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Abstract 

This paper describes the design of an 
autonomous humanoid robot. The robot itself is 
currently under construction, however the 
process of designing the robot has revealed much 
about the considerations for creating a robot with 
humanoid shape. The mechanical design is a 
complete CAD solids model, with specific 
motors and transmission systems selected. The 
electronic design of a distributed control system 
is also complete, along with the electronics for 
power and sensor processing. A high fidelity 
graphical simulator has been developed, 
providing important early feedback on critical 
design decisions. 

1 Introduction 
There are several reasons to build a robot with humanoid 
form. It has been argued that to build a machine with 
human like intelligence, it must be embodied in a human 
like body. Others argue that for humans to interact 
naturally with a robot, it will be easier for the humans if 
that robot has humanoid form. A third, and perhaps more 
concrete, reason for building a humanoid robot is to 
develop a machine that interacts naturally with human 
spaces. The architectural constraints on our working and 
living environments are based on the form and 
dimensions of the human body. Consider the design of 
stairs, cupboards and chairs; the dimensions of doorways, 
corridors and benches. A robot that lives and works with 
humans in an unmodified environment must have a form 
that can function with everyday objects. The only form 
that is guaranteed to work in all cases is the form of 
humanoid.  

1.1 The GuRoo Project 
The GuRoo project in the University of Queensland 
Robotics Laboratory aims to design and build a 1.2m tall 
robot with human proportions that is capable of balancing, 
walking, turning, crouching, and standing from a prostrate 
position. The target mass for the robot is 30 kg, including 
on-board power and computation. The robot will have 
active, monocular, colour vision and vision processing. 

The intended challenge task for the robot is to play 
a game of soccer with or against human players or other 
humanoid robots. To complete this challenge, the robot 
must be able to move freely on its two legs. It requires a 

vision sense that can detect the objects in a soccer game, 
such as the ball, the players from both teams, the goals 
and the boundaries. It must also be able to manipulate and 
kick a ball with its feet, and be robust enough to deal with 
legal challenges from human players. Clearly, the robot 
must operate in a completely autonomous fashion without 
support harnesses or wiring tethers. 

 These goals are yet to be realised for the GuRoo 
project. Currently the robot exists as a complete 
mechanical CAD model (see Figure 1), a complete 
electronic model and a high fidelity dynamic simulation. 
The dynamic simulation has been programmed to crouch, 
jump and balance. The progress to this stage has revealed 
much about the design considerations for a humanoid 
robot. 

 
Figure 1: Full CAD model of the GuRoo humanoid robot. 

1.2 Paper Overview 
This section has described the motivation for building a 
humanoid robot, and the specific challenge that has been 
set for the GuRoo project. The subsequent section will 
look at other humanoid robot projects, including bipedal 
walking robots.  

The rest of the paper describes the mechanical, 
electronic and software design of the GuRoo robot. In 



particular, the paper will detail the mechanical model of 
the robot and a comparison to the human form, the motors 
and sensors, the complete electronic design, a full 
dynamic software simulation of the robot, the software 
architecture of the robot, and results for balancing and 
crouching in simulation. 

2 Prior Art 

2.1 Bipedal Walking Robots 
Research into bipedal walking robots can be split into two 
categories: active and passive. The passive or un-powered 
category (for example, McGeer’s passive dynamic walker 
[McGeer, 1990]) is of interest as it illustrates that walking 
is fundamentally a dynamic problem. Passive walkers do 
not require actuators, sensors, or computers in order to 
make them move, but walk down gentle slopes generating 
motion by the hardware geometry. The passive walkers 
also illustrate the walking can be performed with very 
little power input. 

Active walkers can further be split into two 
categories; those that employ the natural dynamics of 
specialised actuators, and those that are fully power 
operated. Raibert [Raibert, 1986] and later Pratt [Pratt, 
1998] have shown some impressive feats of walking and 
gymnastic ability in robots that have the capacity for 
energy storage in the actuator.  These robots have been 
shown to have robust and stable performance from 
relatively simple control mechanisms. 

The alternate approach is to control the joints 
through pre-specified trajectories to a known “good” gait 
pattern (for example, [Golden, 1990]). This is a simple 
approach, but lacks robustness to disturbances. This 
approach becomes more complex when additional layers 
are added to provide adjustments to the gait for 
disturbance. Controlling a fully powered biped in a 
manner that depends on the dynamic model is 
complicated by the complex dynamic equations for the 
robot’s motion. Yamaguchi et al. [Yamaguchi, 1998] 
moved a dynamic torso with significant mass through 2 
DOF to keep the Zero Moment Point (ZMP) within the 
polygon of the support foot. This approach contributed to 
successful control of the robot, but produces an awkward 
gait. 

2.2 Bipedal Walking Humanoid Robots 
There are few examples of autonomous biped walkers that 
resemble the structure of a human. The Honda company 
biped robots, P2 and P3 are two of the few examples of 
such robots [Hirai, 1998]. P3 can walk on level ground, 
walk up and down stairs, turn, balance, and push objects. 
The robot is completely electrically and mechanically 
autonomous. The Sony SDR-3X robot is another example 
with similar capabilities, although details of the design are 
yet to be published. 

3 Mechanics 
The mechanical design of the humanoid requires careful 
and complex tradeoffs between form, function, power, 
weight, cost and manufacturability. For example, in terms 
of form, the robot should conform to the proportions of a 

1.2m tall human. However, retaining the exact 
proportions compromises the design in terms of the 
selection of actuation and mechanical power transmission 
systems. Affordable motors that conform to the 
dimensional restrictions have insufficient power for the 
robot to walk or crouch. This section describes the final 
mechanical design and how the balance between 
conflicting design requirements has been achieved. 

3.1 Proportions 
The target proportions for the robot are based on 
biomechanical data of the human form. Figure 2 shows 
the proportions of the frontal plane dimensions of a 50th 
percentile male based on data from a United States survey 
[Dempster, 1965]. The dimensions shown in millimetres 
indicate the appropriate sizes of anatomical features when 
scaled to a total height of 1200 mm against the 
comparable dimensions on GuRoo.  
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Figure 2: The proportions of typical human anatomy compared 
to the matching proportions of GuRoo’s anatomy. The 
dimensions indicate the sizes for a human scaled to 1.2m in 
height.  
 
By comparison, GuRoo is somewhat thickset in the legs, 
as was dictated by the form of the chosen actuators (see 
Section 3.3). The spacing between the hips and ankles has 
been retained, rather than placing the hips and ankles 
along the frontal centreline of each leg. Our simulation 
studies showed that the required torques around the roll 
axes of the hips and ankles becomes excessive if the hips 
and ankles are spaced too far apart (see Section 5.3). 

The body and upper leg of GuRoo are somewhat 
longer than the counterparts in the human model. This is 
due to the chain of actuators required for three degrees of 
freedom in the waist and hips respectively (see Section 
3.2). Consequently, the lower leg and the neck and head 
are shorter to compensate. The overall effect is still 
convincingly human-like in shape. 

The changes in volume required to house the 
actuators, as well as the mass of the actuators themselves 
have an effect on the mass distribution. Table 1 shows the 
mass distribution of GuRoo compared to that of a human. 
The most notable exception is that the shin and foot are 
much heavier in GuRoo than the human counterpart, due 
to the mass of the powerful actuators required in the 
ankle. The arms are significantly lighter than the human 



counterpart, as they are significantly inferior in power and 
do not have hands. GuRoo’s mass distribution is closer to 
the human distribution than either MIT’s active bipedal 
walker [Paluska, 2000], or McGeer’s passive dynamic 
bipedal walker. 
Table 1: Comparison of GuRoo mass distribution with human 
mass distribution, and with the mass distribution of MIT’s M2 
bipedal walker and McGeer’s passive dynamic walker. 

Body 
Component 

GuRoo 
mass (kg) GuRoo Human M2 PDW 

Head and 
Upper torso 7.3 24% 31% 0% 0% 

Abdomen 
and Hips 9.1 30% 27% 51% 50% 

Thigh 5.8 19% 20% 22% 30% 
Shin and 
Foot 6.4 21% 12% 27% 20% 

Arm 1.9 6% 10% 0% 0% 

Total 30.5  
 
The other notable point from Table 1 is the total mass of 
the robot. A 1.2 m tall human would typically be a child 
approaching his or her 7th birthday, with a 50th percentile 
mass of 23 kg. A child with mass of 30.5 kg at the same 
age would be in 97th percentile, indicating that GuRoo is 
somewhat overweight. 

3.2 Architecture 
The extent to which human joint function can be 
replicated is another key factor in robot design. Figure 3 
shows the degrees of freedom contained in each joint area 
of the robot. In the cases where there are multiple degrees 
of freedom (for example, the hip) the joints are 
implemented sequentially through short links rather than 
as spherical joints. Other key differences to the human 
form are the lack of a continuous flexible spine, and the 
lack of a yaw axis in the ankle. Another point to note is 
that the roll and pitch axes of the ankle are orthogonal, 
whereas the human ankle has an angle of about 64° 
between the roll and pitch axes. 
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Figure 3: The location of the joints in GuRoo, indicating the 
degrees of freedom in each joint. 

3.3 Motor Choice 
The key element in driving the mechanical design has 
been the choice of actuator. The robot has 23 joints in 
total. The legs and abdomen contain 15 joints that are 
required to produce significant mechanical power, most 
generally with large torques and relatively low speeds. 
The other 8 joints drive the head and neck assembly, and 
the arms. The torque and speed requirements are 
significantly less. Factors of cost, weight and availability 
limited the choice of actuators to rotary DC motors 

The 15 high power joints all use the same motor-
gearbox combination. The motor is a Maxon RE 36 
wound for a nominal voltage of 32V. This motor can 
provide 88.5 mNm of torque continuously, with a 
matching current consumption of 1.99 A. The motor has a 
maximum permissible speed of 8200 RPM. The gearbox 
has a reduction of 156, with an efficiency of 72%. The 
maximum continuous generated output torque is 10 Nm, 
with a maximum output speed of 51 RPM, or 5.3 rad/s. 
The thermal limits of the motor permit intermittent output 
torque of up to 19Nm. Each motor is fitted with an optical 
encoder for position and velocity feedback. The total mass 
of the motor/gearbox/encoder unit is 0.85 kg. 

The 8 low power joints are Hi-Tec RC servo 
motors model HS705-MG. These motors have an 
integrated gearbox and have rated output torque to 1.4 
Nm, at speeds of 5.2 rad/s. These also have potentiometer 
feedback and built-in control and power electronics. They 
require 6V power, and a pulse width modulated signal to 
indicate desired position. The mass of each unit is 0.125 
kg. 

4 Electronics 
A distributed control network controls the robot, with a 
central computing hub that sets the goals for the robot, 
processes the sensor information, and provides 
coordination targets for the joints. The joints have their 
own control processors that act in groups to maintain 
global stability, while also operating individually to 
provide local motor control. The distributed system is 
connected by a CAN network. In addition, the robot 
requires various sensor amplifiers and power conversion 
circuits. 
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Figure 4: Block diagram of the distributed control system. 



4.1 Computing 

4.1.1 Central Hub 
The central control of the robot derives from a hub of 
three heterogeneous microprocessors that provide 
coordination between joints, integrate sensor information, 
and process the vision input. This hub also provides 
communication to the outside world through user 
interfaces and communication peripherals. 

The primary component of the central controller is 
an iPAQ pocket pc from Compaq. The iPAQ features a 
208 MHz StrongARM microcontroller, 32 Mb of RAM 
and a 320 x 240 colour screen. The screen is touch 
sensitive allowing stylus input of text and graphics. The 
iPAQ has 16 Mb of Flash ROM to store the operating 
system. The iPAQ in the GuRoo operates with Windows 
CE. As well as the touch screen interface, the iPAQ is 
equipped with a speaker and microphone, a joypad, and 
four push-buttons. It has an infra-red interface for external 
communication. 

The second component of the central hub is a 
TMS320F243 microcontroller that acts as an adapter and 
filter for the robot’s internal CAN network (see Section 
4.1.3). The microcontroller communicates with the 
robot’s distributed control system through the CAN 
network, and to the iPAQ through the iPAQ’s USB serial 
communication port. The microcontroller also manages 
the power supply (see Section 4.2.3) providing centralised 
control of the robot power supply in the event of system 
failure. This microcontroller is the same device used in 
the joint controllers (see Section 4.1.2). 

The final component of the central is the vision 
processing board. This board has been developed for the 
ViperRoos robot soccer team [Chang, 2001] and features 
a 200 MHz Hitachi Super-H SH4 microcontroller, an 
FPGA-based programmable camera and bus adapter, 16 
Mb of RAM, 8 Mb of flash ROM, and 512 kb of fast 
SRAM for video caching. The board interfaces to the 100 
pin parallel peripheral bus on the iPAQ to provide real 
time visual display on the iPAQ’s colour screen. The 
vision input comes from a custom digital CMOS camera, 
based around the OV7620 camera chip from OmniVision, 
which can provide 640 x 480 images at up to 25 fps. The 
camera can provide data in YUV or RGB formats, and 
can be programmed to only send data from selected areas 
of the sense region. 

4.1.2 Joint Controllers 
The TMS320F24x series is a 32 bit DSP designed for 
motor control. The availability of the Control Area 
Network (CAN) module in this series, along with 
bootloader programmable internal Flash memory makes 
the device particularly attractive for this application. 
Furthermore the device features 8k words of internal flash 
memory, 8 PWM channels with deadband generation, 
quadrature input circuitry, an 8 channel 10 bit analog to 
digital converter with a conversion time of 800ns, a power 
drive protection external interrupt, and a 50ns instruction 
time. The TMS320F241 from Texas Instruments operates 
at 20MHz, and can read the A/D converter, calculating a 
PID control law, current limit, and generate the required 
PWM output, in under 10 µs [Wyeth, 2001]. In this 
application, we use the TMS320F243, which has an 

external bus that is used for attaching additional sensor 
interfaces. Five controller boards control the 15 high 
power motors, each board controlling three motors. A 
sixth controller board controls the eight RC servo motors. 

