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ABSTRACT 

The purpose of this thesis is to develop a self-supervised, learning, feed-forward 

control algorithm.  The motivation to develop such an algorithm is the University of 

Queensland’s GuRoo robot.  The GuRoo has significant errors in the control of the 

motors, due to such forces as gravity, backlash of gear trains, and less than accurate 

inverse dynamics of the joints.  A Fuzzy Associative Memory (FAM) block learns a 

compensation signal that augments the input signal to the conventional control loop.  

The control algorithm is designed to minimise the error for cyclic motions, where the 

error can be predicted at each point in the phase of the cycle. 

 

The FAM algorithm is based on Fuzzy Logic, which involves fuzzification of input 

values to a fuzzy set using a membership function.  The Associative Memory system 

then uses the fuzzy set as an index to a lookup table, which contains the appropriate 

compensation signal.  This compensation signal is learnt based on the position error 

in the system, and is stored in the lookup table. 

 

The algorithm was tested on a second-order cart model, showing a significant 

improvement in trajectory tracking of the cart over a conventional controller.  The 

shape of the membership function within the Fuzzy Logic system, and the learning 

rate were found to be the largest factors influencing the behaviour of the system.  

Preliminary development of the algorithm on the GuRoo simulator has shown 

promising results.  Compensation for single joints has produced significant trajectory 

tracking improvement.  Multi-joint compensation has been complicated by 

simultaneous learning of the joints which has introduced instabilities to the system.  

This area will require further development before the algorithm can be completely 

utilised by the GuRoo robot. 
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1. INTRODUCTION 

The aim of this thesis is to develop a control algorithm that is able to accurately 

control the motion of dynamic systems, in particular, robotic arms, without precise 

knowledge of the inverse dynamics of the system.  In the past, the inverse dynamics 

of a system have been approximated to control the system.  This technique may 

provide favourable results in some applications, however there will always be some 

error if the inverse dynamics have not been correctly approximated.  This thesis 

provides a new control approach that eliminates the error in an approximated control 

system. 

 

The developed algorithm is based on the Trajectory Error Learning (TEL) model.  

The Trajectory Error Learning model learns by eliminating the trajectory error in a 

control system.  The form of the error must be cyclic so that the model may provide a 

compensation signal corresponding to each degree throughout the cycle. 

 

The algorithm was developed and tested on a simple second order model, proving the 

concept.  The algorithm was then applied to the University of Queensland’s GuRoo 

simulator.  Testing on the GuRoo simulator showed that the algorithm gave 

significant trajectory tracking improvement. 

 

1.1. THE PROBLEM 

The conventional control approach of Proportional Integral Derivative (PID) control 

is the best way to control a system, given the inverse dynamics are known, or may be 

determined otherwise.  For complex systems, such as robot arms, it may be difficult 

or even impossible to determine the inverse dynamics of the system. 
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By using an approximated controller, modelled on the approximate inverse dynamics 

of the system, the control system may contain some degree of error.  This may be in 

the form of an error in phase, amplitude, or a combination of these.  As an example, 

consider the position plot of a second order dynamic system shown in Figure 1.1 

below.  The position of the actuator is controlled using a suboptimal Proportional 

Derivative (PD) controller.  The red line depicts the desired position of the actuator, 

and the blue line depicts the actual position of the actuator. 

 

 

Figure 1.1 – Desired and actual position versus time 

 

The difference between the desired and actual position of the actuator is an example 

of the error that may be generated by a control system using an approximation of the 

inverse dynamics, and hence, an approximated control system.  In this example, there 

is a significant error in both the amplitude, phase and waveform of the signal.  The 

aim of this thesis is to develop a control algorithm that will minimise the error to zero 

over a period of time. 
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1.2. THE APPROACH 

An algorithm based on Fuzzy Logic provides the basis for the implementation of the 

Trajectory Error Learning model.  The system also takes advantage of an Associative 

Memory system, allowing the system to become adaptive.  In the past, Fuzzy Logic 

has been used as an alternative approach to conventional PID control theory.  In this 

application, Fuzzy Logic will be used in conjunction with an existing PID control 

loop. 

 

The architecture of the control system flow has been developed previously by Kee 

and Wyeth [Kee, Wyeth, 2003].  The architecture of the control system contains a 

feed-forward component, which contains the Fuzzy Associative Memory (FAM) 

system.  This component provides a compensation signal to the desired signal, to 

minimise the error in the system.  The compensation signal is driven by the error in 

the system, and the phase of the desired position.  Figure 1.2 shows the architecture 

of the control system. 

 

 

Figure 1.2 – Architecture of control system 
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1.3. THE GUROO 

The University of Queensland has a research project concerned with the development 

of a humanoid robot, called the GuRoo.  The GuRoo is a 1.2 metre tall, 40 kilogram, 

23 degree of freedom android robot, shown below in Figure 1.3.  The GuRoo is part 

of an international competition known as RoboCup. 

 

The ultimate goal of the RoboCup project is by 2050, to develop a team of fully 

autonomous humanoid robots that can win against the human world champion team 

in soccer [The RoboCup Federation, 1998-2003].  To achieve this goal, a team of 

robots must be built that can perform agile athletic tasks such as running, kicking, and 

tackling.  These are long-term goals which will only be met by first creating a robot 

with a strong, dynamic gait.  To achieve this, the control of the joints must be very 

precise.  The GuRoo is able to walk short distances with little trouble, albeit with 

some trajectory error in its joints. 

 

 

Figure 1.3 – University of Queensland’s Robot, the GuRoo [Pike, 2003] 
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1.4. GOALS 

The fundamental aim of this thesis is to determine if a Fuzzy Associative Memory 

system is a viable model to minimise the error in the control of dynamic systems, in 

particular, the GuRoo robot.  Further to this aim, it is hoped that the Fuzzy 

Associative Memory system may provide an alternative to the previously developed 

Cerebellar Model Articulation Controller (CMAC) system [Kee, 2003]. 

 

Specifically, the aims of the Fuzzy Associative Memory system are: 

 

• Provide a simple control structure that may be used to more accurately control 

dynamic systems. 

• Use a small amount of computer memory and processor power, such that 

implementation on a microcontroller is viable. 

• Be applied to the GuRoo to give the robot an ability to be more human-like.  

That is, allow the robot to ‘learn’ how to control its limbs in any given 

situation such as in a new physical environment. 

 

1.5. THESIS OUTLINE 

The following chapters document the research and development of this thesis. 

 

Chapter 2 describes the Trajectory Error Learning model and the previous research 

completed on the Cerebellar Model Articulation Controller network.  This chapter 

outlines the Fuzzy Associative Memory system and other studies in this field.  

Further explanations of Fuzzy Logic and the adaptations of this technique are detailed 

in this chapter also. 

 

Chapter 3 describes the integration of the FAM algorithm into the TEL model. 
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Chapter 4 documents the development and testing of algorithm on the single 

dimension, second order cart model.  The chapter goes through the process of 

developing the algorithm, testing the algorithm, and porting the algorithm from the 

Matlab platform, to the C platform.  This chapter also delivers the fixed-point 

arithmetic implementation of the FAM algorithm. 

 

Chapter 5 documents the development and testing of the FAM algorithm on the 

GuRoo simulator.  The chapter covers a series of experiments performed, with 

explanations of the results. 

 

Chapter 6 provides a conclusion to the work and outlines the direction of any further 

work on this topic. 
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2. LITERATURE REVIEW 

The problem of mobility is one of the largest problems faced when creating a 

humanoid robot [Kee, 2003].  Creating a robot that can walk on two legs with a 

regular human-like gait is an extremely difficult problem.  Actuation of the joints is 

one of the most significant factors of this problem.  A human has many muscles that 

generate large torques to move each of its limbs, controlled by senses, such as touch, 

sight, hearing, balance and neural information.  To command a robot to perform such 

behaviours as walking and running, the control of its artificial limbs must be very 

precise. 

 

2.1. TRAJECTORY ERROR LEARNING 

The Trajectory Error Learning technique was described by Collins in 2002.  

