LECTURE NOTE : INTRODUCTION TO ERGODIC THEORY II

DONG HAN KIM

1. EXAMPLES OF ERGODIC TRANSFORMATIONS

A measure preserving transformation T on (X, \mathcal{B}, μ) is called ergodic if there is no invariant set (modulo measure zero) except for \emptyset or X. Another definition of the ergodicity is there is no invariant function except for constant functions, i.e., $f \circ T(x)=f(x)$ (modulo measure zero set) implies that $f(x)$ is constant. We have examples of ergodic transformations:
(1) Irrational rotations on the unit circle: Let $T:[0,1) \rightarrow[0,1)$ by $x \mapsto x+\alpha$ $(\bmod 1)$, where α is irrational. The Lebesgue measure m preserves T.

Suppose that $f \circ T(x)=f(x)$ and $f \in L^{2}(m)$. Expand $f(x)$ in Fourier series as $f(x)=\sum_{-\infty}^{\infty} a_{n} e^{2 \pi i n x}$. Then

$$
f \circ T(x)=\sum_{-\infty}^{\infty} a_{n} e^{2 \pi i n(x+\alpha)}=\sum_{-\infty}^{\infty} a_{n} e^{2 \pi i n \alpha} e^{2 \pi i n x}
$$

From $f \circ T(x)=f(x)$, we have

$$
a_{n} e^{2 \pi i n \alpha}=a_{n} \text { for all } n
$$

Since α is irrational, $e^{2 \pi i n \alpha}$ cannot be 1 unless $n=0$. Therefore $a_{n}=0$ for all $n \neq 0$, which implies that $f(x)$ is constant.
(2) $2 x$ map on the unit circle: Let $T:[0,1) \rightarrow[0,1)$ by $x \mapsto 2 x(\bmod 1)$. The Lebesgue measure m preserves T.

Suppose that $f \circ T(x)=f(x)$ and $f \in L^{2}(m)$. Expand $f(x)$ in Fourier series as $f(x)=\sum_{-\infty}^{\infty} a_{n} e^{2 \pi i n x}$. Then

$$
f \circ T(x)=\sum_{-\infty}^{\infty} a_{n} e^{4 \pi i n x}
$$

From $f \circ T(x)=f(x)$, we have $a_{n}=a_{2 n}$ for all $n \in \mathbb{Z}$, that is

$$
a_{1}=a_{2}=a_{4}=a_{8}=\ldots
$$

But since $\|f\|_{2}=\sum_{-\infty}^{\infty} a_{n}^{2}<\infty$, we have $a_{1}=a_{2}=a_{4}=a_{8}=\cdots=0$ and $a_{3}=a_{6}=a_{12}=\cdots=0$ and so on. Therefore $a_{n}=0$ for all $n \neq 0$, which implies that $f(x)$ is constant.

Note that a measure preserving transformation T on (X, \mathcal{B}, μ) is ergodic if for all $A, B \in \mathcal{B}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu\left(T^{-i} A \cap B\right)=\mu(A) \mu(B)
$$

Definition 1. (1) A measure preserving transformation T on (X, \mathcal{B}, μ) is called weak-mixing, if for all $A, B \in \mathcal{B}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1}\left|\mu\left(T^{-i} A \cap B\right)-\mu(A) \mu(B)\right|=0
$$

(2) A measure preserving transformation T on (X, \mathcal{B}, μ) is called strong-mixing, if for all $A, B \in \mathcal{B}$

$$
\lim _{n \rightarrow \infty} \mu\left(T^{-n} A \cap B\right)=\mu(A) \mu(B)
$$

Clearly, strong-mixing implies weak-mixing and weak-mixing implies ergodicity.
(1) Irrational rotations on the unit circle is not weak-mixing: Let T be the rotation by α and A, B be small intervals. Then there are many n 's (more than half if A and B are small enough) such that $T^{-n} A \cap B=\emptyset$. For the such n 's we have $\left|\mu\left(T^{-n} A \cap B\right)-\mu(A) \mu(B)\right|=\mu(A) \mu(B)$ and $\left.\frac{1}{n} \right\rvert\, \mu\left(T^{-n} A \cap\right.$ $B)-\mu(A) \mu(B) \mid$ cannot converge to 0 .
(2) $2 x$ map on the unit circle is strong-mixing: Let $T: x \mapsto 2 x(\bmod 1)$ and B be an interval. Then for any A we have

$$
\mu\left(T^{-n} A \cap B\right) \approx \frac{\text { number of } 2^{-n} \text { subintervals which intersect in } B}{2^{n}} \mu(A)
$$

Precisely, we have

$$
\frac{2^{n} \mu(B)-2}{2^{n}} \mu(A) \leq \mu\left(T^{-n} A \cap B\right) \leq \frac{2^{n} \mu(B)+2}{2^{n}} \mu(A) .
$$

Thus we have $\lim _{n \rightarrow \infty} \mu\left(T^{-n} A \cap B\right)=\mu(A) \mu(B)$.
Let X be a compact metric space and $T: X \rightarrow X$ be continuous. Let $M(X, T)$ be a set of T-invariant Borel probability measure.