4.1.3 Internal Network 
The CAN bus is a highly reliable standard developed by 
Robert Bosch GmbH for use in the automotive 
environment. It is a multi-master system, with 
sophisticated error checking and arbitration, so that any 
high priority message will always get through first 
without corruption by other messages. All data contained 
in each packet (up to eight bytes) is also checked with a 
Cyclic Redundancy Check (CRC) error-checking scheme 
that can correct up to five random errors, and will be 
automatically retransmitted if not correct. The network 
operates at up to 1 Mbit/sec.  

4.2 Power 

4.2.1 Drive Power Electronics 
The drive power electronics is based on a switch mode 
power stage, requiring only a single supply rail and 
having an efficiency over 90%. This efficiency results in 
several advantages such as small size, lower cost power 
devices and less heatsinking. The H-Bridge channels are 
driven from separate PWM outputs of the DSP, allowing 
the deadband features of the PWM peripheral to be used, 
along with the immediate (<12ns) shutdown of these pins 
in the event of a fault which triggers the Power Drive 
Protect Interrupt (PDPInt) pin on the DSP. 

A integrated solution was chosen for this design – 
the SGS-Thomson L6203. This device uses low on-
resistance and fast switching MOSFETs, to give 
maximum efficiency and best control. The voltage limit of 
the devices is 48V, and the total continuous RMS current 
limit is 4A. This is a good match to the chosen motors and 
batteries. The total on-resistance of the power devices is 
0.3Ω. The cost of the device is low, compared to a 
discrete solution, and the volume and mass of the 
electronics is minimised by the choice of an integrated 
solution. 

4.2.2 Battery Packs 
The power for the 15 high power motors is provided by 4 
x 1.5Ah 42V NiCd packs. These packs are effectively 
paralleled to a common bus (see Section 4.2.3). The packs 
are chosen to give 20 minutes of continuous operation. 
The power for the 8 low power motors is derived from a 
single 3Ah 7.2 V NiCd battery pack. The power for the 
control electronics is derived from a second single 3Ah 
7.2V NiCd pack. The voltage from this pack is distributed 
to the various boards that require power where it is 
regulated locally. 

4.2.3 Power Regulation 
Connecting NiCd batteries in parallel can be extremely 
hazardous to the life of the batteries. Uneven charging and 
discharging characteristics between packs can lead to 
uneven load sharing and high current circulation between 
packs. The power from each pack is controlled through 
switch mode buck converters to provide even current 
sharing between packs, providing a voltage bus at 
marginally below the lowest battery voltage. 



4.3 Sensing 

4.3.1 Joint Sensing 
Current sensing is performed in the high power joints by a 
0.01Ω resistance in the ground leg of the H-Bridge. The 
voltage from these sense resistors is amplified by 
differential amplifiers and measured by the ADC. Current 
is also checked against a screwdriver adjustable hard limit 
that is used to trigger the Power Drive Protect interrupt. 
The position feedback from the encoders on the high 
power joints provides a count on every edge of both 
quadrature channels. This provides 2000 counts per motor 
revolution from the 500 count encoder wheels. In 
addition, each DSP can measure the bus voltage, and the 
temperatures of the MOSFETs and motors. 

4.3.2 Motion Sensing 
In addition to the sensing in each joint, and of course the 
visual feedback, the robot features 2 x 2-axis 
accelerometers to provide information about the torso’s 
dynamic behaviour and the relationship to the vertical 
gravity force. While it is impossible to resolve the motion 
components of the body’s acceleration from the effects of 
gravity, these sensors may be able to provide information 
with regard to disturbances while walking – playing a 
similar role to the human middle ear. 

Provision has also been made for the contact 
switches in the feet and in the joints. These switches may 
prove useful for determining when contact is made with 
the ground, or initialising joints at robot start up. 

5 Software 
The software consists of four main entities: the global 
movement generation code, the local motor control, the 
low-level code of the robot, and the simulator. The 
software is organised to provide a standard interface to 
both the low-level code on the robot and the simulator. 
This means that the software developed in simulation can 
be simply re-compiled to operate on the real robot. 
Consequently, the robot needs a number of standard 
interface calls that are used for both the robot and the 
simulator. Figure 5 shows modularisation of the software, 
and the common interfaces. 
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Figure 5: Block diagram of common software modules and the 
interface used to both the real robot and the simulator. 

5.1 Simulator 
At present, all evaluations of the robot have taken place in 
a high fidelity dynamic simulator. The simulator is based 
on the DynaMechs project [McMillan, 1995]. DynaMechs 
is an object-oriented, open source code library that 
provides full dynamic simulation for tree-structured 
robots having a star topology. The algorithms are capable 
of simulating fixed and mobile bases. The library is based 
on efficient recursive algorithms for the dynamic 
calculations, and provides graphical display of the robot 
in an OpenGL environment. 

The simulator uses the DynaMechs package as the 
core, with additions to simulate specific features of the 
robot such as the DC motors and motor drives, the RC 
servos, the sensors, the heterogeneous processing 
environment and the CAN network. These additions 
provide an identical interface between the dynamic 
graphical simulation and the controller and gait generation 
code. The parameters for the simulator are derived from 
the CAD models and the data sheets from known 
components. These parameters include the modified 
Denavit-Hartenberg parameters that describe the robot 
topology, the tensor matrices of the links and the various 
motor and gearbox characteristics associated with each 
joint. The surface data from the CAD model is also 
imported to the simulator for the graphical display.  

The simulator uses an integration step size of 
500µs and updates the graphical display every 5ms of 
simulated time. When running on 1.5 GHz Pentium 4 
under Windows 2000, the simulation updates all 23 joints 
at a very useable 40% of real time speed. 

5.2 Joint Controller Software 
For the high power DC motor joints, the simulator 
provides the programmer with readings from the encoders 
and the current sensors, based on the velocities and 
torques from the dynamic equations. In the case of the RC 
servos, the simulator updates the position of the joints 
based on a PD model with a limited slew rate. The 
programmer must supply the simulator with PWM values 
for the motors to provide the control. The simulator 
provides fake interrupts to simulate the real events that are 
the basis of the control software. 

There are two types of joint controller boards used 
in the robot – five controller boards control the fifteen 
high power motors and one controller controls the eight 
low power motors. The controller software for the low 
power motors is a single interrupt routine that is triggered 
by the arrival of a CAN packet addressed to the 
controller’s mailbox. The routine reads the CAN mailbox 
for the change in position sent by the gait generation 
routine. The PWM duty cycle that controls the position of 
the RC servos is varied accordingly. 

The control loop for the high power controllers has 
two interrupt routines. As for the low power controller, an 
interrupt is executed upon receipt of trajectory data in the 
CAN mailbox. The data is used to set the velocity 
setpoints for the motor control routine. There is also a 
periodic interrupt every 500 µs to run the motor control 
software. The motor control routine compares the error 
between velocity setpoint and the encoder reading and 
generates a PWM value for the motor based on a 
Proportional-Integral control law. The routine also checks 



the motor current against the current limits, and adjusts 
the PWM value to prevent over-current situations. 

5.3 Motion Generation Software 
To this point, the software for motion generation has been 
used to test the designed geometries and chosen motors in 
the simulator. The software uses only local joint feedback; 
it does not use feedback from the joint sensors in a global 
sense or use the motion sensors to modify the motion to 
maintain balance. The tests are run without current 
limiting in the local control loop to evaluate worst-case 
performance. 

The first test motion is a crouch with a return to the 
standing position. This test has been designed to evaluate 
the required torques in the pitch joints of hip, knee and 
ankle. The worst-case results for the knee joint are shown 
in Figure 6. The second test motion is a lean to balance 
over one leg, designed to evaluate the required torques in 
the roll joints of hip and ankle. The joints are driven 
according to the following equations. The worst-case 
results for the ankle are shown in Figure 7. In both of 
these worst cases, the current consumption only briefly 
exceeds the continuous current rating, and the motor stays 
within thermal limits. 
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Figure 6: Simulation results for knee motor during a squatting 
movement. The movement cycle time is 10 seconds. 
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Figure 7: Simulation results for ankle motor during a balancing 
movement. The movement cycle time is 10 seconds. 

6 Conclusions 
This paper has illustrated the design of a practical, 

affordable, autonomous, humanoid robot. The robot is 
well proportioned in relation to the human form, with 
most of the major degrees of freedom of the human body 
implemented. The robot design has a distributed control 
design with processors dedicated to each of the key roles 
around the robot. Investigations of the CAD design using 
a high fidelity simulation have shown that robot is capable 
of crouching and balancing. 
 
[Note for reviewers: This project involves a large team 
who intend to have the real robot constructed and walking 
by September. The final paper will have further results, 
and the conference presentation is likely to feature a 
video, and possibly the robot itself.] 
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Abstract 

 

This thesis illustrates the design, construction and testing of DC motor controllers for a 

humanoid robot.   The humanoid is to have 23 degrees of freedom, from the ankle to the 

neck.  To control each joint throughout the body reliably and quickly is a major part of 

this thesis. 

 

The design implements a recent Digital Signal Processing (DSP) chip from Texas 

Instruments.  This chip has been designed with motor control in mind, with a Controller 

Area Network (CAN) interface for networking, Pulse Width Modulation (PWM) 

outputs and Quadrature Decoding (QDEC).  This forms a powerful-networked 

controller base for the robot.  Each controller controls three DC motors and is placed 

physically close to the joints it is controlling.  This keeps wires short and noise to a 

minimum.  Each controller is networked together through CAN for central control from 

a Compaq iPaQ.  This design process is shown, with device selection and subsequent 

implementation. 

 

Limited software for this DSP is shown in later chapters.  Emphasis is on the control of 

the DC motors found in the lower half of the robot.  To date, only testing software has 

been written for the controller boards.  A simple control loop has been written and this 

implements a proportional control loop.  The abilities of each controller are shown with 

possible future improvements.  Overall the hardware works to its intended design, 

although not all elements have been tested.  There has also been limited success with 

software design. 
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Chapter 1 - Introduction 
 

1.1 Introduction 

The aim of this thesis is to outline the design and eventual creation of DC motor 

controllers for a humanoid robot.  The robot (named GuRoo) has 23 degrees of freedom 

ranging from ankle joints to neck.  This task hasn’t to date been undertaken at The 

University of Queensland and so this design is to be created from the ground up.  With 

only a biped walker previously constructed within The University of Queensland, this 

new project is a very challenging one.   

 

This robot has been designed on a 7-year-

old child.  The robot is in proportion to a 

human and represents a human as closely as 

possible.  This is for the eventual interaction 

with humans, and possibility of a human vs. 

robot soccer league by 2050.  It is hoped this 

robot will walk at 0.1ms-1, track a soccer 

ball, walk to it and kick it into a goal.  The 

aim was to have this completed for the robot 

soccer championships in Seattle in early 

August 2001, but due to circumstances this 

was unfortunately not possible. 

 

The joint controllers presented within this 

thesis each control three DC motors.  Each of the controllers communicate with one 

another through a CAN (Controller Area Network) protocol.  Each controller has a 

Texas Instruments TMS320F243 DSP (Digital Signal Processor) micro controller.  The 

controllers are connected to a centrally located Main Processing Unit, which has been 

chosen as the Compaq iPaQ (PDA with colour screen).  The iPaQ has a StrongArm 

Figure 1.1:  Model of the Humanoid 
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206Mhz processor, with 16MB of ROM for the operating system and 32MB of RAM, 

which should be sufficient processing power and memory for this application.   

 

 

1.2 The Humanoid Thesis Team 

With this new design in mind, it was required for the group of twelve to actively work 

together to find a solution to this mammoth task.  There were four members involved 

with the control and power systems, three involved with the vision system, two writing 

the walking software and three doing the mechanical design.  The twelve members of 

the team are shown below in table 1.1, with each of their responsibilities: - 

 

Table 1.1 – Team Responsibilities 

Name Responsibility 
Jarad Stirzaker (Thesis Author) Joint Controllers 

Tim Cartwright Joint Controllers 
Bartek Bebel USB to CAN Network Interface 

Nathaniel Brewer Power System 
Shane Hosking  iPaQ to Vision Hardware 
Andrew Blower Vision Hardware 
David Prasser Vision Software 
Andrew Smith Walking Software 

Emanuel Zelniker Walking Software 
Damien Kee Driver System Design and Implementation 

Mark Wagstaff Mechanical Design 
Anthony Hunter Mechanical Design 

 

This thesis aims only to show the design of the DC motor controllers of the humanoid.  

Timothy Cartwright and Jarad Stirzaker (thesis author) have worked on the joint 

controller project concurrently.  This thesis contains emphasis on the hardware for the 

DC motor boards (Boards 1-5 explained in Chapter 3 - Specifications) and controller 

software for control algorithms.  Cartwright, 2001 [3] has shown the remainder of the 

controller thesis, including the DC servo board (Board 6) and the CAN interface.  To 

gather an overview of the whole project it would be required to read all the theses 

relating to the humanoid (see Appendix A). 
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1.3 Thesis Goal 

The aim of this thesis is to show the control of 15 separate joints of a humanoid robot.  

Each joint should have closed loop control with open loop control by higher-level 

software.  The controllers were to be produced under budget and also to a size and 

weight restriction.  The size of each controller is important to fit within the limited size 

of the robot chassis. 

 

Due to the size and budget restrictions, it will be required that one micro controller 

controls more than one motor.  There will be a limited amount of current and torque that 

can be supplied to the motors, due to these restrictions.  These are just a few of the 

decisions and sacrifices that were required for the project. 

 

This thesis will show the design, implementation, coding and testing of each of the DC 

motor controller boards.  It will detail the selection of the microcontroller used, along 

with all the other components needed following this initial selection.  The thesis will 

then show the design of the PCB with selected components.  Finally a description of the 

low level software and finally the testing of the controllers as a whole will be included. 

 

PI (Proportional plus Integral) for improved steady state error, is hoped to be complete 

by the end of the year.  This will provide a framework for further work and subsequent 

control theses of the humanoid.  This control system will later be improved with the 

adaptation of a PID (Proportional plus Integral plus Derivative) controller, for improved 

steady-state error and transient response.  These control techniques are shown in Section 

2.4 Motor Control. 

 

It is anticipated that these controller boards will be tested in a working chassis of the 

robot, even if only the legs of the robot can be created by the time the Thesis Expo is 

held on October 30th.  However, at the time of writing this thesis, the chassis wasn’t 

built.  Simple testing had been done on the controller boards, with advanced control not 

having been implemented to date.  
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1.4 Chapter Outline 

Chapter 2 contains a review of the work that has been already done in this area of 

robotics.  Also discussed is the DSP controller, CAN protocol and basic controller 

theory. 

