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1. Examples of ergodic transformations

A measure preserving transformation T on (X,B, µ) is called ergodic if there is

no invariant set (modulo measure zero) except for ∅ or X. Another definition of

the ergodicity is there is no invariant function except for constant functions, i.e.,

f ◦ T (x) = f(x) (modulo measure zero set) implies that f(x) is constant. We have

examples of ergodic transformations:

(1) Irrational rotations on the unit circle: Let T : [0, 1) → [0, 1) by x 7→ x+ α

(mod 1), where α is irrational. The Lebesgue measure m preserves T .

Suppose that f ◦ T (x) = f(x) and f ∈ L2(m). Expand f(x) in Fourier

series as f(x) =
∑∞
−∞ ane

2πinx. Then

f ◦ T (x) =
∞∑
−∞

ane
2πin(x+α) =

∞∑
−∞

ane
2πinαe2πinx.

From f ◦ T (x) = f(x), we have

ane
2πinα = an for all n.

Since α is irrational, e2πinα cannot be 1 unless n = 0. Therefore an = 0 for

all n 6= 0, which implies that f(x) is constant.

(2) 2x map on the unit circle: Let T : [0, 1) → [0, 1) by x 7→ 2x (mod 1). The

Lebesgue measure m preserves T .

Suppose that f ◦ T (x) = f(x) and f ∈ L2(m). Expand f(x) in Fourier

series as f(x) =
∑∞
−∞ ane

2πinx. Then

f ◦ T (x) =
∞∑
−∞

ane
4πinx.

From f ◦ T (x) = f(x), we have an = a2n for all n ∈ Z, that is

a1 = a2 = a4 = a8 = . . .

But since ‖f‖2 =
∑∞
−∞ a2

n <∞, we have a1 = a2 = a4 = a8 = · · · = 0 and

a3 = a6 = a12 = · · · = 0 and so on. Therefore an = 0 for all n 6= 0, which

implies that f(x) is constant.
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Note that a measure preserving transformation T on (X,B, µ) is ergodic if for

all A,B ∈ B

lim
n→∞

1
n

n−1∑
i=0

µ(T−iA ∩B) = µ(A)µ(B).

Definition 1. (1) A measure preserving transformation T on (X,B, µ) is called

weak-mixing, if for all A,B ∈ B

lim
n→∞

1
n

n−1∑
i=0

|µ(T−iA ∩B)− µ(A)µ(B)| = 0.

(2) A measure preserving transformation T on (X,B, µ) is called strong-mixing,

if for all A,B ∈ B

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B).

Clearly, strong-mixing implies weak-mixing and weak-mixing implies ergodicity.

(1) Irrational rotations on the unit circle is not weak-mixing: Let T be the

rotation by α and A, B be small intervals. Then there are many n’s (more

than half if A and B are small enough) such that T−nA ∩ B = ∅. For the

such n’s we have |µ(T−nA∩B)−µ(A)µ(B)| = µ(A)µ(B) and 1
n |µ(T−nA∩

B)− µ(A)µ(B)| cannot converge to 0.

(2) 2x map on the unit circle is strong-mixing: Let T : x 7→ 2x (mod 1) and B

be an interval. Then for any A we have

µ(T−nA ∩B) ≈ number of 2−n subintervals which intersect in B
2n

µ(A).

Precisely, we have

2nµ(B)− 2
2n

µ(A) ≤ µ(T−nA ∩B) ≤ 2nµ(B) + 2
2n

µ(A).

Thus we have limn→∞ µ(T−nA ∩B) = µ(A)µ(B).

Let X be a compact metric space and T : X → X be continuous. Let M(X,T )

be a set of T -invariant Borel probability measure.

Theorem 1. (i) M(X,T ) is not empty.

(ii) M(X,T ) is convex.

(iii) µ is extreme point if and only if µ is ergodic measure.

(iv) µ, ν ∈M(X,T ) are ergodic, then µ and ν are mutually singular.

Proof. (i) Pick an x ∈ X. Denote δx by the Dirac delta measure, i.e., δx(E) = 1

if x ∈ E and 0 if x /∈ E. Then the sequence measure 1
n (δx + δTx + · · · + δT n−1x)

has convergent subsequence to an invariant measure in weak *-topology. See Ahn’s

lecture note for the detail.
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(ii) If µ and ν are invariant measures, then pµ+ (1− p)ν (0 < p < 1) is also an

invariant measure.

(iv) µ ⊥ ν means that X = E ∪ F , E ∩ F = and µ(E) = 1, ν(F ) = 1. Con-

sider the Birkhoff average 1
n

∑n−1
k=0 f(T (x)). If we choose x is the “support” of

µ then 1
n

∑n−1
k=0 f(T (x)) goes to

∫
fdµ. If x belongs to the “support” of ν then

1
n

∑n−1
k=0 f(T (x)) converges to

∫
fdν. �

There are many invariant measure for the map T : x 7→ 2x (mod 1) besides the

Lebesgue measure. One trivial invariant measure is δ0 since 0 is a fixed point of T .

Another invariant measure is (p, 1 − p)-Bernoulli measure µp (0 < p < 1), which

is obtained by µp[0, 1
2 ) = p, µp[ 12 , 1) = 1 − p, µp[0, 1

4 ) = p2, µp[ 14 ,
1
2 ) = p(1 − p)

µp[ 12 ,
3
4 ) = (1 − p)p, µp[ 34 , 1) = (1 − p)2, and so on. Choose x as a “typical” point

of µp then in x’s binary expansion 0 appears in probability p and 1 appears in

probability 1− p.

