

The University of Queensland
School of Information Technology and Electrical

Engineering

Design of DC Motor Controllers for a
Humanoid Robot

Written by
JARAD HEATH STIRZAKER

Bachelor of Electrical Engineering
October 19th 2001

 25 Laurier St

Annerley QLD 4103

 19th October 2001

Head of School

Information Technology and Electrical Engineering

University of Queensland

St. Lucia QLD 4072

Dear Professor Kaplan

In accordance with the requirements of the degree of Bachelor of Engineering

(Honours) in the division of Electrical Engineering, I present the following thesis

entitled “Design of Joint Controllers for a Humanoid Robot”. This thesis project was

completed under the supervision of Dr Gordon Wyeth.

I declare that all work submitted in this thesis is my own, except where acknowledged

by references and footnotes. This work, to the best of my knowledge, has not been

previously submitted for a degree at The University of Queensland or any other

institution.

Yours faithfully

Jarad Stirzaker

Design of an Autonomous Humanoid Robot Paper

The following paper, Design of an Autonomous Humanoid Robot, by Wyeth, Kee,

Wagstaff et al. was accepted at the Australian Conference on Robotics and Automation,

Sydney 2001.

Design of an Autonomous Humanoid Robot

Gordon Wyeth, Damien Kee, Mark Wagstaff, Nathaniel Brewer,
Jared Stirzaker, Timothy Cartwright, Bartek Bebel
School of Computer Science and Electrical Engineering

University of Queensland
St. Lucia, Queensland, 4072

Australia

Abstract

This paper describes the design of an
autonomous humanoid robot. The robot itself is
currently under construction, however the
process of designing the robot has revealed much
about the considerations for creating a robot with
humanoid shape. The mechanical design is a
complete CAD solids model, with specific
motors and transmission systems selected. The
electronic design of a distributed control system
is also complete, along with the electronics for
power and sensor processing. A high fidelity
graphical simulator has been developed,
providing important early feedback on critical
design decisions.

1 Introduction
There are several reasons to build a robot with humanoid
form. It has been argued that to build a machine with
human like intelligence, it must be embodied in a human
like body. Others argue that for humans to interact
naturally with a robot, it will be easier for the humans if
that robot has humanoid form. A third, and perhaps more
concrete, reason for building a humanoid robot is to
develop a machine that interacts naturally with human
spaces. The architectural constraints on our working and
living environments are based on the form and
dimensions of the human body. Consider the design of
stairs, cupboards and chairs; the dimensions of doorways,
corridors and benches. A robot that lives and works with
humans in an unmodified environment must have a form
that can function with everyday objects. The only form
that is guaranteed to work in all cases is the form of
humanoid.

1.1 The GuRoo Project
The GuRoo project in the University of Queensland
Robotics Laboratory aims to design and build a 1.2m tall
robot with human proportions that is capable of balancing,
walking, turning, crouching, and standing from a prostrate
position. The target mass for the robot is 30 kg, including
on-board power and computation. The robot will have
active, monocular, colour vision and vision processing.

The intended challenge task for the robot is to play
a game of soccer with or against human players or other
humanoid robots. To complete this challenge, the robot
must be able to move freely on its two legs. It requires a

vision sense that can detect the objects in a soccer game,
such as the ball, the players from both teams, the goals
and the boundaries. It must also be able to manipulate and
kick a ball with its feet, and be robust enough to deal with
legal challenges from human players. Clearly, the robot
must operate in a completely autonomous fashion without
support harnesses or wiring tethers.

 These goals are yet to be realised for the GuRoo
project. Currently the robot exists as a complete
mechanical CAD model (see Figure 1), a complete
electronic model and a high fidelity dynamic simulation.
The dynamic simulation has been programmed to crouch,
jump and balance. The progress to this stage has revealed
much about the design considerations for a humanoid
robot.

Figure 1: Full CAD model of the GuRoo humanoid robot.

1.2 Paper Overview
This section has described the motivation for building a
humanoid robot, and the specific challenge that has been
set for the GuRoo project. The subsequent section will
look at other humanoid robot projects, including bipedal
walking robots.

The rest of the paper describes the mechanical,
electronic and software design of the GuRoo robot. In

particular, the paper will detail the mechanical model of
the robot and a comparison to the human form, the motors
and sensors, the complete electronic design, a full
dynamic software simulation of the robot, the software
architecture of the robot, and results for balancing and
crouching in simulation.

2 Prior Art

2.1 Bipedal Walking Robots
Research into bipedal walking robots can be split into two
categories: active and passive. The passive or un-powered
category (for example, McGeer’s passive dynamic walker
[McGeer, 1990]) is of interest as it illustrates that walking
is fundamentally a dynamic problem. Passive walkers do
not require actuators, sensors, or computers in order to
make them move, but walk down gentle slopes generating
motion by the hardware geometry. The passive walkers
also illustrate the walking can be performed with very
little power input.

Active walkers can further be split into two
categories; those that employ the natural dynamics of
specialised actuators, and those that are fully power
operated. Raibert [Raibert, 1986] and later Pratt [Pratt,
1998] have shown some impressive feats of walking and
gymnastic ability in robots that have the capacity for
energy storage in the actuator. These robots have been
shown to have robust and stable performance from
relatively simple control mechanisms.

The alternate approach is to control the joints
through pre-specified trajectories to a known “good” gait
pattern (for example, [Golden, 1990]). This is a simple
approach, but lacks robustness to disturbances. This
approach becomes more complex when additional layers
are added to provide adjustments to the gait for
disturbance. Controlling a fully powered biped in a
manner that depends on the dynamic model is
complicated by the complex dynamic equations for the
robot’s motion. Yamaguchi et al. [Yamaguchi, 1998]
moved a dynamic torso with significant mass through 2
DOF to keep the Zero Moment Point (ZMP) within the
polygon of the support foot. This approach contributed to
successful control of the robot, but produces an awkward
gait.

2.2 Bipedal Walking Humanoid Robots
There are few examples of autonomous biped walkers that
resemble the structure of a human. The Honda company
biped robots, P2 and P3 are two of the few examples of
such robots [Hirai, 1998]. P3 can walk on level ground,
walk up and down stairs, turn, balance, and push objects.
The robot is completely electrically and mechanically
autonomous. The Sony SDR-3X robot is another example
with similar capabilities, although details of the design are
yet to be published.

3 Mechanics
The mechanical design of the humanoid requires careful
and complex tradeoffs between form, function, power,
weight, cost and manufacturability. For example, in terms
of form, the robot should conform to the proportions of a

1.2m tall human. However, retaining the exact
proportions compromises the design in terms of the
selection of actuation and mechanical power transmission
systems. Affordable motors that conform to the
dimensional restrictions have insufficient power for the
robot to walk or crouch. This section describes the final
mechanical design and how the balance between
conflicting design requirements has been achieved.

3.1 Proportions
The target proportions for the robot are based on
biomechanical data of the human form. Figure 2 shows
the proportions of the frontal plane dimensions of a 50th
percentile male based on data from a United States survey
[Dempster, 1965]. The dimensions shown in millimetres
indicate the appropriate sizes of anatomical features when
scaled to a total height of 1200 mm against the
comparable dimensions on GuRoo.

106

247
125

66

155
61

352

291

289

56

384226

185

123

122 130

220

245

400
534

158
424

360

218

55 150

22

Figure 2: The proportions of typical human anatomy compared
to the matching proportions of GuRoo’s anatomy. The
dimensions indicate the sizes for a human scaled to 1.2m in
height.

By comparison, GuRoo is somewhat thickset in the legs,
as was dictated by the form of the chosen actuators (see
Section 3.3). The spacing between the hips and ankles has
been retained, rather than placing the hips and ankles
along the frontal centreline of each leg. Our simulation
studies showed that the required torques around the roll
axes of the hips and ankles becomes excessive if the hips
and ankles are spaced too far apart (see Section 5.3).

The body and upper leg of GuRoo are somewhat
longer than the counterparts in the human model. This is
due to the chain of actuators required for three degrees of
freedom in the waist and hips respectively (see Section
3.2). Consequently, the lower leg and the neck and head
are shorter to compensate. The overall effect is still
convincingly human-like in shape.

The changes in volume required to house the
actuators, as well as the mass of the actuators themselves
have an effect on the mass distribution. Table 1 shows the
mass distribution of GuRoo compared to that of a human.
The most notable exception is that the shin and foot are
much heavier in GuRoo than the human counterpart, due
to the mass of the powerful actuators required in the
ankle. The arms are significantly lighter than the human

counterpart, as they are significantly inferior in power and
do not have hands. GuRoo’s mass distribution is closer to
the human distribution than either MIT’s active bipedal
walker [Paluska, 2000], or McGeer’s passive dynamic
bipedal walker.
Table 1: Comparison of GuRoo mass distribution with human
mass distribution, and with the mass distribution of MIT’s M2
bipedal walker and McGeer’s passive dynamic walker.

Body
Component

GuRoo
mass (kg) GuRoo Human M2 PDW

Head and
Upper torso 7.3 24% 31% 0% 0%

Abdomen
and Hips 9.1 30% 27% 51% 50%

Thigh 5.8 19% 20% 22% 30%
Shin and
Foot 6.4 21% 12% 27% 20%

Arm 1.9 6% 10% 0% 0%

Total 30.5

The other notable point from Table 1 is the total mass of
the robot. A 1.2 m tall human would typically be a child
approaching his or her 7th birthday, with a 50th percentile
mass of 23 kg. A child with mass of 30.5 kg at the same
age would be in 97th percentile, indicating that GuRoo is
somewhat overweight.

3.2 Architecture
The extent to which human joint function can be
replicated is another key factor in robot design. Figure 3
shows the degrees of freedom contained in each joint area
of the robot. In the cases where there are multiple degrees
of freedom (for example, the hip) the joints are
implemented sequentially through short links rather than
as spherical joints. Other key differences to the human
form are the lack of a continuous flexible spine, and the
lack of a yaw axis in the ankle. Another point to note is
that the roll and pitch axes of the ankle are orthogonal,
whereas the human ankle has an angle of about 64°
between the roll and pitch axes.

1

2 2

1
3

3

1
1

2 2

3

2

Figure 3: The location of the joints in GuRoo, indicating the
degrees of freedom in each joint.

3.3 Motor Choice
The key element in driving the mechanical design has
been the choice of actuator. The robot has 23 joints in
total. The legs and abdomen contain 15 joints that are
required to produce significant mechanical power, most
generally with large torques and relatively low speeds.
The other 8 joints drive the head and neck assembly, and
the arms. The torque and speed requirements are
significantly less. Factors of cost, weight and availability
limited the choice of actuators to rotary DC motors

The 15 high power joints all use the same motor-
gearbox combination. The motor is a Maxon RE 36
wound for a nominal voltage of 32V. This motor can
provide 88.5 mNm of torque continuously, with a
matching current consumption of 1.99 A. The motor has a
maximum permissible speed of 8200 RPM. The gearbox
has a reduction of 156, with an efficiency of 72%. The
maximum continuous generated output torque is 10 Nm,
with a maximum output speed of 51 RPM, or 5.3 rad/s.
The thermal limits of the motor permit intermittent output
torque of up to 19Nm. Each motor is fitted with an optical
encoder for position and velocity feedback. The total mass
of the motor/gearbox/encoder unit is 0.85 kg.

The 8 low power joints are Hi-Tec RC servo
motors model HS705-MG. These motors have an
integrated gearbox and have rated output torque to 1.4
Nm, at speeds of 5.2 rad/s. These also have potentiometer
feedback and built-in control and power electronics. They
require 6V power, and a pulse width modulated signal to
indicate desired position. The mass of each unit is 0.125
kg.

4 Electronics
A distributed control network controls the robot, with a
central computing hub that sets the goals for the robot,
processes the sensor information, and provides
coordination targets for the joints. The joints have their
own control processors that act in groups to maintain
global stability, while also operating individually to
provide local motor control. The distributed system is
connected by a CAN network. In addition, the robot
requires various sensor amplifiers and power conversion
circuits.

Vision
Processor

iPAQ

Peripheral Port

Central
Controller

Arm and Neck
Controller

USB

Right Thigh
and Hip

Controller

Waist
Controller

Right Knee
and Ankle
Controller

Left Thigh and
Hip Controller

Left Knee and
Ankle

Controller

CAN Bus

Central
Hub

Figure 4: Block diagram of the distributed control system.

4.1 Computing

4.1.1 Central Hub
The central control of the robot derives from a hub of
three heterogeneous microprocessors that provide
coordination between joints, integrate sensor information,
and process the vision input. This hub also provides
communication to the outside world through user
interfaces and communication peripherals.

The primary component of the central controller is
an iPAQ pocket pc from Compaq. The iPAQ features a
208 MHz StrongARM microcontroller, 32 Mb of RAM
and a 320 x 240 colour screen. The screen is touch
sensitive allowing stylus input of text and graphics. The
iPAQ has 16 Mb of Flash ROM to store the operating
system. The iPAQ in the GuRoo operates with Windows
CE. As well as the touch screen interface, the iPAQ is
equipped with a speaker and microphone, a joypad, and
four push-buttons. It has an infra-red interface for external
communication.

The second component of the central hub is a
TMS320F243 microcontroller that acts as an adapter and
filter for the robot’s internal CAN network (see Section
4.1.3). The microcontroller communicates with the
robot’s distributed control system through the CAN
network, and to the iPAQ through the iPAQ’s USB serial
communication port. The microcontroller also manages
the power supply (see Section 4.2.3) providing centralised
control of the robot power supply in the event of system
failure. This microcontroller is the same device used in
the joint controllers (see Section 4.1.2).

The final component of the central is the vision
processing board. This board has been developed for the
ViperRoos robot soccer team [Chang, 2001] and features
a 200 MHz Hitachi Super-H SH4 microcontroller, an
FPGA-based programmable camera and bus adapter, 16
Mb of RAM, 8 Mb of flash ROM, and 512 kb of fast
SRAM for video caching. The board interfaces to the 100
pin parallel peripheral bus on the iPAQ to provide real
time visual display on the iPAQ’s colour screen. The
vision input comes from a custom digital CMOS camera,
based around the OV7620 camera chip from OmniVision,
which can provide 640 x 480 images at up to 25 fps. The
camera can provide data in YUV or RGB formats, and
can be programmed to only send data from selected areas
of the sense region.

4.1.2 Joint Controllers
The TMS320F24x series is a 32 bit DSP designed for
motor control. The availability of the Control Area
Network (CAN) module in this series, along with
bootloader programmable internal Flash memory makes
the device particularly attractive for this application.
Furthermore the device features 8k words of internal flash
memory, 8 PWM channels with deadband generation,
quadrature input circuitry, an 8 channel 10 bit analog to
digital converter with a conversion time of 800ns, a power
drive protection external interrupt, and a 50ns instruction
time. The TMS320F241 from Texas Instruments operates
at 20MHz, and can read the A/D converter, calculating a
PID control law, current limit, and generate the required
PWM output, in under 10 µs [Wyeth, 2001]. In this
application, we use the TMS320F243, which has an

external bus that is used for attaching additional sensor
interfaces. Five controller boards control the 15 high
power motors, each board controlling three motors. A
sixth controller board controls the eight RC servo motors.

4.1.3 Internal Network
The CAN bus is a highly reliable standard developed by
Robert Bosch GmbH for use in the automotive
environment. It is a multi-master system, with
sophisticated error checking and arbitration, so that any
high priority message will always get through first
without corruption by other messages. All data contained
in each packet (up to eight bytes) is also checked with a
Cyclic Redundancy Check (CRC) error-checking scheme
that can correct up to five random errors, and will be
automatically retransmitted if not correct. The network
operates at up to 1 Mbit/sec.

4.2 Power

4.2.1 Drive Power Electronics
The drive power electronics is based on a switch mode
power stage, requiring only a single supply rail and
having an efficiency over 90%. This efficiency results in
several advantages such as small size, lower cost power
devices and less heatsinking. The H-Bridge channels are
driven from separate PWM outputs of the DSP, allowing
the deadband features of the PWM peripheral to be used,
along with the immediate (<12ns) shutdown of these pins
in the event of a fault which triggers the Power Drive
Protect Interrupt (PDPInt) pin on the DSP.

A integrated solution was chosen for this design –
the SGS-Thomson L6203. This device uses low on-
resistance and fast switching MOSFETs, to give
maximum efficiency and best control. The voltage limit of
the devices is 48V, and the total continuous RMS current
limit is 4A. This is a good match to the chosen motors and
batteries. The total on-resistance of the power devices is
0.3Ω. The cost of the device is low, compared to a
discrete solution, and the volume and mass of the
electronics is minimised by the choice of an integrated
solution.

4.2.2 Battery Packs
The power for the 15 high power motors is provided by 4
x 1.5Ah 42V NiCd packs. These packs are effectively
paralleled to a common bus (see Section 4.2.3). The packs
are chosen to give 20 minutes of continuous operation.
The power for the 8 low power motors is derived from a
single 3Ah 7.2 V NiCd battery pack. The power for the
control electronics is derived from a second single 3Ah
7.2V NiCd pack. The voltage from this pack is distributed
to the various boards that require power where it is
regulated locally.

4.2.3 Power Regulation
Connecting NiCd batteries in parallel can be extremely
hazardous to the life of the batteries. Uneven charging and
discharging characteristics between packs can lead to
uneven load sharing and high current circulation between
packs. The power from each pack is controlled through
switch mode buck converters to provide even current
sharing between packs, providing a voltage bus at
marginally below the lowest battery voltage.

