
Java Development Guide for Mac OS X

2006-05-23

Apple Computer, Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Computer, Inc.,
with the following exceptions: Any person
is hereby authorized to store documentation
on a single computer for personal use only
and to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple
Computer, Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Aqua,
Carbon, Cocoa, iTunes, Keychain, Mac, Mac
OS, Macintosh, Quartz, WebObjects, and
Xcode are trademarks of Apple Computer,
Inc., registered in the United States and
other countries.

eMac, Finder, and Safari are trademarks of
Apple Computer, Inc.

Intel and Intel Core are registered
trademarks of Intel Corportation or its

subsidiaries in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction to Java Development Guide for Mac OS X 7

Who Should Read This Document? 7
Organization of This Document 8
See Also 8
Filing and Tracking Bugs 9

Overview of Java for Mac OS X 11

Java and Mac OS X 11
Java, Built In 12
The Aqua User Interface 12
Finding Your Way Around 13

JAVAHOME 14
Java Extensions 15
Output From Java Programs 15

HFS+ 16

Apple Developer Tools for Java 17

Java Tools on Mac OS X 17
Xcode Tools 17

Get the Current Tools 18
Xcode 18
Jar Bundler 19
Applet Launcher 19

Other Tools 19
Developer Documentation 20

Providing Documentation Feedback 20

Java Deployment Options for Mac OS X 21

Double-Clickable JAR Files 21
Mac OS X Application Bundles 22

The Contents of an Application Bundle 23
A Java Application’s Info.plist File 25
Making a Java Application Bundle 26
Additional Considerations for Non-English Applications 27

3
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Distributing Application Bundles 28
Java Web Start 28
The Java Plug-in 29

User Interface Toolkits for Java 31

Swing 31
JMenuBars 31
JTabbedPanes 32
Component Sizing 33
Buttons 34

AWT 35
Accelerator Key 35
Font Encoding 35
Minimum Window Size 35
Full-Screen Exclusive Mode 36

Accessibility 36
Security 36
Sound 37
Input Methods 37
Java 2D 37

Core Java APIs on Mac OS X 41

Networking 41
Preferences 41
JNI 41

The Java VM for Mac OS X 45

Basic Properties of the Java VM 45
Mac OS X Java Shared Archive 46

Generational Garbage Collection 46
The Advantages of the Java Shared Archive 48

Mac OS X Integration for Java 51

Making User Interface Decisions 51
Menus 51
Components 56
Windows and Dialogs 57

AppleScript 59
System Properties 60

Document Revision History 61

4
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Overview of Java for Mac OS X 11

Figure 1 J2SE platform for Mac OS X 11
Figure 2 Standard Java Metal and Apple's Aqua look and feel in Mac OS X 13
Figure 3 /Library/Java/Home 15

Java Deployment Options for Mac OS X 21

Figure 1 Jar Launcher error 22
Figure 2 Show application bundle contents 23
Figure 3 Contents of a Java application bundle 24
Figure 4 Java Web Start integration 28
Listing 1 Example Info.plist 25

User Interface Toolkits for Java 31

Figure 1 A tabbed pane with multiple tabs on another platform 32
Figure 2 A tabbed pane with multiple tabs in Mac OS X 32
Figure 3 Oversize JComboBox in Windows 33
Figure 4 Oversize JComboBox in the Aqua LAF 34
Figure 5 Anti-aliased text in Mac OS X 38
Figure 6 Anti-aliased text in Windows XP 38
Figure 7 Painting the same image multiple times 39

The Java VM for Mac OS X 45

Figure 1 Default generational garbage collection 47
Figure 2 Duplication of resources in the Permanent generation 47
Figure 3 The Java shared archive implementation of the immortal generation 49
Table 1 JVM properties 45

Mac OS X Integration for Java 51

Figure 1 Application menu for a Java application in Mac OS X 52
Figure 2 Mnemonics in Mac OS X 54
Figure 3 A File menu 55
Figure 4 Dialog created with java.awt.FileDialog 58
Figure 5 Dialog created with javax.swing.jFileChooser 59

5
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Listing 1 Explicitly setting accelerators based on the host platform 53
Listing 2 Using getMenuShortcutKeyMask to set modifier keys 53
Listing 3 Setting an accelerator 54
Listing 4 Using ˜ to detect contextual-menu activation 56
Listing 5 Setting JScrollBar policies to be more like Aqua 58

6
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java 2 Platform, Standard Edition (J2SE) for Mac OS X offers a Java environment featuring a high
level of integration with Mac OS X. This integration brings together the Java platform's versatility
and Mac OS X's advanced technologies to offer users a wider selection of applications and developers
a first-class development and deployment platform.

Mac OS X v.10.4 includes Java 1.4.2 right out of the box and offers J2SE 5.0 as a Software Update.
Combined, these Java distributions open up the entire Mac user base to Java application and applet
developers, and conversely, the world of Java applications to Mac OS X users.

While Java's promise of "write once, run anywhere" is true on Mac OS X, there are a number of things
you should do to make your application's user experience fall in line with various conventions and
behaviors that Mac users have come to expect from their applications.This document attempts to
highlight items so you can spend your time writing applications, not trying to figure out why something
doesn’t work the way you think it should.

Who Should Read This Document?

This document is for the Java developer interested in writing Java applications for Mac OS X version
10.4 with J2SE 5.0 or Java 1.4.2. This document is primarily for developers of pure Java applications,
but it may also be useful for WebObjects and Cocoa Java development. It focuses primarily on J2SE
5.0 developers targeting J2SE 5.0 Release 4 on Mac OS X v.10.4, but is also applicable to Java 1.4.2
development on Mac OS X. When a difference between Apple’s implementations of J2SE 5.0 and Java
1.4.2 is present, J2SE 5.0 is assumed to be the default and Java 1.4.2 differences are noted. This reflects
how J2SE 5.0 is default version of Java on Mac OS X v.10.4 as of J2SE Release 4.

Note: J2SE 5.0 Release 4 is available for Mac OS X v.10.4 via Software Update (available via the Apple
Menu or the System Preferences application) or as a manual download from
http://www.apple.com/support/downloads/j2se50release4ppc.html (PowerPC) or
http://www.apple.com/support/downloads/j2se50release4intel.html (Intel).

Information on Java development for previous versions of Mac OS X using Java 1.3.1 is available in
a separate document, Java 1.3.1 Development for Mac OS X.

Who Should Read This Document? 7
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Java Development Guide
for Mac OS X

http://www.apple.com/support/downloads/j2se50release4ppc.html
http://www.apple.com/support/downloads/j2se50release4intel.html

This is not a tutorial for the Java language. This document assumes you have a basic understanding
of Java development. Many resources exist in print and on the web for learning the Java programming
language. If you are new to programming in Java, you may want to start with one of Sun’s tutorials
available online at http://java.sun.com/learning/new2java/.

Organization of This Document

This guide contains the following articles:

 ■ "Overview of Java for Mac OS X" (page 11) describes the Java platforms available on Mac OS X.

 ■ "Apple Developer Tools for Java" (page 17) introduces you to Apple suite of developer tools.

 ■ "Java Deployment Options for Mac OS X" (page 21) dicusses how you can distribute your Java
application on Mac OS X.

 ■ "User Interface Toolkits for Java" (page 31) shows you the different user interface elements
common in Mac OS X.

 ■ "Core Java APIs on Mac OS X" (page 41) discusses the how core Java APIs vary on Mac OS X.

 ■ "The Java VM for Mac OS X " (page 45) describes important information about Mac OS X's Java
virtual machine.

 ■ "Mac OS X Integration for Java" (page 51) provides you with some handy tips for making your
Java application act and feel more like a native Mac OS X application.

See Also

General information about Mac OS X, including more on many of the topics discussed in this document
can be found in Mac OS X Technology Overview.

Answers to frequently asked questions about Java for Mac OS X are addressed in the Java FAQ.

General information on previous versions of Java for Mac OS X can be found in the Java Release
Notes.

This document and other Java documentation for Mac OS X, including the Javadoc API reference, is
available in the Java Reference Library. A subset of this documentation is installed in /Developer/ADC
Reference Library/documentation/Java/ on a Mac OS X system with the Mac OS X Developer
Tools. You can view this documentation through a web browser or through Xcode (from Xcode’s
Help menu, choose Documentation and then click Java).

The main Apple website for Java technology, http://developer.apple.com/java/, contains links to
information about Java development in Mac OS X.

The java-devmailing list is a great source of information on a wide range of Java development topics
in Mac OS X. You can sign up for this list at http://lists.apple.com/.

Sun’s Java web site, http://java.sun.com/ is the essential reference point for Java development in
general.

8 Organization of This Document
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Java Development Guide for Mac OS X

http://java.sun.com/learning/new2java/
http://developer.apple.com/java/faq/
http://developer.apple.com/java/
http://lists.apple.com/
http://java.sun.com/

Filing and Tracking Bugs

If you find issues with the implementation of Java that are not covered in this document or you want
to follow the resolution of an issue, you may do so online through Radar, Apple’s bug tracking system.
To access Radar, you need an Apple Developer Connection (ADC) account. You can view the ADC
membership options, including the free online membership, at
http://developer.apple.com/membership/. With an ADC membership, you can file and view bugs
at http://bugreport.apple.com/. When filing new bugs for Java in Mac OS X, please use Java (new
bugs) for Component and X as Version.

Filing and Tracking Bugs 9
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Java Development Guide for Mac OS X

http://developer.apple.com/membership/
http://bugreport.apple.com/

10 Filing and Tracking Bugs
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Java Development Guide for Mac OS X

This article provides a broad overview of how Java fits into Mac OS X. It is suggested background
information for anyone new to Java development for Mac OS X.

Java and Mac OS X

The complete Java implementation in Mac OS X includes the components you would normally
associate with the Java Runtime Environment (JRE) as well as the Java Software Development Kit
(SDK). To get the full benefits of the SDK, install the Java Developer Tools, available as part of the
Xcode Tools and at http://developer.apple.com/ . More details about the Java SDK in Mac OS X are
provided in "Java Deployment Options for Mac OS X" (page 21).

As Figure 1 (page 11) illustrates, the individual components of the JRE and SDK are all built on the
native Mac OS X operating system environment.

Figure 1 J2SE platform for Mac OS X

Java SDK

Development Tools

Deployment Technologies

User Interface Toolkits

Integration APIs

Core APIs

Java Virtual Machine

Mac OS X

Java
Runtime
Environment

Java and Mac OS X 11
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Java for Mac OS X

http://developer.apple.com/

The following sections give a high-level overview of how Java for Mac OS X is different from Java
for other platforms. Subsequent chapters delve into the individual layers shown in Figure 1 to discuss
the differences of each component of the JRE and SDK in more detail. Illustrations at the beginning
of each chapter show what is within the components, which gives you an idea of what is covered in
that chapter.

Java, Built In

“Write once, run anywhere” is true only if Java is everywhere. With Mac OS X, you know the Java
Runtime Environment (JRE) is there for your Java applications—the Java runtime is built into the
operating system. This means that when developing Java applications for deployment on Mac OS X,
you know that Java is already installed and configured to work with your customer’s operating
system. This assurance is good for you as a developer.