Trajectory Error Learning uses the trajectory error generated to train a learning 

module.  A system implementing Trajectory Error Learning should theoretically give 

a response that will maintain zero trajectory error [Collins, 2002].  The purpose of 

Collins’ implementation of the Trajectory Error Learning technique was to reduce the 

error caused in a controlled system by sensory delay.  Although this is a problem in 

many control systems, the effects of sensory delay in the GuRoo are insignificant 

when compared to the errors caused by approximated inverse dynamics and 

mechanical issues such backlash of the gear trains. 
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2.2. CEREBELLAR MODEL ARTICULATION CONTROLLER 

The learning module used by Collins was the Cerebellar Model Articulation 

Controller neural network.  Collins showed that the CMAC network could learn a 

compensation signal for the TEL model.  This work was motivated by a sensory delay 

problem.  Kee furthered this work to use Trajectory Error Learning, based on a 

CMAC neural network to assist a conventional Proportional Integral (PI) controller 

with trajectory tracking for a robot joint.  Kee showed that the CMAC neural 

network, based on the TEL model could minimise the trajectory tracking error in a 

robot joint.  [Collins, 2002]  [Kee, 2003] 

 

The CMAC neural network is an alternative to the back propagation-trained analog 

neural network.  The CMAC has advantages including local generalisation, functional 

representation, output superposition, and fast practical hardware realisation.  The 

CMAC may be described in three main stages: the input space, the mechanism of 

generalisation, and the output stage.  The input space consists of a quantised set of all 

allowable inputs.  The mechanism of generalisation may be viewed as a set of lookup 

tables, known as Association Units (AUs).  Each input combination is mapped to an 

address for each AU.  At the output stage, the weights from each of the AUs are 

summed to produce a real output.  [Miller; Glanz; Kraft, 1990]  [Kee, Wyeth, 2003] 

 

The system has the ability to learn by adjusting the weights within the AUs according 

to an error signal during a learning phase.  The CMAC system implemented on the 

GuRoo was trained using a training rule based on the Least Means Square training 

rule.  This training rule is shown in the equation below.  [Kee, 2003]  [Widrow, 

Stearns, 1985] 

( ) )1(ε
α
n

ww oldnew +←  

where: wnew = new weight value wold = old weight value 

 α = learning rate n = number of AUs 

 ε = error  
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2.3. FUZZY LOGIC CONTROL SYSTEMS 

Fuzzy control systems are an alternative control method to conventional PID control.  

Fuzzy control has many advantages, including that an accurate analytical model is not 

required, human experience may be applied, provides greater robustness and fault-

tolerance [Si; Zhang; Tang, 1999].  While PID controllers provide a precise 

mathematical output for a given input, fuzzy logic works on a set of IF-THEN rules, 

integrated by membership functions.  Fuzzy systems work in three stages.  In the first 

stage, the inputs are ‘fuzzified’ using membership functions.  This converts the 

numerical inputs into fuzzy states.  The fuzzy rules are then applied to the ‘fuzzified’ 

inputs, producing a new set of ‘fuzzified’ variables.  These variables represent the 

output or solution variable.  Finally, the new fuzzy set is ‘defuzzified’, to produce a 

single output variable to the problem.  Membership functions are used to determine 

the fuzzy set to which a value belongs and the degree of membership in that set [Self, 

1990]. 

 

By combining a neural network with a fuzzy logic controller, the ability for a control 

system to ‘learn’ becomes a reality.  The integration of a neural network gives the 

fuzzy rules the ability to change with time.  For the control system to internally 

generate the fuzzy rules, an appropriate neural network scheme is required.  Fuzzy 

Associative Memory is a control system which combines a Self Organised Feature 

Mapping (SOFM) neural network methodology with a fuzzy logic control system 

structure [Si; Zhang; Tang, 1999].  Figure 2.1 shows the Fuzzy Associative Memory 

Model. 

 

Figure 2.1 – The Fuzzy Associative Memory model [Si; Zhang; Tang, 1999] 
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2.4. EXPLANATION OF FUZZY LOGIC 

The Fuzzy Associative Memory system is based on Fuzzy Logic.  Therefore, to 

understand how the FAM works, it is important to understand how Fuzzy Logic 

works.  As declared above, a Fuzzy Logic system works in three stages, fuzzification 

of input variables using membership functions, application of fuzzy rules, and 

defuzzification of fuzzy variables to a real output variable.  Of these three layers, the 

fuzzification and defuzzification layers are implemented directly in the FAM system; 

however the application of the fuzzy rules is not.  The rules form part of the 

Associative Memory layer of the FAM.  The rules will appear to evolve over time, 

according to the error in the system. 

 

The fuzzification layer is facilitated by using a ‘membership function’.  Membership 

functions come in a variety of shapes, and choosing the shape of the membership is a 

vital part of the design process for a Fuzzy Logic system.  A common shape for a 

membership function is a simple triangle.  Figure 2.2 shows an example of a simple 

triangular shaped membership function. 

 

 

Figure 2.2 – Triangular shaped membership function 
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The membership function is made up of a series of fuzzy variables.  In Figure 3.2 

there are seven fuzzy variables.  These variables are abbreviated as follows: 

LN: Large Negative 

MN: Medium Negative 

SN: Small Negative 

Z: Zero 

SP: Small Positive 

MP: Medium Positive 

LP: Large Positive 

 

It is important to remember that the fuzzy variable names are used only as an 

example, and in a fuzzy system, there may be an arbitrary number of fuzzy variables 

for each input variable depending on the design of the system.  The fuzzy variables 

represent a state of the input variable.  The Degree of Membership (DOM) gives a 

measure of the amount the input variable corresponds to the given fuzzy variable.  

The set of numbers given by the membership function is called a fuzzy set.  Because 

of the nature of the triangular shaped membership function, no more than two fuzzy 

variables can have a non-zero DOM in a fuzzy set.  For example, Figure 2.3 shows 

the fuzzification of the input value = 1.2.  The corresponding fuzzy set for that input 

variable would be {0, 0, 0, 0, 0.8, 0.2, 0}. 

 

 

Figure 2.3 – Fuzzification of input value = 1.2 
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In any Fuzzy Logic system, all input variables are fuzzified to form their 

corresponding fuzzy sets.  The next step is the application of the fuzzy rules.  In a 

classic Fuzzy Logic system, the rules will be made up of a set of IF THEN 

statements.  For example, with a two input system, IF Input01 is LN AND 

Input02 is MN THEN Output01 is MP. 

 

Defuzzification is concerned with generating a real output parameter from the outputs 

of the fuzzy rules.  There are many methods of defuzzification, including: 

• Singleton method 

• Centre of gravity method 

• Mean of maximum method 

• Weighted sum method 

 

This thesis is primarily concerned with the weighted sum method, which will now be 

explained further.  Take for instance a two input variable system with a triangular 

shaped membership function.  As explained above, no more than two fuzzy variables 

in each fuzzy set can have a non-zero DOM.  This would mean that at most, there 

would be four applicable fuzzy rules, giving four output fuzzy variables.  The 

weighted sum defuzzification method involves multiplying the DOM of the 

corresponding fuzzy variables of a rule with the output fuzzy variable value.  This 

process would be repeated for each fuzzy rule, and the results summed to give a real 

output parameter. 

 

For example, with the names of the fuzzy variables abbreviated as above, let a two 

input Fuzzy Logic system have the fuzzy sets of: 

Input01 = {0.0, 0.0, 0.0,  0.0,  0.4, 0.6, 0.0}, and 

Input02 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.3}, with fuzzy variable names of 

     {LN, MN, SN,  Z,  SP, MP, LP}. 
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Let the only applicable fuzzy rules be: 

IF Input01 is SP AND Input02 is MP THEN Output01 is MP, 

IF Input01 is MP AND Input02 is MP THEN Output01 is MP, 

IF Input01 is MP AND Input02 is LP THEN Output01 is LP. 

 

Also, let the output fuzzy variables have the arbitrary values of: 

{-60.0, -40.0, -20.0, 0.0, 20.0, 40.0, 60.0}. 