4.3 Sensing

4.3.1 Joint Sensing
Current sensing is performed in the high power joints by a
0.01Ω resistance in the ground leg of the H-Bridge. The
voltage from these sense resistors is amplified by
differential amplifiers and measured by the ADC. Current
is also checked against a screwdriver adjustable hard limit
that is used to trigger the Power Drive Protect interrupt.
The position feedback from the encoders on the high
power joints provides a count on every edge of both
quadrature channels. This provides 2000 counts per motor
revolution from the 500 count encoder wheels. In
addition, each DSP can measure the bus voltage, and the
temperatures of the MOSFETs and motors.

4.3.2 Motion Sensing
In addition to the sensing in each joint, and of course the
visual feedback, the robot features 2 x 2-axis
accelerometers to provide information about the torso’s
dynamic behaviour and the relationship to the vertical
gravity force. While it is impossible to resolve the motion
components of the body’s acceleration from the effects of
gravity, these sensors may be able to provide information
with regard to disturbances while walking – playing a
similar role to the human middle ear.

Provision has also been made for the contact
switches in the feet and in the joints. These switches may
prove useful for determining when contact is made with
the ground, or initialising joints at robot start up.

5 Software
The software consists of four main entities: the global
movement generation code, the local motor control, the
low-level code of the robot, and the simulator. The
software is organised to provide a standard interface to
both the low-level code on the robot and the simulator.
This means that the software developed in simulation can
be simply re-compiled to operate on the real robot.
Consequently, the robot needs a number of standard
interface calls that are used for both the robot and the
simulator. Figure 5 shows modularisation of the software,
and the common interfaces.

Gait
Generation

Motor
Control

Read
Trajectory
CAN interruptTimer interrupt

C
AN

_r
ea

d

TX
_p

ac
ke

t

G
et

_e
nc

od
er

s

G
et

_c
ur

re
nt

s

Se
t_

PW
M

s

Setpoints
iPAQ

DC joint controller x 5

Set
Position

C
AN

_r
ea

d

Se
t_

PW
M

s

RC joint
controller

CAN interrupt

Robot Low Level Code / Simulator

Figure 5: Block diagram of common software modules and the
interface used to both the real robot and the simulator.

5.1 Simulator
At present, all evaluations of the robot have taken place in
a high fidelity dynamic simulator. The simulator is based
on the DynaMechs project [McMillan, 1995]. DynaMechs
is an object-oriented, open source code library that
provides full dynamic simulation for tree-structured
robots having a star topology. The algorithms are capable
of simulating fixed and mobile bases. The library is based
on efficient recursive algorithms for the dynamic
calculations, and provides graphical display of the robot
in an OpenGL environment.

The simulator uses the DynaMechs package as the
core, with additions to simulate specific features of the
robot such as the DC motors and motor drives, the RC
servos, the sensors, the heterogeneous processing
environment and the CAN network. These additions
provide an identical interface between the dynamic
graphical simulation and the controller and gait generation
code. The parameters for the simulator are derived from
the CAD models and the data sheets from known
components. These parameters include the modified
Denavit-Hartenberg parameters that describe the robot
topology, the tensor matrices of the links and the various
motor and gearbox characteristics associated with each
joint. The surface data from the CAD model is also
imported to the simulator for the graphical display.

The simulator uses an integration step size of
500µs and updates the graphical display every 5ms of
simulated time. When running on 1.5 GHz Pentium 4
under Windows 2000, the simulation updates all 23 joints
at a very useable 40% of real time speed.

5.2 Joint Controller Software
For the high power DC motor joints, the simulator
provides the programmer with readings from the encoders
and the current sensors, based on the velocities and
torques from the dynamic equations. In the case of the RC
servos, the simulator updates the position of the joints
based on a PD model with a limited slew rate. The
programmer must supply the simulator with PWM values
for the motors to provide the control. The simulator
provides fake interrupts to simulate the real events that are
the basis of the control software.

There are two types of joint controller boards used
in the robot – five controller boards control the fifteen
high power motors and one controller controls the eight
low power motors. The controller software for the low
power motors is a single interrupt routine that is triggered
by the arrival of a CAN packet addressed to the
controller’s mailbox. The routine reads the CAN mailbox
for the change in position sent by the gait generation
routine. The PWM duty cycle that controls the position of
the RC servos is varied accordingly.

The control loop for the high power controllers has
two interrupt routines. As for the low power controller, an
interrupt is executed upon receipt of trajectory data in the
CAN mailbox. The data is used to set the velocity
setpoints for the motor control routine. There is also a
periodic interrupt every 500 µs to run the motor control
software. The motor control routine compares the error
between velocity setpoint and the encoder reading and
generates a PWM value for the motor based on a
Proportional-Integral control law. The routine also checks

the motor current against the current limits, and adjusts
the PWM value to prevent over-current situations.

5.3 Motion Generation Software
To this point, the software for motion generation has been
used to test the designed geometries and chosen motors in
the simulator. The software uses only local joint feedback;
it does not use feedback from the joint sensors in a global
sense or use the motion sensors to modify the motion to
maintain balance. The tests are run without current
limiting in the local control loop to evaluate worst-case
performance.

The first test motion is a crouch with a return to the
standing position. This test has been designed to evaluate
the required torques in the pitch joints of hip, knee and
ankle. The worst-case results for the knee joint are shown
in Figure 6. The second test motion is a lean to balance
over one leg, designed to evaluate the required torques in
the roll joints of hip and ankle. The joints are driven
according to the following equations. The worst-case
results for the ankle are shown in Figure 7. In both of
these worst cases, the current consumption only briefly
exceeds the continuous current rating, and the motor stays
within thermal limits.

Motor Values from Knee Joint

-10
-8
-6
-4
-2
0
2
4
6

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Speed (RPM)

Voltage (V)

Current (A)

Figure 6: Simulation results for knee motor during a squatting
movement. The movement cycle time is 10 seconds.

Motor Values from Ankle Joint

-6
-4
-2
0
2
4
6
8

10
12

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Speed (RPM)

Voltage (V)

Current (A)

Figure 7: Simulation results for ankle motor during a balancing
movement. The movement cycle time is 10 seconds.

6 Conclusions
This paper has illustrated the design of a practical,

affordable, autonomous, humanoid robot. The robot is
well proportioned in relation to the human form, with
most of the major degrees of freedom of the human body
implemented. The robot design has a distributed control
design with processors dedicated to each of the key roles
around the robot. Investigations of the CAD design using
a high fidelity simulation have shown that robot is capable
of crouching and balancing.

[Note for reviewers: This project involves a large team
who intend to have the real robot constructed and walking
by September. The final paper will have further results,
and the conference presentation is likely to feature a
video, and possibly the robot itself.]

References
[Chang, 2001] M. Chang, B. Browning and G. Wyeth.

ViperRoos 2000. RoboCup-2000: Robot Soccer World
Cup IV. Lecture Notes in Artificial Intelligence 2019.
Springer Verlag, Berlin, 2001.

[Dempster, 1965] W.T.Dempster and G.Gaughran.
Properties of body segments based on size and weight.
American Journal of Anatomy,1965.

[Golden, 1990] J. A. Golden and Y. F. Zheng. Gait
Synthesis For The SD-2 Biped Robot To Climb Stairs.
International Journal of Robotics and Automation 5(4).
Pages 149-159, 1990.

[Hirai, 1998] K. Hirai, M. Hirose, Y. Haikawa, and
Takenaka. The Development of Honda Humanoid
Robot. IEEE Conference on Robotics and Automation,
1998.

[Hodgins, 1995] J. K. Hodgins, W. L. Wooten, D. C.
Brogan, and J. F. O’Brien. Animating Human
Athletics. In Computer Graphics, (Siggraph 1995).

[McMillan, 1995] S. McMillan, Computational Dynamics
for Robotic Systems on Land and Underwater, PhD
Thesis, Ohio State University, 1995.

[McGeer, 1990] T. McGeer. Passive Dynamic Walking.
International Journal of Robotics Research, 9(2):62-82,
1990.

[Paluska, 2000] D.J. Paluska, Design of a Humanoid
Biped for Walking Research, Masters Thesis, MIT,
2000.

[Pratt, 1998] J. Pratt and G. Pratt. Intuitive Control of a
Planar Bipedal Walking Robot. IEEE Conference on
Robotics and Automation, 1998.

[Raibert, 1986] M. H. Raibert. Legged Robots that
Balance. MIT Press, Cambridge, MA, 1986.

[Wyeth, 2001] Wyeth G.F., Kennedy J. and Lillywhite J.
(2000) Distributed Digital Control of a Robot Arm,
Proceedings of the Australian Conference on Robotics
and Automation (ACRA 2000), August 30 - September
1, Melbourne.

[Yamaguchi, 1998] J. Yamaguchi, S. Inoue, D. Nishino,
and A. Takanishi. Development of a Bipedal Humanoid
Robot Having Antagonistic Driven Joints and Three
DOF Trunk. Proceedings of the 1998 IEEE/RSJ
Conference.

Acknowledgements

Page i

Acknowledgements

I would like to thank the following people:

Firstly, thanks to Dr Gordon Wyeth, my supervisor, for his guidance and help

throughout the year.

Tim Cartwright for his concurrent work on the joint controllers for the servo board and

also use of the CAN Network.

The remainder of the GuRoo humanoid team for their support, help and understanding

of different aspects of the humanoid project.

My siblings for enduring the late nights and lack of holidays.

Abstract

Page ii

Abstract

This thesis illustrates the design, construction and testing of DC motor controllers for a

humanoid robot. The humanoid is to have 23 degrees of freedom, from the ankle to the

neck. To control each joint throughout the body reliably and quickly is a major part of

this thesis.

The design implements a recent Digital Signal Processing (DSP) chip from Texas

Instruments. This chip has been designed with motor control in mind, with a Controller

Area Network (CAN) interface for networking, Pulse Width Modulation (PWM)

outputs and Quadrature Decoding (QDEC). This forms a powerful-networked

controller base for the robot. Each controller controls three DC motors and is placed

physically close to the joints it is controlling. This keeps wires short and noise to a

minimum. Each controller is networked together through CAN for central control from

a Compaq iPaQ. This design process is shown, with device selection and subsequent

implementation.

Limited software for this DSP is shown in later chapters. Emphasis is on the control of

the DC motors found in the lower half of the robot. To date, only testing software has

been written for the controller boards. A simple control loop has been written and this

implements a proportional control loop. The abilities of each controller are shown with

possible future improvements. Overall the hardware works to its intended design,

although not all elements have been tested. There has also been limited success with

software design.

Table of Contents

Page iii

Table of Contents

Acknowledgements ___ i
Abstract __ii
Table of Contents ___ iii
List of Figures and Illustrations__ vi

Chapter 1 - Introduction ___1

1.1 Introduction ___1

1.2 The Humanoid Thesis Team __2

1.3 Thesis Goal __3

1.4 Chapter Outline __4

Chapter 2 – The Past and the Present ______________________________________5

2.1 Current and Past Projects__5

2.2 CAN Network __9

2.3 Micro Controllers__11

2.4 Motor Control___12
2.4.1 Open and Closed Loop Control___________________________________12
2.4.2 Basic Controller Topologies _____________________________________13

Chapter 3 – Specifications __16

3.1 Hardware Specifications __16

3.2 Controller Location __18

3.3 iPaQ to CAN Network __20

Chapter 4 – Hardware Design ___21

4.1 Block Diagram __21

4.2 Micro Controller __22

4.3 Motor Driver Electronics ___25
4.3.1 H-Bridge Driving Techniques____________________________________27

4.4 External Quadrature Decoders_____________________________________30

4.5 Current Sensing ___32

4.6 Temperature and Foot Sensors_____________________________________35

Table of Contents

Page iv

4.7 The Control Network___37

4.8 Miscellaneous Hardware __38

4.9 PCB Design and Construction _____________________________________41

Chapter 5 – Software Design __46

5.1 Software Overview ___47

5.2 Board Initialisation __48

5.3 Timer 1 Interrupt Service Routine__________________________________50

5.4 Main Loop__51

5.5 Intended CAN Interrupt Service Routine ____________________________51

5.6 Other Intended Interrupts __52
5.6.1 PDPINT ISR ___52
5.6.2 Analog to Digital ISR __53

Chapter 6 – Project Performance and Testing_______________________________54

6.1 Hardware Performance___54

6.2 Software Performance __55

6.3 Overall System Performance ______________________________________56

6.4 Project Weaknesses or Problems ___________________________________57

Chapter 7 – Future Work and Conclusions _________________________________58

7.1 Future Work__58

7.2 Outcomes and Conclusions __60

References ___61

Appendix A – The Humanoid Team______________________________________ A1

Appendix B – Schematic Diagram _______________________________________ B1

Appendix C – PCB Diagram__ C1

Table of Contents

Page v

Appendix D – Software Listings ___ D1

D.1 Loop1.c ___ D1

D.2 Motor.c ___ D4

D.3 Interrupt Setup File – Vectors.asm ________________________________ D7

Appendix E – Programming the DC Motor Controllers ______________________ E1

Appendix F – Timing Diagrams ___ F1

F.1 – HCTL-2016 Timing Diagram and Timing Table ___________________ F1

F.2 – TMS320F243 Timing Diagram __________________________________ F2

F.3 – TMS320F243 Timing Table_____________________________________ F3

Appendix G – Integrated Semiconductor Datasheets ________________________ G1

G.1 – TMS320F243 DSP Datasheet ___________________________________ G1

G.2 – HCTL-2016 QDEC Datasheet___________________________________ G2

List of Figures and Illustrations

Page vi

List of Figures and Illustrations

Figure 1.1 - Model of the Humanoid

Table 1.1 - Team Responsibilities

Figure 2.1 - Sony and Honda Humanoids

Figure 2.2 - The CENTAUR

Figure 2.3 - PUMA Arm

Figure 2.4 - Kennedy’s Controller Board

Figure 2.5 - CAN Data Frame

Figure 2.6 - CAN Arbitration Diagram

Figure 2.7 - Closed Loop Block Diagram

Figure 3.1 - Joint Locations

Figure 3.2 - Intended Board Locations

Figure 3.3 - Compaq iPaQ

Figure 4.1 - Hardware Block Diagram

Figure 4.2 - TMS320F243 Internal Block Diagram

Figure 4.3 - Serial Programmer

Figure 4.4 - L6203 Driver Circuitry

Figure 4.5 - Unipolar Switching Method

Figure 4.6 - Bipolar Switching Method

Figure 4.7 - Internal L6203 Diagram

Figure 4.8 - External Quadrature Decoders

Future 4.9 - Current Sensing

Figure 4.10 - PDPINT Hardware

Figure 4.11 - Temperature Sensor

Figure 4.12 - Analog Multiplexer and Buffer

Figure 4.13 - Foot sensors

Figure 4.14 - Simple CAN Network

Figure 4.15 - CAN Interface

List of Figures and Illustrations

Page vii

Figure 4.16 - +5V Regulator Circuitry

Figure 4.17 - +42V Input Circuitry

Figure 4.18 - Servo Controller Board

Figure 4.19 - PCB showing Split Planes

Figure 4.20 - Populated DC Motor Controller Board

Figure 5.1 - 3 Motor Control Loops

Figure 5.2 - ISR Block Diagram

Figure 5.3 - TMS320F243 Event Manager

Figure 5.4 - Timer 1 ISR

Figure 7.1 - Motor within Lower Leg Section

Chapter 1 - Introduction

Page 1

Chapter 1 - Introduction

1.1 Introduction

The aim of this thesis is to outline the design and eventual creation of DC motor

controllers for a humanoid robot. The robot (named GuRoo) has 23 degrees of freedom

ranging from ankle joints to neck. This task hasn’t to date been undertaken at The

University of Queensland and so this design is to be created from the ground up. With

only a biped walker previously constructed within The University of Queensland, this

new project is a very challenging one.

This robot has been designed on a 7-year-

old child. The robot is in proportion to a

human and represents a human as closely as

possible. This is for the eventual interaction

with humans, and possibility of a human vs.

robot soccer league by 2050. It is hoped this

robot will walk at 0.1ms-1, track a soccer

ball, walk to it and kick it into a goal. The

aim was to have this completed for the robot

soccer championships in Seattle in early

August 2001, but due to circumstances this

was unfortunately not possible.

The joint controllers presented within this

thesis each control three DC motors. Each of the controllers communicate with one

another through a CAN (Controller Area Network) protocol. Each controller has a

Texas Instruments TMS320F243 DSP (Digital Signal Processor) micro controller. The

controllers are connected to a centrally located Main Processing Unit, which has been

chosen as the Compaq iPaQ (PDA with colour screen). The iPaQ has a StrongArm

Figure 1.1: Model of the Humanoid

Chapter 1 - Introduction

Page 2

206Mhz processor, with 16MB of ROM for the operating system and 32MB of RAM,

which should be sufficient processing power and memory for this application.

1.2 The Humanoid Thesis Team

With this new design in mind, it was required for the group of twelve to actively work

together to find a solution to this mammoth task. There were four members involved

with the control and power systems, three involved with the vision system, two writing

the walking software and three doing the mechanical design. The twelve members of

the team are shown below in table 1.1, with each of their responsibilities: -

Table 1.1 – Team Responsibilities

Name Responsibility
Jarad Stirzaker (Thesis Author) Joint Controllers

Tim Cartwright Joint Controllers
Bartek Bebel USB to CAN Network Interface

Nathaniel Brewer Power System
Shane Hosking iPaQ to Vision Hardware
Andrew Blower Vision Hardware
David Prasser Vision Software
Andrew Smith Walking Software

Emanuel Zelniker Walking Software
Damien Kee Driver System Design and Implementation

Mark Wagstaff Mechanical Design
Anthony Hunter Mechanical Design

This thesis aims only to show the design of the DC motor controllers of the humanoid.