 

 

Chapter 3 describes the basis of the problem with which needs to be solved and how it 

will be achieved.  Contained within this chapter is a block diagram of the hardware 

which is used to create the hardware itself, there is also a brief description of the 

hardware and software solutions. 

 

 

Chapter 4 provides a detailed review of the hardware design process for each of the 

required blocks of the controllers.  Included is the component selection process and 

circuit design, PCB design and creation.   

 

 

Chapter 5 outlines the low level software that is used to control each of the controllers 

contained within the robot.  This software demonstrates the intended closed loop control 

algorithms on each of the five controller boards, as well as currently tested software. 

 

 

Chapter 6 discusses the testing of the project to date.  This chapter shows that since the 

software hadn’t been completed at the time of writing this thesis, what had been is 

demonstrated.  It also details any alternatives and other complications that were met 

during the project. 

 

 

Chapter 7 concludes the thesis with overall remarks on the project.  Also shown is the 

scope for future work, areas that can be improved, and perhaps other simpler solutions 

that were found. 
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Chapter 2 – The Past and the Present 
 

Before the task of creating controllers for the motors of each joint was undertaken, it is 

first required to look into the past areas of work and current technology to aid in the 

creation of the design.  The aim is to have a freestanding one metre tall robot, with on-

board batteries and control for tracking, walking, balancing and kicking.  Shown will 

also be some current and past projects taken via various companies and universities. 

 

 

2.1 Current and Past Projects 

Several projects are currently ongoing in this field of robotics.  These include several 

projects from Honda, Sony and Shadow Robot Project.  These robots however are a 

league ahead of our intended design due to their far superior budget, assigned workload 

to the project as well as the fact that these are run by multi-million dollar companies.  

The University of Queensland is hoping to rival these large companies by producing a 

robot that can function to the same degree on an extremely low budget and utilising 

university students.  Work may eventually be conjoined with other universities such the 

University of New South Wales and Melbourne University. 

 

 

 
Figure 2.1:  Sony and Honda Humanoids 
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The Korean Institute of Science and Technology (KIST) has developed a humanoid 

robot CENTAUR that has two arms and four legs based on a fictional centaur.  Similar 

to the current project, all parts including motor controllers, sensors, voice recognition 

systems and batteries are on board.  It has 36 joints with 37 degrees of freedom.  

Obviously it has a different mechanical design, but the controllers are similar to those 

intended for the humanoid. 

 

Kim et al, 1999 [5] has shown that each of the 

controllers is operated with a Texas Instruments 

TMS320F240 DSP chip, which is the same 

generation, but different model to that used in the 

humanoid.  PWM, ADC and encoders are used in 

these controller boards, with SPI used for the 

communication.  These boards are also small 

enough to be embedded into the robot itself, 

allowing free wireless motion.  This is very similar 

to the humanoid boards, with set requirements of 

size and also on board peripherals.  It is shown that the control of several motors per 

board is achievable with hardware very similar to that found in the humanoid. 

 

A MVME162 CPU is the highest level controller and acts in a similar manner to the 

iPaQ (discussed in chapter 3).  This drives the lower level controllers with position or 

velocity commands for each motor.  However, there is also a higher-level controller, in 

the way of the user, from which commands are sent to the CENTAUR through use of 

wireless Ethernet (UDP/IP).  This is not within the humanoid design, as it is a self 

contained and self-controlled unit, making it a more advanced and adaptable system. 

 

Kennedy, 1999 [4] has also provided a framework that will form a good basis with 

which to extend the design.  This thesis outlines the control of a PUMA 560 industrial 

arm.  The PUMA arm has six degrees of freedom, each controlled with a separate 

controller board and networked together with a CAN network.  Each of the motors is a 

high power motor, with currents up to 9A possible (with 4A continuous current).    The 

Figure 2.2:  The CENTAUR
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continuous current obtainable by each motor is equivalent to the motors for the 

humanoid, however, the semi-discrete drive circuitry allows for 9A non-repetitive 

currents. 

 

Each of the controller boards presented in subsequent 

chapters control three motors each.  Some difficulties in 

safety features arise due to this, but the savings in cost 

and size are necessary for the final design requirements.  

The principals for control and the use of the CAN 

network by Kennedy, make it an attractive basis for 

comparison.  This initial design can be used and 

extended to fulfil the specifications outlined in Chapter 

3. 

 

Each of the motor controllers is operated with the Texas Instruments TMS320F241 

DSP.  Similar to the CENTAUR project and the humanoid utilising the same generation 

of DSP chip but a different model.  The Texas Instruments TMS320F243 has been used 

in the humanoid controllers, however being the same generation and sibling models, 

makes this thesis a great starting point.   

 

To date the hardware has been the focus of this thesis.  The hardware is based on 

Kennedy’s thesis, with a similar sized board produced.  The principles used within this 

thesis have presented a great basis for design.  Some implementations extended from 

Kennedy’s thesis have been the serial programming of the boards, the PCB layout and 

also the split plane four-layer board. 

 

 
Figure 2.3:  PUMA Arm 
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Figure 2.4:  Kennedy’s Controller Board 

 

Due to time constraints the software has been reviewed, however, this hasn’t been fully 

implemented yet for the humanoid.  Kennedy’s software has been written in assembler, 

whereas the humanoid’s is written in ‘C’.  Despite different coding, the same principles 

and processes are still required to obtain full control of each motor. 

 

The hardware and software design included with this thesis has been very useful in the 

creation of the humanoid controller design.  With quite a bit of information on this 

project, this will be a very useful thesis for the creation, design and implementation of 

the humanoid controllers. 
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2.2 CAN Network 

Similar to Kennedy, 1999 [4], the CAN (Controller Area Network) will be used to 

control several controller boards contained within the body of the humanoid.  The use of 

CAN is widely documented, with the main use for this protocol in the car industry.  

Bosch GmbH [1] developed this protocol for use in the automotive industry.  It allows 

many nodes on a network to communicate to other nodes, over a two-wire bus, with 

high reliability and bandwidth.  Particularly useful in very noisy environments were 

reliability is essential. 

 

The system incorporates a sophisticated arbitration scheme to dispose of message 

collisions within the network.  CAN is a carrier sense, collision detection network 

protocol (CSMA/CD) which makes it quite useful when there is a lot of traffic on the 

network.  A data packet can hold a maximum of eight bytes of data, and has an 11-bit 

arbitration field used to determine priority and thus through filtering the required node 

receives the message.  This allows for up to 2048 priorities or nodes to be present on the 

network.  It can allow up to 536 million nodes using extended CAN that has a 29-bit 

arbitration field. 

 

1 12 6 0-8 bytes 16 2 7

Start bit

Arbitration field
11-bit identifier + RTR bit

Control bits Data field CRC bits

Acknowledge

End bits

 
Figure 2.5:  CAN Data Frame 

 

The CAN network can operate at 1Mbit/s for short networks up to 30m.  The error 

handling of the protocol can allow up to five random errors and burst errors of less than 

15-bits in length to be detected.   

 

If two nodes are transmitting at the same time, the message with higher priority (lower 

arbitration field value) will continue transmission while the other node will terminate 
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before sending another bit.  Obviously a node senses the network, and will not start 

transmission until the network is free.  The network operates on two states, dominant 

and recessive.  For dominant, the CAN-H and CAN-L lines are 5V and 0V respectively, 

and on recessive are both 2.5V.  If node A transmits a dominant bit, and node B a 

recessive, node A will read a dominant bit and B will receive an error. 

 

 
Figure 2.6:  CAN Arbitration Diagram 

 

This protocol can be seen in Figure 2.6 above.  Nodes 1,2 and 3 will start transmission 

of there messages, at the same time.  Each transmitter checks the arbitration field until 

the intended transmitted bit doesn’t match the bus bit.  So at bit 5, node 2 is transmitting 

a recessive bit, and will read back an error since the other nodes are transmitting a 

dominant.  At this point node 2 terminates transmission immediately and will wait for 

the bus to be free before trying to retransmit.  Transmission will continue until bit 3 at 

which point node 1 loses arbitration, and hence node 3 has the highest priority and 

transmits its data.  The resultant bus state will be the same as that on node 3. 

 

Although we will only be using seven nodes on the network (six controller boards and 

the iPaQ), there is plenty of room for expansion.  Also, these extra arbitration fields will 

be used for such things as a global shutdown command, as well as control commands 

and sensor information. 
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2.3 Micro Controllers 

Traditional control of motors in industry and robotics has relied on analog components.  

A simple PID (Proportional plus Integral plus Derivative) controller can be made from a 

few resistors, capacitors and an op-amp.  This can provide virtually infinite resolution 

and continuous processing of the signal.  However, analog controllers suffer from 

component ageing and temperature drift. 

 

There has been a major swing to digital controllers, comprising of a micro controller or 

microprocessor.  These controllers require additional A/D and D/A converters (if not 

on-board) since analog signals are required for this control.  The micro controller 

doesn’t suffer from component ageing or temperature drift, but has reduced resolution 

and due to conversions, creates a phase delay in the system.  Due to their 

programmability, they can be easily upgraded and contain far more advanced control.  

In the end, digital controllers are far better than their analog counterparts. 

 

A major task of this thesis was the selection and subsequent implementation of the 

micro controller into each controller.  However, to just simply select the right micro 

controller for the job sounds easy enough, but when cost, sourcing, memory and 

required peripherals come into play, this becomes a very difficult task. 

 

There are many micro controllers that could be used for this kind of application.  

Companies like Texas Instruments, Motorola, Analog Devices and Atmel make such 

devices.  All are fairly close in their features but would often differ in the on-board 

peripherals that they have, and also the size of their memory.  Peripherals available on 

micro controllers can vary from just a simple I/O port to containing a variety of 

peripherals.  Obviously with cost comes added features and ease of use.   

 

These peripherals include high speed (20MHz), in-circuit programming, multiple 

channel A/D converters, quadrature decoders, multiple PWM channels, external 

interrupts and networking capabilities (such as the CAN interface).  The micro 

controller that is required for the application is very specific, and hence the requirement 
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for peripherals is very specific.  There are thousands of micro controllers that could be 

used, but it is the cost, size and speed that determine the ideal one. 

 

Fortunately for us, these micro controllers have made the control algorithms originally 

done with analog circuitry relatively easy.  They are also relatively easily expandable 

with changes to the software.  And because these can be networked together, they 

become very powerful in the control of multi-node robots, and other electrical 

equipment. 

 

 

2.4 Motor Control 

Before we can utilise the micro controllers discussed in the previous section, it is first 

required to understand the basics of motor control.  Utilising this knowledge the 

software can then be written to fully reflect these control principles.  There are a 

varying number of ways in which control can be implemented, with different systems 

and also using analog and/or digital circuitry. 

 

The systems to be used and the type of circuitry to be used will depend on what 

accuracies and compensating requirements are needed for the particular application.  

Obviously the control of an elevator will have different requirements to that of a 

delicate surgeon point. 

 

2.4.1 Open and Closed Loop Control 
When a system is simply driven by a controller, with no respect to its current state and 

its output isn’t compared to its input, this is known as an open-loop control system.  The 

input to the system is in such a manner that it is converted to what can be utilised by the 

output of the system (these could be voltages, currents, angles etc).   

 

An example of this is a drill, used to screw in a screw.  In essence, the drill will keep 

driving the screw until either the thread of the screw is destroyed or the drill itself is 

destroyed.  The input to the system is your finger on the trigger and the output is the 
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drive torque of the motor.  The drill (ignoring automatic clutch) doesn’t consider 

disturbances such as the completion of screwing the screw in. 

 

However, if the visual confirmation of the current screw position were included this 

would be considered a closed loop system, as feedback is now included.  When the 

screw reaches its required position the feedback of visual confirmation will prevent it 

screwing any further.  The input to the system will remain constant (the desired 

position), but in the closed loop system an error between the current output and intended 

output is used to feedback the system, to drive it to the intended output.  Such feedback 

could be a pot, sensor, variable resistor etc.  A voltage is often used here as this can 

easily be subtracted from the input voltage to create the error voltage. 

 

Closed loop control is thus formed when the system incorporates devices that will 

monitor the difference between intended output and actual input.  This difference can be 

used to correct the output, and this loop is continually run until the intended and actual 

outputs match.  This could be the intended position of the screw height with the actual 

position.  Closed loop control is utilised with motor control, as continuous feedback is 

required to drive the motor, and thus this will be discussed in following sections. 

 

2.4.2 Basic Controller Topologies 
The closed loop control system will be focussed on, as this will be required for the 

humanoid control system, Figure 2.7 below illustrates a simple closed loop system. 

 

Input Output

Feedback

ControllerInput
Transducer

Error

 
Figure 2.7:  Closed Loop Block Diagram 
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The control loop operates by comparing the output of the system with the input.  An 

error is obtained and this is subtracted from the desired input to form an adjusted error 

input to the compensator.  This loop continues indefinitely matching the input to the 

output, even after they are the same.  The rate at which the output matches the input and 

the overall error can be changed depending on the application. 

 

Transient response, steady-state response and also stability play a major role in the 

selection of which topology to use and the components used to create this.  Nise, 2000 

[7] states, “In the case of an elevator, a slow transient response make passengers 

impatient, whereas an excessively rapid response makes them uncomfortable.”  Steady-

state response concerns with the final steady state accuracy of the system.  Stability is 

concerned with whether the system will finally reach a constant value, or it will 

indefinitely oscillate. 

 

There are many ways in which this control loop compensator can be designed.  Ignoring 

the simplest form of feedback, the unity feedback system, three topologies are discussed 

here.  This includes the PD, PI and PID control compensators.  Where ‘P’ is 

proportional, ‘I’ is integral and ‘D’ is derivative.  Each of these is added together in 

each different system to form the error value. 