The weighted sum value of the real output parameter would be: 

( ) ( ) ( )
38.8

0.603.06.00.407.06.00.407.04.0Output01

=

××+××+××=
 

 

2.5. ASSOCIATIVE MEMORY 

The Associative Memory system has two purposes.  The first purpose is to implement 

the Fuzzy Logic rules.  A complete set of generic fuzzy rules are implemented by the 

Associative Memory system.  This implementation gives the system the ability to 

evolve the behaviour of the rules while the system is running.  To fulfil a complete set 

of generic fuzzy rules, there must be a complete set of output fuzzy variables.  This 

means that if a two input fuzzy system is fuzzified into five fuzzy variables each, 

there would be five times five, which equals twenty-five fuzzy output variables.  This 

may be seen easily by looking at the system from a multi-dimensional perspective.  

The number of dimensions of the output fuzzy variable set is equal to the number of 

input variables.  So a two input fuzzy system would have a two dimensional fuzzy 

output variable set.  Figure 2.4 shows this in a graphical manner. 
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Figure 2.4 – Graphical description of input and output fuzzy sets 

 

The second purpose of the Associative Memory is to give the system a way of 

altering the output fuzzy variable values while the system is running.  This way, the 

output of the system may seemingly ‘evolve’ as the system iterates throughout each 

cycle.  The output fuzzy variable set is given the name of the ‘lookup table’. 

 

When the system is started, the lookup table is initially empty, that is, full of zeros.  

Throughout each iteration, the lookup table is then updated using a learning rule.  The 

learning rule is directly proportional to the error in the system.  The effect of the error 

in the system is governed by a constant known as the learning rate.  The learning rule 

based on equation (1) above, is described by the following equation: 

 

)2(εα ×+= oldnew ww  

where: wnew = new weight value wold = old weight value 

 α = learning rate ε = error 

 

Only the appropriate table entries are updated on each control loop.  The table entries 

that will be updated are decided according to which input fuzzy variables are non-

zero.  For example, consider the two input fuzzy sets Input01 = {0.0, 0.0, 0.6, 0.4, 

0.0} and Input02 = {0.0, 0.2, 0.8, 0.0, 0.0}.  Figure 2.5 shows the four entries in the 

lookup table that would be updated according to the learning rule. 
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Figure 2.5 – Corresponding lookup table entries to be updated 

 

2.6. DESIGN OF A FAM 

A Fuzzy Associative Memory system is a combination of a Fuzzy Logic control 

system and an Associative Memory system.  When designing a FAM, there are some 

important design parameters which must be carefully chosen to ensure stability, and 

to provide acceptable learning times.  A list of design parameters is described below: 

 

• Regarding the shape of membership functions; 

o Generally the shape is of triangular form, however may be otherwise, 

o If triangular, the width and the number of triangles, otherwise, the 

shape of each of the fuzzy variables in the membership function, 

o The limits of the membership functions, that is, the input range of the 

membership function where input values are distinguishable. 

• Learning rate for the learning rule – a larger rate will cause the system to 

respond faster, however may increase overshoot, and cause stability problems. 
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The shape of the membership function has further implications in that the larger the 

number of fuzzy variables in a system, the larger the lookup table, and hence the 

more memory used by the control algorithm, and the more time required iterating 

throughout the elements in the for-loops, making the algorithm more processor 

intensive. 

 

2.7. COMPARISON OF FAM TO CMAC 

FAM and CMAC have some similarities as well as some distinguishing features. 

 

FAM and CMAC are both local generalisers, meaning that similar inputs will provide 

similar outputs.  Both FAM and CMAC make use of a lookup table structure.  This 

gives both control systems the ability to be easily implemented in the digital realm, 

and provides quick response times.  FAM and CMAC can be applied to large 

networks because of the small number of calculations per input [Miller; Glanz; Kraft, 

1990]. 

 

CMAC uses more memory than FAM, because the input-output characteristics of 

CMAC are continuous, while those of FAM are discrete.  CMAC must be trained 

offline, whereas FAM may calculate the outputs online. 

 

The most distinguishing advantage of FAM over CMAC is the ability for a FAM 

controller to learn online.  This means that when a physical situation changes, the 

robot may learn how to behave in the new environment, rather than having to be 

turned off and taught offline. 
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3. OVERVIEW OF DESIGN: FAM 

Following the research on FAM and CMAC, the approach to be taken with the thesis 

will be to implement a FAM control system according to the TEL technique. 

 

3.1. TRAJECTORY ERROR LEARNING 

The Trajectory Error Learning provides the basic model for the Fuzzy Associative 

Memory system.  Trajectory Error Learning, as its name suggests, involves 

minimising the trajectory error in the system.  Trajectory Error Learning is applicable 

to systems that have a cyclic motion.  The cyclic motion of the system will cause a 

cyclic error.  This cyclic error may be minimised by augmenting the desired trajectory 

according to a compensation signal.  The compensation signal is unique for each 

known position throughout the cyclic motion.  With each iteration of motion, the 

error becomes smaller, affecting the compensation signal less.  This pattern continues 

until the error is minimised, and the change in the compensation signal is 

insignificant.  This evolution of the compensation signal over time may be seen as the 

learning time of the system. 

 

As has already been introduced, the architecture of the control system involves a 

feed-forward component, in which the Fuzzy Associative Memory will reside.  Figure 

3.1 shows this architecture. 

 

 

Figure 3.1 – Architecture of control system 
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The Trajectory Generator block provides the system with the desired position of the 

actuator, and the phase of the cycle for the desired position.  The control system may 

be defined by a conventional PID controller approximating the inverse dynamics of 

the dynamic system.  The Fuzzy Associative Memory system uses the inputs of the 

desired and actual position to derive the error in the system, while the trajectory phase 

provides the FAM with the necessary information regarding the current stage of the 

trajectory.  The FAM provides a compensation signal that is added to the desired 

position signal, to compensate for the error in the controller, and with the aim to 

achieve exactly the desired position at the output. 

 

In this thesis, a study of the triangular shaped membership function will be 

performed.  A learning rule based on the Least Means Square training rule will be 

used, see equation (2) above. 
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4. CART MODEL DEVELOPMENT 

In order to develop and test the Fuzzy Associative Memory control algorithm, a 

single plane-of-motion, second order cart model was developed in Matlab.  This 

section presents the second order cart model, and the subsequent experimental results. 

 

4.1. MATLAB/SIMULINK IMPLEMENTATION 

A second order cart model was developed and implemented in Matlab.  The free body 

diagram shown in Figure 4.1 shows the external and damping forces on the cart. 

 

 

Figure 4.1 – Free body diagram of cart 

 

4.1.1. Cart Transfer Functions 

The following equations describe the mathematics and explain the derivation of the 

transfer function of the cart model. 
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With a cart mass of ten kilograms and a drag force of two kilograms per second, the 

plant transfer function is as follows. 

 

ss
sG

2.0

1.0
)(

2 +
=  

 

To provide an adequate amount of error in the system, a rough controller was 

developed using Matlab’s SISO tool.  A suboptimal PD controller was developed, 

with transfer function shown below. 

 

( )122)( +×= ssGC  

 

The controlled system produces a step response as shown in Figure 4.2.  It can be 

seen that the controller is quite slow, with rise time about six seconds, and settle time 

approximately ten seconds. 

 

 

Figure 4.2 – Step response of controlled system 
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4.1.2. Simulink Model 

Figure 4.3 shows an abbreviated summary of the model developed in Matlab.  The 

trajectory generator is a sine wave, and the trajectory phase is generated by a saw-

tooth signal. 

 

 

Figure 4.3 – Simulink model 

 

The Fuzzy Associative Memory system is called via a Matlab callback function.  The 

FAM algorithm is implemented in this Matlab function.  The inputs to the FAM are 

the actual cart position, desired cart position and the phase.  The actual cart position 

and phase signals are fuzzified, while the desired cart position is used in conjunction 

with the actual cart position to calculate the error in position. 

