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Abstract

Multiple Links Structure / Wire Driven (tendon) System
is one of robot structures, that has a serial-link structure
driven by a wire-drive mechanism. It can be applied to a
manipulator like elephant’s trunk, a moray arm, the back-
bone of a humanoid, etc.. However, transformations among
coordinates (task-oriented, joint-angles and wire-length)
are very complicated. Therefore, it is not clear how sensory
feedback control laws should be realized for the system. In
this paper, we propose a sensor-actuator map in which the
sensor coordinates and actuator coordinates are arranged.
By finding the paths from the sensor coordinates to the ac-
tuator coordinates on the map, the sensory feedback control
laws can be built.

1 Introduction

A multiple links structure / wire driven system has links
structure driven by wire tendons. Such a system already has
been studied so far[1]. Also, we developed a force display
device for virtual reality using a serial-link structure driven
by a parallel-wire mechanism as shown in Fig. 1. More-
over, the wire driven systems using elastic hose instead of
heavy rigid links have been applied to the backbone of a hu-
manoid and flexible manipulators.

In the system, however, transformations among coordi-
nates (task-oriented, joint-angles and wire-length) to rep-
resent the position-orientation of an end-effector are very
complicated. Therefore, it is not clear how sensory feed-
back control laws should be realized for the system. In this
paper, we propose a sensor-actuator map in which the coor-
dinates are arranged. By finding the paths from the sensor
coordinates to the actuator coordinates on the map, the sen-
sory feedback control laws can be built. So it can visualize
the control laws. The sensory feedback control for posi-
tioning, in brief, is to construct a signal of input in actuator
coordinates from signals in sensor coordinates. Because a
path on the map means transformation among coordinates,
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Figure 1. Serial-Link Structure Driven by
Parallel-Wire Mechanism

finding the paths on the map shows us what control laws
can be realized for a multiple links structure / wire driven
system.

2 Relations Among Vectors

2.1 An example of system

In this paper, we discuss with focusing on especially the
serial-link structure driven by parallel-wire mechanism as
shown in Fig. 1[2]. This system consists of a base, actu-
ators, links and wires. Two very light links made of dura-
lumin form a serial-link structure. As a whole, the serial-
link structure achieves three D.O.F. motion (x,y,z) at the tip
of the second link. Four wires in total, two wires attached
on each link, achieve three D.O.F. motion of the serial-link
structure. Since the wires can generate only tension, the
system need such a redundant actuation[3]. Three encoders
are set at each joint in order to measure angles of the joints.
Each link has a counter weight so that the gravitational in-
fluence on the link is negligible. Four actuators, from A
to D are arranged on the frame. An actuator consists of a
reeling pulley, two gears, a small guiding pulley and a DC

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04) 
0-7695-2051-0/04 $ 20.00 © 2004 IEEE 



servo motor (60[W]) with a rotary encoder to measure wire
length.

2.2 Sensor-Actuator Map

PID positioning control of which system has plural coor-
dinates like this system has not been organized well. In this
subsection, we organize relations among vectors (displace-
ment, velocity and force) of the coordinates (task-oriented,
joint-angle and wire length), then visually express these re-
lations using a map.

In the following, we assume that the serial-structure is
not redundant, the hand has n0 D.O.F. motions driven by
totally m wires. Wires can generate only tension so that
this system needs a redundant actuation, then n0 < m. The
robot is driven only by the wire tension. Gravitational influ-
ence can be ignored. At least, one kind of sensor is equipped
to measure the displacement (the end-effector position, the
joint-angles, the wire length).

The system has three displacement vectors as candidates
that can be sensor input: the position vector of an end-
effector x ∈ Rn0 , a joint angle vector θ ∈ Rn0 and a wire
length vector q ∈ Rm. These three vectors are called dis-
placement vectors in this paper. Here, the following equa-
tions are obtained as kinematics if the relation among the
displacement vectors can be calculated analytically,

x = G1(θ), q = G2(x), θ = G3(q),
q = G4(θ), x = G5(q), θ = G6(x), (1)

where the Gi (i = 1 . . .6) is the kinematical function that
relates among the displacement vectors.

It is well-known that differentiation of the displacement
relations described in Eqs. (1) yields the velocity relations
given by Eqs. (2). In this paper, the vectors, ẋ, θ̇ and q̇ are
generically called velocity vectors.

ẋ = J1(θ)θ̇, q̇ = J2(x)ẋ, θ̇ = J3(q)q̇,

q̇ = J4(θ)θ̇, ẋ = J5(q)q̇, θ̇ = J6(x)ẋ, (2)

where the matrix Ji implies the Jacobian matrix obtained
from the function Gi. As long as the matrix Ji has full-
rank, we can obtain the inverse relations of Eqs. (2) using
the inverse matrix Ji

−1 and the pseudo inverse matrix Ji
+.

