

Undergraduate Thesis

Bachelor of Engineering (Mechatronic)

Feed-forward Control Algorithm

based on Fuzzy Logic

Christopher Myatt

The University of Queensland

The School of Information Technology and

Electrical Engineering

October 2004

 i

Christopher Myatt

University of Queensland

October 2004

Professor Paul Bailes,

Acting Head of School,

School of Information Technology and Electrical Engineering,

University of Queensland,

St Lucia QLD 4072.

Dear Professor Bailes,

In accordance with the requirements of the degree of Bachelor of Engineering

(Mechatronic), I present the following thesis entitled

“Feed-forward Control Algorithm based on Fuzzy Logic”

This thesis project was conducted under the supervision of Dr Gordon Wyeth.

I declare that the work submitted in this thesis is my own, except as acknowledged in

the text, and has not been previously submitted for a degree at the University of

Queensland or any other institution.

Yours sincerely,

Christopher Myatt

 ii

ACKNOWLEDGEMENTS

I would sincerely like to thank all the people involved in making this thesis possible.

This thesis could not have been completed without their contributions and support.

• My family for their unconditional support of my work throughout my

university time.

• Dr Gordon Wyeth for his guidance and encouragement of this research topic.

• Damien Kee for his time and invaluable knowledge of all things GuRoo.

• Fellow undergraduate thesis students, for helping me keep up the social

aspects of life, and always providing a laugh.

 iii

ABSTRACT

The purpose of this thesis is to develop a self-supervised, learning, feed-forward

control algorithm. The motivation to develop such an algorithm is the University of

Queensland’s GuRoo robot. The GuRoo has significant errors in the control of the

motors, due to such forces as gravity, backlash of gear trains, and less than accurate

inverse dynamics of the joints. A Fuzzy Associative Memory (FAM) block learns a

compensation signal that augments the input signal to the conventional control loop.

The control algorithm is designed to minimise the error for cyclic motions, where the

error can be predicted at each point in the phase of the cycle.

The FAM algorithm is based on Fuzzy Logic, which involves fuzzification of input

values to a fuzzy set using a membership function. The Associative Memory system

then uses the fuzzy set as an index to a lookup table, which contains the appropriate

compensation signal. This compensation signal is learnt based on the position error

in the system, and is stored in the lookup table.

The algorithm was tested on a second-order cart model, showing a significant

improvement in trajectory tracking of the cart over a conventional controller. The

shape of the membership function within the Fuzzy Logic system, and the learning

rate were found to be the largest factors influencing the behaviour of the system.

Preliminary development of the algorithm on the GuRoo simulator has shown

promising results. Compensation for single joints has produced significant trajectory

tracking improvement. Multi-joint compensation has been complicated by

simultaneous learning of the joints which has introduced instabilities to the system.

This area will require further development before the algorithm can be completely

utilised by the GuRoo robot.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

ABSTRACT ... iii

TABLE OF CONTENTS .. iv

TABLE OF FIGURES .. vi

TABLE OF TABLES .. viii

1. INTRODUCTION ...1

1.1. THE PROBLEM...1

1.2. THE APPROACH..3

1.3. THE GUROO...4

1.4. GOALS...5

1.5. THESIS OUTLINE...5

2. LITERATURE REVIEW ...7

2.1. TRAJECTORY ERROR LEARNING..7

2.2. CEREBELLAR MODEL ARTICULATION CONTROLLER8

2.3. FUZZY LOGIC CONTROL SYSTEMS..9

2.4. EXPLANATION OF FUZZY LOGIC...10

2.5. ASSOCIATIVE MEMORY ...13

2.6. DESIGN OF A FAM ..15

2.7. COMPARISON OF FAM TO CMAC ..16

3. OVERVIEW OF DESIGN: FAM ..17

3.1. TRAJECTORY ERROR LEARNING..17

4. CART MODEL DEVELOPMENT ...19

4.1. MATLAB/SIMULINK IMPLEMENTATION..19

4.1.1. Cart Transfer Functions ...19

4.1.2. Simulink Model ...21

4.1.3. Matlab Data Structures ..21

4.1.4. Implementation of the Fuzzification Layer ...22

4.1.5. Fuzzification of the Phase Variable...25

 v

4.1.6. Calculation of the Compensation Value ..26

4.1.7. Stability..28

4.1.8. Testing and Results of the Matlab Model..28

4.2. PORTING THE MODEL TO C ...41

4.2.1. C Implementation of Cart Model...41

4.2.2. C Implementation of FAM algorithm..42

4.2.3. Testing and Results of the C Model ..42

4.3. FIXED-POINT IMPLEMENTATION..43

4.3.1. Changes to FAM algorithm ...44

4.3.2. Preventing Overflow in the Lookup Table ..45

4.3.3. Output Limiting of Compensation Signal ...45

4.3.4. Error plots ..45

4.3.5. Testing and Results of Fixed-Point Implementation46

4.4. FINDINGS FROM CART MODEL ...52

5. THE GUROO SIMULATOR...53

5.1. EXISTING JOINT CONTROL ...53

5.2. THE CROUCHING BEHAVIOUR ..53

5.3. FAM IMPLEMENTATION ..55

5.4. EXPERIMENTS ON GUROO SIMULATOR...55

5.4.1. Fuzzification of Actual Velocity ...55

5.4.2. Fuzzification of Velocity Error..58

5.4.3. Fuzzification of Actual Position ..60

5.4.4. Fuzzification of Position Error ..61

5.5. SURFACE PLOT OF LOOKUP TABLES ...64

6. CONCLUSIONS..67

6.1. CONCLUSION ..67

6.2. FURTHER WORK ...68

BIBLIOGRAPHY.. viii

APPENDIX A – FAM.C MODULE...x

 vi

TABLE OF FIGURES

Figure 1.1 – Desired and actual position versus time..2

Figure 1.2 – Architecture of control system ..3

Figure 1.3 – University of Queensland’s Robot, the GuRoo [Pike, 2003]4

Figure 2.1 – The Fuzzy Associative Memory model [Si; Zhang; Tang, 1999]9

Figure 2.2 – Triangular shaped membership function...10

Figure 2.3 – Fuzzification of input value = 1.2 ...11

Figure 2.4 – Graphical description of input and output fuzzy sets..............................14

Figure 2.5 – Corresponding lookup table entries to be updated15

Figure 3.1 – Architecture of control system ..17

Figure 4.1 – Free body diagram of cart ...19

Figure 4.2 – Step response of controlled system ...20

Figure 4.3 – Simulink model ...21

Figure 4.4 – Section of triangular membership function...22

Figure 4.5 – Transformed triangle ...23

Figure 4.6 – Shape of membership function at extremes ..24

Figure 4.7 – Phase signal ...25

Figure 4.8 – Alternate shape of membership functions...29

Figure 4.9 – Step response, 5 triangles in membership function.................................30

Figure 4.10 – Step response, 11 triangles in membership function.............................31

Figure 4.11 – Step response, 21 triangles in membership function.............................31

Figure 4.12 – Step response, 51 triangles in membership function.............................32

Figure 4.13 – Step response, 101 triangles in membership function...........................32

Figure 4.14 – Step response, 201 triangles in membership function...........................33

Figure 4.15 – Step response, learning rate: 0.01 ...34

Figure 4.16 – Step response, learning rate: 0.025 ...35

Figure 4.17 – Step response, learning rate: 0.05 ...35

Figure 4.18 – Step response, learning rate: 0.1 ...36

Figure 4.19 – Step response, learning rate: 0.25 ...36

 vii

Figure 4.20 – Step response, learning rate: 0.5 ...37

Figure 4.21 – Cart position: sinusoidal input ..38

Figure 4.22 – Cart position: square wave input...39

Figure 4.23 – Cart position: triangular input ...39

Figure 4.24 – Cart position: trapezoidal input ...40

Figure 4.25 – Control diagram of cart model ..41

Figure 4.26 – Cart position of C model versus cart position of Matlab model43

Figure 4.27 – Error in position versus time ...46

Figure 4.28 – Floating versus fixed-point arithmetic – sinusoidal wave.....................47

Figure 4.29 – Floating versus fixed-point arithmetic – square wave48

Figure 4.30 – Floating versus fixed-point arithmetic – triangular wave48

Figure 4.31 – Sine wave period six seconds..50

Figure 4.32 – Compensation limiting – Sine wave period six seconds50

Figure 4.33 – Sine wave period four seconds..51

Figure 4.34 – Compensation limiting – Sine wave period four seconds51

Figure 5.1 – Error in position for a crouching behaviour ..54

Figure 5.2 – Error in position, fuzzification on actual velocity – single-axis57

Figure 5.3 – Error in position, fuzzification on actual velocity – multi-axis...............58

Figure 5.4 – Error in position, fuzzification on velocity error – multi-axis59

Figure 5.5 – Error in position, fuzzification on actual position – multi-axis...............60

Figure 5.6 – Error in position, fuzzification on position error – multi-axis62

Figure 5.7 – Error in position, fuzzification on position error – multi-axis63

Figure 5.8 – Lookup table for left ankle forward joint ..64

Figure 5.9 – Lookup table for right ankle forward joint..65

Figure 5.10 – Lookup table for left knee joint...65

Figure 5.11 – Incorrectly populated lookup table..66

 viii

TABLE OF TABLES

Table 4.1 – Response time and percent overshoot results ...33

Table 4.2 – Response time and percent overshoot results ...37

Table 4.3 – Parameters for waveforms experiment ...38

Table 4.4 – Parameters for output limiting experiment...49

Table 5.1 – Crouch behaviour parameters...54

Table 5.2 – FAM algorithm parameters ..56

Table 5.3 – FAM algorithm parameters ..61

Table 5.4 – FAM algorithm pre-scaler values ...61

 1

1. INTRODUCTION

The aim of this thesis is to develop a control algorithm that is able to accurately

control the motion of dynamic systems, in particular, robotic arms, without precise

knowledge of the inverse dynamics of the system. In the past, the inverse dynamics

of a system have been approximated to control the system. This technique may

provide favourable results in some applications, however there will always be some

error if the inverse dynamics have not been correctly approximated. This thesis

provides a new control approach that eliminates the error in an approximated control

system.