 

4.1.3. Matlab Data Structures 

The FAM algorithm utilizes Matlab’s data structures.  The input variable data 

structures are made up of four members: 

1. An identification string for the input variable, 

2. A scalar value describing the half width of the triangles in the membership 

function, 

3. An array containing the centres of the triangles in the membership function, 

4. An array containing the degree of membership of each of the fuzzy variables 

to the input value. 
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4.1.4. Implementation of the Fuzzification Layer 

The fuzzification layer of the algorithm is broken into two main sections.  The higher 

level section deals with iterating through each fuzzy variable.  The lower level section 

calculates the corresponding degree of membership of the input value to a fuzzy 

variable according to the membership function.  The calculation of the degree of 

membership for each fuzzy variable requires finding the corresponding value on the 

triangle.  To find the value on the triangle, consider the triangle in Figure 4.4, with the 

centre of the triangle, c, and input variable value, u.  There are three different 

conditions; cu < , cu = , and cu > . 

 

 

Figure 4.4 – Section of triangular membership function 

 

For cu = , the degree of membership is equal to one.  For cu <  and cu > , the 

gradient of each line is expressed as 
w

m
1

±= .  A transformation to the origin may be 

performed by finding the absolute difference between the input value and the centre 

of the triangle.  The degree of membership may then be found by using the equation 

for a linear function, mxy = .  Figure 4.5 shows the transformed triangle. 
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Figure 4.5 – Transformed triangle 

 

The height of the inner triangle � is given by 
w

cu
mxy

−
== .  To calculate the 

degree of membership, this value is subtracted from one, giving the following 

equations for the degree of membership: 

 









<
−

−

>
−

−
=

      if    1

or , if    1

cu
w

uc

cu
w

cu

DOM   (3) 

 

The shape of the membership function for the two extreme fuzzy variables requires a 

special case.  Figure 4.6 shows the shape of the membership function for the most 

negative and most positive fuzzy variables. 
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Figure 4.6 – Shape of membership function at extremes 

 

The following Matlab code calculates the degree of membership to the most negative 

and most positive fuzzy variables.  The functions are based on the function presented 

above.  If the input value is less than or equal to, or, greater than or equal to the centre 

point, respectively, a value of one is returned.  In other cases, the degree of 

membership is calculated according to the equation described above. 

 

The higher level section of the fuzzification layer of the algorithm deals with iterating 

through each fuzzy variable.  For input values, the extreme fuzzy variables are 

fuzzified using the special case as described, while the central fuzzy variables are 

fuzzified according to equation (3).  Fuzzification of the phase value requires a 

further special case.  The extreme fuzzy variables are combined to facilitate the ‘wrap 

around’ effect required. 
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4.1.5. Fuzzification of the Phase Variable 

The phase variable allows each point in the cyclic motion to be uniquely identified.  

This allows the FAM algorithm to provide a unique compensation signal for each 

point in the motion.  The fuzzification of the phase input variable requires careful 

consideration.  As Figure 4.7 shows, the phase signal is a saw-tooth shaped 

waveform, looping instantaneously from the maximum value to the minimum value 

at the end of each cycle. 

 

 

Figure 4.7 – Phase signal 

 

When fuzzifying the phase signal to fuzzy variables, it can be seen that the large 

positive fuzzy variable would be related to the large negative fuzzy variable.  The two 

extreme fuzzy variables should be represented by a single fuzzy variable.  The shape 

of the membership function must effectively ‘wrap around’.  It may be visualised by 

considering the membership function being described in a circle dimension rather 

than a planar dimension. 
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4.1.6. Calculation of the Compensation Value 

The compensation value may be calculated by performing matrix multiplication of 

the arrays containing the degree of membership for each input variable.  The resulting 

matrix is then dot multiplied with the lookup table.  The summation of the elements 

in the resulting matrix gives the compensation value.  As an example, consider the 

following system.  Let the fuzzy set for the input variable be { }005.05.00 , 

and the fuzzy set for the phase variable be { }075.025.000 .  The matrix 

multiplication of these two arrays would be: 

[ ]























=×























00000

00000

0375.0125.000

0375.0125.000

00000

00.075.025.000.000.0

00.0

00.0

50.0

50.0

00.0

 

Let the lookup table be 























−−−−−

−−−−−

1.00.14.10.15.2

3.20.14.14.12.0

7.40.14.16.15.2

1.06.14.10.15.2

5.25.13.10.18.4

. 

Then, the dot multiplication would be: 





























































−=

−−−−−

−−−−−×

00000

00000

0375.0175.000

0600.0175.000

00000

1.00.14.10.15.2

3.20.14.14.12.0

7.40.14.16.15.2

1.06.14.10.15.2

5.25.13.10.18.4

00000

00000

0375.0125.000

0375.0125.000

00000

 

The compensation value is the sum of the elements in the resulting matrix, that is, 

975.0375.0600.0)175.0(175.0 =++−+=correction . 

These commands may be completed in one line of Matlab code, as follows. 

 

correction = sum(sum( (phase_mem.dom' * x_mem.dom) .* 

                      RULE_TABLE )); 
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The update for the lookup table may be performed in a similar way to calculating the 

compensation value.  The elements of the fuzzy sets which are non-zero are found 

using the Matlab function find.  The binary arrays are then matrix multiplied and 

scaled according to the error and learning rate.  This matrix is then added to the 

lookup table.  For example, consider the parameters defined above, let the error be 0.8 

and the learning rate be 0.05.  The update matrix would be: 

 

[ ]


















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


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



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
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0

0

1

1

0

 

 

The lookup table after this iteration of the control loop would then be: 

 


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
















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4.1.7. Stability 

The stability of the FAM compensated control system depends on the shape of the 

membership function.  If a disturbance occurs in the system, the membership function 

should be able to differ between large and small disturbances.  If the membership 

function is incorrectly shaped, that is, covers an insufficient range of input values, the 

same compensation signal may be given for significantly different sized disturbances, 

causing instabilities.  A large disturbance may cause the lookup table values to 

become significantly large, while a smaller disturbance may be compensated by the 

same signal.  A large learning rate will amplify this problem.  In general, a wide 

membership function with many triangles will provide the greatest stability.  This 

added stability however will come at the cost of more computer memory and more 

processor computations per control loop. 

 

4.1.8. Testing and Results of the Matlab Model 

The Matlab model was extensively tested, with many different input waveforms, and 

many different FAM parameters.  The first test was to use a step input, and compare 

the results of the FAM compensated system with the results from the stand alone PD 

controlled system.  The learning rate and the number of triangles in the membership 

functions were the two parameters that were adjusted. 

 

The main purpose of experiments with the step input is to have a basis for finding out 

the effects of adjusting the learning rate and the shape of the membership function.  

The model was run for a period of 40 seconds.  To ensure the phase signal had no 

effect on the system, the period of the phase signal was set to 500 seconds. 
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It is important to remember that when the number of triangles in the membership 

function changes, the width of the triangles also changes.  The membership function 

always covered the same input values for consistent testing.  This means that the 

centre of the end triangles should always be at the same input value.  For this test, the 

value was chosen to be 1.5.  Figure 4.8 shows this graphically.  With a step input, 

because the motion is not cyclic, the phase is redundant. 

 

 

Figure 4.8 – Alternate shape of membership functions 
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Step Input Experiment – Variations in membership function 

The first set of experiments was completed with a fixed learning rate of 0.01.  The 

number of triangles was varied from 5, 11, 21, 51, 101, and 201.  Figure 4.9 through 

Figure 4.14 shown below display the response of the cart in each of the different 

circumstances.  The red line is the desired step response of the cart.  The blue line 

shows the response of the uncompensated PD control loop, while the green line 

depicts the response of the FAM compensated controller. 

 

 

Figure 4.9 – Step response, 5 triangles in membership function 
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Figure 4.10 – Step response, 11 triangles in membership function 

 

 

Figure 4.11 – Step response, 21 triangles in membership function 
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Figure 4.12 – Step response, 51 triangles in membership function 

 

 

Figure 4.13 – Step response, 101 triangles in membership function 
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Figure 4.14 – Step response, 201 triangles in membership function 

 

The experiment showed that a small number of triangles in the membership function 

gave a faster response, at the compromise of larger overshoot.  As the number of 

triangles becomes larger, the overshoot is reduced, at the cost of a quicker response.  

Table 4.1 shows the response time and percent overshoot for each of the tests. 

