They support a 
set of properties that add additional functionality to the wrapper. These properties let you 
change the appearance of the SWF file on the page or change some of its properties such as 
the title or language. If you want to customize your wrapper, you can add these properties to 
the wrapper. 

The <object> tag is used by Internet Explorer 3.0 or later on Windows 9x, Windows 2000, 
Windows NT, Windows ME, and Windows XP platforms or any browser that supports the 
use of the Flash ActiveX control. The <embed> tag is used by Netscape Navigator 2.0 or later, 
or browsers that support the use of the Netscape-compatible plug-in version of Flash Player.

When an ActiveX-enabled browser loads the HTML page, it reads the values set on the 
<object> and ignores the <embed> tag. When browsers using the Flash plug-in load the 
HTML page, they read the values set on the <embed> tag and ignore the <object> tag. Make 
sure that the properties for each tag are identical, unless you want different results depending 
on the user’s browser.

You must set the values of four required properties (height, width, classid, and codebase) 
as attributes in the <object> tag. All other properties are optional and you set their values in 
separate, named <param> tags.



About the <object> and <embed> tags 379

The following example shows the required properties as attributes of the <object> tag, and 
four optional properties, src, play, loop, and quality, as <param> child tags:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" width="100" 

height="100" codebase="http://active.macromedia.com/flash7/cabs/ 
swflash.cab#version=9,0,0,0">
<param name="src" value="moviename.swf">
<param name="play" value="true">
<param name="loop" value="true">
<param name="quality" value="high">

</object>

Although the src property is technically an optional tag, without it, there is no reference to 
the application you want the client to load. Therefore, your wrapper should always set the src 
property in both the <object> and <embed> tags.

For the <embed> tag, all settings are attributes that appear between the angle brackets of the 
opening <embed> tag. The <embed> tag requires the height and width attributes, and the 
pluginspage attribute, which is the equivalent of the <object> tag’s codebase property. The 
<embed> tag does not require a classid attribute.

The following example shows a simple <embed> tag with the optional quality attribute: 
<embed src="moviename.swf" width="100" height="100" quality="high" 

pluginspage="http://www.macromedia.com/shockwave/ 
download/index.cgi?P1_Prod_Version=ShockwaveFlash">

</embed>

To use both tags together, position the <embed> tag just before the closing </object> tag, as 
the following example shows:
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" width="100" 

height="100" codebase="http://active.macromedia.com/flash7/cabs/ 
swflash.cab#version=9,0,0,0">
<param name="src" value="moviename.swf">
<param name="play" value="true">
<param name="loop" value="true">
<param name="quality" value="high">
<embed src="moviename.swf" width="100" height="100" play="true” 
loop="true" quality="high" pluginspage="http://www.macromedia.com/
shockwave/download/index.cgi?P1_Prod_Version=ShockwaveFlash">
</embed>

</object>

T
IP Although the codebase and pluginspage properties are required, they are not necessarily 

used if you use Flash Player Detection Kit to detect and install the required version of 
Flash Player. For more information, see Chapter 17, “Using Express Install,” on 
page 391.



380 Creating a Wrapper

When you define parameters for the <object> tag, also add them as tag properties to the 
<embed> tag so that the SWF file appears the same on the page regardless of the client’s 
browser.

Not all properties are supported by both the <object> and the <embed> tags. For example, 
the id property is used only by the <object> tag, just as the name property is used only by the 
<embed> tag.

In some cases, the <object> and <embed> tag properties duplicate properties that you can set 
on the <mx:Application> tag in the Flex application source code. For example, you can set 
the height and width properties of the SWF file on the <object> and <embed> tags or you 
can set them on the <mx:Application> tag.

The following table describes the supported <object> and <embed> tag properties: 

Property Type Description

align String Specifies the position of the SWF file.
The align property supports the following values:
• bottom: Vertically aligns the bottom of the SWF file with 

the current baseline. This is the default value.
• middle: Vertically aligns the middle of the SWF file with the 

current baseline. 
• top: Vertically aligns the top of the SWF file with the top of 

the current text line. 
• left: Horizontally aligns the SWF file to the left margin.
• right: Horizontally aligns the SWF file to the right margin.

allowNetworking String Restricts browser communication. This property affects 
more APIs than the allowScriptAccess property.
The allowNetworking property supports the following values:
• all: No networking restrictions. Flash Player behaves 

normally. This is the default.
• internal: SWF files cannot call browser navigation or 

browser interaction APIs (such as the 
ExternalInterface.call(), fscommand(), and 
navigateToURL() methods), but can call other networking 
APIs.

• none: SWF files cannot call networking or SWF-to-SWF 
file communication APIs. In addition to the APIs restricted 
by the internal value, these include other methods such 
as URLLoader.load(), Security.loadPolicyFile(), and 
SharedObject.getLocal().

For more information, see Programming ActionScript 3.0.



About the <object> and <embed> tags 381

allowScriptAccess String Controls the ability to perform outbound scripting from 
within the SWF file.
The allowScriptAccess property can prevent a SWF file 
hosted from one domain from accessing a script in an 
HTML page that comes from another domain. Setting 
allowScriptAccess to never for all SWF files hosted from 
another domain can ensure security of scripts located in an 
HTML page.
Valid values are as follows:
• always: Outbound scripting always succeeds.
• never: Outbound scripting always fails.
• samedomain: Outbound scripting succeds only if the 

application is from the same domain as the HTML page.
The default value is always.
This property affects the following operations:
• ExternalInterface.call()
• fscommand()
• navigateToURL(), when used with javascript or another 

scripting scheme
• navigateToURL(), when used with window name of _self, 
_parent, or _top.

For more information, see Programming ActionScript 3.0.

archive String Specifies a space-separated list of URIs for archives 
containing resources used by the application, which may 
include the resources specified by the classid and data 
properties.
Preloading archives can result in reduced load times for 
applications. Archives specified as relative URIs are 
interpreted relative to the codebase property.

base String Specifies the base directory or URL used to resolve relative 
path statements in ActionScript.

Property Type Description



382 Creating a Wrapper

bgcolor String Specifies the background color of the application. Use this 
property to override the background color setting specified 
in the SWF file. This property does not affect the 
background color of the HTML page. 
Valid formats for bgcolor are any #RRGGBB, hexadecimal, 
or RGB value.
The Application container’s style uses an image as the 
default background image. This image obscures any 
background color settings that you might make. So, to make 
the value of the bgcolor property display properly, you must 
clear the Application container’s backgroundImage style 
property. To do this, you can set it to the value of a space 
character, as the following example shows:
<mx:Style>

Application {
backgroundImage: " ";

}
</mx:Style>

border int Specifies the width of the SWF file’s border, in pixels. The 
default value for this property depends on the user agent.

classid String Defines the classid of Flash Player. This identifies the 
ActiveX control for the browser. Internet Explorer 3.0 or 
later on Windows 9x, Windows 2000, Windows NT, 
Windows ME, and Windows XP prompt the user with a 
dialog box asking if they would like to auto-install Flash 
Player if it's not already installed. This process can occur 
without the user having to restart the browser.
This property is used for the <object> tag only.
For the <object> tag, you set the value of this property as an 
attribute of the <object> tag and not as a <param> tag.

codebase String Identifies the location of Flash Player ActiveX control so that 
the browser can download it if it is not already installed. 
This property is used for the <object> tag only.
You can modify this property by using the settings of the 
Flex Data Services server or from Flex Builder. 
For the <object> tag, you set the value of this property as an 
attribute of the tag and not as a child <param> tag.
Like the pluginspage property, the codebase property is 
required. However, they are not necessarily used if you use 
Flash Player Detection Kit to detect and install the required 
version of Flash Player. For more information, see Chapter 
17, “Using Express Install,” on page 391.

Property Type Description



About the <object> and <embed> tags 383

codetype String Defines the content type of data expected when 
downloading the application specified by the classid 
property
The codetype property is optional but recommended when 
the classid property is specified; it lets the browser avoid 
loading unsupported content types.
The default value of the codetype property is the value of the 
type property.

data String Specifies the location of the application’s data; for example, 
instance image data for objects that define images.
If the data property is a relative URI, it is relative to the 
codebase property.

declare Boolean Makes the current SWF file’s definition a declaration only. 
The SWF file must be instantiated by a subsequent object 
definition referring to this declaration.

devicefont Boolean Specifies whether static text objects for which the 
deviceFont option is not selected are drawn using a device 
font anyway, if the needed fonts are available from the 
operating system.

dir String Specifies the base direction of text in an element’s content 
and attribute values. It also specifies the directionality of 
tables. Valid values are LTR (left-to-right text or table) and 
RTL (right-to-left text or table).

flashVars String Sends variables to the application. The format is a set of 
name-value pairs, each separated by an ampersand (&). 
Browsers support string sizes of up to 64 KB (65535 bytes) 
in length.
The default value of this property is an empty string.
If you use query string parameters when requesting an 
MXML file from the Flex Data Services server, Flex converts 
them to flashVars properties.
For more information on using flashVars to pass variables to 
Flex applications, see Chapter 34, “Communicating with 
the Wrapper,” in Flex 2 Developer’s Guide.

Property Type Description



384 Creating a Wrapper

height int Defines the height, in pixels, of the SWF file. Flash Player 
makes a best guess to determine the height of the 
application if none is provided.
The browser scales an object or image to match the height 
and width specified by the author. 
You can set this value to a fixed number or a percentage 
value; for example, length=’100’ or length=’50%’.
Lengths expressed as percentages are based on the 
horizontal or vertical space currently available, not on the 
default size of the SWF file. FireFox browsers do not 
support percentage-based values.
You can also set the height of a Flex application by setting 
the height property of the <mx:Application> tag in an MXML 
file.
For the <object> tag, you set the value of this property as an 
attribute of the <object> tag and not as a <param> child tag.

hspace int Specifies the amount of white space inserted to the left and 
right of the SWF file. The default value is not specified, but is 
generally a small, nonzero length.

id String Identifies the SWF file to the host environment (a web 
browser, for example) so that it can be referenced by using a 
scripting language such as VBScript or JavaScript. 
The id property is only used with the <object> tag. It is 
equivalent to the name property used with the <embed> tag.

lang String Specifies the base language of an element’s property values 
and text content.
The default value is unknown. The browser can use language 
information specified using the lang property to control 
rendering in a variety of ways.

menu Boolean Changes the appearance of the menu that appears when 
users right-click over a Flex application in Flash Player. Set 
to true to display the entire menu. Set to false to display 
only the About and Settings options on the menu.
The default value is true.

name String Identifies the SWF file to the host environment (a web 
browser, typically) so that it can be referenced by using a 
scripting language.
The name property is only used with the <embed> tag. It is 
equivalent to the id property used with the <object> tag.