The fact that Java is in one of the three high-level APIs for application development, along with Cocoa
and Carbon, benefits both you and your customers. It means that with just a little work on your part,
Java applications can be nearly indistinguishable from native applications. Information on how to
achieve this is provided in "Mac OS X Integration for Java" (page 51). Users don’t need to learn
different behaviors for Java applications—moreover they shouldn’t even know that applications are
Java applications.

By building Java as a part of Mac OS X, Apple is able to provide:

 ■ A Java 1.4.2 implementation with every installation of Mac OS X v.10.4

 ■ A J2SE 5.0 implementation distributed as a Software Update or manual download from
http://www.apple.com/support/downloads/j2se50release4ppc.html (PowerPC) or
http://www.apple.com/support/downloads/j2se50release4intel.html (Intel)

Note: There is no redistribution license for Java in Mac OS X. If your customers need J2SE 5.0 and
they do not have it, they should get it directly from Apple via Software Update or the Apple Support
page at http://www.apple.com/support/.

The Aqua User Interface

Anyone who has run a GUI-based Java application in Mac OS X is bound to notice one of the most
striking differences between Java on the Macintosh and Java elsewhere. Figure 2 (page 13) shows
this distinction by showing the Metal look and feel in Mac OS X, which is essentially the way the user
interface looks on other platforms, and the Aqua look and feel.

12 Java, Built In
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Java for Mac OS X

http://www.apple.com/support/downloads/j2se50release4ppc.html
http://www.apple.com/support/downloads/j2se50release4intel.html
http://www.apple.com/support/

Figure 2 Standard Java Metal and Apple's Aqua look and feel in Mac OS X

By default, Java Swing applications in Mac OS X use the Aqua look and feel (LAF). Although this is
the default LAF, it is not required; the standard Java Metal LAF is also available. While the use of the
Aqua LAF is encouraged for Swing applications, different design philosophies inherent in an
application might make the Aqua LAF inappropriate. To use the Metal LAF, modify your code to
include UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel"). Further
details on the Aqua LAF are provided in "User Interface Toolkits for Java" (page 31).

Note: Despite the fact that the standard Java appearance is called Metal, don't confuse it with Apple's
Textured look and feel (often referred to as Metal), used in applications like iTunes and Safari.

Finding Your Way Around

One of the first things newcomers to Java development in Mac OS X face is figuring out where
everything is on the platform. This section outlines some basic things to remember and offers some
guidelines to follow when trying to figure out where things are in the Mac OS X filesystem.

Since Java is built into the operating system, it is implemented as a Mac OS X framework. For more
information on frameworks, see Framework Programming Guide. The code that makes the Java
implementations in Mac OS X work can be found in
/System/Library/Frameworks/JavaVM.framework/. That directory contains one directory,
/Versions/, and some symbolic links to directories inside the Versions directory. The layout of the
JavaVM.framework directory is designed to accommodate design decisions from previous versions
of Java as well as to support future versions of Java. As of J2SE 5.0 Release 4, the CurrentJDK symlink

Finding Your Way Around 13
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Java for Mac OS X

points to the 1.5.0 directory. This is where the code that actually implements J2SE 5.0 resides. If you
haven’t installed J2SE 5.0, the CurrentJDK symlink points towards the 1.4.2 directory that contains
Apple's Java 1.4.2 implementation for Mac OS X.

Although the exact uses of the files within the 1.5.0 directory are interesting from the perspective
of how Java is implemented in Mac OS X, the only directories that you should be concerned with are
the Commands, Home, and Headers directories. Even for these, there are restrictions on how you use
their contents in the proper way. You should never count on specific paths to anything in these
directories for code that you ship to customers. The directories are laid out to make things work well
with the underlying operating system and the Java virtual machine. You should also never write
anything into these directories on a user’s system. Although you can see what is there, consider the
contents of /System/Library/Frameworks/JavaVM.framework/ as read only, and recognize that
the contents may change with updates to Java or the operating system.

There are times that you want to install JAR files or JNI libraries into the Java home directory or would
expect to link against a header file there. How do you do that if you are not supposed to write into
the JavaVM.framework directory or link specifically against paths in there? Apple provides a way to
do this that should be stable across Java or operating system updates in /Library/Java/.

JAVAHOME

Some applications look for Java’s home directory (JAVA_HOME) on the users system, especially during
installation. If you need to explicitly set this, in a shell script or an installer, set it to
/Library/Java/Home/. Setting it to the target of that symbolic link can result in a broken application
for your customers. Programatically you can use System.getProperty("java.home"), as you would
expect.

/Library/Java/Home/ also contains the /bin/ subdirectory where symbolic links to command-line
tools like java and javac can be found. These tools are also accessible through /usr/bin/.

Note: Since the links in /usr/bin/ point to the tools for J2SE 5.0, to invoke Java 1.4.2 tools you must
use the full path. For example, to run the Java 1.4.2 version of java use
/System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Commands/java.

Figure 3 (page 15) shows the contents of /Library/Java/Home/.

14 Finding Your Way Around
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Java for Mac OS X

Figure 3 /Library/Java/Home

Java Extensions

Java can be extended by adding custom.jar, .zip, and .class files, as well as native JNI libraries,
into an extensions directory. On some platforms this is designated by the java.ext.dir system
property. In Mac OS X, put your extensions in /Library/Java/Extensions/. Java automatically
looks in that directory as it is starting up a VM.

Putting extensions in /Library/Java/Extensions/ loads those extensions for every user on that
particular computer. If you want to limit which users can use certain extensions, you can put them
in the /Library/Java/Extensions/ directory inside the appropriate users’ home directories. By
default that folder does not exist, so you may need to make it.

Output From Java Programs

When you launch a Java application from the command line, standard output goes to the Terminal
window. When you launch a Java application by double-clicking it, your Java output is displayed in
the Console application in /Applications/Utilities/. Applets that use the Java Plug-in display
output in the Java Console if the console has been turned on in either the Java 1.4.2 Plugin Settings
or Java Preferences applications (See "Other Tools" (page 19) for information on these applications.).

Finding Your Way Around 15
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Java for Mac OS X

HFS+

The default filesystem of Mac OS X, HFS+ (Mac OS Extended format), is case-insensitive but
case-preserving. Although it preserves the case of files written to it, it does not recognize the difference
between uppercase and lowercase. You should make sure that no files in the same directory have
names that differ only by case. For example, having a file named mybigimage.tiff and
MyBigImage.tiff in the same directory can create unpredictable results. Note that while most
UNIX-based operating systems are case-sensitive, Windows is case-insensitive (and not case-preserving)
so this is a general guideline for any cross-platform Java development.

Note: Mac OS X v.10.4 allows HFS+ volumes that are fully case-sensitive. Since this is only an option
that is chosen at install time and that the traditional behavior described above is the default, don't
assume that case-sensitivity can be relied upon.

Details about how HFS+ relates to font encoding can be found in "Font Encoding" (page 35).

16 HFS+
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Overview of Java for Mac OS X

This article provides a broad overview of Apple’s tools for Java development. It covers Apple’s Xcode
IDE, the Jar Bundler application, and methods for obtaining and viewing documentation.

Java Tools on Mac OS X

The Java development tools in Mac OS X are similar to the tools you find in other UNIX-based Java
development implementations. The command-line tools that Sun provides as part of the Java SDK
for Linux and Solaris work the same in Mac OS X as they do on those platforms. There are only a few
significant distinctions between the standard Java development tools in Mac OS X and those found
on other UNIX-based platforms:

 ■ The installed location of the command-line tools is different in Mac OS X. The tools are installed
with the rest of JavaVM.framework in /System/Library/Frameworks/. Symbolic links are
provided from /usr/bin/ to these tools. For more information on overall differences in where
Java components are in Mac OS X, see "Finding Your Way Around" (page 13).

 ■ Tools.jar does not exist. Scripts that look for this file to find the SDK tools need to be rewritten.

Apple provides additional tools for developing and distributing Java applications on Mac OS X. The
following sections discuss Xcode, Jar Bundler, and other tools specific to Mac OS X.

Xcode Tools

Apple provides a full suite of general developer tools with Mac OS X. This suite of tools, the Xcode
Tools, is free but not installed by default. The tools are available on the Mac OS v.10.4 DVD, and
installers are included in /Applications/Installers/Developer Tools/ on new computers. The
most current version of the developer tools is also available online at the Apple Developer Connection
(ADC) Member Site http://connect.apple.com/.

Java Tools on Mac OS X 17
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Apple Developer Tools for Java

http://connect.apple.com/

Get the Current Tools

New features and bug fixes for the Mac OS X Developer Tools are released throughout the year. Even
if you already have the Xcode Tools installed, you should check the Member Site
(http://connect.apple.com/) for the most up-to-date version. You need to be enrolled as an ADC
member to access that site. If you do not have an ADC membership, you can enroll for various levels
of membership, including a free online membership that allows you access to the Member Site, at
http://developer.apple.com/membership/.

The Xcode Tools are available from the Download Software link. There are two components to download
that together give you the full Java development environment for Mac OS X. The Mac OS X section
contains the base Xcode Tools. Download and install the most current released version available.
There are also a Java–specific updates to the base developer tools, the J2SE 5.0 Developer Tools, which
is available in the Java section. Download and install these as well.

With the Xcode Tools and the Java Developer Tools, you have a full-featured development environment
including:

 ■ Command-line tools installed in /Developer/Tools/

 ■ Graphical tools installed in /Developer/Applications/

 ■ Sample code installed in /Developer/Examples/

 ■ Documentation installed in /Developer/ADC Reference Library/

Xcode

The core component of the Mac OS X development environment is Xcode. Xcode is a complete
integrated development environment (IDE) that allows you to edit, compile, debug, and package
Mac OS X applications written in multiple languages. Even if you do not intend to use it for your
primary Java development, become familiar with Xcode. Downloadable sample code and the sample
code installed in /Developer/Examples/Java/ are both usually provided as Xcode projects.
Additionally, there are some elements of documentation viewing that are available only through
Xcode.

For more on using Xcode for Java development, see Xcode 2 User Guide.

Using Xcode with J2SE 5.0

The Java templates in Xcode are setup for Java 1.4.2. To use J2SE 5.0 instead, modify these settings:

Target Settings:
Double click the target to edit and provide
/System/Library/Frameworks/JavaVM.framework/Versions/1.5/Commands/javac as the
value for the JAVA_COMPILER build setting. Change the Target VM Version and Source
Version in the Java Compiler Setting to use 1.5.

Executable Settings:
Double click the executable named java and enter
/System/Library/Frameworks/JavaVM.framework/Versions/1.5/Commands/java as the
Executable Path in the General tab of Executable info.

18 Xcode Tools
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Apple Developer Tools for Java

http://connect.apple.com/
http://developer.apple.com/membership/

Applet Development:
Double click the executable named appletviewer and enter
/System/Library/Frameworks/JavaVM.framework/Versions/1.5/Commands/appletviewer
as the Executable Path in the General tab of Executable info.