The developed algorithm is based on the Trajectory Error Learning (TEL) model.

The Trajectory Error Learning model learns by eliminating the trajectory error in a

control system. The form of the error must be cyclic so that the model may provide a

compensation signal corresponding to each degree throughout the cycle.

The algorithm was developed and tested on a simple second order model, proving the

concept. The algorithm was then applied to the University of Queensland’s GuRoo

simulator. Testing on the GuRoo simulator showed that the algorithm gave

significant trajectory tracking improvement.

1.1. THE PROBLEM

The conventional control approach of Proportional Integral Derivative (PID) control

is the best way to control a system, given the inverse dynamics are known, or may be

determined otherwise. For complex systems, such as robot arms, it may be difficult

or even impossible to determine the inverse dynamics of the system.

 2

By using an approximated controller, modelled on the approximate inverse dynamics

of the system, the control system may contain some degree of error. This may be in

the form of an error in phase, amplitude, or a combination of these. As an example,

consider the position plot of a second order dynamic system shown in Figure 1.1

below. The position of the actuator is controlled using a suboptimal Proportional

Derivative (PD) controller. The red line depicts the desired position of the actuator,

and the blue line depicts the actual position of the actuator.

Figure 1.1 – Desired and actual position versus time

The difference between the desired and actual position of the actuator is an example

of the error that may be generated by a control system using an approximation of the

inverse dynamics, and hence, an approximated control system. In this example, there

is a significant error in both the amplitude, phase and waveform of the signal. The

aim of this thesis is to develop a control algorithm that will minimise the error to zero

over a period of time.

 3

1.2. THE APPROACH

An algorithm based on Fuzzy Logic provides the basis for the implementation of the

Trajectory Error Learning model. The system also takes advantage of an Associative

Memory system, allowing the system to become adaptive. In the past, Fuzzy Logic

has been used as an alternative approach to conventional PID control theory. In this

application, Fuzzy Logic will be used in conjunction with an existing PID control

loop.

The architecture of the control system flow has been developed previously by Kee

and Wyeth [Kee, Wyeth, 2003]. The architecture of the control system contains a

feed-forward component, which contains the Fuzzy Associative Memory (FAM)

system. This component provides a compensation signal to the desired signal, to

minimise the error in the system. The compensation signal is driven by the error in

the system, and the phase of the desired position. Figure 1.2 shows the architecture

of the control system.

Figure 1.2 – Architecture of control system

 4

1.3. THE GUROO

The University of Queensland has a research project concerned with the development

of a humanoid robot, called the GuRoo. The GuRoo is a 1.2 metre tall, 40 kilogram,

23 degree of freedom android robot, shown below in Figure 1.3. The GuRoo is part

of an international competition known as RoboCup.

The ultimate goal of the RoboCup project is by 2050, to develop a team of fully

autonomous humanoid robots that can win against the human world champion team

in soccer [The RoboCup Federation, 1998-2003]. To achieve this goal, a team of

robots must be built that can perform agile athletic tasks such as running, kicking, and

tackling. These are long-term goals which will only be met by first creating a robot

with a strong, dynamic gait. To achieve this, the control of the joints must be very

precise. The GuRoo is able to walk short distances with little trouble, albeit with

some trajectory error in its joints.

Figure 1.3 – University of Queensland’s Robot, the GuRoo [Pike, 2003]

 5

1.4. GOALS

The fundamental aim of this thesis is to determine if a Fuzzy Associative Memory

system is a viable model to minimise the error in the control of dynamic systems, in

particular, the GuRoo robot. Further to this aim, it is hoped that the Fuzzy

Associative Memory system may provide an alternative to the previously developed

Cerebellar Model Articulation Controller (CMAC) system [Kee, 2003].

Specifically, the aims of the Fuzzy Associative Memory system are:

• Provide a simple control structure that may be used to more accurately control

dynamic systems.

• Use a small amount of computer memory and processor power, such that

implementation on a microcontroller is viable.

• Be applied to the GuRoo to give the robot an ability to be more human-like.

That is, allow the robot to ‘learn’ how to control its limbs in any given

situation such as in a new physical environment.

1.5. THESIS OUTLINE

The following chapters document the research and development of this thesis.

Chapter 2 describes the Trajectory Error Learning model and the previous research

completed on the Cerebellar Model Articulation Controller network. This chapter

outlines the Fuzzy Associative Memory system and other studies in this field.

Further explanations of Fuzzy Logic and the adaptations of this technique are detailed

in this chapter also.

Chapter 3 describes the integration of the FAM algorithm into the TEL model.

 6

Chapter 4 documents the development and testing of algorithm on the single

dimension, second order cart model. The chapter goes through the process of

developing the algorithm, testing the algorithm, and porting the algorithm from the

Matlab platform, to the C platform. This chapter also delivers the fixed-point

arithmetic implementation of the FAM algorithm.

Chapter 5 documents the development and testing of the FAM algorithm on the

GuRoo simulator. The chapter covers a series of experiments performed, with

explanations of the results.

Chapter 6 provides a conclusion to the work and outlines the direction of any further

work on this topic.

 7

2. LITERATURE REVIEW

The problem of mobility is one of the largest problems faced when creating a

humanoid robot [Kee, 2003]. Creating a robot that can walk on two legs with a

regular human-like gait is an extremely difficult problem. Actuation of the joints is

one of the most significant factors of this problem. A human has many muscles that

generate large torques to move each of its limbs, controlled by senses, such as touch,

sight, hearing, balance and neural information. To command a robot to perform such

behaviours as walking and running, the control of its artificial limbs must be very

precise.

2.1. TRAJECTORY ERROR LEARNING

The Trajectory Error Learning technique was described by Collins in 2002.

Trajectory Error Learning uses the trajectory error generated to train a learning

module. A system implementing Trajectory Error Learning should theoretically give

a response that will maintain zero trajectory error [Collins, 2002]. The purpose of

Collins’ implementation of the Trajectory Error Learning technique was to reduce the

error caused in a controlled system by sensory delay. Although this is a problem in

many control systems, the effects of sensory delay in the GuRoo are insignificant

when compared to the errors caused by approximated inverse dynamics and

mechanical issues such backlash of the gear trains.

 8

2.2. CEREBELLAR MODEL ARTICULATION CONTROLLER

The learning module used by Collins was the Cerebellar Model Articulation

Controller neural network. Collins showed that the CMAC network could learn a

compensation signal for the TEL model. This work was motivated by a sensory delay

problem. Kee furthered this work to use Trajectory Error Learning, based on a

CMAC neural network to assist a conventional Proportional Integral (PI) controller

with trajectory tracking for a robot joint. Kee showed that the CMAC neural

network, based on the TEL model could minimise the trajectory tracking error in a

robot joint. [Collins, 2002] [Kee, 2003]

The CMAC neural network is an alternative to the back propagation-trained analog

neural network. The CMAC has advantages including local generalisation, functional

representation, output superposition, and fast practical hardware realisation. The

CMAC may be described in three main stages: the input space, the mechanism of

generalisation, and the output stage. The input space consists of a quantised set of all

allowable inputs. The mechanism of generalisation may be viewed as a set of lookup

tables, known as Association Units (AUs). Each input combination is mapped to an

address for each AU. At the output stage, the weights from each of the AUs are

summed to produce a real output. [Miller; Glanz; Kraft, 1990] [Kee, Wyeth, 2003]

The system has the ability to learn by adjusting the weights within the AUs according

to an error signal during a learning phase. The CMAC system implemented on the

GuRoo was trained using a training rule based on the Least Means Square training

rule. This training rule is shown in the equation below. [Kee, 2003] [Widrow,

Stearns, 1985]

())1(ε
α
n

ww oldnew +←

where: wnew = new weight value wold = old weight value

 α = learning rate n = number of AUs

 ε = error

 9

2.3. FUZZY LOGIC CONTROL SYSTEMS

Fuzzy control systems are an alternative control method to conventional PID control.