Property Type Description



About the <object> and <embed> tags 385

pluginspage String Identifies the location of Flash Player plug-in so that the user 
can download it if it is not already installed. 
This property is used for the <embed> tag only.
You can modify this property by using the settings of the 
Flex Data Services server or from Flex Builder.
Like the codebase property, the pluginspage property is 
required. However, these properties are not necessarily 
used if you use Flash Player Detection Kit to detect and 
install the required version of Flash Player. For more 
information, see Chapter 17, “Using Express Install,” on 
page 391.

quality String Defines the quality of playback in Flash Player. Valid values 
of quality are low, medium, high, autolow, autohigh, and best. 
The default value is best.
The low setting favors playback speed over appearance and 
never uses anti-aliasing. 
The autolow setting emphasizes speed at first but improves 
appearance whenever possible. Playback begins with anti-
aliasing turned off. If Flash Player detects that the processor 
can handle it, anti-aliasing is turned on.
The autohigh setting emphasizes playback speed and 
appearance equally at first, but sacrifices appearance for 
playback speed if necessary. Playback begins with anti-
aliasing turned on. If the actual frame rate drops below the 
specified frame rate, anti-aliasing is turned off to improve 
playback speed. Use this setting to emulate the View > 
Antialias setting in Flash. 
The medium setting applies some anti-aliasing and does not 
smooth bitmaps. 
The high setting favors appearance over playback speed 
and always applies anti-aliasing. 
The best setting provides the best display quality and does 
not consider playback speed. All output is anti-aliased and 
all bitmaps are smoothed. 

Property Type Description



386 Creating a Wrapper

salign String Positions the SWF file within the browser. Valid values are L, 
T, R, B, TL, TR, BL, and BR.
L, R, T, and B align the SWF file along the left, right, top, or 
bottom edge, respectively, of the browser window and crop 
the remaining three sides as needed. 
TL and TR align the SWF file to the top-left and top-right 
corner, respectively, of the browser window and crop the 
bottom and remaining right or left side as needed. 
BL and BR align the SWF file to the bottom-left and bottom-
right corner, respectively, of the browser window and crop 
the top and remaining right or left side as needed. 

scale String Defines how the browser fills the screen with the SWF file. 
The default value is showall. Valid values of the scale 
property are showall, noborder, and exactfit.
Set to showall to make the entire SWF file visible in the 
specified area without distortion, while maintaining the 
original aspect ratio of the SWF file. Borders may appear on 
two sides of the SWF file. 
Set to noborder to scale the SWF file to fill the specified 
area, without distortion but possibly with some cropping, 
while maintaining the original aspect ratio of the SWF file.
Set to exactfit to make the entire SWF file visible in the 
specified area without trying to preserve the original aspect 
ratio. Distortion may occur.

src String Identifies the location of the SWF file.
If you write a custom wrapper but deploy your application as 
MXML files and not pregenerated SWF files on a Flex Data 
Services server, use the following naming convention:
movie_name.mxml.swf
Use this property for the <object> and <embed> tags.

standby String Defines a message that the browser displays while loading 
the object’s implementation and data.

style String Specifies style information for the SWF file.
The syntax of the value of the style property is determined 
by the default style sheet language. In CSS, property 
declarations have the form "name:value" and are separated 
by a semicolon.
Styles set with this property do not affect components or the 
Application container in the Flex application. Rather, they 
apply to the SWF file as it appears on the HTML page.

Property Type Description



About the <object> and <embed> tags 387

supportembed Boolean Determines whether the Netscape-specific <embed> tag is 
supported. The supportembed property is optional, and the 
default value is true.
Set to false to prevent the <embed> tag from being read by 
the browser.

tabindex int Specifies the position of the SWF file in the tabbing order 
for the current document. This value must be a number 
between 0 and 32767. User agents should ignore leading 
zeros.

title String Displays information about the SWF file. 
Values of the title property can be rendered by browsers or 
other user agents in different ways. For example, some 
browsers display the title as a ToolTip. Audio user agents 
might speak the title information in a similar context.

type String Specifies the content type for the data specified by the data 
property.
The type property is optional but recommended when data 
is specified; it prevents the browser from loading 
unsupported content types. 
If the value of this property differs from the HTTP Content-
Type returned by the server, the HTTP Content-Type takes 
precedence.

usemap String Associates an image map with the SWF file. The image map 
is defined by a map element. The value of usemap must match 
the value of the name attribute of the associated map element.

vspace int Specifies the amount of white space inserted above and 
below the SWF file. The default value is not specified, but is 
generally a small, nonzero length.

Property Type Description



388 Creating a Wrapper

The <object> and <embed> tags can also take additional properties that are not supported by 
Flex applications. These unsupported properties are listed in “Unsupported properties” 
on page 389.

width int Defines the width, in pixels, of the SWF file. Flash Player 
makes a best guess to determine the width of the 
application if none is provided.
Browsers scale an object or image to match the height and 
width specified by the author. 
You can set this value to a fixed number or a percentage 
value. For example, “width=100” or “width=”50%”.
Lengths expressed as percentages are based on the 
horizontal or vertical space currently available, not on the 
natural size of the SWF file.
You can also set the width of a Flex application by setting 
the width property of the <mx:Application> tag in an MXML 
file.
For the <object> tag, you set the value of this property as an 
attribute of the <object> tag and not as a <param> tag.

wmode String Sets the Window Mode property of the SWF file for 
transparency, layering, and positioning in the browser. Valid 
values of wmode are window, opaque, and transparent.
Set to window to play the SWF in its own rectangular window 
on a web page. 
Set to opaque to hide everything on the page behind it.
Set to transparent so that the background of the HTML 
page shows through all transparent portions of the SWF file. 
This can slow animation performance.
To make sections of your SWF file transparent, you must set 
the alpha property to 0. To make your application’s 
background transparent, set the alpha property on the 
<mx:Application> tag to 0.
The wmode property is not supported in all browsers and 
platforms.

Property Type Description



Requesting an MXML file without the wrapper 389

Unsupported properties
Some optional Flash Player properties do not apply to Flex applications. These are properties 
that involve movie frames and looping. The following properties have no effect when used 
with Flex:

■ loop 
■ play 
■ swliveconnect 

Requesting an MXML file without the 
wrapper
If you are using the web-tier compiler with Flex Data Services, you can request an MXML file 
that has not yet been compiled into a SWF and have Flex return only the SWF file (without 
the wrapper). You do this by appending *.swf to the end of the request string that specifies 
*.mxml. 

For example, the following request returns only a SWF file and no wrapper:
http://www.mysite.com/flex/MyApp.mxml.swf



390 Creating a Wrapper



391

17
CHAPTER 17

Using Express Install

This topic describes how to detect if the client has the required version of Flash Player to run 
your Flex application and upgrade the player if necessary. In most cases, the player is an 
ActiveX control running inside Microsoft Internet Explorer or a plug-in for Netscape-based 
browsers. You edit the wrapper to include version detection logic, and logic that installs a 
newer player on the client if necessary. This feature is known as Express Install.

Express Install requires that the client have Flash Player 6.0.65 or later installed on MacOS or 
Microsoft Windows, and that the browser has JavaScript enabled.

Contents
About Express Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Editing your wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392

Configuring Express Install on Flex Data Services . . . . . . . . . . . . . . . . . . . . . . . . . . .396

Alternatives to Express Install  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397

About Express Install
After developing an application, you want to ensure that all users can run it and that they have 
a current version of the Flash Player. Flex includes code and applications that make the 
updating process for the player simple for you and nearly transparent for the client. These files 
are located in the /resources/html-templates directory for Flex 2 SDK and Flex Data Services.

The recommended method of ensuring that Flash Player can run the Flex application on the 
client is to use Express Install. With Express Install, you can detect when users do not have the 
latest version of Flash Player, and you can initiate an update process that securely installs the 
latest version of the player from the Adobe website. When the installation is complete, users 
are directed back your website, where they can run your Flex application. 



392 Using Express Install

Express Install runs a SWF file in the existing Flash Player to upgrade users to the latest 
version of the player. As a result, Express Install requires that Flash Player already be installed 
on the client, and that it be version 6.0.65 or later. The Express Install feature also relies on 
JavaScript detection logic in the browser to ensure that the player required to start the process 
exists. As a result, the browser must have JavaScript enabled for Express Install to work.

If the player on the client is not new enough to support Express Install, you can display 
alternate content, redirect the user to the Flash Player download page, or initiate another type 
of Flash Player upgrade experience. For information on using alternative Player upgrade 
techniques, see “Alternatives to Express Install” on page 397.

Editing your wrapper
After you compile your application into a SWF file, you write a wrapper that embeds that 
SWF file. Clients request this wrapper directly. You can use Adobe Flex Data Services or 
Adobe Flex Builder to automatically generate a wrapper, or you can write one yourself. 
Express Install is included by default in the wrappers generated by Flex Builder and Flex Data 
Services. You can configure Express Install settings in the flex-webtier-config.xml file for Flex 
Data Services. For more information, see “About the wrapper generated by Flex Data 
Services” on page 368.

If you write your own wrapper, however, you must add Express Install manually. Sample 
wrapper templates are available for Flex Data Services and Flex 2 SDK in the /resources/html-
templates directory. For more information, see “About the HTML templates” on page 370.