Jar Bundler

Jar Bundler is an application that turns pure Java applications into applications that can be launched
just like native Mac OS X applications. Although the Terminal application is a part of every installation
of Mac OS X, many Mac OS X users never use it. To prevent your users from having to use Terminal
for your Java applications, you should wrap your application as a Mac OS X application bundle (See
"Mac OS X Application Bundles" (page 22)). Jar Bundler allows you to do this very easily. It also
provides a simple interface for you to set system properties that make your applications perform their
best in Mac OS X.

Jar Bundler is installed in /Developer/Applications/Java Tools/ with the Java Developer Tools.
If Jar Bundler is not on your system and you see an application named MRJAppBuilder, you need to
install the Java 1.4.2 Developer Tools Update. Jar Bundler replaces MRJAppBuilder and can be used
for both J2SE 5.0 and Java 1.4.2 applications.

More information on Jar Bundler is available in Jar Bundler User Guide.

Applet Launcher

Applet Launcher (in /Developer/Applications/Java Tools/) provides a graphical interface to
Sun’s Java Plug-in. Applet Launcher loads an applet from an HTML page. For example, entering the
following URL launches the ArcTest applet:

file:///Developer/Examples/Java/Applets/ArcTest/example1.html

Applet Launcher is useful for seeing how your applets perform in J2SE 5.0 on Mac OS X. Performance
and behavior settings for applets may be adjusted in the Java Preferences application installed in
/Applications/Utilities/Java/J2SE 5.0/.

Note: Applet Launcher uses the J2SE 5.0 VM after J2SE 5.0 Release 4 is installed. To test applets with
Java 1.4.2, change the Java Plug-in VM in Java Preferences and load the applet in Safari.

Other Tools

In addition to Applet Launcher, /Applications/Utilities/Java/ contains these Java-related tools
that you might find useful when testing your application:

 ■ Input Method HotKey to set the keyboard combination that invokes the input method dialog in
applications with multiple input methods

 ■ Java Preferences for specifying settings for all Java applications and plug-ins and J2SE 5.0 applets

 ■ Java 1.4.2 Plugin Settings for specifying settings for Java 1.4.2 applets

Other Tools 19
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Apple Developer Tools for Java

 ■ Java Web Start, to allow you launch and modify settings for JNLP-aware Java Web Start applications

In addition to Xcode and Jar Bundler, /Developer/Applications/ contains some applications that
you can use for Java development though they are not Java-specific. PackageMaker, FileMerge, and
Icon Composer are a few examples that you might consider using.

Having a UNIX-based core at the heart of the operating system provides you with a host of general
UNIX-based development tools as well. A look in /usr/bin/ shows many tools that make Java
development in Mac OS X very comfortable if you are already accustomed to a UNIX-based operating
system. (In the Finder, choose Go > Go to Folder... and type in /usr/bin/.) You will find emacs, make,
pico, perl, and vi among others.

You can find additional development tools in the Darwin and OpenDarwin CVS repositories available
at http://developer.apple.com/darwin/ and http://www.opendarwin.org/ respectively. For basic
information on porting your favorite non-Java tools to Mac OS X, see Porting UNIX/Linux Applications
to Mac OS X.

Developer Documentation

Documentation for Java development in Mac OS X is provided both online and locally with the
installation of the Xcode Tools. The most current version of the documentation is available from the
Java Reference Library on the Apple Developer Connection website. A snapshot of this documentation
is also installed on your computer. This documentation is mainly HTML based, so you can view it in
your choice of browser by launching the main navigation page at /Developer/ADC Reference
Library/documentation/Java/index.html. Man pages for the command-line tools are accessible
from the command line man program and through Xcode’s Help menu.

Note that Apple does not attempt to provide a full Java documentation suite online or with the Xcode
Tools. Sun supplies very thorough documentation available online at
http://java.sun.com/reference/docs/. Apple’s documentation aims to augment Sun’s documentation
for Java development issues specific to Mac OS X and to document Mac OS X–specific features of
Java. Your primary source for general Java documentation is Sun’s Java documentation web site.

Providing Documentation Feedback

If you find errors in the Java documentation or would like to request either feature or content
enhancements, you can file bugs at http://bugreport.apple.com/. When filing documentation bugs
for Java in Mac OS X, please use Java Documentation (developer) for Component and X as Version.

You may also send email feedback to javadevdoc@apple.com or use the feedback links at the bottom
of ADC Reference Library documents and Tech Notes.

20 Developer Documentation
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Apple Developer Tools for Java

http://developer.apple.com/darwin/
http://www.opendarwin.org/
http://java.sun.com/reference/docs/
http://bugreport.apple.com/
mailto:javadevdoc@apple.com

When deploying Java applications in Mac OS X, you have access to the Java Plug-in and Java Web
Start as you do on other platforms. There are also two additional deployment technologies in Mac
OS X. You may deploy applications as double-clickable JAR files or as native Mac OS X application
bundles. This chapter discusses these four deployment technologies. Note that there are three different
Java implementations currently available on Mac OS X, Java 1.4.2 and J2SE 5.0. Make sure that you
are using the correct Java implementation for your application. Information on what you need to do
to specify the correct Java implementation is included in the following sections.

Double-Clickable JAR Files

The simplest way to deploy an application is to distribute it as a JAR file. The biggest advantage of
this technique is that it requires very little, if any, changes from the JAR files you distribute on other
platforms. This technique, however, has drawbacks for your users. Applications distributed as JAR
files are given a default Java applications icon, instead of one specific to that application, and do not
allow you to easily specify runtime options without doing so either programatically or from a shell
script. If your application has a graphical interface and will be run by general users, you should
consider wrapping the JAR file as a Mac OS X application bundle. You can find more information on
how to do this in "Mac OS X Application Bundles" (page 22).

Double-clickable JAR files launch with J2SE 5.0. If a JAR file needs to be launched in Java 1.4.2, wrap
the JAR file as a Mac OS X application bundle using Jar Bundler.

Note: You can double-click on a Java class file to launch your application, but this is not a recommended
method for application deployment.

If you choose to deploy your application from a JAR file in Mac OS X, the manifest file must specify
which class contains the main method.Without this, the JAR file is not double-clickable and users see
an error message like the one shown in Figure 1 (page 22).

Double-Clickable JAR Files 21
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

Figure 1 Jar Launcher error

If you have a JAR file that does not already have the main class specified in the manifest, you can
remedy this as follows:

1. Unarchive your JAR file into a working directory with some variant of jar xvf myjar.jar

2. In the resultant META-INFdirectory is a MANIFEST.MF file. Copy that file and add a line that begins
with Main-Class: followed by the name of your main class. For example, a default manifest file
in Mac OS X looks like this:

Manifest-Version: 1.0
Created-By: 1.4.2_07 (Apple Computer, Inc.)

With the addition of the main class designation it looks like:

Manifest-Version: 1.0
Created-By: 1.4.2_07 (Apple Computer, Inc.)
Main-Class: YourAppsMainClass

3. Archive your files again but this time use the -m option to jar and designate the relative path to
the manifest file you just modified, for example, jar cmf
YourModifiedManifestFile.txtYourJARFile.jar*.class

This is a very basic example that does not take into account more advanced uses of the jar program.
More detailed information on adding a manifest to a JAR file can be found in the jar(1) man page.

Mac OS X Application Bundles

Native Mac OS X applications are more than just executable files. Although a user sees a single icon
in the Finder, an application is actually an entire directory that includes images, sounds, icons,
documentation, localizable strings, and other resources that the application may use in addition to
the executable file itself. The application bundle simplifies application development in many ways
for developers. The Finder, which displays an application bundle as a single item, retains simplicity
for users, including the ability to just drag and drop one item to install an application.

This section discusses Mac OS X application bundles as they relate to deploying Java applications.
More general information on Mac OS X application bundles is available in Bundle Programming Guide.

When deploying Java applications in Mac OS X, consider making your Java application into a Mac
OS X application bundle. It is easy to do and offers many benefits:

22 Mac OS X Application Bundles
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

 ■ Users can simply double-click the application to launch it.

 ■ If you add an appropriate icon, it shows the application icon in the Dock and in the menu bar,
clearly identifying your application. (Otherwise, a default Java icon appears in the Dock.)

 ■ It lets you easily set Mac OS X–specific system properties that can make your Java application
hard to distinguish from a native application.

 ■ You can bind specific document types to your application. This lets users launch your application
by double-clicking a document associated with it.

The Contents of an Application Bundle

The application bundle directory structure is hidden from view in the Finder by the .app suffix and
a specific attribute, the bundle bit, that is set for that directory. (See Runtime Configuration Guidelines
for more information on Finder attributes.) The combination of these two things makes the directory
a bundle. To get a glimpse inside an application bundle, you can explore the directory of resources
from Terminal or from the Finder. Although by default the Finder displays applications as a single
object, you can see inside by Control-clicking (or right-clicking if you have a multiple-button mouse)
an application icon and choosing Show Package Contents as shown in Figure 2 (page 23).

Figure 2 Show application bundle contents

You should see something similar to the directory structure shown in Figure 3 (page 24).

Mac OS X Application Bundles 23
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

Figure 3 Contents of a Java application bundle

Applications bundles for Java applications should have the following components:

 ■ An Info.plist file in the Contents folder. In the case of a Java application, this contains some
important information that Mac OS X uses to set up the Java runtime environment for your
application. More information about these property lists is in Java Dictionary Info.plist Keys.

 ■ A file named PkgInfo should also be in the Contents folder. This is a simple text file that contains
the string APPL optionally followed directly by a four letter creator code. If an application does
not have a registered creator code, the string APPL???? should be used. You may register your
application with Apple’s creator code database on the ADC Creator Code Registration site at
http://developer.apple.com/datatype/.

 ■ The application’s icon that is displayed in the Dock and the Finder should be in the Resources
folder. There is a Mac OS X–specific file type designated by the .icns suffix, but most common
image types work. To make an icon (.icns) file from your images, use the Icon Composer
application installed in /Developer/Applications/Utilities/.

 ■ The Java code itself, in either jar or .class files, in Resources/Java/.

 ■ A native executable file in the MacOS folder that launches the Java VM.

 ■ Optional localized versions of strings may be included in folders designated by the .lproj suffix.
The example in Figure 3 (page 24) includes localizable strings for four different languages. See
"Additional Considerations for Non-English Applications" (page 27) for more information on
localized application bundles.

There are other files in the application bundle, but these are the ones that you should have in a Java
application bundle. You can learn more about the other files in an application bundle, as well as more
information about some of these items, in Framework Programming Guide.

24 Mac OS X Application Bundles
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

http://developer.apple.com/datatype/

A Java Application’s Info.plist File

Mac OS X makes use of XML files for various system settings. The most common type of XML
document used is the property list. Property lists have a .plist extension. The Info.plist file in
the Contents folder of a Mac OS X application is a property list.

The Info.plist file lets you fine-tune how well your application is presented in Mac OS X. With
slight tweaking of some of the information in this file, you can make your application virtually
indistinguishable from a native application in Mac OS X, which is important for making an application
that users appreciate and demand.

If you build your Java application in Xcode or Jar Bundler, the Info.plist file is automatically
generated for you. If you are building application bundles through a shell or Ant script, you need to
generate this file yourself. Even if it is built for you, you may want to modify it. Since it is a simple
XML file, you can modify it with any text editor.