 

Table 4.1 – Response time and percent overshoot results 

Number triangles Response Time (sec) Percent Overshoot 

5 7.5 30% 

11 7.7 10% 

21 7.6 5% 

51 6.5 3% 

101 7.5 2% 

201 8.2 1.5% 
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Step Input Experiment – Variations in learning rate 

The second experiment was to observe the effect of adjusting the learning rate.  

Figure 4.15 through Figure 4.20 below, show a series of step responses with 21 

triangles in the membership, and learning rates of 0.01, 0.025, 0.5, 0.1, 0.25 and 0.5 

respectively. 

 

 

Figure 4.15 – Step response, learning rate: 0.01 
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Figure 4.16 – Step response, learning rate: 0.025 

 

 

Figure 4.17 – Step response, learning rate: 0.05 
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Figure 4.18 – Step response, learning rate: 0.1 

 

 

Figure 4.19 – Step response, learning rate: 0.25 
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Figure 4.20 – Step response, learning rate: 0.5 

 

This experiment showed that an increase in the learning rate improves the response 

time of the control system without increasing overshoot.  Table 4.2 shows the 

response time and percent overshoot for each of the tests. 

 

Table 4.2 – Response time and percent overshoot results 

Learning Rate Response Time (sec) Percent Overshoot 

0.01 7.6 5% 

0.025 4.3 4.5% 

0.05 3.7 4% 

0.1 3.1 3% 

0.25 2.4 2% 

0.5 2.0 1.5% 
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Cart Experiment – Variations of input waveforms 

A series of experiments was completed with different shaped waveforms, including 

sinusoidal, square, triangular, and trapezoidal waveforms.  Figure 4.21 through Figure 

4.24 below, show the desired, uncompensated PD controlled, and FAM compensated 

position of the cart for each of the tested waveforms.  The FAM parameters used in 

each of the experiments is shown in Table 4.3. 

 

Table 4.3 – Parameters for waveforms experiment 

FAM Parameter Value 

Number of triangles in membership function 21 

Learning rate 0.05 

 

 

Figure 4.21 – Cart position: sinusoidal input 
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Figure 4.22 – Cart position: square wave input 

 

 

Figure 4.23 – Cart position: triangular input 
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Figure 4.24 – Cart position: trapezoidal input 

 

As can be seen, the algorithm is able to significantly improve trajectory tracking for 

each of these waveforms.  Careful inspection of Figure 4.22 and Figure 4.24 reveals 

the predictive nature of the FAM algorithm.  Immediately before the error becomes 

large within a cycle, the FAM position under-compensates in an effort to minimise 

the large error. 
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4.2. PORTING THE MODEL TO C 

The model was ported to C for further implementation on other platforms.  The model 

dynamics were converted to difference equations for implementation in C. 

 

4.2.1. C Implementation of Cart Model 

The control diagram below shows the states of the model. 

 

 

Figure 4.25 – Control diagram of cart model 

 

From Figure 4.25, the time-domain signal to the compensator is defined by the 

equation below. 
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The derivation of the time domain equation for the compensator is shown in the 

equation below. 
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From the equations of motion, the position of the cart is derived from the force, as 

shown in the equation below. 
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These equations were implemented in a for-loop that iterated through time, 

according to the simulation time and the step size.  The model was written in a 

separate C module to the FAM algorithm, to increase portability. 

 

4.2.2. C Implementation of FAM algorithm 

The Fuzzy Associative Memory algorithm was ported directly from Matlab M code to 

a C module, with little more than syntactical changes.  The same implementation of 

data structures was used, while the matrix multiplication and dot multiplication was 

manually calculated, implemented in a double for-loop. 

 

4.2.3. Testing and Results of the C Model 

The C model produced the desired results, with a similar improvement in trajectory 

tracking to the Matlab model.  The graph in Figure 4.26 shows the comparison 

between the results from the Matlab model and the results from the C model for a 

square shaped waveform.  The difference between the C model and the Matlab model 

may be caused by the approximations in the implementation of the plant and 

compensator in the time domain.  The behaviour of the C model also changes with the 

step size.  The chosen step size of 0.01 seconds gives reasonable accuracy, and gives 

a very short simulation time. 
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Figure 4.26 – Cart position of C model versus cart position of Matlab model 

 

4.3. FIXED-POINT IMPLEMENTATION 

To make the system portable to a number of operating environments, the FAM 

algorithm had to be converted from floating-point arithmetic, to a fixed-point 

arithmetic implementation.  This change would remove the requirement of having a 

floating-point capable processor, and remove the reliance of the math library, from 

the Windows API.  By using a fixed-point arithmetic implementation, the operating 

time for the algorithm is expected to decrease, giving better overall performance. 
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4.3.1. Changes to FAM algorithm 

To convert the system to fixed-point arithmetic, all variables in the algorithm were 

converted to base two.  This included the number and width of the triangles in the 

membership function, the learning rate, the degree of membership of an input value to 

a fuzzy variable, and the input and output values of the algorithm.  The number of 

triangles is required to be an odd number, so the number of triangles is a number of 

base two, plus one.  The learning rate is defined as an integer, with the error in the 

system right-shifted by that integer value, which is equivalent to dividing by two to 

the power of that number. 

 

The largest modifications to the FAM algorithm occurred in fuzzification stage of the 

algorithm, and in the calculation of the compensation signal.  With the fixed-point 

arithmetic, the height of the triangles in the membership function changes from a 

fractional value in between and inclusive of zero and one, to an integer value between 

zero and a number of the power of two.  A larger number provides greater resolution, 

and hence greater accuracy of the algorithm, however at the risk of overflow.  

Initially, a triangle height of 256 was chosen, which gave overflow.  A triangle height 

of 64 gave adequate accuracy without overflow. 

 

As shown above, the calculation of the compensation signal involves multiplying the 

degree of memberships of the separate input values.  When using fixed-point 

arithmetic, the integer values may be multiplied, and then multiplied by the 

corresponding value in the lookup table.  It is of utmost importance that this number 

does not overflow, as the compensation signal would become incorrect, and the 

algorithm would fail.  This number is then right-shifted by twice the height of the 

triangles. 
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4.3.2. Preventing Overflow in the Lookup Table 

It is important also to limit the values in the lookup table to prevent overflow.  

Although this is also a problem with the floating-point arithmetic implementation, it 

is more apparent in the fixed-point arithmetic implementation as the numbers are 

larger, and are more likely to overflow.  If overflow occurs within the lookup table, 

the compensation signal is corrupted.  To prevent overflow, the integers within the 

lookup table are limited to upper and lower bounds after they are updated. 

 

4.3.3. Output Limiting of Compensation Signal 

For the C model to be more realistic, output limiting was implemented on the 

compensation signal.  Because of the nature of the FAM system, unachievable input 

signals may be produced by the controller in an attempt improve trajectory tracking.  

In a physical model, this may involve providing a larger than allowable signal to an 

actuator, possibly causing physical damage to the actuator.  This is implemented by 

limiting the output value from the FAM algorithm to upper and lower bounds. 

 

4.3.4. Error plots 

A plot of the error in position gives an alternative view of the improvement in 

trajectory tracking.  Figure 4.27 shows the error for the cart tracking a sinusoidal 

path.  The error plot shows the convergence of the error to zero, with a waveform that 

is symmetric about the zero axis.  Error plots will be used to analyse the performance 

of the FAM algorithm throughout the following sections of this thesis. 
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Figure 4.27 – Error in position versus time 

 

4.3.5. Testing and Results of Fixed-Point Implementation 

The accuracy of the fixed-point arithmetic implementation was tested, using a series 

of different shaped waveforms in comparison against the floating-point 

implementation.  The effect of output limiting the compensation signal was also 

tested. 

 

 

 

 

 

 

 



 47 

Fixed-Point Arithmetic Experiment – Comparison to Floating-Point 

To check the accuracy of the fixed-point arithmetic implementation, a series of 

waveforms were tested for the floating and fixed-point arithmetic implementations, 

and the results compared.  The number of triangles in the membership function in 

both models was 17, while the learning rate was 0.0625.  Figure 4.28 through Figure 

4.30 below, show the difference in position between the floating and fixed-point 

arithmetic implementations for a series of waveforms. 

