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Abstract. This is a note of prelude lecture for Vitaly Bergelson’s mini-course on ergodic Ramsey

theory at KIAS in 2007.

Dynamical Systems

(i) Differentiable Dynamical Systems

(X,B, T ) where B is the differential structure of X and T is a diffeomorphism on X.

(ii) Topological Dynamical Systems

(X,B, T ) where B is the topological structure on X and T is a homeomorphism(continuous

map) on X.

(iii) Measure theoretical Dynamical Systems =⇒ Classical Ergodic Theory

(X,B, T ) where B is a σ-algebra on X and T is a measurable transformation on X.

Let (X,B, µ) be a probability measure space. A measurable transformation T : (X,B, µ) →
(X,B, µ) is said to be measure preserving if µ(T−1E) = µ(E) for every measurable subset E.

A measure preserving transformation T on (X,B, µ) is called ergodic if f(Tx) = f(x) holds

only for constant function and it is called weakly mixing if the constant function is the only

eigenfunction with respect to T . Imagine the definition of ergodicity by using the following

picture.
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T is a transformation on [0, 1]
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Example 1. Let X = [0, 1), B Borel σ-algebra, and {x} the fractional part of x.

(i) For a given irrational number α, let T (x) = {x + α} with Lebesgue measure.
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T : x 7−→ {x + α}, t = exp(2πiα)

(ii) Let T (x) = {kx} where k = 2, 3, · · · with Lebesgue measure.
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T : x 7−→ {2x}

(iii) Let T (x) = { 1
x} with µ(B) = 1

ln 2

∫
B

1
1+x dx.
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T : x 7−→ {1/x}

(iv) Let σ be the shift map on X =
∏∞

1 {0, 1} with (p, 1−p) Bernoulli measure where 0 < p < 1.

(x1, x2, x3, · · · ) =⇒ (x2, x3, x4 · · · )

for x = (x1, x2, x3, · · · ).
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Theorem 1. A measure preserving transformation T on a probability space (X,B, µ) is ergodic if

and only if the only measurable sets with µ(T−1E4E) = 0 are those with µ(E) = 0 or µ(E) = 1.

Proof. Suppose T−1E = E. Then 1T−1E(x) = 1E(Tx) = 1E(x). Hence 1E(x) is constant. So

µ(E) = 0 or µ(E) = 1.

For the converse, let X(k, n) = {x : k
2n ≤ f(x) < k

2n+1 }. Then we have

T−1X(k, n)4X(k, n) ⊂ {x : f(Tx) 6= f(x)}.

So µ(T−1X(k, n)4X(k, n)) = 0. Thus µ(X(k, n)) = 0 or µ(X(k, n)) = 1 for all k, n ∈ N. Hence

f(x) has to be constant. ¤

Definition 1. Let T be a continuous transformation on topological space X. A point x ∈ X is

a recurrent point for T if there exist an increasing sequence n1 < n2 < · · · such that Tnkx → x.

In other words, for every open set V , there exist n ≥ 1 with Tnx ∈ V

Theorem 2. Let T be a measure preserving transformation on a probability measure space

(X,B, µ). If µ(A) > 0 then there exist n ≥ 1 such that µ(A ∩ T−nA) > 0.

Proof. Assume µ(A ∩ T−nA) = 0 for all n ≥ 1. Then µ(T−iA ∩ T−jA) = 0 for all 0 ≤ i < j.

Hence
⋃

n T−nA is a disjoint union. Since µ(A) = µ(T−nA) and

1 = µ(X) ≥ µ

(⋃
n

T−nA

)
=

∑
n

µ(T−nA) =
∑

n

µ(A),

µ(A) = 0. ¤

Remark 1. For a given measurable set A, let Ã = A− ∪jT
−jA. Then µ(Ã) = 0 by the previous

theorem and the property Ã ∩ T−nÃ ⊂ (T−nAc ∩ T−nA) = φ for all n ≥ 1.

Theorem 3. Let T be a measure preserving transformation on a probability separable metric

space (X,B, µ). Then almost every point of X is recurrent for T .

