Introduction to ARM® CortexTM-M3

October 17, 2007

MCD Application Team

CONTENTS

Introduction to the Cortex-M3

- Architecture
- Overview
- Comparison to ARM7
- Bit Banding and Unaligned data access
- Interrupt and real time capabilities

Introduction to the Cortex-M3

Three distinct profiles of the ARMv7 architecture
A profile for sophisticated, high-end applications
R profile for real-time system
M profile for cost-sensitive and microcontroller applications.

- Cortex-M3 processor is the first ARM processor based on the ARMv7-M architecture
- Designed to achieve high system performance in power and cost-sensitive embedded application such as, automotive body systems, industrial control systems and wireless networking

CONTENTS

Introduction to the Cortex-M3

Architecture

Overview

Comparison to ARM7

Bit Banding and Unaligned data access

Interrupt and real time capabilities

Cortex-M3 Processor Architecture

- Hierarchical processor integrating core and advanced system peripherals
- Cortex-M3 core
 - Harvard architecture
 - 3-stage pipeline w. branch speculation
 - Thumb[®]-2 and traditional Thumb
 - ALU w. H/W divide and single cycle multiply
- Cortex-M3 Processor
 - 🖅 Cortex-M3 core
 - Configurable interrupt controller
 - Bus matrix
 - Advanced debug components
 - **Optional MPU & ETM** (Not available in STM32F10x)

CONTENTS

- Introduction to the Cortex-M3
 - Architecture
 - Overview
 - Comparison to ARM7
 - Bit Banding and Unaligned data access
 - Interrupt and real time capabilities

Cortex-M3 Processor Overview (1/2)

ARM v7M Architecture

Thumb-2 Instruction Set Architecture

Mix of 16 and 32 bit instructions for very high code density

Harvard architecture

- Separate I & D buses allow parallel instruction fetching & data storage
- Integrated Nested Vectored Interrupt Controller (NVIC) for low latency interrupt processing
- Vector Table is addresses, not instructions

Cortex-M3 Processor Overview (2/2)

Designed to be fully programmed in C

Start Up code

Even reset, interrupts and exceptions

- Integrated Bus Matrix
 - Bus Arbiter
 - Bit Banding Atomic Bit Manipulation
 - Write Buffer
 - Memory Interface (I&D) Plus System Interface & Private Peripheral Bus
- Integrated System Timer (SysTick) for Real Time OS or other scheduled tasks

CONTENTS

Introduction to the Cortex-M3

Architecture

Overview

Comparison to ARM7

Bit Banding and Unaligned data access

Interrupt and real time capabilities

Comparison to ARM7

	ARM7TDMI-S	Cortex-M3			
Architecture	v4T	v7M			
ISA Support	ARM (32-bit) & Thumb (16-bit)	Thumb-2 (Merged 32/16-bit)			
DMIPS/MHz	0.74 Thumb / 0.93 ARM 1.25 Thumb-2				
Pipeline	3-Stage 3-Stage + Branch Spe				
Interrupts	FIQ / IRQ	NMI, SysTick and up to 240 interrupts. Integrated NVIC Interrupt Controller up to 1-255 Priorities			
Interrupt	24-42 Cycles	12 Cycles			
Latency	(Depending on LSM)	(6 when Tail Chaining)			
Memory Map	Undefined	Architecture Defined			
System	PSR. 6 modes.	xPSR. 2 modes.			
Status	20 Banked regs	Stacked regs (1 bank)			
Sleep Modes	No	Three			

Introduction to Cortex-M3

High Performance CPU and Buses

ARM v7M Architecture: Harvard benefits with Von Neumann single memory space

Outstanding efficiency of 1.2 DMIPS/MHz and 1.2 CPI

THUMB-2 instruction set

CONTENTS

Introduction to the Cortex-M3

Architecture

Overview

Comparison to ARM7

Bit Banding and Unaligned data access

Interrupt and real time capabilities

Bit Banding

Speed and code size optimized Cortex-M3 implementation

- Single instruction Read/Modify/Write (no more masking)
- ◆ No new instruction set à Use standard data one (AND, OR, XOR...)