 

 

Figure 4.28 – Floating versus fixed-point arithmetic – sinusoidal wave 
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Figure 4.29 – Floating versus fixed-point arithmetic – square wave 

 

 

Figure 4.30 – Floating versus fixed-point arithmetic – triangular wave 
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The results show that the fixed-point arithmetic implementation is accurate when 

compared to the floating-point arithmetic implementation.  A significant difference is 

revealed when a square input is used, caused by rounding errors in the large 

compensation signal. 

 

Fixed-Point Arithmetic Experiment –Limiting Output Values 

A series of experiments were performed to analyse the effect of limiting the 

compensation signal.  The model and FAM parameters used in the experiment are 

shown in Table 4.4.  Figure 4.31 through Figure 4.34 below, show a comparison of 

the experiment performed with and without limiting the compensation signal 

respectively. 

 

Table 4.4 – Parameters for output limiting experiment 

FAM Parameter Value 

Number of triangles in membership function 17 

Learning rate 0.0625 

Height of triangles 32 

Lookup table value limit ±131072 

Output limit on compensation signal ±2 

 

As the figures below show, output limiting the compensation signal introduces a 

steady-state error to the system. 
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Figure 4.31 – Sine wave period six seconds 

 

 

Figure 4.32 – Compensation limiting – Sine wave period six seconds 
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Figure 4.33 – Sine wave period four seconds 

 

 

Figure 4.34 – Compensation limiting – Sine wave period four seconds 
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4.4. FINDINGS FROM CART MODEL 

The cart model provided a suitable platform to develop and test the FAM algorithm, 

and showed that significant trajectory tracking improvement could be achieved.  The 

cart model showed that the FAM algorithm could improve trajectory tracking for a 

variety of cyclic waveforms, from sinusoidal to square shaped waveforms.  This 

indicates that the FAM algorithm is a robust algorithm, and it was expected that the 

algorithm would significantly improve trajectory tracking on the GuRoo robot. 

 

The cart model gave a good feel for the behaviour of the algorithm, and the effects of 

adjusting the design parameters.  It was found that decreasing the number of triangles 

in the membership function gave a faster and less stable response, while increasing 

the learning rate had a similar effect.  The correct combination of these two critical 

design parameters would give the desired behaviour of reasonable response time with 

good stability.  The cost of increasing the number of triangles in the membership 

function was in both computer memory and processor time.  Although these problems 

are insignificant when used on a desktop workstation, the problems may become 

quite significant should the algorithm be implemented on microcontroller type 

systems with limited memory and processing power. 
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5. THE GUROO SIMULATOR 

The GuRoo robot provides a real world project to test the capabilities of the FAM 

algorithm.  The GuRoo robot is a complex dynamic system, with many degrees of 

freedom and less than perfect control loops.  The GuRoo simulator, based on the 

Dynamechs package by McMillian [McMillian, 1995], is a high fidelity dynamic 

simulation of the GuRoo robot.  The motor characteristics of the Direct Current (DC) 

motors are modelled, including stiction, armature resistance and damping co-efficient 

[Kee, 2003].  The GuRoo simulator provides the platform to test the FAM algorithm.  

This chapter describes the application of the FAM algorithm to the GuRoo simulator 

and the results of the experiments performed on the simulator. 

 

5.1. EXISTING JOINT CONTROL 

The GuRoo has a finely tuned PI control loop in velocity, controlling each of the DC 

motors.  This control loop corresponds to PD control in position.  The Proportional 

and Integral constants were determined using a genetic algorithm, with a fitness 

function minimising trajectory error and maximising joint smoothness [Roberts et al, 

2003]. 

5.2. THE CROUCHING BEHAVIOUR 

One of the simplest tasks the GuRoo can perform is the crouching behaviour.  In this 

behaviour, only the pitch joints of the hip, knee and ankle are actuated, with position 

error of the order of one degree.  Figure 5.1 shows the error in position for each of the 

described joints for a typical crouch over a period of five iterations.  The crouching 

behaviour parameters are shown in Table 5.1. 
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Table 5.1 – Crouch behaviour parameters 

Behaviour Parameter Value 

Crouch cycle time 4.0 seconds 

Maximum pitch ankle joint angle 16 degrees 

Maximum knee joint angle 35 degrees 

Maximum pitch hip joint angle 22 degrees 

 

 

Figure 5.1 – Error in position for a crouching behaviour 

 

The error plots show that even with a finely tuned PI control loop on each joint, a 

position error of the order of one degree exists for the crouching motion.  A position 

error of such magnitude may be large enough to cause the robot to become unstable 

and over-balance. 
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5.3. FAM IMPLEMENTATION 

The fixed-point arithmetic FAM module was ported directly from the cart model to 

the GuRoo simulator.  The FAM algorithm was used to augment the desired velocity 

signal of the control loop.  The input variables to the FAM algorithm are pre-scaled 

before they are fuzzified.  Pre-scaling allows the real input values to match in the 

input space of the FAM algorithm.  This pre-scaling allows for increased resolution 

when the input variables are fuzzified.  The phase signal is scaled and quantised to 

give a value between -512 and +512. 

 

5.4. EXPERIMENTS ON GUROO SIMULATOR 

A series of experiments were performed on the GuRoo simulator.  Many different 

inputs to the FAM algorithm were tested, with varying results.  The inputs tested 

were: 

• actual velocity, 

• error in velocity, 

• actual position, 

• and error in position. 

 

5.4.1. Fuzzification of Actual Velocity 

The initial approach was to use fuzzify on the actual velocity of the joints.  This was 

the intuitive approach, as the FAM algorithm provides a compensation signal to the 

desired position of the joints. 
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Actual Velocity Experiment – Single axis compensation 

Single axis compensation was applied to the left knee joint for the crouching 

behaviour, with a significant improvement in the trajectory tracking of the left knee, 

and minor improvements in the trajectory tracking of the left ankle and the left hip 

joints as well.  The FAM algorithm parameters that were used are shown in Table 5.2.  

The resulting trajectory error plot is shown in Figure 5.2. 

 

Table 5.2 – FAM algorithm parameters 

FAM Parameter Value 

Number of triangles in membership function 17 

Learning rate 0.0625 

Height of triangles 256 

Centre of end triangles for input membership function -65536, +65536 

Lookup table value limit ±131072 

Pre-scaler value for inputs 512 

Output limit on compensation signal ±10 
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Figure 5.2 – Error in position, fuzzification on actual velocity – single-axis 

 

As the error plot shows, the trajectory tracking has been significantly improved.  A 

trajectory tracking improvement of at least 20% has been achieved.  The learning 

time is about three crouching iterations. 

 

Actual Velocity Experiment – Multiple axis compensation 

The FAM algorithm was then expanded to compensate for all six joints in the 

crouching behaviour.  Each joint has its own lookup table, and corresponding 

compensation signal, derived from the error in its own joint.  Each joint used the 

same FAM parameters as shown above in Table 5.2.  Figure 5.3 shows the results of 

FAM compensation for each of the joints in the crouching behaviour. 
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Figure 5.3 – Error in position, fuzzification on actual velocity – multi-axis 

 

Figure 5.3 shows an improvement in the trajectory tracking of each of the joints, 

however, the error plots are not as smooth as the error plots from the cart model.  The 

learning time of the algorithm is fast, taking only a single iteration of the crouch 

behaviour to minimise the error. 

 

5.4.2. Fuzzification of Velocity Error 

An alternative approach to using the actual velocity as an input to the FAM algorithm 

is to fuzzify the error in velocity. 

 

 



 59 

Velocity Error Experiment – Multiple axis compensation 

Figure 5.4 shows the results of fuzzifying the error in velocity, for multiple axis 

compensation for the crouching behaviour.  The same FAM parameters as shown in 

Table 5.2 were again used in this experiment. 

 

 

Figure 5.4 – Error in position, fuzzification on velocity error – multi-axis 

 

This approach gave a slight improvement in the smoothness and symmetry of the 

trajectory tracking error plots; however the shape of the error plots is still far from the 

error plots obtained from the cart model. 
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5.4.3. Fuzzification of Actual Position 

Yet another alternative approach tested was to use the actual position as an input to 

the FAM algorithm. 