 

A PI (Proportional plus Integral) controller is used to improve steady-state error.  By 

placing an open-loop pole at the origin (poles and s plane discussed in Nise, 2000 [7]), 

this can be achieved.  However, it is also required to place a zero close to this pole, but 

not at the origin. This can be exactly implemented with active components or 

approximated to the lag compensator with passive components.  The transfer function 

for this compensator is as follows: 

s
zsKsG c

PI
)()( +=    (Eqn. 1) 

 

The PD (Proportional plus Derivative) controller is used to improve transient response, 

namely settling time.  To do this, a zero is placed at some point on the s-plane where 

only a small adjustment to the gain is required.  This is usually placed at some point so 
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as to get the desired closed loop pole locations.  If passive components are used, this 

can be approximated as a lead compensator.  The transfer function is as follows: 

)()( cPD zsKsG +=    (Eqn. 2) 

 

Finally, the PID (Proportional plus Integral plus Derivative) controller can be used to 

improve both steady-state error and transient response.  This is achieved by combining 

both the PI and PD controllers with their independent properties.  When approximated 

with passive components a lag-lead compensator is formed.  The transfer function is as 

follows: 

s
zszs

KsG leadlag
PID

))((
)(

++
=   (Eqn. 3) 

 

It is intended to use the PID controller for control of each of the motors as this allows 

adjustment of both transient response and steady state error.  This control will be shown 

in chapter 5, however it is required to have certain hardware to be able to achieve this 

control in the first place. 
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Chapter 3 – Specifications 
 

As already outlined the aim of this thesis is to show the control of 15 separate joints of a 

small-scale humanoid robot.  Cartwright, 2001 [3] covers the remaining eight degrees of 

freedom required by the humanoid.  This sounds simple enough, however there were a 

few constraints that limited the choice of components and circuitry. 

 

3.1 Hardware Specifications 

Given requirements from the both the university and also the project supervisor, the 

following restrictions were specified: - 

 

•  Limited budget of $3000 

•  Board size restriction of 170mm x 100mm x 40mm 

•  Reliable and fast network to link individual controllers 

•  Fast computation power of micro controller 

•  Range of peripherals including ADC and PWM 

 

Considering Kennedy, 1999 [4] controls one motor per board, and given the restrictions 

above, mainly size and budget, each of these controllers is required to drive more than 

one motor.  Component selection will be such as to reduce the size of the boards to a 

minimum.  Also to be considered is the power and current required by the hardware. 

 

It is required that the controller has several peripherals to allow the connection of many 

subsystems to the controller core.  Some of these include motor drivers, quadrature 

decoders, temperature and foot sensors and also communications.  For this application it 

will also be required to have in circuit programming.  Programming through a network 

would ultimately be desirable, thus the boards wouldn’t need to be removed from the 

robot itself. 
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For the safety of the robot and also the supervisors of its operation, it will be required to 

have many safety features.  Such safety features include a master off switch, motor 

current sensing, limit switches and also temperature sensing.  The watchdog timer will 

be a safety feature in software, and will reset on phantom and incorrect interrupts.  If a 

problem does arise, then with the use of the CAN network a broadcast emergency 

message can be sent and all motors shut down, and the central processor notified of this 

condition. 

 

It is hoped to have simple PI (Proportional plus Integral) control of each motor.  A 

velocity command will be transmitted to each controller board every 2ms.  The software 

is thus required to manipulate this velocity command into a useable PWM duty cycle 

that can then be applied to the driver and hence motor.  The quadrature decoders can 

then be used to feedback the actual velocity of each motor. 

 

The software is to operate with use of the interrupts available on the Texas Instruments 

TMS320F243 device.  The device runs a “main” empty loop until an interrupt from one 

of the several devices is obtained.  At this point the interrupt is called, the required 

software is run and then control is passed back to the “main” loop.  The control loop 

will run at 500Hz, with the ADC system being utilised constantly for up to date 

information for current sensing and temperature readings.   
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3.2 Controller Location 

There are 15 degrees of freedom that are managed by the DC motor controller boards, 

from the back joints to the ankles.  The degrees of freedom contained within this thesis 

are distributed as follows: - 

 

•  2 ankle freedoms (pitch and roll) 

•  1 knee freedom (pitch) 

•  3 hip freedoms (pitch, roll and yaw) 

•  3 waist freedoms (pitch, roll and yaw) 

 

The number of freedoms is easily seen here in 

Figure 3.1.  These clearly match up with the 

distribution listing above.  The remaining eight 

degrees of freedom are also shown here. 

 

Each of the DC controller board will control three 

motors.  Since there are 15 degrees to be controlled, 

five boards will be required for this task.  As can be 

seen in Figure 3.2 below, boards 1 & 2 control the two ankle freedoms and a knee 

freedom.  Boards 3 & 4 control the three hip freedoms of each upper leg and board 5 

controls the three waist freedoms.  Each of these 15 motors operates with the same 

motor and gearing. 

 

 
Figure 3.1: Joint Locations
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Figure 3.2:  Intended Board Locations 

 

In addition to controlling three motors, each board will monitor the temperature of each 

motor.  They will also monitor current to the motors and limit switches for calibration 

and limitation of each joint.  In addition boards 1 & 2 will read foot sensor values and 

send these back to the iPaQ.  Board 5 will monitor the gyroscopes and accelerometers 

for closed loop control by the iPaQ.  These features are intended for the final product, 

but may not be implemented this year. 
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3.3 iPaQ to CAN Network 

As stated already, overall control of the humanoid is through the CAN network, and 

these messages originate from the centrally located Compaq iPaQ.  This is a PDA 

(Personal Digital Assistant) and can be used to facilitate a variety of tasks.  The iPaQ 

actually operates a hand-held version of Windows or Linux.  It has a StrongArm 

206Mhz processor, with 16MB of ROM for the operating system and 32MB of RAM 

that should be sufficient processing power and memory for this application.  It also has 

a colour touch screen and speaker that may be utilised at a later date. 

 

The CAN network is connected to this device through 

the USB (Universal Serial Bus), that can operate at up 

12Mbit/s.  However, the CAN network can only 

operate at a maximum of 1Mbit/s and these two 

protocols are not directly compatible.  It is thus 

required to bridge these with a seventh board.  This 

seventh board will be used for the USB to CAN 

operations as well as the power control required for 

the humanoid. 

 

To keep design of this seventh board simple, the 

Texas Instruments TMS320F243 micro controller was used again.  It is intended to 

initially have open-loop control from the iPaQ, with closed-loop control to be 

implemented later.  Control commands are forwarded from the iPaQ to Board 7 via 

USB, which then converts this to the CAN protocol and forwards them onto the network 

for the intended board.  This same scheme but in reverse is used to return the sensor 

information to the iPaQ for later closed-loop control. 

 

The implementation of the USB to CAN bridge is described in Bebel’s thesis, “Design 

and Implementation of a USB-to-CAN Bridge for the GuRoo Project” found in 

Appendix A. 

 

 
Figure 3.3:  Compaq iPaQ 
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Chapter 4 – Hardware Design 
 

As shown in the previous chapter, each of the individual systems will be created to 

work together to control several motors simultaneously.  A design will be required to 

meet all of the design criteria outlined in Section 3.1 Hardware Specifications.  It was 

first required to choose a micro controller from which the subsequent systems could be 

added. 

 

4.1 Block Diagram 

Given the specifications outlined, the hardware can be represented with the block 

diagram in Figure 4.1.  It shows each of the required hardware blocks for complete 

control of each of the DC motors.  Each of these systems will be described in 

subsequent sections of this thesis. 

CAN Driver

+5V

TMS320F243Serial
JTAG

External
Quadrature

Decoders

Motor
Drivers

Sensors –
Temp, Limit,

Foot

External
Batteries

CAN Network

 
Figure 4.1:  Hardware Block Diagram 

 

Each arrow represents an interaction between blocks, be this a signal or actual data.  

The direction of the arrow represents the direction in which this interaction will flow.  

So for the case of the External Quadrature Decoders, they will be sending their data to 

the TMS320F243. 
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4.2 Micro Controller 

As seen in Figure 4.1, there are several considerations that need to be taken when 

choosing a micro controller for this application.  The requirements for our micro 

controller are as follows: - 

 

•  Sufficient internal memory (Flash or EEPROM) 

•  CAN Network interface 

•  Multiple PWM Outputs 

•  Quadrature Decoders 

•  Multiple ADC Inputs 

•  External Interrupts 

•  In Circuit Programming 

•  Speed and DSP 

 

There are quite a few micro controllers that have some of these attributes but it was 

quite difficult to find one with all of them.  Due to accuracies and peripherals, an 8-bit 

processor would not be sufficient for the task.  A high-end processor wouldn’t be 

acceptable either with their high cost and lack of peripherals.  From this either a 16-bit 

or 32-bit controller would be required.  A couple of micro controllers were found that 

could do these tasks.  These included the Motorola 68HC12 and 68376, Texas 

Instruments TMS320F241 and TMS320F243.  

 

The Motorola 68376 was the ideal solution for this application, however, this chip had a 

lead-time of six weeks, which at the time seemed unreasonable (early May for July 

completion), and they also required external memory.  There was also a budget problem 

in that it was required to purchase 24 chips at a total cost of $1000.  Since only seven 

chips were required, and the Texas Instruments chips could be sampled, the 

TMS320F243 was our next best candidate. The Texas Instruments chips were very 

suitable as they were designed specifically for motor controllers.   
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The TMS320F243 was required over the TMS320F241, as it was needed to have three 

quadrature decoders per board.  Since both chips only had one, it was required to have 

external decoders, and only the TMS320F243 had an external data port.  A normal port 

couldn’t be used since these were taken with PWM, ADC and the required control 

signals. 

 

In the end the chip was very well suited to the application as it contained 8k of internal 

flash memory, eight (8) 10-bit multiplexed fast ADC input channels and eight (8) PWM 

output channels with adjustable dead band.  Also onboard was the required CAN 

interface, 20MHz operating frequency, one (1) quadrature decoder and external data and 

address ports.  An external Power Drive Protection Interrupt (PDPINT) was also present 

and could be utilised for safety features. 

 
Figure 4.2:  TMS320F243 Internal Block Diagram 
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A 5MHz crystal is used which generates a 20MHz internal clock signal with the internal 

phase locked loop (PLL) circuitry.  The 20MHz clock is also output on the CLKOUT 

pin and can be used by external circuitry for clocking purposes.  For correct operation 

the Maxim MAX811 reset controller was used.  It generates a reset low pulse 

guaranteed for 140ms on VCC dropping below 4.63V.  It could also be manually reset 

using the external reset button RSW.  This device helps prevent the corruption of the 

internal flash memory and aims to guarantee a stable supply. 

 

 
Figure 4.3:  Serial Programmer 

 

An external serial boot loader is used to program the device, this was designed and used 

by Kennedy, 1999 [4].  To program the TMS320F243, both the VCCP (Flash 

programming voltage) and BIO (Branch control input) pins are asserted high.  With the 

connection of serial boot loader to the 8-pin header SRL, the device automatically 

enters programming mode.  If the internal flash is not correctly written (due to some 

error) and corrupts the internal boot loader, this code will need to be restored with the 

use of the JTAG adapter.  This connects directly to the 14-pin header JTAG.  The use of 

these programming features is outlined in Appendix E. 

 

It should be noted, due to the PCB design, the serial programmer needs to be connected 

in reverse to the orientation of the board being programmed.  In other words, the serial 

programmer will be upside down in comparison to the controller board. 
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4.3 Motor Driver Electronics 

It was considered essential to use the driver that could take advantage of the on board 

PWM output channels on the TMS chip.  By varying the duty cycle of the PWM signal 

the speed and direction of drive of the motor could be altered.  A switch-mode power 

amplifier would be required to drive the motors, such a device in a H-bridge 

configuration was ideal for this application. 

 

However, there were several options for this H-bridge that could be taken and all were 

considered.  The two main options were the use of a completely integrated package 

containing drivers and switching devices.  Or a semi-discrete solution could be utilised 

for better efficiency and more output power.  However, due to our budget restrictions 

and also the limited PCB space, it was essential to lose some of the efficiency for the 

smaller size.  The space saving was about 80% compared to a semi discrete solution.  

This size restriction was the main factor in choice of driver circuitry.  If there had been 

no size restriction then the semi-discrete option would have been more suitable. 

 

The integrated package needed to include four power MOSFET’s to switch the circuit.  

The driver was required to operate at 40-42V due to the battery supply voltage and also 

power transfer.  The driver chip had to be able to handle this as well as give a decent 

output current to be able to drive the motor under load.  The higher the output power 

and hence higher output current capability, the better the driver.  However, due to the 

complete integrated package, heat dissipation does become a problem and hence heat 

sinks will need to be considered. 

 

The integrated package needs to be a full H-bridge or half H-bridge and be able to 

handle PWM frequencies up to 100kHz.  The SGS-Thompson L6203 DMOS Full 

Bridge Driver was a very suitable component for this requirement.  This device can be 

supplied with up to 48V and can handle up to 100kHz, both required by our application.  

It can drive 5A peak and 4A continuous RMS current.  The on-resistance of the 

MOSFET’s is also fairly small at 0.3Ω.  The device has an enable pin as well as a dead 

time protection with a minimal 100ns dead band created between transitions.  This 

prevents the simultaneous conduction of both arms of the H-bridge, which will result in 
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a short between the power rail and ground (minus the small on-resistance of the 

MOSFET’s). 

 

The package of this device that has been used is the 11-pin multiwatt package.  This 

allows the greatest heat dissipation and allows easy connection to a heat sink.  

Considering the placement of the each of the boards, the actual frame of the robot itself 

has been considered as a heat sink. 

 
Figure 4.4:  L6203 Driver Circuitry 

 

As can be seen in Figure 4.4, the driver circuitry is fairly small, with two bootstrap 

capacitors that are used to drive the internal MOSFET’s to their required gate voltage.  

These capacitors are used to drive the upper transistors since a voltage greater than the 

supply is required.  There is also a reference capacitor used.  A fuse is used with each 

driver, rated at 5A that is the maximum peak current the L6203 can handle.  Each of the 

three motors is connected through connectors MP1-MP3.  Each of these connectors can 

handle up to 7A, and are easily connected and disconnected. 
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4.3.1 H-Bridge Driving Techniques 
With the driving circuit mentioned above, it was thus required to use the bipolar 

switching method to drive each of the three motors per board.  There is also the unipolar 

option, but this was difficult and costly to implement with our hardware.  The unipolar 

scheme (Figure 4.5 – adapted from Kennedy, 1999 [4]) works by simply pulsing the 

motor in the direction that is required.  So if the motor was to drive at half speed then a 

50% duty cycle would be used in the particular direction required, with the other 

direction remaining at zero. 