Theorem 1. (i) $M(X, T)$ is not empty.
(ii) $M(X, T)$ is convex.
(iii) μ is extreme point if and only if μ is ergodic measure.
(iv) $\mu, \nu \in M(X, T)$ are ergodic, then μ and ν are mutually singular.

Proof. (i) Pick an $x \in X$. Denote δ_{x} by the Dirac delta measure, i.e., $\delta_{x}(E)=1$ if $x \in E$ and 0 if $x \notin E$. Then the sequence measure $\frac{1}{n}\left(\delta_{x}+\delta_{T x}+\cdots+\delta_{T^{n-1} x}\right)$ has convergent subsequence to an invariant measure in weak *-topology. See Ahn's lecture note for the detail.
(ii) If μ and ν are invariant measures, then $p \mu+(1-p) \nu(0<p<1)$ is also an invariant measure.
(iv) $\mu \perp \nu$ means that $X=E \cup F, E \cap F=$ and $\mu(E)=1, \nu(F)=1$. Consider the Birkhoff average $\frac{1}{n} \sum_{k=0}^{n-1} f(T(x))$. If we choose x is the "support" of μ then $\frac{1}{n} \sum_{k=0}^{n-1} f(T(x))$ goes to $\int f d \mu$. If x belongs to the "support" of ν then $\frac{1}{n} \sum_{k=0}^{n-1} f(T(x))$ converges to $\int f d \nu$.

There are many invariant measure for the map $T: x \mapsto 2 x(\bmod 1)$ besides the Lebesgue measure. One trivial invariant measure is δ_{0} since 0 is a fixed point of T. Another invariant measure is $(p, 1-p)$-Bernoulli measure $\mu_{p}(0<p<1)$, which is obtained by $\mu_{p}\left[0, \frac{1}{2}\right)=p, \mu_{p}\left[\frac{1}{2}, 1\right)=1-p, \mu_{p}\left[0, \frac{1}{4}\right)=p^{2}, \mu_{p}\left[\frac{1}{4}, \frac{1}{2}\right)=p(1-p)$ $\mu_{p}\left[\frac{1}{2}, \frac{3}{4}\right)=(1-p) p, \mu_{p}\left[\frac{3}{4}, 1\right)=(1-p)^{2}$, and so on. Choose x as a "typical" point of μ_{p} then in x 's binary expansion 0 appears in probability p and 1 appears in probability $1-p$.

If there is only one measure in $M(X, T)$ then T is said to be uniquely ergodic. Let T be uniquely ergodic with the ergodic measure μ. Then the Birkhoff average $\frac{1}{n} \sum_{k=0}^{n-1} f(T(x))$ converges to $\int f d \mu$ for every $x \in X$.
T is said to be minimal, if every orbit of T is dense. If T is uniquely ergodic, then T is minimal.

An interval exchange map is a piecewise isometry bijection on the unit interval.

- If the length of subintervals are rationally independent and the permutation is irreducible, then the it is minimal (Keans's condition)
- Not every minimal interval exchange is uniquely ergodic.
- Almost every interval exchange is uniquely ergodic (Veech, Masur).
- Interval exchange is never strong-mixing.
- Almost every interval exchange is weak-mixing (Avila-Forni).

Let U_{T} be the unitary operator defined by $U_{T}(f)=f \circ T$. We call λ an eigenvalue of U_{T} if $U_{T}(f)=f \circ T=\lambda f$ for some f.

Equivalent conditions for the weak mixing property.
(1) $T \times T$ is ergodic.
(2) $T \times T$ is weak-mixing.
(3) 1 is the only eigenvalue and T is ergodic.

Note that if T is the irrational rotation by α then $T \times T:[0,1) \times[0,1) \rightarrow[0,1) \times$ $[0,1)$ acts as $(x, y) \mapsto(x+\alpha, y+\alpha)$. Then the diagonal "strip" $\{(x, y):|x-y|<\delta\}$ is invariant and $T \times T$ is not ergodic.

If we choose $f(x)=e^{2 \pi i n x}$ then we have

$$
f(T(x))=e^{2 \pi i n(x+\alpha)}=e^{2 \pi i n \alpha} f(x)
$$

so $e^{2 \pi i n \alpha}$ is an eigenvalue which is different from 1.
Theorem 2 (Poincaré's Recurrence Theorem). Let T be a measure preserving transformation on (X, \mathcal{B}, μ). If $\mu(E)>0$, then for almost every $x \in E$ is recurrent to E.