This section is for users who write their own wrapper and add Express Install support to it. It 
is also for users who customize a generated wrapper or template. For more information about 
creating a wrapper, see Chapter 16, “Creating a Wrapper,” on page 367.

Adding Express Install script to the wrapper
After you write your own wrapper, follow the steps in this section to add support for Express 
Install. The steps described here require the following files, which are located in the /
resources/html-templates/express-installation directory:

■ index.template.html Wrapper file that detects the Flash Player version and initiates 
Express Install if necessary. You integrate this code with your wrapper.

■ AC_OETags.js Script file that provides methods for Flash Player version detection and 
embedding your Flex application. You call methods in this file from your wrapper.

■ playerProductInstall.swf Flash application that initiates Express Install. You deploy 
this file with your application. 



Editing your wrapper 393

To add Express Install support to your wrapper:

1. Open your wrapper in a text editor.

2. Add or include the script in the index.template.html file to your wrapper. This file is 
included in the /resources/html-templates/express-installation directory. For a detailed 
description of this script, see “Understanding the Express Install script” on page 395. 

3. In the Globals section of the script, set the minimum version of Flash Player that your users 
must be running. For Flex 2 applications, the minimum version number is 9.0.0; for 
example:
// Globals
// Major version of Flash required
var requiredMajorVersion = 9;
// Minor version of Flash required
var requiredMinorVersion = 0;
// Minor version of Flash required
var requiredRevision = 0;

If you are using Flex Data Services to generate the wrapper, you can set this value in the 
flex-webtier-config.xml file. If you are using Flex Builder to generate the wrapper, you can 
set this value in the Detect Flash Version text box in the Compiler Properties dialog box.

4. Deploy the AC_OETags.js file to a location that is accessible to your wrapper. This file is 
included in the /resources/html-templates/express-installation directory. This file is also 
generated by Flex Builder and Flex Data Services. The default location is the same directory 
as the wrapper. If you change it, you must also edit the following line in the wrapper:
<script src="AC_OETags.js" language="javascript"></script>



394 Using Express Install

5. Edit the calls to the AC_FL_RunContent() method. This method passes information about 
the SWF file to be run to the AC_OETags.js external script file. The functions defined in 
the AC_OETags.js file write the <object> and <embed> tags for the SWF file. 

There are multiple calls to this method in script blocks that meet different conditions. In 
the first script block, change the id and name parameters to match your SWF file’s name:
if (hasProductInstall && !hasRequestedVersion) {

AC_FL_RunContent(
"src", "playerProductInstall",
"FlashVars", "MMredirectURL="+MMredirectURL+'&MMplayerType='+

MMPlayerType+'&MMdoctitle='+MMdoctitle+"",
"width", "100%",
"height", "100%",
"align", "middle",
"id", "MyFirstProject",
"quality", "high",
"bgcolor", "#869ca7",
"name", "MyFirstProject",
"allowScriptAccess","sameDomain",
"type", "application/x-shockwave-flash",
"pluginspage", "http://www.macromedia.com/go/getflashplayer"

);
}

In the second script block, change the src, id, and name parameters to match your SWF 
file’s name:
} else if (hasRequestedVersion) {

AC_FL_RunContent(
"src", "MyFirstProject",
"width", "100%",
"height", "100%",
"align", "middle",
"id", "MyFirstProject",
"quality", "high",
"bgcolor", "#869ca7",
"name", "MyFirstProject",
"flashvars",'historyUrl=history.htm?&lconid=' + lc_id +'&',
"allowScriptAccess","sameDomain",
"type", "application/x-shockwave-flash",
"pluginspage", "http://www.macromedia.com/go/getflashplayer"

);
}



Editing your wrapper 395

When you edit these methods, you can also add flashVars variables, change the height 
and width of the SWF file, add history management support, and set other properties of 
the SWF file, if necessary. For more information about available properties, see “About the 
<object> and <embed> tags” on page 378. For more information about adding history 
management support, see Chapter 32, “Using the History Manager,” in Flex 2 Developer’s 
Guide.

6. Replace the value of the alternateContent variable with your own custom content. In 
this step and the next, you can implement alternate methods of upgrading Flash Player for 
users who do not meet the requirements for Express Install. For more information, see 
“Alternatives to Express Install” on page 397.

7. Replace the HTML code found within the <noscript> tag with your own custom 
content. For more information, see “Alternatives to Express Install” on page 397.

8. Deploy the playerProductInstall.swf file included in the the /resources/html-templates/
express-installation directory to your web server. 

By default, you should deploy this file to the same directory as your Flex application. If 
you deploy it to another location, you must update the wrapper to point to this new 
location. This file is also included in your Flex application’s bin directory in Flex Builder.

Understanding the Express Install script
The scripts that implement Express Install in your wrapper are contained in the 
AC_OETags.js and index.template.html files from the /resources/html-templates/express-
installation directory.

The following steps show the order of execution within the Express Install scripts:

For browsers with scripting, the Express Install script:

1. Sets global variables that define the required minimum version of the player.

2. Detects browser type (set the values of the isIE, isWin, and isOpera Boolean properties).

3. Sets the value of the hasProductInstall property by calling the DetectFlashVer() 
method. 

This method returns true if the current player supports Flash Product Install. This 
method returns false if the current player does not support Flash Product Install. Flash 
Players later than version 6.0.65 meet this requirement.



396 Using Express Install

4. Sets the value of the hasRequestedVersion property by calling the DetectFlashVer() 
method.

This method returns true if the current player is new enough to display the Flex 
application. This method returns false if the current player must be upgraded to display 
the Flex application.

5. Sets the value of the MMredirectURL property to specify the location where the browser is 
redirected after running Express Install.

6. Sets the value of the document.title and MMdoctitle properties so the unused browser 
windows can be closed after running Express Install.

7. Examines the values of the hasProductInstall and hasRequestedVersion properties:

a. If the current player is version 6.0.65 or later (hasProductInstall=true) but it 
cannot play the current Flex application (hasRequestedVersion=false), run the 
playerProductInstall.swf file. This upgrades the player with Express Install.

b. If the current version of the player meets the requirements for playback 
(hasRequestedVersion=true), run the Flex application.

c. If the current player is earlier than version 6.0.65 (hasProductInstall=false) and 
the version is not new enough (hasRequestedVersion=false), show alternate 
content or upgrade without Express Install.

For browsers without scripting, the Express Install script:

1. Shows the link to the Flash Player download page.

2. Shows alternate content or prompts the user to upgrade without using Express Install.

Configuring Express Install on Flex Data 
Services
If you are running Flex Data Services, you can generate the HTML wrapper with custom 
settings for Express Install. 

If you generate a wrapper with Flex Data Services, you can configure the major and minor 
versions required to run your application, and disable version detection in the wrapper.

The settings are in the <flash-player> block in the flex-webtier-config.xml file. 

For more information, see “About the wrapper generated by Flex Data Services” on page 368.



Alternatives to Express Install 397

Alternatives to Express Install
When you add the Express Install script to your wrapper, one of the following results occur 
when a client requests that wrapper: 

■ Client runs the application.
■ Client upgrades Flash Player by using Express Install and then runs the application.
■ Client upgrades Flash Player by using alternative method and then runs the application.
■ Client does not upgrade Flash Player and runs alternate content.

Users who do not update the Flash Player version by using Express Install generally fall into 
the following categories:

■ Browser with disabled scripting If the browser disables JavaScript, the browser 
executes content in the <noscript> tag of the wrapper. The version detection logic from 
the index.template.html and AC_OETags.js files is not interpreted when your wrapper is 
loaded into a browser, nor is Express Install usable.

■ Browser with no Flash Player installed If the browser has no Flash Player installed but 
JavaScript is enabled, the browser executes the alternate content area in the <script> tag 
of the wrapper. 

■ Browser with Flash Player version earlier than 6.0.65 If Flash Player is not new 
enough to run the Express Install SWF file (playerProductInstall.swf ), but JavaScript is 
enabled, the browser executes the alternate content area in the <script> tag of the 
wrapper.

■ User refuses Flash Player installation or upgrade If the user declines to install Flash 
Player or to upgrade their version of Flash Player, the browser executes the alternate 
content area in the <script> tag of the wrapper. It is up to you to determine whether to 
provide content in HTML format or some other format that the browser can render 
without using Flash Player.

In situations where the browser executes alternate content, you can use the <object> and 
<embed> tags to embed your Flex application and provide an upgrade and installation path for 
players that are old or missing. 

The <object> tag’s codebase property is used to enforce the player versioning for a 
Microsoft Internet Explorer browser. The tag adds support for basic player version detection 
and installation. The codebase property defines the minimum version specified at the end of 
the CAB file’s location (for example, #version=9,0,0). If the browser requests this page with 
a player version older than that, the user is prompted to upgrade their player. This installation 
can occur without the user having to restart the browser.



398 Using Express Install

The <embed> tag’s pluginspage property is used for Firefox, Netscape 8, and Mozilla-based 
browsers. If there is no plug-in installed, the browser displays a plug-in icon and the text 
“Click here to get the plug-in.” When a user clicks the icon, they are directed to an 
appropriate location, depending on the type of browser being used, where they can download 
and install the latest version of Flash Player. The pluginspage property does not enforce a 
required version of the plug-in. 

Flash Player is available from the Firefox Plug-in Finder Service. This means that if the Firefox 
browser does not have the player installed when it encounters an <embed> tag, it guides the 
user through the process of downloading and installing Flash Player through the Finder 
Service.

Consider adding a note to users of Firefox, Netscape 8, and Mozilla-based browsers that if 
they have scripting disabled, they should upgrade their Flash Players to version 9 before 
continuing. You can put this in the <noscript> block to ensure that only users with scripting 
disabled get this message.

These upgrade processes result in a different upgrade experience than the experience of the 
user who upgrades by using Express Install. Express Install provides a clean installation and 
returns the user to the original page. These alternative paths require more steps and in some 
cases do not provide users with a return path to the original application.

You can do basic version detection without using Express Install. For an example of this, see 
the files in the /resources/html-templates/client-side-detection and /resources/html-templates/
client-side-detection-history directories.