Timothy Cartwright and Jarad Stirzaker (thesis author) have worked on the joint

controller project concurrently. This thesis contains emphasis on the hardware for the

DC motor boards (Boards 1-5 explained in Chapter 3 - Specifications) and controller

software for control algorithms. Cartwright, 2001 [3] has shown the remainder of the

controller thesis, including the DC servo board (Board 6) and the CAN interface. To

gather an overview of the whole project it would be required to read all the theses

relating to the humanoid (see Appendix A).

Chapter 1 - Introduction

Page 3

1.3 Thesis Goal

The aim of this thesis is to show the control of 15 separate joints of a humanoid robot.

Each joint should have closed loop control with open loop control by higher-level

software. The controllers were to be produced under budget and also to a size and

weight restriction. The size of each controller is important to fit within the limited size

of the robot chassis.

Due to the size and budget restrictions, it will be required that one micro controller

controls more than one motor. There will be a limited amount of current and torque that

can be supplied to the motors, due to these restrictions. These are just a few of the

decisions and sacrifices that were required for the project.

This thesis will show the design, implementation, coding and testing of each of the DC

motor controller boards. It will detail the selection of the microcontroller used, along

with all the other components needed following this initial selection. The thesis will

then show the design of the PCB with selected components. Finally a description of the

low level software and finally the testing of the controllers as a whole will be included.

PI (Proportional plus Integral) for improved steady state error, is hoped to be complete

by the end of the year. This will provide a framework for further work and subsequent

control theses of the humanoid. This control system will later be improved with the

adaptation of a PID (Proportional plus Integral plus Derivative) controller, for improved

steady-state error and transient response. These control techniques are shown in Section

2.4 Motor Control.

It is anticipated that these controller boards will be tested in a working chassis of the

robot, even if only the legs of the robot can be created by the time the Thesis Expo is

held on October 30th. However, at the time of writing this thesis, the chassis wasn’t

built. Simple testing had been done on the controller boards, with advanced control not

having been implemented to date.

Chapter 1 - Introduction

Page 4

1.4 Chapter Outline

Chapter 2 contains a review of the work that has been already done in this area of

robotics. Also discussed is the DSP controller, CAN protocol and basic controller

theory.

Chapter 3 describes the basis of the problem with which needs to be solved and how it

will be achieved. Contained within this chapter is a block diagram of the hardware

which is used to create the hardware itself, there is also a brief description of the

hardware and software solutions.

Chapter 4 provides a detailed review of the hardware design process for each of the

required blocks of the controllers. Included is the component selection process and

circuit design, PCB design and creation.

Chapter 5 outlines the low level software that is used to control each of the controllers

contained within the robot. This software demonstrates the intended closed loop control

algorithms on each of the five controller boards, as well as currently tested software.

Chapter 6 discusses the testing of the project to date. This chapter shows that since the

software hadn’t been completed at the time of writing this thesis, what had been is

demonstrated. It also details any alternatives and other complications that were met

during the project.

Chapter 7 concludes the thesis with overall remarks on the project. Also shown is the

scope for future work, areas that can be improved, and perhaps other simpler solutions

that were found.

Chapter 2 – The Past and the Present

Page 5

Chapter 2 – The Past and the Present

Before the task of creating controllers for the motors of each joint was undertaken, it is

first required to look into the past areas of work and current technology to aid in the

creation of the design. The aim is to have a freestanding one metre tall robot, with on-

board batteries and control for tracking, walking, balancing and kicking. Shown will

also be some current and past projects taken via various companies and universities.

2.1 Current and Past Projects

Several projects are currently ongoing in this field of robotics. These include several

projects from Honda, Sony and Shadow Robot Project. These robots however are a

league ahead of our intended design due to their far superior budget, assigned workload

to the project as well as the fact that these are run by multi-million dollar companies.

The University of Queensland is hoping to rival these large companies by producing a

robot that can function to the same degree on an extremely low budget and utilising

university students. Work may eventually be conjoined with other universities such the

University of New South Wales and Melbourne University.

Figure 2.1: Sony and Honda Humanoids

Chapter 2 – The Past and the Present

Page 6

The Korean Institute of Science and Technology (KIST) has developed a humanoid

robot CENTAUR that has two arms and four legs based on a fictional centaur. Similar

to the current project, all parts including motor controllers, sensors, voice recognition

systems and batteries are on board. It has 36 joints with 37 degrees of freedom.

Obviously it has a different mechanical design, but the controllers are similar to those

intended for the humanoid.

Kim et al, 1999 [5] has shown that each of the

controllers is operated with a Texas Instruments

TMS320F240 DSP chip, which is the same

generation, but different model to that used in the

humanoid. PWM, ADC and encoders are used in

these controller boards, with SPI used for the

communication. These boards are also small

enough to be embedded into the robot itself,

allowing free wireless motion. This is very similar

to the humanoid boards, with set requirements of

size and also on board peripherals. It is shown that the control of several motors per

board is achievable with hardware very similar to that found in the humanoid.

A MVME162 CPU is the highest level controller and acts in a similar manner to the

iPaQ (discussed in chapter 3). This drives the lower level controllers with position or

velocity commands for each motor. However, there is also a higher-level controller, in

the way of the user, from which commands are sent to the CENTAUR through use of

wireless Ethernet (UDP/IP). This is not within the humanoid design, as it is a self

contained and self-controlled unit, making it a more advanced and adaptable system.

Kennedy, 1999 [4] has also provided a framework that will form a good basis with

which to extend the design. This thesis outlines the control of a PUMA 560 industrial

arm. The PUMA arm has six degrees of freedom, each controlled with a separate

controller board and networked together with a CAN network. Each of the motors is a

high power motor, with currents up to 9A possible (with 4A continuous current). The

Figure 2.2: The CENTAUR

Chapter 2 – The Past and the Present

Page 7

continuous current obtainable by each motor is equivalent to the motors for the

humanoid, however, the semi-discrete drive circuitry allows for 9A non-repetitive

currents.

Each of the controller boards presented in subsequent

chapters control three motors each. Some difficulties in

safety features arise due to this, but the savings in cost

and size are necessary for the final design requirements.

The principals for control and the use of the CAN

network by Kennedy, make it an attractive basis for

comparison. This initial design can be used and

extended to fulfil the specifications outlined in Chapter

3.

Each of the motor controllers is operated with the Texas Instruments TMS320F241

DSP. Similar to the CENTAUR project and the humanoid utilising the same generation

of DSP chip but a different model. The Texas Instruments TMS320F243 has been used

in the humanoid controllers, however being the same generation and sibling models,

makes this thesis a great starting point.

To date the hardware has been the focus of this thesis. The hardware is based on

Kennedy’s thesis, with a similar sized board produced. The principles used within this

thesis have presented a great basis for design. Some implementations extended from

Kennedy’s thesis have been the serial programming of the boards, the PCB layout and

also the split plane four-layer board.

Figure 2.3: PUMA Arm

Chapter 2 – The Past and the Present

Page 8

Figure 2.4: Kennedy’s Controller Board

Due to time constraints the software has been reviewed, however, this hasn’t been fully

implemented yet for the humanoid. Kennedy’s software has been written in assembler,

whereas the humanoid’s is written in ‘C’. Despite different coding, the same principles

and processes are still required to obtain full control of each motor.

The hardware and software design included with this thesis has been very useful in the

creation of the humanoid controller design. With quite a bit of information on this

project, this will be a very useful thesis for the creation, design and implementation of

the humanoid controllers.

Chapter 2 – The Past and the Present

Page 9

2.2 CAN Network

Similar to Kennedy, 1999 [4], the CAN (Controller Area Network) will be used to

control several controller boards contained within the body of the humanoid. The use of

CAN is widely documented, with the main use for this protocol in the car industry.

Bosch GmbH [1] developed this protocol for use in the automotive industry. It allows

many nodes on a network to communicate to other nodes, over a two-wire bus, with

high reliability and bandwidth. Particularly useful in very noisy environments were

reliability is essential.

The system incorporates a sophisticated arbitration scheme to dispose of message

collisions within the network. CAN is a carrier sense, collision detection network

protocol (CSMA/CD) which makes it quite useful when there is a lot of traffic on the

network. A data packet can hold a maximum of eight bytes of data, and has an 11-bit

arbitration field used to determine priority and thus through filtering the required node

receives the message. This allows for up to 2048 priorities or nodes to be present on the

network. It can allow up to 536 million nodes using extended CAN that has a 29-bit

arbitration field.

1 12 6 0-8 bytes 16 2 7

Start bit

Arbitration field
11-bit identifier + RTR bit

Control bits Data field CRC bits

Acknowledge

End bits

Figure 2.5: CAN Data Frame

The CAN network can operate at 1Mbit/s for short networks up to 30m. The error

handling of the protocol can allow up to five random errors and burst errors of less than

15-bits in length to be detected.

If two nodes are transmitting at the same time, the message with higher priority (lower

arbitration field value) will continue transmission while the other node will terminate

Chapter 2 – The Past and the Present

Page 10

before sending another bit. Obviously a node senses the network, and will not start

transmission until the network is free. The network operates on two states, dominant

and recessive. For dominant, the CAN-H and CAN-L lines are 5V and 0V respectively,

and on recessive are both 2.5V. If node A transmits a dominant bit, and node B a

recessive, node A will read a dominant bit and B will receive an error.

Figure 2.6: CAN Arbitration Diagram

This protocol can be seen in Figure 2.6 above. Nodes 1,2 and 3 will start transmission

of there messages, at the same time. Each transmitter checks the arbitration field until

the intended transmitted bit doesn’t match the bus bit. So at bit 5, node 2 is transmitting

a recessive bit, and will read back an error since the other nodes are transmitting a

dominant. At this point node 2 terminates transmission immediately and will wait for

the bus to be free before trying to retransmit. Transmission will continue until bit 3 at

which point node 1 loses arbitration, and hence node 3 has the highest priority and

transmits its data. The resultant bus state will be the same as that on node 3.

Although we will only be using seven nodes on the network (six controller boards and

the iPaQ), there is plenty of room for expansion. Also, these extra arbitration fields will

be used for such things as a global shutdown command, as well as control commands

and sensor information.

Chapter 2 – The Past and the Present

Page 11

2.3 Micro Controllers

Traditional control of motors in industry and robotics has relied on analog components.

A simple PID (Proportional plus Integral plus Derivative) controller can be made from a

few resistors, capacitors and an op-amp. This can provide virtually infinite resolution

and continuous processing of the signal. However, analog controllers suffer from

component ageing and temperature drift.

There has been a major swing to digital controllers, comprising of a micro controller or

microprocessor. These controllers require additional A/D and D/A converters (if not

on-board) since analog signals are required for this control. The micro controller

doesn’t suffer from component ageing or temperature drift, but has reduced resolution

and due to conversions, creates a phase delay in the system. Due to their

programmability, they can be easily upgraded and contain far more advanced control.

In the end, digital controllers are far better than their analog counterparts.

A major task of this thesis was the selection and subsequent implementation of the

micro controller into each controller. However, to just simply select the right micro

controller for the job sounds easy enough, but when cost, sourcing, memory and

required peripherals come into play, this becomes a very difficult task.

There are many micro controllers that could be used for this kind of application.

Companies like Texas Instruments, Motorola, Analog Devices and Atmel make such

devices. All are fairly close in their features but would often differ in the on-board

peripherals that they have, and also the size of their memory. Peripherals available on

micro controllers can vary from just a simple I/O port to containing a variety of

peripherals. Obviously with cost comes added features and ease of use.

These peripherals include high speed (20MHz), in-circuit programming, multiple

channel A/D converters, quadrature decoders, multiple PWM channels, external

interrupts and networking capabilities (such as the CAN interface). The micro

controller that is required for the application is very specific, and hence the requirement

Chapter 2 – The Past and the Present

Page 12

for peripherals is very specific. There are thousands of micro controllers that could be

used, but it is the cost, size and speed that determine the ideal one.

Fortunately for us, these micro controllers have made the control algorithms originally

done with analog circuitry relatively easy. They are also relatively easily expandable

with changes to the software. And because these can be networked together, they

become very powerful in the control of multi-node robots, and other electrical

equipment.

2.4 Motor Control

Before we can utilise the micro controllers discussed in the previous section, it is first

required to understand the basics of motor control. Utilising this knowledge the

software can then be written to fully reflect these control principles. There are a

varying number of ways in which control can be implemented, with different systems

and also using analog and/or digital circuitry.

The systems to be used and the type of circuitry to be used will depend on what

accuracies and compensating requirements are needed for the particular application.

Obviously the control of an elevator will have different requirements to that of a

delicate surgeon point.

2.4.1 Open and Closed Loop Control
When a system is simply driven by a controller, with no respect to its current state and

its output isn’t compared to its input, this is known as an open-loop control system. The

input to the system is in such a manner that it is converted to what can be utilised by the

output of the system (these could be voltages, currents, angles etc).

An example of this is a drill, used to screw in a screw. In essence, the drill will keep

driving the screw until either the thread of the screw is destroyed or the drill itself is

destroyed. The input to the system is your finger on the trigger and the output is the

Chapter 2 – The Past and the Present

Page 13

drive torque of the motor. The drill (ignoring automatic clutch) doesn’t consider

disturbances such as the completion of screwing the screw in.

However, if the visual confirmation of the current screw position were included this

would be considered a closed loop system, as feedback is now included. When the

screw reaches its required position the feedback of visual confirmation will prevent it

screwing any further. The input to the system will remain constant (the desired

position), but in the closed loop system an error between the current output and intended

output is used to feedback the system, to drive it to the intended output. Such feedback

could be a pot, sensor, variable resistor etc. A voltage is often used here as this can

easily be subtracted from the input voltage to create the error voltage.

Closed loop control is thus formed when the system incorporates devices that will

monitor the difference between intended output and actual input. This difference can be

used to correct the output, and this loop is continually run until the intended and actual

outputs match. This could be the intended position of the screw height with the actual

position. Closed loop control is utilised with motor control, as continuous feedback is

required to drive the motor, and thus this will be discussed in following sections.

2.4.2 Basic Controller Topologies
The closed loop control system will be focussed on, as this will be required for the

humanoid control system, Figure 2.7 below illustrates a simple closed loop system.

Input Output

Feedback

ControllerInput
Transducer

Error

Figure 2.7: Closed Loop Block Diagram

Chapter 2 – The Past and the Present

Page 14

The control loop operates by comparing the output of the system with the input. An

error is obtained and this is subtracted from the desired input to form an adjusted error

input to the compensator. This loop continues indefinitely matching the input to the

output, even after they are the same. The rate at which the output matches the input and

the overall error can be changed depending on the application.

Transient response, steady-state response and also stability play a major role in the

selection of which topology to use and the components used to create this. Nise, 2000

[7] states, “In the case of an elevator, a slow transient response make passengers

impatient, whereas an excessively rapid response makes them uncomfortable.” Steady-

state response concerns with the final steady state accuracy of the system. Stability is

concerned with whether the system will finally reach a constant value, or it will

indefinitely oscillate.

There are many ways in which this control loop compensator can be designed. Ignoring

the simplest form of feedback, the unity feedback system, three topologies are discussed

here. This includes the PD, PI and PID control compensators. Where ‘P’ is

proportional, ‘I’ is integral and ‘D’ is derivative. Each of these is added together in

each different system to form the error value.

A PI (Proportional plus Integral) controller is used to improve steady-state error. By

placing an open-loop pole at the origin (poles and s plane discussed in Nise, 2000 [7]),

this can be achieved. However, it is also required to place a zero close to this pole, but

not at the origin. This can be exactly implemented with active components or

approximated to the lag compensator with passive components. The transfer function

for this compensator is as follows:

s
zsKsG c

PI
)()(+= (Eqn. 1)

The PD (Proportional plus Derivative) controller is used to improve transient response,

namely settling time. To do this, a zero is placed at some point on the s-plane where

only a small adjustment to the gain is required. This is usually placed at some point so

Chapter 2 – The Past and the Present

Page 15

as to get the desired closed loop pole locations. If passive components are used, this

can be approximated as a lead compensator. The transfer function is as follows:

)()(cPD zsKsG += (Eqn. 2)

Finally, the PID (Proportional plus Integral plus Derivative) controller can be used to

improve both steady-state error and transient response. This is achieved by combining

both the PI and PD controllers with their independent properties. When approximated

with passive components a lag-lead compensator is formed. The transfer function is as

follows:

s
zszs

KsG leadlag
PID

))((
)(

++
= (Eqn. 3)

It is intended to use the PID controller for control of each of the motors as this allows

adjustment of both transient response and steady state error. This control will be shown

in chapter 5, however it is required to have certain hardware to be able to achieve this

control in the first place.

Chapter 3 – Specifications

Page 16

Chapter 3 – Specifications

As already outlined the aim of this thesis is to show the control of 15 separate joints of a

small-scale humanoid robot. Cartwright, 2001 [3] covers the remaining eight degrees of

freedom required by the humanoid. This sounds simple enough, however there were a

few constraints that limited the choice of components and circuitry.