 

Actual Position Experiment – Multiple axis compensation 

The approach of fuzzifying the actual position was tested using the crouching 

behaviour.  The parameters described in Table 5.2 were used.  Figure 5.5 shows an 

example of the unstable error plots. 

 

 

Figure 5.5 – Error in position, fuzzification on actual position – multi-axis 

 

The error plot shows that this approach has yielded no stable trajectory tracking 

improvement. 
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5.4.4. Fuzzification of Position Error 

The final and most successful approach was to use the position error as an input to the 

FAM algorithm.  This approach yielded the quickest and most stable trajectory 

tracking improvement. 

 

Position Error Experiment – Multiple axis compensation test 1 

Figure 5.6 shows the best results for this approach, with the FAM parameters shown 

in Table 5.3 and Table 5.4.  The FAM algorithm was used to compensate the knee 

and hip joints only. 

 

Table 5.3 – FAM algorithm parameters 

FAM Parameter Value 

Number of triangles in membership function 33 

Learning rate 0.015625 

Height of triangles 256 

Centre of end triangles for input membership function -65536, +65536 

Lookup table value limit ±131072 

Output limit on compensation signal ±10 

 

Table 5.4 – FAM algorithm pre-scaler values 

GuRoo Joint Pre-scaler Value 

Left and right ankle forward joint 200 

Left and right knee joint 110 

Left and right hip forward joint 250 
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Figure 5.6 – Error in position, fuzzification on position error – multi-axis 

 

The error plot shows a significant improvement in the trajectory tracking of the joints.  

The error is reduced to a minimum almost immediately.  The error has been reduced 

to the extent that an improvement of almost 100% has been made. 

 

Position Error Experiment – Multiple axis compensation test 2 

Compensation of the ankle joint has exposed further complications to the system.  

With each joint in the leg learning, the effect of altering the motion of one joint may 

affect the motion of another joint.  Hence, if all joints are learning simultaneously, the 

system may become unstable.  This phenomenon is known as co-evolution.  

Extending the test above to compensate for the ankle joints exposes this problem.  

Figure 5.7 shows the error plot for that test. 
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Figure 5.7 – Error in position, fuzzification on position error – multi-axis 

 

The plot exposes an unstable trend in the error.  This experiment shows that 

compensation for all joints has been affected by the problem of co-evolution. 
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5.5. SURFACE PLOT OF LOOKUP TABLES 

A surface plot of the lookup table gives a visualisation of the compensation signal.  

This is helpful when fine tuning the FAM algorithm, as it shows the use of the lookup 

table, particularly, if the lookup table is becoming saturated.  If all of the elements in 

the lookup table are non-zero, it may indicate that the shape of the membership needs 

to be adjusted, particularly the limits.  Non-zero elements at the limits of the input 

variable axis give little room for disturbances, and because these fuzzy variables are 

more generalised, it can cause significant instabilities.  Figure 5.8 through Figure 5.10 

show the series of lookup tables generated in Position Error Experiment – Multiple 

axis compensation test 2 for the left leg only. 

 

 

Figure 5.8 – Lookup table for left ankle forward joint 
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Figure 5.9 – Lookup table for right ankle forward joint 

 

 

Figure 5.10 – Lookup table for left knee joint 
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Figure 5.8 through Figure 5.10 show the appropriate use of the lookup table.  The 

shape of the compensation signal in the input variable plane follows a roughly 

sinusoidal shape.  This is the expected shape, as it matches the uncompensated error 

in the joint. 

 

The values in the lookup table will become saturated and incorrect if the tuning 

parameters of the FAM are incorrect.  An example of an incorrectly used lookup table 

is shown in Figure 5.11.  Some of the values have saturated to the limits, and the end 

fuzzy input variables are non-zero, indicating that the range of input values the 

membership function covers is too narrow. 

 

 

Figure 5.11 – Incorrectly populated lookup table 
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6. CONCLUSIONS 

6.1. CONCLUSION 

In many instances, conventional feedback control is insufficient for controlling 

dynamic systems with many degrees of freedom and complex dynamic models.  The 

Trajectory Error Learning technique is a proven concept for improving trajectory 

tracking using a feed-forward control system.  The feed-forward control system may 

be best utilised by implementing a neural network to learn the compensation signal.  

The Fuzzy Associative Memory system is a successful feed-forward, predictive, self-

learning, self-supervised control approach to this problem. 

 

The FAM algorithm was successfully developed and tested on single plane-of-

motion, second order cart model in Matlab.  The cart model showed that in an ideal 

model the trajectory tracking error can be minimised to zero using the FAM 

algorithm.  The learning rate and the shape of the membership function were revealed 

to be the two major tuning parameters of the FAM algorithm.  An increase in the 

learning rate resulted in a faster response of the system, at the cost of larger 

overshoot.  Decreasing the number of triangles in the membership function quickened 

the response time without increasing overshoot, however at the cost of stability. 

 

Fixed-point arithmetic implementation in C revealed that the values in the lookup 

table had to be limited to prevent overflow and subsequent corruption of the 

compensation signal.  Output limiting the compensation signal revealed that a steady-

state error may be introduced, if the error in the PD control loop is large. 
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The implementation of this control system on the GuRoo robot has shown that a 

significant improvement in trajectory tracking error can be made using this algorithm.  

Fuzzification of the position error gave the best results, with an improvement in error 

of almost 100% within one iteration of the crouching behaviour. 

 

The FAM algorithm has out-performed the previous work using the CMAC system, 

in both computer resources including memory and processing power, and the control 

criteria of learning time. 

 

6.2. FURTHER WORK 

The Trajectory Error Learning model is a generic model, and may be applied to any 

control problem where trajectory tracking error needs to be minimised.  The FAM 

algorithm may be implemented on alternative control problems other than the motor 

position control problem. 

 

Further study of the application of the FAM algorithm to the GuRoo robot is required.  

The algorithm was unable to be tested on the real robot; instead this research has been 

limited to the GuRoo simulator.  A set of real results would confirm that this 

algorithm is a viable solution to the problem of improving trajectory tracking error in 

complex dynamic systems. 

 

A further study of the implementation of this algorithm to the joint controller boards 

[Hall, 2004] is also required.  Implementation on the joint controller boards would 

minimise the communication signals between the boards and the central processing 

unit of the GuRoo.  Implementation of the algorithm on the joint controller boards 

would require a thorough understanding of the capabilities of the joint controller 

boards, including processing power, memory availability, control loop rate, and 

algorithm completion time. 
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The co-evolutionary problem requires further study.  This problem occurs because 

multiple joints are being trained simultaneously, attempting to minimise the error in 

each joint.  When each joint is compensated, it not only affects the tracking of its 

joint, but due to the multi-degree of freedom in the system, it also affects the tracking 

of each of the other joints.  This process occurs in each of the joints, all affecting each 

other simultaneously. 

 

One approach to this problem is to extend the number of dimensions of the lookup 

table, such that a unique compensation signal is given for each position of all of the 

motors in a system.  This approach however would use more memory according to 

the size of the lookup table, and be more processor intensive, having to iterate 

through the larger lookup table. 
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APPENDIX A – FAM.C MODULE 

/**************************************** 
 * 
 * fam.c 
 * Christopher Myatt 
 * Created 2 August 2004 
 * Adaptive Feed-forward control algorithm: 
 * Fuzzy Associative Memory 
 * Last updated: 26 October 2004 
 * 
****************************************/ 
 
 
/* ****** */ 
/* macros */ 
/*        */ 
 
#define MAX(A,B) ((A) > (B) ? (A) : (B)) 
#define CEIL(A) ((A) > 0 ? 1 : 0) 
 
 
/* ********************* */ 
/* fam tuning parameters */ 
/*                       */ 
 
/* membership function made up of 2^(NUM_TRI) + 1 triangles */ 
#define NUM_TRIANGLES_PWR_TWO 4 
 
/* inverse of learning rate, closer to 1, larger rate */ 
#define LEARNING_RATE_PWR_TWO 4 
 
/* (soft) bounds of the inputs ie. -2^(LIMIT) < input < 2^(LIMIT) */ 
#define X_LIMIT_PWR_TWO 16 
#define PHASE_LIMIT_PWR_TWO 9 
 