Proof. For a given n ∈ N, let {Bn,i} be a countable cover of X with diam(Bn,i) < 1
n . Let

Xn =
⋃

i

(
Bn,i −

⋃

j

T−jBn,i

)
.

Then a nonrecurrent point belongs to some Xn . By the previous remark and countable subad-

ditivity of measure, the conclusion follows. ¤
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Remark 2. If T preserves a measure µ, then
∫
X f(Tx) dµ(x) =

∫
X f(x) dµ(x) for all measurable

functions. Because it is trivial for characteristic functions and step functions, and all measurable

function can be approximated by step functions.

Theorem 4 (Mean Ergodic Theorem). Let T be a measure preserving transformation on a prob-

ability separable metric space (X,B, µ). Let M = {f ∈ L2(X) : f(Tx) = f(x)}. Then

lim
n

1
n

n−1∑

k=0

f(T kx) = PMf(x)

where PM is the orthogonal projection onto M

Proof. For a given measure preserving transformation T , let U be a linear operator on L2(X)

defined by Uf(x) = f(Tx). Then ‖Uf‖ = ‖f‖. Hence ‖U‖ ≤ 1, i.e. U is a contraction on a

Hilbert space L2(X).

Let N be a closed subspace generated by {g − Ug; g ∈ L2(X)}. At first, we will show that

M = N⊥ = {h ∈ L2(X);< h, f >= 0 for all f ∈ N} where <, > is the inner product in L2(X).

Assume h ∈ N⊥. Then 0 =< h, g − Ug >=< h, g > − < U∗h, g >=< h − U∗g, g > for all

g ∈ L2(X). Hence h = U∗h and

‖Uh− h‖2 =< Uh− h, Uh− h >

= ‖Uh‖2− < h, Uh > − < Uh, h > +‖h‖2

= ‖h‖2− < U∗h, h > − < h, U∗h > +‖h‖2

= ‖h‖2− < h, h > − < h, h > +‖h‖2 = 0.

Thus we have Uh = h and M ⊃ N⊥.

Conversely, take h ∈ M . Then Uh = h, and U∗h = h by exactly the same arguments as in U .

Hence < h, g − Ug >=< h, g > − < h,Ug >=< h, g > − < U∗h, g >=< h− U∗h, g >= 0 for all

g ∈ L2(X). So M ⊂ N⊥.

To prove the theorem, we only need to show that for all f(x) with the form f(x) = g(x)−g(Tx),

1
n

n−1∑

k=0

Ukf → 0

by continuity property of U . This is trivial, since
∥∥∥∥

1
n

n−1∑

k=0

Ukf

∥∥∥∥ =
∥∥∥∥

1
n

(g − Ung)
∥∥∥∥ ≤

2
n
‖g‖.

So we complete the proof. ¤
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Theorem 5 (Birkhoff Ergodic Theorem). Let T be a measure preserving transformation on a

probability space (X,B, µ) and f ∈ Lp, 1 ≤ p < ∞. Then
1
n

∑n−1
k=0 f(T kx) converges to f(x) a.e.

and Lp-norm where f(x) is a T -invariant function.

Remark 3. Since
∫
X

1
n

∑n−1
k=0 f(T kx) dµ(x) =

∫
X f(x) dµ(x), if T is an ergodic measure preserving

transformation, then f(x) =
∫
X f(x) dµ(x).

Theorem 6. T is an ergodic measure preserving transformation if and only if

lim
n

1
n

n−1∑

k=0

µ(T−kA ∩B) = µ(A) µ(B)

for all measurable set A,B ∈ B.

Proof. Let f(x) = 1A(x). Then
1
n

∑n−1
k=0 1A(T kx) converges to µ(A). So

1
n

∑n−1
k=0 1A(T kx)1B(x)

converges to µ(A)1B(x). Hence by Dominated Convergence Theorem,

lim
n

1
n

n−1∑

k=0

µ(T−kA ∩B) = µ(A)µ(B).

Conversely, suppose that there exist E with T−1E = E. Put A = B = E in the convergence

property. Then we have
1
n

∑n−1
k=0 µ(T−kA ∩ B) =

1
n

∑n−1
k=0 µ(E) → µ(E)2. Hence µ(E) = µ(E)2

and µ(E) = 0 or 1. ¤

Theorem 7 (Borel’s Normal Number Theorem). Let x = 0.x1, x2, · · · be a dyadic expansion of

x. Then the relative frequency of 1 in dyadic expansion of x is 1
2 almost everywhere.