Listing 1 (page 25) shows an Info.plist for a Java application that has been wrapped as an application
bundle.

Listing 1 Example Info.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleExecutable</key>
<string>Java 1.4.2 Plugin Settings</string>
<key>CFBundleGetInfoString</key>
<string>2.1.1 (for Java 1.4.2), Copyright 2004 Apple Computer, Inc. All

Rights Reserved.</string>
<key>CFBundleIconFile</key>
<string>Java Plugin Settings.icns</string>
<key>CFBundleIdentifier</key>
<string>com.apple.java.PluginSettings.142</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>Java 1.4.2 Plugin Settings</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleShortVersionString</key>
<string>2.1.1</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleVersion</key>
<string>2.1.1</string>
<key>Java</key>
<dict>

<key>JVMVersion</key>
<string>1.4*</string>
<key>MainClass</key>
<string>sun.plugin.panel.ControlPanel</string>
<key>VMOptions</key>

Mac OS X Application Bundles 25
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

<string>-Xbootclasspath/p:/System/Library/Frameworks/
JavaVM.framework/Versions/1.4.2/Home/lib/jaws.jar:/System/Library/
Frameworks/JavaVM.framework/Versions/1.4.2/Home/lib/netscape.jar</string>

</dict>
<key>LSHasLocalizedDisplayName</key>
<true/>
<key>NSHumanReadableCopyright</key>
<string>Copyright 2003 Apple Computer, Inc., All Rights Reserved.</string>
<key>NSJavaPath</key>
<array/>

</dict>
</plist>

A property list file is divided into hierarchical sections called dictionaries. These are designated with
the dict key. The top-level dictionary contains the information that the operating system needs to
properly launch the application. The keys in this section are prefixed by CFBundle and are usually
self explanatory. Where they are not, see the documentation in Runtime Configuration Guidelines.

At the end of the CFBundle keys, this example includes a Java key designating the beginning of a
Java dictionary. At least two keys should be in this dictionary; the MainClass is required and the
JVMVersion key is highly recommended. A listing of all the available keys and Java version values
for the Java dictionary is provided in Java Dictionary Info.plist Keys.

If you examine an older Java application distributed as an application bundle, some of the keys may
be missing from the Propertiesdictionary. Java application bundles used to include the Java-specific
information distributed between an Info.plist file and another file, MRJApp.properties in
Contents/Resources/ in the application bundle. If you are updating an existing application bundle,
you should move the information from the MRJApp.properties file into the appropriate key in the
Java dictionary in the Info.plist file.

Making a Java Application Bundle

There are three ways to make a Java application bundle:

 ■ With Xcode

 ■ With Jar Bundler

 ■ From the command line

If you build a new Java AWT or Swing application, use one of Xcode’s templates and Xcode
automatically generates an application bundle complete with a default Info.plist file. You can
fine-tune the behavior of this application by modifying the Info.plist file directly in the Products
group of the Files pane or by modifying the settings in the Info.plist Entries section of the Targets
pane. For more information on using Xcode for Java development, see Xcode Help (available from
the Help menu in Xcode) and Xcode 2 User Guide.

If you want to turn your existing Java application into a Mac OS X Java application, use the Jar Bundler
application available in /Developer/Tools/. It allows you to take existing .class or jar files and
wrap them as application bundles. Information about Jar Bundler, including a tutorial, is provided
in Jar Bundler User Guide.

To build a valid application bundle from the command-line, for example in a shell script or an Ant
file, you need to follow these steps:

26 Mac OS X Application Bundles
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

1. Set up the correct directory hierarchy. The top level directory should be named with the name
of your application with the suffix .app.

There should be a Contents directory at the root of the application bundle. It should contain a
MacOS directory and a Resources directory. A Java directory should be inside of the Resources
directory.

The directory layout should look like this.

YourApplicationName.app/
Contents/

MacOS/
Resources/

Java/

2. Copy the JavaApplicationStub file from
/System/Library/Frameworks/JavaVM.framework/Versions/Current/Resources/MacOS/
into the MacOS directory of your application bundle.

3. Make an Info.plist file in the Contents directory of your application bundle. You can start
with an example like that given in Listing 1 (page 25) and modify it or generate a completely
new one from scratch. Note that the application bundle does not launch unless you have set the
correct attributes in this property list, especially the MainClass key.

4. Make a PkgInfo file in the Contents directory. It should be a plain text file. If you have not
registered a creator code with ADC, the contents should be APPL????. If you have registered a
creator code replace the ???? with your creator code.

5. Put your application’s icon file into the Contents/Resources/ directory. (For testing purposes,
you can copy the generic Java application icon from /Developer/Applications/Jar
Bundler.app/Contents/Resources/.)

6. Copy your Java .jar or .class files into /Contents/Resources/Java/.

7. Set the bundle bit Finder attribute with SetFile, found in /Developer/Tools/. For example,
/Developer/Tools/SetFile -a B YourApplicationName.app.

After these steps, you should have a double-clickable application bundle wrapped around your Java
application.

Additional Considerations for Non-English Applications

To run correctly in locales other than US English, Java application bundles must have a localized
folder for each appropriate language inside the application bundle. Even if the Java application handles
its localization through Java ResourceBundles, the folder itself must be there for the operating system
to set the locale correctly when the application launches. Otherwise Mac OS X launches your application
with the US English locale.

Put a folder named with the locale name and the .lproj suffix in the application’s Resources folder
for any locale that you wish to use. For example if you include a Japanese and French version of your
application, include a Japanese.lproj folder and a French.lproj folder in
YourApplicationName.app/Contents/Resources/. The folder itself can be empty, but it must be
present.

Mac OS X Application Bundles 27
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

Bundle Programming Guide provides more detail about the application bundle format.

Distributing Application Bundles

The recommended way to distribute application bundles is as a compressed disk image. This gives
users the ease of a drag-and-drop installation. Put your application bundle along with any relevant
documentation on a disk image with Disk Utility, compress it, and distribute it. Disk Utility is available
in /Applications/Utilities/. You can further simplify the installation process for your application
by making the disk image Internet enabled. For information on how to do this see Distributing Software
with Internet Enabled Disk Images.

Java Web Start

As a part of Java 1.4.2 and J2SE 5.0, Mac OS X also supports deploying your application as a Java Web
Start application. Java Web Start is an implementation of the Java Network Launching Protocol &
API (JNLP) specification, which means that if you make your application JNLP-aware, Mac OS X
users do not need to do anything to use it. They have access to your applications through the Web
browser and the Java Web Start application (installed in /Applications/Utilities/Java/).

By default, if a user launches a Java Web Start application more than twice from the same URL, they
are prompted to save the application as a standard Mac OS X application, as shown in Figure 4 (page
28). They are also prompted on where they want to save your application. The application is still a
Java Web Start application, with all the benefits that offers, but it is now easier for users to run your
application since they do not have to launch a Web browser or the Java Web Start application.

Figure 4 Java Web Start integration

The desktop integration setting can be changed in the Preferences of the Java Web Start application
in /Applications/Utilities/Java/.

You need to be aware of only a few details about how the Mac OS X implementation of Java Web
Start differs from the Windows and Solaris versions:

 ■ It does not support downloading of additional Java Runtime Environments (JREs). Mac OS X
v.10.4 includes Java 1.4.2 and offers J2SE 5.0 as a Software Update. If your application requires
J2SE 5.0, you need direct your customers to Apple to obtain it. The version keys that are valid for
Java Web Start applications are the same as those for Mac OS X application bundles and are listed
in Java Dictionary Info.plist Keys.

28 Java Web Start
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

 ■ It is not necessary to set up proxy information explicitly in the Web Start application. Java Web
Start in Mac OS X automatically picks up the proxy settings from the Network pane in System
Preferences.

 ■ Java Web Start caches its data in the user’s /Library/Caches/Java Web Start/ directory.

The Java Plug-in

Java 1.4.2 and J2SE 5.0 for Mac OS X include the Java Plug-in for you to deploy applets in browsers
and other Java embedding applications. The only browsers that currently support the Java 1.4.2 and
J2SE 5.0 Java Plug-in use the Web Kit API. Other browsers on Mac OS X currently use either a Java
1.3.1 Java Plug-in or the legacy Java Embedding framework. The Java Embedding framework supports
Java 1.3.1 by implementing the appletviewer class and therefore does not provide the added benefits
that the Java Plug-in provides like JAR caching, handling of signed JAR files, and the Java console.

When testing your applications, you can determine which version of the Java Plug-in the application
is using with the GetOpenProperties applet available from Sun at
http://java.sun.com/docs/books/tutorial/deployment/applet/. These are the Java implementations
used by current browsers:

Safari 2.0
Java 1.4.2 and J2SE 5.0 Plug-in

Internet Explorer 5.2
Java 1.3.1 Embedding framework

Netscape 7.2/ Mozilla 1.7
Java 1.3.1 Plug-in

The Applet Launcher application in /Applications/Utilities/Java/ also uses the J2SE 5.0 Plug-in,
but it is not a full-featured browser – it is more of a development tool. For more information on Applet
Launcher see " Applet Launcher" (page 19).

" Using Xcode with J2SE 5.0" (page 18) includes information on using Applet Launcher with J2SE 5.0.

For all of the common browsers, the <APPLET> tag has proven to be less problematic than the <OBJECT>
and <EMBED> tags.

The Java Plug-in 29
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

http://java.sun.com/docs/books/tutorial/deployment/applet/

30 The Java Plug-in
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Java Deployment Options for Mac OS X

This article discusses how the Mac OS X implementation of the Swing, AWT, accessibility, and sound
user interface toolkits differ from other platforms. Although there is some additional functionality in
Mac OS X, for the most part these toolkits work as you would expect them to on other platforms. This
chapter does not discuss user interface design issues that you should consider in Mac OS X. For that
information see "Making User Interface Decisions" (page 51).

Swing

In Mac OS X, Swing uses apple.laf.AquaLookAndFeel as the default look and feel (LAF). Swing
attempts to be platform neutral, but there are some parts of it that are at odds with the Aqua user
interface. Apple has tried to bridge the gap with a common ground that provides both developers
and users an experience that is not foreign. This section discusses a few details where the Aqua LAF
differs from the default implementation on other platforms.

While testing your application, you might want to test it on the standard Java Metal LAF as well as
Aqua. To run your application with Metal, pass the
-Dswing.defaultlaf=javax.swing.plaf.metal.MetalLookAndFeel flag to java.

JMenuBars

Macintosh users expect to find their menus in the same spot – no matter what window they have
open – at the top of the screen in the menu bar. In the default Metal LAF, as well as the Windows
LAF, menus are applied on a per-frame basis inside the window under the title bar.

To get menus out of the window and into the menu bar you need only to set a single system property:

apple.laf.useScreenMenuBar

This property can have a value of true or false. By default it is false, which means menus are in
the window instead of the menu bar. When set to true, the Java runtime moves any given JFrame’s
JMenuBar to the top of the screen, where Macintosh users expect it. Since this is just a simple runtime
property that only the Mac OS X VM looks for, there is no harm in putting it into your cross-platform
code base.