Optimized RAM, peripherals and IOs registers accesses Easy multi-task semaphore management

Introduction to Cortex-M3

Unaligned data access

Unaligned data access supported to improve data constant and RAM utilization

CONTENTS

Introduction to the Cortex-M3

Architecture

Overview

Comparison to ARM7

Bit Banding and Unaligned data access

Interrupt and real time capabilities

Exception/Interrupt Handling

- Very low latency interrupt processing
 - Exceptions processed in Privileged operation
 - Interruptible LDM/STM for low interrupt latency
 - Automatic processor state save and restore
 - Provides low latency ISR entry and exit
 - Allows handler to be written entirely in 'C'
- The Cortex-M3 processor integrates an advanced Nested Vectored Interrupt Controller (NVIC)
 - 43 maskable interrupts channels (not including 16 interrupt lines of Cortex-M3)
 - 16 programmable priority levels
 - Allows early processing of interrupts
 - Supports advanced features for next generation real-time applications
 - Tail-chaining of pending interrupts
 - Late-arrival interrupt handling and priority boosting / inversion

Exceptional Control Capabilities Through Integrated Interrupt Handling

Introduction to Cortex-M3

Interrupt Response- Tail Chaining

Introduction to STM32F10x

October 17, 2007

MCD Application Team

CONTENTS

STM32F10x Device

- Block Diagram
- Memory mapping and boot modes
- System Architecture

STM32F10x Peripherals

Main features

STM32F10x USB Developer kit

STM32F10x : 2 first product lines

STM32F103 Performance Line

- Best in class 32-bit flash MCU
- Ability to outperform integer DSP solutions
- Superior control & connectivity
- Excellent fit for low voltage/low power applications

STM32F101 Access Line

- 32-bit performance at 16-bit Prices
- Entry point to STM32 world
- Excellent fit for low voltage/low power applications

STM32F103 Performance Line

- 2V-3.6V Supply
- 5V tolerant I/Os
- Excellent safe clock modes
- Low-power modes with wake-up
- Internal RC
- Embedded reset
- 🜌 -40/+105°C

Introduction to STM32F10x Series

STM32F101 Access Line

- No USB/CAN/PWM TIMER
- 1xADC
- SRAM up to 16K

Introduction to STM32F10x Series

Memory Mapping and Boot Modes

- Addressable memory space of 4 GBytes
- RAM : up to 20 kBytes
- FLASH : up to 128 kBytes

0xFFFF FFFF	Reserved		
0xE010 0000 0xE00F FFFF	Cortox M2		
0xE000 0000	internal peripherals		
	Reserved	Reserved0x11Option Bytes0x11	FFF F9FF FFF F800
		SystemMemory 0x1	FFF F7FF
		Reserved	-FF F000
0x4000 0000	Peripherals	0x08	301 FFFF
	Reserved	Flash 0x0	800 0000
0x2000 0000	SRAM		
	Reserved		
0x0000 0000	CODE	Bit-Band region	

Boot modes

Depending on the Boot configuration, Embedded Flash Memory, System Memory or Embedded SRAM Memory is aliased at @0x00

BOOT N Selectio	/lode on Pins	Boot Mode	Aliasing		
BOOT1	ΒΟΟΤΟ				
x	о	User Flash	User Flash is selected as boot space		
0	1	SystemMemory	SystemMemory is selected as boot space		
1	1	Embedded SRAM	Embedded SRAM is selected as boot space		

SystemMemory: contains the Bootloader used to re-program the FLASH through USART.

Boot from SRAM :

In the application initialization code you have to Relocate the Vector Table in SRAM using the NVIC *Exception Table and Offset* register

Introduction to STM32F10x Series

System Architecture

- Multiply possibilities of bus accesses to SRAM, Flash, Peripherals, DMA
 - BusMatrix added to Harvard architecture allows parallel access
- Efficient DMA and Rapid data flow
 - Direct path to SRAM through arbiter, guarantees alternating access
 - Harvard architecture + BusMatrix allows Flash execution in parallel with DMA transfer
- Increase Peripherals Speed for better performance
 - Dual Advanced Peripheral buses (APB) architecture w/ High Speed APB (APB2) up to 72MHz and Low Speed APB (APB1) up to 36MHz
 - è Allows to optimize use of peripherals (18MHz SPI, 4.5Mbps USART, 72MHz PWM Timer, 18MHz toggling I/Os)