3.1 Hardware Specifications

Given requirements from the both the university and also the project supervisor, the

following restrictions were specified: -

• Limited budget of $3000

• Board size restriction of 170mm x 100mm x 40mm

• Reliable and fast network to link individual controllers

• Fast computation power of micro controller

• Range of peripherals including ADC and PWM

Considering Kennedy, 1999 [4] controls one motor per board, and given the restrictions

above, mainly size and budget, each of these controllers is required to drive more than

one motor. Component selection will be such as to reduce the size of the boards to a

minimum. Also to be considered is the power and current required by the hardware.

It is required that the controller has several peripherals to allow the connection of many

subsystems to the controller core. Some of these include motor drivers, quadrature

decoders, temperature and foot sensors and also communications. For this application it

will also be required to have in circuit programming. Programming through a network

would ultimately be desirable, thus the boards wouldn’t need to be removed from the

robot itself.

Chapter 3 – Specifications

Page 17

For the safety of the robot and also the supervisors of its operation, it will be required to

have many safety features. Such safety features include a master off switch, motor

current sensing, limit switches and also temperature sensing. The watchdog timer will

be a safety feature in software, and will reset on phantom and incorrect interrupts. If a

problem does arise, then with the use of the CAN network a broadcast emergency

message can be sent and all motors shut down, and the central processor notified of this

condition.

It is hoped to have simple PI (Proportional plus Integral) control of each motor. A

velocity command will be transmitted to each controller board every 2ms. The software

is thus required to manipulate this velocity command into a useable PWM duty cycle

that can then be applied to the driver and hence motor. The quadrature decoders can

then be used to feedback the actual velocity of each motor.

The software is to operate with use of the interrupts available on the Texas Instruments

TMS320F243 device. The device runs a “main” empty loop until an interrupt from one

of the several devices is obtained. At this point the interrupt is called, the required

software is run and then control is passed back to the “main” loop. The control loop

will run at 500Hz, with the ADC system being utilised constantly for up to date

information for current sensing and temperature readings.

Chapter 3 – Specifications

Page 18

3.2 Controller Location

There are 15 degrees of freedom that are managed by the DC motor controller boards,

from the back joints to the ankles. The degrees of freedom contained within this thesis

are distributed as follows: -

• 2 ankle freedoms (pitch and roll)

• 1 knee freedom (pitch)

• 3 hip freedoms (pitch, roll and yaw)

• 3 waist freedoms (pitch, roll and yaw)

The number of freedoms is easily seen here in

Figure 3.1. These clearly match up with the

distribution listing above. The remaining eight

degrees of freedom are also shown here.

Each of the DC controller board will control three

motors. Since there are 15 degrees to be controlled,

five boards will be required for this task. As can be

seen in Figure 3.2 below, boards 1 & 2 control the two ankle freedoms and a knee

freedom. Boards 3 & 4 control the three hip freedoms of each upper leg and board 5

controls the three waist freedoms. Each of these 15 motors operates with the same

motor and gearing.

Figure 3.1: Joint Locations

Chapter 3 – Specifications

Page 19

Figure 3.2: Intended Board Locations

In addition to controlling three motors, each board will monitor the temperature of each

motor. They will also monitor current to the motors and limit switches for calibration

and limitation of each joint. In addition boards 1 & 2 will read foot sensor values and

send these back to the iPaQ. Board 5 will monitor the gyroscopes and accelerometers

for closed loop control by the iPaQ. These features are intended for the final product,

but may not be implemented this year.

Chapter 3 – Specifications

Page 20

3.3 iPaQ to CAN Network

As stated already, overall control of the humanoid is through the CAN network, and

these messages originate from the centrally located Compaq iPaQ. This is a PDA

(Personal Digital Assistant) and can be used to facilitate a variety of tasks. The iPaQ

actually operates a hand-held version of Windows or Linux. It has a StrongArm

206Mhz processor, with 16MB of ROM for the operating system and 32MB of RAM

that should be sufficient processing power and memory for this application. It also has

a colour touch screen and speaker that may be utilised at a later date.

The CAN network is connected to this device through

the USB (Universal Serial Bus), that can operate at up

12Mbit/s. However, the CAN network can only

operate at a maximum of 1Mbit/s and these two

protocols are not directly compatible. It is thus

required to bridge these with a seventh board. This

seventh board will be used for the USB to CAN

operations as well as the power control required for

the humanoid.

To keep design of this seventh board simple, the

Texas Instruments TMS320F243 micro controller was used again. It is intended to

initially have open-loop control from the iPaQ, with closed-loop control to be

implemented later. Control commands are forwarded from the iPaQ to Board 7 via

USB, which then converts this to the CAN protocol and forwards them onto the network

for the intended board. This same scheme but in reverse is used to return the sensor

information to the iPaQ for later closed-loop control.

The implementation of the USB to CAN bridge is described in Bebel’s thesis, “Design

and Implementation of a USB-to-CAN Bridge for the GuRoo Project” found in

Appendix A.

Figure 3.3: Compaq iPaQ

Chapter 4 – Hardware Design

Page 21

Chapter 4 – Hardware Design

As shown in the previous chapter, each of the individual systems will be created to

work together to control several motors simultaneously. A design will be required to

meet all of the design criteria outlined in Section 3.1 Hardware Specifications. It was

first required to choose a micro controller from which the subsequent systems could be

added.

4.1 Block Diagram

Given the specifications outlined, the hardware can be represented with the block

diagram in Figure 4.1. It shows each of the required hardware blocks for complete

control of each of the DC motors. Each of these systems will be described in

subsequent sections of this thesis.

CAN Driver

+5V

TMS320F243Serial
JTAG

External
Quadrature

Decoders

Motor
Drivers

Sensors –
Temp, Limit,

Foot

External
Batteries

CAN Network

Figure 4.1: Hardware Block Diagram

Each arrow represents an interaction between blocks, be this a signal or actual data.

The direction of the arrow represents the direction in which this interaction will flow.

So for the case of the External Quadrature Decoders, they will be sending their data to

the TMS320F243.

Chapter 4 – Hardware Design

Page 22

4.2 Micro Controller

As seen in Figure 4.1, there are several considerations that need to be taken when

choosing a micro controller for this application. The requirements for our micro

controller are as follows: -

• Sufficient internal memory (Flash or EEPROM)

• CAN Network interface

• Multiple PWM Outputs

• Quadrature Decoders

• Multiple ADC Inputs

• External Interrupts

• In Circuit Programming

• Speed and DSP

There are quite a few micro controllers that have some of these attributes but it was

quite difficult to find one with all of them. Due to accuracies and peripherals, an 8-bit

processor would not be sufficient for the task. A high-end processor wouldn’t be

acceptable either with their high cost and lack of peripherals. From this either a 16-bit

or 32-bit controller would be required. A couple of micro controllers were found that

could do these tasks. These included the Motorola 68HC12 and 68376, Texas

Instruments TMS320F241 and TMS320F243.

The Motorola 68376 was the ideal solution for this application, however, this chip had a

lead-time of six weeks, which at the time seemed unreasonable (early May for July

completion), and they also required external memory. There was also a budget problem

in that it was required to purchase 24 chips at a total cost of $1000. Since only seven

chips were required, and the Texas Instruments chips could be sampled, the

TMS320F243 was our next best candidate. The Texas Instruments chips were very

suitable as they were designed specifically for motor controllers.

Chapter 4 – Hardware Design

Page 23

The TMS320F243 was required over the TMS320F241, as it was needed to have three

quadrature decoders per board. Since both chips only had one, it was required to have

external decoders, and only the TMS320F243 had an external data port. A normal port

couldn’t be used since these were taken with PWM, ADC and the required control

signals.

In the end the chip was very well suited to the application as it contained 8k of internal

flash memory, eight (8) 10-bit multiplexed fast ADC input channels and eight (8) PWM

output channels with adjustable dead band. Also onboard was the required CAN

interface, 20MHz operating frequency, one (1) quadrature decoder and external data and

address ports. An external Power Drive Protection Interrupt (PDPINT) was also present

and could be utilised for safety features.

Figure 4.2: TMS320F243 Internal Block Diagram

Chapter 4 – Hardware Design

Page 24

A 5MHz crystal is used which generates a 20MHz internal clock signal with the internal

phase locked loop (PLL) circuitry. The 20MHz clock is also output on the CLKOUT

pin and can be used by external circuitry for clocking purposes. For correct operation

the Maxim MAX811 reset controller was used. It generates a reset low pulse

guaranteed for 140ms on VCC dropping below 4.63V. It could also be manually reset

using the external reset button RSW. This device helps prevent the corruption of the

internal flash memory and aims to guarantee a stable supply.

Figure 4.3: Serial Programmer

An external serial boot loader is used to program the device, this was designed and used

by Kennedy, 1999 [4]. To program the TMS320F243, both the VCCP (Flash

programming voltage) and BIO (Branch control input) pins are asserted high. With the

connection of serial boot loader to the 8-pin header SRL, the device automatically

enters programming mode. If the internal flash is not correctly written (due to some

error) and corrupts the internal boot loader, this code will need to be restored with the

use of the JTAG adapter. This connects directly to the 14-pin header JTAG. The use of

these programming features is outlined in Appendix E.

It should be noted, due to the PCB design, the serial programmer needs to be connected

in reverse to the orientation of the board being programmed. In other words, the serial

programmer will be upside down in comparison to the controller board.

Chapter 4 – Hardware Design

Page 25

4.3 Motor Driver Electronics

It was considered essential to use the driver that could take advantage of the on board

PWM output channels on the TMS chip. By varying the duty cycle of the PWM signal

the speed and direction of drive of the motor could be altered. A switch-mode power

amplifier would be required to drive the motors, such a device in a H-bridge

configuration was ideal for this application.

However, there were several options for this H-bridge that could be taken and all were

considered. The two main options were the use of a completely integrated package

containing drivers and switching devices. Or a semi-discrete solution could be utilised

for better efficiency and more output power. However, due to our budget restrictions

and also the limited PCB space, it was essential to lose some of the efficiency for the

smaller size. The space saving was about 80% compared to a semi discrete solution.

This size restriction was the main factor in choice of driver circuitry. If there had been

no size restriction then the semi-discrete option would have been more suitable.

The integrated package needed to include four power MOSFET’s to switch the circuit.

The driver was required to operate at 40-42V due to the battery supply voltage and also

power transfer. The driver chip had to be able to handle this as well as give a decent

output current to be able to drive the motor under load. The higher the output power

and hence higher output current capability, the better the driver. However, due to the

complete integrated package, heat dissipation does become a problem and hence heat

sinks will need to be considered.

The integrated package needs to be a full H-bridge or half H-bridge and be able to

handle PWM frequencies up to 100kHz. The SGS-Thompson L6203 DMOS Full

Bridge Driver was a very suitable component for this requirement. This device can be

supplied with up to 48V and can handle up to 100kHz, both required by our application.

It can drive 5A peak and 4A continuous RMS current. The on-resistance of the

MOSFET’s is also fairly small at 0.3Ω. The device has an enable pin as well as a dead

time protection with a minimal 100ns dead band created between transitions. This

prevents the simultaneous conduction of both arms of the H-bridge, which will result in

Chapter 4 – Hardware Design

Page 26

a short between the power rail and ground (minus the small on-resistance of the

MOSFET’s).

The package of this device that has been used is the 11-pin multiwatt package. This

allows the greatest heat dissipation and allows easy connection to a heat sink.

Considering the placement of the each of the boards, the actual frame of the robot itself

has been considered as a heat sink.

Figure 4.4: L6203 Driver Circuitry

As can be seen in Figure 4.4, the driver circuitry is fairly small, with two bootstrap

capacitors that are used to drive the internal MOSFET’s to their required gate voltage.

These capacitors are used to drive the upper transistors since a voltage greater than the

supply is required. There is also a reference capacitor used. A fuse is used with each

driver, rated at 5A that is the maximum peak current the L6203 can handle. Each of the

three motors is connected through connectors MP1-MP3. Each of these connectors can

handle up to 7A, and are easily connected and disconnected.

Chapter 4 – Hardware Design

Page 27

4.3.1 H-Bridge Driving Techniques
With the driving circuit mentioned above, it was thus required to use the bipolar

switching method to drive each of the three motors per board. There is also the unipolar

option, but this was difficult and costly to implement with our hardware. The unipolar

scheme (Figure 4.5 – adapted from Kennedy, 1999 [4]) works by simply pulsing the

motor in the direction that is required. So if the motor was to drive at half speed then a

50% duty cycle would be used in the particular direction required, with the other

direction remaining at zero.

Forward
Voltage

Reverse
Voltage

Time

Period

Figure 4.5: Unipolar Switching Method

To keep the motor stationary, there is a 0% duty cycle applied to both sides of the

motor. However, since there is no braking system on our motors and it can be required

to keep the motors stationary and keep the robot in a rigid position, it is required to have

power to keep it there. Due to this, a bipolar switching (Figure 4.6 – adapted from

Kennedy, 1999 [4]) method is adopted. This is also due to the limitations of the number

of PWM outputs on the TMS chip. To keep the motors stationary, a 50% duty cycle is

applied to both sides of the motor, and thus they will cancel each other and keep the

motor stationary.

Chapter 4 – Hardware Design

Page 28

Forward
Voltage

Reverse
Voltage

Time

Figure 4.6: Bipolar Switching Method

More power is used with the bipolar system, and there are also large voltage swings,

since the voltage will be switched from 42V to –42V and vice versa. These can result

in current spikes, which will affect the ability of the current sense resistors. Operating

at high frequencies helps reduces these effects.

The bipolar method requires that both opposing MOSFET’s be turned on and off

simultaneously (left high and right low on and off together). Where as with unipolar

operation the low of the respective side can remain on, while the opposite high

MOSFET can be switched on and off. Obviously, as can be seen here, since an

integrated package is used, individual control of each MOSFET is not possible. The

internal schematic of the L6203 (Figure 4.7) is shown here with each of the drive

MOSFET’s.

Chapter 4 – Hardware Design

Page 29

Figure 4.7: Internal L6203 Diagram

Although the TMS320F243 states it has 8 PWM output channels, there are really only

five independent channels that can be used. There are three pairs of dependent PWM

outputs that have dedicated circuitry, with another two outputs that can operate off the

timer compare circuitry. Since there are only five outputs, and six are required for three

motors, the use of the dependent outputs is required and thus bipolar switching method

is used.

Chapter 4 – Hardware Design

Page 30

4.4 External Quadrature Decoders

Since there are three motors driven by each controller, position or velocity will need to

be known for each, such that an error can be calculated. To do this, there are three

quadrature decoders that are required to form closed loop control. This velocity control

is obtained through the three-channel square wave quadrature encoders found on each

motor. Two channels supply the quadrature signals with the third having a single

revolution pulse. Due to lack of peripherals for this, the third channel was not used, or

really required.

The encoder will produce two square waves that are out of phase by 90°. The speed of

the encoder and thus motor is determined by the frequency of the square waves, and

direction is determined by which channel is leading. These square waves are produced

by reading the pulses from an infrared LED shooting through evenly distributed slots on

a disk on the drive shaft of the motor. Each edge of the signal from both channels is

recorded, so for 500 slots, there are actually 2000 counts recorded. This increases the

accuracy but will create 4 times the number of overflows of the relevant registers.

Each of the motors and respective gearing forms a gear ratio of 156:1. So if there are

2000 counts/rev and 156:1 gear ratio, this results in 312,000 counts in the register for

one revolution of the drive shaft. Using a 16-bit register, there will be 4.76 overflows

per revolution. This can be taken care of in software, however there is no need for a

complete revolution of any of the joints. The knee will only move a maximum of 51°,

and the hip 56°. 312,000 counts per revolution will give an accuracy of 0.0012°.

There weren’t many external chips found that could do this job cheaply. Most

controllers have one on-board quadrature decoder, if at all. The Agilent HCTL-2016 is

such a device for our application, it reads in the two channels and converts these into a

16-bit number. However, there is only an 8-bit data port on the device and thus a

control signal for the high and low bytes is required for this.

Chapter 4 – Hardware Design

Page 31

Figure 4.8: External Quadrature Decoders

The address and data port of the TMS320F243 has been used especially for this

purpose, as this was the reason for this device over the TMS320F241. The read address

of this port is actually a control signal to set which byte is returned on the read. When

the TMS320F243 reads from the data port, the !IS pin is asserted (low logic value) to

indicate a read from I/O space. This value remains low throughout the read, and thus

indicates to the HCTL-2016 to hold the current quadrature value. As soon as this pin is

unasserted, the HCTL-2016 returns the output pins to a high-impedance state.

Chapter 4 – Hardware Design

Page 32

Since the operating frequency of these devices is only a maximum of 14MHz, the clock

out signal from the TMS is required to be reduced from its current value of 20MHz.

The simplest method was to implement a T flip-flop by feeding back the inverter output

of a D flip-flop (U9A). By doing this, the clock has been reduced to 10MHz for

clocking the HCTL-2016. This is a suitable frequency for our application. The On

Semi 74HC74A D Flip Flop has been used, and it fulfils the requirements easily.

Due to the time delays required for the operation of the HCTL-2016, one software wait

state is required so that the data is guaranteed to be stable on the read. The timing

diagrams for TMS320F243 data port and the HCTL-2016 is shown in Appendix F. It

can be seen that if there is no software wait state, then the data will not be ready when

the TMS chip buffers the value. The data will not be available on the HCTL-2016 for a

maximum of 65ns, but the data port is expecting this after 30ns, which will not be

possible without the presence of at least one wait state.