Swing 31
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

Note that this setting does not work for JDialogs that have JMenus. A dialog should be informational
or present the user with a simple decision, not provide complex choices. If users are performing
actions in a dialog, it is not really a dialog and you should consider a JFrame instead of a JDialog.

JTabbedPanes

Another example of a difference in Mac OS X is with JTabbedPanes. With other LAFs, if you have
JTabbedPane with too many tabs to fit in the parent window – they just get stacked on top of each
other as shown in Figure 1 (page 32).

Figure 1 A tabbed pane with multiple tabs on another platform

In the Aqua user interface of Mac OS X, tab controls are never stacked. The Aqua LAF implementation
of multiple tabs includes a special tab on the right that exposes a pull-down menu to navigate to the
tabbed panes not visible. This behavior, shown in Figure 2 (page 32) allows you to program your
application just as you would on any other platform, but provides users an experience that is more
consistent with Mac OS X.

Figure 2 A tabbed pane with multiple tabs in Mac OS X

One other thing to keep in mind about JTabbedPanes in the Aqua look and feel is that they have a
standard size. If you put an image in a tab, the image is scaled to fit the tab instead of the tab to the
image.

32 Swing
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

Component Sizing

Aqua has very well-defined guidelines for the size of its widgets. Swing, on the other hand, does not.
The Aqua LAF tries to find a common ground. Since any combo box larger than twenty pixels would
look out of place in Mac OS X, that is all that is displayed, even if the actual size of the combo box is
bigger. For example, Figure 3 (page 33) shows a very large JComboBox in Windows XP. Note that
the drop-down scrolling list appears at the bottom of the button. The same code yields quite a different
look in Mac OS X, as can be seen in Figure 4 (page 34). The visible button is sized to that of a standard
Aqua combo box. The drop-down list appears at the bottom of the visible button. The entire area that
is active on other platforms is still active, but the button itself doesn’t appear as large.

Figure 3 Oversize JComboBox in Windows

Swing 33
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

Figure 4 Oversize JComboBox in the Aqua LAF

Note that some other components have similar sizing adjustments to align with the standards set in
Apple Human Interface Guidelines for example, scroller and sliders. The JComboBox example is an
extreme example. Most are not as large, but this gives you an idea of how the Aqua LAF handles this
type of situation.

Buttons

There are basically three button types in Mac OS X:

 ■ Push buttons which are rounded rectangles with text labels on them.

 ■ Radio buttons which are in sets of two to seven circular buttons. They are for making mutually
exclusive, but related choices.

 ■ Bevel buttons which can display text, an icon, or a picture that can be either a standard push
button or have a menu attached.

Bevel buttons normally have rounded corners. When displayed in a toolbar or when sizing
constraints are tight, the corners are squared off.

To be consistent with these button types and their defined use in Mac OS X, there are a some nuances
of Swing buttons that you should be aware of:

 ■ JButtons with images in them are rendered as bevel buttons by default.

 ■ A default JButton that contains only text is usually rendered as a push button. (Over a certain
height, it is rendered as a bevel button, since Aqua push buttons are limited in their height.)

 ■ JButtons in a toolbar are rendered as bevel buttons with square, not rounded edges.

34 Swing
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

In addition to these default characteristics which are dependent on height and the contents of the
button, you can also explicitly set the type of button with JButton.buttontypewhich accepts toolbar,
icon, or text. toolbar gives you square bevel button, icon gives you a rounded bevel button, and
text gives you a push button. Keep the Apple Human Interface Guidelines in mind if you explicitly
set a button type.

AWT

By its nature, AWT is very different on every platform and there are a few high level things to keep
in mind about AWT in Mac OS X. These details are explored in the following sections.

Accelerator Key

The value of the accelerator key can be determined by calling
Toolkit.getDefaultToolkit().getMenuShortcutKeyMask(). This is further discussed in "
Accelerators (Keyboard Shortcuts)" (page 53).

Font Encoding

The default font encoding in Mac OS X is MacRoman. The default font encoding on some other
platforms is ISO-Latin-1 or WinLatin-1. These are subsets of UTF-8 which means that files or filenames
can be turned into UTF-8 by just turning a byte into a char. Programs that assume this behavior cause
problems in Mac OS X.

The simplest way to work around this problem is to specify a font encoding explicitly rather than
assuming one.

If you do not specify a font encoding explicitly, recognize that:

 ■ In the conversion from Unicode to MacRoman you may lose information.

 ■ Filenames are not stored on disk in the default font encoding, but in UTF-8. Usually this isn’t a
problem, since most files are handled in Java as java.io.Files, though it is good to be aware
of.

 ■ Although filenames are stored on disk as UTF-8, they are stored decomposed. This means certain
characters, like e-acute (é) are store as two characters, “e”, followed by “´” (acute accent). The
default HFS+ filesystem of Mac OS X enforces this behavior. SMB enforces composed Unicode
characters. UFS and NFS do not specify whether filenames are stored composed or decomposed,
so they can do either.

Minimum Window Size

Mac OS X does not specify a default minimum size for windows. To avoid a 0 by 0 (0x0) pixel window
being opened, the following default minimum sizes for Java windows are enforced:

 ■ Borderless windows have a minimum size of 1 by 1 (1x1).

AWT 35
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

 ■ Windows with a title bar have a minimum size of 128 by 32 (128x32).

Full-Screen Exclusive Mode

In J2SE 5.0 and Java 1.4, java.awt.GraphicsDevice includes methods for controlling the full screen
of a client computer through Java. In addition to these standard tools, Mac OS X provides a few system
properties that may be useful for development of full-screen Java applications. These are discussed
in Java System Properties.

Accessibility

With some other platforms, the use of the Java Accessibility API requires the use of a native bridge.
This is not necessary in Mac OS X. The code needed to bridge the Accessibility API to the native
operating system is built in. Users can configure the accessibility features of Mac OS X through the
Universal Access pane of System Preferences. If you are using the Accessibility API, your application
can use devices that the user has configured there.

Beginning with Mac OS X v10.4, a screen reader call VoiceOver is included with the operating system.
Your Java application automatically utilizes this technology.

Security

In Mac OS X v10.4, Java applications that utilize Kerberos automaticially access the system credentials
cache and tickets.

Apple also includes a cryptographic service provider based on the Java Cryptography Architecture.
Currently, the following algorithms are supported:

 ■ Mac: MD5, SHA1

 ■ Message Digest: MD5, SHA1

 ■ Secure Random: YarrowPRNG

Java on Mac OS X v10.4 features an implementation of KeyStore that uses the Mac OS X Keychain as
its permanent store. You can get an instance of this implementation by using code like this:

keyStore = KeyStore.getInstance("KeychainStore", "Apple");

See the reference documentation on java.security.KeyStore for more usage information.

36 Accessibility
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

Sound

Java sound input is supported only at a frame rate of 44100 (in PCM encoding, mono or stereo, 8 or
16 bits per sample) by the Core Audio framework. If you need a different frame rate, you can easily
resample in your application.

By default, the Java sound engine in Mac OS X uses the midsize sound bank from
http://java.sun.com/products/java-media/sound/soundbanks.html.

Input Methods

Mac OS X supports Java input methods. The utility application Input Method Hot Key, installed in
/Applications/Utilities/Java/, allows you to configure a trigger for input methods. You can
download sample input methods from
http://java.sun.com/products/jfc/tsc/articles/InputMethod/inputmethod.html.

Java 2D

As with Java on other platforms, the Java2D API takes advantage of the native platform to provide
behavior that is as close as possible to the behavior of a native application. In Mac OS X, the Java2D
API is based on Apple’s Quartz graphics engine. (See
http://developer.apple.com/graphicsimaging/quartz/ for more information.) This results in some
general differences between Java in Mac OS X and on some other platforms.

In Mac OS X, Java windows are double-buffered. The Java implementation itself attempts to flush
the buffer to the screen often enough to have good drawing behavior without compromising
performance. If for some reason you need to force window buffers to be flushed immediately, you
may do so with Toolkit.sync.

Normally Quartz displays text anti-aliased. Therefore by default, Java2D renders text in the Aqua
LAF for Swing with KEY_ANTIALIASING set to VALUE_ANTIALIAS_ON. It can be turned off using the
properties described in Java System Properties, or by calling java.awt.Graphics.setRenderingHint
within your Java application. Note that in applets, anti-aliasing is turned off be default.

Since anti-aliasing is handled by Quartz, whether it is on or off does not noticeably affect the graphics
performance of your Java code. One reason for turning it off might be to try to get a closer
pixel-for-pixel match of your images and text with what you are using on other platforms. Recognize
that if you turn off anti-aliasing haphazardly in your application, it can make it look out of place in
the Mac OS X environment, and even with anti-aliasing off, you still will not see an exact pixel-for-pixel
match across platforms.

On any platform, anti-aliased text and graphics look different from aliased images or text. If the native
platform supports and encourages it, you should design your code so that you do not depend on an
exact pixel-for-pixel match between platforms regardless of whether or not anti-aliasing is on. Quartz,
for example, takes advantage of both colors and transparency for its anti-aliasing instead of just color;
differences between it and other platforms are therefore very distinct. Note the differences illustrated
in Figure 5 (page 38) and Figure 6 (page 38).

Sound 37
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

http://java.sun.com/products/java-media/sound/soundbanks.html
http://java.sun.com/products/jfc/tsc/articles/InputMethod/inputmethod.html
http://developer.apple.com/graphicsimaging/quartz/

Figure 5 Anti-aliased text in Mac OS X

Figure 6 Anti-aliased text in Windows XP

The algorithms used to determine anti-aliasing take many variables into account which means you
cannot erase a line by just drawing over it with a line of a different color. For example, drawing a
white line on top of a black line does not completely erase the line; the compositing rules leave some
pixels around the edges. You end up with a blurred outline of your original image. Also, drawing
text multiple times in the same place causes the partially covered pixels along the edges to get darker
and darker, making the text look smudged as can be seen in Figure 7 (page 39). Similarly, do not
count on using XOR mode to repaint images. Whenever you are using anti-aliasing, as you often do
by default in Mac OS X, repaint the graphics context if you need to replace text or an image.

38 Java 2D
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

Figure 7 Painting the same image multiple times

Java 2D 39
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

40 Java 2D
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

User Interface Toolkits for Java

In general, the Core Java APIs behave as you would expect them to on other platforms so most of
them are not discussed in this chapter. There are a couple of details concerning Preferences that you
should be aware of, as discussed in "Other Tools" (page 19). Basic information on using JNI in Mac
OS X is provided in "Input Methods" (page 37).

Networking

Mac OS X v.10.3 and beyond supports IPv6 (Internet Protocol version 6). Because J2SE 5.0 and Java
1.4.2 use IPv6 on platforms that support it, the default networking stack in Mac OS X is the IPv6 stack.
You can make Java use the IPv4 stack by setting the java.net.preferIPv4Stack system property
to true.

Preferences

The Preferences API is fully supported in Mac OS X, but there are two details you should be aware
of to provide the best experience to users:

 ■ The preferences files generated by the Preferences API are named com.apple.java.util.prefs.
The user’s preferences file is stored in /Library/Preferences/ in their home directory
(~/Library/Preferences/). The system preferences are stored in /Library/Preferences/.