Next, consider force relations: the relations among a
force-moment vector f ∈ Rn0 generated at the end-effector,
a torque vector τ ∈ Rn0 at the joints and a wire tension vec-
tor α ∈ Rm. We call force vectors as the general term for
these vectors in this paper. It is well-known that the rela-
tions can be obtained through the principle of virtual work
from the velocity relations described by Eqs. (2). We can
also obtain the inverse relation of the force relation as well
as the velocity relation. The details are omitted in this paper
because of space limitations. The transformations between
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Figure 2. Sensor-actuator Map

vectors with different size cause internal force vectors that
belong in the null space of the matrix.

We turn now to feedback transformations from the dis-
placement vectors to the force vectors. The feedback terms
based on the displacement error in each coordinates are de-
scribed by

τ = KP 1(θd − θ), f = KP 2(xd − x),
α = KP 3(qd − q) + v3, (3)

where θd, xd and qd are desired vectors. The matrix KP i

is a gain matrix for the proportional feedback, and the vector
v3 means the internal force. Since wire can generate only
tension, to accomplish the positioning control scheme in
the wire length coordinate needs the positive internal force
(v3 > 0) in order not to slack off the wire ropes. As well as
P control terms, I and D terms that consist of PID feedback
control are given.

As far as the velocity signal is concerned, today it is pos-
sible to obtain the velocity information from the displace-
ment signals measured by the displacement sensors through
difference of the signals because of infinitesimal sampling
time.

After all, we have a whole map to indicate all relations
among the vectors as shown in Fig. 2. This map is simpli-
fied for easily viewable, and called a sensor-Aactuator map.
An arrow which means transformation between vectors is
called a transfer arrow. Even though we have assumed that
the relations among the displacement vectors can be analyt-
ically obtained, in practice it depends on hardware, model-
ing and so on. When it is applied to actual system, we do
not enter transfer arrows of which relations can not be an-
alytically obtained. Obtaining the displacement variable in
the Jacobian matrix by using a sensor is one of the condi-
tions to enter the transfer arrow on the map. The vector vi

in Fig. 2 means the internal force. In this paper, the α node
that indicates actuator input is called the actuator node, the
vector node directly measured by a sensor is called the sen-
sor node. The node that means the origin of the feedback
transformation is called the feedback node. In the next sec-
tion, we will explain about the making paths to express PID
feedback control laws.
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Since each transfer arrow graphically shows the analytic
relation between the vectors, making paths from the sensor
node to the actuator node can express the actuator input of
PID feedback control laws for a given system. Therefore,
in order to consider PID feedback control laws for the sys-
tem, at first we investigate if each transformation among the
vectors is analytically realized or not. Then, preparing the
sensor-actuator map makes the organization of PID control
easy. So, the map is very useful in order to design control
laws.

2.3 Converting from Path to Control Law

We clarify the relation between the paths obtained on the
sensor-actuator map and investigate PID feedback control
laws to converge the position vector x at the desired one,
xd , and the velocity ẋd at zero.

First, we consider proportion position control (P control)
after the separation of PID control in order to simplify this
discussion. Generally, P control is given by the following
equation as actuator input,

αP = JKP

(
Gi(xd) − Gj(s)

)
+ v. (4)

where s = x or q or θ. The matrix J achieves the trans-
formation from the feedback coordinate to wire tension,
and the matrix KP represents a gain matrix. The function
Gi(xd) is the kinematics that transforms the desired posi-
tion of the end-effector to the desired one in the feedback
coordinate, and the function Gj(s) is the kinematics that
transforms the vector in the sensor coordinate to the one in
the feedback coordinate. The final term v represents the in-
ternal force among wires.

The P control element given by Eq. (4) means the fol-
lowing steps on the sensor-actuator map.
STEP 1 Leading a path from the position of the end-

effector node (x) to the feedback coordinate. (That is
Gi(xd) in Eq. (4).)
STEP 2 Leading another path from the sensor node to

the feedback coordinate. (That is Gj(s) in Eq. (4).)

STEP 3 Transforming the vector in the feedback coor-
dinate into the corresponded force vector though the trans-
fer arrow of proportion feedback.
STEP 4 Leading the path from the force vector in STEP

3 to the actuator node α.
Paths that can be leaded to the goal (that is the actuator

node) through the steps imply realizable feedback control
laws. Therefore inverse-transforming from transfer arrows
to mathematical expression given by Eqs. (1) to (3) yields
feedback control laws

As far as the D element of PID control is concerned, it
can be obtained through almost the same steps of the P el-
ement. That is STEP 2 - STEP 4 , omitting STEP 1 ,
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Figure 3. Example Paths of P, I, D Feedback
Elements

because the desired vector ẋd is set to zero. Finally, the re-
maining I element can be obtained through the same steps
of P element.

Now, the overlap of P, I and D paths can express a PID
control law on the sensor-actuator map. Moreover, by the
transforming the PID paths to mathematical expression, and
then by combining them, the PID control laws as actuator
input can be obtained.