Other techniques for upgrading Flash Player without Express Install are described in the Flash 
Player Detection Kit. These include using server-side logic and writing a custom SWF file to 
perform version detection and installation. For more information, see the Detection Kit 
documentation at www.adobe.com/go/fp_detectionkit.

http://www.adobe.com/go/fp_detectionkit


399

4PART 4

Configuring JRun

This part describes how to configure the integrated JRun Application 
Server for Flex Data Services.

The following topic is included:
Chapter 18: Configuring JRun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401





401

18
CHAPTER 18

Configuring JRun

This topic describes how to work with the integrated JRun application server that is 
optionally installed with Adobe Flex Data Services. The JRun application server is not a full-
featured server, and this version is not intended to be used in a production environment. You 
can, however, add and remove web applications and servers, configure logging, virtual 
directories, and other mappings, and perform many other tasks to use the JRun application 
server in your development environment.

Contents
About JRun application servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Starting and stopping JRun servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Adding and removing servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Configuring JRun servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Using the sniffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411

About JRun application servers
Flex Data Services is a web application that you can install on several different Java application 
servers. One installation option is to include the integrated JRun Java application server on 
which you install the Flex Data Services web application. This section describes how to 
administer the integrated JRun application server.



402 Configuring JRun

Limitations of the JRun application server
The integrated JRun application server is not meant to be used in a production environment. 
Use this server only for development purposes.

The following limitations apply to the JRun application server that is integrated with the Flex 
Data Services installation process as compared to the stand-alone JRun products:

■ Is not licensed for deployment
■ Cannot be used as a Windows service (you can only start and stop servers from the 

command line or the JRun Launcher)
■ Does not include JRun Management Console (all configuration must be done through 

the XML configuration files and command-line)
■ Does not include web server connectors (you cannot connect the integrated JRun 

application server to an external webserver such as IIS or Apache)
■ Does not include database drivers
■ Does not include integrated Pointbase database
■ Does not include JRun samples

If you do use JRun in an environment that is accessible to the network, secure it as best as 
possible. For more information, see “Securing JRun” on page 63.

About the default web applications
JRun has a single server instance on it named default. The following web applications run on 
this server instance:

■ flex
■ flex-admin
■ samples

You can request each of these web applications using the localhost and the default port 
number 8700. For example:
http://localhost:8700/samples

A web application typically consists of web components such as servlets, JSPs, HTML pages, 
images, a standard deployment descriptor, optionally, JavaBeans and custom tag classes, and 
other resources. These resources are in a standard, predefined directory structure so that they 
can be deployed on any web application server.

To use any of these applications, you must first start the default JRun application server. For 
more information, see “Starting and stopping JRun servers” on page 404.



About JRun application servers 403

About the flex web application
The flex web application is deployed on the default JRun server when the integrated JRun 
application server starts up. It defines the servlets that open the web-tier compiler and the data 
services and messaging services. You can store your MXML files and other application assets 
in the /flex directory or a subdirectory, and then open the root MXML file to compile your 
Flex application into a SWF file. You typically do this in a browser with a URL similar to the 
following:
http://localhost:8700/flex/MyApp.mxml

For more information about the servlets used by the flex web application, see “Servlet 
configuration” on page 171.

For information about the structure of the files used in the flex web application, see“About 
deploying an application” on page 351.

The flex web application also generates a wrapper. A wrapper is an HTML page with the 
embedded Flex application’s SWF file. It provides history management and Flash Player 
detection logic, although you can customize the wrapper to be integrated into your website. 
For more information about the wrapper, see Chapter 16, “Creating a Wrapper,” on page 367.

About the flex-admin web application
The flex-admin web application uses Java Management Beans (MBeans) to provide run-time 
monitoring and management of the services configured in the Flex services configuration files. 
The run-time monitoring and management console is an example of a Flex client application 
that provides access to the run-time MBeans. It calls a Remoting Service destination, which is 
a Java class that makes calls to the MBeans.

For more information about the flex-admin web application, see “Managing services” 
on page 1390.

About the samples web application
The samples web application contains sample Flex applications that use the Flex Data 
Services. These samples demonstrate using services such as RPC and messaging. Applications 
include chat, real-time data feeds, and collaboration.

For more information, see the samples web application’s index.htm page.



404 Configuring JRun

Starting and stopping JRun servers
You can start and stop a JRun server from the command line or from the JRun Launcher. This 
section describes how to start and stop the default JRun application server.

To start the default JRun application server from the JRun Launcher:

1. Open a Command Prompt window.

2. Change directories to the \jrun4\bin directory under the Flex Data Services installation 
folder. 

3. Type the following command:
jrun

JRun opens the JRun Launcher.
4. Select the default JRun server and click the Start button.

You can also use the JRun Launcher to restart and stop the default JRun server.

To start and stop the default JRun application server from the command line:

In Microsoft Windows: 

1. Open a Command Prompt window.

2. Change directories to the \jrun4\bin directory under the Flex Data Services installation 
folder. 

3. Start the server by typing the following command: 
jrun -start default

4. To stop the server, press Ctrl+C in the active window or type the following command from 
another window:
jrun -stop default

In Linux and Solaris: 

1. Change directories to the /jrun4/bin directory. 

2. Start the server by typing the following command: 
./jrun -start default 

3. To stop the server, type the following command: 
./jrun -stop default

When the server is running, you can access the index page by requesting the following URL:
http://localhost:8700

You cannot run JRun as a Windows service.



Adding and removing servers 405

Adding and removing servers
The default installation of JRun includes a single server named default. You can add any 
number of additional JRun application servers.

To add a new JRun application server:

1. Copy the flex_install_dir/jrun4/servers/default directory and rename it. The name you give 
this new directory is the name of the new JRun application server. 

2. Add a new entry in the flex_install_dir/jrun4/lib/servers.xml file that specifies that server’s 
name and path. For example, if you named the copy of the default directory myserver, you 
add the following block to the servers.xml file:
<server>

<name>myserver</name>
<directory>{jrun.home}/servers/myserver</directory>

</server>

3. Change the default web service port number of the new JRun server, because you will not 
be able to start it with the existing default server at the same time if they have the same port 
numbers. This port number is defined by the WebService’s port property in the following 
file:
flex_install_dir/jrun4/servers/server_name/SERVER-INF/jrun.xml

For more information on changing port numbers, see “Changing port numbers” 
on page 407. 

4. Change the default JNDI naming server port number of the new JRun server. This port 
number is defined by the java.naming.provider.url property in the following file:
flex_install_dir/jrun4/servers/server_name/SERVER-INF/jndi.properties

To remove a JRun server, delete the server’s directory and remove its entry from the 
servers.xml file.



406 Configuring JRun

Configuring JRun servers
The integrated JRun application server is a lightweight version of the stand-alone JRun Java 
application server. It is not intended for use in a production environment. As a result, the 
configuration options are limited. 

The following table describes the configuration files you typically edit to configure the JRun 
servers:

The settings in the web.xml and flex-config.xml files are not specific to JRun. Settings you 
make in these files apply to the flex web application on any J2EE server.

Configuration file Description

flex-config.xml Defines web-tier compiler configuration settings. For more 
information, see Chapter 8, “Flex 2 SDK and Flex Data Services 
Configuration,” on page 161. 

jrun.xml Defines the JRun application server’s settings. You use it to configure 
settings for JRun services such as logging, web server, and J2EE 
security. 
The jrun.xml file is in the following location:
{flex_install_dir}/jrun4/servers/default/SERVER-INF/jrun.xml

jrun-web.xml Contains web application elements that are specific to the JRun web 
application server. You typically do not edit this file unless you are 
adding virtual directories.

web.xml Configures settings such as servlet mappings and sets the welcome 
file. Also enables or disables directory browsing on any web 
application server on which Flex Data Services is deployed. 
The Flex application’s web.xml deployment descriptor file is in the 
following location:
{flex_install_dir}/jrun4/servers/default/flex/WEB-INF/web.xml
The web.xml file not a JRun-specific file. It is also known as the 
deployment descriptor because it contains information about the 
deployed Flex web application.
For more information on editing the web.xml file, see “Configuring 
mappings” on page 175.



Configuring JRun servers 407

Changing port numbers
The JRun web application server primarily serves as a servlet container. It also includes a built-
in web server to respond to HTTP requests and return HTTP responses.

All web servers use a TCP/IP port, which is specified in the request string. The default port 
for web servers is 80. For example, http://www.myhost.com and http://www.myhost.com:80 
are the same. Similarly, port 443 is the default port for HTTPS requests. 

The default port for the JRun web server is 8700. For example, to access the index page of the 
flex web application, you specify http://localhost:8700/flex.

When you install JRun, if the default port is already in use, the installer selects the next higher 
available port and configures the built-in web server to use that port.

To change the port number, edit the following file:
flex_install_dir/jrun4/servers/default/SERVER-INF/jrun.xml

You can change the value of the port attribute of the web service. The following example 
changes the port number to 8701:
<service class="jrun.servlet.http.WebService" name="WebService">

<attribute name="port">8701</attribute>
</service>

Before you change the port number on which the JRun web server listens, consult a list of 
common well-known port numbers so that you do not cause conflicts with other services 
running on your computer. 

JRun also uses JNDI services which require unique port numbers. These ports are defined in 
the jndi.properties file, which is in the same directory as the jrun.xml file. 

You do not have to change a port number that is set to 0. If a port number is set to 0, then 
JRun automatically assigns a unique number to that port when the server starts. 



408 Configuring JRun

Creating a web application
To create a web application, make a copy of the /flex directory and its contents. Rename the 
copy and store it in the same location under the /servers/default directory. You can now store 
MXML files in the new application root directory and request them using the following URL:
http://localhost:8700/new_app_name/myfile.mxml

Configuring the hot-deploy feature
You can make configuration changes to your flex web application by modifying the flex-
config.xml file. After modifying the flex-config.xml file, you must restart the JRun server in 
order for the changes to take affect. However, you can enable JRun’s hot-deploy feature to 
dynamically redeploy the application without restarting the server.