 ■ To be consistent with the Mac OS X user experience, your preferences should be available from
the application menu. The com.apple.eawt.Application class provides a mechanism for doing
this. See Java 1.4 API: Apple Extensions and J2SE 5.0 Apple Extensions Reference for more
information.

JNI

JNI libraries are named with the library name used in the System.loadLibrary method of your Java
code prefixed by lib and suffixed with .jnilib. For example, System.loadLibrary("hello")
loads the library named libhello.jnilib.

Networking 41
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Core Java APIs on Mac OS X

http://developer.apple.com/documentation/Java/Reference/1.4.2/appledoc/api/index.html
http://developer.apple.com/documentation/Java/Reference/1.5.0/appledoc/api/index.html

If you are developing a Cocoa Java application, you need to load your JNI library using a different
mechanism. If your library is called hello.jnilib, you should call
System.load(NSBundle.mainBundle().pathForResource("hello", "jnilib", "Java"));Note
that this assumes that your library is located in Resources/Java/.

In building your JNI libraries, you have two options. You can either build them as bundles or as
dynamic shared libraries (sometimes called dylibs). If you are concerned about maintaining backward
compatibility with Mac OS X version 10.0, you should build them as a bundle; otherwise you probably
want to build them as a dylib. Dylibs have the added value of being able to be prebound, which
speeds up the launch time of your application. They are also easier to build if you have multiple
libraries to link together.

To build as a dynamic shared library, use the -dynamiclib flag. Since your .h file produced by javah
includes jni.h, you need to make sure you include its source directory. Putting all of that together
looks something like this:

cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers sourceFile.c

cc -dynamiclib -o libhello.jnilib sourceFile.o -framework JavaVM

To build a JNI library as a bundle use the -bundle flag:

cc -bundle -I/System/Library/Frameworks/JavaVM.framework/Headers -o libName.jnilib
-framework JavaVM sourceFiles

For example, if the files hello.c and hola.c contain the implementations of the native methods to
be built into a dynamic shared JNI library that will be called with System.loadLibrary(“hello”),
you would build the resultant library, libhello.jnilib, with this code:

cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers hola.c
cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers hello.c
cc -dynamiclib -o libhello.jnilib hola.o hello.o -framework JavaVM

Often JNI libraries have interdependencies. For example assume the following:

 ■ libA.jnilib contains a function foo().

 ■ libB.jnilib needs to link against libA.jnilib to make use of foo().

Such an interdependency is not a problem if you build your JNI libraries as dynamic shared libraries,
but if you build them as bundles it does not work since symbols are private to a bundle. If you need
to use bundles for backward compatibility, one solution is to put the common functions into a separate
dynamic shared library and link that to the bundle. For example:

1. Compile the JNI library:

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -o myJNILib.o
myJNILib.c

2. Compile the file with the common functions:

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -o
CommonFunctions.o CommonFunctions.c

3. Build the object file for your common functions as a dynamic shared library:

42 JNI
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Core Java APIs on Mac OS X

cc -dynamiclib -o libCommonFunctions.dylib CommonFunctions.o

4. Build your JNI library as a bundle and link against the dynamic shared library with your common
functions in it:

cc -bundle -lCommonFunctions -o libMyJNILib.jnilib myJNILib.o

A complete example of calling a dynamic shared library from a bundle, including both a makefile
and an Xcode project, can be found in the MyFirstJNIProject sample code. More details on JNI can be
found in Tech Note TN2147: JNI Development on Mac OS X.

Note: When building JNI libraries, you need to explicitly designate the path to the jni.h. This is in
/System/Library/Frameworks/JavaVM.framework/Headers/, not /usr/include/ as on some other
platforms.

Note: Once you have built your JNI libraries, make sure to let Java know where they are. You can do
this either by passing in the path with the -Djava.library.path option or by putting them in
/Library/Java/Extensions/.

JNI 43
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Core Java APIs on Mac OS X

http://developer.apple.com/technotes/tn2005/tn2147.html

44 JNI
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Core Java APIs on Mac OS X

The foundation of any Java implementation is the Java virtual machine (VM). The Java implementation
for Mac OS X includes the Java HotSpot VM runtime and the Java HotSpot client VM from Sun. The
VM options available with the Java VM in Mac OS X vary slightly from those available on other
platforms. The available options are presented in Java Virtual Machine Options.

Basic Properties of the Java VM

Table 1 lists the basic properties of the Java VM in Mac OS X. You can use
System.getProperties().list(System.out) to obtain a complete list of system properties.

Table 1 JVM properties

NotesSample ValueProperty

Mac OS X version 10.1 and earlier ship with earlier versions
of Java. Use this property to test for the minimal version
your application requires.

1.4.2java.version

1.4.2_07java.vm.version

Note that this is a change from Mac OS 9.‘/’file.seperator

This is consistent with UNIX-based Java implementations,
but different from Mac OS 9 and Windows.

‘\n’line.separator

Make sure to check for Mac OS X , not just Mac OS
because Mac OS returns true for Mac OS 9 (and earlier)
which did not even have a Java 2 VM.

Mac OS Xos.name

Java 1.4 runs only in Mac OS X version 10.2 or later.10.4os.version

Basic Properties of the Java VM 45
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Java VM for Mac OS X

Note : The mrj.version system property is still exposed by the VM in Java 1.4.2. Although you
may still use this to determine if you are running in the Mac OS, for forward compatibility consider
using the os.name property to determine if you are running in the Mac OS since this property may
go away in future attempts to further synchronize the Apple source with the source from Sun.

Mac OS X Java Shared Archive

To help increase the speed of application startup and to reduce the memory footprint of Java
applications, the Java VM in Mac OS X makes use of a Java shared archive (JSA). The JSA contains
the preprocessed internal HotSpot representations of common standard Java classes that would
otherwise be found and processed from the standard classes.jar file. Since this data doesn’t
change, it can be shared across processes by mapping the JSA file directly into shared memory. The
JSA file is created upon first system boot after installation of Java. Since each Java application does
not need to generate an independent archive at runtime, less memory and fewer CPU cycles are
needed. There is nothing you need to do programatically to take advantage of these advances. A brief
description of this technology is provided here.

Generational Garbage Collection

Garbage collection (GC) is the means whereby the Java VM gets rid of objects that are no longer in
use. Java provides an environment to the programmer where objects and the memory that they use
are automatically reclaimed without programmer intervention. This runtime facility, GC, has been
under development for decades. The basic ideas is that there is a set of root objects that reference
other objects which in turn reference other objects and so on. If an object cannot be reached from one
of these root objects, it is declared garbage and its memory space is reclaimed. Searching all objects
has always been expensive. About twenty years ago the idea of generational garbage collection was
introduced.

Generational GC takes advantage of the fact that most objects die young. That is, most objects are
only in use for a short amount of time, a string buffer, for example. In generational GC, a section of
memory is set aside where new objects are created. After this space is filled, the objects are copied to
another section of memory. Each of these sections is referred to as a generation. The HotSpot VM
keeps track of these objects so that it can find the connections back to the root objects when GC occurs.

When a GC is run, objects still in use may move up to a more tenured generation. Most generations
have their own strategy for culling out objects no longer in use without having to search through all
of the memory space. The oldest generation, however, has no such strategy. This default scenario is
shown in Figure 1 (page 47) .

46 Mac OS X Java Shared Archive
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Java VM for Mac OS X

Figure 1 Default generational garbage collection

New objects
allocated in

Eden

Some
promoted

Some
promoted

Tenured PermanentEden

One problem with this is that when garbage collection is run on the permanent generation it takes a
while to go through all of that memory space. Moreover, over the course of time, multiple application
instances will end up with many of the same objects in their respective permanent generation. If a
user is running multiple Java applications, then the permanent generation of one often has the same
resources as another which results in wasted memory. Figure 2 (page 47) illustrates the duplication
of resources.

Figure 2 Duplication of resources in the Permanent generation

Eden

Eden

Eden

Tenured

Tenured

Tenured

Permanent

Permanent

Permanent

Duplication of the same
objects in multiple
Permanent generations.

XML

Swing

XML

Swing

XML

Swing

Mac OS X Java Shared Archive 47
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Java VM for Mac OS X

More information on the Java HotSpot VM garbage collection is available online in Sun’s Technical
White Paper, The Java HotSpot Virtual Machine, v1.4.1 available at
http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html
and in Tuning Garbage Collection with the 1.3.1 Java™ Virtual Machine available at
http://java.sun.com/docs/hotspot/gc/index.html .

The Advantages of the Java Shared Archive

To get around the problem of wasted memory in the permanent generation, Apple implements a Java
Shared Archive technology. This technology is similar to the concept of a shared library in C-based
languages. Instead of each Java application needing to keep a separate copy of resources that usually
end up in the permanent generation, they are able to share a single copy of these resources which
adds a new immortal generation. There are some distinctions between this immortal generation and
the other generations:

 ■ Resources are explicitly placed there, they are not promoted to that generation.

 ■ It is never garbage collected.

 ■ A single immortal generation is shared by multiple applications.

When Mac OS X starts up, the Java VM starts in a special mode to build (or update) an archive of
resources that would likely end up in the Permanent generation.

After this archive file has been appropriately assembled, the VM shuts down until the user runs a
Java application. When a user starts a Java application, the VM can bootstrap off of those resources
already on disk, mapping them into the same memory space as the Java heap. Using the archive file
speeds up application launch time.

Shorter launch time is a benefit for a single Java application running in Mac OS X. When multiple
applications are running, a shared archive also uses less memory. Subsequent applications do not
need to allocate space for the resources in the Java Shared Archive; the space has already been allocated
on disk. They just need to map to it. As Figure 3 (page 49) shows, the result is similar to a shared
library. The permanent generation tends to be smaller since many of the objects that would be in the
permanent generation are available in the Immortal generation.

48 Mac OS X Java Shared Archive
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Java VM for Mac OS X

http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html
http://java.sun.com/products/hotspot/docs/whitepaper/Java_Hotspot_v1.4.1/Java_HSpot_WP_v1.4.1_1002_1.html
http://java.sun.com/docs/hotspot/gc/index.html
http://java.sun.com/docs/hotspot/gc/index.html

Figure 3 The Java shared archive implementation of the immortal generation

Eden

Eden

Eden

Tenured

Tenured

Tenured

Permanent

Permanent

Permanent

Immortal

XML

Swing

Immortal

XML

Swing

Immortal

XML

Swing

Immortal

XML

Swing

Apple’s Java Shared Archive implementation in Mac OS X is fully compatible with the Java HotSpot
specification and has been presented to Sun for further use within Java.

Note : The Java Shared Archive is used only if the default boot class is used. The use of
java.endorsed.dirs or otherwise modifying the default boot class path prevents your application
from using the Java Shared Archive.

In summary, the VM uses the generational heap to allocate internal data structures used to implement
Java classes. These classes don’t change over time and don’t ever need to be garbage collected. The
Mac OS X Java VM extends HotSpot’s notion of generations to include a new generation for these
immortal objects. Along with memory savings, time is also conserved since this generation never
needs to be searched for dead objects.