Forward
Voltage

Reverse
Voltage

Time

Period

 
Figure 4.5:  Unipolar Switching Method 

 

To keep the motor stationary, there is a 0% duty cycle applied to both sides of the 

motor. However, since there is no braking system on our motors and it can be required 

to keep the motors stationary and keep the robot in a rigid position, it is required to have 

power to keep it there.  Due to this, a bipolar switching (Figure 4.6 – adapted from 

Kennedy, 1999 [4]) method is adopted.  This is also due to the limitations of the number 

of PWM outputs on the TMS chip.  To keep the motors stationary, a 50% duty cycle is 

applied to both sides of the motor, and thus they will cancel each other and keep the 

motor stationary. 
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Forward
Voltage

Reverse
Voltage

Time

 
Figure 4.6:  Bipolar Switching Method 

 

More power is used with the bipolar system, and there are also large voltage swings, 

since the voltage will be switched from 42V to –42V and vice versa.  These can result 

in current spikes, which will affect the ability of the current sense resistors.  Operating 

at high frequencies helps reduces these effects. 

 

The bipolar method requires that both opposing MOSFET’s be turned on and off 

simultaneously (left high and right low on and off together).  Where as with unipolar 

operation the low of the respective side can remain on, while the opposite high 

MOSFET can be switched on and off.  Obviously, as can be seen here, since an 

integrated package is used, individual control of each MOSFET is not possible.  The 

internal schematic of the L6203 (Figure 4.7) is shown here with each of the drive 

MOSFET’s. 
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Figure 4.7:  Internal L6203 Diagram 

 

Although the TMS320F243 states it has 8 PWM output channels, there are really only 

five independent channels that can be used.  There are three pairs of dependent PWM 

outputs that have dedicated circuitry, with another two outputs that can operate off the 

timer compare circuitry.  Since there are only five outputs, and six are required for three 

motors, the use of the dependent outputs is required and thus bipolar switching method 

is used. 
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4.4 External Quadrature Decoders 

Since there are three motors driven by each controller, position or velocity will need to 

be known for each, such that an error can be calculated.  To do this, there are three 

quadrature decoders that are required to form closed loop control.  This velocity control 

is obtained through the three-channel square wave quadrature encoders found on each 

motor.  Two channels supply the quadrature signals with the third having a single 

revolution pulse.  Due to lack of peripherals for this, the third channel was not used, or 

really required. 

 

The encoder will produce two square waves that are out of phase by 90°.  The speed of 

the encoder and thus motor is determined by the frequency of the square waves, and 

direction is determined by which channel is leading.  These square waves are produced 

by reading the pulses from an infrared LED shooting through evenly distributed slots on 

a disk on the drive shaft of the motor.  Each edge of the signal from both channels is 

recorded, so for 500 slots, there are actually 2000 counts recorded.  This increases the 

accuracy but will create 4 times the number of overflows of the relevant registers. 

 

Each of the motors and respective gearing forms a gear ratio of 156:1.  So if there are 

2000 counts/rev and 156:1 gear ratio, this results in 312,000 counts in the register for 

one revolution of the drive shaft.  Using a 16-bit register, there will be 4.76 overflows 

per revolution.  This can be taken care of in software, however there is no need for a 

complete revolution of any of the joints.  The knee will only move a maximum of 51°, 

and the hip 56°.  312,000 counts per revolution will give an accuracy of 0.0012°. 

 

There weren’t many external chips found that could do this job cheaply.  Most 

controllers have one on-board quadrature decoder, if at all.  The Agilent HCTL-2016 is 

such a device for our application, it reads in the two channels and converts these into a 

16-bit number.  However, there is only an 8-bit data port on the device and thus a 

control signal for the high and low bytes is required for this. 
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Figure 4.8:  External Quadrature Decoders 

 

The address and data port of the TMS320F243 has been used especially for this 

purpose, as this was the reason for this device over the TMS320F241.  The read address 

of this port is actually a control signal to set which byte is returned on the read.  When 

the TMS320F243 reads from the data port, the !IS pin is asserted (low logic value) to 

indicate a read from I/O space.  This value remains low throughout the read, and thus 

indicates to the HCTL-2016 to hold the current quadrature value.  As soon as this pin is 

unasserted, the HCTL-2016 returns the output pins to a high-impedance state. 
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Since the operating frequency of these devices is only a maximum of 14MHz, the clock 

out signal from the TMS is required to be reduced from its current value of 20MHz.  

The simplest method was to implement a T flip-flop by feeding back the inverter output 

of a D flip-flop (U9A).  By doing this, the clock has been reduced to 10MHz for 

clocking the HCTL-2016.  This is a suitable frequency for our application.  The On 

Semi 74HC74A D Flip Flop has been used, and it fulfils the requirements easily. 

 

Due to the time delays required for the operation of the HCTL-2016, one software wait 

state is required so that the data is guaranteed to be stable on the read.  The timing 

diagrams for TMS320F243 data port and the HCTL-2016 is shown in Appendix F.    It 

can be seen that if there is no software wait state, then the data will not be ready when 

the TMS chip buffers the value.  The data will not be available on the HCTL-2016 for a 

maximum of 65ns, but the data port is expecting this after 30ns, which will not be 

possible without the presence of at least one wait state. 

 

Each of the encoders is connected with connectors J4-J6.  They are 4-pin connectors 

that have a low number of connection repeats, since it was hoped that these weren’t the 

limitation to the system.  So testing this is difficult, but in the final controller these will 

be very reliable connectors.  Each of the signals is pulled high with a 3.3kΩ resistor.  

This will verify that the quadrature decoders aren’t counting any phantom signals, and 

helps in pulling the signal high, for correct operation. 

 

 

4.5 Current Sensing 

As shown in Section 4.3 Motor Driver Electronics, the maximum continuous RMS 

current supplied by the L6203 is 4A with a peak of 5A.  There are three limits that have 

been implemented through hardware to prevent over current on any of the motors.  The 

first limit is the use of a software control of this current.  The use of a 1W 0.01Ω resistor 

acts as the sense resistor, with the voltage as a representation of the current through the 

motor, from Ohm’s law or V=IR. 
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This resistor can handle up to 1W of power due to the current’s that will flow through it.  

So if this resistor had 5A through it, then there would be P=I2R W of power, which is P 

= 52x0.01 = 0.25W.  For this same current, there will only be a voltage of V = IR = 

5x0.01 = 0.05V across the resistor.  This voltage is too small for any use, so this is 

amplified to a voltage between 0V and 5V where 5V represents about 8A. 

 

Operation is at 100kHz, and the signal is first passed through a low pass filter to filter 

out ripples that may form at this high frequency.  This is an added feature, and possibly 

isn’t essential for current sensing.  It will smooth out the signal to be amplified and thus 

give a better value for the analog to digital converter. 

 
Future 4.9:  Current Sensing 

 

This smoothed voltage is amplified with a gain of 69, through the non-inverting 

amplifier circuitry.  The op-amp (U13A-C) forms the basis for this non-inverting 

amplifier.  The gain for this is calculated through simple analysis as: 

 

1

21
R
R

V
VGain

in

out +==    (Eqn. 4) 

 

So using values R1=1kΩ and R2=68kΩ, we achieve the required gain of 69.  With this 

gain, we can detect a current of 7.25A, which is well above the peak 5A allowable by 
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the L6203 driver device.  This allows for accurate amplification readings without 

saturation of the op-amp to its supply rail.  The op-amp used is the National 

Semiconductors LMC6084, which has a very low offset voltage (≈ 1mV), since we will 

be operating with 0V to 50mV, this is essential for correct operation. 

 

This amplified signal is passed into three of the ADC input channels.  These can be 

monitored and if they reach over a certain voltage, say 2.75V for 4A for the driver, the 

driver duty cycle can be reduced to help decrease the current. 

 
Figure 4.10:  PDPINT Hardware 

 

This amplified signal is also compared to a pot voltage and connected to the PDPINT 

pin, which is an external power drive protection interrupt.  If this pin is asserted (low 

signal) from the NOR gate then all PWM outputs are disabled, this is the second 

protection device.  These are disabled until the TMS320F243 chip is reset.  A NOR gate 

is required since its output will remain high until one of the inputs becomes high, and 

hence over current.  The comparator used is the National Semiconductors LM2901, 

which again has a small offset voltage, and low power consumption.  The NOR gate 

used is the Philips 74HCT27D, which is high speed gate for our application. 

 

The third protection device is simply the fuses that are placed on each driver chip.  They 

are rated at 5A, however they can handle a non-continuous current spike.  If these blow, 

then this circuitry will not work until the physical fuse is replaced, and will continue to 

blow until the problem is fixed. 
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4.6 Temperature and Foot Sensors 

With the three safety devices shown in Section 4.5 Current Sensing, temperature 

sensors have also be incorporated into the operation of these controllers.  These sensors 

are to be placed on the motors themselves, so if for some reason, these motors overheat, 

but over current is not detected, these can be shut down on this error. 

 

The commonly used National Semiconductors LM135 has been used for this 

application.  These devices have precision temperature sensing at +10mV/K, and can 

operate between -55ºC to +150ºC (to +200ºC for a short period).  This is a suitable 

operating range since the DC motors will melt at 125ºC.  The TO-46 package has been 

used for easy connection to the DC motors.  It has a maximum error of 5ºC, but a safety 

margin of 115ºC will be used, above which shutdown will occur, and hence this error 

won’t be significant. 

 

The sensor has been connected as the simple 

calibration circuit, as seen in Figure 4.11.  A 

10kΩ pot is used to calibrate the device by 

connecting it across the output to ground 

and using the adjust pin.  Since the output 

slope is linear, calibration will cause the 

output to be calibrated at all temperatures, 

within its operating range.  

 

Since there are only eight multiplexed ADC input channels on the TMS320F243, it has 

been required to multiplex the three temperature sensors.  The reason for this is the 

three current sensors have used the other inputs and the four foot sensors (mentioned 

shortly), leave only one ADC input for temperature.  With eventual closed loop 

walking, the foot sensors have a higher priority than the temperature considering that 

the current sensors should detect this earlier. 

 

 
Figure 4.11:  Temperature Sensor
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Figure 4.12:  Analog Multiplexer and Buffer 

 

To multiplex the three temperature signals, an external analog multiplexer has been 

used.  The On Semi MC74HC4052D analog multiplexer has been used here.  The 

device is a dual 4 input analog multiplexer with common select pins.  Two pins of Port 

D control the select lines, and ADC channel 3 receives the multiplexed analog value. 

 

The input source impedance to the ADC (from the 

analog multiplexer) on the TMS chip is to remain 

below 10Ω for conversions to remain within 

specifications.  Although our device had the lowest 

that could be found at 240Ω, this wasn’t enough for 

the TMS320F243.  To do this, a voltage follower or 

buffer to reduce the resistance to an acceptable level 

follows the multiplexer.  The National 

Semiconductors LMC6081 op-amp was used here 

which is the same as the LMC6084, just a single op-

amp package, as only one op-amp is required here. 

 

 
 

Figure 4.13:  Foot sensors
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The foot sensors connect directly into the ADC input channels 4-7 from connectors J13-

J16.  Each sensor is supplied with VCC and GND, and the respective analog signal is 

returned from the sensor.  These sensors are only used on Boards 1 and 2, since these 

are the only two with control of the feet.  Boards 3-5 have this as redundant circuitry, 

but these could be used later for additional sensing. 

Each foot has four sensors on the under side, so that the distributed pressure of each foot 

can be calculated.  It is anticipated to have analog sensing here, however, a switch may 

only be possibly used due to the cost of these pressure sensors.  The distribution of foot 

pressure will be used by the iPaQ for balance and walking calculations. 

 

 

4.7 The Control Network 

There are seven nodes on our network and it is required to have a high speed, reliable 

and robust network with which to transmit our control data.  These nodes include the 

five DC motor controller boards, the servo board and the power/USB board. The 

network is linked to the iPaQ through its Universal Serial Bus (USB) connector, which 

can send data at up to 12Mbit/s. 

 

As already shown, the CAN network protocol will be used.  It is especially useful in this 

application due to its high speed and reliability.  We will be using the CAN2.0A 

specification, which allows for up to 2048 nodes (11-bit arbitration field) to be on the 

network.  Although the arbitration 

field is used for message filtering, 

and not as specific nodal addresses, 

we can set up the message filtering 

to act in this manner.  The use of an 

emergency broadcast is set for the 

highest priority, to enable the shut 

down of the robot on any faults. 

 

Figure 4.14:  Simple CAN Network 
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The TMS320F243 has a CAN network interface which when combined with a CAN 

driver, produces a powerful controller networking tool.  The CAN network is a bus 

network, with each node connecting to the CAN-H and CAN-L lines of the two wire 

network.  It is terminated at either end with a 120Ω resistor, to minimise reflections at 

the ends of the bus.  A jumper JP1 is supplied here, so that any node can be the 

terminating node, by simply connecting the jumper.  This is useful for testing the boards 

and the network.  Two connectors are used for the two-wire network, this allows the 

easy addition and removal of subsequent nodes.  The Philips PCA82C250 CAN driver 

has been used in this application.  It can operate at up to 1-Mbit/s, which is the limit of 

the CAN protocol.  

 
Figure 4.15:  CAN Interface 

 

This CAN network is described in more detail by Cartwright, 2001 [3].  The full coding 

for the CAN network is also shown within this thesis. 

 

 

4.8 Miscellaneous Hardware 

To supply the digital side of the circuitry, including controller, all logic devices, sensors 

etc are supplied with a simple 7805 step down voltage regulator.  This device is only 

about 80% efficient, but will only use about 0.4W (200mA x 2V), which is quite 

insignificant, compared to power drawn through the motors.  It is very simple and can 

provide significant current, up to 1A, for the digital circuitry.  The National 

Semiconductor LMC2940C is used in this application.  The unregulated +7V is 
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connected through J1.  The regulated +5V is then supplied through the power plane to 

all of the required circuitry. 

 
Figure 4.16:  +5V Regulator Circuitry 

 

The power circuitry is supplied with an unregulated power supply from the power 

board.  This voltage can vary between 30-40V dependent on battery charge and load.  