To configure hot deploy:

1. Open the jrun.xml file under the SERVER-INF directory. The default location is 
flex_install_dir/jrun4/servers/default/SERVER-INF/jrun.xml.

2. Search for the DeployerService section (not the ClusterDeployerService section) within the 
jrun.xml file.

3. Add the following under <service class="jrun.deployment.DeployerService" 
name="DeployerService">:
<service name="Flex Web Application Factory" 

class="jrun.servlet.WebApplicationFactory">
<attribute name="mandatoryFingerPrint">WEB-INF/flex/flex-webtier- 

config.xml
</attribute>

</service>

4. Restart the JRun server. 

Using virtual directories
You might want to store your application files and resources, such as JSPs, servlets, images, 
and MXML files, in a directory that is not physically in the JRun server’s directory structure. 
You can do this by mapping a physical directory (or system path) to a virtual location (or 
resource path). Using virtual directories is especially common in environments that use 
content management systems or have large teams working on the same project.

To create virtual directories for a JRun application server, you edit the jrun-web.xml file in the 
server’s /WEB-INF directory. You add a <virtual-mapping> block, with the <resource-
path> defining the virtual location of the resources and the <system-path> defining the 
actual location. 



Configuring JRun servers 409

The following example maps the c:/main/testing/EN directory to /EN:
<jrun-web-app>

<virtual-mapping>
<resource-path>/EN</resource-path>
<system-path>c:/main/testing/EN</system-path>

</virtual-mapping> 
</jrun-web-app>

In this example, you can access files in the c:/main/testing/EN directory using a request URL 
similar to the following:
http://mycompany.com:8100/flex/EN

You can add virtual mappings to one jrun-web.xml file and have it apply to all applications 
running on the default server. To do this, you edit the {jrun_install_dir}/servers/default/
default-ear/default-war/WEB-INF/jrun-web.xml file.

Enabling and disabling directory browsing
You can enable and disable directory browsing. Directory browsing is when a user requests a 
directory rather than a specific file. If directory browsing is enabled, JRun returns a list of the 
available files in that directory. If directory browsing is disiabled, JRun returns an error. 

Directory browsing is enabled by default. To disable directory browsing, set the value of the 
browseDirs initialization parameter of the FileServlet servlet to false in the SERVER-INF/
application_name-web.xml file, as the following example shows:
<servlet>

<servlet-name>FileServlet</servlet-name>
<servlet-class>jrun.servlet.file.FileServlet</servlet-class>
<init-param>

<param-name>browseDirs</param-name>
<param-value>false</param-value>

</init-param>
</servlet>



410 Configuring JRun

Configuring JRun logging
JRun defines a separate logger for each server. These loggers record application and server 
events such as initializations, requests, web application deployments, and shutdown messages. 
You configure the logger in the following file:
flex_install_dir/jrun4/servers/default/SERVER-INF/jrun.xml

You can change the format of the log messages, log levels, and enable JRun’s metrics service 
using this file. By default, JRun logs error, warning, and info messages. 

The default location of the default server’s log file is flex_install_dir/jrun4/logs/default-
event.log.

The following example defines the default logger configuration for the default JRun server:
<service class="jrunx.logger.LoggerService" name="LoggerService">

<attribute name="format">{server.date} {log.level} 
{log.message}{log.exception}</attribute>

<attribute name="errorEnabled">true</attribute>
<attribute name="warningEnabled">true</attribute>
<attribute name="infoEnabled">true</attribute>
<attribute name="debugEnabled">false</attribute>
<attribute name="metricsEnabled">false</attribute>
<attribute name="metricsLogFrequency">60</attribute>
<attribute name="metricsFormat">Web threads (busy/total):  

{jrpp.busyTh}/{jrpp.totalTh} Sessions: {sessions} Total 
Memory={totalMemory} Free={freeMemory}</attribute>

<service class="jrunx.logger.ThreadedLogEventHandler" 
name="ThreadedLogEventHandler">
<service class="jrunx.logger.ConsoleLogEventHandler" 

name=":service=ConsoleLogEventHandler"/>
<service class="jrunx.logger.FileLogEventHandler" 

name="FileLogEventHandler">
<attribute name="filename">{jrun.rootdir}/logs/{jrun.server.name} 
-event.log</attribute>
<attribute name="rotationSize">200k</attribute>
<attribute name="rotationFiles">3</attribute>
<attribute name="closeDelay">5000</attribute>
<attribute name="deleteOnExit">false</attribute>

</service>
</service>

</service>

The default logger configuration does not include debug messages. To enable debug messages, 
set the value of the debugEnabled attribute to true, as the following example shows:
<attribute name="debugEnabled">true</attribute>



Using the sniffer 411

The default logger configuration enables both file and console logging. To disable console 
logging, comment out the following line:
<!-- <service class="jrunx.logger.ConsoleLogEventHandler" 

name=":service=ConsoleLogEventHandler"/> -->

You can configure a JRun server to write to log-level-specific log files so that you have one log 
file for debug messages and a separate file for info messages, for example. You do this by 
adding the {log.level} variable to the filename attribute, as the following example shows:
<attribute name="filename">{jrun.rootdir}/logs/{jrun.server.name}-

{log.level}-event.log</attribute>

The result is that JRun writes the following log files, each containing only the events of that 
log level:

■ default-info.log
■ default-debug.log
■ default-warn.log
■ default-error.log
■ default-metrics.log (if metrics are enabled)

Using the sniffer
TCPMonitor is a swing-based application that lets you watch the request and response flow of 
HTTP traffic. You can also watch the request and response flow of data services messages. 
This application is commonly known as the sniffer. 

When you use the sniffer, you request a resource but specify the sniffer’s listening port. The 
sniffer then passes this request to the resource on the target port, and returns the results back 
to the requesting client. Because the sniffer is providing “tunneling” for your requests, it can 
display all the HTTP request and response traffic.



412 Configuring JRun

To run TCPMonitor:

1. On Microsoft Windows and Unix platforms, you can execute the TCPMonitor by 
launching the sniffer utility in the flex_install_dir/jrun4/bin directory.

The TCPMonitor main window appears:

2. Enter the values in the main window as described in the following table:

Field Description

Listen Port# Enter a local port number, such as 8701, to monitor for incoming 
connections. Instead of requesting the usual port on which your 
server runs, you request this port. TCPMonitor intercepts the 
request and forwards it to the Target Port.

Listener Select Listener to use TCPMonitor as a sniffer service in JRun.

Proxy Select Proxy to enable proxy support for TCPMonitor.

Target Hostname Enter the target host to which incoming connections are forwarded.
For example, if you are monitoring a service running on your 
samples JRun server, the hostname is localhost.



Using the sniffer 413

3. To add this profile to your TCPMonitor session, click Add.

A tab appears for your new tunneled connection.
4. Select the new tab. If there are port conflicts, TCPMonitor alerts you in the Request panel.

5. Request a page using the Listen Port defined in this TCPMonitor session. For example, if 
you entered 8701 for the Listen Port, enter the following URL in your browser:
http://localhost:8701/

TCPMonitor displays the current request and response information. For each connection, 
the request appears in the Request panel and the response appears in the Response panel. 
TCPMonitor keeps a log of all request-response pairs and lets you view any particular pair 
by selecting an entry in the top panel.

6. To save results to a file for later viewing, click Save. To clear the top panel of older requests 
that you do not want to save, click Remove Selected and Remove All.

7. To resend the request that you are currently viewing and view a new response, click Resend. 
You can edit the request in the Request panel before resending, and test the effects of 
different requests.

8. To change the ports, click Stop, change the port numbers, and click Start.

9. To add another listener, click the Admin tab and enter the values as described previously.

10. To end this TCPMonitor session, click Close.

Target Port# Enter the port number on the target machine to which TCPMonitor 
connects. For example, if you are monitoring Flex on the default 
JRun server, enter 8700.

HTTP Proxy Support Select this check box only to configure proxy support for 
TCPMonitor.

Field Description



414 Configuring JRun



415

Index

Symbols
*.as files  34
*.css files  35,  111,  198
*.mxml files  34
*.swc files  34,  229
@Context token  193
@ContextRoot token  177

A
absolute positioning  115
absolute sizing  115
AC_OETags.js file  377,  394
accessibility

compiler option  196
enabling  358

ActionScript
error handling  79
keeping generated files  203

ActiveX controls
activating  371
upgrading  391

addToCreationQueue() method  147
advisories  85
alignment, SWF files  386
ALL log level  254
allowNetworking property  58,  380
allowScriptAccess property  58,  381
AMF, Secure  75
animations  117
anti-aliasing  117,  385
Application class  147
application compiler

about  180
options  196
SDK  182

using  195
web tier  183
See also compc
See also mxmlc

web-tier compiler
applicationComplete event  133
applications

breaking up  102,  234
compiling  180
debugging with fdb  270
default mapping  176
deploying  60,  351,  360
embedding in wrappers  373
files  156
frame rate  198
history management  377
initialization time  89
login  67,  68
performance  88
production mode  61
profiling  90
recompiling  96
root directory  210
sandboxes  56
scaleability  88
scaling  386
security  51,  76
SpeedStep  94
transparency  388
using SWC files  213,  231
view source  77

archive option  381
archives. See SWC files
AS file type

about  34
preventing access  63

assets



416

about  158
externalizing  101
loading local  66
remote assets  65
types  64

authentication
about  67
BASIC  68
container-based  67
FORM-based  68
host-based  81
passwords  81

authorization
about  67
passwords  81

axis gutters  128
AxisRenderer object  128

B
background color

compiler option  198
wrapper  382

BASIC authentication  68
benchmark, compiler option  196
bitmaps

asset types  64
backgrounds  116
cachePolicy property  117
optimizing  118
quality  385