Each of the encoders is connected with connectors J4-J6. They are 4-pin connectors

that have a low number of connection repeats, since it was hoped that these weren’t the

limitation to the system. So testing this is difficult, but in the final controller these will

be very reliable connectors. Each of the signals is pulled high with a 3.3kΩ resistor.

This will verify that the quadrature decoders aren’t counting any phantom signals, and

helps in pulling the signal high, for correct operation.

4.5 Current Sensing

As shown in Section 4.3 Motor Driver Electronics, the maximum continuous RMS

current supplied by the L6203 is 4A with a peak of 5A. There are three limits that have

been implemented through hardware to prevent over current on any of the motors. The

first limit is the use of a software control of this current. The use of a 1W 0.01Ω resistor

acts as the sense resistor, with the voltage as a representation of the current through the

motor, from Ohm’s law or V=IR.

Chapter 4 – Hardware Design

Page 33

This resistor can handle up to 1W of power due to the current’s that will flow through it.

So if this resistor had 5A through it, then there would be P=I2R W of power, which is P

= 52x0.01 = 0.25W. For this same current, there will only be a voltage of V = IR =

5x0.01 = 0.05V across the resistor. This voltage is too small for any use, so this is

amplified to a voltage between 0V and 5V where 5V represents about 8A.

Operation is at 100kHz, and the signal is first passed through a low pass filter to filter

out ripples that may form at this high frequency. This is an added feature, and possibly

isn’t essential for current sensing. It will smooth out the signal to be amplified and thus

give a better value for the analog to digital converter.

Future 4.9: Current Sensing

This smoothed voltage is amplified with a gain of 69, through the non-inverting

amplifier circuitry. The op-amp (U13A-C) forms the basis for this non-inverting

amplifier. The gain for this is calculated through simple analysis as:

1

21
R
R

V
VGain

in

out +== (Eqn. 4)

So using values R1=1kΩ and R2=68kΩ, we achieve the required gain of 69. With this

gain, we can detect a current of 7.25A, which is well above the peak 5A allowable by

Chapter 4 – Hardware Design

Page 34

the L6203 driver device. This allows for accurate amplification readings without

saturation of the op-amp to its supply rail. The op-amp used is the National

Semiconductors LMC6084, which has a very low offset voltage (≈ 1mV), since we will

be operating with 0V to 50mV, this is essential for correct operation.

This amplified signal is passed into three of the ADC input channels. These can be

monitored and if they reach over a certain voltage, say 2.75V for 4A for the driver, the

driver duty cycle can be reduced to help decrease the current.

Figure 4.10: PDPINT Hardware

This amplified signal is also compared to a pot voltage and connected to the PDPINT

pin, which is an external power drive protection interrupt. If this pin is asserted (low

signal) from the NOR gate then all PWM outputs are disabled, this is the second

protection device. These are disabled until the TMS320F243 chip is reset. A NOR gate

is required since its output will remain high until one of the inputs becomes high, and

hence over current. The comparator used is the National Semiconductors LM2901,

which again has a small offset voltage, and low power consumption. The NOR gate

used is the Philips 74HCT27D, which is high speed gate for our application.

The third protection device is simply the fuses that are placed on each driver chip. They

are rated at 5A, however they can handle a non-continuous current spike. If these blow,

then this circuitry will not work until the physical fuse is replaced, and will continue to

blow until the problem is fixed.

Chapter 4 – Hardware Design

Page 35

4.6 Temperature and Foot Sensors

With the three safety devices shown in Section 4.5 Current Sensing, temperature

sensors have also be incorporated into the operation of these controllers. These sensors

are to be placed on the motors themselves, so if for some reason, these motors overheat,

but over current is not detected, these can be shut down on this error.

The commonly used National Semiconductors LM135 has been used for this

application. These devices have precision temperature sensing at +10mV/K, and can

operate between -55ºC to +150ºC (to +200ºC for a short period). This is a suitable

operating range since the DC motors will melt at 125ºC. The TO-46 package has been

used for easy connection to the DC motors. It has a maximum error of 5ºC, but a safety

margin of 115ºC will be used, above which shutdown will occur, and hence this error

won’t be significant.

The sensor has been connected as the simple

calibration circuit, as seen in Figure 4.11. A

10kΩ pot is used to calibrate the device by

connecting it across the output to ground

and using the adjust pin. Since the output

slope is linear, calibration will cause the

output to be calibrated at all temperatures,

within its operating range.

Since there are only eight multiplexed ADC input channels on the TMS320F243, it has

been required to multiplex the three temperature sensors. The reason for this is the

three current sensors have used the other inputs and the four foot sensors (mentioned

shortly), leave only one ADC input for temperature. With eventual closed loop

walking, the foot sensors have a higher priority than the temperature considering that

the current sensors should detect this earlier.

Figure 4.11: Temperature Sensor

Chapter 4 – Hardware Design

Page 36

Figure 4.12: Analog Multiplexer and Buffer

To multiplex the three temperature signals, an external analog multiplexer has been

used. The On Semi MC74HC4052D analog multiplexer has been used here. The

device is a dual 4 input analog multiplexer with common select pins. Two pins of Port

D control the select lines, and ADC channel 3 receives the multiplexed analog value.

The input source impedance to the ADC (from the

analog multiplexer) on the TMS chip is to remain

below 10Ω for conversions to remain within

specifications. Although our device had the lowest

that could be found at 240Ω, this wasn’t enough for

the TMS320F243. To do this, a voltage follower or

buffer to reduce the resistance to an acceptable level

follows the multiplexer. The National

Semiconductors LMC6081 op-amp was used here

which is the same as the LMC6084, just a single op-

amp package, as only one op-amp is required here.

Figure 4.13: Foot sensors

Chapter 4 – Hardware Design

Page 37

The foot sensors connect directly into the ADC input channels 4-7 from connectors J13-

J16. Each sensor is supplied with VCC and GND, and the respective analog signal is

returned from the sensor. These sensors are only used on Boards 1 and 2, since these

are the only two with control of the feet. Boards 3-5 have this as redundant circuitry,

but these could be used later for additional sensing.

Each foot has four sensors on the under side, so that the distributed pressure of each foot

can be calculated. It is anticipated to have analog sensing here, however, a switch may

only be possibly used due to the cost of these pressure sensors. The distribution of foot

pressure will be used by the iPaQ for balance and walking calculations.

4.7 The Control Network

There are seven nodes on our network and it is required to have a high speed, reliable

and robust network with which to transmit our control data. These nodes include the

five DC motor controller boards, the servo board and the power/USB board. The

network is linked to the iPaQ through its Universal Serial Bus (USB) connector, which

can send data at up to 12Mbit/s.

As already shown, the CAN network protocol will be used. It is especially useful in this

application due to its high speed and reliability. We will be using the CAN2.0A

specification, which allows for up to 2048 nodes (11-bit arbitration field) to be on the

network. Although the arbitration

field is used for message filtering,

and not as specific nodal addresses,

we can set up the message filtering

to act in this manner. The use of an

emergency broadcast is set for the

highest priority, to enable the shut

down of the robot on any faults.

Figure 4.14: Simple CAN Network

Chapter 4 – Hardware Design

Page 38

The TMS320F243 has a CAN network interface which when combined with a CAN

driver, produces a powerful controller networking tool. The CAN network is a bus

network, with each node connecting to the CAN-H and CAN-L lines of the two wire

network. It is terminated at either end with a 120Ω resistor, to minimise reflections at

the ends of the bus. A jumper JP1 is supplied here, so that any node can be the

terminating node, by simply connecting the jumper. This is useful for testing the boards

and the network. Two connectors are used for the two-wire network, this allows the

easy addition and removal of subsequent nodes. The Philips PCA82C250 CAN driver

has been used in this application. It can operate at up to 1-Mbit/s, which is the limit of

the CAN protocol.

Figure 4.15: CAN Interface

This CAN network is described in more detail by Cartwright, 2001 [3]. The full coding

for the CAN network is also shown within this thesis.

4.8 Miscellaneous Hardware

To supply the digital side of the circuitry, including controller, all logic devices, sensors

etc are supplied with a simple 7805 step down voltage regulator. This device is only

about 80% efficient, but will only use about 0.4W (200mA x 2V), which is quite

insignificant, compared to power drawn through the motors. It is very simple and can

provide significant current, up to 1A, for the digital circuitry. The National

Semiconductor LMC2940C is used in this application. The unregulated +7V is

Chapter 4 – Hardware Design

Page 39

connected through J1. The regulated +5V is then supplied through the power plane to

all of the required circuitry.

Figure 4.16: +5V Regulator Circuitry

The power circuitry is supplied with an unregulated power supply from the power

board. This voltage can vary between 30-40V dependent on battery charge and load.

This power is connected into connector POW42. However, this output voltage is

variable and can be adjusted on the power board depending on requirements.

There is a protection

diode (POWD),

however this will

not work without a

fuse directly next to

it, to prevent reverse

power connection.

There is a varistor

that will prevent

over voltage by shorting at over voltage. For the best over current, reverse voltage and

over voltage protection, a power fuse should be supplied. However, this is not really

possible since there are three devices powered, and a 12A fuse would be useless if one

driver was drawing 6A, and hence would blow up the driver but not the fuse. To fix

Figure 4.17: +42V Input Circuitry

Chapter 4 – Hardware Design

Page 40

this, individual supply connectors for each driver and hence fuses would be required,

but due to our limited space this was not possible.

To cover these problems there are few features on the power board that should be

mentioned. There are 10A fuses and current sensing that protects each battery. There is

also voltage sensing on each power output. Potentially short circuits can be detected

with a large voltage decrease. For further information see Appendix A for Brewer’s

thesis on “Power System for a Humanoid”.

Two power indicators have been added to allow easy detection of power-on on the

boards, MPL and LPL. Three testing and indicator LED’s have been included for

troubleshooting TL1-3. Having three LED’s allows for eight combinations of status

that can be used for troubleshooting. A pushbutton SW1 has also be included for

testing and perhaps future use connected to one of the external interrupts.

Considering the set up of the quadrature decoders for position/velocity control of each

joint, there is no resetting of these external devices. This would have added hardware,

which can be eliminated in software. Instead the power on value is used as the

reference point and the limit switches used so that in calibration, the limits of each joint

is tested and recorded. To do this, one joint at a time is moved until the limit switch

triggers the interrupt, the values for this joint is then recorded. Each of the quadrature

decoders is reset on power reset, but the initial physical position with reference to the

joint is unknown to the controller.

This can also be used as a safety feature, so that if a motor over shoots its joint

boundaries, the limit switch of the joint is hit, and causes an interrupt. In this situation,

the quadrature decoders haven’t measured this distance match with the limit value, and

hence an error has occurred. At least that driver will be shutdown and perhaps the other

drivers. An emergency broadcast can then be sent to warn other controllers of this

condition and also the iPaQ.

Chapter 4 – Hardware Design

Page 41

There a few control pins that need to be set on the TMS320F243 for correct operation.

These are seen on the schematic shown in Appendix B, they aren’t all explained, but for

more information see the TMS320F243 data sheet [10]. To use the external data bus, it

is required to set ENA_144 (pin 18) high to allow use of this data bus. READY (pin

44) is pulled high through a resistor, this makes sure that on a read of the data bus, to

the TMS chip the external device has data ready, and the use of wait states prevented a

read straight away. MP/!MC is pulled low, to boot the controller from on-board

memory rather than external memory (in use by quadrature decoders).

4.9 PCB Design and Construction

The schematic for this controller has been shown in great detail above, but to create a

Printed Circuit Board (PCB) from this uses a bit of skill and creativity. Each of the five

DC motor controllers is identical. This would reduce costs, since only a few designs

could be on each PCB panel (each panel was shared with other projects), and also

simplicity for design. Obviously five differently designed boards would take five times

as long to create a PCB for. As shown above, some circuitry becomes redundant, the

foot sensors are the one main example.

The servo controller board was a completely different design since servo motors were

being controlled, and these only require a position input value, as apposed to a dual

PWM signal. Due to this, the drive circuitry wasn’t needed, just a simple buffer to

supply the servos with the correct current.

See Cartwright, 2001 [3] for the design of

this board.

To fulfil the second specification, i.e.

board size restriction of 170mm x 100mm

x 40mm, it was required to make the

boards as small as physically possible.

This would enable each of the boards to be
Figure 4.18: Servo Controller Board

Chapter 4 – Hardware Design

Page 42

placed as required in Figure 3.2. Considering the size of the produce PCB to be 127mm

x 88mm x 25mm, this met the required specification fairly easily, with possible

reductions in size still possible. One of the methods employed to reduce PCB space

was to use as many surface mount components as possible. This effectively reduces the

space required to nearly a half, since there are no through-holes impeding other devices.

Layout of these devices and there position on the board was one major concern with the

design of this board. It was required to have the board to interface to

• 2 x 2-pin power connectors (+5V and +42V)

• 3 x 2-pin motor connectors

• 3 x 4-pin quadrature encoder connectors

• 2 x 2-pin CAN connectors

• 3 x 3-pin temperature sensor connectors

• 4 x 3-pin foot sensor connectors (redundant on boards 3-5)

• 6 x 2-pin limit switch connectors

• 1 x 8-pin serial loader connector

• 1 x 14-pin JTAG connector

To add to this, it was required to have two power supplies within the board, one for the

low current +5V digital circuitry and the other for the high switching current +42V

analog circuitry. Due to the switching and high currents of the analog circuitry, noise is

produced which can affect the operation of the digital circuitry. To help minimise this,

the digital circuitry is located at one end of the board and the analog circuitry the other.

Chapter 4 – Hardware Design

Page 43

Figure 4.19: PCB Showing Split Planes

A four layer split plane PCB is used to further reduce noise and help minimise PCB

space. There is top and bottom signal layers, a ground plane, and a split power plane.

The ground plane is not split between analog and digital circuitry, as this would have

been more difficult to implement and would lead to little noise improvement. The

power plane has been split between the digital circuitry and the analog circuitry. +5V

flows through the right ¾ of the board, containing the digital circuitry (as per Figure

4.19) and +42V through the left side. There are also a few large tracks through the

power plane that are used to connect the drivers to the motors. This left room on the top

and bottom layers for connections without as much current and hence less noise

produced.

To implement this design on a conventional two-layer board would require large width

tracks to carry up to 12A for the power circuitry, and 4A to each motor. This would

produce significant noise on the board. These power planes have significantly reduced

the noise and also made the layout of the board far simpler. This same principle was

Chapter 4 – Hardware Design

Page 44

used to connect drivers 2 & 3 (U3 and U4) to their respective motor connectors, to

reduce noise and ease layout of the board. The TMS320F243 has been placed as

physically as far as possible from the high switching current analog circuitry, so as to

not inhibit operation due to noise.

Each of the IC’s on the board has been decoupled using a small 0.1µF surface mount

capacitor. These are placed as close as physically possible to the supply pin of each

device. A large 100µF 63V capacitor has been connected close to each of the driver

chips. This helps reduce noise and also helps supply the driver with the required current

for high current switching, due to the bipolar switching method.

The connectors have been placed so as to be relative to the device with which they are

connected. The board is placed within the leg, with the long edge horizontal (this

orientation is seen in Figure 3.2), which allows space for all of the required connectors.

The driver chips have been placed on the vertical sides, which can be mounted on the

frame of the robot for heat dissipation. This may negate the need for heat sinks, this is

yet to be tested.

Figure 4.20: Populated DC Motor Controller Board

Chapter 4 – Hardware Design

Page 45

Each board drives motors both above and below the controller board. However this

differs between boards and hence the three motor drivers and power connectors have

been placed on the low edge of the board. All of the quadrature encoders, limit

switches, CAN and temperature sensor connectors have been placed on the top edge (all

edges are relative to Figure 4.20, with actual orientation to be selected). This helps

keep noise from these signals as well as keeping all digital circuitry on one side of the

board. Unfortunately there wasn’t enough room to place the foot sensor connectors on

an edge, so vertical connectors were placed in the middle of the board.

The serial connector has been placed on the right vertical edge of the board. This

allows for easy programming whilst out of the robot and possible programming whilst

in the robot. Nevertheless, with further software coding each board should be

programmable through the CAN network from the iPaQ, which means software can

easily be changed without the removal and subsequent replacing of each controller

board.

Chapter 5 – Software Design

Page 46

Chapter 5 – Software Design

All of the software designed for this system is micro controller software. Higher-level

control is taken care of by the iPaQ, and this is not discussed here. The micro controller

software is to mainly drive the control algorithms of each motor required by the higher-

level software. Each board is to control three motors with feedback from the quadrature

decoders and other sensors. This simple feedback with higher-level control is shown in

the figure below.

Control Loop
For

Motor 1

Control Loop
For

Motor 2

Control Loop
For

Motor 3

CAN
Driver

Velocity Commands
And

Position and Sensor
Feedback

CAN Network

Figure 5.1: 3 Motor Control Loops

Chapter 5 – Software Design

Page 47

5.1 Software Overview

It has been decided that the higher-level control would operate at a frequency of 500Hz.

However, low-level control will operate at 2kHz (four times the incoming velocity

commands). Since the network is operating at 1-Mbit/s, half of the network bandwidth

will be used for control commands, and the remainder for feedback, such as motor

positions and other sensor values.