Embedded FLASH

Introduction to STM32F10x Series

Flash Features Overview

Flash Features:

- Up to 128KBytes
- 1 KByte Page size
- Endurance: 1000 cycles
- Memory organization:
 - Main memory block
 - Information block
- Access time: 35ns
- Word(32-bit) program time: 20µs
- Page / Mass Erase Time: 20ms

Flash interface (FLITF) Features:

- Read Interface with pre-fetch buffer
- Option Byte loader
- Flash program/Erase operations
- Types of Protection:
 - Access Protection
 - Write Protection

Introduction to STM32F10x Series

Direct Memory Access (DMA)

Introduction to STM32F10x Series

DMA Features

- 7 independently configurable channels: hardware requests or software trigger on each channel
- Software programmable priorities: Very high, High, Medium or Low. (Hardware priority in case of equality)
- Programmable and Independent source and destination transfer data size: Byte, Halfword or Word
- 3 event flags for each channel: DMA Half Transfer, DMA Transfer complete and DMA Transfer Error
- Memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers
- Support for circular buffer management

DMA Request Mapping

Introduction to STM32F10x Series

Clock Scheme

Introduction to STM32F10x Series

Clock Scheme

ü HSE clock divided by

System Clock (SYSCLK) sources ü HSI ü HSE ü PLL RTC Clock (RTCCLK) sources

ü LSE

ü LSI

128

USB Clock (USBCLK) provided from the internal PLL

Clock-out capability on the MCO pin (PA.08) / max 50MHz

Configurable dividers provides AHB, APB1/2, ADC and TIM clocks Clock Security System (CSS) to backup clock in case of HSE clock failure (HSI feeds the system clock)

Enabled by SW w/ interrupt capability linked to Cortex NMI

General Purpose and Alternate Function I/O (GPIO and AFIO)

Introduction to STM32F10x Series

MCD Application

3

GPIO Features

80 multifunction bi-directional I/O ports available: 80% IO ratio

- 80 Standard I/Os (5V tolerant, 20 mA drive)
- 18 MHz Toggling
- Configurable Output Speed up to 50 MHz
- Up to 16 Analog Inputs
- Alternate Functions pins (like USARTx, TIMx, I2Cx, SPIx, CAN, USB...)
- All I/Os can be set-up as external interrupt (up to 16 lines at time)
- One I/O can be used as Wake-Up from STANDBY (PA.00)
- One I/O can be set-up as Tamper Pin (PC.13)
- All Standard I/Os are shared in 5 ports (GPIOA..GPIOE)
- Atomic Bit Set and Bit Reset using BSRR and BRR registers
- Locking mechanism to avoid spurious write in the IO registers
 - When the LOCK sequence has been applied on a port bit, it is no longer possible to modify the configuration of the port bit until the next reset (no write access to the CRL and CRH registers corresponding bit).

GPIO Configuration Modes

Configuration Mode	CNF1	CNFO	MOD1	MODO	Analog Input				
Analog Input	0	0			To On-chip Peripherals				
Input Floating (Reset State)	0	1	00		Alternate Function Input		ON OFF		5
Input Pull-Up	1	0			Read Regist	0			- Ind
Input Pull-Down	1	0							
Output Push-Pull	0	0			Input		TTL Schm Trigger	TTL Schmitt Trigger r VSS	副本
Output Open-Drain	0	1	00: Re 01: 10	eserved MHz	์ โกрน ซื	Input Driv	/er		
AF Push-Pull	1	0	10: 2 MHz 11: 50 MHz	Data Registers				」本「	
AF Open-Drain	1	1							
				Fro	Read / Write + 0 m On-chip Peripherals - Alternate Function Output		CONT	ROL VSS Output Driver	Push-Pull Open Drain Disabled
Introd	uction	to STI	M32F1	0x Ser	ies MCD Applica	ation		35	57

