LECTURE NOTE : INTRODUCTION TO ERGODIC THEORY II

DONG HAN KIM

1. EXAMPLES OF ERGODIC TRANSFORMATIONS

A measure preserving transformation 7' on (X, B, ) is called ergodic if there is

no invariant set (modulo measure zero) except for ) or X. Another definition of

the ergodicity is there is no invariant function except for constant functions, i.e.,

foT(xz)= f(z) (modulo measure zero set) implies that f(x) is constant. We have

examples of ergodic transformations:

(1)

Irrational rotations on the unit circle: Let 7': [0,1) — [0,1) by z — = + «
(mod 1), where « is irrational. The Lebesgue measure m preserves 7.
Suppose that f o T(z) = f(z) and f € L?(m). Expand f(x) in Fourier

series as f(z) = > 7 a,e®™™*. Then

oo oo
f o T(ZL') _ E an627rzn(x+a) _ E an627rzna627mnz'
—oo —o0

From foT(z) = f(x), we have

eQTrinoz

an, = a, for all n.

2mina cannot be 1 unless n = 0. Therefore a,, = 0 for

Since « is irrational, e
all n # 0, which implies that f(z) is constant.
2z map on the unit circle: Let T : [0,1) — [0,1) by  — 22 (mod 1). The
Lebesgue measure m preserves T.

Suppose that f o T(x) = f(x) and f € L?(m). Expand f(z) in Fourier

series as f(z) = Y% a,e®™"*. Then
foT(x)= Z Ap ™
From foT(z) = f(z), we have a,, = aa, for all n € Z, that is

] = a3 = a4 = AaAg = ...

But since || f|l2 = Y7, a2 < oo, we have a; =ay =as =ag =--- =0 and
az = ag = a1z = --- = 0 and so on. Therefore a,, = 0 for all n # 0, which

implies that f(z) is constant.
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Note that a measure preserving transformation 7' on (X, B, u) is ergodic if for
all A, BeB

n—1

o1 i
Jim — > u(T™ANB) = p(A)u(B).
i=0
Definition 1. (1) A measure preserving transformation T on (X, B, ) is called
weak-mixing, if for all A,B € B
n—1

o1 —i
Jim = u(T™ AN B) = p(A)u(B)| = 0.
=0

(2) A measure preserving transformation T on (X, B, ) is called strong-mizing,
if for all A,B € B

lim pw(T~"ANB) = pu(A)u(B).

Clearly, strong-mixing implies weak-mixing and weak-mixing implies ergodicity.
(1) Irrational rotations on the unit circle is not weak-mixing: Let T be the
rotation by a and A, B be small intervals. Then there are many n’s (more
than half if A and B are small enough) such that T~ AN B = (). For the
such n’s we have |u(T~"ANB) — p(A)u(B)| = p(A)u(B) and L{u(T"AN
B) — u(A)u(B)| cannot converge to 0.
(2) 2z map on the unit circle is strong-mixing: Let T :  — 2z (mod 1) and B
be an interval. Then for any A we have

number of 27" subintervals which intersect in B

w(T™"ANB) =~ o u(A).
Precisely, we have
2"u(B) — 2 . 2"u(B) + 2
ZUBIZ2 4y < wrranpy < IO E2, 0

Thus we have lim,, oo p(T""AN B) = u(A)u(B).
Let X be a compact metric space and T : X — X be continuous. Let M (X,T)

be a set of T-invariant Borel probability measure.

Theorem 1. (i) M(X,T) is not empty.
(i) M(X,T) is convex.
(#i) p is extreme point if and only if p is ergodic measure.

(iv) p, v € M(X,T) are ergodic, then u and v are mutually singular.

Proof. (i) Pick an € X. Denote §, by the Dirac delta measure, i.e., 0;(E) = 1
if x € FEand 0 if z ¢ E. Then the sequence measure %((5:3 + 01 + - 4 Opn-1y)
has convergent subsequence to an invariant measure in weak *-topology. See Ahn’s

lecture note for the detail.
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(ii) If p and v are invariant measures, then py + (1 —p)v (0 < p < 1) is also an
invariant measure.

(iv) p L v means that X = EUF, ENF = and u(E) = 1, v(F) = 1. Con-
sider the Birkhoff average %ZZ;; f(T(x)). If we choose x is the “support” of
p then L Zz;é f(T'(x)) goes to [ fdu. If z belongs to the “support” of v then

n

LS f(T(x)) converges to [ fdv. O

There are many invariant measure for the map 7 :  — 2z (mod 1) besides the
Lebesgue measure. One trivial invariant measure is g since 0 is a fixed point of 7.

Another invariant measure is (p, 1 — p)-Bernoulli measure p, (0 < p < 1), which

is obtained by 1[0, 3) = p, ppl3,1) = 1 —p, [0, 1) = p?, wplg,3) = p(1 = p)
/Lp[%, %) = (1 -p)p, ,up[%, 1) = (1 — p)?, and so on. Choose x as a “typical” point
of p, then in z’s binary expansion 0 appears in probability p and 1 appears in
probability 1 — p.