Control of each board will consider incoming velocity commands for each motor as

well as the control of each motor on this request. Figure 5.1 shows a block diagram of

the controlling algorithm. Control is interrupt driven, with each of the Interrupt Service

Routines (ISR) shown. A lot of the execution time is spent inside the main loop, where

nothing is happening, just waiting for an interrupt. An interrupt occurs when the

required hardware “interrupts” execution and calls a vector to the ISR. Once an

interrupt goes off, then the needed service routine is called. After execution has

finished control is passed back to the main loop.

Initialise TMS device

CAN Network ISR

Receives velocity
commands and sends

required data for
request.

PDPINT ISR

PWM outputs are
disabled. Sends

emergency broadcast
of status.

Timer 1 Compare ISR

Control loop operating
at 500Hz. Updates

PWM and reads QDEC.

Main loop (wait for int)

ADC ISR

Constantly reading
in current sensors,
temperature and

foot sensors.

Figure 5.2: ISR Block Diagram

The software shown in subsequent sections is for the testing program Loop1.C as seen

in Appendix D. A listing of the code is seen here, and this is the basis for the following

software description. This program, controls one motor with the use of the internal

Chapter 5 – Software Design

Page 48

quadrature decoder as feedback. The encoder difference between loops is utilised and

this is multiplied with a gain value to calculate the needed PWM value for the motor.

5.2 Board Initialisation

There are several peripherals that need to be initialised and set up for correct operation

in this application. These include control of the PWM and quadrature decoders. This

also includes the initialisation of several control registers within the TMS chip itself.

For ease of testing, the watchdog timer has been disabled. For the demonstration this

will set up to reset the device after 6.55ms (the smallest allowable watchdog overflow

period). Since the control loop will operate at 2kHz, this will allow enough time to do

all of the control algorithms, and other code, and then kick the watchdog again. If this

timer overflows then the TMS chip is reset. This stops the device from entering

‘Phantom’ interrupts that aren’t recognised by the system.

After the timer (Timer 1) is enabled for PWM output, the period register is set to 200int.

This sets the PWM output frequency to 100kHz (20MHz/200), so there is an output

pulse on all six outputs every 10µs. This frequency was used to keep the current drawn

and ripple to a minimum. This frequency is the limit for the driver chips, and due to the

size of the period register, the resolution of the output PWM is limited. Since bipolar

switching is used, there are essentially 100 forward PWM values (50-100% duty cycle)

and 100 reverse PWM values (0-50% duty cycle). So there is a resolution of 0.5% for

the duty cycle or 7.6bits.

Chapter 5 – Software Design

Page 49

Figure 5.3: TMS320F243 Event Manager

Timer 1 is used to control the PWM outputs (Figure 5.3 above). On each compare of

Timer 1 to the Timer 1 period register (T1PR) a PWM duty cycle is initiated. The dead

band generation registers are also set up at this point, they are set for minimal dead

band, since the L6203 driver chips have there own dead band generation.

It is also required to have the multiplexed I/O pins set to the correct inputs/outputs,

since all special pins are multiplexed with an I/O port. However, there are six dedicated

Chapter 5 – Software Design

Page 50

pins on Port D that can be used specifically for I/O. All special hardware including

CAN interface, PWM and QDEC all use multiplexed I/O ports.

Timer 2 is used to control the internal quadrature decoder. This is connected to CAP1

and CAP 2 (pins 121 and 123). Timer 2 period register (T2PR) is set to the maximum

of FFFFhex to allow for minimal number of overflows. T2CNT register is used to show

the current position of the motor.

5.3 Timer 1 Interrupt Service Routine

As can be seen in the Loop1.C in Appendix D, operation

has initially used polling instead of interrupts. As explained

previously, all code should be interrupt driven, with a lot of

the time spent waiting for an interrupt to occur.

The intended Timer 1 ISR operates the control loop shown

in Figure 5.4. This loop operates at 2kHz per motor. There

is a new velocity command from the CAN network at a

frequency of 500Hz, however, the controller loop operates

at four times this. This loop will be run three times within

the 2kHz slot due to the three motors per board.

The 16-bit encoder value is read in and this is used to

calculate the current velocity due to the difference in

encoder counts between loops. This is compared to the

intended velocity command and the required PWM duty

cycle is then calculated. The current is then checked to see

if there is over-current and the PWM cycle is adjusted

accordingly. The PWM value is then written to the required

register and then control is passed back to the main loop.

Timer 1 ISR
2kHz

Read encoder value

Calc current
velocity

Compute law
(Calc PWM Duty)

Check current

Set PWM value

Return from
ISR

Figure 5.4: Timer

1 ISR

Chapter 5 – Software Design

Page 51

5.4 Main Loop

As can be seen in the control section of the main loop code below, there is a delay

created to calculate the difference between encoder counts on each cycle of the loop.

This delay has been experimentally found to be the most effective for the encoder and

motor with which the board is connected. T2cnt_old holds the previous value of the

Timer 2 count register. This is subtracted from the current value to find the difference.

This is scaled by –0.0488 and added with 100 to make it a value between 0int and 200int.

This will then give a duty cycle between 0-100%. The scaling value has also been

found experimentally and allows the motor to move significantly but not to draw too

much current from the supply.

for (temp = 0; temp < 500000; temp++);

/* Try polling first, using delay above for difference */
t2cnt_sub = T2CNT - t2cnt_old;
cmpr1_val = (-0.0488 * t2cnt_sub) + 100; /* scale 0-100% duty */
CMPR1 = cmpr1_val;

t2cnt_old = T2CNT;

5.5 Intended CAN Interrupt Service Routine

As has been previously shown the CAN network is used to communicate between the

iPaQ and each of the boards located throughout the body of the robot. This CAN

network has been described in Section 4.7 The Control Network. CAN2.0A has been

used for this application. The arbitration field is 11-bits in length, and hence allows up

to 2048 message identifiers, nodes and priority on the network. There are four different

types of frames that can be sent over the network. These are Data Frames, Remote,

Error and Overflow Frames. Data frames are used to transmit standard data, and the

remote frame is used to request this data with the same identifier.

The TMS320F243 has many memory mapped registers that are dedicated to the

operation of the CAN interface. There are six dedicated mailboxes for use with the

Chapter 5 – Software Design

Page 52

CAN network. Two transmit mailboxes, two receive and two configurable mailboxes.

Each of these mailboxes is 8-bytes in length, and hence spans eight bytes in memory.

A CAN data frame can contain from 44 to 108 bits. This includes the 8-byte data field

as well as the 11-bit arbitration field and other control fields. The other fields are seen

in Figure 2.5. These are taken care of in hardware, and will not be discussed. To send

data, the data is inserted into the required mailbox, and required arbitration field is set,

and the hardware will send off the message, taking care of errors etc.

A new CAN message will arrive at a frequency of 500Hz (or every 2ms). On complete

reception of the new message the interrupt is asserted. This should coincide with the

Timer 1 interrupt used for the control loop. This new velocity command is processed

and used to adjust the PWM duty cycle of the required motor driver.

5.6 Other Intended Interrupts

There are two other interrupts that should be considered in the design of the controller.

Although these weren’t implemented for the submission of this thesis, they are intended

to be completed for the Innovation Expo.

5.6.1 PDPINT ISR
As described in Section 4.5 Current Sensing, the PDPINT pin is connected to a NOR

gate which is driven by the current sensing of the motor drivers. When any of the three

drivers exceed the allowable current this interrupt is set and the PWM outputs are

automatically disabled.

Within this interrupt routine, it is also required to use the CAN network to broadcast an

emergency message of the presence of over-current in one of the motors. This will be

inspected by the iPaQ, and action can be taken from here. This may only require the

already shutdown action of that controller board, or it may incur the shutdown of the

whole system.

Chapter 5 – Software Design

Page 53

5.6.2 Analog to Digital ISR

As shown in Section 4.5 Current Sensing and 4.6 Temperature and Foot Sensors, all of

the eight multiplexed ADC channels of the TMS320F243 have been utilised. Current

sensing, foot sensors and also temperature sensors use these ADC channels. Since there

are a total of 10 analog values to be read, it is required that the on-board ADC unit of

the TMS320F243 be utilised at all times. This will produce the greatest benefits of the

system, in both safety and sensing.

As current sensing is the most important sensor to be checked, this will be checked

more regularly than the other sensors. Port D is also required to switch between the

temperature sensors due to the external analog multiplexer. It would probably be

advised to check the three current sensors, read in half of the foot and temperature

sensors, check the three current sensors again, and finally the remaining sensors. This

loop will continue indefinitely.

Chapter 6 – Project Performance and Testing

Page 54

Chapter 6 – Project Performance and Testing

At the time of writing this thesis, the controller had been semi-constructed and initial

testing software written. The main components required had been soldered to the PCB,

tested and shown to be satisfactory. It was not possible to test some of the circuitry

since not all components had arrived by the time this thesis was written.

All of the required circuitry was in place except for a few of the connectors required for

the temperature and foot sensors and limit switches. Also the LM2901 quad comparator

had not arrived despite attempts to get this device. This provides the basis for the

PDPINT pin NOR gate circuitry, and thus in an emergency the ADC will be relied upon

for shutdown. This shouldn’t be a problem as full load will not be required on any of

the joints, however, it is hoped that this device arrives soon, so this circuitry can be

tested for the Innovation Expo.

6.1 Hardware Performance

It was originally hoped to have the humanoid ready for the soccer championships in

Seattle in August 2001. However, due to problems building the chassis for the

humanoid, programming problems of the controller boards and the project as a whole,

this was not possible. This decision was not made until the beginning of June, and

because of this the hardware design process had been accelerated somewhat.

The Printed Circuit Board (PCB) had been designed and constructed by early August.

Due to this early construction it was hoped that the software would be completed by the

end of second semester. Due to the cost of the boards it was only possible to have one

PCB manufacture run and this required complete accuracy on the first design of the

boards. This is also one of the reasons that the PCBs weren’t designed and constructed

earlier. If these PCBs weren’t going to work it would be almost impossible to test the

required components on either breadboard or other prototyping methodologies due to

high switching currents.

Chapter 6 – Project Performance and Testing

Page 55

Fortunately, the PCB was indeed designed and implemented correctly, and to date no

problems have been encountered. The external quadrature decoders aren’t working,

however they have only been tested once with code that is unknown to be working. The

major blocks of the circuitry that were required are working and fulfil the design

specifications to which they have been tested.

6.2 Software Performance

As has already been discussed, the software hasn’t been completed at the time of

writing this thesis. It is hoped that a simple PI controller will be implemented for

demonstration at the Innovation Expo. Simple implies that only the bare requirements

for this control will be used, this includes the motor drivers and quadrature decoders.

This will allow the motors to be driven and also feedback provided through the

quadrature decoders. The over-current sensing features of the boards will be used, as

this is a required safety option for the boards. Time permitting other features such as

temperature sensors will be added to this controller.

All of the software shown in Appendix D was written in ‘C’. ‘C’ was used since due to

the code creation time required to write assembler, ‘C’ was a far better option.

Assembler would produce far more efficient code to be run on the micro controllers, but

since the control loops will only be operating at 2kHz, this isn’t really a problem. If it

was running at 5kHz-50kHz, this could have been a problem. At 2kHz, this allows

500µs for each control cycle to be executed. Each instruction is executed in 50ns,

which will allow for 10,000 instructions per cycle. It should be noted that these are

assembler instructions and some instructions require multiple instruction cycles.

Considering this though, this is ample time to utilise the coding features of ‘C’.

Once the programming problem was overcome (described in Section 6.4 Project

Weaknesses or Problems), late in second semester code generation begun, however it

was too late for the intended PI controller to be written for this thesis. In the small

amount of time used, several small programs had been written to test the individual

Chapter 6 – Project Performance and Testing

Page 56

sections of the controller board. These include a flashing LED program, simple PWM

drive, internal quadrature decoder use and also a simple feedback program utilising both

the PWM drive and internal quadrature decoder. To date, the external quadrature

decoders aren’t operational, this is yet to be extensively tested.

Each of these simple programs ran well on the TMS chip, it was actually required to

insert delays into the code to slow it down for testing purposes. Each of the programs is

written in a modular form, which makes code generation in the future far simpler. In

other words each program has a main loop, and all other code including initialisation is

done in separate methods. So for the implementation of the PI controller, it will require

copying the needed methods and inserting the new code for the PI control. One of the

advantages of writing the software in ‘C’ is its adaptability, and this can be utilised here.

6.3 Overall System Performance

A simple feedback program has been demonstrated to work. This utilised one of the

PWM output channels and the internal quadrature decoders. This was tested on a motor

of one robot with the quadrature encoder of another robot. The actual motors to be

controlled arrived two days before the submission of this thesis, and due to this an

alternative was required for testing.

It was shown that when the encoder wheel was moved in one direction, the motor would

drive in the opposite direction to overcome this disturbance. The encoder difference

between loops is utilised and this is multiplied with a gain value to calculate the needed

PWM value for the motor. The drivers could handle all voltages and currents unless

limited by the power supply.

From this working, a simple PI control is very likely to be created in time for the

demonstration. However, to control three motors per board it certainly will be required

to have the external quadrature decoders working.

Chapter 6 – Project Performance and Testing

Page 57

6.4 Project Weaknesses or Problems

One of the major setbacks with the software creation for this project was the

programming of the devices. After the PCBs had been created, soldered and tested,

there was a problem programming the boards. Programming serially (as shown in

Appendix E) was a problem, and for some reason JTAG would not correct this problem.

It appeared as though the jump vectors were being incorrectly loaded in memory, and

all that was required was the serial boot loader to be programmed back, and then serial

programming could be utilised from this point.

Since the boot loader for these devices resides in the internal flash memory, each time

the device is programmed, the serial boot loaded is reloaded into memory. So if this

were corrupted during programming, the device would not be programmable serially

until the boot loader was reloaded. Fortunately the JTAG pod could be used to do this

(this is shown in Appendix E).

Since most of the hardware software interaction was not completely tested, it is difficult

to say where the problems in the system are. The hardware works to its desired

specifications, and initial software also works to specifications. Unfortunately the

external quadrature decoders aren’t currently working, however it is hoped that they

will for demonstration.

Chapter 7 – Future Work and Conclusions

Page 58

Chapter 7 – Future Work and Conclusions

This project was a successful hardware design project with limited software success.

These limitations can be attributed to programming problems faced early in semester

two. These were eventually overcome with a simple solution, which allowed for these

devices to be programmed and tested to their intended design.

7.1 Future Work

Considering that the hardware and software wasn’t completely integrated for this thesis,

there is a vast field of work that can be extended to improve the humanoid controllers.

• It is anticipated that a simple PI controller will be implemented for the

Innovation Expo. It is obvious that the completion of the software control

system will be required for open loop walking by the humanoid.

• Experiments will need to be run to confirm that the drivers can support the

selected DC motors chosen for the project. The expected demonstration of this

system will involve control of the leg and hips of the robot. These won’t be with

the full load of the upper body and the requirement for balance. Under full load

from the upper body and friction from the ground, the ability of the humanoid

will be inhibited significantly.

• If larger currents will be required for the more strenuous joints such as the knee

and hip, a semi discrete driving solution may be required. This will require

more hardware and hence a new PCB. The size of PCBs may be a problem with

this, and this will need to be considered.

• Extending the software to implement a full PID compensator will be necessary

for the robot to be successful. This will allow the system to be optimised for

Chapter 7 – Future Work and Conclusions

Page 59

both transient response and also steady state error. This can also implement the

use of temperature sensors, foot sensors and limit switches.

• Redesign of the hardware could be considered using another later micro

controller. A suggested device is the original intended device being the

Motorola 68376. This would remove the bottleneck of the external quadrature

decoders.

• Programming of the micro controllers through the CAN network would be a

very useful feature. It is then not necessary to remove the controller boards from

the robot chassis and only one connection is required to program all of the

devices. It could also be later possible to program the controller boards from the

iPaQ.

Chapter 7 – Future Work and Conclusions

Page 60

7.2 Outcomes and Conclusions

The aim for this thesis was to outline the design and eventual creation of DC motor

controllers for a humanoid robot. The hardware design has been shown in great detail,

with some of the software also shown. The project has provided a platform for which

full PID control can be implemented. The hardware was designed successfully and

allows the control of 15 motors from five independent networked controller boards.

An extensive platform has been provided for all requirements of the humanoid.

Temperature and foot sensors and also limit switches will provide useful feedback for

closed loop control of the overall system from the iPaQ. All of this hardware is in

place, only the software is required to utilise these systems.

It was hoped that a detailed description of the software would also be included, however

this was not possible due to programming problems faced. A hardware basis has been

provided and this will form an interesting control thesis for coming years.

Figure 7.1: Motor within Lower Leg Section

References

Page 61

References

[1]

Bosch GmbH, R, CAN Specification, Ver 2.0, Stuttgart, 1991.

[2]

Bosch GmbH, R, Bosch CAN Homepage, http://www.can.bosch.com, (current October

18th, 2001)

[3]

Cartwright, T, Design and Implementation of Small Scale Joint Controllers for a

Humanoid Robot, Undergraduate Thesis, Univ. of Queensland, Computer Science and

Electrical Engineering, 2001.

[4]

Kennedy, J, Design and Implementation of a Distributed Digital Control System in an

Industrial Robot, Undergraduate Thesis, Univ. of Queensland, Computer Science and

Electrical Engineering, 1999.