Proof. Note that the map T (x) = 2x (mod 1) is ergodic with respect to Lebesgue measure.

Let E = [12 , 1) and apply Birkhoff Ergodic Theorem to f(x) = 1E(x). Then we have f(x) =
∫
X 1E(x) dµ(x) = µ(E) = 1

2 . Hence

lim
n

1
n

n−1∑

k=0

f(T kx) = f(x) =
1
2
.

Since xk = 1 if and only if 1E(T k−1(x)) = 1, the conclusion follows. ¤

Definition 2. Let T be a continuous transformation on the space X and µ be a T -invariant

measure. We say that a point x0 is a generic point for µ if

1
n

n−1∑

k=0

f(T kx) →
∫

X
f dµ

for every continuous function f ∈ C(X).
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By Birkhoff Ergodic Theorem, we have the following proposition.

Proposition 1. If T is a continuous map on the compact metric space X and µ is an ergodic

measure, then almost every point of X(with respect to µ) is generic for µ.

Definition 3. A topological dynamical system (X,T ) is uniquely ergodic if T has a unique

invariant probability measure.

Theorem 8. If (X, T ) is uniquely ergodic and µ is T -invariant measure, then
1
n

∑n−1
k=0 f(T kx)

uniformly converges to
∫
X f(x) dµ(x) for all continuous function. Hence all points are generic.

Proof. Suppose the conclusion is not true. Then there exist a continuous function g(x) and ε and

a sequence of points {xn} with

∣∣∣∣
1
n

n−1∑

k=0

g(T kxn)−
∫

X
g dµ

∣∣∣∣ ≥ ε.

Let µn =
1
n

∑n−1
k=0 δT kxn

where δt is Dirac delta functional at t. Then | ∫ g dµn −
∫

g dµ| ≥ ε.

By Banach-Alaoglu theorem, there exist a subsequence ni and T -invariant measure µ∞ such that

µni → µ∞. But | ∫ g dµ∞ − ∫
g dµ| ≥ ε. So µ∞ 6= µ. It contradicts to the unique ergodicity. ¤

Remark 4. Indeed, (X, T ) is uniquely ergodic if and only if
1
n

∑n−1
k=0 f(T kx) converges pointwise

to a constant for all continuous function f ∈ C(X) [3].

Remark 5. It is easy to show that an irrational rotation on [0, 1) is uniquely ergodic by using the

above remark and isometry property of rotations.

Definition 4. Let X be a compact metric space, T a continuous transformation of X, and µ

a T -invariant measure. A point x0 ∈ X is quasi-generic for µ if for some sequence of pairs of

integers {ak, bk} with ak ≤ bk and bk − ak →∞,

1
bk − ak + 1

bk∑
n=ak

f(Tnx0) →
∫

X
f dµ

as k →∞, for every continuous function f ∈ C(X).

Proposition 2. Let T be a continuous transformation on the compact metric space X. For

x0 ∈ X, let Y = {Tnx0 : n ≥ 0}. If µ is an T -invariant ergodic measure with its topological

support is Y , then x0 is quasi-generic for µ.
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Proof. Since µ is ergodic, there exist a point x1 which is generic for µ. Then for each f ∈ C(X),

1
n + 1

n∑

i=0

f(T ix1) →
∫

X
f dµ.

Let {fk} be a dense subset of functions in C(X), and nk be an increasing sequence with
∣∣∣∣

1
nk + 1

n∑

i=0

fj(T ix1)−
∫

X
fj dµ

∣∣∣∣ <
1
k

for all 1 ≤ j ≤ k.

The above inequality still holds if x1 is replaced by a sufficiently near point, say some T akx0.

In other words,

∣∣∣∣
1

nk + 1

ak+nk∑

i=ak

fj(T ix1)−
∫

X
fj dµ

∣∣∣∣ <
1
k

for all 1 ≤ j ≤ k.

Now let bk = ak + nk, then the conclusion follows. ¤
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