If there is only one measure in M(X,T) then T is said to be uniquely ergodic.
Let T be uniquely ergodic with the ergodic measure p. Then the Birkhoff average
LS f(T(x)) converges to [ fdu for every x € X.

T is said to be minimal, if every orbit of T' is dense. If T is uniquely ergodic,
then T is minimal.

An interval exchange map is a piecewise isometry bijection on the unit interval.

e If the length of subintervals are rationally independent and the permutation

is irreducible, then the it is minimal (Keans’s condition)

Not every minimal interval exchange is uniquely ergodic.

e Almost every interval exchange is uniquely ergodic (Veech, Masur).

Interval exchange is never strong-mixing.
e Almost every interval exchange is weak-mixing (Avila-Forni).
Let Ur be the unitary operator defined by Ur(f) = foT. We call A an eigenvalue
of Up if Ur(f) = f o T = \f for some f.
Equivalent conditions for the weak mixing property.
(1) T x T is ergodic.
(2) T x T is weak-mixing.
(3) 1is the only eigenvalue and T is ergodic.
Note that if T' is the irrational rotation by o then T'x T : [0,1) x [0,1) — [0,1) x
[0,1) acts as (z,y) — (r+a,y+a). Then the diagonal “strip” {(z,y) : |z —y| < 6}
is invariant and 7" x T is not ergodic.

If we choose f(z) = €2™"® then we have

f(T(x)) _ 62m‘n(z+a) _ e27rinocf(x)
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so €2 ig an eigenvalue which is different from 1.

Theorem 2 (Poincaré’s Recurrence Theorem). Let T be a measure preserving
transformation on (X, B, p). If u(E) > 0, then for almost every x € E is recurrent
to E.

Proof. Let F be the subset of F which is not recurrent to E. Then we have

F=FE\ GT‘"E

n=1
=ENT Y X\E)NT3(X\E)N...
Therefore, F N T~ "F = () for all n. Since pu(X) > p(F) + u(T7F) + -+ =
w(F) + p(F) + ..., we have pu(F) = 0. O

Theorem 3 (Furstenberg’s Szemerédi theorem). Let Ty, Ts, ..., Ty be commuting
measure preserving transformations on (X, B, u). For any E € B with u(E) > 0,

we can choose n € N such that
wENTT"EN... T, "E) > 0.

Note that if £ = 1, then the proof is directly obtained by the Poincaré recurrence
theorem. For a transformation T, choose T} =T, To = T2, ..., and Ty = T*. Then
the set of points z such that z € E,T"z € E,T*"z € E,..., Tz € E has positive
measure.

By the Poincaré recurrence theorem we can define the recurrence time to a set
E with u(E) > 0.

Definition 2. Define the recurrence time Eg to E by
Rp(r) =min{j > 1: TV (z) € E}.
Define the induced map T by
Tg(z) = TF=@) ().

Then is is not difficult to show that for u(F) > 0 (i) If T preserve pu, then Tg
preserve pg (ii) If T' is ergodic, then Tg is ergodic. Here pg is the induced measure
defined by pg(A) = u(A)/u(E) for A C E.

Theorem 4 (Kac’s Theorem). Let T be a measure preserving transformation on
(X,B, ) and pu(E) > 0. Then we have

/ERE(QU)dM <L

If T is ergodic, the equality holds.
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Proof. We will consider the case that T is ergodic and invertible. Let
E,={z € E: Rg(x) =n}.
Then F = U2 E, and
X =F, U(E2 UTE>) U(E3 UTEs UT?E;) U .
Since T'E,,’s (0 < i < n) are all disjoint,
1= pu(X) = p(Er) +2pu(E2) + 3u(Es) + ...
Therefore, we have

/ERE(w)d,u = ZnM(En) =1

We have another proof for general ergodic transformation:
Let N = Y7~ Rp(Tg'x). Then N is the time until the orbit of  under T visit E
L times, so we have Ziv=1 1g(T"z) = L. By the Birkhoff ergodic theorem

L—-1 14
. g _ RE TE X . N 1
Rpdp = lim S0 L( ):J\}E»n N . E)
E o0 oo SN Ap(Trz)  WE)

(The proof is from [1].) O

Group extension (Skew-product) Let (Y,7) be a dynamical systems and
K be a compact group. If ¢ : Y — K is continuous, then we can define a new

dynamical system called a group extension on X =Y x K, by

(y, k) = (Ty, ¥ (y)k).

For an example, let Y = {0, 1} and T be the left shift map. Let K = Z,, = Z/nZ
and ¥(y) = (=1)¥, y = y1y2y3 . ... Then the group extension (y,k) — (Ty,k +
¥ (y)) can be interpreted as a random walker at k in Z, jumps to k+ 1 if y; =0
and to k — 1 if y; = 1 and for the next turn the random walker jumps according to

yo’s value.
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