If there is only one measure in M(X,T ) then T is said to be uniquely ergodic.

Let T be uniquely ergodic with the ergodic measure µ. Then the Birkhoff average
1
n

∑n−1
k=0 f(T (x)) converges to

∫
fdµ for every x ∈ X.

T is said to be minimal, if every orbit of T is dense. If T is uniquely ergodic,

then T is minimal.

An interval exchange map is a piecewise isometry bijection on the unit interval.

• If the length of subintervals are rationally independent and the permutation

is irreducible, then the it is minimal (Keans’s condition)

• Not every minimal interval exchange is uniquely ergodic.

• Almost every interval exchange is uniquely ergodic (Veech, Masur).

• Interval exchange is never strong-mixing.

• Almost every interval exchange is weak-mixing (Avila-Forni).

Let UT be the unitary operator defined by UT (f) = f ◦T . We call λ an eigenvalue

of UT if UT (f) = f ◦ T = λf for some f .

Equivalent conditions for the weak mixing property.

(1) T × T is ergodic.

(2) T × T is weak-mixing.

(3) 1 is the only eigenvalue and T is ergodic.

Note that if T is the irrational rotation by α then T ×T : [0, 1)× [0, 1) → [0, 1)×
[0, 1) acts as (x, y) 7→ (x+α, y+α). Then the diagonal “strip” {(x, y) : |x−y| < δ}
is invariant and T × T is not ergodic.

If we choose f(x) = e2πinx then we have

f(T (x)) = e2πin(x+α) = e2πinαf(x)
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so e2πinα is an eigenvalue which is different from 1.

Theorem 2 (Poincaré’s Recurrence Theorem). Let T be a measure preserving

transformation on (X,B, µ). If µ(E) > 0, then for almost every x ∈ E is recurrent

to E.

Proof. Let F be the subset of E which is not recurrent to E. Then we have

F = E \
∞⋃

n=1

T−nE

= E ∩ T−1(X \ E) ∩ T−2(X \ E) ∩ . . .

Therefore, F ∩ T−nF = ∅ for all n. Since µ(X) ≥ µ(F ) + µ(T−1F ) + · · · =

µ(F ) + µ(F ) + . . . , we have µ(F ) = 0. �

Theorem 3 (Furstenberg’s Szemerédi theorem). Let T1, T2, . . . , T` be commuting

measure preserving transformations on (X,B, µ). For any E ∈ B with µ(E) > 0,

we can choose n ∈ N such that

µ(E ∩ T−n
1 E ∩ . . . T−n

` E) > 0.

Note that if ` = 1, then the proof is directly obtained by the Poincaré recurrence

theorem. For a transformation T , choose T1 = T , T2 = T 2, . . . , and T` = T `. Then

the set of points x such that x ∈ E, Tnx ∈ E, T 2nx ∈ E, . . . , T `nx ∈ E has positive

measure.

By the Poincaré recurrence theorem we can define the recurrence time to a set

E with µ(E) > 0.

Definition 2. Define the recurrence time EE to E by

RE(x) = min{j ≥ 1 : T j(x) ∈ E}.

Define the induced map TE by

TE(x) = TRE(x)(x).

Then is is not difficult to show that for µ(E) > 0 (i) If T preserve µ, then TE

preserve µE (ii) If T is ergodic, then TE is ergodic. Here µE is the induced measure

defined by µE(A) = µ(A)/µ(E) for A ⊂ E.

Theorem 4 (Kac’s Theorem). Let T be a measure preserving transformation on

(X,B, µ) and µ(E) > 0. Then we have∫
E

RE(x)dµ ≤ 1.

If T is ergodic, the equality holds.
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Proof. We will consider the case that T is ergodic and invertible. Let

En = {x ∈ E : RE(x) = n}.

Then E = ∪∞n=1En and

X = E1

⋃
(E2 ∪ TE2)

⋃
(E3 ∪ TE3 ∪ T 2E3)

⋃
. . .

Since T iEn’s (0 ≤ i < n) are all disjoint,

1 = µ(X) = µ(E1) + 2µ(E2) + 3µ(E3) + . . .

Therefore, we have ∫
E

RE(x)dµ =
∞∑

n=1

nµ(En) = 1.

We have another proof for general ergodic transformation:

Let N =
∑L−1

`=0 RE(TE
`x). Then N is the time until the orbit of x under T visit E

L times, so we have
∑N

n=1 1E(Tnx) = L. By the Birkhoff ergodic theorem∫
E

REdµ = lim
L→∞

∑L−1
`=0 RE(TE

`x)
L

= lim
N→∞

N∑N
n=1 1E(Tnx)

=
1

µ(E)
.

(The proof is from [1].) �

Group extension (Skew-product) Let (Y, T ) be a dynamical systems and

K be a compact group. If ψ : Y → K is continuous, then we can define a new

dynamical system called a group extension on X = Y ×K, by

(y, k) 7→ (Ty, ψ(y)k).

For an example, let Y = {0, 1}N and T be the left shift map. LetK = Zn = Z/nZ
and ψ(y) = (−1)y1 , y = y1y2y3 . . . . Then the group extension (y, k) 7→ (Ty, k +

ψ(y)) can be interpreted as a random walker at k in Zn jumps to k + 1 if y1 = 0

and to k− 1 if y1 = 1 and for the next turn the random walker jumps according to

y2’s value.
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