This power is connected into connector POW42.  However, this output voltage is 

variable and can be adjusted on the power board depending on requirements.  

 

There is a protection 

diode (POWD), 

however this will 

not work without a 

fuse directly next to 

it, to prevent reverse 

power connection.  

There is a varistor 

that will prevent 

over voltage by shorting at over voltage.  For the best over current, reverse voltage and 

over voltage protection, a power fuse should be supplied.  However, this is not really 

possible since there are three devices powered, and a 12A fuse would be useless if one 

driver was drawing 6A, and hence would blow up the driver but not the fuse.  To fix 

 
Figure 4.17:  +42V Input Circuitry 
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this, individual supply connectors for each driver and hence fuses would be required, 

but due to our limited space this was not possible.   

 

To cover these problems there are few features on the power board that should be 

mentioned.  There are 10A fuses and current sensing that protects each battery.  There is 

also voltage sensing on each power output.  Potentially short circuits can be detected 

with a large voltage decrease.  For further information see Appendix A for Brewer’s 

thesis on “Power System for a Humanoid”. 

 

Two power indicators have been added to allow easy detection of power-on on the 

boards, MPL and LPL.  Three testing and indicator LED’s have been included for 

troubleshooting TL1-3.  Having three LED’s allows for eight combinations of status 

that can be used for troubleshooting.  A pushbutton SW1 has also be included for 

testing and perhaps future use connected to one of the external interrupts. 

 

Considering the set up of the quadrature decoders for position/velocity control of each 

joint, there is no resetting of these external devices.  This would have added hardware, 

which can be eliminated in software.  Instead the power on value is used as the 

reference point and the limit switches used so that in calibration, the limits of each joint 

is tested and recorded.  To do this, one joint at a time is moved until the limit switch 

triggers the interrupt, the values for this joint is then recorded.  Each of the quadrature 

decoders is reset on power reset, but the initial physical position with reference to the 

joint is unknown to the controller. 

 

This can also be used as a safety feature, so that if a motor over shoots its joint 

boundaries, the limit switch of the joint is hit, and causes an interrupt.  In this situation, 

the quadrature decoders haven’t measured this distance match with the limit value, and 

hence an error has occurred.  At least that driver will be shutdown and perhaps the other 

drivers.  An emergency broadcast can then be sent to warn other controllers of this 

condition and also the iPaQ. 
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There a few control pins that need to be set on the TMS320F243 for correct operation.  

These are seen on the schematic shown in Appendix B, they aren’t all explained, but for 

more information see the TMS320F243 data sheet [10].  To use the external data bus, it 

is required to set ENA_144 (pin 18) high to allow use of this data bus.  READY (pin 

44) is pulled high through a resistor, this makes sure that on a read of the data bus, to 

the TMS chip the external device has data ready, and the use of wait states prevented a 

read straight away.  MP/!MC is pulled low, to boot the controller from on-board 

memory rather than external memory (in use by quadrature decoders). 

 

 

4.9 PCB Design and Construction 

The schematic for this controller has been shown in great detail above, but to create a 

Printed Circuit Board (PCB) from this uses a bit of skill and creativity.  Each of the five 

DC motor controllers is identical.  This would reduce costs, since only a few designs 

could be on each PCB panel (each panel was shared with other projects), and also 

simplicity for design.  Obviously five differently designed boards would take five times 

as long to create a PCB for.  As shown above, some circuitry becomes redundant, the 

foot sensors are the one main example. 

 

The servo controller board was a completely different design since servo motors were 

being controlled, and these only require a position input value, as apposed to a dual 

PWM signal.  Due to this, the drive circuitry wasn’t needed, just a simple buffer to 

supply the servos with the correct current.  

See Cartwright, 2001 [3] for the design of 

this board. 

 

To fulfil the second specification, i.e. 

board size restriction of 170mm x 100mm 

x 40mm, it was required to make the 

boards as small as physically possible.  

This would enable each of the boards to be 
Figure 4.18:  Servo Controller Board
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placed as required in Figure 3.2.  Considering the size of the produce PCB to be 127mm 

x 88mm x 25mm, this met the required specification fairly easily, with possible 

reductions in size still possible.  One of the methods employed to reduce PCB space 

was to use as many surface mount components as possible.  This effectively reduces the 

space required to nearly a half, since there are no through-holes impeding other devices. 

 

Layout of these devices and there position on the board was one major concern with the 

design of this board.  It was required to have the board to interface to  

 

•  2 x 2-pin power connectors (+5V and +42V) 

•  3 x 2-pin motor connectors  

•  3 x 4-pin quadrature encoder connectors 

•  2 x 2-pin CAN connectors 

•  3 x 3-pin temperature sensor connectors 

•  4 x 3-pin foot sensor connectors (redundant on boards 3-5) 

•  6 x 2-pin limit switch connectors 

•  1 x 8-pin serial loader connector 

•  1 x 14-pin JTAG connector 

 

To add to this, it was required to have two power supplies within the board, one for the 

low current +5V digital circuitry and the other for the high switching current +42V 

analog circuitry.  Due to the switching and high currents of the analog circuitry, noise is 

produced which can affect the operation of the digital circuitry.  To help minimise this, 

the digital circuitry is located at one end of the board and the analog circuitry the other. 
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Figure 4.19:  PCB Showing Split Planes 

 

A four layer split plane PCB is used to further reduce noise and help minimise PCB 

space.  There is top and bottom signal layers, a ground plane, and a split power plane.  

The ground plane is not split between analog and digital circuitry, as this would have 

been more difficult to implement and would lead to little noise improvement.  The 

power plane has been split between the digital circuitry and the analog circuitry.  +5V 

flows through the right ¾ of the board, containing the digital circuitry (as per Figure 

4.19) and +42V through the left side.  There are also a few large tracks through the 

power plane that are used to connect the drivers to the motors.  This left room on the top 

and bottom layers for connections without as much current and hence less noise 

produced. 

 

To implement this design on a conventional two-layer board would require large width 

tracks to carry up to 12A for the power circuitry, and 4A to each motor.  This would 

produce significant noise on the board.  These power planes have significantly reduced 

the noise and also made the layout of the board far simpler.  This same principle was 
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used to connect drivers 2 & 3 (U3 and U4) to their respective motor connectors, to 

reduce noise and ease layout of the board.  The TMS320F243 has been placed as 

physically as far as possible from the high switching current analog circuitry, so as to 

not inhibit operation due to noise. 

 

Each of the IC’s on the board has been decoupled using a small 0.1µF surface mount 

capacitor.  These are placed as close as physically possible to the supply pin of each 

device.  A large 100µF 63V capacitor has been connected close to each of the driver 

chips.  This helps reduce noise and also helps supply the driver with the required current 

for high current switching, due to the bipolar switching method. 

 

The connectors have been placed so as to be relative to the device with which they are 

connected.  The board is placed within the leg, with the long edge horizontal (this 

orientation is seen in Figure 3.2), which allows space for all of the required connectors.  

The driver chips have been placed on the vertical sides, which can be mounted on the 

frame of the robot for heat dissipation.  This may negate the need for heat sinks, this is 

yet to be tested. 

 

 
Figure 4.20:  Populated DC Motor Controller Board 



Chapter 4 – Hardware Design 

Page 45 

Each board drives motors both above and below the controller board.  However this 

differs between boards and hence the three motor drivers and power connectors have 

been placed on the low edge of the board.  All of the quadrature encoders, limit 

switches, CAN and temperature sensor connectors have been placed on the top edge (all 

edges are relative to Figure 4.20, with actual orientation to be selected).  This helps 

keep noise from these signals as well as keeping all digital circuitry on one side of the 

board.  Unfortunately there wasn’t enough room to place the foot sensor connectors on 

an edge, so vertical connectors were placed in the middle of the board. 

 

The serial connector has been placed on the right vertical edge of the board.  This 

allows for easy programming whilst out of the robot and possible programming whilst 

in the robot.  Nevertheless, with further software coding each board should be 

programmable through the CAN network from the iPaQ, which means software can 

easily be changed without the removal and subsequent replacing of each controller 

board. 
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Chapter 5 – Software Design 
 

All of the software designed for this system is micro controller software.  Higher-level 

control is taken care of by the iPaQ, and this is not discussed here.  The micro controller 

software is to mainly drive the control algorithms of each motor required by the higher-

level software.  Each board is to control three motors with feedback from the quadrature 

decoders and other sensors.  This simple feedback with higher-level control is shown in 

the figure below. 

 

 

Control Loop
For 

Motor 1

Control Loop
For 

Motor 2

Control Loop
For 

Motor 3

CAN
Driver

Velocity Commands
And

Position and Sensor
Feedback

CAN Network

 
Figure 5.1:  3 Motor Control Loops 
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5.1 Software Overview 

It has been decided that the higher-level control would operate at a frequency of 500Hz.  

However, low-level control will operate at 2kHz (four times the incoming velocity 

commands).  Since the network is operating at 1-Mbit/s, half of the network bandwidth 

will be used for control commands, and the remainder for feedback, such as motor 

positions and other sensor values. 

 

Control of each board will consider incoming velocity commands for each motor as 

well as the control of each motor on this request.  Figure 5.1 shows a block diagram of 

the controlling algorithm.  Control is interrupt driven, with each of the Interrupt Service 

Routines (ISR) shown.  A lot of the execution time is spent inside the main loop, where 

nothing is happening, just waiting for an interrupt.  An interrupt occurs when the 

required hardware “interrupts” execution and calls a vector to the ISR.  Once an 

interrupt goes off, then the needed service routine is called.  After execution has 

finished control is passed back to the main loop. 

 

Initialise TMS device

CAN Network ISR

Receives velocity
commands and sends

required data for
request.

PDPINT ISR

PWM outputs are
disabled.  Sends

emergency broadcast
of status.

Timer 1 Compare ISR

Control loop operating
at 500Hz. Updates

PWM and reads QDEC.

Main loop (wait for int)

ADC ISR

Constantly reading
in current sensors,
temperature and 

foot sensors.
 

Figure 5.2:  ISR Block Diagram 

 

The software shown in subsequent sections is for the testing program Loop1.C as seen 

in Appendix D.  A listing of the code is seen here, and this is the basis for the following 

software description.  This program, controls one motor with the use of the internal 



Chapter 5 – Software Design 

Page 48 

quadrature decoder as feedback.  The encoder difference between loops is utilised and 

this is multiplied with a gain value to calculate the needed PWM value for the motor. 

 

 

5.2 Board Initialisation 

There are several peripherals that need to be initialised and set up for correct operation 

in this application.  These include control of the PWM and quadrature decoders.  This 

also includes the initialisation of several control registers within the TMS chip itself. 

 

For ease of testing, the watchdog timer has been disabled.  For the demonstration this 

will set up to reset the device after 6.55ms (the smallest allowable watchdog overflow 

period).  Since the control loop will operate at 2kHz, this will allow enough time to do 

all of the control algorithms, and other code, and then kick the watchdog again.  If this 

timer overflows then the TMS chip is reset.  This stops the device from entering 

‘Phantom’ interrupts that aren’t recognised by the system. 

 

After the timer (Timer 1) is enabled for PWM output, the period register is set to 200int.  

This sets the PWM output frequency to 100kHz (20MHz/200), so there is an output 

pulse on all six outputs every 10µs.  This frequency was used to keep the current drawn 

and ripple to a minimum.  This frequency is the limit for the driver chips, and due to the 

size of the period register, the resolution of the output PWM is limited.  Since bipolar 

switching is used, there are essentially 100 forward PWM values (50-100% duty cycle) 

and 100 reverse PWM values (0-50% duty cycle).  So there is a resolution of 0.5% for 

the duty cycle or 7.6bits. 
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Figure 5.3:  TMS320F243 Event Manager 

 

Timer 1 is used to control the PWM outputs (Figure 5.3 above).  On each compare of 

Timer 1 to the Timer 1 period register (T1PR) a PWM duty cycle is initiated.  The dead 

band generation registers are also set up at this point, they are set for minimal dead 

band, since the L6203 driver chips have there own dead band generation. 

 

It is also required to have the multiplexed I/O pins set to the correct inputs/outputs, 

since all special pins are multiplexed with an I/O port.  However, there are six dedicated 
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pins on Port D that can be used specifically for I/O.  All special hardware including 

CAN interface, PWM and QDEC all use multiplexed I/O ports. 

 

Timer 2 is used to control the internal quadrature decoder.  This is connected to CAP1 

and CAP 2 (pins 121 and 123).  Timer 2 period register (T2PR) is set to the maximum 

of FFFFhex to allow for minimal number of overflows.  T2CNT register is used to show 

the current position of the motor. 

 

 

5.3 Timer 1 Interrupt Service Routine 

 

As can be seen in the Loop1.C in Appendix D, operation 

has initially used polling instead of interrupts.  As explained 

previously, all code should be interrupt driven, with a lot of 

the time spent waiting for an interrupt to occur.   

 

The intended Timer 1 ISR operates the control loop shown 

in Figure 5.4.  This loop operates at 2kHz per motor.  There 

is a new velocity command from the CAN network at a 

frequency of 500Hz, however, the controller loop operates 

at four times this.  This loop will be run three times within 

the 2kHz slot due to the three motors per board. 

 

The 16-bit encoder value is read in and this is used to 

calculate the current velocity due to the difference in 

encoder counts between loops.  This is compared to the 

intended velocity command and the required PWM duty 

cycle is then calculated.  The current is then checked to see 

if there is over-current and the PWM cycle is adjusted 

accordingly.  The PWM value is then written to the required 

register and then control is passed back to the main loop. 

Timer 1 ISR
2kHz

Read encoder value

Calc current 
velocity

Compute law
(Calc PWM Duty)

Check current

Set PWM value

Return from 
ISR  

Figure 5.4:  Timer 

1 ISR
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5.4 Main Loop 

As can be seen in the control section of the main loop code below, there is a delay 

created to calculate the difference between encoder counts on each cycle of the loop.  

This delay has been experimentally found to be the most effective for the encoder and 

motor with which the board is connected.  T2cnt_old holds the previous value of the 

Timer 2 count register.  This is subtracted from the current value to find the difference.  

This is scaled by –0.0488 and added with 100 to make it a value between 0int and 200int.  