Mac OS X Java Shared Archive 49
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Java VM for Mac OS X

50 Mac OS X Java Shared Archive
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Java VM for Mac OS X

The more your application fits in with the native environment, the less users have to learn unique
behaviors for using your application. A great application looks and feels like an extension of the host
platform. This chapter discusses a few details that can help you make your application look and feel
like it is an integral part of Mac OS X.

Making User Interface Decisions

J2SE’s cross-platform design demands a lot of flexibility in the user interface to accommodate multiple
operating systems. The Aqua user interface, on the other hand, is streamlined to provide the absolute
best user experience on just one platform. This section helps you to make decisions that let your Java
applications approach the appearance and performance characteristics of native applications. In fact,
following some of the suggestions presented here can probably help make your application appear
and perform more like native applications on other platforms as well. The topics covered here represent
just a small subset of design decision topics, but they are high-visibility issues often present in Java
applications. The complete guidelines for the Aqua user interface can be found in Apple Human Interface
Guidelines.

Menus

The appearance and behavior of menu items varies across platforms. Unfortunately, many Java
programmers write their applications with only one platform in mind. This section discusses some
common areas to improve how your Java menus are displayed and perform in Mac OS X.

The Menu Bar

"JMenuBars" (page 31) discusses how to get the menu out of JFrames and into the Mac OS X menu
bar. Having menus in the menu bar is highly encouraged, but it does not automatically provide the
native experience of Mac OS X menus for two reasons:

 ■ In Mac OS X an application’s menu bar is always visible when an application is the active
application, whether or not any windows are currently open.

Making User Interface Decisions 51
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

 ■ The menu bar contains all of the menus that an application might use. If a menu has no
functionality with the foremost window, the title for that menu is dimmed. Also, the titles of
menus that have only menu items that apply to the content of windows are dimmed if no windows
are open. Menus do not appear and disappear based on which window is foremost.

In short, the menu bar is always present and, except that some items may be dimmed at times, always
looks the same. Removing the menus from your windows and putting them in the menu bar is a great
first step that retains cross-platform compatibility. Depending on how your application is designed,
getting these other characteristics may require rethinking how you display menus with your code.
One solution is to use a menu factory with an off screen JFrame that is always foremost when your
application is active.

The Application Menu

Any Java application that uses AWT/Swing or is packaged in a double-clickable application bundle
is automatically launched with an application menu similar to native applications in Mac OS X. This
application menu, by default, contains the full name of the main class as the title. This name can be
changed using the -Xdock:name command-line property, or it can be set in the information property
list file for your application as the CFBundleName value. For more on Info.plist files, see "A Java
Application’s Info.plist File" (page 25). According to the Aqua guidelines, the name you specify for
the application menu should be no longer than 16 characters. Figure 1 (page 52) shows an application
menu.

Figure 1 Application menu for a Java application in Mac OS X

The next step to customizing your application menu is to have your own handling code called when
certain items in the application menu are chosen. Apple provides functionality for this in the
com.apple.eawt package. The Application and ApplicationAdaptor classes provide a way to handle
the Preferences, About, and Quit items.

For more information see Java 1.4 API: Apple Extensions and J2SE 5.0 Apple Extensions Reference.
Examples of how to use these can also be found in a default Swing application project in Xcode. Just
open a new project in Xcode by selecting Java Swing Application in the New Project Assistant. The
resulting project uses all of these handlers.

If your application is to be deployed on other platforms, where Preferences, Quit, and About are
elsewhere on the menu bar (in a File or Edit menu, for example), you may want to make this placement
conditional based on the host platform’s operating system. Conditional placement is preferable to
just adding a second instance of each of these menu items for Mac OS X. This minor modification can
go a long way to making your Java application feel more like a native application in Mac OS X.

52 Making User Interface Decisions
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

http://developer.apple.com/documentation/Java/Reference/1.4.2/appledoc/api/index.html
http://developer.apple.com/documentation/Java/Reference/1.5.0/appledoc/api/index.html

The Window Menu

Apple Human Interface Guidelines suggests that all Mac OS X applications should provide a Window
menu to keep track of all currently open windows. A Window menu should contain a list of windows,
with a checkmark next to the active window. Selection of a given Window menu item should result
in the corresponding window being brought to the front. New windows should be added to the menu,
and closed windows should be removed. The ordering of the menu items is typically the order in
which the windows are opened. Apple Human Interface Guidelines has more specific guidance on the
Window menu.

Accelerators (Keyboard Shortcuts)

Do not set menu item accelerators with an explicit javax.swing.KeyStroke specification. Modifier
keys vary from platform to platform. Instead, use java.awt.Tookit.getMenuShortcutKeyMask to
ask the system for the appropriate key rather than defining it yourself.

When calling this method, the current platform’s Toolkit implementation returns the proper mask
for you. This single call checks for the current platform and then guesses which key is correct. In the
case of adding a Copy item to a menu, using getMenuShortcutKeyMask means that you can replace
the complexity of "The Contents of an Application Bundle" (page 23) with the simplicity of Listing
2 (page 53).

Listing 1 Explicitly setting accelerators based on the host platform

JMenuItem jmi = new JMenuItem("Copy");
String vers = System.getProperty("os.name").toLowerCase();
if (s.indexOf("windows") != -1) {
jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.CTRL_MASK));

} else if (s.indexOf("mac") != -1) {
jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.META_MASK));

}

Listing 2 Using getMenuShortcutKeyMask to set modifier keys

JMenuItem jmi = new JMenuItem("Copy");
jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,

Toolkit.getDefaultToolkit().getMenuShortcutKeyMask()));

The default modifier key in Mac OS X is the Command key. There may be additional modifier keys
like Shift, Option, or Control, but the Command key is the primary key that alerts an application that
a command, not regular input follows. Note that not all platforms provide this consistency in user
interface behavior. When assigning keyboard shortcuts to items for menu items, make sure that you
are not overriding any of the keyboard commands Macintosh users are accustomed to. See Apple
Human Interface Guidelines for the definitive list of the most common and reserved keyboard shortcuts
(keyboard equivalents).

Mnemonics

JMenuItems inherit the concept of mnemonics from JAbstractButton. In the context of menus,
mnemonics are shortcuts to menus and their contents using a modifier key in conjunction with a
single letter. When you set a mnemonic in a JMenuItem, Java underscores the mnemonic letter in the
title of the JMenuItem or JMenu. The result looks something like that shown in Figure 2 (page 54).

Making User Interface Decisions 53
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

Note: Figure 2 (page 54) is provided only to illustrate mnemonics. Although the figure illustrates the
menu bar inside of the window, you should put your menus in the normal Mac OS X menu bar with
the apple.laf.useScreenMenuBar system property, where mnemonics are never drawn. See Java
System Properties.

Figure 2 Mnemonics in Mac OS X

This does not fit in with the Aqua guidelines for multiple reasons. Among them:

 ■ It is extraneous information. The shortcut is already defined to the right of the menu item.

 ■ It is imprecise. Note in this example that Save and Save As both have the letter S underlined.

 ■ It clutters the interface.

The problem is partially handled for you automatically if you use the apple.laf.useScreenMenuBar
system property. A better solution though is for you to not to use mnemonics for Mac OS X. If you
want mnemonics on another platform, just include a single setMnemonics() method that is
conditionally called (based on the platform) when constructing your interface.

How then do you get the functionality of mnemonics without using Java’s mnemonics? If you have
defined a keystroke sequence in the setAccelerator method for a menu item, that key sequence is
automatically entered into your menus. For example, Listing 3 (page 54) sets an accelerator of
Command-Shift-P for a Page Setup menu. Figure 3 (page 55) shows the result of this code along with
similar settings for the other items. Note that the symbols representing the Command key and the
Shift key are automatically included.

Listing 3 Setting an accelerator

JMenuItem saveAsItem = new JMenuItem("Save As...");
saveAsItem.setAccelerator(

KeyStroke.getKeyStroke(KeyEvent.VK_S,
(java.awt.event.InputEvent.SHIFT_MASK |
(Toolkit.getDefaultToolkit().getMenuShortcutKeyMask()))));

saveAsItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) { System.out.println("Save

As...") ; }
});
fileMenu.add(saveAsItem);

54 Making User Interface Decisions
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

Figure 3 A File menu

Though not quite the same as mnemonics, note that Mac OS X provides keyboard and assistive-device
navigation to the menus. Preferences for these features are set in the Keyboard and Universal Access
panes of System Preferences.

Note: Since the ALT_MASK modifier evaluates to the Option key on the Macintosh, Control-Alt masks
set for Windows become Command-Option masks if you use getMenuShortcutKeyMask in conjunction
with ALT_MASK.

Menu Item Icons and Special Characters

Like mnemonics, menu item icons are also available and functional via Swing in Mac OS X. They are
not a standard part of the Aqua interface, although some applications do display them—most notably
the Finder in the Go menu. You may want to consider applying these icons conditionally based on
platform.

Aqua specifies a specific set of special characters to be used in menus. See the information on using
special characters in menus in Apple Human Interface Guidelines

Contextual Menus

Contextual menus, which are called pop-up menus in Java, are fully supported. In Mac OS X, they
are triggered by a Control-click or a right-click. Note that Control-click and right-click are a different
type of MOUSE-EVENT, even through they have the same result. In Windows, the right mouse button
is the standard trigger for contextual menus.

The different triggers could result in fragmented and conditional code. One important aspect of both
triggers is shared-the mouse click. To ensure that your program is interpreting the proper
contextual–menu trigger, it is again a good idea to ask the AWT to do the interpreting for you with
java.awt.event.MouseEvent.isPopupTrigger.

The method is defined in java.awt.event.MouseEvent because you need to activate the contextual
menu through a java.awt.event.MouseListener on a given component when a mouse event on
that component is detected. The important thing to determine is how and when to detect the proper
event. In Mac OS X, the pop-up trigger is set on MOUSE_PRESSED. In Windows it is set on
MOUSE_RELEASED. For portability, both cases should be considered, as shown in "A Java Application’s
Info.plist File" (page 25).

Making User Interface Decisions 55
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

Listing 4 Using ˜ to detect contextual-menu activation

JLabel label = new JLabel("I have a pop-up menu!");

label.addMouseListener(new MouseAdapter(){
public void mousePressed(MouseEvent e) {

evaluatePopup(e);
}

public void mouseReleased(MouseEvent e) {
evaluatePopup(e);

}

private void evaluatePopup(MouseEvent e) {
if (e.isPopupTrigger()) {

// show the pop-up menu...
}

}
});

When designing contextual menus, keep in mind that a contextual menu should never be the only
way a user can access something. Contextual menus provide convenient access to often-used commands
associated with an item, not the primary or sole access.

Components

There are several key concepts to keep mind when designing your user interface. The following
sections cover these.

Laying Out and Sizing Components

Do not explicitly set the x and y coordinates when placing components; instead use the AWT layout
managers. The layout managers use abstracted location constants and determine the exact placement
of these controls for a specific environment. Layout managers take into account the sizes of each
individual component while maintaining their placement relative to one another within the container.