Fuzzy control has many advantages, including that an accurate analytical model is not

required, human experience may be applied, provides greater robustness and fault-

tolerance [Si; Zhang; Tang, 1999]. While PID controllers provide a precise

mathematical output for a given input, fuzzy logic works on a set of IF-THEN rules,

integrated by membership functions. Fuzzy systems work in three stages. In the first

stage, the inputs are ‘fuzzified’ using membership functions. This converts the

numerical inputs into fuzzy states. The fuzzy rules are then applied to the ‘fuzzified’

inputs, producing a new set of ‘fuzzified’ variables. These variables represent the

output or solution variable. Finally, the new fuzzy set is ‘defuzzified’, to produce a

single output variable to the problem. Membership functions are used to determine

the fuzzy set to which a value belongs and the degree of membership in that set [Self,

1990].

By combining a neural network with a fuzzy logic controller, the ability for a control

system to ‘learn’ becomes a reality. The integration of a neural network gives the

fuzzy rules the ability to change with time. For the control system to internally

generate the fuzzy rules, an appropriate neural network scheme is required. Fuzzy

Associative Memory is a control system which combines a Self Organised Feature

Mapping (SOFM) neural network methodology with a fuzzy logic control system

structure [Si; Zhang; Tang, 1999]. Figure 2.1 shows the Fuzzy Associative Memory

Model.

Figure 2.1 – The Fuzzy Associative Memory model [Si; Zhang; Tang, 1999]

 10

2.4. EXPLANATION OF FUZZY LOGIC

The Fuzzy Associative Memory system is based on Fuzzy Logic. Therefore, to

understand how the FAM works, it is important to understand how Fuzzy Logic

works. As declared above, a Fuzzy Logic system works in three stages, fuzzification

of input variables using membership functions, application of fuzzy rules, and

defuzzification of fuzzy variables to a real output variable. Of these three layers, the

fuzzification and defuzzification layers are implemented directly in the FAM system;

however the application of the fuzzy rules is not. The rules form part of the

Associative Memory layer of the FAM. The rules will appear to evolve over time,

according to the error in the system.

The fuzzification layer is facilitated by using a ‘membership function’. Membership

functions come in a variety of shapes, and choosing the shape of the membership is a

vital part of the design process for a Fuzzy Logic system. A common shape for a

membership function is a simple triangle. Figure 2.2 shows an example of a simple

triangular shaped membership function.

Figure 2.2 – Triangular shaped membership function

 11

The membership function is made up of a series of fuzzy variables. In Figure 3.2

there are seven fuzzy variables. These variables are abbreviated as follows:

LN: Large Negative

MN: Medium Negative

SN: Small Negative

Z: Zero

SP: Small Positive

MP: Medium Positive

LP: Large Positive

It is important to remember that the fuzzy variable names are used only as an

example, and in a fuzzy system, there may be an arbitrary number of fuzzy variables

for each input variable depending on the design of the system. The fuzzy variables

represent a state of the input variable. The Degree of Membership (DOM) gives a

measure of the amount the input variable corresponds to the given fuzzy variable.

The set of numbers given by the membership function is called a fuzzy set. Because

of the nature of the triangular shaped membership function, no more than two fuzzy

variables can have a non-zero DOM in a fuzzy set. For example, Figure 2.3 shows

the fuzzification of the input value = 1.2. The corresponding fuzzy set for that input

variable would be {0, 0, 0, 0, 0.8, 0.2, 0}.

Figure 2.3 – Fuzzification of input value = 1.2

 12

In any Fuzzy Logic system, all input variables are fuzzified to form their

corresponding fuzzy sets. The next step is the application of the fuzzy rules. In a

classic Fuzzy Logic system, the rules will be made up of a set of IF THEN

statements. For example, with a two input system, IF Input01 is LN AND

Input02 is MN THEN Output01 is MP.

Defuzzification is concerned with generating a real output parameter from the outputs

of the fuzzy rules. There are many methods of defuzzification, including:

• Singleton method

• Centre of gravity method

• Mean of maximum method

• Weighted sum method

This thesis is primarily concerned with the weighted sum method, which will now be

explained further. Take for instance a two input variable system with a triangular

shaped membership function. As explained above, no more than two fuzzy variables

in each fuzzy set can have a non-zero DOM. This would mean that at most, there

would be four applicable fuzzy rules, giving four output fuzzy variables. The

weighted sum defuzzification method involves multiplying the DOM of the

corresponding fuzzy variables of a rule with the output fuzzy variable value. This

process would be repeated for each fuzzy rule, and the results summed to give a real

output parameter.

For example, with the names of the fuzzy variables abbreviated as above, let a two

input Fuzzy Logic system have the fuzzy sets of:

Input01 = {0.0, 0.0, 0.0, 0.0, 0.4, 0.6, 0.0}, and

Input02 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.3}, with fuzzy variable names of

 {LN, MN, SN, Z, SP, MP, LP}.

 13

Let the only applicable fuzzy rules be:

IF Input01 is SP AND Input02 is MP THEN Output01 is MP,

IF Input01 is MP AND Input02 is MP THEN Output01 is MP,

IF Input01 is MP AND Input02 is LP THEN Output01 is LP.

Also, let the output fuzzy variables have the arbitrary values of:

{-60.0, -40.0, -20.0, 0.0, 20.0, 40.0, 60.0}.

The weighted sum value of the real output parameter would be:

() () ()
38.8

0.603.06.00.407.06.00.407.04.0Output01

=

××+××+××=

2.5. ASSOCIATIVE MEMORY

The Associative Memory system has two purposes. The first purpose is to implement

the Fuzzy Logic rules. A complete set of generic fuzzy rules are implemented by the

Associative Memory system. This implementation gives the system the ability to

evolve the behaviour of the rules while the system is running. To fulfil a complete set

of generic fuzzy rules, there must be a complete set of output fuzzy variables. This

means that if a two input fuzzy system is fuzzified into five fuzzy variables each,

there would be five times five, which equals twenty-five fuzzy output variables. This

may be seen easily by looking at the system from a multi-dimensional perspective.

The number of dimensions of the output fuzzy variable set is equal to the number of

input variables. So a two input fuzzy system would have a two dimensional fuzzy

output variable set. Figure 2.4 shows this in a graphical manner.

 14

Figure 2.4 – Graphical description of input and output fuzzy sets

The second purpose of the Associative Memory is to give the system a way of

altering the output fuzzy variable values while the system is running. This way, the

output of the system may seemingly ‘evolve’ as the system iterates throughout each

cycle. The output fuzzy variable set is given the name of the ‘lookup table’.

When the system is started, the lookup table is initially empty, that is, full of zeros.

Throughout each iteration, the lookup table is then updated using a learning rule. The

learning rule is directly proportional to the error in the system. The effect of the error

in the system is governed by a constant known as the learning rate. The learning rule

based on equation (1) above, is described by the following equation:

)2(εα ×+= oldnew ww

where: wnew = new weight value wold = old weight value

 α = learning rate ε = error

Only the appropriate table entries are updated on each control loop. The table entries

that will be updated are decided according to which input fuzzy variables are non-

zero. For example, consider the two input fuzzy sets Input01 = {0.0, 0.0, 0.6, 0.4,

0.0} and Input02 = {0.0, 0.2, 0.8, 0.0, 0.0}. Figure 2.5 shows the four entries in the

lookup table that would be updated according to the learning rule.

 15

Figure 2.5 – Corresponding lookup table entries to be updated

2.6. DESIGN OF A FAM

A Fuzzy Associative Memory system is a combination of a Fuzzy Logic control

system and an Associative Memory system. When designing a FAM, there are some

important design parameters which must be carefully chosen to ensure stability, and

to provide acceptable learning times. A list of design parameters is described below:

• Regarding the shape of membership functions;

o Generally the shape is of triangular form, however may be otherwise,

o If triangular, the width and the number of triangles, otherwise, the

shape of each of the fuzzy variables in the membership function,

o The limits of the membership functions, that is, the input range of the

membership function where input values are distinguishable.

• Learning rate for the learning rule – a larger rate will cause the system to

respond faster, however may increase overshoot, and cause stability problems.

 16

The shape of the membership function has further implications in that the larger the

number of fuzzy variables in a system, the larger the lookup table, and hence the

more memory used by the control algorithm, and the more time required iterating

throughout the elements in the for-loops, making the algorithm more processor

intensive.

2.7. COMPARISON OF FAM TO CMAC

FAM and CMAC have some similarities as well as some distinguishing features.

FAM and CMAC are both local generalisers, meaning that similar inputs will provide

similar outputs. Both FAM and CMAC make use of a lookup table structure. This

gives both control systems the ability to be easily implemented in the digital realm,

and provides quick response times. FAM and CMAC can be applied to large

networks because of the small number of calculations per input [Miller; Glanz; Kraft,

1990].

CMAC uses more memory than FAM, because the input-output characteristics of

CMAC are continuous, while those of FAM are discrete. CMAC must be trained

offline, whereas FAM may calculate the outputs online.