BOM. See Byte Order Mark
breakpoints  279
browsers

cache files  95
caching  59
default  271
disabling history management  125
security APIs  57
trusted sites  59

browsing directories  409
building projects  181
Byte Order Mark (BOM)  212
bytecode

optimization  97

C
Cache-control header  59

cache.dep file  96,  172
cacheAsBitmap property  117,  118
cachePolicy property  117
caching

cache.dep file  96
Flash Player  118
Flex Data Services  126
fonts and glyphs  174
HTTP headers  59,  95
preventing  95
security implications  59
server configuration  172
servers  62

callLater() method  90,  150
Canvas class  115
Capabilities class  250
catalog.xml file  239
CategoryAxis object  128
Channel class  76
channels  75
charts. See Flex Charting
charts.swc file  230
charts_rb.swc file  230
checklist, for deployment  360
child controls

absolute positioning  115
creating  139
deferring creation  134
destroying  142

childDescriptors property  141
class files

adding to SWC files  224
keeping generated  203

class selectors  113
classid property  382
client

caching  59
logging and debugging  251
performance  88
security  54
See also Flash Player

clip masks  119
Clipboard  55
codebase property  382
codetype option  383
command-line compilers

configuration  165
leaf nodes  192
options  196
shell scripts  189



417

using  187
See also compc
See also mxmlc

command-line debugger. See fdb
compc

about  184,  186,  229
compiling  221
compiling components  220
examples  218
options  216
syntax  187
using  186,  215
See also component compiler

compile times, option  196
compilers

about  179
accessibility  358
adding metadata  211
advanced options  196
command-line configuration  165
configuration files  190
file encoding  212
Flex Data Services configuration  168
incremental  174,  214
library projects  185
logging  264
option precedence  194
options  188
tokens  193
using RSLs  240
using SWC files  213
viewing errors and warnings  207,  227

compiling
about  17,  154
case sensitivity  46
excluding files  199
incremental  124
JVM heap sizes  125
precompiling  63,  124
production mode  359
security  77
strict mode  97,  209
SWC files  229

component compiler
about  184
Flex Builder  186
using  215
See also compc

component descriptors  139
components

childDescriptors property  141
compiling  218,  220,  221,  229
creating  139
destroying  142,  143
distributing  231
lifecycle  133
manifest files  232
ordered creation  143
startup order  132

configuration files
about  153,  161
command-line compiler  165
data-management-config.xml  170
directory structure  162
dump-config compiler option  199
FlashPlayerTrust directory  84
flex-config.xml  165,  406
jrun-web.xml  176,  406
jrun.xml  406
jvm.config  166
loading  205
messaging-config.xml  170
mm.cfg file  83,  178
mms.cfg file  83
proxy-config.xml  170
remoting-config.xml  170
services-config.xml  170
syntax  191
web.xml  406

constraints  68
containers

absolute positioning  115
adding to the queue  144,  147
createComponents() method  139
createLater() method  147
creating  114
creationPolicy property  105,  135
deferred creation  134
multiple-view  136
navigator containers  136
single-view  136

content assets  64
content-size option  173
content-type  383
context root  176,  197
Controller (in Model-View-Controller)  14
cookies. See persistence
createComponents() method  139
createComponentsFromDescriptors() method  139
createLater() method  147



418

creation order  133
creationIndex property  145
creationPolicy property  106

about  105,  134,  145,  149
definition  134
multiple-view containers  136
ordered creation  144

credentials  68
cross-domain policy files  62,  65
cross-scripting  57
crossdomain.xml file  62,  65
CSS

default URL compiler option  198
file type  34
setStyle() method  110

CSSStyleDeclaration class  112,  113

D
data assets  64
Data Management Service, configuration  170
data services, securing  72
data sets, scrolling  120
data storage  54,  82
data validation  78
data-management-config.xml file  170
DataGrid class  120
DataService tag  76
DEBUG log level  254
debug SWF file  197
debug, compiler option  270
debugger

common commands  277
convenience variables  276
setting default browser  271
status  286
using breakpoints  279
See also fdb

debugger version of Flash Player  247
debugging

about  19,  154,  269
client-side  251
compiler option  197
debugger version of Flash Player  247
disabling  97
source command  281
suppressing debug output  81
See also fdb

declarative security  52,  60

default browser
definition  271
setting  271

default file  176
DefaultProperty metadata keyword  299
deferred creation

about  106,  132
example  150
using  134

deferred instantiation. See deferred creation
dependencies  98,  100
deploying

about  19
checklist  360
context root  176
Flex Data Services applications  355
headless servers  126
hot deploy  408
production mode  61,  359
RSLs  353
SDK applications  352
SWC files  230
using WEB-INF  62

deprecation, about  228
descriptors  139,  141
design patterns

about  14
Model-View-Controller  14
Struts  15

destinations
logging  253
securing  75

destroying components  142,  143
detection, player. See Express Install
directories, virtual  408
directory browsing  177,  409
disk storage  54,  82,  83
displayAsPassword property  81
doLater() method  150
domain-based security

ExternalInterface API  58
navigateToURL() method  58

domains, allowing access  62,  66
download times, reducing  97
drawing  117
drop shadows  128
dump-config compiler option  199
duration property, effects  116
dynamic linking  103,  205,  235



419

E
effects

performance  115
elapsed time  90
embed tag

about  371,  378
example  379
unsupported parameters  389

embedded fonts, caching  174
embedding assets

about  101
asset types  64
remote assets  65

encoding  196,  212
endpoints  75
Enterprise Deployment Kit. See Express Install
environments, without Windows systems  201
Eolas update  371
ERROR log level  254
ErrorReportingEnable  249
errors

handling  79
viewing  227

event handlers, removing  108
event listeners. See event handlers
exceptions, security  79
Expires header  59
Express Install

about  391
adding  377,  392
alternatives  397
configuring on Flex Data Services  396
disabling  125
understanding the script  395

ExternalInterface API, security  58

F
fading  115
FATAL log level  254
faults, debugger  287
fdb

about  269
configuring  276
invoking  272
limitations  270
shortcuts  271
using  270

fds.swc file  230

fds_rb.swc file  230
file encoding  212
file system path  408
file types

about  34,  156
mapping  63
preventing access  63

file-watcher-interval option  173
file-watcher-interval setting  173
files

access  83
browsing  177
directory browsing  409
encoding  196,  212
size reduction  97
temporary caching  59

FileServlet  178
filterData property  127
filters

optimizing  119
shadows  128

FireFox. See browsers
Flash Communication Server. See Flash Media Server
Flash Media Server  82
Flash Player

caching  118
callLater() method  90
choosing the version  94
configuration  178
configuring debug version  248
debug output  81
debugger version  81,  247
detecting version  250
displaying errors  80
embedding assets  64
memory consumption  92
mm.cfg file  83
mms.cfg file  83
performance  88
persistent shared objects  82
playback quality  385
privacy  55
redraw regions  118
sandboxes  55
security  54,  82
Settings Manager  84
Show Redraw Regions  118
upgrading  377,  391
See also ActiveX controls

Flash plugin. See Flash Player



420

flashlog.txt file  253
FlashPlayerTrust directory  84
flashVars property  383
Flex 2 SDK, directory structure  36,  49
Flex Builder

application compiler  181
building projects  181
compiling applications  47
component compiler  186
directory structure  32
disabling view source  77
library projects  185
wrapper  368

Flex Charting
axis ranges  127
AxisRenderer object  128
CategoryAxis object  128
directory structure  34
gutters  128
LinearAxis object  127
optimizing  127
shadows  128

Flex Data Management Service  72
Flex Data Services

accessing  354
caching  62,  96,  126
compiling  48,  168
compiling, incremental  124
configuration  17,  170
deploying web application  27
directory structure  28,  33,  42,  49
Express Install  125,  396
file watcher interval  173
Flex Data Management Service  72
JRun  401
JRun sniffer  96
JVM configuration  125,  169
logging  255
performance  88
preventing access  63
production mode  61,  127
proxy  71
RPC services security  70
securing endpoints  75
securing JRun  63
security overview  60
web-tier compiler  183
wrapper  368

flex web application  402
flex-admin web application  402

flex-config.xml file
about  165,  406
actionscript-file-encoding  212
headless-server  126

flex.swc file  230
FlexForbiddenServlet  63
FlexMxmlServlet  171,  265
FlexSwfServlet  171
fonts, caching  174
form fields, validation  78
FORM-based authentication  68
frame rate, compiler option  198
frames  90,  150
framework.swc file  230,  236
framework_rb.swc file  230
frameworks, Struts  15
functions, queuing  150

G
garbage collection  54
gdb. See fdb
generated ActionScript, compiler option  203
getLogger() method  262
getQualifiedClassName() method  100
getTimer() method  89,  90
Global Flash Player Trust directory  84
global style sheets  110
glyphs, caching  174
Grid containers, optimizing  114

H
handlers. See event handlers
hardware disabling  83
headless servers

about  360
compiler option  201
java.awt  127

heap size  125,  167
history management

adding to wrapper  377
disabling  125

history.js file  377
history.swf file  377
host-based authentication  81
hot-deploy  408
HTML templates

about  370



421

Express Install  377,  392
history management  377
See also wrapper

HTML wrapper. See wrapper
HTTP headers

Cache-Control  96
Cache-control  59
caching  59
Expires  59,  96
If-Modified-Since  95
Last-Modified  95
Pragma  59,  96
Referer  81
viewing  411

HTTP requests, viewing headers  411
HTTP responses, viewing  411
HTTP sniffer  411
http-maximum-age option  173
HTTPS, security and  75
HTTPService class  70
HttpServletResponse, viewing headers  411

I
ILogger interface  253,  261
include classes, compiler option  218
incremental compilation

about  124,  174,  214
compiler option  202
disabling  359

index file  176
INFO log level  254
initialization

calculating  89
containers  114
styles  110

injection, input validation  78
input validation  78
installing, directory structure  31
instantiation, deferred  134
instantiation, queueing  144
Internet Explorer. See browsers
IP spoofing  81
isDebugger property  250

J
J2EE

authentication  67

authorization  67
security constraints  68
security overview  60

J2EE servers, securing JRun  63
JAAS. See Java Authentication and Authorization 

Service
Java Authentication and Authorization Service  67
Java security manager  67
Java Virtual Machine. See JVM
JavaScript