[5]

Kim, M et al., “Development of a Humanoid Robot CENTAUR – Design, Human

Interface, Planning and Control of its Upper-Body”, IEEE International Conference on

Systems, Man and Cybernetics, Vol 4, Tokyo, Japan, 1999, pp. 948-953.

[6]

Miller, G.H, Microcomputer Engineering, 2nd Ed, Prentice Hall, Upper Saddle River,

New Jersey, 1999.

[7]

Nise, N.S, Control Systems Engineering, 3rd Ed, John Wiley & Sons Inc, New York,

New York, 2000.

http://www.can.bosch.com/

References

Page 62

[8]

CAN in Automation (CiA), Controller Area Network (CAN), http://www.can-cia.de,

(current October 18th, 2001).

[9]

Agilent Technologies, HCTL-2016 Datasheet, http://www.agilent.com, (current October

18th, 2001) .

[10]

SGS Thompson Microelectronics, L6203 Datasheet, http://www.st.com, (current

October 18th 2001).

[11]

Texas Instruments, TMS320F243 Data Sheet, Texas Instruments Literature SPRS06B,

http://www.ti.com, 1999, (current October 18th 2001).

[12]

Philips, PCA82C250 Data Sheet, http://www.philips.com, (current October 18th 2001).

[13]

Protel International Ltd, http://www.protel.com, (current October 18th, 2001)

 [14]

National Semiconductors, http://www.national.com (current October 18th, 2001).

[15]

On Semiconductor, http://www.onsemi.com (current October 18th, 2001).

[16]

Maxim Semiconductors, http://www.maxim-ic.com (current October 18th, 2001).

http://www.can-cia.de/
http://www.agilent.com/
http://www.st.com/
http://www.ti.com/
http://www.philips.com/
http://www.protel.com/
http://www.national.com/
http://www.onsemi.com/
http://www.maxim-ic.com/

Appendices

Page 63

Appendix A – The Humanoid Team

Appendix B – Schematic Diagram

Appendix C – PCB Diagram

Appendix D – Software Listings
D.1 – Loop1.c

D.2 – Motor.c

D.3 – Interrupt Setup File – Vectors.asm

Appendix E – Programming the DC Motor Controllers

Appendix F – Timing Diagrams
F.1 – HCTL-2016 Timing Diagram and Timing Table

F.2 – TMS320F243 Timing Diagram

F.3 – TMS320F243 Timing Table

Appendix G – Integrated Semiconductor Datasheets
G.1 – TMS320F243 DSP Datasheet

G.2 – HCTL-2016 QDEC Datasheet

Appendix A

Page A1

Appendix A – The Humanoid Team

Each of the following is an Undergraduate Thesis, Univ. of Queensland, Computer

Science and Electrical Engineering, 2001.

Bebel, B, “Design and Implementation of a USB-to-CAN Bridge for the GuRoo

Project”.

Blower, A, “Development of a Vision System for a Humanoid Robot”.

Brewer, N, “Power System for a Humanoid”.

Cartwright, T, “Design and Implementation of Joint Controllers for a Humanoid

Robot”.

Hosking, S, “High Speed Peripheral Interface”.

Hunter, A, “Mechanical Design of a Humanoid”.

Kee, D, “Draft Systems for a Humanoid Robot”

Prasser, D, “Vision Software for a Humanoid Robot”

Smith, A, “Simulator Development and Gait Pattern Creation for a Humanoid Robot”.

Wagstaff, M, “Mechanical Design and Internal Sensors for a Humanoid Robot”.

Zelniker, E, “Joint Control for an Autonomous Humanoid Robot”.

Appendix B

Page B1

Appendix B – Schematic Diagram

1
2

3
4

5
6

7
8

A B C D

8
7

6
5

4
3

2
1

DCBA

Title

N
um

ber
R

evision
Size

A
2

D
ate:

19-O
ct-2001

Sheet of
File:

H
:\schem

atics\boards - jarad final.ddb
D

raw
n B

y:

Vcca 137

PW
M

1/IO
PA

6
102

PW
M

2/IO
PA

7
100

Vdd 17

Vdd 53

Vccp/WDDIS 77

Vddo 34

Vddo 39

Vddo 72

Vddo 75

PW
M

3/IO
PB

0
98

PW
M

4/IO
PB

1
96

PW
M

5/IO
PB

2
94

PW
M

6/IO
PB

3
91

T2PW
M

/IO
PB

5
128

T1PW
M

/IO
PB

4
130

A
D

C
IN

00
10

A
D

C
IN

01
8

A
D

C
IN

02
6

A
D

C
IN

03
4

A
D

C
IN

04
3

A
D

C
IN

05
144

A
D

C
IN

06
143

A
D

C
IN

07
139

C
A

N
R

X
/IO

PC
7

113

C
A

N
TX

/IO
PC

6
115

C
A

P3/IO
PA

5
119

C
A

P2/Q
EP1/IO

PA
4

121

C
A

P1/Q
EP0/IO

PA
3

123

V
reflo

141
V

refhi
142

SC
IR

X
D

/IO
PA

1
58

SC
ITX

D
/IO

PA
0

56

!SPISTE/IO
PC

5
66

SPIC
LK

/IO
PC

4
64

SPISO
M

I/IO
PC

3
62

SPISIM
O

/IO
PC

2
60

TD
IR

/IO
PB

6
85

TC
LK

IN
/IO

PB
7

87

!PD
PIN

T
89

C
LK

O
U

T/IO
PD

0
116

!R
S

19

EM
U

0
45

EM
U

1
47

X
F/IO

PC
0

49

!B
IO

/IO
PC

1
55

PM
T

68

!N
M

I
79

TC
K

22

TD
I

24

TD
O

26

TM
S

28

!TR
ST

30

X
TA

L2
42

X
TA

L1/C
LK

IN
41

X
IN

T1/IO
PA

2
83

X
IN

T2/IO
PD

1
81

Vssa135

Vss16

Vss32

Vss51

Vsso14

Vsso15

Vsso36

Vsso37

Vsso40

Vdd 125

Vddo 106

Vddo 109

Vss127

Vsso70

Vsso73

Vsso108

Vsso111

Vsso117

Vsso124

Vsso129

Vsso131

D
0

33

D
1

35

D
2

38

D
3

46

D
4

48

D
5

50

D
6

52

D
7

54

D
8

57

D
9

59

D
10

61

D
11

63

D
12

65

D
13

67

D
14

69

D
15

71

A
0

104

A
1

103

A
2

101

A
3

99

A
4

95

A
5

93

A
6

92

A
7

90

A
8

88

A
9

86

A
10

84

A
11

82

A
12

80

A
13

78

A
14

76

A
15

74

IO
PD

2
20

IO
PD

3
21

IO
PD

4
23

IO
PD

5
25

IO
PD

6
27

IO
PD

7
29

M
P/!M

C
43

REA
D

Y
44

!IS
105

!D
S

110

!PS
107

!W
E

112

!R
D

118

R
/!W

114

!STR
B

122

!B
R

120

V
IS_C

LK
31

EN
A

_144
18

!V
IS_O

E
126

TM
S

TM
S320F243

PW
M

1

PW
M

3

PW
M

5

C
R

Y

5M
H

z

C
4

22pF
C

5
22pF

M
1Enc1

M
1Enc2

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

C
LK

O
U

T
X

IN
T2

IO
PD

2
IO

PD
3

IO
PD

4
IO

PD
5

IO
PD

6
IO

PD
7

C
A

N
R

x
C

A
N

Tx

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

V
out

3
V

in
1

GND2

U
6

LM
2940C

S-5

C
1

0.1uF
C

2
0.1uF

V
C

C

+
C

3
100uF

!R
ESET

2
!M

R
3

Vcc 4GND1

U
5

M
A

X
811

V
C

C

R
S

R
S

R
SW

SW
-SPST

V
C

CR
6

4k7

Joint C
ontroller for 3 m

otors

A
1

E3

1
1

V
C

C

M
1i

1 2

42V

PO
W

42

V
m

m

R
1

12kM
PL

LED

LPL
LED

R
8

2k2

SC
IR

X
SC

ITX
B

IO

PO
W

D
D

IO
D

E
R

V
47V

C
16

0.1uF
C

17
0.1uF

C
18

0.1uF
C

19
0.1uF

C
20

0.1uF
C

21
0.1uF

V
C

C

C
15

0.1uF
C

14
0.1uF

C
13

0.1uF
C

12
0.1uF

V
C

C

R
3

4k7
V

ccp

12345678

SR
L

C
O

N
8 V

C
C

SC
ITX

SC
IR

X

R
eset

V
ccp

B
IO

R
7

4k7

R
eset

1
2

3
4

5
6

7
8

9
10

11
12

13
14

JTA
G

H
EA

D
ER

 7X
2

EM
U

0
EM

U
1

TC
K

TD
I

TD
O

TR
ST

TM
S

TM
S

TD
I

TD
O

TC
K

TR
ST

V
C

C

V
C

CR
5

10k
R

4
10k

V
C

C

EM
U

0

EM
U

1

M
2i

M
3i

C
22

0.1uF

R
2

1k

R
10

2k2

R
11

2k2

R
9

2k2

TL3

LED

TL2

LED

TL1

LED

IO
PD

7

IO
PD

6

IO
PD

5

V
C

C

R
22

4k7

V
C

C

R
23

4k7

!IS

SW
1

SW
-PB

V
C

C

R
24

4k7

X
IN

T1

X
IN

T1

A
D

C
IN

03
A

D
C

IN
04

A
D

C
IN

05
A

D
C

IN
06

A
D

C
IN

07

!R
D

!N
M

I

V
refhi

X
TA

L2
X

TA
L1

READY

TEM
P1

TEM
P2

TEM
P3

PO
T3

10k

R
28

RES1

V
C

C

PO
T2

10k

R
27

RES1

V
C

C

PO
T1

10k

R
26

RES1

V
C

C

M
1Enc1

M
1Enc2

M
2Enc1

M
2Enc2

M
3Enc1

M
3Enc2

1 2 3 4

J4EN
C1

1 2 3 4

J5EN
C2

1 2 3 4

J6EN
C3

V
C

C

V
C

C

V
C

C

R
29

3k3
R

30
3k3

R
31

3k3
R

32
3k3

R
33

3k3
R

34
3k3

IO
PD

2

1 2

J1PO
W

5

IO
PD

3

V
m

m

12

M
P1

M
otor 1

V
m

m

IO
PB

7

IO
PB

6

M
1O

ut1

M
1O

ut2

M
1O

ut1
M

1O
ut2

V
m

m

IO
PB

5
M

3O
ut1

M
3O

ut2

12

M
P2

M
otor 2

M
2O

ut1
M

2O
ut2

12

M
P3

M
otor 3

M
3O

ut1
M

3O
ut2

M
2O

ut1

M
2O

ut2

Sense
10

Enable
11

GND6

O
ut 2

1

Vs 2

O
ut 1

3

B
oot 1

4

In 1
5

In 2
7

B
oot 2

8

Vref9

U
2

SG
S-L6203

Sense
10

Enable
11

GND6

O
ut 2

1

Vs 2

O
ut 1

3

B
oot 1

4

In 1
5

In 2
7

B
oot 2

8

Vref9

U
3

SG
S-L6203

Sense
10

Enable
11

GND6

O
ut 2

1

Vs 2

O
ut 1

3

B
oot 1

4

In 1
5

In 2
7

B
oot 2

8

Vref9

U
4

SG
S-L6203

C
6

10nF

C
7

10nF

C
9

10nF

C
8

10nF

C
11

10nF

C
10

10nF
R

12
0R

01 1W

R
15

0R
01 1W

R
18

0R
01 1W

R
14

68k
R

13
1k

M
1i

23
1

411

U
13A

LM
C

6084

V
C

C

R
17

68k
R

16
1k

M
2i

5 6
7

411

U
13B

LM
C

6084

R
20

68k
R

19
1k

M
3i

910
8

411

U
13C

LM
C

6084

C
23

0.1uF

C
25

0.22uF

C
26

0.22uF

C
27

0.22uF

C
28

0.1uF

C
29

0.1uF

C
30

0.1uF

C
A

N
R

x

C
A

N
Tx

V
C

C

R
25

120R

C
24

0.1uF

N
ote: The 120R

 resistor is only for the term
inating

controller boards. These being boards 1 and 2
- the tw

o boards controlling the ankles and knees.

C
A

N
L

C
A

N
H

1 2
JP1

JU
M

PER

12

J2C
A

N
IN

12

J3C
A

N
O

U
T

C
A

N
H

7

C
A

N
L

6

V
ref

5

R
s

8

V
cc

3

Tx
1

R
x

4

G
nd

2

U
1

PC
A

82C
250

+|

A
D

J

TM
P1

LM
135

+|

A
D

J

TM
P2

LM
135

+|

A
D

J

TM
P3

LM
135

M
2Enc1

M
2Enc2

M
3Enc1

M
3Enc2

D
0

1
CLK

2

!O
E

4

!R
ST

5

C
H

 B
6

C
H

 A
7

D
7

9
D

6
10

D
5

11
D

4
12

D
3

13
D

2
14

D
1

15

Vdd 16Vss8

SEL
3

U
7

H
C

TL-2016

D
0

1
CLK

2

!O
E

4

!R
ST

5

C
H

 B
6

C
H

 A
7

D
7

9
D

6
10

D
5

11
D

4
12

D
3

13
D

2
14

D
1

15

Vdd 16Vss8

SEL
3

U
8

H
C

TL-2016 D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

V
C

C

V
C

C

C
LK

O
U

T

A
0

A
0

!IS

!IS

PR
E

4

CLK
3

D
2

CLR
1

Q
5

Q
6

V
C

C
14

G
N

D
7

U
9A

M
C

74H
C

74A
V

C
C

V
C

C

CLK
D

EC

R
S

V
C

C

V
C

C

B
9

1X
14

A
10

3X
11

0X
12

X
13

2X
15

VDD 16VSS8

VEE7 INH6

1Y
5

3Y
4

Y
3

2Y
2

0Y
1

U
11

74H
C

4052D

V
C

C

1 2 3

J13

FO
O

T1

1 2 3

J14

FO
O

T2

A
D

C
IN

03

1 2 3

J15

FO
O

T3

TEM
P1

1 2 3

J16

FO
O

T4

TEM
P2

V
C

C

TEM
P3

V
C

C

V
C

C

V
C

C A
D

C
IN

04

A
D

C
IN

05

A
D

C
IN

06

A
D

C
IN

07

+
C

31
100uF 63V

+
C

32
100uF 63V

+
C

33
100uF 63V

C
37

0.1uF

C
36

0.1uF

C
35

0.1uF

F3FU
SE3

C
34

0.1uF

F2FU
SE2

F1FU
SE1

R
21

20k

!PD
PIN

T

1A
1

1B
2

1C
13

1Y
12

V
C

C
14

G
N

D
7

U
12A

PS74H
C

T27D
V

C
C

IN
+2

7

IN
+1

5
IN

- 1
4

O
U

T1
2

V+ 3GND12

IN
- 2

6

O
U

T2
1

IN
- 3

8

IN
+3

9

IN
- 4

10

IN
+4

11

O
U

T3
14

O
U

T4
13

U
10

LM
2901M

(14)

!PD
PIN

T

1 1W
3

22

PO
T4

10k

V
C

C

M
1i

M
2i

M
3i

V
C

C
C

39

0.1uF

C
38

0.1uF

PW
M

4

PW
M

6

IO
PB

5
IO

PB
4

IO
PB

6
IO

PB
7

PW
M

1
PW

M
2

PW
M

3
PW

M
4

PW
M

5
PW

M
6

1 2

J7LS11 2

J8LS21 2

J9LS31 2

J10

LS41 2

J11

LS51 2

J12

LS6

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

R
35

RES1
C

40
C

A
PR
36

RES1
C

41
C

A
P

C
42

C
A

P R
37

RES1

Vss 7GND4

V
out

6
V

-
2

V
+

3

N
C

8
N

C
5

N
C

1

U
14

LM
C

6081

V
C

C
C

43

0.1uF

PW
M

2

X
IN

T2

Appendix C

Page C1

Appendix C – PCB Diagram

PCB showing internal planes

Appendix D

Page D1

Appendix D – Software Listings

D.1 Loop1.c

/*
* Jarad Stirzaker - 33696915
* DC Motor Controllers for a Humanoid Robot
* 26/09/2001
*
* This program uses some feedback from the QDEC to change the PWM duty cycle
* of the motor. Since the QDEC is external to the motor, the program is used
* to test the feedback abilities of the tms chip.
*/
#include "F24x.h"

#define PERIOD 200 /* for 100kHz PWM */
unsigned int cmpr1_val;
unsigned int cmpr2_val;
unsigned int cmpr3_val;

void pwm_setup(void);
void qdec_setup(void);

void main(void)
{

long temp;
int t2cnt_old;
int t2cnt_sub;
unsigned int compval;

WDDISABLE;
EVIMRA = 0x0000;
INT_DISABLE;

pwm_setup();
qdec_setup();

cmpr1_val = PERIOD / 2; /* Set to initially 50% duty cycle */
cmpr2_val = PERIOD / 2;
cmpr3_val = PERIOD / 2;

CMPR1 = cmpr1_val;
CMPR2 = cmpr2_val;
CMPR3 = cmpr3_val;