Proof. Let F be the subset of E which is not recurrent to E. Then we have

$$
\begin{aligned}
F & =E \backslash \bigcup_{n=1}^{\infty} T^{-n} E \\
& =E \cap T^{-1}(X \backslash E) \cap T^{-2}(X \backslash E) \cap \ldots
\end{aligned}
$$

Therefore, $F \cap T^{-n} F=\emptyset$ for all n. Since $\mu(X) \geq \mu(F)+\mu\left(T^{-1} F\right)+\cdots=$ $\mu(F)+\mu(F)+\ldots$, we have $\mu(F)=0$.

Theorem 3 (Furstenberg's Szemerédi theorem). Let $T_{1}, T_{2}, \ldots, T_{\ell}$ be commuting measure preserving transformations on (X, \mathcal{B}, μ). For any $E \in \mathcal{B}$ with $\mu(E)>0$, we can choose $n \in \mathbb{N}$ such that

$$
\mu\left(E \cap T_{1}^{-n} E \cap \ldots T_{\ell}^{-n} E\right)>0
$$

Note that if $\ell=1$, then the proof is directly obtained by the Poincaré recurrence theorem. For a transformation T, choose $T_{1}=T, T_{2}=T^{2}, \ldots$, and $T_{\ell}=T^{\ell}$. Then the set of points x such that $x \in E, T^{n} x \in E, T^{2 n} x \in E, \ldots, T^{\ell n} x \in E$ has positive measure.

By the Poincaré recurrence theorem we can define the recurrence time to a set E with $\mu(E)>0$.

Definition 2. Define the recurrence time E_{E} to E by

$$
R_{E}(x)=\min \left\{j \geq 1: T^{j}(x) \in E\right\}
$$

Define the induced map T_{E} by

$$
T_{E}(x)=T^{R_{E}(x)}(x) .
$$

Then is is not difficult to show that for $\mu(E)>0$ (i) If T preserve μ, then T_{E} preserve μ_{E} (ii) If T is ergodic, then T_{E} is ergodic. Here μ_{E} is the induced measure defined by $\mu_{E}(A)=\mu(A) / \mu(E)$ for $A \subset E$.

Theorem 4 (Kac's Theorem). Let T be a measure preserving transformation on (X, \mathcal{B}, μ) and $\mu(E)>0$. Then we have

$$
\int_{E} R_{E}(x) d \mu \leq 1
$$

If T is ergodic, the equality holds.

Proof. We will consider the case that T is ergodic and invertible. Let

$$
E_{n}=\left\{x \in E: R_{E}(x)=n\right\} .
$$

Then $E=\cup_{n=1}^{\infty} E_{n}$ and

$$
X=E_{1} \bigcup\left(E_{2} \cup T E_{2}\right) \bigcup\left(E_{3} \cup T E_{3} \cup T^{2} E_{3}\right) \bigcup \ldots
$$

Since $T^{i} E_{n}$'s $(0 \leq i<n)$ are all disjoint,

$$
1=\mu(X)=\mu\left(E_{1}\right)+2 \mu\left(E_{2}\right)+3 \mu\left(E_{3}\right)+\ldots
$$

Therefore, we have

$$
\int_{E} R_{E}(x) d \mu=\sum_{n=1}^{\infty} n \mu\left(E_{n}\right)=1
$$

We have another proof for general ergodic transformation:
Let $N=\sum_{\ell=0}^{L-1} R_{E}\left(T_{E}{ }^{\ell} x\right)$. Then N is the time until the orbit of x under T visit E L times, so we have $\sum_{n=1}^{N} 1_{E}\left(T^{n} x\right)=L$. By the Birkhoff ergodic theorem

$$
\int_{E} R_{E} d \mu=\lim _{L \rightarrow \infty} \frac{\sum_{\ell=0}^{L-1} R_{E}\left(T_{E}^{\ell} x\right)}{L}=\lim _{N \rightarrow \infty} \frac{N}{\sum_{n=1}^{N} 1_{E}\left(T^{n} x\right)}=\frac{1}{\mu(E)}
$$

(The proof is from [1].)
Group extension (Skew-product) Let (Y, T) be a dynamical systems and K be a compact group. If $\psi: Y \rightarrow K$ is continuous, then we can define a new dynamical system called a group extension on $X=Y \times K$, by

$$
(y, k) \mapsto(T y, \psi(y) k)
$$

For an example, let $Y=\{0,1\}^{\mathbb{N}}$ and T be the left shift map. Let $K=\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$ and $\psi(y)=(-1)^{y_{1}}, y=y_{1} y_{2} y_{3} \ldots$. Then the group extension $(y, k) \mapsto(T y, k+$ $\psi(y))$ can be interpreted as a random walker at k in \mathbb{Z}_{n} jumps to $k+1$ if $y_{1}=0$ and to $k-1$ if $y_{1}=1$ and for the next turn the random walker jumps according to y_{2} 's value.

References

[1] G.H. Choe, Computational Ergodic Theory, Springer-Verlag, 2005.