AFIO Features

Event Out signal generation

- Pulse generation with SEV instruction: to wake-up an other MCU from low power mode through its Event In signal
- Each IO can be used as Event Out

GPIO Software Remapping

- Some Alternate function can be remapped in two different pins allowing optimization of the pin out
- All SWJ-DP I/O pins can be used as GPIO

EXTI Lines Configuration

Each EXTI line is shared with all GPIO ports: EXTI Linexxà GPIO[A..E].xx

External Interrupt/Event Controller (EXTI)

Introduction to STM32F10x Series

EXTI Features

Up to 19 Interrupt/Events requests

- All GPIO can be used as EXTI line(0..15)
- **EXTI** line 16 connected to PVD output
- EXTI line 17 connected to RTC Alarm event
- EXTI line 18 connected to USB Wake-up from suspend event
- Two Configuration mode:
 - Interrupt mode: generate interrupts with external lines edges
 - Event mode: generate pulse to wake-up system from WFI, WFE and STOP modes
- Independent trigger (rising, falling, rising & falling) and mask on each interrupt/event line
- Dedicated status bit for each interrupt line
- Generation of up to 19 software interrupt/event requests

- Minimum Pulse Width : < 1*T_{PCLK2} (Fast APB)
- EXTI mapped on High Speed APB (APB2) to save time entering in the External Interrupt routine

Introduction to STM32F10x Series

Analog-to-Digital Converter (ADC)

Introduction to STM32F10x Series

ADC Features

- ADC conversion rate 1 MHz and 12-bit resolution
- ADC supply requirement: 2.4V to 3.6 V
- **a** ADC input range: VREF \leq VIN \leq VREF + (VREF + and VREF available only in LQFP100 package)
- Dual mode (on devices with 2 ADCs): 8 conversion mode
- Up to 18 multiplexed channels:
 - 16 external channels
 - 2 internal channels: connected to Temperature sensor and internal reference voltage (Bandgap voltage)
- Self-calibration
- DMA capability (only on ADC1)

ADC conversion modes

Single and continuous conversion modes

Four conversion mode are available:

Serial Peripheral Interface (SPI)

Introduction to STM32F10x Series

SPI Features

- Two SPIs: SPI1 on high speed APB2 and SPI2 on low speed APB1
- Full duplex synchronous transfers on 3 lines
- Simplex synchronous transfers on 2 lines with or without a bi-directional data line
- Programmable data frame size :8- or 16-bit transfer frame format selection
- Programmable data order with MSB-first or LSB-first shifting
- Master or slave operation
- Programmable bit rate: up to 18 MHz in Master/Slave mode
- NSS management by hardware or software for both master and slave: Dynamic change of Master/Slave Operations
- Support for DMA

Universal Synchronous Asynchronous Receiver Transmitter (USART)

Introduction to STM32F10x Series

USART Features

- Three USART: USART1 High speed APB2 and USART2,3 on Low speed APB1
- Fully-programmable serial interface characteristics:
 - 🖅 Data can be 8 or 9 bits
 - Even, odd or no-parity bit generation and detection
 - 0.5, 1, 1.5 or 2 stop bit generation
 - Programmable baud rate generator
 - Integer part (12 bits)
 - Fractional part (4 bits)
 - Support hardware flow control (CTS and RTS)
- Dedicated transmission and reception flags (TxE and RxNE) with interrupt capability
- Support for DMA
 - Receive DMA request
 - Transmit DMA request

Up to 4.5 Mbps

Introduction to STM32F10x Series

Universal Serial Bus interface (USB Device)

Introduction to STM32F10x Series

USB Developer's Kit

- Complete source file with documented, thoroughly tested C source code, compatible with major IDE toolsets for ARM
- Supports any flavor of USB firmware with:
 - Control transfer for generic device management tasks
 - Interrupt transfer with HID Mouse/Joystick
 - Bulk transfer with mass storage
 - Isochronous transfer with Voice Speaker/micro
 - DFU for firmware updates on USB
 - Virtual COM (CDC class) for emulation of RS232

Dot LCD System

Dot LCD System with STM32(Using GPIO)

Introduction to STM32F10x Series

Thank you!

Introduction to STM32F10x Series