/*
* Data and Direction Control Registers 7-8
* PxDATDIR 15-8 direction, 7-0 data, 0 - input, 1 - output
*/
PDDATDIR = 0xFC00; /* Clear Port D */
PBDATDIR = 0xFFFF; /* Enable L6203 chips */

t2cnt_old = T2CNT; /* setup previous value of T2CNT */

while (1) {
compval = T2CNT / 32; /* right shift MSB's to leds */
PDDATDIR = (PDDATDIR & 0xFC1F) | compval;
for (temp = 0; temp < 500000; temp++);

/* Try polling first, using delay above for difference */
t2cnt_sub = T2CNT - t2cnt_old;
cmpr1_val = (-0.0488 * t2cnt_sub) + 100; /* scale between 0-100% duty */
CMPR1 = cmpr1_val;

t2cnt_old = T2CNT;
}

}

Appendix D

Page D2

void pwm_setup(void)
{

/*
* T1PR Timer 1 Period Register - 20Mhz/T1PR - freq
* CMPRx Compare Register x - duty
* OCRA 7-4 I/O Mux Control Register A - set pwm pins
* ACTR 8-37 Compare Action Control Register - active high
* DBTCON 8-41 Dead Band Timer Control Register - dead band
* COMCON 8-36 Compare Control Register - pwm
* T1CON 8-28 GP Timer Control Register (individual) - up, prescale
* GPTCON 8-30 GP Timer Control Register - up, pol
*/

/* Set period register for 100kHz = 20MHz/200 */
T1PR = PERIOD;

OCRA = 0x0FD8; /* 00001111 11011000 */

ACTR = 0x0999; /* 00001001 10011001 */
DBTCON = 0x02E0; /* 00000010 11100000 */

CMPR1 = 0x0000;
CMPR2 = 0x0000;
CMPR3 = 0x0000;

/* +----------------- compare enabled
|++--------------- reload compare register on underflow or period match
|||+-------------- space vector not enabled
||||++------------ action control register reload on underflow
||||||+----------- compare output pins enabled
|||||||+-++++++++- reserved
|||||||| ||||||||
10100010 00000000 */

COMCON = 0xA200;

/* ++---------------- emulation control = not affected
|| ++------------- continuous up counting
|| ||+++---------- prescaler = 1
|| ||||| +-------- Use own TENABLE bit
|| ||||| |+------- enable T1
|| ||||| ||++----- internal clock as source
|| ||||| ||||++--- reload period on underflow or equal
|| ||||| ||||||+-- enable compare operation
|| ||||| |||||||+- not used in T1
|| ||||| ||||||||
11010000 01000110 */

T1CON = 0xD046;

/* +---------------- read only counting status
|+--------------- read only counting status
|| ++----------- no adc event with timer 2
|| ||+-+-------- no adc event with timer 1
|| ||| |+------- compare output enable - enable
|| ||| || ++--- polarity timer 2 - active high
|| ||| || ||++- polarity timer 1 - active high
|| ||| || ||||
00000000 01001010 */

GPTCON = 0x004A;
}

Appendix D

Page D3

void qdec_setup(void)
{

/* info 8-66
* T2CNT 7-19
* T2PR 7-15
* T2CMPR 7-14
* T2CON 8-28
* CAPCON 8-59
*/

T2CNT = 0x7FFF;
T2PR = 0xFFFF;
T2CMPR = 0xFFFF;

/* ++---------------- not affected by emulation suspend
|| ++------------- Directional Up/Down Count mode
|| ||+++---------- Clock Prescalar = /1
|| ||||| +-------- Use own TENABLE bit
|| ||||| |+------- TENABLE - Enable Timer
|| ||||| ||++----- Clock Source - QEP Circuit
|| ||||| ||||++--- Register reload when counter is 0
|| ||||| ||||||+-- TECMPR - enable timer compare
|| ||||| |||||||+- SELTPR1 - use own period register
|| ||||| ||||||||
11011000 01110010 */

T2CON = 0xD872;

/* +---------------- Clear all capture registers
|++-------------- Enable QEP Circuit (bits 9, 7-4 ignored - *)
|||+------------- Disbale CAP3
|||| +----------- GP Timer selection for cap3 = GP Timer 2
|||| |+---------- GP Timer selection for cap1/2 = GP Timer 2 - *
|||| ||+--------- CAP3TOADC = no event
|||| ||| ++------ CAP1 Edge Detection = Detect both edges - *
|||| ||| ||++---- CAP2 Edge Detection = Detect both edges - *
|||| ||| ||||++-- CAP3 Edge Detection = none
|||| ||| ||||||
01100000 11110000 */

CAPCON = 0x60F0;
}

Appendix D

Page D4

D.2 Motor.c

/*
* Jarad Stirzaker - 33696915
* Controllers for a humanoid robot
* 26/09/2001
*
* This program simply uses the external interupt XINT1 to stop and reverse the
* the motion of the motor, by slowing change the PWM duty cycle.
*/
#include "F24x.h"

unsigned long compval;

void pwm_setup(void);
void int_setup(void);
void c_int6(void);

void main(void)
{

long temp;

WDDISABLE;
EVIMRA = 0x0000;

INT_DISABLE;

pwm_setup();
int_setup();

compval = 25;

CMPR1 = compval;
CMPR2 = 0x0040;
CMPR3 = compval;

/*
* Data and Direction Control Registers 7-8
* PxDATDIR 15-8 direction, 7-0 data
* 0 - input, 1 - output
*/

PBDATDIR = 0xFFFF;
PDDATDIR = 0xFC00;

while (1) {
PDDATDIR = (PDDATDIR & 0xFF5F) | ~(PDDATDIR | 0xFF5F);
for (temp = 0; temp < 100000; temp++);

}
}

void pwm_setup(void)
{

/*
* T1PR Timer 1 Period Register - 20Mhz/T1PR - freq
* CMPRx Compare Register x - duty
* OCRA 7-4 I/O Mux Control Register A - set pwm pins
* ACTR 8-37 Compare Action Control Register - active high
* DBTCON 8-41 Dead Band Timer Control Register - dead band
* COMCON 8-36 Compare Control Register - pwm
* T1CON 8-28 GP Timer Control Register (individual) - up, prescale
* GPTCON 8-30 GP Timer Control Register - up, pol
*/

/* Set period register for 100kHz = 20MHz/200 */
T1PR = 200;

OCRA = 0x0FC4; /* 00001111 11000100 */
ACTR = 0x0999; /* 00001001 10011001 */

Appendix D

Page D5

DBTCON = 0x02E0; /* 00000010 11100000 */

CMPR1 = 0x0000;
CMPR2 = 0x0000;
CMPR3 = 0x0000;

/* +----------------- compare enabled
|++--------------- reload compare register on underflow or period match
|||+-------------- space vector not enabled
||||++------------ action control register reload on underflow
||||||+----------- compare output pins enabled
|||||||+ ++++++++- reserved
|||||||| ||||||||
10100010 00000000 */

COMCON = 0xA200;

/* ++---------------- emulation control = not affected
|| ++------------- continuous up counting
|| ||+++---------- prescaler = 1
|| ||||| +-------- do not enable T2 as well
|| ||||| |+------- enable T1
|| ||||| ||++----- internal clock as source
|| ||||| ||||++--- reload period on underflow or equal
|| ||||| ||||||+-- enable compare operation
|| ||||| |||||||+- not used in T1
|| ||||| ||||||||
11010000 01000110 */

T1CON = 0xD046;

/* +---------------- counting up
|+--------------- counting up
|| ++----------- no adc event with timer 2
|| ||+-+-------- no adc event with timer 1
|| ||| |+------- compare output enable - enable
|| ||| || ++--- polarity timer 2 - active high
|| ||| || ||++- polarity timer 1 - active high
|| ||| || ||||
01100000 01001010 */

GPTCON = 0x604A;

}

void int_setup(void)
{

/*
* IMR 3-15 Interrupt Mask Register
* IFR 3-13 Interrupt Flag Register
* XINT1CR 6-5 XINT1 Control Register
*/

IMR = 0x0020; /* INT6 unmasked */
XINT1CR = 0x0007; /* XINT1 rising edge, low priority, enabled */
INT_ENABLE; /* Enable interupts */

}

Appendix D

Page D6

void c_int6(void)
{

/* initially cmpr1 is set to 25, want to change through 100 and up to 175
* and vice versa if set at already 25 */
long counter;

if (compval == 25) {
while (compval < 175) {

for (counter = 0; counter < 20000; counter++);
compval++;
CMPR1 = compval;

}
} else if (compval == 175) {

while (compval > 25) {
for (counter = 0; counter < 20000; counter++);
compval--;
CMPR1 = compval;

}
}

PDDATDIR = (PDDATDIR & 0xFFBF) | ~(PDDATDIR | 0xFFBF);

XINT1CR = 0x8007;
/* clear interrupt level 6 flag */
IFR = 0x0020;

}

Appendix D

Page D7

D.3 Interrupt Setup File – Vectors.asm

;---
; Vector address declarations
; for motor.c
;---

.sect ".redir"

.ref _c_int0
B _c_int0 ; redirects the reset vector to boot.obj

.sect ".vectors"

.ref _c_int6

RSVECT B 1F00H ; PM 0 Reset Vector 1
INT1 B PHANTOM ; PM 2 Int level 1 4
INT2 B PHANTOM ; PM 4 Int level 2 5
INT3 B PHANTOM ; PM 6 Int level 3 6
INT4 B PHANTOM ; PM 8 Int level 4 7
INT5 B PHANTOM ; PM A Int level 5 8
INT6 B _c_int6 ; PM C Int level 6 9
RESERVED B PHANTOM ; PM E (Analysis Int) 10
SW_INT8 B PHANTOM ; PM 10 User S/W int -
SW_INT9 B PHANTOM ; PM 12 User S/W int -
SW_INT10 B PHANTOM ; PM 14 User S/W int -
SW_INT11 B PHANTOM ; PM 16 User S/W int -
SW_INT12 B PHANTOM ; PM 18 User S/W int -
SW_INT13 B PHANTOM ; PM 1A User S/W int -
SW_INT14 B PHANTOM ; PM 1C User S/W int -
SW_INT15 B PHANTOM ; PM 1E User S/W int -
SW_INT16 B PHANTOM ; PM 20 User S/W int -
TRAP B PHANTOM ; PM 22 Trap vector -
NMI B PHANTOM ; PM 24 Non maskable Int 3
EMU_TRAP B PHANTOM ; PM 26 Emulator Trap 2
SW_INT20 B PHANTOM ; PM 28 User S/W int -
SW_INT21 B PHANTOM ; PM 2A User S/W int -
SW_INT22 B PHANTOM ; PM 2C User S/W int -
SW_INT23 B PHANTOM ; PM 2E User S/W int -

*---
* Phantom ISR - Just changes the led config and then holts until the
* processor is reset.
*---
PHANTOM: B PHANTOM

*---
* Program end
*---

.end

Appendix E

Page E1

Appendix E – Programming the DC Motor Controllers

See Kennedy, 1999 [4] for information not shown here.

The TI software tools should be installed on the computer with all files found in the root

directory. From here a directory should be formed with the .C file for the code and also

the vectors.asm file required for interrupts for this .C file.

e.g. motor.c

TI Tools C:\DSPTOOLS

Code C:\DSPTOOLS\MOTOR

Use the batch file cl.bat to run the C compiler and keep all created code within the

directory above. This is compiled by running cl motor. This batch file is listed here.

dspcl -q -v2xx -k -s %1*.c %1*.asm -fr %1 -fs %1 -z F243.cmd -o %1\prog.out
-m %1\prog.map

pause
F240_hex %1\prog.out
copy %1\prog.hex %1\%1.hex

Also, the file F243.cmd on the following page is required for the cl.bat to execute

completely.

Appendix E

Page E2

/**/
/* File Name: f243.cmd */
/* Target System: C24x Evaluation Board */
/* */
/* Description: A basic linker command file for the 'F240 device. */
/* This file is used by the linker to determine where */
/* certain sections of code should reside in memory. */
/* */
/* Revision: 1.00 */
/**/

/*--*/
/* LINKER COMMAND FILE - MEMORY SPECIFICATION for the F240 */
/*--*/

-stack 100
-l rts2xx.lib

MEMORY
{

PAGE 0 : VECS : origin = 0h , length = 040h /* VECTORS */
JUMP : origin = 40h , length = 02h /* REDIRECT */
PROG : origin = 42h , length = 01EC0h /* PROGRAM */

PAGE 1 : MMRS : origin = 0h , length = 060h /* MMRS */
B2 : origin = 0060h , length = 020h /* DARAM */
DARAM : origin = 0200h , length = 0200h /* DARAM */

}

/*--*/
/* SECTIONS ALLOCATION */
/*--*/
SECTIONS
{
/* Vectors.asm, Interrupt vector table */

.vectors > VECS PAGE 0

/* Jump vector to boot.obj */
.redir > JUMP PAGE 0

/* C, Executable code and floating point constants */
.text > PROG PAGE 0

/* C, Tables for explicity initialized global and static variables */
.cinit > PROG PAGE 0

/* C, Jump tables for large switch statements */
.switch > PROG PAGE 0

/* C, String literals, and global and static const variables that are
explicitly initialized */
.const > PROG PAGE 0

/* C, Global and static variables */
.bss > DARAM PAGE 1

/* C, Software Stack */
.stack > DARAM PAGE 1

/* C, Dynamic memory area for malloc functions */
.sysmem > DARAM PAGE 1

/* Memory mapped registers */
.mmrs > MMRS PAGE 1

/* Initialization data tables */
.data > DARAM PAGE 1

}

Appendix E

Page E3

If the boot loader code within memory is corrupted then this needs to be reloaded onto

the device. To do this the following steps need to be followed as per the TI

documentation.

• Switch off power

• Connect JTAG connector

• Connect BIO and VCCP high

• Turn on power

• Run EMURST.exe to reset the JTAG pod

• Run BTEST.bat to test communications with the JTAG pod

Don’t go on until BTEST.bat completes successfully

• Run BC0.bat to clear the flash memory

• Run BE0.bat to erase the flash memory

• Run PROG.bat to reload the boot loader

• Turn off power

PROG.bat is listed here.
prg2xx -p 240 -m 0x0006 -w 6 src\c2xx_bpX.out sf_pe.out

Now the device should be serially programmable as per usual.

Appendix F

Page F1

Appendix F – Timing Diagrams

F.1 – HCTL-2016 Timing Diagram and Timing Table

Appendix F

Page F2

F.2 – TMS320F243 Timing Diagram

Appendix F

Page F3

F.3 – TMS320F243 Timing Table

Appendix G

Page G1

Appendix G – Integrated Semiconductor Datasheets

G.1 – TMS320F243 DSP Datasheet

Appendix G

Page G2

G.2 – HCTL-2016 QDEC Datasheet

	Written by
	
	JARAD HEATH STIRZAKER

	Design of an Autonomous Humanoid Robot Paper
	A
	Acknowledgements
	A
	Abstract
	Table of Contents
	List of Figures and Illustrations
	C
	Chapter 1 - Introduction
	1.1 Introduction
	1.2 The Humanoid Thesis Team
	1.3 Thesis Goal
	1.4 Chapter Outline

	C
	Chapter 2 – The Past and the Present
	2.1 Current and Past Projects
	2.2 CAN Network
	2.3 Micro Controllers
	2.4 Motor Control
	2.4.1 Open and Closed Loop Control
	2.4.2 Basic Controller Topologies

	C
	Chapter 3 – Specifications
	3.1 Hardware Specifications
	3.2 Controller Location
	3.3 iPaQ to CAN Network

	C
	Chapter 4 – Hardware Design
	4.1 Block Diagram
	4.2 Micro Controller
	4.3 Motor Driver Electronics
	4.3.1 H-Bridge Driving Techniques

	4.4 External Quadrature Decoders
	4.5 Current Sensing
	4.6 Temperature and Foot Sensors
	4.7 The Control Network
	4.8 Miscellaneous Hardware
	4.9 PCB Design and Construction

	C
	Chapter 5 – Software Design
	5.1 Software Overview
	5.2 Board Initialisation
	5.3 Timer 1 Interrupt Service Routine
	5.4 Main Loop
	5.5 Intended CAN Interrupt Service Routine
	5.6 Other Intended Interrupts
	5.6.1 PDPINT ISR
	5.6.2 Analog to Digital ISR

	C
	Chapter 6 – Project Performance and Testing
	6.1 Hardware Performance
	6.2 Software Performance
	6.3 Overall System Performance
	6.4 Project Weaknesses or Problems

	C
	Chapter 7 – Future Work and Conclusions
	7.1 Future Work
	7.2 Outcomes and Conclusions

	References
	
	
	
	
	
	
	
	Appendix A – The Humanoid Team
	Appendix B – Schematic Diagram
	Appendix C – PCB Diagram
	Appendix D – Software Listings
	Appendix E – Programming the DC Motor Controllers
	Appendix F – Timing Diagrams
	Appendix G – Integrated Semiconductor Datasheets

	Appendix A – The Humanoid Team
	Appendix B – Schematic Diagram
	Appendix C – PCB Diagram
	Appendix D – Software Listings
	D.1 Loop1.c
	D.2 Motor.c
	D.3 Interrupt Setup File – Vectors.asm

	Appendix E – Programming the DC Motor Controllers
	Appendix F – Timing Diagrams
	F.1 – HCTL-2016 Timing Diagram and Timing Table
	F.2 – TMS320F243 Timing Diagram
	F.3 – TMS320F243 Timing Table

	Appendix G – Integrated Semiconductor Datasheets
	G.1 – TMS320F243 DSP Datasheet
	G.2 – HCTL-2016 QDEC Datasheet