The most distinguishing advantage of FAM over CMAC is the ability for a FAM

controller to learn online. This means that when a physical situation changes, the

robot may learn how to behave in the new environment, rather than having to be

turned off and taught offline.

 17

3. OVERVIEW OF DESIGN: FAM

Following the research on FAM and CMAC, the approach to be taken with the thesis

will be to implement a FAM control system according to the TEL technique.

3.1. TRAJECTORY ERROR LEARNING

The Trajectory Error Learning provides the basic model for the Fuzzy Associative

Memory system. Trajectory Error Learning, as its name suggests, involves

minimising the trajectory error in the system. Trajectory Error Learning is applicable

to systems that have a cyclic motion. The cyclic motion of the system will cause a

cyclic error. This cyclic error may be minimised by augmenting the desired trajectory

according to a compensation signal. The compensation signal is unique for each

known position throughout the cyclic motion. With each iteration of motion, the

error becomes smaller, affecting the compensation signal less. This pattern continues

until the error is minimised, and the change in the compensation signal is

insignificant. This evolution of the compensation signal over time may be seen as the

learning time of the system.

As has already been introduced, the architecture of the control system involves a

feed-forward component, in which the Fuzzy Associative Memory will reside. Figure

3.1 shows this architecture.

Figure 3.1 – Architecture of control system

 18

The Trajectory Generator block provides the system with the desired position of the

actuator, and the phase of the cycle for the desired position. The control system may

be defined by a conventional PID controller approximating the inverse dynamics of

the dynamic system. The Fuzzy Associative Memory system uses the inputs of the

desired and actual position to derive the error in the system, while the trajectory phase

provides the FAM with the necessary information regarding the current stage of the

trajectory. The FAM provides a compensation signal that is added to the desired

position signal, to compensate for the error in the controller, and with the aim to

achieve exactly the desired position at the output.

In this thesis, a study of the triangular shaped membership function will be

performed. A learning rule based on the Least Means Square training rule will be

used, see equation (2) above.

 19

4. CART MODEL DEVELOPMENT

In order to develop and test the Fuzzy Associative Memory control algorithm, a

single plane-of-motion, second order cart model was developed in Matlab. This

section presents the second order cart model, and the subsequent experimental results.

4.1. MATLAB/SIMULINK IMPLEMENTATION

A second order cart model was developed and implemented in Matlab. The free body

diagram shown in Figure 4.1 shows the external and damping forces on the cart.

Figure 4.1 – Free body diagram of cart

4.1.1. Cart Transfer Functions

The following equations describe the mathematics and explain the derivation of the

transfer function of the cart model.

()

ss
sG

DsmssF

sX

sXDsmssF

xDxmF

m
D

m

+
=⇒

+
=⇒

+=⇒

+=

2

1

2

2

)(

1

)(

)(

)()(

&&&

 20

With a cart mass of ten kilograms and a drag force of two kilograms per second, the

plant transfer function is as follows.

ss
sG

2.0

1.0
)(

2 +
=

To provide an adequate amount of error in the system, a rough controller was

developed using Matlab’s SISO tool. A suboptimal PD controller was developed,

with transfer function shown below.

()122)(+×= ssGC

The controlled system produces a step response as shown in Figure 4.2. It can be

seen that the controller is quite slow, with rise time about six seconds, and settle time

approximately ten seconds.

Figure 4.2 – Step response of controlled system

 21

4.1.2. Simulink Model

Figure 4.3 shows an abbreviated summary of the model developed in Matlab. The

trajectory generator is a sine wave, and the trajectory phase is generated by a saw-

tooth signal.

Figure 4.3 – Simulink model

The Fuzzy Associative Memory system is called via a Matlab callback function. The

FAM algorithm is implemented in this Matlab function. The inputs to the FAM are

the actual cart position, desired cart position and the phase. The actual cart position

and phase signals are fuzzified, while the desired cart position is used in conjunction

with the actual cart position to calculate the error in position.

4.1.3. Matlab Data Structures

The FAM algorithm utilizes Matlab’s data structures. The input variable data

structures are made up of four members:

1. An identification string for the input variable,

2. A scalar value describing the half width of the triangles in the membership

function,

3. An array containing the centres of the triangles in the membership function,

4. An array containing the degree of membership of each of the fuzzy variables

to the input value.

 22

4.1.4. Implementation of the Fuzzification Layer

The fuzzification layer of the algorithm is broken into two main sections. The higher

level section deals with iterating through each fuzzy variable. The lower level section

calculates the corresponding degree of membership of the input value to a fuzzy

variable according to the membership function. The calculation of the degree of

membership for each fuzzy variable requires finding the corresponding value on the

triangle. To find the value on the triangle, consider the triangle in Figure 4.4, with the

centre of the triangle, c, and input variable value, u. There are three different

conditions; cu < , cu = , and cu > .

Figure 4.4 – Section of triangular membership function

For cu = , the degree of membership is equal to one. For cu < and cu > , the

gradient of each line is expressed as
w

m
1

±= . A transformation to the origin may be

performed by finding the absolute difference between the input value and the centre

of the triangle. The degree of membership may then be found by using the equation

for a linear function, mxy = . Figure 4.5 shows the transformed triangle.

 23

Figure 4.5 – Transformed triangle

The height of the inner triangle � is given by
w

cu
mxy

−
== . To calculate the

degree of membership, this value is subtracted from one, giving the following

equations for the degree of membership:

<
−

−

>
−

−
=

 if 1

or , if 1

cu
w

uc

cu
w

cu

DOM (3)

The shape of the membership function for the two extreme fuzzy variables requires a

special case. Figure 4.6 shows the shape of the membership function for the most

negative and most positive fuzzy variables.

 24

Figure 4.6 – Shape of membership function at extremes

The following Matlab code calculates the degree of membership to the most negative

and most positive fuzzy variables. The functions are based on the function presented

above. If the input value is less than or equal to, or, greater than or equal to the centre

point, respectively, a value of one is returned. In other cases, the degree of

membership is calculated according to the equation described above.

The higher level section of the fuzzification layer of the algorithm deals with iterating

through each fuzzy variable. For input values, the extreme fuzzy variables are

fuzzified using the special case as described, while the central fuzzy variables are

fuzzified according to equation (3). Fuzzification of the phase value requires a

further special case. The extreme fuzzy variables are combined to facilitate the ‘wrap

around’ effect required.

 25

4.1.5. Fuzzification of the Phase Variable

The phase variable allows each point in the cyclic motion to be uniquely identified.

This allows the FAM algorithm to provide a unique compensation signal for each

point in the motion. The fuzzification of the phase input variable requires careful

consideration. As Figure 4.7 shows, the phase signal is a saw-tooth shaped

waveform, looping instantaneously from the maximum value to the minimum value

at the end of each cycle.

Figure 4.7 – Phase signal

When fuzzifying the phase signal to fuzzy variables, it can be seen that the large

positive fuzzy variable would be related to the large negative fuzzy variable. The two

extreme fuzzy variables should be represented by a single fuzzy variable. The shape

of the membership function must effectively ‘wrap around’. It may be visualised by

considering the membership function being described in a circle dimension rather

than a planar dimension.

 26

4.1.6. Calculation of the Compensation Value

The compensation value may be calculated by performing matrix multiplication of

the arrays containing the degree of membership for each input variable. The resulting

matrix is then dot multiplied with the lookup table. The summation of the elements

in the resulting matrix gives the compensation value. As an example, consider the

following system. Let the fuzzy set for the input variable be { }005.05.00 ,

and the fuzzy set for the phase variable be { }075.025.000 . The matrix

multiplication of these two arrays would be:

[]

=×

00000

00000

0375.0125.000

0375.0125.000

00000

00.075.025.000.000.0

00.0

00.0

50.0

50.0

00.0

Let the lookup table be

−−−−−

−−−−−

1.00.14.10.15.2

3.20.14.14.12.0

7.40.14.16.15.2

1.06.14.10.15.2

5.25.13.10.18.4

.

Then, the dot multiplication would be:

−=

−−−−−

−−−−−×

00000

00000

0375.0175.000

0600.0175.000

00000

1.00.14.10.15.2

3.20.14.14.12.0

7.40.14.16.15.2

1.06.14.10.15.2

5.25.13.10.18.4

00000

00000

0375.0125.000

0375.0125.000

00000

The compensation value is the sum of the elements in the resulting matrix, that is,

975.0375.0600.0)175.0(175.0 =++−+=correction .