For example, when we obtain the paths shown in Fig.
3(a)-(c) as P, I and D elements, overlapping the paths yields
Fig. 3(d) as the expression of PID control. (In the following,
important nodes constructing feedback control the feedback
node and the actuator node are accented visually.) Then, an-
alytically inverse-transforming the combined path to math-
ematical expression yields the following equation as one of
actuator input αPID in this case.

αPID = J+T
4 (θ)

[
KP 1

(
G6(xd) − G3(q)

)

−KV 1
dG3(q)

dt
+ KI1

∫ T

0

(
G6(xd) − G3(q)

)
dt

]

+v2. (5)

Even though there are two kinds of transformation that
means the τ → α, α = J4

+T (θ)τ + v2 is selected in
this case. In the map, we also obtain plural paths as PID
control laws on a sensor-actuator map. So, it is necessary to
select excellent control laws from such plural PID control
laws.

2.4 Selection of paths

The total numbers of control laws obtained from the map
depends on the numbers of entered transfer arrows and sen-
sors, then generally there exists many combinations of the
arrows to compose PID control laws. In this subsection,
we assume that all transformations among the vectors can
be analytically calculated and the system can directly ob-
tain x, θ and α from displacement sensors as a case study.
These vectors can be candidates for sensor nodes. Under
such assumptions, the system has more than 8×106 combi-
nations of PID feedback control laws. So, it is necessary to
establish a sort of selection policy to narrow down the laws
in order to employ actually. First, we consider the follow-
ing initial setting for the purpose to select the basic control
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Figure 4. Selected PID Paths

laws.
Initial Setting P, I and D feedback are achieved in the

same coordinate and utilize only one kind of sensor to mea-
sure x or q or θ.

However, it might not be enough to narrow down con-
trol laws. Then, we should consider other selection policy
to narrow down control laws as few as possible. From the
viewpoint of the accuracy of positioning, qualitatively, less
times of kinematics transformation is desirable since the er-
ror accumulation is less. Therefore, we establish the follow-
ing selection policy.
Selection Policy 1 The transformations from the sensor

node into the feedback node is not achieved if the two nodes,
the origin and the end, are the same. The transfer arrow
can be employed one time if the two nodes are not the same.
Also, transformation from the end-effector position node to
the feedback node is in the same manner.

Moreover we set the selection policy 2 to reduce the er-
ror in Jacobin matrices from the viewpoint of convergence
time of the positioning and expansion for force control.
Selection Policy 2 We can use only the Jacobian matri-

ces in which displacement vectors can be measured directly
from sensors.

The above policies can narrow down the control laws,
then finally we have nine candidate paths for PID control in
this case.

2.5 Control Laws

We consider PID position control of the serial-link struc-
ture driven by parallel-wire mechanism introduced in sub-
section 2.1 as a case study. First, we investigate the realiza-
tion of the transfer arrows in the system shown in Fig. 1.
The system has all transfer arrows realized on the assump-
tion that the diameter of links can be ignored and neighbor
connect points of wires can be regarded as the same point.
And the wire length node q or the joint angle θ can be a
sensor node on the map.

In this case, we obtain Fig. 4-(I) , (II), (III) and (IV),
then also PID control laws are mathematically obtained as
expressed by Eqs. (6) to (9).
Obtained from Fig. 4 (I)

αPID = J4(θ)
+T J1(θ)T

[
KP 2

(
xq − G1(θ)

)

−KV 2
dG1(θ)

dt
+ KI2

∫ T

0

(
xd − G1(θ)

)
dt

]

+v2 (6)

Obtained from Fig. 4 (II)

αPID = J5(q)T
[
KP 2

(
xd − G5(q)

) − KV 2
dG5(q)

dt

+KI2

∫ T

0

(
xd − G5(q)

)
dt

]
+ v1 (7)

Obtained from Fig. 4 (III)

αPID = J4(θ)+T
[
KP 1

(
G6(xd) − θ

) − KV 1
dθ

dt

+KI1

∫ T

0

(
G6(xd) − θ

)
dt

]
+ v2 (8)

Obtained from Fig. 4 (IV)

αPID = KP3

(
G2(xd) − q

) − KV 3
dq

dt

+KI3

∫ T

0

(
G2(xd) − q

)
dt + v3 (9)

We confirmed that the obtained control laws had the end-
effector converge to the desired position through the posi-
tioning experiments, even though steady state errors existed.

3 Conclusion

We have proposed the sensor-actuator map for the or-
ganization of position sensor feedback control for multiple
links structure / wire driven system. We have indicated that
combining the transfer arrows and making paths on the map
can express PID control, and also introduced the selection
policies to narrow down the paths.

The selection policies of paths described in this paper
are not used to find out the optimal control law. The study
of selection policies to find out the quantitatively optimal
control law is one of the most important future works.
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