This will then give a duty cycle between 0-100%.  The scaling value has also been 

found experimentally and allows the motor to move significantly but not to draw too 

much current from the supply. 

 

for (temp = 0; temp < 500000; temp++);

/* Try polling first, using delay above for difference */
t2cnt_sub = T2CNT - t2cnt_old;
cmpr1_val = (-0.0488 * t2cnt_sub) + 100; /* scale 0-100% duty */
CMPR1 = cmpr1_val;

t2cnt_old = T2CNT; 

 

 

5.5 Intended CAN Interrupt Service Routine 
 
As has been previously shown the CAN network is used to communicate between the 

iPaQ and each of the boards located throughout the body of the robot.  This CAN 

network has been described in Section 4.7 The Control Network.  CAN2.0A has been 

used for this application.  The arbitration field is 11-bits in length, and hence allows up 

to 2048 message identifiers, nodes and priority on the network.  There are four different 

types of frames that can be sent over the network.  These are Data Frames, Remote, 

Error and Overflow Frames.  Data frames are used to transmit standard data, and the 

remote frame is used to request this data with the same identifier. 

 

The TMS320F243 has many memory mapped registers that are dedicated to the 

operation of the CAN interface.  There are six dedicated mailboxes for use with the 
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CAN network.  Two transmit mailboxes, two receive and two configurable mailboxes.  

Each of these mailboxes is 8-bytes in length, and hence spans eight bytes in memory.   

A CAN data frame can contain from 44 to 108 bits.  This includes the 8-byte data field 

as well as the 11-bit arbitration field and other control fields.  The other fields are seen 

in Figure 2.5.  These are taken care of in hardware, and will not be discussed.  To send 

data, the data is inserted into the required mailbox, and required arbitration field is set, 

and the hardware will send off the message, taking care of errors etc. 

 
A new CAN message will arrive at a frequency of 500Hz (or every 2ms).  On complete 

reception of the new message the interrupt is asserted.  This should coincide with the 

Timer 1 interrupt used for the control loop.  This new velocity command is processed 

and used to adjust the PWM duty cycle of the required motor driver. 

 

 

5.6 Other Intended Interrupts 

There are two other interrupts that should be considered in the design of the controller.  

Although these weren’t implemented for the submission of this thesis, they are intended 

to be completed for the Innovation Expo. 

 

5.6.1 PDPINT ISR 
As described in Section 4.5 Current Sensing, the PDPINT pin is connected to a NOR 

gate which is driven by the current sensing of the motor drivers.  When any of the three 

drivers exceed the allowable current this interrupt is set and the PWM outputs are 

automatically disabled.   

 

Within this interrupt routine, it is also required to use the CAN network to broadcast an 

emergency message of the presence of over-current in one of the motors.  This will be 

inspected by the iPaQ, and action can be taken from here.  This may only require the 

already shutdown action of that controller board, or it may incur the shutdown of the 

whole system. 
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5.6.2 Analog to Digital ISR 
 

As shown in Section 4.5 Current Sensing and 4.6 Temperature and Foot Sensors, all of 

the eight multiplexed ADC channels of the TMS320F243 have been utilised.  Current 

sensing, foot sensors and also temperature sensors use these ADC channels.  Since there 

are a total of 10 analog values to be read, it is required that the on-board ADC unit of 

the TMS320F243 be utilised at all times.  This will produce the greatest benefits of the 

system, in both safety and sensing. 

 

As current sensing is the most important sensor to be checked, this will be checked 

more regularly than the other sensors.  Port D is also required to switch between the 

temperature sensors due to the external analog multiplexer.  It would probably be 

advised to check the three current sensors, read in half of the foot and temperature 

sensors, check the three current sensors again, and finally the remaining sensors.  This 

loop will continue indefinitely.  
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Chapter 6 – Project Performance and Testing 
 

At the time of writing this thesis, the controller had been semi-constructed and initial 

testing software written.  The main components required had been soldered to the PCB, 

tested and shown to be satisfactory.  It was not possible to test some of the circuitry 

since not all components had arrived by the time this thesis was written.   

 

All of the required circuitry was in place except for a few of the connectors required for 

the temperature and foot sensors and limit switches.  Also the LM2901 quad comparator 

had not arrived despite attempts to get this device.  This provides the basis for the 

PDPINT pin NOR gate circuitry, and thus in an emergency the ADC will be relied upon 

for shutdown.  This shouldn’t be a problem as full load will not be required on any of 

the joints, however, it is hoped that this device arrives soon, so this circuitry can be 

tested for the Innovation Expo. 

 

 

6.1 Hardware Performance 

It was originally hoped to have the humanoid ready for the soccer championships in 

Seattle in August 2001.  However, due to problems building the chassis for the 

humanoid, programming problems of the controller boards and the project as a whole, 

this was not possible.  This decision was not made until the beginning of June, and 

because of this the hardware design process had been accelerated somewhat. 

 

The Printed Circuit Board (PCB) had been designed and constructed by early August.  

Due to this early construction it was hoped that the software would be completed by the 

end of second semester.  Due to the cost of the boards it was only possible to have one 

PCB manufacture run and this required complete accuracy on the first design of the 

boards.  This is also one of the reasons that the PCBs weren’t designed and constructed 

earlier.  If these PCBs weren’t going to work it would be almost impossible to test the 

required components on either breadboard or other prototyping methodologies due to 

high switching currents. 



Chapter 6 – Project Performance and Testing 

Page 55 

Fortunately, the PCB was indeed designed and implemented correctly, and to date no 

problems have been encountered.  The external quadrature decoders aren’t working, 

however they have only been tested once with code that is unknown to be working.  The 

major blocks of the circuitry that were required are working and fulfil the design 

specifications to which they have been tested. 

 

 

6.2 Software Performance 

As has already been discussed, the software hasn’t been completed at the time of 

writing this thesis.  It is hoped that a simple PI controller will be implemented for 

demonstration at the Innovation Expo.  Simple implies that only the bare requirements 

for this control will be used, this includes the motor drivers and quadrature decoders.  

This will allow the motors to be driven and also feedback provided through the 

quadrature decoders.  The over-current sensing features of the boards will be used, as 

this is a required safety option for the boards.  Time permitting other features such as 

temperature sensors will be added to this controller. 

 

All of the software shown in Appendix D was written in ‘C’.  ‘C’ was used since due to 

the code creation time required to write assembler, ‘C’ was a far better option.  

Assembler would produce far more efficient code to be run on the micro controllers, but 

since the control loops will only be operating at 2kHz, this isn’t really a problem.  If it 

was running at 5kHz-50kHz, this could have been a problem.  At 2kHz, this allows 

500µs for each control cycle to be executed.  Each instruction is executed in 50ns, 

which will allow for 10,000 instructions per cycle.  It should be noted that these are 

assembler instructions and some instructions require multiple instruction cycles.  

Considering this though, this is ample time to utilise the coding features of ‘C’. 

 

Once the programming problem was overcome (described in Section 6.4 Project 

Weaknesses or Problems), late in second semester code generation begun, however it 

was too late for the intended PI controller to be written for this thesis.  In the small 

amount of time used, several small programs had been written to test the individual 
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sections of the controller board.  These include a flashing LED program, simple PWM 

drive, internal quadrature decoder use and also a simple feedback program utilising both 

the PWM drive and internal quadrature decoder.  To date, the external quadrature 

decoders aren’t operational, this is yet to be extensively tested. 

 

Each of these simple programs ran well on the TMS chip, it was actually required to 

insert delays into the code to slow it down for testing purposes.  Each of the programs is 

written in a modular form, which makes code generation in the future far simpler.  In 

other words each program has a main loop, and all other code including initialisation is 

done in separate methods.  So for the implementation of the PI controller, it will require 

copying the needed methods and inserting the new code for the PI control.  One of the 

advantages of writing the software in ‘C’ is its adaptability, and this can be utilised here. 

 

 

6.3 Overall System Performance 

A simple feedback program has been demonstrated to work.  This utilised one of the 

PWM output channels and the internal quadrature decoders.  This was tested on a motor 

of one robot with the quadrature encoder of another robot.  The actual motors to be 

controlled arrived two days before the submission of this thesis, and due to this an 

alternative was required for testing.   

 

It was shown that when the encoder wheel was moved in one direction, the motor would 

drive in the opposite direction to overcome this disturbance.  The encoder difference 

between loops is utilised and this is multiplied with a gain value to calculate the needed 

PWM value for the motor.  The drivers could handle all voltages and currents unless 

limited by the power supply. 

 

From this working, a simple PI control is very likely to be created in time for the 

demonstration.  However, to control three motors per board it certainly will be required 

to have the external quadrature decoders working. 
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6.4 Project Weaknesses or Problems 

One of the major setbacks with the software creation for this project was the 

programming of the devices.  After the PCBs had been created, soldered and tested, 

there was a problem programming the boards.  Programming serially (as shown in 

Appendix E) was a problem, and for some reason JTAG would not correct this problem.  

It appeared as though the jump vectors were being incorrectly loaded in memory, and 

all that was required was the serial boot loader to be programmed back, and then serial 

programming could be utilised from this point. 

 

Since the boot loader for these devices resides in the internal flash memory, each time 

the device is programmed, the serial boot loaded is reloaded into memory.  So if this 

were corrupted during programming, the device would not be programmable serially 

until the boot loader was reloaded.  Fortunately the JTAG pod could be used to do this 

(this is shown in Appendix E). 

  

Since most of the hardware software interaction was not completely tested, it is difficult 

to say where the problems in the system are.  The hardware works to its desired 

specifications, and initial software also works to specifications.  Unfortunately the 

external quadrature decoders aren’t currently working, however it is hoped that they 

will for demonstration. 
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Chapter 7 – Future Work and Conclusions 
 

This project was a successful hardware design project with limited software success.  

These limitations can be attributed to programming problems faced early in semester 

two.  These were eventually overcome with a simple solution, which allowed for these 

devices to be programmed and tested to their intended design. 

 

 

7.1 Future Work 

Considering that the hardware and software wasn’t completely integrated for this thesis, 

there is a vast field of work that can be extended to improve the humanoid controllers.   

 

•  It is anticipated that a simple PI controller will be implemented for the 

Innovation Expo.  It is obvious that the completion of the software control 

system will be required for open loop walking by the humanoid. 

 

•  Experiments will need to be run to confirm that the drivers can support the 

selected DC motors chosen for the project.  The expected demonstration of this 

system will involve control of the leg and hips of the robot.  These won’t be with 

the full load of the upper body and the requirement for balance.  Under full load 

from the upper body and friction from the ground, the ability of the humanoid 

will be inhibited significantly.  

 

•  If larger currents will be required for the more strenuous joints such as the knee 

and hip, a semi discrete driving solution may be required.  This will require 

more hardware and hence a new PCB.  The size of PCBs may be a problem with 

this, and this will need to be considered. 

 

•  Extending the software to implement a full PID compensator will be necessary 

for the robot to be successful.  This will allow the system to be optimised for 
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both transient response and also steady state error.  This can also implement the 

use of temperature sensors, foot sensors and limit switches. 

 

•  Redesign of the hardware could be considered using another later micro 

controller.  A suggested device is the original intended device being the 

Motorola 68376.  This would remove the bottleneck of the external quadrature 

decoders. 

 

•  Programming of the micro controllers through the CAN network would be a 

very useful feature. It is then not necessary to remove the controller boards from 

the robot chassis and only one connection is required to program all of the 

devices.  It could also be later possible to program the controller boards from the 

iPaQ. 
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7.2 Outcomes and Conclusions 

The aim for this thesis was to outline the design and eventual creation of DC motor 

controllers for a humanoid robot.  The hardware design has been shown in great detail, 

with some of the software also shown.  The project has provided a platform for which 

full PID control can be implemented.  The hardware was designed successfully and 

allows the control of 15 motors from five independent networked controller boards. 

 

An extensive platform has been provided for all requirements of the humanoid.  

Temperature and foot sensors and also limit switches will provide useful feedback for 

closed loop control of the overall system from the iPaQ.  All of this hardware is in 

place, only the software is required to utilise these systems. 

 

It was hoped that a detailed description of the software would also be included, however 

this was not possible due to programming problems faced.  A hardware basis has been 

provided and this will form an interesting control thesis for coming years. 