These commands may be completed in one line of Matlab code, as follows.

correction = sum(sum((phase_mem.dom' * x_mem.dom) .*

 RULE_TABLE));

 27

The update for the lookup table may be performed in a similar way to calculating the

compensation value. The elements of the fuzzy sets which are non-zero are found

using the Matlab function find. The binary arrays are then matrix multiplied and

scaled according to the error and learning rate. This matrix is then added to the

lookup table. For example, consider the parameters defined above, let the error be 0.8

and the learning rate be 0.05. The update matrix would be:

[]

=×××

00000

00000

004.004.000

004.004.000

00000

05.08.000.01100

0

0

1

1

0

The lookup table after this iteration of the control loop would then be:

−−−−−

−−−−−=+

−−−−−

−−−−−

1.00.14.10.15.2

3.20.14.14.12.0

7.404.144.16.15.2

1.064.144.10.15.2

5.25.13.10.18.4

00000

00000

004.004.000

004.004.000

00000

1.00.14.10.15.2

3.20.14.14.12.0

7.40.14.16.15.2

1.06.14.10.15.2

5.25.13.10.18.4

 28

4.1.7. Stability

The stability of the FAM compensated control system depends on the shape of the

membership function. If a disturbance occurs in the system, the membership function

should be able to differ between large and small disturbances. If the membership

function is incorrectly shaped, that is, covers an insufficient range of input values, the

same compensation signal may be given for significantly different sized disturbances,

causing instabilities. A large disturbance may cause the lookup table values to

become significantly large, while a smaller disturbance may be compensated by the

same signal. A large learning rate will amplify this problem. In general, a wide

membership function with many triangles will provide the greatest stability. This

added stability however will come at the cost of more computer memory and more

processor computations per control loop.

4.1.8. Testing and Results of the Matlab Model

The Matlab model was extensively tested, with many different input waveforms, and

many different FAM parameters. The first test was to use a step input, and compare

the results of the FAM compensated system with the results from the stand alone PD

controlled system. The learning rate and the number of triangles in the membership

functions were the two parameters that were adjusted.

The main purpose of experiments with the step input is to have a basis for finding out

the effects of adjusting the learning rate and the shape of the membership function.

The model was run for a period of 40 seconds. To ensure the phase signal had no

effect on the system, the period of the phase signal was set to 500 seconds.

 29

It is important to remember that when the number of triangles in the membership

function changes, the width of the triangles also changes. The membership function

always covered the same input values for consistent testing. This means that the

centre of the end triangles should always be at the same input value. For this test, the

value was chosen to be 1.5. Figure 4.8 shows this graphically. With a step input,

because the motion is not cyclic, the phase is redundant.

Figure 4.8 – Alternate shape of membership functions

 30

Step Input Experiment – Variations in membership function

The first set of experiments was completed with a fixed learning rate of 0.01. The

number of triangles was varied from 5, 11, 21, 51, 101, and 201. Figure 4.9 through

Figure 4.14 shown below display the response of the cart in each of the different

circumstances. The red line is the desired step response of the cart. The blue line

shows the response of the uncompensated PD control loop, while the green line

depicts the response of the FAM compensated controller.

Figure 4.9 – Step response, 5 triangles in membership function

 31

Figure 4.10 – Step response, 11 triangles in membership function

Figure 4.11 – Step response, 21 triangles in membership function

 32

Figure 4.12 – Step response, 51 triangles in membership function

Figure 4.13 – Step response, 101 triangles in membership function

 33

Figure 4.14 – Step response, 201 triangles in membership function

The experiment showed that a small number of triangles in the membership function

gave a faster response, at the compromise of larger overshoot. As the number of

triangles becomes larger, the overshoot is reduced, at the cost of a quicker response.

Table 4.1 shows the response time and percent overshoot for each of the tests.

Table 4.1 – Response time and percent overshoot results

Number triangles Response Time (sec) Percent Overshoot

5 7.5 30%

11 7.7 10%

21 7.6 5%

51 6.5 3%

101 7.5 2%

201 8.2 1.5%

 34

Step Input Experiment – Variations in learning rate

The second experiment was to observe the effect of adjusting the learning rate.

Figure 4.15 through Figure 4.20 below, show a series of step responses with 21

triangles in the membership, and learning rates of 0.01, 0.025, 0.5, 0.1, 0.25 and 0.5

respectively.

Figure 4.15 – Step response, learning rate: 0.01

 35

Figure 4.16 – Step response, learning rate: 0.025

Figure 4.17 – Step response, learning rate: 0.05

 36

Figure 4.18 – Step response, learning rate: 0.1

Figure 4.19 – Step response, learning rate: 0.25

 37

Figure 4.20 – Step response, learning rate: 0.5

This experiment showed that an increase in the learning rate improves the response

time of the control system without increasing overshoot. Table 4.2 shows the

response time and percent overshoot for each of the tests.

Table 4.2 – Response time and percent overshoot results

Learning Rate Response Time (sec) Percent Overshoot

0.01 7.6 5%

0.025 4.3 4.5%

0.05 3.7 4%

0.1 3.1 3%

0.25 2.4 2%

0.5 2.0 1.5%

 38

Cart Experiment – Variations of input waveforms

A series of experiments was completed with different shaped waveforms, including

sinusoidal, square, triangular, and trapezoidal waveforms. Figure 4.21 through Figure

4.24 below, show the desired, uncompensated PD controlled, and FAM compensated

position of the cart for each of the tested waveforms. The FAM parameters used in

each of the experiments is shown in Table 4.3.

Table 4.3 – Parameters for waveforms experiment

FAM Parameter Value

Number of triangles in membership function 21

Learning rate 0.05

Figure 4.21 – Cart position: sinusoidal input

 39

Figure 4.22 – Cart position: square wave input

Figure 4.23 – Cart position: triangular input

 40

Figure 4.24 – Cart position: trapezoidal input

As can be seen, the algorithm is able to significantly improve trajectory tracking for

each of these waveforms. Careful inspection of Figure 4.22 and Figure 4.24 reveals

the predictive nature of the FAM algorithm. Immediately before the error becomes

large within a cycle, the FAM position under-compensates in an effort to minimise

the large error.

 41

4.2. PORTING THE MODEL TO C

The model was ported to C for further implementation on other platforms. The model

dynamics were converted to difference equations for implementation in C.

4.2.1. C Implementation of Cart Model

The control diagram below shows the states of the model.

Figure 4.25 – Control diagram of cart model

From Figure 4.25, the time-domain signal to the compensator is defined by the

equation below.

() actxfamxdesxtr ___)(−+=

The derivation of the time domain equation for the compensator is shown in the

equation below.

()

())(2)(2)(

)()()(

122)(

trtrtf

sRsGsF

ssG

C

C

&×+×=⇒

=⇒

+×=

Using a difference equation, the derivative of)(tr is defined as:

SIZESTEP

trtr
tr

_

)1()(
)(

−−
=&

 42

From the equations of motion, the position of the cart is derived from the force, as

shown in the equation below.

)1(_)1()(

)1(_)1()(

)1()(
)(

−+×−=

−+×−=

−−
=⇒

+=

txSIZESTEPtxtx

txSIZESTEPtxtx

m

txDtf
tx

xDxmF

&

&&&&

&
&&

&&&

These equations were implemented in a for-loop that iterated through time,

according to the simulation time and the step size. The model was written in a

separate C module to the FAM algorithm, to increase portability.

4.2.2. C Implementation of FAM algorithm

The Fuzzy Associative Memory algorithm was ported directly from Matlab M code to

a C module, with little more than syntactical changes. The same implementation of

data structures was used, while the matrix multiplication and dot multiplication was

manually calculated, implemented in a double for-loop.

4.2.3. Testing and Results of the C Model

The C model produced the desired results, with a similar improvement in trajectory

tracking to the Matlab model. The graph in Figure 4.26 shows the comparison

between the results from the Matlab model and the results from the C model for a

square shaped waveform. The difference between the C model and the Matlab model

may be caused by the approximations in the implementation of the plant and

compensator in the time domain. The behaviour of the C model also changes with the

step size. The chosen step size of 0.01 seconds gives reasonable accuracy, and gives

a very short simulation time.

 43

Figure 4.26 – Cart position of C model versus cart position of Matlab model

4.3. FIXED-POINT IMPLEMENTATION

To make the system portable to a number of operating environments, the FAM

algorithm had to be converted from floating-point arithmetic, to a fixed-point

arithmetic implementation. This change would remove the requirement of having a

floating-point capable processor, and remove the reliance of the math library, from

the Windows API. By using a fixed-point arithmetic implementation, the operating

time for the algorithm is expected to decrease, giving better overall performance.

 44

4.3.1. Changes to FAM algorithm

To convert the system to fixed-point arithmetic, all variables in the algorithm were

converted to base two. This included the number and width of the triangles in the

membership function, the learning rate, the degree of membership of an input value to

a fuzzy variable, and the input and output values of the algorithm. The number of

triangles is required to be an odd number, so the number of triangles is a number of

base two, plus one. The learning rate is defined as an integer, with the error in the

system right-shifted by that integer value, which is equivalent to dividing by two to

the power of that number.

The largest modifications to the FAM algorithm occurred in fuzzification stage of the

algorithm, and in the calculation of the compensation signal. With the fixed-point

arithmetic, the height of the triangles in the membership function changes from a

fractional value in between and inclusive of zero and one, to an integer value between

zero and a number of the power of two. A larger number provides greater resolution,

and hence greater accuracy of the algorithm, however at the risk of overflow.

Initially, a triangle height of 256 was chosen, which gave overflow. A triangle height

of 64 gave adequate accuracy without overflow.