AC_OETags.js file  377
history.js file  377
noscript tag  371,  374
script tag  374
wrapper file  371,  374

JRun
about  401
adding and removing servers  405
application mapping  176
configuring servers  406
directory browsing  177,  409
FileServlet  178
hot-deploy  408
logging  410
port numbers  407
security  63
servlet mappings  63
sniffer  96,  411
starting  404
stopping  404
virtual directories  176,  408
web applications  408

jrun-web.xml file  176,  406
jrun.xml file  406
JSP file type, preventing access  63
JVM configuration

about  166
Flex Data Services  169

JVM heap size  125,  167
jvm.config file  166

K
keys, license  161

L
layout containers

optimizing  115



422

See also containers
layout, optimizing  114
libraries

adding classes  224
adding utility classes  224
component  157
component compiler  186
creating  238
including  202
including classes  216,  238
including files  216
library path compiler option  204
linking SWC files  201,  229
linking, dynamic  103
RSLs  234
See also RSLs
See also SWC files

library path
compiler option  204
example  213

library.swf file  239
license keys  161
licenses, version  210
link-report option  98
linking

about  234
externs, compiler option  199,  205
including classes  202
report  204
static  103
SWC files  201,  204,  229
SWF file dependencies  98

List-based controls  120
listeners. See event handlers
live scrolling  120
loading assets, local  66
loadPolicyFile() method  66
local assets  66
local SWF files  61
local-trusted sandbox  56,  84
local-with-filesystem sandbox  55
local-with-networking sandbox  55
LocalConnection class  74
locale, compiler option  205
Log class  253,  262
log targets  253
LogEventLevel, disabling  81
logging

about  155,  228,  245
client-side  251

compiler messages  264
configuration  171
custom loggers  259
destinations  253
disabling  81
enabling trace()  83
errors  249
JRun  410
Logging API  252
message levels  254
warning  249
web applications  265
web-tier compiler  265

Logging API
custom loggers  259
debugging output  81
Flex Data Services  255
using  252

login modules  67,  68
LogLevelEvent class  254

M
manifest files  231,  232
mappings

default application  176
virtual directories  175

Mark of the Web, about  373
masks  119
MaxWarnings  249
MD5  75
media, asset types  64
memory usage

about  54
background processing  116
calculating  92
disabling SpeedStep  94
JVM heap size  125,  167

Message Service, configuration  170
MessageBrokerServlet  171
Messaging Service, MessageBrokerServlet  171
messaging tags  76
messaging-config.xml file  170
metadata  211
methods, queuing  150
MiniDebugTarget  253
mm.cfg file  83,  178,  248,  249
mms.cfg file  83
Model (in Model-View-Controller)  14



423

Model-View-Controller  14,  15
MOTW  373
movie quality  117,  385
MP3, asset types  64
multiple-view containers  134,  136
MVC. See Model-View-Controller
MXML file type

about  34
preventing access  63

MXML tags, security restrictions  76
mxmlc

about  182
options  196
syntax  182,  187
See also application compiler

N
namespace, compiler option  206
namespaces, compiling components  221
navigateToURL() method  58
navigator containers

creationPolicy property  136
definition  134

nesting containers  114
Netscape Navigator. See browsers
network assets  65,  66
noscript tag  371,  374

O
object creation  133
object tag  371,  378
Opera. See browsers
optimizing. See performance
ordered creation

about  105,  132
using  143

P
packages, compiling  220
packet sniffer  411
passwords  81
patterns. See design patterns
performance

about  88
ActionScript optimizer  206
compiler option  196

effects  115
Flex Charting  127
improving rendering  117
incremental compilation  214
JVM  125
production mode  127
RSLs  41,  104,  233
startup performance  131

persistence
security  54
SharedObject class  82

player detection, disabling  125
player. See Flash Player
playerglobal.swc file  230
playerProductInstall.swf file  392
plugin. See Flash Player
pluginspage property  385
policy files

cross-domain  65
example  66

ports
JRun  407
securing  62
sockets  73

positioning child controls  115
Pragma header  59
precompiling  124
preferredIndex  147,  149
privacy

concerns  55
mms.cfg file  83

production mode  61,  127,  175,  359
profiling

disabling SpeedStep  94
in ActionScript  90

programmatic security  52,  60
projector, defined  74
projects, building  181
proxy

deployment checklist  364
destinations configuration  170
RPC services  71
secure endpoints  75

proxy-config.xml file  170

Q
quality property  117,  385
queued creation  105



424

R
RAM

JVM heap size  125,  167
usage  92

Real-Time Messaging Protocol. See RTMP
realms  68
recycleChildren property  122
redraw regions  117,  118
Remote Procedure Call. See RPC
remote sandbox  55
RemoteObject

class  70
service configuration  170

remoting-config.xml file  170
removeChild() method  107
removeChildAt() method  107,  142
removeEventListener() method  108
rendering  117
Repeater class  120
reports, linking  204
request object, viewing headers  411
resource bundles

about  158
compiling  205,  207,  217

resources, HTML templates  370
roles  68
RPC  70,  76
rpc.swc file  230
RSLs

about  157
benefits  237
compiler option  207
considerations  235
creating libraries  238
defined  41,  104,  233
deploying  353
example  241
linking  103
using  240

RTMP
Secure  75
securing  73
securing endpoints  75
using  75

run -time performance  88
Runtime Shared Libraries. See RSLs

S
Safarai. See browsers
samples web application  402
sandboxes

client security overview  53
defined  55
determining current type  56
FlashPlayerTrust directory  84
local-trusted  56
local-with-filesystem  55
local-with-networking  55
persistent data storage  82
remote  55
use-network option  56

sandboxType property  56
scaleability  88
scaling, SWF files  386
screen refresh  150
script limits, compiler option  198
script tag  374
scripting. See cross-scripting
scriptTimeLimit property  95
scrolling  120
Secure AMF  75
Secure RTMP  75
security

about  21,  51
advisorires  85
allowScriptAccess property  381
asset types  64
authentication  67
authorization  67
browser APIs  57
caching  59
client  53,  54,  82
cross-domain policy files  62,  65
data services  72
data transport  74
disabling view source  77
domain-based restrictions  58
encryption  75
endpoints  75
error handling  79
FlashPlayerTrust directory  84
host-based authentication  81
J2EE  60
JRun  63
LocalConnection  74
login modules  67



425

mm.cfg file  83
mms.cfg file  83
navigateToURL() method  58
other resources  85
precompiling  63
RPC services  70
RTMP  73
sandboxes defined  55
Settings Manager  84
sockets  73
SSL  74
types  52
using input validation  78

security advisories  85
Security class

allowDomain() method  57
allowInsecureDomain() method  57
sandbox type  56

Security Resource Center  85
Security Topic Center  85
SecurityError class  79
servers

adding new JRun servers  405
caching  62,  126,  172
configuring JRun servers  406
deployment checklist  363
headless  360
incremental compiling  124
JRun  63,  401
logging  228,  410
performance  88
security  60

services-config.xml file  170
servlets

FileServlet  178
FlexForbiddenServlet  63
FlexMxmlServlet  171
FlexSwfServlet  171
logging  265
mappings  63
MessageBrokerServlet  171

setStyle() method, optimizing  110
setStyleDeclaration() method  112,  113
Settings Manager  84
shared libraries. See RSLs
SharedObject class

security  54
using  82

shell scripts  166,  189
Show Redraw Regions  118

single-view containers  136
sizing controls  115
sniffer  96,  411
sockets  73,  75
source code, disabling view source  77
source path, compiler option  196,  208
SpeedStep  94
spoofing  81
SQL

input validation  78
queries  78

SSL  74
stacktraces

compiler option  210
debugger  286

startup time
about  131,  132
calculating  89
containers  114
deferred creation  106
object creation  104
ordered creation  105,  143
performance  88
reducing  97
RSLs  41,  104,  233
styles  110

static linking  103,  234
storage  54
strict mode  97,  209
Struts  15
style sheets

default, compiler option  198
optimizing  110

styles
AxisRenderer object  128
optimizing  110
setStyle() method  110
setStyleDeclaration() method  112,  113

SWC files
about  156,  229
adding classes  224
caching  229
compiling  186,  218,  220,  221
component compiler  184
distributing  230,  231
file type  34
including classes  216
including files  216
libraries  103
linking  201,  204,  234



426

manifest files  231,  232
resource bundles  158,  217
themes  157
using  41,  47,  213,  231

SWF files
bytecode optimization  97
caching  59
compiling  17
cross-scripting  57
debugging  197,  270
deploying  19,  60,  351
embedding in wrappers  373
file type  34
FlexSwfServlet  171
including classes  202
libraries  103
linker dependencies  98
loading local assets  66
loading SWF files  58
LocalConnection objects  74
metadata  197,  211
precompiling  63
quality property  117,  385
reducing file size  97,  235
RSLs  104
sandboxes  56
securing  51,  77
transparent  388
trusted  59,  61
using multiple  102
viewing  287
See also applications

SWFLoader class  76,  102
System class, Clipboard  55
system path, virtual directories  175

T
TCPMonitor  411
templates. See HTML templates
testing, for performance  88,  89
themes

compiler option  209
compiling  229
creating  226
files  157

timeout  95
Timer class

getTimer() method  89

using  90
tokens  193
trace() method

debugging output  81
enabling  83,  249
file name  249
using  252

TraceOutputFileEnable property  249
TraceOutputFileName property  249
TraceTarget

disabling  81
filters  262

TraceTarget class, using  253
transparent SWF files  388
trusted

local SWF files  61
sandbox  56
sites  59

type checking  100

U
upgrading  161
URL patterns

about  63
security constraints  68

use-network option
local SWF files  61
sandboxes  56
settings  209

user experience, instantiation order  134
user roles  68

V
validation  68,  78
Validator class  78
VBScript, script tag  374
version detection. See Express Install
video files, asset types  64
View (in Model-View-Controller)  14
viewSourceURL property  77
virtual directories  175,  408
virtual machine heap sizes  125
virtual machine. See JVM