 

 
Figure 7.1:  Motor within Lower Leg Section 
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Appendix C – PCB Diagram 
 

PCB showing internal planes 
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Appendix D – Software Listings 
 

D.1 Loop1.c 
 
/*
* Jarad Stirzaker - 33696915
* DC Motor Controllers for a Humanoid Robot
* 26/09/2001
*
* This program uses some feedback from the QDEC to change the PWM duty cycle
* of the motor. Since the QDEC is external to the motor, the program is used
* to test the feedback abilities of the tms chip.
*/
#include "F24x.h"

#define PERIOD 200 /* for 100kHz PWM */
unsigned int cmpr1_val;
unsigned int cmpr2_val;
unsigned int cmpr3_val;

void pwm_setup(void);
void qdec_setup(void);

void main(void)
{

long temp;
int t2cnt_old;
int t2cnt_sub;
unsigned int compval;

WDDISABLE;
EVIMRA = 0x0000;
INT_DISABLE;

pwm_setup();
qdec_setup();

cmpr1_val = PERIOD / 2; /* Set to initially 50% duty cycle */
cmpr2_val = PERIOD / 2;
cmpr3_val = PERIOD / 2;

CMPR1 = cmpr1_val;
CMPR2 = cmpr2_val;
CMPR3 = cmpr3_val;

/*
* Data and Direction Control Registers 7-8
* PxDATDIR 15-8 direction, 7-0 data, 0 - input, 1 - output
*/
PDDATDIR = 0xFC00; /* Clear Port D */
PBDATDIR = 0xFFFF; /* Enable L6203 chips */

t2cnt_old = T2CNT; /* setup previous value of T2CNT */

while (1) {
compval = T2CNT / 32; /* right shift MSB's to leds */
PDDATDIR = (PDDATDIR & 0xFC1F) | compval;
for (temp = 0; temp < 500000; temp++);

/* Try polling first, using delay above for difference */
t2cnt_sub = T2CNT - t2cnt_old;
cmpr1_val = (-0.0488 * t2cnt_sub) + 100; /* scale between 0-100% duty */
CMPR1 = cmpr1_val;

t2cnt_old = T2CNT;
}

}
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void pwm_setup(void)
{

/*
* T1PR Timer 1 Period Register - 20Mhz/T1PR - freq
* CMPRx Compare Register x - duty
* OCRA 7-4 I/O Mux Control Register A - set pwm pins
* ACTR 8-37 Compare Action Control Register - active high
* DBTCON 8-41 Dead Band Timer Control Register - dead band
* COMCON 8-36 Compare Control Register - pwm
* T1CON 8-28 GP Timer Control Register (individual) - up, prescale
* GPTCON 8-30 GP Timer Control Register - up, pol
*/

/* Set period register for 100kHz = 20MHz/200 */
T1PR = PERIOD;

OCRA = 0x0FD8; /* 00001111 11011000 */

ACTR = 0x0999; /* 00001001 10011001 */
DBTCON = 0x02E0; /* 00000010 11100000 */

CMPR1 = 0x0000;
CMPR2 = 0x0000;
CMPR3 = 0x0000;

/* +----------------- compare enabled
|++--------------- reload compare register on underflow or period match
|||+-------------- space vector not enabled
||||++------------ action control register reload on underflow
||||||+----------- compare output pins enabled
|||||||+-++++++++- reserved
|||||||| ||||||||
10100010 00000000 */

COMCON = 0xA200;

/* ++---------------- emulation control = not affected
|| ++------------- continuous up counting
|| ||+++---------- prescaler = 1
|| ||||| +-------- Use own TENABLE bit
|| ||||| |+------- enable T1
|| ||||| ||++----- internal clock as source
|| ||||| ||||++--- reload period on underflow or equal
|| ||||| ||||||+-- enable compare operation
|| ||||| |||||||+- not used in T1
|| ||||| ||||||||
11010000 01000110 */

T1CON = 0xD046;

/* +---------------- read only counting status
|+--------------- read only counting status
|| ++----------- no adc event with timer 2
|| ||+-+-------- no adc event with timer 1
|| ||| |+------- compare output enable - enable
|| ||| || ++--- polarity timer 2 - active high
|| ||| || ||++- polarity timer 1 - active high
|| ||| || ||||
00000000 01001010 */

GPTCON = 0x004A;
}



Appendix D 

Page D3 

void qdec_setup(void)
{

/* info 8-66
* T2CNT 7-19
* T2PR 7-15
* T2CMPR 7-14
* T2CON 8-28
* CAPCON 8-59
*/

T2CNT = 0x7FFF;
T2PR = 0xFFFF;
T2CMPR = 0xFFFF;

/* ++---------------- not affected by emulation suspend
|| ++------------- Directional Up/Down Count mode
|| ||+++---------- Clock Prescalar = /1
|| ||||| +-------- Use own TENABLE bit
|| ||||| |+------- TENABLE - Enable Timer
|| ||||| ||++----- Clock Source - QEP Circuit
|| ||||| ||||++--- Register reload when counter is 0
|| ||||| ||||||+-- TECMPR - enable timer compare
|| ||||| |||||||+- SELTPR1 - use own period register
|| ||||| ||||||||
11011000 01110010 */

T2CON = 0xD872;

/* +---------------- Clear all capture registers
|++-------------- Enable QEP Circuit (bits 9, 7-4 ignored - *)
|||+------------- Disbale CAP3
|||| +----------- GP Timer selection for cap3 = GP Timer 2
|||| |+---------- GP Timer selection for cap1/2 = GP Timer 2 - *
|||| ||+--------- CAP3TOADC = no event
|||| ||| ++------ CAP1 Edge Detection = Detect both edges - *
|||| ||| ||++---- CAP2 Edge Detection = Detect both edges - *
|||| ||| ||||++-- CAP3 Edge Detection = none
|||| ||| ||||||
01100000 11110000 */

CAPCON = 0x60F0;
}
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D.2 Motor.c 
 
/*
* Jarad Stirzaker - 33696915
* Controllers for a humanoid robot
* 26/09/2001
*
* This program simply uses the external interupt XINT1 to stop and reverse the
* the motion of the motor, by slowing change the PWM duty cycle.
*/
#include "F24x.h"

unsigned long compval;

void pwm_setup(void);
void int_setup(void);
void c_int6(void);

void main(void)
{

long temp;

WDDISABLE;
EVIMRA = 0x0000;

INT_DISABLE;

pwm_setup();
int_setup();

compval = 25;

CMPR1 = compval;
CMPR2 = 0x0040;
CMPR3 = compval;

/*
* Data and Direction Control Registers 7-8
* PxDATDIR 15-8 direction, 7-0 data
* 0 - input, 1 - output
*/

PBDATDIR = 0xFFFF;
PDDATDIR = 0xFC00;

while (1) {
PDDATDIR = (PDDATDIR & 0xFF5F) | ~(PDDATDIR | 0xFF5F);
for (temp = 0; temp < 100000; temp++);

}
}

void pwm_setup(void)
{

/*
* T1PR Timer 1 Period Register - 20Mhz/T1PR - freq
* CMPRx Compare Register x - duty
* OCRA 7-4 I/O Mux Control Register A - set pwm pins
* ACTR 8-37 Compare Action Control Register - active high
* DBTCON 8-41 Dead Band Timer Control Register - dead band
* COMCON 8-36 Compare Control Register - pwm
* T1CON 8-28 GP Timer Control Register (individual) - up, prescale
* GPTCON 8-30 GP Timer Control Register - up, pol
*/

/* Set period register for 100kHz = 20MHz/200 */
T1PR = 200;

OCRA = 0x0FC4; /* 00001111 11000100 */
ACTR = 0x0999; /* 00001001 10011001 */
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DBTCON = 0x02E0; /* 00000010 11100000 */

CMPR1 = 0x0000;
CMPR2 = 0x0000;
CMPR3 = 0x0000;

/* +----------------- compare enabled
|++--------------- reload compare register on underflow or period match
|||+-------------- space vector not enabled
||||++------------ action control register reload on underflow
||||||+----------- compare output pins enabled
|||||||+ ++++++++- reserved
|||||||| ||||||||
10100010 00000000 */

COMCON = 0xA200;

/* ++---------------- emulation control = not affected
|| ++------------- continuous up counting
|| ||+++---------- prescaler = 1
|| ||||| +-------- do not enable T2 as well
|| ||||| |+------- enable T1
|| ||||| ||++----- internal clock as source
|| ||||| ||||++--- reload period on underflow or equal
|| ||||| ||||||+-- enable compare operation
|| ||||| |||||||+- not used in T1
|| ||||| ||||||||
11010000 01000110 */

T1CON = 0xD046;

/* +---------------- counting up
|+--------------- counting up
|| ++----------- no adc event with timer 2
|| ||+-+-------- no adc event with timer 1
|| ||| |+------- compare output enable - enable
|| ||| || ++--- polarity timer 2 - active high
|| ||| || ||++- polarity timer 1 - active high
|| ||| || ||||
01100000 01001010 */

GPTCON = 0x604A;

}

void int_setup(void)
{

/*
* IMR 3-15 Interrupt Mask Register
* IFR 3-13 Interrupt Flag Register
* XINT1CR 6-5 XINT1 Control Register
*/

IMR = 0x0020; /* INT6 unmasked */
XINT1CR = 0x0007; /* XINT1 rising edge, low priority, enabled */
INT_ENABLE; /* Enable interupts */

}
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void c_int6(void)
{

/* initially cmpr1 is set to 25, want to change through 100 and up to 175
* and vice versa if set at already 25 */
long counter;

if (compval == 25) {
while (compval < 175) {

for (counter = 0; counter < 20000; counter++);
compval++;
CMPR1 = compval;

}
} else if (compval == 175) {

while (compval > 25) {
for (counter = 0; counter < 20000; counter++);
compval--;
CMPR1 = compval;

}
}

PDDATDIR = (PDDATDIR & 0xFFBF) | ~(PDDATDIR | 0xFFBF);

XINT1CR = 0x8007;
/* clear interrupt level 6 flag */
IFR = 0x0020;

}
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D.3 Interrupt Setup File – Vectors.asm 
 
;-----------------------------------------------------------------------------
; Vector address declarations
; for motor.c
;-----------------------------------------------------------------------------

.sect ".redir"

.ref _c_int0
B _c_int0 ; redirects the reset vector to boot.obj

.sect ".vectors"

.ref _c_int6

RSVECT B 1F00H ; PM 0 Reset Vector 1
INT1 B PHANTOM ; PM 2 Int level 1 4
INT2 B PHANTOM ; PM 4 Int level 2 5
INT3 B PHANTOM ; PM 6 Int level 3 6
INT4 B PHANTOM ; PM 8 Int level 4 7
INT5 B PHANTOM ; PM A Int level 5 8
INT6 B _c_int6 ; PM C Int level 6 9
RESERVED B PHANTOM ; PM E (Analysis Int) 10
SW_INT8 B PHANTOM ; PM 10 User S/W int -
SW_INT9 B PHANTOM ; PM 12 User S/W int -
SW_INT10 B PHANTOM ; PM 14 User S/W int -
SW_INT11 B PHANTOM ; PM 16 User S/W int -
SW_INT12 B PHANTOM ; PM 18 User S/W int -
SW_INT13 B PHANTOM ; PM 1A User S/W int -
SW_INT14 B PHANTOM ; PM 1C User S/W int -
SW_INT15 B PHANTOM ; PM 1E User S/W int -
SW_INT16 B PHANTOM ; PM 20 User S/W int -
TRAP B PHANTOM ; PM 22 Trap vector -
NMI B PHANTOM ; PM 24 Non maskable Int 3
EMU_TRAP B PHANTOM ; PM 26 Emulator Trap 2
SW_INT20 B PHANTOM ; PM 28 User S/W int -
SW_INT21 B PHANTOM ; PM 2A User S/W int -
SW_INT22 B PHANTOM ; PM 2C User S/W int -
SW_INT23 B PHANTOM ; PM 2E User S/W int -

*-----------------------------------------------------------------------------
* Phantom ISR - Just changes the led config and then holts until the
* processor is reset.
*-----------------------------------------------------------------------------
PHANTOM: B PHANTOM

*-----------------------------------------------------------------------------
* Program end
*-----------------------------------------------------------------------------

.end
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Appendix E – Programming the DC Motor Controllers 
 

See Kennedy, 1999 [4] for information not shown here.   

 

The TI software tools should be installed on the computer with all files found in the root 

directory.  From here a directory should be formed with the .C file for the code and also 

the vectors.asm file required for interrupts for this .C file.   

 

e.g. motor.c 

TI Tools  C:\DSPTOOLS 

Code   C:\DSPTOOLS\MOTOR 

 

Use the batch file cl.bat to run the C compiler and keep all created code within the 

directory above.  This is compiled by running cl motor.  This batch file is listed here.  

dspcl -q -v2xx -k -s %1\*.c %1\*.asm -fr %1 -fs %1 -z F243.cmd -o %1\prog.out
-m %1\prog.map

pause
F240_hex %1\prog.out
copy %1\prog.hex %1\%1.hex

 

Also, the file F243.cmd on the following page is required for the cl.bat to execute 

completely. 



Appendix E 

Page E2 

/**********************************************************************/
/* File Name: f243.cmd */
/* Target System: C24x Evaluation Board */
/* */
/* Description: A basic linker command file for the 'F240 device. */
/* This file is used by the linker to determine where */
/* certain sections of code should reside in memory. */
/* */
/* Revision: 1.00 */
/**********************************************************************/

/*--------------------------------------------------------------------*/
/* LINKER COMMAND FILE - MEMORY SPECIFICATION for the F240 */
/*--------------------------------------------------------------------*/

-stack 100
-l rts2xx.lib

MEMORY
{

PAGE 0 : VECS : origin = 0h , length = 040h /* VECTORS */
JUMP : origin = 40h , length = 02h /* REDIRECT */
PROG : origin = 42h , length = 01EC0h /* PROGRAM */

PAGE 1 : MMRS : origin = 0h , length = 060h /* MMRS */
B2 : origin = 0060h , length = 020h /* DARAM */
DARAM : origin = 0200h , length = 0200h /* DARAM */

}

/*--------------------------------------------------------------------*/
/* SECTIONS ALLOCATION */
/*--------------------------------------------------------------------*/
SECTIONS
{
/* Vectors.asm, Interrupt vector table */

.vectors > VECS PAGE 0

/* Jump vector to boot.obj */
.redir > JUMP PAGE 0

/* C, Executable code and floating point constants */
.text > PROG PAGE 0

/* C, Tables for explicity initialized global and static variables */
.cinit > PROG PAGE 0

/* C, Jump tables for large switch statements */
.switch > PROG PAGE 0

/* C, String literals, and global and static const variables that are
explicitly initialized */
.const > PROG PAGE 0

/* C, Global and static variables */
.bss > DARAM PAGE 1

/* C, Software Stack */
.stack > DARAM PAGE 1

/* C, Dynamic memory area for malloc functions */
.sysmem > DARAM PAGE 1

/* Memory mapped registers */
.mmrs > MMRS PAGE 1

/* Initialization data tables */
.data > DARAM PAGE 1

}
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If the boot loader code within memory is corrupted then this needs to be reloaded onto 

the device.  To do this the following steps need to be followed as per the TI 

documentation. 

 

•  Switch off power 

•  Connect JTAG connector 

•  Connect BIO and VCCP high 

•  Turn on power 

•  Run EMURST.exe to reset the JTAG pod 

•  Run BTEST.bat to test communications with the JTAG pod 

 

Don’t go on until BTEST.bat completes successfully 

•  Run BC0.bat to clear the flash memory 

•  Run BE0.bat to erase the flash memory 

•  Run PROG.bat to reload the boot loader 

•  Turn off power 

 

PROG.bat is listed here. 
prg2xx -p 240 -m 0x0006 -w 6 src\c2xx_bpX.out sf_pe.out 

 

Now the device should be serially programmable as per usual. 
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Appendix F – Timing Diagrams 

F.1 – HCTL-2016 Timing Diagram and Timing Table 
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F.2 – TMS320F243 Timing Diagram 
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F.3 – TMS320F243 Timing Table 
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Appendix G – Integrated Semiconductor Datasheets 

G.1 – TMS320F243 DSP Datasheet 
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G.2 – HCTL-2016 QDEC Datasheet 
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