As shown above, the calculation of the compensation signal involves multiplying the

degree of memberships of the separate input values. When using fixed-point

arithmetic, the integer values may be multiplied, and then multiplied by the

corresponding value in the lookup table. It is of utmost importance that this number

does not overflow, as the compensation signal would become incorrect, and the

algorithm would fail. This number is then right-shifted by twice the height of the

triangles.

 45

4.3.2. Preventing Overflow in the Lookup Table

It is important also to limit the values in the lookup table to prevent overflow.

Although this is also a problem with the floating-point arithmetic implementation, it

is more apparent in the fixed-point arithmetic implementation as the numbers are

larger, and are more likely to overflow. If overflow occurs within the lookup table,

the compensation signal is corrupted. To prevent overflow, the integers within the

lookup table are limited to upper and lower bounds after they are updated.

4.3.3. Output Limiting of Compensation Signal

For the C model to be more realistic, output limiting was implemented on the

compensation signal. Because of the nature of the FAM system, unachievable input

signals may be produced by the controller in an attempt improve trajectory tracking.

In a physical model, this may involve providing a larger than allowable signal to an

actuator, possibly causing physical damage to the actuator. This is implemented by

limiting the output value from the FAM algorithm to upper and lower bounds.

4.3.4. Error plots

A plot of the error in position gives an alternative view of the improvement in

trajectory tracking. Figure 4.27 shows the error for the cart tracking a sinusoidal

path. The error plot shows the convergence of the error to zero, with a waveform that

is symmetric about the zero axis. Error plots will be used to analyse the performance

of the FAM algorithm throughout the following sections of this thesis.

 46

Figure 4.27 – Error in position versus time

4.3.5. Testing and Results of Fixed-Point Implementation

The accuracy of the fixed-point arithmetic implementation was tested, using a series

of different shaped waveforms in comparison against the floating-point

implementation. The effect of output limiting the compensation signal was also

tested.

 47

Fixed-Point Arithmetic Experiment – Comparison to Floating-Point

To check the accuracy of the fixed-point arithmetic implementation, a series of

waveforms were tested for the floating and fixed-point arithmetic implementations,

and the results compared. The number of triangles in the membership function in

both models was 17, while the learning rate was 0.0625. Figure 4.28 through Figure

4.30 below, show the difference in position between the floating and fixed-point

arithmetic implementations for a series of waveforms.

Figure 4.28 – Floating versus fixed-point arithmetic – sinusoidal wave

 48

Figure 4.29 – Floating versus fixed-point arithmetic – square wave

Figure 4.30 – Floating versus fixed-point arithmetic – triangular wave

 49

The results show that the fixed-point arithmetic implementation is accurate when

compared to the floating-point arithmetic implementation. A significant difference is

revealed when a square input is used, caused by rounding errors in the large

compensation signal.

Fixed-Point Arithmetic Experiment –Limiting Output Values

A series of experiments were performed to analyse the effect of limiting the

compensation signal. The model and FAM parameters used in the experiment are

shown in Table 4.4. Figure 4.31 through Figure 4.34 below, show a comparison of

the experiment performed with and without limiting the compensation signal

respectively.

Table 4.4 – Parameters for output limiting experiment

FAM Parameter Value

Number of triangles in membership function 17

Learning rate 0.0625

Height of triangles 32

Lookup table value limit ±131072

Output limit on compensation signal ±2

As the figures below show, output limiting the compensation signal introduces a

steady-state error to the system.

 50

Figure 4.31 – Sine wave period six seconds

Figure 4.32 – Compensation limiting – Sine wave period six seconds

 51

Figure 4.33 – Sine wave period four seconds

Figure 4.34 – Compensation limiting – Sine wave period four seconds

 52

4.4. FINDINGS FROM CART MODEL

The cart model provided a suitable platform to develop and test the FAM algorithm,

and showed that significant trajectory tracking improvement could be achieved. The

cart model showed that the FAM algorithm could improve trajectory tracking for a

variety of cyclic waveforms, from sinusoidal to square shaped waveforms. This

indicates that the FAM algorithm is a robust algorithm, and it was expected that the

algorithm would significantly improve trajectory tracking on the GuRoo robot.

The cart model gave a good feel for the behaviour of the algorithm, and the effects of

adjusting the design parameters. It was found that decreasing the number of triangles

in the membership function gave a faster and less stable response, while increasing

the learning rate had a similar effect. The correct combination of these two critical

design parameters would give the desired behaviour of reasonable response time with

good stability. The cost of increasing the number of triangles in the membership

function was in both computer memory and processor time. Although these problems

are insignificant when used on a desktop workstation, the problems may become

quite significant should the algorithm be implemented on microcontroller type

systems with limited memory and processing power.

 53

5. THE GUROO SIMULATOR

The GuRoo robot provides a real world project to test the capabilities of the FAM

algorithm. The GuRoo robot is a complex dynamic system, with many degrees of

freedom and less than perfect control loops. The GuRoo simulator, based on the

Dynamechs package by McMillian [McMillian, 1995], is a high fidelity dynamic

simulation of the GuRoo robot. The motor characteristics of the Direct Current (DC)

motors are modelled, including stiction, armature resistance and damping co-efficient

[Kee, 2003]. The GuRoo simulator provides the platform to test the FAM algorithm.

This chapter describes the application of the FAM algorithm to the GuRoo simulator

and the results of the experiments performed on the simulator.

5.1. EXISTING JOINT CONTROL

The GuRoo has a finely tuned PI control loop in velocity, controlling each of the DC

motors. This control loop corresponds to PD control in position. The Proportional

and Integral constants were determined using a genetic algorithm, with a fitness

function minimising trajectory error and maximising joint smoothness [Roberts et al,

2003].

5.2. THE CROUCHING BEHAVIOUR

One of the simplest tasks the GuRoo can perform is the crouching behaviour. In this

behaviour, only the pitch joints of the hip, knee and ankle are actuated, with position

error of the order of one degree. Figure 5.1 shows the error in position for each of the

described joints for a typical crouch over a period of five iterations. The crouching

behaviour parameters are shown in Table 5.1.

 54

Table 5.1 – Crouch behaviour parameters

Behaviour Parameter Value

Crouch cycle time 4.0 seconds

Maximum pitch ankle joint angle 16 degrees

Maximum knee joint angle 35 degrees

Maximum pitch hip joint angle 22 degrees

Figure 5.1 – Error in position for a crouching behaviour

The error plots show that even with a finely tuned PI control loop on each joint, a

position error of the order of one degree exists for the crouching motion. A position

error of such magnitude may be large enough to cause the robot to become unstable

and over-balance.

 55

5.3. FAM IMPLEMENTATION

The fixed-point arithmetic FAM module was ported directly from the cart model to

the GuRoo simulator. The FAM algorithm was used to augment the desired velocity

signal of the control loop. The input variables to the FAM algorithm are pre-scaled

before they are fuzzified. Pre-scaling allows the real input values to match in the

input space of the FAM algorithm. This pre-scaling allows for increased resolution

when the input variables are fuzzified. The phase signal is scaled and quantised to

give a value between -512 and +512.

5.4. EXPERIMENTS ON GUROO SIMULATOR

A series of experiments were performed on the GuRoo simulator. Many different

inputs to the FAM algorithm were tested, with varying results. The inputs tested

were:

• actual velocity,

• error in velocity,

• actual position,

• and error in position.

5.4.1. Fuzzification of Actual Velocity

The initial approach was to use fuzzify on the actual velocity of the joints. This was

the intuitive approach, as the FAM algorithm provides a compensation signal to the

desired position of the joints.

 56

Actual Velocity Experiment – Single axis compensation

Single axis compensation was applied to the left knee joint for the crouching

behaviour, with a significant improvement in the trajectory tracking of the left knee,

and minor improvements in the trajectory tracking of the left ankle and the left hip

joints as well. The FAM algorithm parameters that were used are shown in Table 5.2.

The resulting trajectory error plot is shown in Figure 5.2.

Table 5.2 – FAM algorithm parameters

FAM Parameter Value

Number of triangles in membership function 17

Learning rate 0.0625

Height of triangles 256

Centre of end triangles for input membership function -65536, +65536

Lookup table value limit ±131072

Pre-scaler value for inputs 512

Output limit on compensation signal ±10

 57

Figure 5.2 – Error in position, fuzzification on actual velocity – single-axis

As the error plot shows, the trajectory tracking has been significantly improved. A

trajectory tracking improvement of at least 20% has been achieved. The learning

time is about three crouching iterations.

Actual Velocity Experiment – Multiple axis compensation

The FAM algorithm was then expanded to compensate for all six joints in the

crouching behaviour. Each joint has its own lookup table, and corresponding

compensation signal, derived from the error in its own joint. Each joint used the

same FAM parameters as shown above in Table 5.2. Figure 5.3 shows the results of

FAM compensation for each of the joints in the crouching behaviour.