W
WARN log level  254



427

warnings
about  249
compiler options  207,  210
viewing  227

web applications
creating on JRun  408
default  402
directory structure  357
flex  402
flex-admin  402
logging  265
samples  402
using  20

web-tier compiler
about  183
caching  173
configuration  168
context root  176
directory browsing  177
incremental compilation  174,  214
logging  228,  265
options  184
production mode  175,  359
virtual directories  175
See also application compiler

web.xml file
about  406
example  176
security constraints  68
servlet mappings  63

WebService class  70
welcome file  176
Window-less environments  201
wmode property  388
wrapper

about  367
adding Express Install  377,  392
adding features  375
adding history management  377
alternate content  395
creating  370
defined  20
disabling Express Install  125
Express Install  391
ExternalInterface API  58
Flex Builder  368
Flex Data Services  368
HTML templates  370
Mark of the Web  373
navigateToURL() method  58

noscript tag  371
object and embed tags  371,  378
quality property  117
script tag  374
security  381
timeout  95
See also HTML templates

X
XML sockets  73
XMLSocket class  75



428


	Contents
	About Flex Documentation
	Using this manual
	Accessing the Flex documentation
	Documentation set
	Viewing online documentation

	Typographical conventions


	Building and Deploying Overview
	Flex Application Development
	About building and deploying applications
	Design phase
	Configure phase
	Build phase
	Deploy phase
	Secure phase

	About building applications for Flex 2 SDK
	Design phase
	Configure phase
	Build phase
	Deploy phase
	Secure phase

	About building applications for Flex Data Services
	Before using Flex Data Services
	Design phase
	Configure phase
	Build phase
	Deploy phase
	Secure phase


	Flex Application Structure
	Installation directory structure
	Flex 2 SDK installation directory structure
	Flex Builder installation directory structure
	Flex Data Services installation directory structure
	Flex Charting Components installation directory structure

	Development directory structure
	Flex file types
	Flex 2 SDK directory structure
	Flex Data Services application directory structure

	Compiling an application
	About case sensitivity during a compile
	Compiling a Flex 2 SDK application
	Compiling a Flex Builder application
	Compiling a Flex Data Services application

	Deployment directory structure
	Flex 2 SDK deployment directory structure
	Flex Data Services deployment directory structure


	Applying Flex Security
	Introduction
	Declarative compared to programmatic security
	Client security overview
	Server security overview

	Loading assets
	Data compared to content
	Loading remote assets
	Loading local assets

	Using J2EE authentication
	Using container-based authentication

	Using RPC services
	Connecting to RPC services with Flex Data Services
	Connecting to RPC services without Flex Data Services
	Using secured services

	Using data services
	Making other connections
	Using RTMP
	Using sockets
	Using the LocalConnection class

	Using SSL
	Using secure endpoints with Flex Data Services
	Using secure endpoints without Flex Data Services

	Writing secure Flex applications
	MXML tags with security restrictions
	Disabling viewSourceURL
	Remove sensitive information from SWF files
	Input validation
	ActionScript
	Using passwords
	Storing persistent data with the SharedObject class

	Configuring client security settings
	About the mm.cfg file
	About the mms.cfg file
	About FlashPlayerTrust files
	About the Settings Manager

	Other resources

	Optimizing Flex Applications
	About performance
	Improving client-side performance
	General guidelines
	Testing applications for performance
	Configuring the client environment
	Using the JRun sniffer
	Reducing SWF file sizes
	Using multiple SWF files
	Application coding

	Improving server-side performance
	Precompiling
	Using incremental compilation
	Disabling Express Install and player detection
	Disabling history management
	Tuning JVM heap sizes
	Caching
	Using headless servers
	Enabling production mode

	Improving Flex Charting component performance
	Avoiding filtering series data
	Coding the LinearAxis object
	Coding the CategoryAxis object
	Styling AxisRenderer objects
	Specifying gutter styles
	Using drop shadows


	Improving Startup Performance
	About startup performance
	About startup order
	Using deferred creation
	About the creationPolicy property

	Creating deferred components
	Using the createComponentsFromDescriptors() method
	Using the childDescriptors property
	Destroying components

	Using ordered creation
	Adding containers to the queue
	Setting queue order
	Dynamically adding containers to the queue
	Combining containers with different creationPolicy settings

	Using the callLater() method

	Building Overview
	About the Flex development tools
	Configuration files
	Compilers
	Debugger
	Loggers

	About application files
	Component classes
	SWC files
	Other assets



	Building Flex Applications
	Flex 2 SDK and Flex Data Services Configuration
	About configuration files
	Applying license keys
	Root variables
	Configuration files layout
	About application and server verbiage

	Flex 2 SDK configuration
	Command-line compiler configuration
	JVM configuration

	Flex Data Services configuration
	Compiler configuration
	JVM configuration
	Data services configuration
	Servlet configuration
	Logging configuration
	Server-side caching configuration
	Production mode
	Configuring mappings
	Configuring directory browsing

	Flash Player configuration

	Using the Flex Compilers
	About the Flex compilers
	About the application compilers
	About the component compiler

	About the command-line compilers
	Command-line syntax
	Using abbreviated option names
	Invoking the command-line compilers with Java

	About configuration files
	Locating configuration files
	Configuration file syntax

	About option precedence
	Using the application compiler
	About the application compiler options
	Basic example
	Adding metadata to SWF files
	Setting the file encoding
	Editing application settings
	Using SWC files
	About incremental compilation

	Using the component compiler
	About the component compiler options
	Compiling stand-alone components and classes
	Compiling components in packages
	Compiling components using namespaces
	Adding utility classes
	Adding nonsource classes
	Creating themes

	Viewing errors and warnings
	Viewing warnings and errors
	About deprecation
	About logging

	About SWC files
	About included SWC files
	Distributing SWC files
	Using components in SWC files

	About manifest files

	Using Runtime Shared Libraries
	About RSLs
	Definition of RSLs
	About linking
	RSL considerations
	About the framework.swc file
	RSL benefits
	Using RSLs

	Creating libraries
	Using RSLs
	RSL example

	Logging
	About logging
	Using the debugger version of Flash Player
	Configuring the debugger version of Flash Player
	Determining Flash Player version in Flex

	Client-side logging and debugging
	Configuring the debugger version of Flash Player to record trace() output
	Using the global trace() method
	Using the Logging API

	Compiler logging
	Web-tier logging
	Configuring web application logging
	Configuring web-tier compiler logging


	Using the Command-Line Debugger
	About debugging
	Using the command-line debugger
	Command-line debugger limitations
	Command-line debugger shortcuts
	Using the default browser
	About the source files

	Invoking the command-line debugger
	Starting a session with the stand-alone debugger version of Flash Player
	Starting a session in a browser with Flex Data Services
	Starting a session in a browser without Flex Data Services

	Configuring the command-line debugger
	Using the command-line debugger commands
	Running the debugger
	Setting breakpoints
	Accessing commands from a file
	Changing data values
	Viewing file contents
	Printing stack traces
	Getting status
	Handling faults
	Getting help
	Terminating the session


	Using ASDoc
	About the ASDoc tool
	Invoking the ASDoc tool

	Creating ASDoc comments
	Writing an ASDoc comment
	Placing ASDoc comments
	Formatting ASDoc comments
	Using the @private tag
	Excluding an inherited element
	Using HTML tags
	Using special characters
	Hiding text in ASDoc comments
	Rules for parsing ASDoc comments

	Documenting ActionScript elements
	Documenting classes
	Documenting properties
	Documenting methods
	Documenting metadata

	Documenting MXML files
	ASDoc tags
	Using the @see tag
	Summary of commonly used HTML elements

	Running the ASDoc tool
	Excluding classes
	Options to the asdoc command


	Creating Applications for Testing
	Tasks and techniques for testable applications overview
	Compiling applications for testing
	Using run-time loading
	Testing applications that load external libraries

	Creating testable applications
	Providing meaningful identification of objects
	Avoiding duplication of objects
	Coding containers

	Writing the wrapper
	Understanding the automation framework
	About the automation interfaces
	Automated testing workflow

	Instrumenting events
	Instrumenting existing events

	Instrumenting custom components
	Creating a delegate class
	Using the class definitions file
	Setting the automationName property

	Instrumenting composite components
	Example: Instrumenting the RandomWalk custom component
	Instrumenting the RandomWalk custom component
	Instrumenting RandomWalk events
	Preparing RandomWalk for playback
	Linking the delegate to an application
	Adjusting event recording
	Adding checkpoints



	Deploying Flex Applications
	Deploying Flex Applications
	About deploying an application
	Deployment options
	Deploying Flex 2 SDK applications
	Deploying Flex Data Services applications

	Compiling for deployment
	Enabling accessibility
	Preventing users from viewing your source code
	Enabling production mode
	Disabling incremental compilation
	Using a headless server

	Deployment checklist
	Types of network access
	Step 1. Create a list of server-side resources
	Step 2. Verify access from server to server within your firewall
	Step 3. Verify access to your servers from outside the firewall
	Step 4. Configure the proxy server
	Step 5. Create a crossdomain policy file


	Creating a Wrapper
	About the wrapper
	About the Flex Builder wrapper
	About the wrapper generated by Flex Data Services
	About the HTML templates

	Creating a wrapper
	About the HTML page
	About the JavaScript file

	Adding features to the wrapper
	Customizing the wrapper
	Adding Express Install to your wrapper
	Adding history management to your wrapper

	About the <object> and <embed> tags
	Unsupported properties

	Requesting an MXML file without the wrapper

	Using Express Install
	About Express Install
	Editing your wrapper
	Adding Express Install script to the wrapper
	Understanding the Express Install script

	Configuring Express Install on Flex Data Services
	Alternatives to Express Install


	Configuring JRun
	Configuring JRun
	About JRun application servers
	Limitations of the JRun application server
	About the default web applications

	Starting and stopping JRun servers
	Adding and removing servers
	Configuring JRun servers
	Changing port numbers
	Creating a web application
	Configuring the hot-deploy feature
	Using virtual directories
	Enabling and disabling directory browsing
	Configuring JRun logging

	Using the sniffer


	Index