/* the maximum degree of membership (the height of the triangles) */ 
#define DOM_MAX_PWR_TWO 5 
 
 
/* *****************/ 
/* fam definitions */ 
/*                 */ 
 
#define DOM_MAX (1<<DOM_MAX_PWR_TWO) 
 
#define NUM_TRIANGLES ((1<<NUM_TRIANGLES_PWR_TWO)+1) 
#define HALF_NUM_TRIANGLES (1<<(NUM_TRIANGLES_PWR_TWO-1)) 
 
#define X_TRIANGLE_WIDTH_PWR_TWO (X_LIMIT_PWR_TWO-NUM_TRIANGLES_PWR_TWO+1) 
#define PHASE_TRIANGLE_WIDTH_PWR_TWO (PHASE_LIMIT_PWR_TWO-NUM_TRIANGLES_PWR_TWO+1) 
 
#define X_TRIANGLE_WIDTH (1<<X_TRIANGLE_WIDTH_PWR_TWO) 
#define PHASE_TRIANGLE_WIDTH (1<<PHASE_TRIANGLE_WIDTH_PWR_TWO) 
 
#define LOOKUP_TABLE_MAX (1<<(X_LIMIT_PWR_TWO+1)) 
#define LOOKUP_TABLE_MIN (-(1<<(X_LIMIT_PWR_TWO+1))) 
 
 
/* **************** */ 
/* global variables */ 
/*                  */ 
 
int RuleTable[NUM_TRIANGLES-1][NUM_TRIANGLES]; 
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struct X_MEM { 
  int center[NUM_TRIANGLES]; 
  int dom[NUM_TRIANGLES]; 
} xMem; 
 
struct PHASE_MEM { 
  int center[NUM_TRIANGLES]; 
  int dom[NUM_TRIANGLES-1]; 
} phaseMem; 
 
 
/* ********** */ 
/* prototypes */ 
/*            */ 
 
void fuzzifyX(int u); 
void fuzzifyPhase(int u); 
int leftall(int u, int w, int c); 
int triangle(int u, int w, int c); 
int rightall(int u, int w, int c); 
 
/* ************** 
/* initFuzzySys() 
/*  
/* initialise the shape of the membership 
/* functions and the lookup table. 
/* ************** */ 
void initFuzzySys() { 
   
  int i, j; 
   
  /* calculate the center of each of the membership functions */ 
  for (i=0; i<NUM_TRIANGLES; i++) { 
    xMem.center[i] = (i - HALF_NUM_TRIANGLES) * X_TRIANGLE_WIDTH; 
    phaseMem.center[i] = (i - HALF_NUM_TRIANGLES) * 
                          PHASE_TRIANGLE_WIDTH; 
  } 
   
  /* initialise the rule table to zeros */ 
  for (i=0; i<NUM_TRIANGLES-1; i++) { 
    for (j=0; j<NUM_TRIANGLES; j++) { 
       
      RuleTable[i][j] = 0; 
    } 
  } 
} 
 
 
/* ************************************** 
/* int fam(int xDes, int phase, int xAct) 
/*  
/* the main function, calculates a corrections signal 
/* for a desired input, actual input, and phase signal. 
/* ************************************** */ 
int fam(int xDes, int phase, int xAct) { 
   
  int correction, error; 
  int i, j; 
   
  /* fuzzify the phase and the input variable */ 
  fuzzifyX(xAct); 
  fuzzifyPhase(phase); 
   
  correction = 0; 
  error = xDes - xAct; 
   
 
  /* the main loop, calculates the correction by iterating 
     through the rule table, and adjusts the rule table 
     according to the error */ 
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  for (i=0; i<NUM_TRIANGLES-1; i++) { 
    for (j=0; j<NUM_TRIANGLES; j++) { 
       
      correction = correction + ( (phaseMem.dom[i] * xMem.dom[j] * RuleTable[i][j]) 
                                   >> (DOM_MAX_PWR_TWO*2) ); 
      RuleTable[i][j] = RuleTable[i][j] + ( (CEIL(phaseMem.dom[i]) * CEIL(xMem.dom[j]) 
                                            * error) >> LEARNING_RATE_PWR_TWO ); 
       
      /* limit overflow in the lookup table */ 
      if (RuleTable[i][j] > LOOKUP_TABLE_MAX) RuleTable[i][j] = LOOKUP_TABLE_MAX; 
      else if (RuleTable[i][j] < LOOKUP_TABLE_MIN) RuleTable[i][j] = LOOKUP_TABLE_MIN; 
    } 
  } 
  return correction; 
} 
 
/* ******************** 
/* void fuzzifyX(int u) 
/*  
/* fuzzify the input variable. 
/* ******************** */ 
void fuzzifyX(int u) { 
   
  int i; 
   
  xMem.dom[0] = leftall(u, X_TRIANGLE_WIDTH_PWR_TWO, xMem.center[0]); 
   
  for (i=1; i<NUM_TRIANGLES-1; i++) { 
     
    xMem.dom[i] = triangle(u, X_TRIANGLE_WIDTH_PWR_TWO, xMem.center[i]); 
  } 
   
  xMem.dom[i] = rightall(u, X_TRIANGLE_WIDTH_PWR_TWO, xMem.center[i]); 
} 
 
/* ************************ 
/* void fuzzifyPhase(int u) 
/*  
/* fuzzify the phase - wrap around implemented. 
/* ************************ */ 
void fuzzifyPhase(int u) { 
   
  int i; 
   
  /* special case: wrap around of fuzzy variables */ 
  phaseMem.dom[0] = triangle(u, PHASE_TRIANGLE_WIDTH_PWR_TWO, phaseMem.center[0]) + 
        triangle(u, PHASE_TRIANGLE_WIDTH_PWR_TWO, phaseMem.center[NUM_TRIANGLES-1]); 
   
  for (i=1; i<NUM_TRIANGLES-1; i++) { 
     
    phaseMem.dom[i] = triangle(u, PHASE_TRIANGLE_WIDTH_PWR_TWO, phaseMem.center[i]); 
  } 
} 
 
/* ******************************** 
/* int leftall(int u, int w, int c) 
/*  
/* calculate degree of membership for a left-most fuzzy variable. 
/* ******************************** */ 
int leftall(int u, int w, int c) { 
   
  if (u <= c) return DOM_MAX; 
  else { 
    if (w >= DOM_MAX_PWR_TWO) 
      return MAX(0, (DOM_MAX - ((u-c) >> (w-DOM_MAX_PWR_TWO)))); 
    else 
      return MAX(0, (DOM_MAX - ((u-c) << (DOM_MAX_PWR_TWO-w)))); 
  } 
} 
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/* ********************************* 
/* int triangle(int u, int w, int c) 
/*  
/* calculate degree of membership for a standard fuzzy variable. 
/* ********************************* */ 
int triangle(int u, int w, int c) { 
   
  if (u == c) return DOM_MAX; 
  else if (u > c) { 
    if (w >= DOM_MAX_PWR_TWO) 
      return MAX(0, (DOM_MAX - ((u-c) >> (w-DOM_MAX_PWR_TWO)))); 
    else 
      return MAX(0, (DOM_MAX - ((u-c) << (DOM_MAX_PWR_TWO-w)))); 
  } 
  else { 
    if (w >= DOM_MAX_PWR_TWO) 
      return MAX(0, (DOM_MAX - ((c-u) >> (w-DOM_MAX_PWR_TWO)))); 
    else 
      return MAX(0, (DOM_MAX - ((c-u) << (DOM_MAX_PWR_TWO-w)))); 
  } 
} 
 
/* ********************************* 
/* int rightall(int u, int w, int c) 
/*  
/* calculate degree of membership for a right-most fuzzy variable. 
/* ********************************* */ 
int rightall(int u, int w, int c) { 
   
  if (u >= c) return DOM_MAX; 
  else { 
    if (w >= DOM_MAX_PWR_TWO) 
      return MAX(0, (DOM_MAX - ((c-u) >> (w-DOM_MAX_PWR_TWO)))); 
    else 
      return MAX(0, (DOM_MAX - ((c-u) << (DOM_MAX_PWR_TWO-w)))); 
  } 
} 

 

 

 