 58

Figure 5.3 – Error in position, fuzzification on actual velocity – multi-axis

Figure 5.3 shows an improvement in the trajectory tracking of each of the joints,

however, the error plots are not as smooth as the error plots from the cart model. The

learning time of the algorithm is fast, taking only a single iteration of the crouch

behaviour to minimise the error.

5.4.2. Fuzzification of Velocity Error

An alternative approach to using the actual velocity as an input to the FAM algorithm

is to fuzzify the error in velocity.

 59

Velocity Error Experiment – Multiple axis compensation

Figure 5.4 shows the results of fuzzifying the error in velocity, for multiple axis

compensation for the crouching behaviour. The same FAM parameters as shown in

Table 5.2 were again used in this experiment.

Figure 5.4 – Error in position, fuzzification on velocity error – multi-axis

This approach gave a slight improvement in the smoothness and symmetry of the

trajectory tracking error plots; however the shape of the error plots is still far from the

error plots obtained from the cart model.

 60

5.4.3. Fuzzification of Actual Position

Yet another alternative approach tested was to use the actual position as an input to

the FAM algorithm.

Actual Position Experiment – Multiple axis compensation

The approach of fuzzifying the actual position was tested using the crouching

behaviour. The parameters described in Table 5.2 were used. Figure 5.5 shows an

example of the unstable error plots.

Figure 5.5 – Error in position, fuzzification on actual position – multi-axis

The error plot shows that this approach has yielded no stable trajectory tracking

improvement.

 61

5.4.4. Fuzzification of Position Error

The final and most successful approach was to use the position error as an input to the

FAM algorithm. This approach yielded the quickest and most stable trajectory

tracking improvement.

Position Error Experiment – Multiple axis compensation test 1

Figure 5.6 shows the best results for this approach, with the FAM parameters shown

in Table 5.3 and Table 5.4. The FAM algorithm was used to compensate the knee

and hip joints only.

Table 5.3 – FAM algorithm parameters

FAM Parameter Value

Number of triangles in membership function 33

Learning rate 0.015625

Height of triangles 256

Centre of end triangles for input membership function -65536, +65536

Lookup table value limit ±131072

Output limit on compensation signal ±10

Table 5.4 – FAM algorithm pre-scaler values

GuRoo Joint Pre-scaler Value

Left and right ankle forward joint 200

Left and right knee joint 110

Left and right hip forward joint 250

 62

Figure 5.6 – Error in position, fuzzification on position error – multi-axis

The error plot shows a significant improvement in the trajectory tracking of the joints.

The error is reduced to a minimum almost immediately. The error has been reduced

to the extent that an improvement of almost 100% has been made.

Position Error Experiment – Multiple axis compensation test 2

Compensation of the ankle joint has exposed further complications to the system.

With each joint in the leg learning, the effect of altering the motion of one joint may

affect the motion of another joint. Hence, if all joints are learning simultaneously, the

system may become unstable. This phenomenon is known as co-evolution.

Extending the test above to compensate for the ankle joints exposes this problem.

Figure 5.7 shows the error plot for that test.

 63

Figure 5.7 – Error in position, fuzzification on position error – multi-axis

The plot exposes an unstable trend in the error. This experiment shows that

compensation for all joints has been affected by the problem of co-evolution.

 64

5.5. SURFACE PLOT OF LOOKUP TABLES

A surface plot of the lookup table gives a visualisation of the compensation signal.

This is helpful when fine tuning the FAM algorithm, as it shows the use of the lookup

table, particularly, if the lookup table is becoming saturated. If all of the elements in

the lookup table are non-zero, it may indicate that the shape of the membership needs

to be adjusted, particularly the limits. Non-zero elements at the limits of the input

variable axis give little room for disturbances, and because these fuzzy variables are

more generalised, it can cause significant instabilities. Figure 5.8 through Figure 5.10

show the series of lookup tables generated in Position Error Experiment – Multiple

axis compensation test 2 for the left leg only.

Figure 5.8 – Lookup table for left ankle forward joint

 65

Figure 5.9 – Lookup table for right ankle forward joint

Figure 5.10 – Lookup table for left knee joint

 66

Figure 5.8 through Figure 5.10 show the appropriate use of the lookup table. The

shape of the compensation signal in the input variable plane follows a roughly

sinusoidal shape. This is the expected shape, as it matches the uncompensated error

in the joint.

The values in the lookup table will become saturated and incorrect if the tuning

parameters of the FAM are incorrect. An example of an incorrectly used lookup table

is shown in Figure 5.11. Some of the values have saturated to the limits, and the end

fuzzy input variables are non-zero, indicating that the range of input values the

membership function covers is too narrow.

Figure 5.11 – Incorrectly populated lookup table

 67

6. CONCLUSIONS

6.1. CONCLUSION

In many instances, conventional feedback control is insufficient for controlling

dynamic systems with many degrees of freedom and complex dynamic models. The

Trajectory Error Learning technique is a proven concept for improving trajectory

tracking using a feed-forward control system. The feed-forward control system may

be best utilised by implementing a neural network to learn the compensation signal.

The Fuzzy Associative Memory system is a successful feed-forward, predictive, self-

learning, self-supervised control approach to this problem.

The FAM algorithm was successfully developed and tested on single plane-of-

motion, second order cart model in Matlab. The cart model showed that in an ideal

model the trajectory tracking error can be minimised to zero using the FAM

algorithm. The learning rate and the shape of the membership function were revealed

to be the two major tuning parameters of the FAM algorithm. An increase in the

learning rate resulted in a faster response of the system, at the cost of larger

overshoot. Decreasing the number of triangles in the membership function quickened

the response time without increasing overshoot, however at the cost of stability.

Fixed-point arithmetic implementation in C revealed that the values in the lookup

table had to be limited to prevent overflow and subsequent corruption of the

compensation signal. Output limiting the compensation signal revealed that a steady-

state error may be introduced, if the error in the PD control loop is large.

 68

The implementation of this control system on the GuRoo robot has shown that a

significant improvement in trajectory tracking error can be made using this algorithm.

Fuzzification of the position error gave the best results, with an improvement in error

of almost 100% within one iteration of the crouching behaviour.

The FAM algorithm has out-performed the previous work using the CMAC system,

in both computer resources including memory and processing power, and the control

criteria of learning time.

6.2. FURTHER WORK

The Trajectory Error Learning model is a generic model, and may be applied to any

control problem where trajectory tracking error needs to be minimised. The FAM

algorithm may be implemented on alternative control problems other than the motor

position control problem.

Further study of the application of the FAM algorithm to the GuRoo robot is required.

The algorithm was unable to be tested on the real robot; instead this research has been

limited to the GuRoo simulator. A set of real results would confirm that this

algorithm is a viable solution to the problem of improving trajectory tracking error in

complex dynamic systems.

A further study of the implementation of this algorithm to the joint controller boards

[Hall, 2004] is also required. Implementation on the joint controller boards would

minimise the communication signals between the boards and the central processing

unit of the GuRoo. Implementation of the algorithm on the joint controller boards

would require a thorough understanding of the capabilities of the joint controller

boards, including processing power, memory availability, control loop rate, and

algorithm completion time.

 69

The co-evolutionary problem requires further study. This problem occurs because

multiple joints are being trained simultaneously, attempting to minimise the error in

each joint. When each joint is compensated, it not only affects the tracking of its

joint, but due to the multi-degree of freedom in the system, it also affects the tracking

of each of the other joints. This process occurs in each of the joints, all affecting each

other simultaneously.

One approach to this problem is to extend the number of dimensions of the lookup

table, such that a unique compensation signal is given for each position of all of the

motors in a system. This approach however would use more memory according to

the size of the lookup table, and be more processor intensive, having to iterate

through the larger lookup table.

 viii

BIBLIOGRAPHY

[Collins, 2002] Cerebellar Modelling Techniques for Mobile Robot Control in a

Delayed Sensory Environment, David Timothy Collins, University of Queensland,

2002.

[Hall, 2004] Joint Controller Development for a Humanoid Robot, Simon Hall,

University of Queensland, 2004.

[Kee, 2003] Confirmation of PhD Candidature, Damien Kee, University of

Queensland, 2003.

[Kee, Wyeth, 2003] Cerebellar Joint Compensation for a Humanoid Robot, Damien

Kee and Gordon Wyeth, University of Queensland, 2003.

[Low, 2003] Active Balance for a Humanoid Robot, Toby Daniel Low, University of

Queensland, 2003.

[Marshall, 2002] Active Balance Control for a Humanoid Robot, Ian Joseph Marshall,

University of Queensland, 2002.

[McMillian, 1995] Computational Dynamics for Robotic Systems on land and

Underwater, S. McMillian, Ohio State University, 1995.

[Miller; Glanz; Kraft, 1990] CMAC: An Associative Neural Network Alternative to

Backpropagation, W. Thomas Miller, III, Filson H. Glanz, L. Gordon Kraft, III,

Proceedings of the IEEE, Vol. 78, No. 10, 1999.

[Pike, 2003] Gait Generation for a Humanoid Robot, Tim Pike, University of

Queensland, 2003.

 ix

[Self, 1990] Designing with Fuzzy Logic, Kevin Self, Spectrum, IEEE, Vol.27, Iss.11,

Nov 1990.