In general, do not set component sizes explicitly. Each look and feel has its own font styles and sizes.
These font sizes affect the required size of the component containing the text. Moving explicitly sized
components to a new look and feel with a larger font size can cause problems. The safest way to make
your components a proper size in a portable manner is to change to or add another layout manager,
or to set the component’s minimum and maximum size to its preferred size. The setSize() and
getPreferredSize() methods are useful when following the latter approach.

Most layout managers and containers respect a component’s preferred size, usually making this call
unnecessary. As your interface becomes more complicated however, you may find this call handy
for containers with many child components.

Coloring Components

Because a given look and feel tends to have universal coloring and styling for most, if not all of its
controls, you may be tempted to create custom components that match the look and feel of standard
user interface classes. This is perfectly legal, but adds maintenance and portability costs. It is easy to
set an explicit color that you think works well with the current look and feel. Changing to a different

56 Making User Interface Decisions
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

look and feel though may surprise you with an occasional non–standard component. To ensure that
your custom control matches standard components, query the UIManager class for the desired colors.
An example of this is a custom Window object that contains some standard lightweight components
but wants to paint its uncovered background to match that of the rest of the application’s containers
and windows. To do this, you can call

myPanel.setBackground(UIManager.getColor("window"))

This returns the color appropriate for the current look and feel. The other advantage of using such
standard methods is that they provide more specialized backgrounds that are not easily reconstructed,
such as the striped background used for Aqua containers and windows.

Windows and Dialogs

Mac OS X window coordinates and insets are compatible with the Java SDK. Window bounds refer
to the outside of the window’s frame. The coordinates of the window put (0,0) at the top left of the
title bar. The getInsetsmethod returns the amount by which content needs to be inset in the window
to avoid the window border. This should affect only applications that are performing precision
positioning of windows, especially full-screen windows.

Windows behave differently in Mac OS X than they do on other platforms. For example, an application
can be open without having any windows. Windows minimize to the Dock, and windows with
variable content always have scroll bars. This section highlights the windows details you should be
aware of and discusses how to deal with window behavior in Mac OS X.

Use of the Multiple Document Interface

The multiple document interface (MDI) model of the javax.swing.JDesktopPane class can provide
a confusing user experience in Mac OS X. Windows minimized in a JDesktopPane move around as
the JDesktopPane changes size. In JDesktopPane, windows minimize to the bottom of the pane while
independent windows minimize to the Dock. Furthermore, JDesktopPane restricts users from moving
windows where they want. They are forced to deal with two different scopes of windows, those
within the JDesktopPane and the JDesktopPane itself. Normally Mac OS X users interact with
applications through numerous free-floating, independent windows and a single menu bar at the top
of the screen. Users can intersperse these windows with other application windows (from the same
application or other applications) anywhere they want in their view, which includes the entire desktop.
Users are not visually constrained to one area of the screen when using a particular application. When
building applications for Mac OS X, try to avoid using javax.swing.JDesktopPanes.

There are times when there is not a simple way to solve window-related problems other than using
a JDesktopPane. For example, you might have a Java application that requires a floating toolbar-like
entity, referred to in Swing as an “internal utility window,” that needs to always remain in the
foreground regardless of which document is active. Although Java currently has no means of providing
this other than by using JDesktopPane, for new development you may want to consider designing a
more platform-neutral user interface with a single dynamic container, similar to applications like
JBuilder or LimeWire. If you are bringing an existing MDI-based application to the Macintosh from
another platform and do not want to refactor the code, Mac OS X does support the MDI as specified
in the J2SE 1.4 specification.

Making User Interface Decisions 57
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

Windows With Scroll Bars (Using JScrollPanes)

In Mac OS X, scrollable document windows have a scroll bar regardless of whether or not there is
enough content in the window to require scrolling. The scroller itself is present only when the size
of the content exceeds the viewable area of the window. This prevents users from perceiving that the
viewable area is changing size. By default, a Swing JFrame has no scroll bars, regardless of how it is
resized. The easiest way to provide scrollable content in a frame is to place your frame’s components
inside a JScrollPane, which can then be added to the parent frame. The default behavior of JScrollPane,
however, is that scroll bars appear only if the content in the pane exceeds the size of the window. If
you are using a JScrollPane in your application, you can set the JScrollPane’s scroll bar policy to
always display the scroll bars, even when the content is smaller than the viewable size of the window.
An example is shown in "Making a Java Application Bundle" (page 26).

Listing 5 Setting JScrollBar policies to be more like Aqua

JScrollPane jsp = new JScrollPane();
jsp.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
jsp.setHorizontalScrollBarPolicy(JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

With this setting the scroll bars are solid—with scrollers appearing when the content is larger than
the viewable area. You might want to do this conditionally based on the host platform since the default
policy, AS_NEEDED, may more closely resemble other platforms native behavior.

File Choosing Dialogs

The java.awt.FileDialog and javax.swing.JFileChooser classes are the two main mechanisms
to create quick and easy access to the file system for Java applications. Although each has its
advantages, java.awt.FileDialogprovides considerable benefit in making your application behave
more like a native application. The difference between the two is especially evident in Mac OS X as
Figure 4 (page 58) and Figure 5 (page 59) show.

Figure 4 Dialog created with java.awt.FileDialog

58 Making User Interface Decisions
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

Figure 5 Dialog created with javax.swing.jFileChooser

The column-view style of browsing is adopted automatically by the AWT FileDialog, while the Swing
JFileChooser uses a navigation style different from that of native Mac OS X applications. Unless you
need the functional advantages of JFileChooser you probably want to use java.awt.FileDialog.
Since the FileDialog is modal and draws on top of other visible components, there is not the usual
consequence of mixing Swing and AWT components.

When using the AWT FileDialog, you may want a user to select a directory instead of a file. In this
case, use the apple.awt.fileDialogForDirectories property with the setProperty.invoke()
method on your FileDialog instance.

Window Modified Indicator

On Mac OS X, it is common for windows to mark their close widget if the window’s content has
changed since it was last saved. Using this makes your application behave more like a native application
and conform to users expectations.

To use a window modified indicator, you need to use the Swing property windowModified. It can be
set on any subclass of JComponentusing the putClientProperty()method. The value of the property
is either Boolean.TRUE or Boolean.FALSE.

For more on using the Window Modified indicator in your application, review Technical Q&A QA1146:
Illustrating document window changes in Swing.

AppleScript

Mac OS X uses Apple events for interprocess communication. Apple events are high-level semantic
events that an application can send to itself or other applications. AppleScript allows you to script
actions based on these events. Without including native code in your Java application you may let
users take some level of control of your application through AppleScript. Java applications can become
AppleScript-aware in two ways:

AppleScript 59
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

 ■ If you implement the Application and ApplicationAdaptor classes available in the com.apple.eawt
package. By implementing the event handlers in the ApplicationAdaptor class, your application
can generate and handle basic events like Print and Open. Information on these two classes is
available in Java 1.4 API: Apple Extensions and J2SE 5.0 Apple Extensions Reference.

 ■ Through the GUI scripting made available in the System Events application. If you use System
Events, you can write AppleScript scripts to choose menu items, click buttons, enter text into text
fields, and generally control the GUI of your Java applications.

For more on AppleScript, see Getting Started with AppleScript.

System Properties

The Mac OS X–specific system properties let you easily add native behavior to your Java applications
with a minimum of work on your part. A complete list of supported Mac OS X system properties,
including how to use them, is available in Java System Properties.

60 System Properties
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Mac OS X Integration for Java

http://developer.apple.com/documentation/Java/Reference/1.4.2/appledoc/api/index.html
http://developer.apple.com/documentation/Java/Reference/1.5.0/appledoc/api/index.html

This table describes the changes to Java Development Guide for Mac OS X.

NotesDate

Updated content to include information for J2SE 5.0 Release 4 for Mac OS
X.

2006-05-23

Fixed typos throughout the document.2006-01-10

Fixed various errors and inconsistencies.2005-10-04

Updated content to include information for J2SE 5.0 Release 1 for Mac OS
X. Document renamed Java Development Guide for Mac OS X.

2005-04-29

Updated with information about Java on Mac OS X v10.4.

Minor revisions and corrections throughout the document.2004-11-02

Revised for Java 1.4.2. Updated links to reflect documentation changes.2004-08-31

Removed appendices. They are now available as separate documents.
Minor corrections in the overview chapter. Spelling and grammatical errors
fixed.

2003-06-23

Revised for Java 1.4.1. Most sections are completely new to reflect the
completely new Java implementation. Only the user experience information
has been retained although it has been updated as well. Structure of the
document was modified dramatically to align with Sun’s presentation of
the Java 2 platform.

2003-05-15

Format completely revised. Changed target emphasis from Mac OS 9 Java
developers to Java developers coming from other platforms. Updated to
include new features introduced in Java 1.3.1 including the
Java.applet.plugin and information about hardware acceleration.

2002-09-01

Updated for Mac OS X version 10.2. Modified tutorials to work with new
operating system and corrected some typographical errors.

2002-07-01

Document originally released with a focus on describing what is different
in Java development from Mac OS 9 to Mac OS X.

2001-12-01

61
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

62
2006-05-23 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Java Development Guide for Mac OS X
	Contents
	Figures, Tables, and Listings
	Introduction
	Overview of Java for Mac OS X
	Java and Mac OS X
	Java, Built In
	The Aqua User Interface
	Finding Your Way Around
	JAVAHOME
	Java Extensions
	Output From Java Programs

	HFS+

	Apple Developer Tools for Java
	Java Tools on Mac OS X
	Xcode Tools
	Get the Current Tools
	Xcode
	Using Xcode with J2SE 5.0

	Jar Bundler
	Applet Launcher

	Other Tools
	Developer Documentation
	Providing Documentation Feedback

	Java Deployment Options for Mac OS X
	Double-Clickable JAR Files
	Mac OS X Application Bundles
	The Contents of an Application Bundle
	A Java Application’s Info.plist File
	Making a Java Application Bundle
	Additional Considerations for Non-English Applications
	Distributing Application Bundles

	Java Web Start
	The Java Plug-in

	User Interface Toolkits for Java
	Swing
	JMenuBars
	JTabbedPanes
	Component Sizing
	Buttons

	AWT
	Accelerator Key
	Font Encoding
	Minimum Window Size
	Full-Screen Exclusive Mode

	Accessibility
	Security
	Sound
	Input Methods
	Java 2D

	Core Java APIs on Mac OS X
	Networking
	Preferences
	JNI

	The Java VM for Mac OS X
	Basic Properties of the Java VM
	Mac OS X Java Shared Archive
	Generational Garbage Collection
	The Advantages of the Java Shared Archive

	Mac OS X Integration for Java
	Making User Interface Decisions
	Menus
	The Menu Bar
	The Application Menu
	The Window Menu
	Accelerators (Keyboard Shortcuts)
	Mnemonics
	Menu Item Icons and Special Characters
	Contextual Menus

	Components
	Laying Out and Sizing Components
	Coloring Components

	Windows and Dialogs
	Use of the Multiple Document Interface
	Windows With Scroll Bars (Using JScrollPanes)
	File Choosing Dialogs
	Window Modified Indicator

	AppleScript
	System Properties

	Revision History