[Si; Zhang; Tang, 1999] Modified Fuzzy Associative Memory Scheme Using Genetic

Algorithm, Jie Si, Naiyao Zhang, and Rilun Tang, Evolutionary Computation, 1999.

CEC 99. Proceedings of the 1999 Congress on, Vol.3, Iss., 1999.

[The RoboCup Federation, 1998-2003] What is RoboCup, The RoboCup Federation,

1998-2003. http://www.robocup.org/02.html

[Widrow, Stearns, 1985] Adaptive Signal Processing, B. Widrow and S. D. Stearns,

Prentice-Hall, 1985.

 x

APPENDIX A – FAM.C MODULE

/**
 *
 * fam.c
 * Christopher Myatt
 * Created 2 August 2004
 * Adaptive Feed-forward control algorithm:
 * Fuzzy Associative Memory
 * Last updated: 26 October 2004
 *
**/

/* ****** */
/* macros */
/* */

#define MAX(A,B) ((A) > (B) ? (A) : (B))
#define CEIL(A) ((A) > 0 ? 1 : 0)

/* ********************* */
/* fam tuning parameters */
/* */

/* membership function made up of 2^(NUM_TRI) + 1 triangles */
#define NUM_TRIANGLES_PWR_TWO 4

/* inverse of learning rate, closer to 1, larger rate */
#define LEARNING_RATE_PWR_TWO 4

/* (soft) bounds of the inputs ie. -2^(LIMIT) < input < 2^(LIMIT) */
#define X_LIMIT_PWR_TWO 16
#define PHASE_LIMIT_PWR_TWO 9

/* the maximum degree of membership (the height of the triangles) */
#define DOM_MAX_PWR_TWO 5

/* *****************/
/* fam definitions */
/* */

#define DOM_MAX (1<<DOM_MAX_PWR_TWO)

#define NUM_TRIANGLES ((1<<NUM_TRIANGLES_PWR_TWO)+1)
#define HALF_NUM_TRIANGLES (1<<(NUM_TRIANGLES_PWR_TWO-1))

#define X_TRIANGLE_WIDTH_PWR_TWO (X_LIMIT_PWR_TWO-NUM_TRIANGLES_PWR_TWO+1)
#define PHASE_TRIANGLE_WIDTH_PWR_TWO (PHASE_LIMIT_PWR_TWO-NUM_TRIANGLES_PWR_TWO+1)

#define X_TRIANGLE_WIDTH (1<<X_TRIANGLE_WIDTH_PWR_TWO)
#define PHASE_TRIANGLE_WIDTH (1<<PHASE_TRIANGLE_WIDTH_PWR_TWO)

#define LOOKUP_TABLE_MAX (1<<(X_LIMIT_PWR_TWO+1))
#define LOOKUP_TABLE_MIN (-(1<<(X_LIMIT_PWR_TWO+1)))

/* **************** */
/* global variables */
/* */

int RuleTable[NUM_TRIANGLES-1][NUM_TRIANGLES];

 xi

struct X_MEM {
 int center[NUM_TRIANGLES];
 int dom[NUM_TRIANGLES];
} xMem;

struct PHASE_MEM {
 int center[NUM_TRIANGLES];
 int dom[NUM_TRIANGLES-1];
} phaseMem;

/* ********** */
/* prototypes */
/* */

void fuzzifyX(int u);
void fuzzifyPhase(int u);
int leftall(int u, int w, int c);
int triangle(int u, int w, int c);
int rightall(int u, int w, int c);

/* **************
/* initFuzzySys()
/*
/* initialise the shape of the membership
/* functions and the lookup table.
/* ************** */
void initFuzzySys() {

 int i, j;

 /* calculate the center of each of the membership functions */
 for (i=0; i<NUM_TRIANGLES; i++) {
 xMem.center[i] = (i - HALF_NUM_TRIANGLES) * X_TRIANGLE_WIDTH;
 phaseMem.center[i] = (i - HALF_NUM_TRIANGLES) *
 PHASE_TRIANGLE_WIDTH;
 }

 /* initialise the rule table to zeros */
 for (i=0; i<NUM_TRIANGLES-1; i++) {
 for (j=0; j<NUM_TRIANGLES; j++) {

 RuleTable[i][j] = 0;
 }
 }
}

/* **************************************
/* int fam(int xDes, int phase, int xAct)
/*
/* the main function, calculates a corrections signal
/* for a desired input, actual input, and phase signal.
/* ************************************** */
int fam(int xDes, int phase, int xAct) {

 int correction, error;
 int i, j;

 /* fuzzify the phase and the input variable */
 fuzzifyX(xAct);
 fuzzifyPhase(phase);

 correction = 0;
 error = xDes - xAct;

 /* the main loop, calculates the correction by iterating
 through the rule table, and adjusts the rule table
 according to the error */

 xii

 for (i=0; i<NUM_TRIANGLES-1; i++) {
 for (j=0; j<NUM_TRIANGLES; j++) {

 correction = correction + ((phaseMem.dom[i] * xMem.dom[j] * RuleTable[i][j])
 >> (DOM_MAX_PWR_TWO*2));
 RuleTable[i][j] = RuleTable[i][j] + ((CEIL(phaseMem.dom[i]) * CEIL(xMem.dom[j])
 * error) >> LEARNING_RATE_PWR_TWO);

 /* limit overflow in the lookup table */
 if (RuleTable[i][j] > LOOKUP_TABLE_MAX) RuleTable[i][j] = LOOKUP_TABLE_MAX;
 else if (RuleTable[i][j] < LOOKUP_TABLE_MIN) RuleTable[i][j] = LOOKUP_TABLE_MIN;
 }
 }
 return correction;
}

/* ********************
/* void fuzzifyX(int u)
/*
/* fuzzify the input variable.
/* ******************** */
void fuzzifyX(int u) {

 int i;

 xMem.dom[0] = leftall(u, X_TRIANGLE_WIDTH_PWR_TWO, xMem.center[0]);

 for (i=1; i<NUM_TRIANGLES-1; i++) {

 xMem.dom[i] = triangle(u, X_TRIANGLE_WIDTH_PWR_TWO, xMem.center[i]);
 }

 xMem.dom[i] = rightall(u, X_TRIANGLE_WIDTH_PWR_TWO, xMem.center[i]);
}

/* ************************
/* void fuzzifyPhase(int u)
/*
/* fuzzify the phase - wrap around implemented.
/* ************************ */
void fuzzifyPhase(int u) {

 int i;

 /* special case: wrap around of fuzzy variables */
 phaseMem.dom[0] = triangle(u, PHASE_TRIANGLE_WIDTH_PWR_TWO, phaseMem.center[0]) +
 triangle(u, PHASE_TRIANGLE_WIDTH_PWR_TWO, phaseMem.center[NUM_TRIANGLES-1]);

 for (i=1; i<NUM_TRIANGLES-1; i++) {

 phaseMem.dom[i] = triangle(u, PHASE_TRIANGLE_WIDTH_PWR_TWO, phaseMem.center[i]);
 }
}

/* ********************************
/* int leftall(int u, int w, int c)
/*
/* calculate degree of membership for a left-most fuzzy variable.
/* ******************************** */
int leftall(int u, int w, int c) {

 if (u <= c) return DOM_MAX;
 else {
 if (w >= DOM_MAX_PWR_TWO)
 return MAX(0, (DOM_MAX - ((u-c) >> (w-DOM_MAX_PWR_TWO))));
 else
 return MAX(0, (DOM_MAX - ((u-c) << (DOM_MAX_PWR_TWO-w))));
 }
}

 xiii

/* *********************************
/* int triangle(int u, int w, int c)
/*
/* calculate degree of membership for a standard fuzzy variable.
/* ********************************* */
int triangle(int u, int w, int c) {

 if (u == c) return DOM_MAX;
 else if (u > c) {
 if (w >= DOM_MAX_PWR_TWO)
 return MAX(0, (DOM_MAX - ((u-c) >> (w-DOM_MAX_PWR_TWO))));
 else
 return MAX(0, (DOM_MAX - ((u-c) << (DOM_MAX_PWR_TWO-w))));
 }
 else {
 if (w >= DOM_MAX_PWR_TWO)
 return MAX(0, (DOM_MAX - ((c-u) >> (w-DOM_MAX_PWR_TWO))));
 else
 return MAX(0, (DOM_MAX - ((c-u) << (DOM_MAX_PWR_TWO-w))));
 }
}

/* *********************************
/* int rightall(int u, int w, int c)
/*
/* calculate degree of membership for a right-most fuzzy variable.
/* ********************************* */
int rightall(int u, int w, int c) {

 if (u >= c) return DOM_MAX;
 else {
 if (w >= DOM_MAX_PWR_TWO)
 return MAX(0, (DOM_MAX - ((c-u) >> (w-DOM_MAX_PWR_TWO))));
 else
 return MAX(0, (DOM_MAX - ((c-u) << (DOM_MAX_PWR_TWO-w))));
 }
}

